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FINITE ELEMENT MODELING OF DIELECTRIC WAVEGUIDES

1. INTRODUCTION

Recently, integrated optoelectronic systems have been proposed to achieve

faster and more reliable computing and data processing. Both applications involve

the switching and modulation of optical beams. The advantage of integrated optics

over conventional electronics is the high degree of parallelism possible in the

digital processing of optical signals. Integrated optical structures also make use of

natural optical anisotropies and non-linearities. Anisotropic materials display a

refractive index that depends on the polarization and direction of propagation of an

optical beam through the material. The refractive index of non-linear materials

depends on the strength of any externally applied fields and the strength of the

optical signal itself. Such properties can be implemented to design optical

modulators, switches and phase shifters that are crucial to integrated optical

computing applications.

Dielectric optical waveguides form the basis of all optoelectronic structures.

They are crucial as a means of connecting various active optical devices. They are

also applicable as devices such as 3 dB power splitters, which utilize the field

interactions of waveguides in close proximity, and optical switches and amplifiers

that are directly implemented on a waveguide structure. Dielectric waveguides are

quite unlike conventional microwave waveguides as they do not possess any fixed

boundary potentials and usually possess many small variations in size and shape as

a result of tolerances in fabrication on such a small scale (in the range of hundreds

of angstroms).
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1.1 MOTIVATION

The design of optoelectronic systems and active integrated optic devices

requires an understanding of the field distributions and the modal waveguiding

properties of dielectric optical waveguide structures. Such devices are likely to

incorporate many different characteristics like anisotropies, nonlinearities and

unconventional waveguide designs. Analytical techniques normally used in simple

dielectric waveguide analysis do not meet the demands of such complex structures.

Numerical techniques are often able to accurately approximate the actual

characteristics of such devices. A reliable numerical technique must be developed

to enable the study of such structures. The finite element method is extremely

suitable to study dielectric waveguide structures due to its ability to handle

unconventional systems. This method is also suitable for the study of structures

without fixed boundary conditions as in the case of dielectric waveguides. In this

work, we address the various parameters that a numerical technique should meet to

be suitable for application to dielectric waveguide analysis and study the utility of

the finite element method in such an application by comparing the results of the

finite element simulations with experiments and other previously documented

results.

1.2 SYNOPSIS OF CHAPTERS

In chapter two, the theory and properties of dielectric waveguides are

discussed. Various numerical techniques are described and the finite element

method of numerical analysis is analyzed as a versatile tool for the study of

dielectric waveguides.

In chapter three, the actual implementation of the finite element method to

dielectric optical waveguides is developed. Various methods by which the finite
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element formulation can be implemented are also examined. The scope of the

problem is expanded to handle material anisotropy and variations in refractive

index profile.

Chapter four describes the fabrication and measurement of several test

waveguides to compare with the model. Chapter five examines the results of the

finite element simulations and compares them with previously published results

and with experimental data. The utility of the finite element method is examined

in light of these comparisons and possibilities for future work are proposed.
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2. THEORY OF DIELECTRIC WAVEGUIDE SOLUTIONS

In this chapter, we discuss the theory of optical wave propagation in

dielectric waveguides. We also introduce the various terms that are used to

characterize the propagation of light in dielectric waveguides.

2.1 TERMINOLOGY

Dielectric waveguides consist of an area of higher refractive index that is

surrounded by materials of lower refractive indices. The materials are required to

possess a high degree of transparency to light at the wavelengths of interest which

enables the light to propagate in the waveguide for long distances. The simplest

dielectric waveguides consist of an infinite slab of a certain thickness surrounded

by a cover layer and a substrate layer, as shown in figure 2.1.

y Cover nc

Film

Substrate ns

FIGURE 2.1 Dielectric Slab Waveguide

The profile of the refractive index may vary across the cross section of the film

layer. Waveguides which have a uniform index of refraction across the film are

known as homogenous slab waveguides. Waveguides whose refractive index
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varies as a function of depth in the film are called inhomogenous waveguides. The

slab waveguide is known as a symmetrical slab waveguide when the refractive

index of the cover layer is the same as that of the substrate layer. If the refractive

indices of the cover and substrate are different, then the waveguide is called an

asymmetric slab waveguide. The layers of the waveguide might also be

anisotropic, i.e., possess a refractive index that is dependent on the direction of

polarization of light in the medium.

The phenomenon of total internal reflection occurs when light traveling in a

medium of higher refractive index is incident on the dielectric interface with a

medium of lower refractive index at an angle greater than the critical angle as

shown in figure 2.2. The critical angle Oc of a dielectric interface is that angle of

incidence at which the beam refracted into the medium of lower refractive index

travels along the dielectric interface. Light incident at an angle greater than the

critical angle is completely reflected back into the higher index material. Light

propagates in the waveguide by total internal reflection at the dielectric interfaces.

n c

Afz

ns

Figure 2.2 Critical Angle at a dielectric interface

Oc = sin-1 (nc / nf)
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The waveguide is only able to support the propagation of a beam of light

when the wavefront travels at particular angles to the longitudinal propagation

direction. At these angles, the beam tends to constructively interfere with itself.

At all other angles, the beam destructively interferes with itself, resulting in no

propagation. Each individual allowed propagation angle is called a "mode" of the

waveguide.

All possible allowed modes in the waveguide, incident at the dielectric

interface at an angle greater than the critical angle of the dielectric interface, will

be supported. Any light incident on the dielectric interface at angles less than the

critical angle is no longer confined to the waveguide and is lost in the transverse

direction by transmission into the cladding.

The allowed modes in the waveguide can be further classified according to

the polarization directions of the electric and magnetic fields of the waves in the

waveguides. Modes that possess an electric field E purely perpendicular to the

direction of propagation in the waveguide are called Transverse Electric (TE)

modes. The magnetic intensity H of such modes has components both

perpendicular to and along the direction of propagation.

Modes that possess a magnetic intensity H purely perpendicular to the

direction of propagation in the waveguide are known as Transverse Magnetic

(TM) modes. Such modes possess an electric field E with components both

perpendicular to and along the direction of propagation.

2.2 PROPAGATION IN DIELECTRIC WAVEGUIDES

In determining the waveguiding properties of the dielectric slab waveguide,

we obtain the different modes that propagate at given frequencies and their

propagation constants. For the asymmetric slab dielectric waveguide represented
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in Figure 2.1, the film itself has a refractive index, nf, higher than that of the

refractive indices of the cover, ne, or the substrate, ns. The propagating modes

are well confined to the film, with exponentially decaying fields in the cover and

substrate regions, as shown in Figure 2.2. The longer evanescent "tail" into the

substrate is due to the smaller dielectric constant mismatch of of and ns than of of

and nc.

nc < ns

Uf

ns

FIGURE 2.3 Well - confined modes in a waveguide

Here, we assume that ns > nc. ( In many cases, the cover is air so nc =1).

Modes that do not propagate "leak" into the cover and/or substrate with

propagation perpendicular to the dielectric interface, as represented in Figure 2.4.

k\kV V'ssw,
s7.1

FIGURE 2.4 Unconfined modes leak into the substrate
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For waves propagating along the z direction, the fields in the waveguide are

given, excluding the exp(j cot) time dependence, as

H = H(y) . expej(3z) (2.1)

E = E(y) . exp(-j33z) (2.2)

There is no field dependence in the x direction since the waveguide is assumed

infinite along the x axis.

From Maxwell's equations, when J = 0,

V X E = - iCORoltrII (2.3)

V X H = j.w.eo.e.E (2.4)

where ji and Cr are, respectively, the tensor relative permeability and relative

permittivity of the general anisotropic dielectric medium. In order to constitute a

propagating wave, equations 2.1 and 2.2 must satisfy equations 2.3 and 2.4 and the

boundary conditions in the entire dielectric space.

For isotropic media, the tensor quantities c, and gr become scalar

constants, i.e., Cr = Er and lir = lir, and equations 2.3 and 2.4 become, by

taking the curl of one, substituting the other, and using the vector identity for

VXVXE,

vt2.11 + ((2 _ 132).H 0 (2.5)

vt2E + 0(2 - (32).E = 0 (2.6)

where k = kon is the wave number of the propagating wave,

1(0 = (2n / X0),

Vt2 is the transverse Laplacian operator

and n = reT.

The practical problem posed is to determine the finite set of propagation

constants that can exist in the waveguide for a given value of the wave number.
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The set of propagation constants 1i correspond to the allowed modes of the

waveguide. Only positive values of 13i imply guided waves.

Another parameter commonly dealt with in the study of propagation in

waveguides is the "effective index" of the waveguide, Neff, given by ([3 / k0).

The effective index is also known as the normalized propagation constant, Neff.

For a propagating mode as shown in Figure 2.3,

ky2 kz2 = k2 (2.7)

kz = f3, the longitudinal propagation constant (2.8)

i.e., ky2 + p2 = k02.nf2 (2.9)

i.e., 0 5 13 5 ko.nf (2.10)

For a wave polarized in the x - direction and propagating in a medium of

infinite extent ( X << d, the waveguide thickness) with refractive index nx, ky = 0

and the wave is a plane TEM wave in the absence of any boundaries and the

propagation constant is given by 13 = ( 2.7c.nx / X0). The effective index is now

Neff = nx

In a waveguide of finite thickness( X d), the mode is not entirely confined

to the waveguide itself. The evanescent wings of the mode extend into the cover

and substrate. Thus, for propagating modes in the waveguide, Neff has a value

higher than no and ns, and lower than nf The mode is thus effectively traveling in

a medium whose refractive index is higher than that of the cover and substrate,

i.e., the wave is primarily confined to the film. At very high values of p, the value

of Neff approaches that of nf The ratio Neff / nf is a measure of how well the

mode is confined in the film. "Well confined" modes have very small evanescent

field "tails" in the surrounding cover and substrate materials. The ratio approaches

1 for very highly confined modes.
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Another important aspect of the modal solutions for dielectric waveguides

is the distribution of the electric and magnetic fields inside the waveguides and in

the substrate and cover layers. The optical power is proportional to the square of

the transverse electric field. The waveguide field distribution is easily determined

for a given 13 and Neff as solutions to equations 2.1 through 2.4 over the area of

interest.

2.3 MODELING OF DIELECTRIC WAVEGUIDES

Most of the techniques, such as the finite difference method and the

transmission line method, used in the modeling of microwave waveguide problems

are quite unsuitable for application to dielectric waveguides due to the absence of

any fixed boundary conditions. The principal techniques applicable to dielectric

waveguides are represented below.

2.3.1 The Direct Matching Method

The use of the boundary value method is very suitable in dealing with multi

layer dielectric waveguides. The propagating beam is assumed to possess a certain

distribution in the various layers. In the case of the slab dielectric waveguide, the

beam is assumed to possess an exponential decay in the cover and substrate layers

and a suitable distribution in the film layer. The parameters of the distribution are

solved by implementing the boundary conditions at the interfaces. The applicable

boundary conditions in this case are

Etl Et2 (2.11)

Dn1 Dn2 [Ps 0] (2.12)

Htl = Ht2 0] (2.13)

Bnl = Bn2 (2.14)
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where the subscript "t" indicates the components tangential to the dielectric

interface while the subscript "n" indicates the components normal to the dielectric

interface. The choice of the distribution chosen in the layers implies the presence

of either a TE or a TM solution. Thus, this method cannot handle hybrid solutions

present in certain waveguide cases, where the modes are neither pure TE nor pure

TM solutions [1]. In addition, the method is quite cumbersome to use for

inhomogenous dielectric waveguides, such as a nonuniform distribution of

refractive index in the film layers.

2.3.2 The Geometrical Ray Propagation Method

The beam propagation method is extremely convenient for dealing with

propagation through dielectric layers. Each layer is treated as an impedance in a

transmission line problem. The problem thus reduces to a set of connected

transmission lines. However, this method is not suitable for the study of

inhomogenous dielectric waveguides.

2.3.3 The Finite Element Method

In the finite element method, the problem area is discretized in space into

elements of finite length. A suitable field distribution is assumed in each of the

finite elements as an interpolation of the field intensities at the nodes of the

element. A variational function representing an "error" of the calculated field over

the actual field is calculated over each of the individual elements. Variational

functions are given in terms of the field distribution of the problem and a

minimization of the variational function implies the distribution of the fields in the

problem satisfies Maxwell's equations, equations 2.3 and 2.4. The variational

functions calculated for each of the elements of the problem are linked to set up

the whole problem by linking the fields of the elements at the common nodes they
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share. The minimization of the variational function now yields a distribution of

the fields at the nodes which can be used to determine the fields throughout the

problem by interpolating the values of the fields at the nodes of each element.

The analysis of dielectric waveguides using the boundary value method

cannot easily accommodate inhomogeneities and anisotropies in the waveguide.

The finite element method can be made to include anisotropy in the waveguides by

choosing tensor permittivities of the waveguide and cladding. Waveguide

inhomogeneities can also be incorporated by choosing an appropriate interpolation

of the values of the refractive index in each of the elements. The finite element

method is also very advantageous in certain cases where the resultant solutions

tend to be other than pure TE and TM solutions as there is no implicit assumption

that the solutions are purely TE or TM solutions.

2.4 BACKGROUND

A comprehensive guide to the theory of dielectric waveguides is provided

by Marcuse[2]. Cherin[3] discusses in detail the analytical solutions for

symmetric, isotropic cases. However, analytical techniques are quite unsuitable

for inhomogenous and anisotropic cases commonly encountered. The use of

numerical techniques has been suggested as a feasible alternative in such cases.

Although the finite element problem can be set in numerous ways, Itoh [4]

suggests that there are strong advantages to using a variational formulation. In

addition to being able to set up the problem more efficiently, the variational

formulation lends itself to the methodical and quick setting up of the perturbation

theory and its applications in the analysis of minute perturbations to a standard

problem.
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The variational functions can be set up in terms of the scalar fields of the

problem [5] or described in terms of the complete or partial vector fields of the

problem [6,7,8]. Berk [7] explains the variational formulae useful for

electromagnetic problems in terms of the more complete E or H vector notation.

The methods of derivation of variational formulations are also dealt with in detail

and the formulations are also applied to the derivation of perturbation formulas.

Silvester and Ferrari [1] and Silvester and Chari [9] discuss various

methods of discretizing the problem. The process of assembling the finite element

problem is also dealt with. Itoh [4] also discusses the usage of artificially imposed

boundary conditions to denote symmetry in the problem.

Spurious field distributions may appear in solutions to variational

formulations using vector fields [8,10]. Bardi and Biro [11] discuss fmite element

formulations for dielectric waveguides that eliminate the presence of spurious

modes. The penalty function method is introduced [12,13,14] as a method to

eliminate spurious solutions. By implementing the Coulomb gauge for H, i.e.,

by implying VII= 0, spurious solutions are made less significant.

The setting up of artificial boundary conditions to limit the scope of the

problem and to provide approximate solutions has been suggested by Mabaya,

Lagasse and Vandenbulcke [15]. The fields are assumed to die out completely a

sufficient distance from the waveguide where the imposition of a Dirichlet or

Neumann condition reduces the tangential vector electric and magnetic fields to

zero. This method requires intense computational resources as it involves the

extension of the regular finite element problem considerably farther from the area

of interest which reduces the accuracy available. In addition, the solutions in the

waveguide can only be considered approximations due to the curtailing of the

fields occurring at the artificial boundaries. The validity of such solutions is
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shown by imposing the conditions at various distances from the waveguide and

arriving at an invariant solution.

Rahman and Davies [16,17] suggest the use of infinite elements to

completely describe the fields present in the cover and substrate. The use of

infinite elements enables an accurate modeling of the evanescent fields while

preserving the computation required. The solution to the problem has been shown

to depend very weakly on the magnitude of the constant of exponential decay. In

addition, the decay length has been shown to be a derivable solution of the

eigenvalue problem.
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3. THE FINITE ELEMENT METHOD

3.1 THE VARIATIONAL FORMULATION

3.1.1 Choice of fields

The implementation of the variational formulation can be carried out using

methods such as a scalar field implementation [5], using the axial fields of E and

H [8], the transverse fields of E and H [6] or by utilizing the more complete E or

H field descriptions. General dielectric waveguide solutions are distortions of

pure TE and TM solutions and contain both Ez and Hz field components. They

are, consequently, referred to as hybrid modes. Hybrid modes arise out of a

"mixing" of the TE and TM modal solutions which is caused by the dielectric

inhomogeneity. As a result, accurate numerical formulations need to use at least 2

independent field components [1]. Although infinite slab dielectric waveguides

demonstrate pure TE and TM solutions, the generalized formulation helps us get a

better understanding when we encounter waveguide structures with hybrid modes.

The boundary conditions to be satisfied at the dielectric interface are

Etl = Et2 (3.1.1)

Dnl Dn2 [Ps O] (3.1.2)

Htl = Ht2 [Js = O] (3.1.3)

and Bn1 Bn2. (3.1.4)

where the subscript "t" indicates the components tangential to the dielectric

interface while the subscript "n" indicates the components normal to the dielectric

interface.

Abrupt changes in the permittivity, er, are encountered as we cross the

dielectric interface. Hence, any field solution may not be continuous in E [21].
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As a rule, lir is 1.0 in dielectric media. This means that at the dielectric interface,

equation 3.1.4 simplifies to

Hnl = Hn2 (3.1.5)

Hence, throughout the dielectric problem, H is continuous in the absence of

a surface current. Thus, it is much more convenient to set up the variational

formulation in terms of H.

Although it is sufficient to set up the problem in terms of the Hx and Hy

components alone, we choose to formulate the problem using all 3 H components

so as to be able to obtain a complete vector solution [7].

3.1.2 Variational Equation

In the previous chapter, we have discussed the utility of a variational

formulation in generating the finite element problem. The variational formulation

that we choose to adapt to the finite element formulation of lossless dielectric

problems is [4]

2

{(VXH)*. er-1 .(VXH)]
(0 = SV .dx. dy

[H*. H]

where SV stands for stationary value with respect to H.

This formulation yields stationary values of o.)2 when the condition

V X (Cr-1.V X H) - to2.11/..H = 0

(3.1.6)

(3.1.7)

is satisfied [4].

For the isotropic case, Cr = Er and lir = gr and equation 3.1.7 simplifies to

V2H k2.H = 0.

The fields that satisfy this functional are defined by

nX8E =0

(3.1.7a)

(3.1.8)
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where n is the normal to the dielectric interface. That is, the tangential electric

field, (n X E) is continuous. However, the field is not required to satisfy the

boundary condition

n X (er-1 . (V X H)) = 0

since the tangential electric fields do not vanish at the dielectric interface as in the

case of metallic waveguides. The anisotropy of the waveguide is described by the

tensor permittivity and permeability which are assumed real, i.e., the media are

assumed to be lossless.

To facilitate the interpretation of the above variational functional

numerically, we modify it so that

J =SVCS [(VXH)s.6-1.(VXH) k2H*. ALIT]. dx.dy (3.1.9)

The solutions of equation 3.1.9 sometimes result in the presence of spurious

solutions that numerically satisfy the equation but are not physical waveguide

solutions [12,13]. The spurious modes violate Maxwell's equations by not

satisfying V.H = 0. Hence, we modify Equation 3.1.9 with a penalty condition

so that the formulation now is

J = SV 0 [(VXH)..e,' .(VXH) k2.11`. ft,..H+ a. (V.H)*.(V.H)]. dy (3.1.10)

where oc is a positive, arbitrary penalty constant. The effect is that for spurious

solutions, the value of the variational functional is much higher and as a result

these solutions become less important in the calculation of a minimum value of the

functional. For a sufficiently high value of a, the spurious solutions are pushed

quite far from the minimum variational solutions of the true solutions of the
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waveguide so that they do not appear as real solutions. The effect of a, thus, is

that of an easy implementation of the Coulomb gauge, V.H = 0. Thus, the

presence of the spurious modes is greatly diminished.

For the slab waveguide case, we assume that the waveguide is infinite in x

[Figure 2.1]. Thus,

J = SV [(V XH)* .(V XH) k2H*.1.1,-.H+ a.(V.H)*.(V.H)].dy (3.1.11)

In the general, isotropic infinite waveguide case, the wave equations lead to

dEzjHs=
j aY

(k2 p 2)

,r 0 die
j(P dYHy =
(k2 p2)

/ die
cog

Ex =
( k 2 / 3 2 )

raEz\
c)),Ey =

(k2 52)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

We can see that the transverse components Hx, Hy, Ex and Ey are purely

real and the longitudinal components Hz and Ez can be taken as purely imaginary.

This is common even in anisotropic waveguides and can be used for most

problems [1]. This enables us to significantly reduce, by a factor of 2, the number

of computational variables in the problem.
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3.2 ELEMENTAL FORMULATION

We now discuss the creation of the problem for the individual elements.

The problem as illustrated in Figure 2.1 is discretized as shown in Figure 3.2.1.

Infinite Element

Cover

nite Elements,' ,

,

Film ss,

0 x node
Infinite Element

Substrate

FIGURE 3.2.1 Creation of finite and infinite elements

The fmite elements are along the y axis, as shown. By dividing the space

with m nodes, we are creating m - 1 finite elements and 2 infinite elements

extending to positive and negative infinity respectively, to describe the fields
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sufficiently beyond the area of interest. The infinite elements are described in the

next section.

3.2.1 Finite Elemental Formulation

We choose a first order linear interpolation of the fields in each finite element. In

each element, the field at any point is represented, as shown in Figure 3.2.2, as

where

and

11(y) = 14 .111 + L2.H2

Ll = 372 y
y2 yi

L.,T 2,
Y 311=
y2 yi

(3.2.1)

(3.2.2)

(3.2.3)

so that L1 + L2 = 1 (3.2.4)

Y1

FIGURE 3.2.2 The Finite Element

Y2
>



We implement the formulation by using

and

Operating on

where

V=

V. = (0,d
, j13).

aY
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(3.2.5)

(3.2.6)

(H) = [ILA cU2 "GlyL2 &Li azL2].[Hd, and (3.2.7)

(H)* = &L2 byLl ayL2 (3.2.8)

[Hc]T = [Hxi H2 Hyi Hy2

The subscripts 1 and 2 denote the nodes of the finite element.

This results in

(V X H )*= [ ayilki + azA elyjf3L2 43Li 643L2 axtes, axA ].[Hc]

(3.2.10)

(V X H) = [ clyji3Li + elz/A ayji3L2 a/A elijai iliji6L2 ].[Hc]

(3.2.11)

(V . H )* = [0 0 7e jf3L2].[Hc] (3.2.12)

(V . H) = [0 0 70 jfILA j/3L2].[Hc] (3.2.13)



where

A Y2 Y1

We can now write

Y2

f [(VXH)* Er-1 .(VXH)].dy = [11dT .[M].[11 c]

y2,

a. f [(v.x)* (v.H)].dy = [Hc]T .[N].[Hc]

yl

7[(H)*.(H)].dy = [NT .[P].[He]

yl

where M, N and P are scalar matrices that use the relationships

Y2

fay =e
yi

Y2 yz

= f L2.dy =

yi yi

y2

Li.L2.dy =
6

Y2 yz
A

f.L2,.dy = 5E2. dy =
y1 y1
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(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

3.2.2 Infinite Elemental Formulation

The implementation of the variational formulation for the infinite elements

is at a very large distance from the waveguide or area of interest where the fields

are known to decay exponentially into the cladding. The infinite elements are

shown in Figure 3.2.1. The fields in this area are taken as



11(y) = 1(3'1)- exP ky-Y1)/1-1

This field distribution is illustrated in figure 3.2.3.

FIGURE 3.2.3 The Infinite Element
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(3.2.22)

Y >

The choice of the decay length, L is not critical to the problem [16] when

the infinite elements are chosen sufficiently distant from the dielectric interface

where the contribution of the infinite elements to the variational formulation to the

problem is relatively weak. As the decay length varies with the particular mode

being considered, the implementation only needs to be a good approximation.

This is achieved by using equations 3.2.5 and 3.2.6, which gives us

(V X H) * = [az.L+ ay. j a.. .IS iLL].[Hc] (3.2.23)

(V X H) = [az.L ay. j0 & jP a..L].[Hc] (3.2.24)

H)* = {0 YL .113].[He] (3.2.25)

and (V . = {0 YL j0 ].[Hc]. (3.2.26)
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Again, we can write

y2

f [( VXH)s . Er-1 . (V XH)]. dy = [H. c]T lc] (3.2.27)
y1

y2

a. [(V. II)* (V.11)].dy = [M]T [Hc] (3.2.28)
y1

7[(H)* dy = [HT (3.2.29)

where [Hc]T = [H.1 Hyi Hzi] (3.2.30)

The infinite element formulation above can be implemented at as many

locations as required. An appropriate use of the exponential decay constant

suitable to the position of implementation can be chosen.

3.3 LINKING OF ELEMENTS

In the previous section we have discussed the implementation of the

variational formulation to each individual element of the discretized problem. We

now discuss the mechanism of integrating the discretized implementation to

include the entire problem.

The finite and infinite elements that form the problem share nodes with the

other finite and infinite elements. We can achieve the complete problem

description by explicitly describing these links. Using the linkage mechanisms, we

can unite the formulations derived in the previous section.
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We can unite the discretized problem by repositioning the elemental

formulations. For a problem that has n total elements sharing m nodes, n = m+1,

as illustrated in figure 3.2.1, the formulation in equation 3.1.11 can be stated as

= SV{HthsT . X. Hths k 2. HdisT .Y .Hdd (3.3.1)

so that [Hdls]T = [HZ Hc2T Hc3T .... HcnT (3.3.2)

where [Hci] is the column H matrix that is associated with the ith element and

+

0

0 0

M2 ± N2 0

[X]= M3+ N3 (3.3.3)

0 0 0

P1 0 0 0

0 P2 0

[Y] = P3 (3.3.4)

0 0 0 13,7

We have

[Hda] = [c].[Hconn] (3.3.5)

[Hcont]r = [Hx1 Hyl Hz1 Hs2 Hy2 Hz2 H. Hy. Hz.]T . (3.3.6)

[Hconn] is the column H - field array that describes the fields at the nodes of the

connected problem. [C] is the Connection Matrix whose elements take a value of

1 when the node of an element coincides with that of the connected problem and 0

otherwise.



We now have the new formulation matrices,
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[Hd.]T .[X].[Hd.] = [Hcon.]T .[A].[Hconn], and (3.3.7)

[Hdis]T .[Y].[Hd.] = [Hconn]r.[B].[Hconn],

i.e., [A] = [C]r .[X].[C]

(3.3.8)

(3.3.9)

and [B] = [C]r .[Y ].[C] (3.3.10)

Hence, equation 3.3.1 reduces to

J = SV[H.T. A. Hconn k2 B (3.3.11)

The stationary nature of the functional is with respect to the variables in

equation 3.3.11, i.e., the fields at the nodes of the problems. Thus, the variational

function is minimized as

aH
= 0 (3.3.12)

where Hi is an individual field component at any node. Since the field

components at any node are independent variables, we can rewrite equation 3.3.12

as

[A].[H. ] k2 .[B].[H. ] = 0 (3.3.13)

Thus, the finite element problem is now an eigenvalue problem where the

equation 3.3.13 is a formulation in terms of 13. The eigenvalues give us the square

2

of the wave numbers
(2: that are supported by the

waveguide at the given propagation constant 0. The eigenvectors [Hconn]i give the
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values of the H-field that correspond to the particular mode. As described in

section 3.1.2, the components Hx and Hy are purely real and Hz is purely

imaginary. The problem, once set up, can be solved repeatedly for different values

of 13 to cover the range of interest.

Thus, knowing the way the problem has been discretized and by calculating

the eigenvalues and eigenvectors of the variational formulation for a particular

value of 13, we can determine the values of the wave number, k, and the effective

index, Neff, that corresponds to the possible modes at that value of (3.

3.4 ANALYSIS

3.4.1 Multimode waveguide

Figure 3.4.1 shows an asymmetric dielectric slab waveguide. The

waveguide consists of 7000 A of PECVD grown SiON of refractive index 1.8 that

is deposited on a BK - 7 glass substrate of refractive index 1.52. The cover layer

is air (n = 1).

n=1.0

:7000 A , ni#1,8

n =1.52

FIGURE 3.4.1 The Multimode Waveguide
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The plots of 13 versus the effective index, Neff are shown in figure 3.4.2 for

the TE and TM modes. The dispersion curves ((3 versus k) are shown in figure

3.4.3 and the variation of the effective index, Neff versus k is shown in figure

3.4.4. Due to the asymmetry of the problem, all the modes of the waveguide

experience a cutoff at k > 0. A plot of the field distribution for the first 2 TE and

TM modes at k = 9.929 / µm (i.e., = 6328 A) are shown in figure 3.4.5.

3.4.2 Single mode waveguide

Figure 3.4.6 shows a different waveguide structure. The asymmetric single

mode waveguide consists of a cover layer of air (n=1) and a substrate of glass

(n=1.52) with the waveguide itself being a SiON layer 1620A thick of refractive

index 1.8.

n=1.0

1610 A z r L8

n=1.52

FIGURE 3.4.6 The Single Mode Waveguide

Single mode waveguide structures are very useful in integrated optics

applications. Figure 3.4.7 shows the plots of (3 versus Neff for the TE and TM

modes. The dispersion curves are shown in figure 3.4.8 and the variation of the

effective index, Neff versus k is shown in figure 3.4.9. This waveguide structure

is also asymmetric and shows a cutoff for values of k > 0.
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FIGURE 3.4.3 Beta versus Wave number for the multimode waveguide

a) TE modes b) TM modes
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FIGURE 3.4.7 Beta versus Effective Index for the single mode waveguide

a) TE modes b) TM modes
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FIGURE 3.4.8 Beta versus Wave number for the single mode waveguide

a) TE modes b) TM modes
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FIGURE 3.4.9 Effective Index versus Wave number for the single mode

waveguide

a) TE modes b) TM modes
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Analysis was also carried out for a single mode waveguide that consisted of

a 3000 A film of refractive index 1.8 with a superstrate of air and a substrate of

glass ( n = 1.52).

3.4.3 The Anisotropic Waveguide

Anisotropic waveguides are extremely important in integrated optics

applications. A variety of anisotropic materials are used such as lithium niobate

and lithium titanate [19,20]. Figure 3.4.10 illustrates a symmetric anisotropic

waveguide. These values of the permittivity tensor were chosen to enable the

comparison of results by the finite element method with those already documented

[18].

n=1. 5811

50 tun irs[NI

n=1.5811

FIGURE 3.4.10 The Anisotropic Waveguide

The waveguide has a permittivity tensor given by Cr =

2.287 0 0

[AT] = 0 2.2 0

0 0 2.287

5.23 0 0

0 4.84 0

0 0 5.23

The refractive index tensor can be calculated by remembering that ni)=.47,7. The
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cover and substrate layers are isotropic with refractive index 1.581 each. The TE

modes are expected to show a higher effective refractive index due to the

anisotropy of the problem. The modal dispersion curves for the TE and TM

modes are shown in figure 3.4.11. The plots of the distribution of the H-field at

k = 9.929 / gm ( ko = 6328 A) for the lower order TE and TM modes are shown in

Figure 3.4.12.

The discussion of the results of the fmite element simulations with

experiment and other literature models is found in Chapter 5.
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4. EXPERIMENTS

In order to experimentally verify the finite element model results, several

single- and multimode slab waveguides were fabricated and measured. This

chapter describes the processes used for waveguide fabrication, light coupling and

effective index determination.

4.1 THE PECVD PROCESS

The waveguides were grown by depositing silicon oxynitride (SiON) films

on 2" x 2" BK-7 glass substrates. The SiOxNy layers were deposited by the

plasma enhanced chemical vapor deposition (PECVD) process. PECVD allows

the growth of high quality films at low temperatures and at high deposition rates.

In PECVD, the activation energy for the reactions is provided by an RF power

source in the chamber. The set up of the growth process is shown in Figure 4.1.1.

The gaseous reactants used were silane (SiH4), nitrogen (N2) and nitrous oxide

(N20). The reactions occurring in the RF plasma are

and

SiH4 + N20 Plasma
> Si Ox + H2O

SiH4 + N2 Plasma SiNy + H2.

The resultant deposition is thus a mixture of SiNy:H and SiOx:H which is

amorphous in nature. The deposited film is best denoted by SiOxNy:H. The

silane used was a 2% mixture in helium. The flow rates of the gases were

SiH4/He at 20 sccm (standard cubic centimeters per minute), N2 at 10 sccm and

N20 from 0 to 50 sccm. The composition of the film can be varied from

approximately SiO2(n = 1.48) to Si3N4 (n = 2.05) by controlling the rate of flow

of N20. The films
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FIGURE 4.1.1 The PECVD film growth set up
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deposited are actually SiOx:H and SiNy:H but the measured range of indices from

1.48 to 2.05 shows the limits to be nearly the same indices as the stoichiometric

compounds. The substrate temperature was maintained at 300° C and the RF

plasma provided was 70 Watts at 13.56 MHz. The deposition pressure in the

plasma chamber was 500 mTorr.

The deposition rate has a strong dependence on the relative concentration of

the reactants and on the RF power available in the chamber. The deposition rates

ranged from 80 to 100 Angstroms per minute. The deposition process had been

previously characterized with respect to the growth rate as a function of RF power

and refractive index of the film as a function of the flow rate of N20, thus

enabling the accurate control of refractive index and thickness of the layers.

Slight nonuniformities in the film thickness were noticed due to the

nonuniformity of the substrate temperature across the area of the heated substrate.

However, the variation across the central region of the substrate (roughly 2cm x

2cm) was not more than 5%.

The films grown were SiON films of refractive index 1.8, grown on BK-7

glass substrates of refractive index 1.52. The initial films grown had thicknesses

of 1620A for a weakly coupled single mode waveguide at 632.8 nm and 7000 A

for a multimode guide. Later, a 3000 A thick single mode waveguide was grown

for comparison and easier prism coupling.

4.2 WAVEGUIDE COUPLING

4.2.1 Experiment

To avoid problems in polishing and focusing for endfire coupling, the prism

coupling technique was used to couple light into the waveguide structures. The
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experimental set up is shown in Figure 4.2.1. A strontium titanate 45-45-90 prism

was clamped down on the waveguide using a specially designed clamp stand. The

waveguide along with the prism clamp was mounted on a rotational stage which

was in turn mounted on an XYZ translation stage. The light source used was a

4mW HeNe laser operating at 632.8 nm with a TEM00 transverse mode. The

strontium titanate prism has a refractive index of 2.38 at 632.8 nm. The beam was

focused by a lens of focal length approximately 9 cm and aimed near the right

angle corner of the prism. The angle at which the light was incident on the prism

was controlled by the rotational stage. The XYZ translational stage was used to

ensure that the light was incident at the right angle corner of the prism. A

polarizer sheet was used to isolate the TE and the TM modes of the waveguide.

Rotational Stage

r-1 O

HeNe Laser Source Polarizer

FIGURE 4.2.1 The Waveguide Coupling Set Up

XYZ Translation Stage
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The pressure with which the prism was clamped down over the waveguide

was seen to have a significant effect on the coupling efficiency. For efficient

coupling the prism-waveguide spacing must be small enough for the evanescent

field to bridge the gap and couple to the waveguide. This requires spacings of less

than a micron. It was also found that it was crucial that the light entered the

waveguide exactly at the right angle corner of the prism. This ensured that the

wave coupled into the waveguide could not immediately couple back into the

prism and would continue to propagate down the waveguide.

4.2.2 Theory

The coupling action between the prism and the waveguide is illustrated in

Figure 4.2.2.

Film

Substrate

FIGURE 4.2.2 Prism Coupling into a waveguide
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The light couples into the prism when the longitudinal component (parallel

to the interface between the prism and the film) of the propagation constant of the

light in the prism equals the longitudinal component of the propagation constant of

the mode of the waveguide, providing the spacing is small enough to allow field

coupling.

Pprism I3guide i.e.,

27r

A,
.np.COSep = f3guide

where np is the refractive index of the prism.

By observing the angle to the normal of the prism, 4), at which light is

coupled into the waveguide, we can calculate the longitudinal propagation constant

in the waveguide, and thus, the effective index of the coupled mode.
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5. RESULTS AND DISCUSSIONS

5.1 EXPERIMENTAL RESULTS

The waveguide structures that were fabricated were the ones described in

sections 3.4.1 and 3.4.2. The multimode waveguide consisted of a 7000 A thick

SiON film of refractive index 1.8 deposited on a 0.040" thick glass substrate of

refractive index 1.52. The single mode waveguides consisted of 1620 A and 3000

A thick films of refractive index 1.8 on BK-7 glass. In all the cases, the cover

layer was air (nc = 1.0).

HeNe light at 632.8 nm was successfully prism coupled into the waveguide

structures. The waveguides were simulated by the finite element as well as by the

direct matching method program [22]. For the HeNe wavelength, the free space

wave number k0 = 9.929 / gm. We can use this value of k0 to determine the

values of the propagation constant p and effective index Neff predicted by the

fmite element program from Figures (3.4.3 and 3.4.4) and (3.4.8 and 3.4.9) for the

multimode and the single mode cases, respectively. The comparison can now be

made between the results of the direct matching method, the fmite element

method, and the experimental results. The values for the multimode case are

tabulated in Table 5.1. The values for the single mode case of film thickness 1620

A are shown in Table 5.2 and those for the single mode case of film thickness

3000 A are shown in Table 5.3. For the experimentally observed values of the

effective index, the error bars indicate the error present due to the least count of

the rotational stage (about 0.5°) and the error inherent in the variations in film

thickness (about 5 %).
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Mode Experimentally

observed effective

index

Exact Effective

Index (Calculated

from Direct

Matching

Method)

Effective Index

(Calculated by

Finite Element

Method)

TEO 1.78 ± 0.007 1.7633 1.760

TE1 1.64 ± 0.007 1.6528 1.643

TMO 1.78 ± 0.007 1.7561 1.759

TM1 1.63 ± 0.007 1.6275 1.640

Comparison of experimental and predicted values of effective index for

multi-mode case

TABLE 5.1

Mode Experimentally

observed effective

index

Exact Effective

Index (Calculated

from Direct

Matching

Method)

Effective Index

(Calculated by

Finite Element

Method)

TEO 1.59 ± 0.006 1.574 1.545

Comparison of experimental and predicted values of effective index for

single mode case (film thickness 1620A)

TABLE 5.2



48

Mode Experimentally

observed effective

index

Exact Effective

Index (Calculated

from Direct

Matching

Method)

Effective Index

(Calculated by

Finite Element

Method)

TEO 1.68 ± 0.006 1.6773 1.657

TMO 1.64 ± 0.006 1.6356 1.634

Comparison of experimental and predicted values of effective index for

single mode case (film thickness 3000A)

TABLE 5.3

5.2 DISCUSSIONS

5.2.1 Multimode waveguide case

In the case of the waveguide discussed in 3.4.1, which consisted of a 7000A

thick film of refractive index 1.8 deposited on a glass substrate of refractive index

1.52, by comparing the results obtained by the finite element method and the direct

matching method, we see that the values are in quite close agreement. There is

also good agreement with the experimentally measured values of the effective

indices of the coupled modes. In repeated simulations using different values of

decay lengths for the fields in the wings, it was also observed that the value of the

decay length itself is not crucial to the accuracy of the result. In this case, all the

modes are very well confined (Neff is much closer to 1.8 than 1.52). This means

that the strength of the fields in the cladding is very weak and so the variational
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formulation in the infinite elements has very little effect on the total formulation of

the problem. Thus, an inaccurate value of the decay length chosen will not

adversely affect the final result. This is important to understand as the actual value

of the decay length is different for each of the modes. The calculations have to be

repeated to obtain accurate results for the various modes, where the result is only

accurate for the mode being studied. This results in a large increase in the

required computation time required to come to an accurate solution.

The value of the decay length can also be programmed as a variational

parameter in the finite element problem formulation [16], so that the eigen solution

gives us a value of the decay length. However, as observed earlier, this value

should be different for each of the modes, so the resultant value is not "true" for

any of the modes and is thus a poor approximation to all of them. Hence, this

method was avoided.

The field distributions shown in figures 3.4.7 and 3.4.11 also show how the

modes are more tightly confined at the film - air interface due to the large

differential in refractive index at this interface. As the waveguide is asymmetric,

i.e., nc # ns, the waveguide experiences a cutoff at 1(0 > 0. The asymmetry of the

waveguide permits 3 ?. 0 only for ko > 0 [1,2].

5.2.2 Single mode waveguide case

For the case of the 1620 A thick film of refractive index 1.8 deposited on

glass of refractive index 1.52, the calculations by the direct matching method [22]

show the presence of just 1 mode (TE mode) with Neff of 1.574. In other words,

these modes are very poorly confined and the decay lengths of the fields in the

wings is quite large. The initial calculated effective index of the mode, using the

finite element program, was 1.504.
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The match between the results of the direct matching method and those

predicted by the finite element method show a greater error in this case. The

values predicted by the finite element program differed by 5 %. The assumption

that the waveguides are lossless is less accurate due to the poor confinement of the

fields in the waveguide. In poorly confined modes, i.e., when the value of Neff is

very close to 1.52 (the substrate refractive index), the fields in the wings are higher

and the variational functional is strongly dependent on an accurate value of the

decay length chosen in the cladding. A good estimate of the values of the decay

lengths to be used can be obtained by extending the finite element formulation

deep into the cladding where the field decay can be observed. The decay rate

observed in the cladding can now be used as a starting approximation to be used in

the infinite elements. This procedure can be used iteratively in the infinite element

formulation to give a better approximation of the actual decay length. This

procedure yielded an effective index of 1.545 for the lowest order TE mode. This

result is still quite different from the predictions of the direct matching method.

The finite element problem is set up assuming the lossless propagation of the

modes in the waveguide. This assumption is less valid in poor confinements that

occur at low values of 0. Hence, we observe greater errors in the predictions of

the finite element method for modes that are close to cutoff.

To observe the improvement in accuracy of the predictions of the finite

element method, another single mode waveguide was grown. In the case of the

single mode film of thickness 3000 A, as seen in Table 5.3, the experimental

results and those of the finite element method and the direct matching method all

show close agreement. Due to the greater confinement demonstrated in this case,

the variational formulation is strongly dependent on the field distributions in the

waveguide itself. The results of the simulations thus display a greater accuracy for

well-confined modes.
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We studied the effect of variation in assumed decay length in the cladding

on the predicted effective index by the finite element method. Tables 5.3a and

5.3b show the variation of effective index for different chosen values of the decay

length in the air and substrate layers of the single mode waveguide of film

thickness 3000 A. We observe that the variation in the predicted effective index is

by as much as 1.5 % for minute variations in the decay lengths in the cladding.

FIELD DECAY LENGTH IN THE
SUBSTRATE

EFFECTIVE INDEX
(@ 632.8 nm)

0.1 1.65
0.12 1.656
0.14 1.657
0.16 1.657
0.18 1.657
0.2 1.655
0.22 1.655
0.24 1.654

TABLE 5.4 a

FIELD DECAY LENGTH IN
AIR

EFFECTIVE INDEX
(@632.8 nm)

0.01 1.65
0.014 1.652
0.018 1.653
0.022 1.655
0.025 1.657
0.028 1.657

TABLE 5.4 b

TABLE 5.4 Variation of effective index versus assumed field
decay length in the cladding
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5.2.3 Anisotropic Waveguide Case

The scalar permittivity used in the isotropic cases is replaced by a tensor

permittivity to create the anisotropic case. Yamamoto, et.al. [18] have used a

Rayleigh-Ritz variational method to obtain the dispersion curves for a lithium

niobate film. The results of the simulations of the anisotropic case are shown in

Figure 3.4.11. Table 5.5 gives a comparison of the predictions of the finite

element program with those documented by Yamamoto et al, at a normalized

thickness (d / X0) of 2.0. We observe a close agreement with the previously

published results.

Mode

Effective Index

(Calculated by Finite

Element Method)

Effective Index

(Predicted by Yamamoto

et al)

TEO 2.286 2.286

TE1 2.235 2.231

TE2 2.154 2.17

TM0 2.188 2.189

TM1 2.154 2.15

TM2 2.086 2.083

Comparison of predicted values of effective index for

anisotropic waveguide case

TABLE 5.5
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The anisotropy results in the sharp difference in the maximum values of the

effective indices of the TE and the TM modes as the electric fields are oriented

along different principal axes for the 2 cases. This affects only the well-confined

cases. For a poorly confined mode, there is not a great difference in the effective

indices of the TE and the TM modes since a large portion of the wave exists in the

wings making the effective index more dependent on the index of the cladding.

Since PECVD produces amorphous waveguides, we were unable to experimentally

prepare anisotropic waveguides to measure. Diffused waveguides in LiNbO3

would provide anisotropic samples and could be pursued in the future.

5.3 CONCLUSIONS

The finite element method has been shown to be a useful tool in the

prediction of dielectric waveguide characteristics. The details of the finite element

program and its operating characteristics are given in Appendix 1. The advantages

of using the finite element method in the study of integrated optical waveguides

are in unconventional structures, asymmetries or anisotropies where analytical

techniques fail, making it a very versatile tool to the integrated optics designer.

The method has a high accuracy and allows an arbitrarily small discretization of

the problem with comparatively small investment in memory and computation

time which gives results of high accuracy.

The accuracy with which the results of the finite element method have

matched experimental results and other previously documented results proves that

the method is reliable. The modular nature of the programming allows for

increasing the scope of the problem greatly in terms of accuracy and complexity

without vastly increasing the complexity of the problem definition.
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The method is quite accurate in dealing with well-confined modes in

dielectric waveguides. However, when dealing with poorly confined modes (i.e.,

modes near cutoff) the method proves to be more inaccurate. The finite element

solutions for poorly confined modes are very dependent on the assumed value of

the exponential decay length in the cladding.

5.4 FUTURE WORK

An interesting application of the finite element analysis of dielectric

waveguides that bears exploration is the study of two - dimensional and buried

waveguide structures. To study the field distributions, phase interactions and

power transmission between dielectric waveguides placed in proximity is another

application. Such problems are of interest in the design of directional couplers,

modulators and other common integrated optic structures. The finite element

method is also well suited to the study of diffused waveguides where the film

layers actually possess a complementary error function or other complicated

distribution of refractive index. The fabrication of such structures to verify the

simulations should be a simple task given the fabrication resources available.
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APPENDIX 1

DETAILS OF THE FINITE ELEMENT PROGRAM

The finite element program used in the above analysis is available with the

authors, Gannavaram D. Vishakhadatta and Dr. Tom Plant. The routines were

written in Fortran. The program used the CG eigen value extraction routine from

Net lib, by J.J. Dongarra. The inputs required are the dimensions of the waveguide

and the refractive indices of the cover, waveguide and substrate layers. The

assumed decay lengths in the cladding layers also need to be input. The output

consists of the effective indices of the eigen modes and their field distributions.

The presence of different modes can be studied by observing the field distribution

patterns.

The program was usually run with a discretization of 20 nodes. At this

level of discretization the program occupied at most 3 MB of RAM and took

roughly 55 seconds to calculate the effective indices of propagating modes at a

given value of 13 on an Apollo workstation. In order to check the accuracy of the

program, it was also run with 50 nodes for the single mode waveguide cases. The

variation in the results observed was insignificant ( in the order of 1.0 x 10-4).

Table A1.1 shows the convergence in the values of the effective index, Neff,

predicted by the finite element program for the TEO and TMO modes of the single

mode waveguide of thickness 3000 A as a function of the number of nodes chosen

in the problem. The error in the discretization approximation tails off to a very

low value when we choose to use more than 12 nodes.
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Number of nodes

used in the

problem

discretization

Effective Index of

the TEO mode

(Exact

Neff = 1.6773)

Effective Index of

the TMO mode

(Exact

Neff = 1.634)

Simulation time

per Neff

calculation

(seconds)

5 1.615 1.587 4

8 1.633 1.622 11

12 1.634 1.634 21

20 1.657 1.634 55

50 1.657 1.634 180

Comparison of convergence in effective index values with various discretizations

of the finite element problem

TABLE

A1.1


