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OBSERVATIONS OF CROSS-SHORE SEDIMENT TRANSPORT

AND FORMULATION OF THE UNDERTOW

1. GENERAL INTRODUCTION

Coastlines are dynamic environments that undergo forcing from fluid motions that span

the frequency band from seconds to years (Holman et al. (1989)). In response to this

forcing, coastlines evolve: they lose or gain sediment, or sometimes they attain a state of

equilibrium (Komar (1998)). Coastlines are also a place where most humans live. In the

U.S. alone, more than 50% of the population lives 1 hour or less from the coast. Public

as well as private infrastructures and developments that are built on coastlines sometimes

disrupt the shoreline’s natural response to wave forcing, and are often endangered by such

response. As a result, roads, ports, houses or towns often fall into the sea or are faced

with unmanageable supplies of sand.

The mission of coastal engineers is to help remedy these problems. They rely on em-

pirical as well as theoretical tools that are constantly updated as more is learned about

nearshore processes. One type of process that is particularly puzzling is cross-shore sed-

iment transport. Although longshore currents, generated by obliquely incident waves,

transport millions of cubic yards of sediment a year and are more energetic than cross-

shore currents, cross-shore sedimentary processes are responsible in great part for the

inter-annual variability of shorelines (Komar (1998)).

Under the action of storm-generated waves, which tend to occur during the winter

season, sediment is eroded from the upper portion of a beach and moves offshore. It often

accumulates near the breakpoint to form a sand bar. The principal forcing mechanism for

the mobilization and offshore transport of sediment is the undertow. The undertow is an
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offshore-directed current which becomes stronger as waves are more energetic. Under the

action of fair-weather waves, which tend to occur during the summer season, the undertow

weakens, and the wave-generated non-linear orbital velocities move sediment shoreward.

Knowledge and modeling cross-shore sediment transport is important to coastal engi-

neers and the scientific community for many reasons. Storms erode beaches in a matter of

hours, and a better understanding of erosional forces can benefit the planning and main-

tenance of coastal infrastructures. Similarly, an understanding of the forcing mechanisms

behind the shoreward movement of sand would improve the planning and design of beach

replenishment projects. Finally, knowledge of long-term cross-shore variability is critical

to understanding general beach ecology and dispersal of pollutants (Ruessink & Kuriyama

(2008); Feddersen (2007); McLachlan et al. (1993)).

Modeling of cross-shore sediment transport has been approached from various theoret-

ical point of views. Some models have been developed to predict general beach states and

direction of sediment transport, based on hydrodynamic conditions and site characteris-

tics (see, e.g., Kraus & Smith (1994); Roelvink & Brøker (1993); Lippmann & Holman

(1990); Wright & Short (1984); Dean (1977)). Other models have been developed to eval-

uate change in bar morphology over relatively large temporal scales (i.e., days to years)

based on general wave field and site characteristics (see, e.g., Marino-Tapia et al. (2007);

Plant et al. (2001)). In this dissertation, we are interested in exploring the capabilities

of process-based models, which predict shoreline evolution on a shorter time scale. These

models are developed to reproduce in detail the forcing responsible for the mobilization

and transport of sediment and, ultimately, for the movement of sandbars.

Process-based models have been proven successful when applied to offshore bar gener-

ation cases (Thornton et al. (1996); Gallagher et al. (1998); Henderson et al. (2004)). Yet,

shoreward bar migration has been more difficult to model (Gallagher et al. (1998)). Some

recent approaches show promise in modeling both cases (Hoefel & Elgar (2003); Hender-
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son et al. (2004)). These models have confirmed that undertow is the primary forcing

mechanism for offshore sediment transport. They have also highlighted the role of various

nonlinear forcing mechanisms for moving sediment shoreward. However, questions remain

as to the role of these forcing mechanisms in the mobilization and movement of sediment

in the nearshore. Furthermore, it is unclear how sediment moves when bars are migrating

offshore and shoreward. Two recent models achieved similar results in the modeling of

bar migration, even though they are based on different assumptions. One model (Hoefel

& Elgar (2003)) assumed that sediment moved as bedload and suspended load, and that

effects of velocity asymmetry on the bed were important. Another model (Henderson

et al. (2004)) assumed that all sediment moved as suspended load and bedload can be

neglected. Finally, these models performed well when measured times series of velocity

are used. Important forcing mechanisms such as undertow or irregular velocity fields are

still difficult to model without proper calibration.

The main drawback to the reconciliation and/or to further development of sediment

transport models is a lack of data on which to test them. Detailed observations of sediment

transport on natural beaches, under various weather conditions, are sparse (Birkemeier

(1984); Gallagher et al. (1998)). Laboratory datasets are easier to obtain, but the major-

ity of experiments on sand movement have been performed in oscillatory water tunnels

(van der Werf et al. (2009)) where non-linear features such as velocity asymmetry or

boundary layer streaming can not reproduced. Only a few experiments have been con-

ducted with irregular waves, in open wave flumes (Kraus & Smith (1994); Roelvink &

Reniers (1995); Thorne et al. (2002); Ribberink et al. (2000)). Furthermore, many for-

mulations for the undertow have been proposed, but they are often tested on a limited

dataset. The few publications that compared different formulations on a same dataset in-

dicated that they yield different results (Spielmann et al. (2004); Gallagher et al. (1998)).

In this dissertation, my objective is to evaluate in details the assumptions of two

process-based models, and to compare them against a new dataset. I also compare the
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differences between the different undertow formulations, and reconcile them when possi-

ble. The formulation of undertow is compared against four dataset in order to analyze the

relative importance of its main components. This comparison also evaluates whether it is

possible to create a simple, robust, deterministic undertow model.

The dissertation is organized as follows. In Chapter I, I present in detail the results of

the CrossTex experiment. This experiment produced a high quality dataset of wave height

measurement, suspended sediment concentration, remote sensing of bore fronts propaga-

tion and bathymetric changes, obtained under various wave fields (Magalen (2006)). Dr.

T. Özkan-Haller, Dr. M. Haller, and Dr. J. Kirby led the experiment, assisted by J.

Magalen, P. Teràn-Cobo, C. Scott, Dr. P. Catalàn and myself. First, I analyzed the

temporal evolution of the different bars that we created, and evaluated the relative role of

velocity moments in the observed total transport of sediment. Next, I analyzed records of

suspended sediment time series to determine the forcing mechanisms behind cross-shore

suspended sediment flux. I also evaluated the relative importance of modes of sediment

transport in the flume. Finally, I compared the performance of two process-based models

at reproducing the observed transport: the Enhanced Energetics Model (EEM), proposed

by Hoefel & Elgar (2003), and a combination of bedload and suspended sediment flux

models, based on the eddy-diffusive boundary layer model proposed by Henderson et al.

(2004). In particular, I evaluated whether these models reproduced the same mechanisms

of sediment transport that we observed in the flume. The results presented in Chapter II

will be submitted to Marine Geology.

Based on the findings of Chapter I, a correct formulation of the undertow is key to

successful modeling of sediment transport. In Chapter II, I present the results of the

theoretical formulation of the undertow based on linear wave theory. I conducted the

derivations by relaxing the common assumption of shallow water waves, and I included

effects of mean current advection terms as well as bottom shear stress. Under the same

assumptions, I also highlighted the generality of the expression for mean shear stress at
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the MWL that Deigaard & Fredsøe (1989) originally derived. Finally, I analyzed four

datasets of undertow obtained under irregular waves conditions to evaluate whether a ro-

bust and simple deterministic model could be proposed. The datasets were collected by

Sultan (1995), Okayasu & Katayama (1992), Garcez-Faria et al. (1998) and Scott et al.

(2005). The results presented in Chapter III will be submitted to Coastal Engineering.

This research was made possible because of the gracious funding from NSF grant

OCE-0351297 and OCE-0351153, and Sea Grant grant NA16RG1039. We wish to thank

all the faculty and staff of the O.H. Hinsdale Wave Research Laboratory for their time and

support during the experimental phase of CrossTex. The O.H. Hinsdale Wave Research

Laboratory is partially supported by the George E. Brown Jr. Network for Earthquake

Engineering Simulation (NEES) Consortium Incorporated contract OMSA v.3.1 through

their National Science Foundation Cooperative Agreement CMS-0402490. Some of the

instrumentation used during this experiment was purchased under National Science Foun-

dation grant NSF-0429219. I thank Dr. Daniel Cox for some of the undertow data, and

Dr. Patricio Catalàn for his help in computing percent of wave breaking from the Argus

videos. I also thank Dr. S. Henderson for providing me with his eddy-diffusive hydrody-

namic and sediment transport code.
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2. 2. OBSERVATIONS OF CROSS-SHORE SEDIMENT TRANSPORT

2.1 Introduction

Sandbars are common features on beaches (Lippmann & Holman (1990)). They are an

important element of the seasonal variation of coastlines (Keulegan (1945); Komar (1998);

Ruessink & Kroon (1994)), and sometimes constitute a danger for mariners (Ross (2003)).

Generally, under winter storm conditions, strong undertow currents move sediment off-

shore from the face of the beach to form a sandbar at, or near the breakpoint. Such

understanding has been complemented by successful modeling of bar formation observed

in the field (Thornton et al. (1996); Gallagher et al. (1998)). Under summer fair-weather

conditions, sandbars move shoreward and degenerate, and the beach is replenished (Shep-

ard (1950); Bascom (1953)).

The shoreward movement of sand is caused by nonlinear velocities induced by waves.

Although purely sinusoidal waves cannot transport sand, nonlinear waves have the capac-

ity to do so. As waves shoal, they are progressively affected by the bed, and their shape

evolves from symmetric to skewed to asymmetric, before finally breaking. Skewed waves

are characterized by high, peaky crests and shallow, flat troughs. They have strong shore-

ward, and weak offshore, velocities, which, over time, transport sand shoreward. This has

been supported by observations (Osborne & Greenwood (1992a); Ribberink (1998)), as

well as models of sediment transport (Trowbridge & Young (1989); Hsu & Hanes (2004)).

Asymmetric, or ‘saw-toothed’ waves are characterized by sharp fronts and mild rears.

Asymmetric waves have skewed acceleration profiles (Elgar et al. (1988)), which generate

strong shoreward oriented horizontal pressure gradients on sand under their sharp front

faces, and weak offshore oriented pressure gradients under their gentler rear faces. Thus,

they have the capacity to transport sand shoreward. The effect of velocity asymmetry on
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the shoreward transport of sand has been observed in various studies (Hanes & Huntley

(1986); Gallagher et al. (1998); Nielsen (1982); Elgar et al. (2001)), and has generally been

associated with bedload transport based on observations (King (1990); Dohmen-Janssen

& Hanes (2002); Watanabe & Sato (2004)), and modeling (Drake & Calantoni (2001);

Nielsen & Callaghan (2003)).

The incorporation of the effect of velocity asymmetry, or acceleration skewness, in

models that only considered velocity skewness yielded successful results in the predic-

tion, and quantification, of offshore and shoreward bar migration (Hoefel & Elgar (2003)).

However, uncertainties remain as to the exact mode of transport of sediment during these

phases of beach evolution. During both offshore and shoreward bar migration, sediment

moves as bedload and suspended load (Bailard (1981); Bowen (1980); Jaffe et al. (1984);

Hanes & Huntley (1986)). Models that had a strong bedload component successfully re-

produced observed events of sandbars migration (Hoefel & Elgar (2003)). On the other

hand, models that ignored the role of bedload, but assumed that all sediment transport

occurred as suspended load, also reproduced the shoreward movement of sandbars success-

fully (Henderson et al. (2004)). Thus, in order to quantify the effectiveness of sediment

transport models, it is necessary to not only evaluate their capacity at reproducing the

total observed transport of sediment, but also their capacity at reproducing the relative

balance between suspended and bedload.

Few experiments have been able to quantify the relative roles of bedload and sus-

pended load in the total transport of sediment. For example, Janssen et al. (1997), Rib-

berink (1998) and Dohmen-Janssen & Hanes (2002) estimated that most of the transport

that they observed in the laboratory occurred as bedload (sheet flow). Conley & Beach

(2003) found in a field study that most of the suspended transport was concentrated in

the bottom 5 cm of the water column, which would imply that bedload might have been

important. Conversely, Aagaard et al. (1998) estimated that suspended load might be a

substantial fraction of total sediment transport. Other estimates of the relative role of
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bedload have been made from calculations using the energetics models (Ruessink et al.

(1998); Gallagher et al. (1998)), and estimated that suspended load dominated over bed-

load.

Additionally, although there have been many studies on the relative importance of

various wave frequency bands on suspended sediment transport (Hanes & Huntley (1986);

Jaffe et al. (1984); Osborne & Greenwood (1992a); among others), few models successfully

reproduced details of observed suspended sediment concentration time series in the surf

zone (Black et al. (1995); Jaffe & Rubin (1996); Ogston & Sternberg (2002); Hsu & Liu

(2004)). Most suspended sediment transport models (see, e.g., Henderson et al. (2004);

van Rijn (2006)) use a sediment pickup function that is a function of shear stress (see

Nielsen (1982); Fredsøe & Deigaard (1992); Soulsby (1997)) to mobilize and put sediment

in suspension. They also assume that sediment eddy diffusivity can be represented by

turbulent eddy viscosity in order to simulate sediment advection/diffusion in the water

column. However, few studies attempted to relate eddy viscosity to eddy diffusivity (Lees

(1981); Dyer & Soulsby (1988); Ogston & Sternberg (2002)), and there are indications that

they are not always equal (Thorne et al. (2009)). Finally, there are even fewer models

that describe the observed details of bedload and suspended load that resulted in bathy-

metric change (Ribberink & Al-Salem (1995)). Thus, questions persist as to the correct

parametrization of bedload, sediment pickup function and sediment eddy diffusivity in

shoreline evolution models.

In order to address these questions, we present in this paper results obtained during a

large scale flume experiment. The objectives of this experiment were to obtain high qual-

ity datasets of sandbar migration under various wave fields. First, we sought to establish

if offshore as well as shoreward sandbar movement could be reproduced in a laboratory

setting, and under what type of wave conditions. Also, we evaluated the relationship

between position of wave breaking and shoreward transport of sand, and the relative im-

portance of suspended sediment on total sediment transport. Information gathered from
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the laboratory experiment was then used to evaluate the performance two process-based

models: a wave-averaged energetics model, proposed by Hoefel & Elgar (2003), and a wave

resolving eddy-diffusive boundary layer model (Henderson et al. (2004)) which incorpo-

rates suspended and bedload transport.

This paper is organized as follow. In Section 2.2, we present our dataset. In Section

2.3, we describe the observed bathymetric changes, and relate cross-shore evolution of

velocity moments (undertow, skewness and asymmetry) to observed total sediment fluxes.

In Section 2.4, we analyze suspended sediment concentration time series, and evaluate

the frequency dependence of suspended sediment flux. We also estimate the relative im-

portance of suspended load in the flume compared to the total sediment transport. In

Section 2.5, we present the wave-averaged model developed by Hoefel & Elgar (2003) and

the wave-resolving model that we used on the dataset. The wave-resolving model consists

of the suspended load model developed by Henderson et al. (2004), to which we added

a bedload model based on the Meyer-Peter and Müller equations (Meyer-Peter & Müller

(1948)). In Section 2.6, we present results of the modeling of sediment transport observed

in the flume. We present our conclusions in Section 2.7.

2.2 Experimental Set-Up

2.2.1 Facility and Instrumentation

We conducted a large-scale study of sand movement in the Large Wave Flume (LWF) at

the O.H. Hinsdale Wave Research Laboratory, Oregon State University (Figure 2.1) to

generate a sandbar under storm condition and to induce shoreward transport of sediment

under summer conditions. The LWF is 104 meters long, 3.7 meters wide and 4.6 meters

deep, and was equipped with a flap-type wavemaker. The reference system in the flume

is such that the origin is set at the wavemaker, with positive X pointing shoreward.
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Fig. 2.1: Instrument’s position along wave flume wall. Dots show position of ADV and
OBS; circles show position of wave gages.

The flume was filled with well sorted, fine to medium natural sand. The basic sand

characteristics were: median grain size 0.22 mm (φ = 2.18); standard deviation σφ = 0.3;

estimated fall velocity at wo = 2.65 cm/s (from Gibbs, 1971). Initial beach profile was

adjusted to an average 1V:20H slope. The foreshore slope was 1:7, and the surf zone and

offshore regions were 1:33 and 1:17, respectively.

To scale the experiment, we compared wave characteristics (height and period) and bar

geometry observed in the flume (see Section 2.3) to conditions observed during DUCK94

(Gallagher et al. (1998)) and general characteristics of sandbars (Keulegan (1945, 1948),

Miller et al. (2006)). We found that the experiment had an average 1:10 scale, which

means that results presented herein should apply to natural beaches with coarse sedi-

ments. This type of beach is different from most of the beaches where sandbar migration

was observed. However, it can be impractical to scale down sediment in laboratory flume;

fine sediments are cohesive and carry electro-magnetic charges, lower density material such

as plastic have different shape, angularity and porosity, and respond to forcing differently

than sands (Soulsby & Damgaard (2005a)). We believe that conclusions drawn in this

paper should be pertinent to general sand dynamics discussions, as will be shown in the

following sections.
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The experiment was conducted by running a series of waves over the mobile bed for

periods (runs) of 20 min each (see Section 2.2.2). During each run, we measured water

surface elevation, flow velocity, and sediment concentration at fixed locations in the flume

using twelve resistance-type wave gages, eight wall-mounted Acoustic Doppler Velocime-

ters (ADVs) and co-located Optical Backscatter Sensors (OBS; see Figure 2.1 and Table

2.1). Each of the ADV and OBS were approximately 44 cm away from the wall of the flume.

Table 2.1: Position of Wall Mounted ADV and OBS

Position [m]
ADV 75 71 67 64 64 64 60 56
OBS 75 71 67 64 64 64 60 56

Dist. abv. Bed [cm] 10 2 7 9 5 42 9 4

In addition to wall instruments, one wave gage, 8 ADV, 7 OBS, and 19 Fiber-Optic

Backscatter Sensors (FOBS)were mounted on a cart (see Figure 2.2) equipped with a ver-

tically moving frame, which allowed a variable placement of the instruments within the

water column. The instruments were positioned on the mobile frame such that most of

the measurement volumes for the FOBS and OBS were co-located with an ADV. However,

some OBS and ADV were separated by as much as 96 cm across the flume. The 19 FOBS

were separated into two vertical stacks, offset by 4 cm across the flume and 2 mm in the

vertical. All instruments sampled at 50 Hz, except for the FOBS, which sampled at 10 Hz.

Between runs, we measured bathymetric changes offshore of the swash zone with an

array of high-definition acoustic transducers mounted on the mobile cart. This array con-

sisted of 32 transducers placed 8 cm apart across the flume, with sampling gaps of 66

cm and 49 cm between the ends of the array and the walls of the flume. The horizontal

position of each sample was determined using a laser range finder that measured distance

from a fixed target. In the swash zone, bed elevation was measured manually along a single

cross-shore transect. Finally, three ARGUS video cameras (Holman & Stanley (2007)),

which were sampling at 10 Hz, were mounted near the ceiling and were used episodically

to quantify wave breaking conditions.
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Fig. 2.2: Position of instruments on mobile cart. Distances on x-axis are measured from
one of the flume sidewalls; flume total width=370 cm. Bed position is indicated
by thick black line; ADV and OBS sample volume position indicated by back
and blue dots.

2.2.2 Experimental Procedure, Data Processing and Quality Control

During a typical experimental run, we first positioned the mobile cart at a specified cross-

shore location in the flume using the laser range finder. Next, when the water was shallower

than approximately 2 m, we dropped the instrument frame until the sampling volume of

the lowermost ADV sat 1 cm above the bed (cmab, hereafter). Under such conditions, the

entire FOBS array spanned the vertical profile from −1.2 to 51 cmab. At one cross-section

in the flume where the water was deeper than 2 m (X ≈ 45m in Figure 2.1) and where

no significant bed change were observed (see Section 2.3), the water was too deep for the

mobile frame to reach the bed, and lowermost FOBS and ADV were well above the bed.

Once the instruments were in place, we produced a wave field by feeding various TMA

spectra (Bouws et al. (1985)) to the LWF wavemaker.
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Discrete experimental runs lasted 20 minutes. No waves were generated during the

first minute of data collection in order to establish a baseline for all instruments. Next,

waves were generated for 15 minutes, followed by 4 minutes of data collection without

waves. After most wave runs, we conducted a bathymetric survey. At the completion of

the experiment, 141 wave runs and 89 surveys had been generated. Further information

on wave conditions and survey frequency is presented in Section 2.3.

We processed the velocity time series measured by ADV by first passing them through

a phase-space-threshold filter (Goring & Nikora (2002)) followed by a signal-to-noise ratio

and a correlation filter (Scott et al. (2005)). On some occasions, we applied an additional

filter that identified remaining outliers that were 3 or 4 standard deviations above the sig-

nal mean. After visual inspection, we discarded time series that contained a large number

of outliers, as identified by the combination of all these filters. As a result, we retained

1,583 out of 2,256 horizontal velocity time series. In the remaining time series, we replaced

flagged points with a cubic spline interpolation.

We calibrated the OBS and FOBS data in a recirculation tank after the experiment

concluded, following the method of Beach et al. (1992). Post-calibration, we used data

from the quiescent period before the start of wave generation to remove any constant bias

in the sensors. In each time series, we removed background concentration of fines using

the method of Beach & Sternberg (1988). Also, we discarded outliers that deviated from

the mean by more than 5 standard deviations. Time series were discarded due to excessive

background noise. As a result, we utilized 93 out of the 141 records of FOBS time series.

The acoustic bathymetric surveys spanned from a depth of 20 cm to between 1.5

and 2.5 meters, with an average horizontal resolution of 6 cm. We first averaged along-

shore transducer records to produce a single mean profile representative of the cross-shore

bathymetric variation, then we smoothed the profile with a five-point running average

filter. Finally, data from the ARGUS cameras were reduced to a cross-shore pixel ar-
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ray with a cross-shore resolution of 1 cm. For further details regarding the rectification

and merging of the image data, see Catalán (2005). The image data were used to iden-

tify breaking waves and quantify the cross-shore variation of the percent breaking. The

procedure for breaking wave identification follows that of Caálan & Haller (2008). The

percent of breaking waves represents the number of breaking waves identified in the video

observations, normalized by the number of waves identified in the wave gages (with linear

interpolation between the gages). For more information on the experiment procedure, the

reader is referred to Magalen (2006).

2.3 Bathymetric and Hydrodynamic Observations

In this section, we describe the general bed evolution that we observed in the LWF during

our experiment. Because our objective is to model sand transport under various wave

fields, we will evaluate the relationship between hydrodynamic conditions and bed evolu-

tion. We will present information on the cross-shore evolution of wave height as well as

velocity moments (mean, skewness and asymmetry) in the LWF.

We first define a few terms used in this paper. The term ‘breakpoint’ will stand for the

location of maximum rms wave height, Hrms, and the term ‘breaking ratio’ will refer to the

maximum value of wave height over total water depth Hrms/h. Surf zone will refer to the

region in which most of the waves were breaking (generally more than 80%). Conversely,

the shoaling region will refer to the section of the flume that was located offshore of the

breakpoint, where minimal, if any, wave breaking occurred.

As will be shown in this section, we identified four phases of bed evolution, and the

generation/degeneration of two sandbars. For each phase, which lasted an interval of time

∆t, bed elevation changed by an amount ∆h(x). To quantify the total amount and the

net direction of sediment movement that occurred during that time, we computed the net
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sediment flux Q (Thornton et al. (1996)):

Q(x) =

∫ X

X0

1

1 − n

∆h

∆t
dx (2.1)

where n = 0.3 represents a standard value of bed porosity. Based on our reference system,

positive (negative) Q-values represent shoreward (offshore) sediment movement. Through-

out the experiment, the sediment movement occurred between the shoreline and X ≈ 52m

(see Figure 2.3). Consequently, we set the lower limit of the integral in Equation 2.1 at

X0 = 40m, where no bed changes occurred and Q(X0) ≈ 0. We computed the average

sediment flux during a certain phase as:

q̄ =
1

L

∫ X0+L

X0

|Q(x)| dx (2.2)

where vertical bars represent absolute values. L represents the length of the region of

active sediment movement, between X0 and the shoreline.

We explored the spatial and temporal behavior of the sandbars by tracking their height,

cross-shore position, and crest half-width. To simplify the tracking of bars’ characteris-

tics, we filtered out bedforms with a wavelength smaller than 2 m by passing measured

bathymetric profiles over a 32-point running-average filter. Sandbars were identified as

the most prominent features in the profiles. Bar crest and trough positions were located

by finding the highest and lowest points on a sandbar. The height of a given bar was

defined as the vertical distance between bar crest and trough. Bar position was defined as

the horizontal distance of the bar crest from the origin (the wavemaker). Crest half-width

was defined as the horizontal distance between the location of the bar crest and trough.

Increasing (decreasing) cross-shore position values correspond to onshore (offshore) sand-

bar movement.

We computed wave height from wave gage time series as Hrms =
√

8σ2, where σ2

represents the variance of the free surface elevation η(x, t). From spectra of free water
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surface elevation time series measured along the flume, we estimated σ2
Wave, the variance

of the signal around the spectral peak fp = 1/T , by band passing the spectrum between

0.1Hz ≤ f ≤ 4fp. We also estimated σ2
LF , the variance of the signal in the low-frequency

range, by low-pass filtering any frequency f ≤ 0.1 Hz.

To quantify the relative importance of the undertow and wave-induced forcing on the

observed total sediment transport, we computed velocity moments (undertow, asymmetry

and skewness) by using all valid signals (see Section 2.2.2) measured at specific locations

in the flume below 25 cmab. We used wall as well as cart ADV. We computed undertow

strength by taking the mean of measured time series of velocity. Velocity skewness was

computed by:

Skew =
< ũ3 >

σ(< ũ3 >)
(2.3)

where σ(α) represents the standard deviation of a signal α, and ũ the wave velocity. Brack-

ets represent the averaging operation. This velocity was computed by band-passing total

velocity to remove seiching and turbulent signals(cutoff frequency for seiching was set at

0.1 Hz, and cutoff frequency for turbulence was set at 4fp Hz, where fp is the spectrum

peak frequency). Velocity asymmetry was computed by estimating the skewness of the

imaginary part of the Hilbert transform of the velocity signal (Elgar (1987); Elgar & Guza

(1985)). Because skewness and asymmetry are normalized quantities, they generally vary

between 0 and 1.

Finally, using linear wave theory (LWT) we modeled wave-averaged and roller mo-

mentum fluxes for various runs during offshore bar generation to evaluate the effects

of bathymetric change on undertow. The depth-averaged mean current is defined as:

Ur = (Qw +Qr)/(ρh), where Qw = Ew/C represents the wave mass flux, Ew is the wave

energy density, C the wave celerity. Qr = 2Er/C represents the mass flux of the roller

(Svendsen (1984a)), and Er is the roller energy density.

We computed wave energy density from modeled wave height. To reproduce observed
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Hrms, we calibrated the model of Baldock et al. (1998) for wave dissipation and we used

the breaking parameter proposed by Ruessink et al. (2003a). We used the model of Re-

niers & Battjes (1997) to model the energy flux due to rollers. We calibrated roller angle

to minimize the error between measured and modeled mean water level (MWL, η̄(x)).

2.3.1 Bed, Waves and Velocity Moment Evolution during Offshore Bar

Generation

During the first 14 runs of the experiment, we produced relatively high energy waves to

simulate storm conditions (Table 2.2). Design rms wave height during this period was

Ho = 0.42 m, with a peak period of T = 4 s. During this period, an offshore sand bar

formed at X ≈ 61 m (see Figure 2.3a). In the surf zone, we observed the presence of

offshore-migrating mega-ripples with an average length of 2.7 m and average height of 13

mm (see Figure 2.3a, at X ≈ 74m). In the remainder of this paper, we will refer to this

period as the offshore bar generation period (‘OG’ in the figures), and to this bar as bar O.

Table 2.2: Consecutive Wave Conditions during Experiment

Experimental Phase
Wave Run
Interval

Wave
Height [m]

Wave
Period [s]

γ∗
Time∗∗

[min]
Offshore Bar Generation (OG) 1-14 0.42 4.0 2 210

Middle Bar Generation (MG)/Offshore
Bar Degeneration

15-56 0.21-0.23 8.0 10 885

Middle Bar Stagnation (MS)
57-89 0.4-0.25 3.5 2 1,020

23 0.28-0.23 5.5 2 1,350
Middle Bar Degeneration (MD) 90-141 0.23-0.12 3.5 2 2,145

∗: spectral width parameter.
∗∗: duration of experimental phase.

The profile of cross-shore sediment flux during offshore bar generation (Figure 2.3a)

indicates that the offshore bar was formed by the offshore movement of sediment in the

surf zone, with little input from sediment in the shoaling region, at X ≈ 55 m. Offshore

sediment flux was greatest near the trough of the bar, and the point of flux convergence

(Q = 0) was offshore of the crest: the bar grew mostly from the offshore movement of
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sediment coming from the trough region. During this first phase of bed evolution, average

sediment flux q̄ ≈ 2.510−4m2/s.

As the offshore bar was forming, the maximum wave height measured by wave gages

moved slightly offshore but remained near the final position of the bar crest, at X ≈ 60 m

(Figure 2.4). Values of maximum measured wave height increased by approximately 2 cm

between Run 1 and Run 14, which indicates that waves were affected by the bathymetric

changes. During this period, the amount of low-frequency energy increased steadily in the

flume up until the breakpoint (X ≈ 60 m). Past the breakpoint, low-frequency and wave

energy were of similar magnitude.

The effect of bathymetric change on the wave field is not reflected in the profiles of

percent wave breaking. Percent wave breaking remained fairly stable, with approximately

6% of the waves broken at the breakpoint, and approximately 40% of the waves breaking

between bar crest and trough. Past the trough of bar O, waves continued to break at a

slower rate.

Figure 2.5 shows profiles of velocity moments during offshore bar generation. For cart

instruments, error bars represent ± 1 standard deviation around the mean of all moments

measured during a particular run, from 1 cmab to 25 cmab. For wall-mounted instru-

ments, they represent ± 1 standard deviation around the mean of all moments measured

during the whole phase of bed evolution considered. Because we measured velocity signals

mostly in the lower portion of the water column, we do not present depth-averaged values

of the moments, but rather their mean values.

In the shoaling region, between X ≈ 53 and 58 m, undertow increased modestly from

approximately 0.025 to 0.06 m/s (Figure 2.5, column ‘OG’). On the other hand, waves

became more nonlinear, as demonstrated by the profiles of velocity skewness and asymme-

try, which increased relatively rapidly to approximately 0.4. This difference might explain
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Fig. 2.3: Bed evolution stages and sediment flux during: (a) Offshore Bar generation;
(b) Offshore Bar degeneration and Middle Bar generation; (c) Middle Bar stag-
nation, and (d) degeneration of all bedforms. Orange profiles, centered around
the origin, show cross-shore variation of total sediment flux Q. Red solid line
and blue dashed lines represent bathymetry measured at the beginning and end
of each phase of bed evolution, respectively (Table 2.2).
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the shoreward movement of sediment observed in this region. At the breakpoint, the un-

dertow current increased sharply, and peaked at 0.2 m/s shoreward of the breakpoint, at

the trough of bar O. This profile is characteristic of undertow currents generated by the

breaking of relatively high waves, and was also observed in the field (see, e.g., Gallagher

et al. (1998); Garcez-Faria et al. (2000)). This region also corresponds to the section of

the flume that experienced the most offshore directed sediment transport (see Figure 2.3a

between X ≈ 61m). In contrast, wave asymmetry and skewness increased slightly to ap-

proximately 0.5 at the trough of bar O.

In the surf zone, undertow strength steadily decreased to 0.1 m/s near the shoreline

(Figure 2.5). Velocity skewness and asymmetry increased only modestly to approximately

0.55. This suggests that, even though waves were breaking intensely over the bar (40% of

the waves were broken in the trough), they maintained a fairly constant shape in the surf

zone. The relatively low level of nonlinearity, compared to the strength of the undertow,

indicates that undertow was the dominant factor responsible for the offshore-directed sed-

iment transport in this region.
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We modeled wave height, mean water level and depth-averaged mean current in the

flume for Runs 1, 6 and 14 in order to quantify the relative importance of bed change

on the undertow. The model of Baldock et al. (1998) reproduced quite well the profiles

of measured Hrms and η̄ in the flume (see Figure 2.6). Profiles of depth-averaged return

current, Ur, indicate that, as the bar was forming and bar O was migrating offshore,

maximum of Ur also moved offshore by approximately 1 to 2 m. The comparison of the

profiles of Ur with the profile of mean undertow values presented in Figure 2.6 shows that,

although mean currents were affected by bathymetric changes, profiles of measured mean

undertow are quite representative of the overall shape and strength of the undertow during

the entire phase of offshore bar generation.

Finally, analysis of the temporal evolution of the offshore bar (Figure 2.7) shows that

this bar started to form shortly after the beginning of the experiment at X ≈ 65m. This

position also corresponds to the offshore slope break in the initial profile (see Figure 2.3a).

After an initial offshore retreat without much change in height, the bar started to grow,

and moved offshore at approximately 1 cm/min. This growth stopped when wave condi-

tions changed, at around 900 minutes.

In summary, a sandbar was formed during the first 14 runs of our experiment. The

sand bar formed at or near the breakpoint by the offshore movement of sediment coming

principally from the surf zone. Undertow was strong at the breakpoint and in the surf

zone, whereas velocity asymmetry and skewness were relatively constant in this region.

Both waves and undertow profiles were affected by the bathymetric evolution. However,

modeled cross-shore profiles of Ur are quite similar to each other, and within the range of

measured undertow. In addition, error bars around the profiles of velocity skewness and

asymmetry are relatively small. Thus, we will assume that wave and velocity moments,

measured during the generation of bar O, are representative of the whole phase.
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Fig. 2.6: Modeled depth-averaged undertow. Top and second panels: measured (red solid
line with diamonds) versus modeled (blue line) rms wave height, and MWL η
at the beginning of offshore bar generation, Run 1. Bottom panel: modeled
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2.3.2 Bed, Waves and Velocity Moment Evolution during Middle Bar

Generation

Following the offshore bar generation period, we simulated summer fair-weather condi-

tions, using reduced wave heights and increased wave periods (Table 2.2, Figure 2.7).

From Runs 15 to 45 (time 210 to 720 min in Figure 2.7), rms wave height at the wave-

maker was set at 0.21 m, and from Runs 46 to 56 (wave time 720 to 885 min.) rms wave

height was set at 0.23 m. As a result, between Runs 15 and 56, the bar O degenerated,

and a middle bar formed at X ≈ 68m (Figure 2.3b). We also observed the presence of

small asymmetric ripples, 0.5-2.5 cm high and 5-10 cm long, in most areas of the flume.

These ripples were variable in shape in the alongshore direction, but did not seem to

migrate during the experiment. We will refer to this period of bed evolution as the mid-

dle bar generation phase (‘MG’ in the figures), and we will refer to the middle bar as bar M.

The sediment flux profile during this period (Figure 2.3b), indicates that the middle

bar was formed principally by the shoreward movement of sediments originating from the

offshore bar. Sediment also moved offshore between X ≈ 75 and 80 m, forming a slope

break at X ≈ 74m. The average sediment flux value q for the middle bar was a quarter

the size of the value obtained during offshore bar generation. This indicates that sediment

moved more slowly than during offshore bar generation.

At the beginning of the bar M generation period (Runs 14 and 15), waves stopped

shoaling when they reached the bar O. Hrms and Hrms/h are approximately constant at

X ≈ 60 m (Figure 2.8). However, they did not break. Past the offshore bar, waves shoaled

again until they reached the new breakpoint, located at X ≈ 67 m. During Runs 20 to 56,

wave height decreased while waves were traveling over the degenerating bar O. Between

X ≈ 56m and X ≈ 62m, wave height decreased by approximately 0.3 m. This decrease

in wave height, as waves proceeded over bar O, suggests breaking. However, profiles of

breaking ratio indicate that waves started to break at X ≈ 63 m, shoreward of bar O.
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Additionally, as bar O was degenerating and moving shoreward, values ofHrms steadily

decreased at X ≈ 60m, from 0.28 m during Run 15, to 0.25 m during Run 45 (Figure 2.8).

After Ho was increased to 0.23 m, rms wave height remained at approximately 0.27 m at

that location. In contrast, wave height increased from 0.27 to 0.28 m at the breakpoint

between Runs 15 and 45, and from 0.28 to 0.29 m between Runs 46 and 56.

The breakpoint was fairly stable during bar M generation. From wave gage observa-

tions, the breakpoint was at X ≈ 66.5m during Run 15, moving slightly shoreward to

X ≈ 67.4m during Run 45. After wave height was increased to 0.23 m, the breakpoint

moved offshore by 1 m, and remained at the same position until the end of the gener-

ation phase of bar M, or Run 56. As was observed during offshore bar generation, the

breakpoint during the generation of the middle bar is located slightly offshore of the final

location of the middle bar. Additionally, percent of wave breaking, increased while the

bar M was growing (Figure 2.8). While the percent of waves breaking at the breakpoint

increased modestly from 14% to 18%, the percent of wave breaking in the trough of bar

M increased from approximately 20% at Run 16 to 40% at Run 47. This is different from

the bar O generation phase, where percent of wave breaking in the bar trough was higher,

but remained fairly constant from one Run to another. Finally, comparing profiles σ2
Wave

between Runs 15 and 41 shows that energy was highest near the offshore bar O (X ≈ 60

m) during Run 15, whereas energy highest near the middle bar M (X ≈ 65 m) during Run

41. However, during both runs, low-frequency energy remained relatively low until waves

reached the offshore bar location.
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The middle bar formed at or near the breakpoint, which is similar to the offshore bar

case. However, waves and percent wave breaking were lower than during offshore bar

generation, and sediment moved shoreward to form the bar. We computed profiles of ve-

locity moments to assess the relative amount and importance of nonlinearity in the flume.

Because we visited a particular location in the flume more than once, error bars around

mean values are indicative of temporal changes in the value of the moments.

Figure 2.5 shows that undertow is lower compared to the offshore bar generation phase,

and did not reach a maximum over bar M. Despite the increase in percent wave breaking

that occurred as bar M formed, mean undertow at a fixed cross-shore location was fairly

constant, as indicated by the small error bars. To better assess the temporal evolution of

mean currents, we modeled wave height and MWL in the flume between Runs 15 and 45,

during which Ho was similar.

Figure 2.9 shows profiles of modeled and observed Hrms and η̄ for Run 45. Contrary

to the offshore bar generation case, the wave model does not predict the observed wave

height profile as well as during offshore bar generation. In particular, the model did not

predict very well the shoaling and stagnation/decrease of wave height over the offshore

bar, at X ≈ 60m. Similarly, the model does not reproduce the observed variations in η̄.

We do not think that this is due to the choice of wave dissipation model (Baldock et al.

(1998)) because waves were not breaking in that location. Rather, our choice of a model

based on LWT, which excludes non-linear effect, could account for the poor reproduction

of shoaling at X ≈ 60m. Nonetheless, the model predicts an average undertow of similar

magnitude to our measurement, demonstrating that undertow is weaker during middle

bar generation than during offshore bar generation.

As mentioned earlier, we had difficulties in modeling the measured profiles of wave

height. This is likely due to the fact that waves exhibited a fair amount of nonlinearity.

Profiles of velocity asymmetry and skewness show that waves were originally fairly skewed
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at X ≈ 50 m, and became more asymmetrical (‘sawtoothed’) as they shoaled in the flume

(Figure 2.5). Velocity asymmetry peaked slightly offshore of the middle bar crest, at or

near the breakpoint. At the breakpoint of the middle bar, velocity asymmetry is twice

as high as it was during offshore bar generation. As waves propagated in the surf zone,

velocity asymmetry decreased steadily to reach a minimum close to the shoreline. Velocity

skewness, on the other hand, increased over much of the surf zone width, but had values

of approximately half of the velocity asymmetry. The spatial evolution of velocity asym-

metry and skewness illustrates the complex changes in wave shape, as waves were almost

breaking on top of the offshore bar, and broke on top, and past, the middle bar.

The comparison between profiles of velocity moments (Figure 2.5) and of total sedi-

ment flux during the generation of the middle bar (Figure 2.3) shows that the maximum

gradient in velocity asymmetry was reached in the region of the flume where sediment

was being transported shoreward, between X ≈ 60 and 68 m. Alternatively, in the surf

zone (X > 68m), undertow steadily increased from 0 to approximately 0.5 m/s and veloc-

ity asymmetry decreased, but overall shoreward movement of sediment decreased, and/or

stopped.

Analysis of the temporal evolution of the offshore and middle bars (Figure 2.7) indi-

cates that when wave conditions changed at around 210 minutes (Run 14), the offshore

bar started to degenerate: its height decreased while it slowly moved shoreward at an

approximate speed of 0.3 cm/min. Simultaneously, the middle bar began forming and was

moving offshore at approximately the same speed of 0.3 cm/min (Figure 2.7, Phase I).

Once the offshore bar disappeared, the growth of the middle bar plateaued, until wave

conditions changed. These observations indicate that the middle bar grew with sediment

originating from the offshore bar.

In summary, the middle bar was formed at or near the breakpoint. However, waves had

a relatively higher level of nonlinearity compared to the previous phase of bed evolution.
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Undertow was approximately 6/10 of the value it had during offshore bar generation, but

wave asymmetry was twice as high. The highest gradient in wave asymmetry was ob-

served in the region of highest total transport. These observations suggests that forcing

induced by wave orbital velocity was the primary factor in the formation of the middle bar.

Finally, although the modeling of the waves does not have the same accuracy as during

offshore migration, we found that profiles of mean return current were slightly affected

by bed changes. However, overall shape and values of modeled undertow are similar to

the observed values mean current. Further, error bars around velocity asymmetry and

skewness are relatively low. Hence, we will once again assume that the whole phase can

be described by wave heights and velocity moments measured during the various runs

during this phase of bed evolution.

2.3.3 Bed, Waves and Velocity Moment Evolution during Middle Bar

Stagnation

Once the middle bar formed, we subjected it to waves with varying heights and periods,

from Run 57 to 89 (Table 2.2). As a result, the middle bar remained at the same position,

but other minor changes in the profile occurred. Some sand accumulated in the trough of

bar M, and a nearshore terrace, or nearshore bar, was generated at X ≈ 74 m. The slope

break located at the edge of the active profile region in the shoaling zone (at X ≈ 60m)

moved shoreward by approximately three meters (Figure 2.3c).

Although bar M remained at approximately the same position, its geometry changed

markedly (Figure 2.7). After an increase in wave height and decrease in wave period (Ta-

ble 2.2), the middle bar’s height decreased by approximately 2 cm (Figure 2.7, Phase II).

Conversely, it increased by approximately 2 cm after wave height was reduced and wave

period increased (Phase III). Finally, we also tracked the movement of the nearshore ter-

race. It grew during Phase III and moved offshore during its generation. Only Phase III

of the bed evolution phase will be analyzed in this paper because it experienced constant
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wave height (Runs 69 to 86, wave time 1065 to 1335). We will refer to this period as the

middle bar stagnation period (‘MS’ in the Figures).

The cross-shore profile of sediment flux during middle bar stagnation (Figure 2.3c) in-

dicates that, as observed during the generation phase, most of the transport was directed

shoreward. Rather than contribute to the growth of bar M, this shoreward transport re-

sulted in shoreward movement of the slope break. Comparatively, a small amount of net

offshore transport occurred shoreward of the middle bar. Average sediment flux value q

was approximately 45 % smaller than during bar M generation.

When the middle bar remained constant, waves experienced minimal changes as they

propagated over the offshore slope break, which replaced the offshore bar (Figure 2.10).

We only noticed a slight increase in wave height of approximately 2 cm just before the

slope break, and a slight decrease of the same amount just after the slope break. The

breakpoint remained at the same position (X ≈ 68m), and the maximum Hrms value

experienced small changes. Finally, waves profiles are nearly identical among the various

runs conducted during this phase of bed evolution. The only exception is Run 85, during

which wave height near the breakpoint, X ≈ 67 m decreased by less than 1 cm, compared

to the previous runs. Similarly, profiles of σWave and σLF show that bathymetric changes

were limited: the amount of energy at the peak wave frequency is similar between Runs

15 and 45. However, we notice a decrease in peak low-frequency energy for Run 86 of

approximately 38% compared to Run 69.

The middle bar triggered more wave breaking than during the previous bed evolution

phases: 20% of the waves broke over the bar during middle bar stagnation, versus approx-

imately 15% during middle bar generation and 8% during offshore bar generation. Also,

almost 60% of the waves were broken shoreward of the trough, compared to 50% during

middle bar generation, and approximately 40% during offshore bar generation. How-

ever, similar to the middle bar generation period, and unlike the offshore bar generation
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period, percent wave breaking values plateaued in the surf zone, past the middle bar crest.

Measured undertow steadily increased from 0 near the wavemaker to approximately

0.1 m/s offshore of the breakpoint, at X ≈ 68 m (Figure 2.5). It stagnated in the surf

zone, before decreasing by approximately 25% closer to the shoreline. Offshore of the

breakpoint, undertow was approximately twice as strong during stagnation of bar M than

during its generation, but it was 50% weaker than during offshore bar generation.

Modeling results of wave height and depth-averaged mean currents are presented in

Figure 2.11, and our estimates of Ur indicate that undertow was fairly stable during the

various runs during which bar M stagnated. This confirms that the wave field did not vary

much during this portion of the experiment. In addition, modeled profiles of Ur are within

the range of values measured, and they exhibit a similar behavior to observed values of

mean undertow: they peak over the middle bar, and reach a local minimum at the trough

of bar M.

While undertow was stronger during the stagnation of bar M, compared to during its

generation, velocity asymmetry, on the other hand, was weaker by approximately 20%

(Figure 2.5). The profile of velocity asymmetry showed similar characteristics as during

the middle bar generation: it steadily increased as waves shoaled, and decreased past the

breakpoint, with a slight increase over the nearshore terrace. Interestingly, shoreward

sediment flux reached a maximum at approximately the same location where velocity

asymmetry peaked. Velocity skewness also increased steadily towards the shore, despite

a minimal decrease at the breakpoint, and did not peak until waves were slightly offshore

of the nearshore terrace.

In spite of the differences between middle bar generation and stagnation cases, pro-

files of total sediment transport exhibited the same overall characteristics. Specifically,

sediments from shoaling regions moved shoreward and sediment in the surf zone region
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moved moderately in both directions. However, we can hypothesize that a stronger un-

dertow, and a weaker velocity asymmetry, resulted in less shoreward sediment transport

offshore of the middle bar than during middle bar generation. In particular, total sedi-

ment flux was almost null at X ≈ 67 m (see Figure 2.3), when a fair amount of sediment

was moving shoreward in the same region during middle bar generation. The difference

between the two phases was that velocity asymmetry is weaker, and undertow stronger at

this cross-shore location during middle bar stagnation compared to middle bar generation.

2.3.4 Bed, Waves and Velocity Moment Evolution during Middle Bar

Degeneration

At the end of the experiment, during Runs 90 to 141 (a total of 1,350 minutes of waves), we

progressively reduced wave height and period, which generated an approximately mono-

tonic beach profile (Figure 2.3d). This period, which will we refer to as the middle bar

degeneration period, was characterized by the shoreward movement of sediments in the

shoaling region up to the trough of the middle bar, while sediment from the nearshore

terrace moved in both directions. Cross-shore sediment flux average magnitude q was

approximately 60 % smaller than during middle bar generation.

Analysis of the temporal evolution of the bar (Figure 2.7, Phase IV) shows that during

the last 52 runs, the middle bar decreased in height as it moved shoreward and disap-

peared at the end of the experiment. It moved shoreward at a speed of approximately

0.1 cm/min. This onshore migration speed is much slower than the offshore bar’s speed

(0.3 cm/min); this difference in speed is in line with previous field observations (see e.g.,

Lippmann & Holman (1990)). Finally, the nearshore terrace, which grew during Phase

III, moved offshore during its generation, and degenerated rapidly during Phase IV while

moving shoreward. We will not analyze this period further in the remainder of this paper.
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2.3.5 Summary

In summary, we observed four stages of bed evolution during the course of the experi-

ment: (1) rapid generation of the offshore bar, (2) slow degeneration of the offshore bar

and growth of a middle bar, and generation of a nearshore terrace, and (4) slower degen-

eration of the middle bar and the nearshore terrace, and smoothing of the bed profile.

Offshore sediment movement occurred principally in the surf zone, while most shoreward

movement took place in the shoaling region. This is consistent with previous laboratory

and field experiments (Shepard (1950); Komar (1998); Gallagher et al. (1998)).

We observed that when the bars were being generated, they became taller and widened

as they moved offshore. On the other hand, the bars decreased in height and became

narrower as they moved shoreward during their degeneration period. This behavior has

been observed on natural beaches (Ruessink et al. (2003b); Plant et al. (2001)). We can

summarize their evolution by plotting bar height versus position (see Figure 2.12). The

relationships between these two parameters varied with each bar and during each bar evo-

lution. Remarkably, however, the location of bar genesis (defined as the point where they

rapidly start moving offshore) and demise (when they can no longer be identified as a bar

with a distinct trough) are similar for each bar.
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Additionally, a few points can be drawn from the simple analysis of hydrodynamics

presented in this section:

1. For both offshore and middle bar generation, the final position of the bars ended

up being close to the breakpoint. Sediment that contributed to the growth of the

offshore bar came from surf zone regions, while sediment that contributed to the

growth of the middle bar came from offshore regions.

2. Waves and mean current were affected by bed changes. However, profiles of depth-

averaged velocity are similar to the average measured values, and error bars around

measurements are relatively low. Consequently, we will assume in the modeling

section that velocity moment profiles presented in Figure 2.5 are representative of

their values during a whole phase of bed evolution.

3. Contrary to offshore bar generation, during middle bar generation and stagnation

waves were highly nonlinear and not of permanent shape. Gradients in velocity

asymmetry were opposite in surf zone regions than in offshore regions, which indi-

cates that waves were less non-linear past the breakpoint.

4. Total sediment flux at a particular location was the result of the local balance be-

tween forcing generated by, at least, two velocity moments: undertow and velocity

asymmetry. The role of velocity skewness remains unclear. When undertow is weak

and wave asymmetry is large (as in the shoaling region during the generation of bars

O and M), sediment moves predominantly shoreward. When undertow is strong

and the wave asymmetry is weak (as in the surf zone during the generation of bars

O and M), sediment moves predominantly offshore. The delicate local balance be-

tween wave nonlinearity and undertow is also illustrated during the stagnation of bar

M. During this period, undertow was slightly larger than during generation of bar

M, while velocity asymmetry was slightly weaker, and there was weaker shoreward

transport.

In the remainder of this paper, we will concentrate on the offshore bar generation and

phase I (generation) and phase III (stagnation) of the middle bar. Wave conditions during



40

Phase II and IV of the middle bar life cycle varied too extensively to apply the same anal-

yses. Finally, we will not analyze the dynamics and life cycle of the observed mega-ripples

or the generation of the nearshore terrace because observations at the required spatial

scale were not collected.

2.4 Sediment Transport Observations

Sediment transport is the sum of suspended and bedload sediment fluxes. Consequently,

in order to evaluate the performance of transport models, it is important to compare their

effectiveness at reproducing the overall observed sediment flux (Section 2.3). It is also

important to evaluate whether the models reproduce the observed balance between sus-

pended and bedload transport during various phases of bed evolution.

In this section, we analyze the records from the FOBS in order to assess the amount

of sediment that was put into suspension in the flume. We will compute the strength of

suspended transport during each run, and we will identify the relative role of the wave,

low-frequency and mean motions in moving the suspended sediment. Furthermore, be-

cause we did not directly measure bed transport, we indirectly deduce its importance from

the total observed sediment fluxes.

2.4.1 Mean Sediment Concentration

During each run, we measured sediment concentration from -1.2 to 41.5 cmab. Probes

above 17 cmab were often polluted by bubbles, and we excluded them from our analysis.

During the generation of bar O, mean sediment concentration values were similar among

the four lowermost sensors. Maximum sediment concentration was highest in the trough

of the offshore bar (X ≈ 62 m), where total sediment flux was maximum (see Section 2.3).

Mean sediment concentration decreased from -1.2 to 1.2 cmab, and in general, concentra-

tion at 0.8 cmab was approximately 50% lower than at -1.2 cm. This indicates that the
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energetic wave conditions present during offshore bar generation, activated sediment well

below the initial bed level.

During generation and stagnation of bar M, sediment sensors that were buried in the

initial bed level often exhibited concentration levels that were either consistently higher

than 100 kg/m3 or, when conditions were more energetic, they exhibited concentration

peaks greater than 100 kg/m3. This would indicate that either sediment is not in suspen-

sion (Ribberink & Al-Salem (1995); Dohmen-Janssen & Hanes (2002)), or that sediment

was mobilized for initiation of suspension (Conley & Beach (2003)). This also suggests

that, during middle bar generation and degeneration, depth of sediment activation was

shallower. Previous experiments have shown that the thickness of the bed mobile layer

varies with velocity (e.g., Ribberink & Al-Salem (1995); Dohmen-Janssen et al. (2002)).

Highest sediment concentrations were measured between 0.8 and 2 cmab. Above 5

cmab, mean sediment concentration profiles were fairly uniform. This suggests that sand

was well-mixed in the water column, and there was little contamination of the signal

by horizontal advection of plumes at discrete elevations in the water column. This also

suggests that, although time series were not repeatable at a particular cross-section, simi-

larities existed between them in the way sediment was diffused/advected upwards. In the

remainder of this paper, we will assume that sediment at or above 0.8 cmab was trans-

ported through suspended load.

We compared suspended load among the major phases of bar evolution. To represent

the cross-shore variation of suspended sediment concentration, we computed the amount

of suspended load (mass of suspended sediment per unit area, Figure 2.13) from the depth

integration of profiles of mean sediment concentration from 0.8 to 17 cmab. In Figure

2.13, error bars represent standard deviation around the mean, and indicate the variabil-

ity of measurement between different runs at the same location. Time series of suspended

sediment were not repeatable in the flume.
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Fig. 2.13: Suspended load profiles. Suspended load measured during offshore bar gener-
ation (‘OG’), middle bar generation (‘MG’) and middle bar stagnation (‘MS’).
Vertical dashed line represents breakpoint during offshore bar generation, and
dashed-dotted line represents breakpoint during middle bar generation and
stagnation.

During the generation of bar O, maximum suspended load was measured near the

shoreward face of the bar at X ≈ 63 m (Figure 2.13), where total sediment flux was high-

est (Figure 2.3). During the generation of bar M, suspended load steadily increased in

the shoaling region, and peaked shoreward of the bar crest, at X ≈ 70 m. Finally, during

stagnation of bar M, suspended load sharply increased in the shoaling region of the waves

to peak offshore of the crest of bar M, at X ≈ 65 m. Suspended load steadily decreased

in the surf zone. During both generation and stagnation of bar M, and contrary to the

generation of bar O, suspended load peaked shoreward of the maximum in total sediment

flux. In all cases, although maximum sediment concentration was measured between the

bed and 5 cmab, less than 50% of the total load occurred in that region.
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2.4.2 Frequency Decomposition of Suspended Sediment Transport

In order to elucidate the role of suspended sediment transport in total observed sediment

flux, we computed suspended sediment flux by depth integrating the time-averaged value

of the product of suspended sediment concentration and fluid velocity (Equation 2.4). We

further decomposed this flux into contributions from the undertow (mean velocity), wave,

and high and low-frequency fluctuations by separating velocity and sediment concentration

values into frequency ranges, following Jaffe et al. (1984) and Hanes & Huntley (1986):

Qs =

∫ z2

z1

CUdz =

∫ z2

z1

CU + CLUL + CWUW + CHUH dz + ǫ (2.4)

where Qs represents the suspended sediment flux, U and C represents the time series

of velocity and sediment concentration, and overbars represent time averages. Subscripts

L, W and H represent the low-, wave-, and high-frequencies components of the signal

(frequency cutoffs of 0.1 Hz and 4.fp, where fp represents the peak wave frequency). ǫ

represents residual of that decomposition, and was found to be negligible after compu-

tation. Integration limit z2 was taken at 17 cmab. The lower integration limit z1 was

taken at 0.8 cmab. Velocity signals U measured at 1, 5, 10, and 15 cmab were matched

with sediment concentration signals C measured at 0.8, 5, 11 and 17 cmab. In instances

where the ADV at 1 cmab or 15 cmab failed, the limits were changed to the elevation

of the closest valid measurement. No flux was computed when the number of valid ADV

measurements was less than three.

Results of the suspended sediment flux frequency decomposition are presented in Fig-

ures 2.14 and 2.15. During generation of bar O, suspended sediment flux in the flume

contributed positively to the total sediment flux, i.e., sediment moved offshore in the wa-

ter column, in the same direction as the total sediment flux (Figure 2.14). Most of the

offshore advection of sediment is caused by the action of the undertow current; wave and

low-frequency fluxes were low and balanced each other on average in the cross-shore di-

rection as well as in the water column (Figure 2.15). At X ≈ 63.2m, near the trough of
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bar O, both waves and suspended fluxes were oriented offshore.

The ADV at 15 cmab failed when the cart was at station X ≈ 63m and X ≈ 66.73m,

where total sediment flux magnitude was highest. Hence, because mean sediment trans-

port dominated the offshore suspended flux, it is likely our computation underestimates

the relative importance of the suspended flux. Consequently, we revisited the estimate of

Qs for all cross-shore positions where measurements were available, by relying on the result

that the undertow was responsible for most of the suspended sediment transport during

offshore bar generation. In other words, we evaluated Qs ≈
∫ z2

z1
CU between z1 = 0.8

cmab and z2 = 17 cmab.

We obtained profiles of U over a refined vertical grid (dz=0.5 cm) by fitting valid under-

tow measurements through a parabola. Profiles of suspended sediment concentration were

also interpolated on the same refined grid. Results of the second estimate are presented

in Figure 2.14, and they confirm that highest suspended sediment transport occurred in

the bar region, where undertow was maximum. These results also indicate that suspended

flux accounted for almost half of the total flux in the bar region, and for approximately

one third of total flux in the surf zone. Offshore of the bar, suspended flux was negligi-

ble. From these observations, we infer that bedload (assumed to be the difference between

total and suspended fluxes) contributed to a large portion of the offshore transport of sedi-

ment in the surf zone, as well as to the small shoreward flux of sediment offshore of the bar.

We repeated the same analysis for phases of middle bar generation and stagnation.

In both cases, suspended flux negatively impacted the observed shoreward transport of

sediment: suspended sediment was moving offshore, in the opposite direction of the total

flux (Figure 2.14). During the generation of bar M, suspended transport profile peaks near

the crest of the bar, at X ≈ 70m, shoreward of total sediment flux maximum. Offshore,

total suspended flux was small and did not influence the shoreward transport of sediment

from bars O to M. In the surf zone suspended flux sometimes occurred in the opposite
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Fig. 2.14: Cross-shore decomposition of total sediment flux. Total measured flux QTotal

(orange curve), and suspended flux estimate (blue curve) during offshore bar
generation (left panel), middle bar generation (middle panel) and degeneration
(right panel). Suspended flux is decomposed in flux due to undertow (red
triangles), due to waves (green circles), and low-frequency flows (purple stars).
Black circles represent correction of flux due to undertow.
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Fig. 2.15: Vertical decomposition of total suspended sediment flux. Decomposition of
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various cross-shore positions. During offshore bar generation, breakpoint was
at X ≈ 61m and during middle bar generation and stagnation, breakpoint
was at X ≈ 68m.
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direction of total transport (X ≈ 72m). Throughout the water column, low-frequency and

wave-induced transport were relatively weak, and compensated each other (Figures 2.15).

Closer to the shoreline, at X ≈ 74m, wave and low-frequency motions moved sediment

offshore, and together they accounted for approximately 40% of the total transport.

Finally, during stagnation of bar M, suspended flux was oriented offshore, while ob-

served total flux was oriented shoreward. Maximum suspended flux was observed offshore

of the breakpoint, at X ≈ 65m. This difference in position of maximum suspended flux,

compared to the generation of bar M, might be due to the fact that undertow was stronger

and velocity asymmetry was weaker offshore of the breakpoint during the stagnation of bar

M that during its generation (see Section 2.3). Interestingly, low-frequency and wave fluxes

were also oriented in the offshore direction. In the surf zone, past X ≈ 68m suspended

flux as well as total flux decreased. Throughout the water column, wave and low-frequency

fluxes were weak compared to the undertow-driven flux but they were oriented offshore

(Figure 2.15), which is different from the previous two phases of bar evolution.

Frequency decomposition shows that, as was the case during offshore bar migration,

most of the suspended sediment was advected by the undertow. Fluxes due to low- and

wave-frequency components were small, and generally compensated each other in the wa-

ter column (Figure 2.15). Assuming, once again, that the difference between total and

measured suspended fluxes is due to bedload motion, most of the sediment that con-

tributed to the middle bar growth, and to the offshore bar degeneration, moved shoreward

as bedload. In the surf zone, the relative strength of the suspended transport points to

an almost equal and opposite bedload. The first exception to this observation occurred

closer to the shoreline, where all sediment was moving offshore.

In the absence of direct observations of bed load transport, we qualitatively evaluated

whether our observations of bedload could be explained by sheet flow or ripple migration.

We neglected plug flow, a third possible mechanism for bedload, because predictors pro-
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posed by Zala Flores & Sleath (1998) and Foster et al. (2006) were well below threshold

values for all wave conditions in the flume. To evaluate whether ripple migration might

have explained the observed bedload, we estimated their migration speed. Based on the

geometry of ripples observed between runs in the flume, we estimated a migration speed

of 12 mm/s. This speed is at least one order of magnitude higher than typical speeds

(Nielsen (1982)). On the other hand, we found that, for our dataset, values of predictors

of sheet flow transport (Nielsen (1982); Soulsby (1997)) were often exceeded in the surf

zone (i.e. θ ≥ 0.8). In the shoaling regions, where most bed load was observed, values

were close to the threshold (i.e. θ ≈ 0.6). Consequently, it is likely that sediment moved

as sheet flow. As explained in Soulsby & Damgaard (2005b), sheet flow conditions can

exist even in the presence of ripples: sediment moves as a sheet over the ripples, but the

ripples remain immobile.

To confirm this results, we fitted observed mean sediment concentration profiles to

exponential, Rouse and power-law profiles. Other studies have observed the exponential

profile when sediment was being resuspended by vortex shedding over rippled beds (Nielsen

(1982); Ribberink & Al-Salem (1994)). The Rouse profile was originally derived for flows

in rivers or channels, but has been applied to profiles of suspended sediment measured

under waves (Soulsby (1997)). The power-law profile, derived by Smith (1977), has been

observed in the field and in the laboratory (Dohmen-Janssen & Hanes (2002); Sumer

et al. (1996); Ribberink & Al-Salem (1995); Lee et al. (2004). Both Rouse and power law

profiles are usually indicative of sheet flow conditions (Soulsby (1997)). Expressions for

these theoretical profiles of mean sediment concentration are:

C(z) =





Coe
−z/l (Exponential profile)

Co

[
z
zo

h−zo

h−z

]−b
(Rouse profile)

Co

(
z
zo

)−b
(Power profile)

In the exponential profile, l is a decay length scale (Nielsen (1982); Soulsby (1997)). In

the Rouse and power profiles, h is the water depth, zo a reference height above the seabed



49

where the reference concentration Co is defined (we take zo = 0.8 cmab herein), and b is

a suspension parameter (Soulsby (1997)):

b =
wo

κu∗
(2.5)

with u∗ the friction velocity, and κ = 0.4 the von Karman constant.

We fitted our measured profiles with the distributions presented in Equation 2.5, and

for each profile, we computed values of the coefficient of determination R2:

R2 = 1 −

N∑

n=1

(
Cmeas

i − Cfit
i

)2

N∑

n=1

(Cmeas
i − < Ci >

meas)2

(2.6)

where Cmeas
i represents the discrete measurements of mean sediment concentration at the

ith cross-shore position, < Cmeas>
i is the mean value of Cmeas

i . Cfit
i represents the values

of fitted profile C(z) at the same N elevations as the measured mean concentration Cmeas
i .

An R2 value of 1 means a perfect fit between model and observed profiles. A negative R2

value indicates that the mean value < Cmeas
i > represents the vertical variation of the data

better than the theoretical formulation. We fitted the measured profile with theoretical

values between zo = 0.8 to z = 17 cmab. Similar results were achieved using zo = 1.8

cmab and zo = 5 cmab.

The exponential profile did not fit our observations very well. R2 values where negative

for 95% of the runs. On the other hand, the Rouse and power profiles performed equally

well, with R2 values greater than 0.9 during generation of bar O and stagnation of bar

M. High R2 values were obtained during generation of bar M, averaging around 0.7. This

would indicate that sheet flow conditions probably dominated during the experiment, and

the ripples observed did not contribute to sediment transport.
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In summary, for all cases considered, sand was mainly suspended in regions close to

the sandbars and where wave breaking reached approximately 20%. Contributions from

wave- and low-frequency components of the velocity generally compensated each other,

even though waves experienced significant changes as they propagated over the bars and in

the surf zone region (see Section 2.3). This balance between low-frequency and wave con-

tribution is consistent with observations in the field by Beach & Sternberg (1991); Huntley

& Hanes (1987). During the generation of bars O and M, this balance was approximately

the same, in the cross-shore direction as well as in the water column. During stagnation

of bar M, low-frequency and wave-induced fluxes were directed offshore.

During offshore bar generation, when waves were relatively high, both bedload and

suspended flux contributed to the growth of the bar. During the milder wave conditions

of middle bar generation and middle bar stagnation, suspended flux and bedload were gen-

erally moving in opposite directions. Because of the offshore direction of the suspended

flux during these periods, bedload was much higher than the measured shoreward oriented

total sediment flux.

We also estimated that sheet flow conditions were likely in the flume. Although other

publications reported a reversal in the direction of suspended sediment transport, few

have found a reversal of transport in the surf zone, and at elevations so close to the bed.

Green & Vincent (1990) and Osborne & Greenwood (1992b) found a reversal of transport

direction in suspended sediment transport offshore of the breakpoint, and their lowermost

instrument was higher than 5 cmab. Wright et al. (1991), found that suspended and bed

load were of similar magnitude in water depths of 7 to 9 meters off Duck, N.C. In the surf

zone, Conley & Beach (2003) found shoreward directed suspended sediment transport due

to wave motions at 2 cm above the bed. We are not aware of publications that mention

differing bedload and suspended load transport in the surf zone, as we have found during

our experiment.



51

2.5 Modeling of Sediment Transport: Theory

In this section, we present the two process-based models that we used to model the ob-

served sediment transport in the flume. The first model is a wave-averaged model that is

expressed as a function of velocity moments. The second model is a wave-resolved model

that estimates suspended and bedload transport based on hydrodynamics modeled by an

eddy-diffusive boundary layer model.

2.5.1 Wave-Averaged Model

The wave-averaged model that we used is a modification of the energetics models of Bowen

(1980) and Bailard (1981) proposed by Hoefel & Elgar (2003). These models derive from

the pioneering work of Bagnold (1963) and Bagnold (1966). In his model for sediment

transport in river, Bagnold (1966) started from the idea that a work done by an internal

force (here bed shear stress) generates dissipation:

ω = τ |~u| = ρCf |~u|3 (2.7)

where ω is the dissipated stream energy, and Cf is a friction coefficient. Next, Bagnold

(1966) assumed that the transport rate of sediment in the water can be evaluated from

the rate of energy used by the stream to transport sediment. Sediment put into motion

by the shear stress can move as either bedload or suspended load. Incorporating effects of

gravity and assuming that suspended sediment transport can be expressed as a fraction

of total energy dissipated by the stream, Bagnold (1966) proposed the following formula

for total transport:

i = ib + is =

(
ǫb

tanφ− tanβ
+

ǫs
wo/u− tanβ

)
ω (2.8)

where i is the total transport rate, composed of bedload ib and suspended load is. u is

the mean velocity of the stream, and wo is the sediment fall velocity. ǫb and ǫs are the

bedload and suspended load efficiency. tanφ is the sediment angle of repose (equal to 0.66
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(Bagnold (1966))), and tanβ the beach slope.

Bowen (1980) and Bailard (1981) revisited Bagnold (1966) work to devise a similar

relationship for flows in nearshore environment by including oscillatory flows, i.e. u = ũ+u,

in Equation 2.8. After expansion, they found an expression for bed and suspended cross-

shore volumetric transport rate, per unit width per unit time:

QBailard = Kb

[〈
|~u|2ũ

〉
+

〈
|~u|2ū

〉
− tanβ

tanφ

〈
|~u|3

〉]
+ (2.9)

Ks

[〈
|~u|3ũ

〉
+

〈
|~u|3ū

〉
− ǫs
W

tanβ
〈
|~u|5

〉]

where ~u is the total cross-shore velocity, measured above the wave bottom boundary

layer, and ũ and ū are its oscillatory and mean components. Brackets, ‘<>’,represent

time averaging. Bedload and suspended transport coefficients, Kb and Ks, are:

Kb =
ρw

g(ρs − ρw)
Cb

ǫb
tanφ

(2.10)

Ks =
ρw

g(ρs − ρw)
Cf

ǫs
tanφ

where ρs and ρw represent the density of sand and water, respectively. Cf (with a stan-

dard value of 0.03 (Thornton et al. (1996))) is the drag coefficient on sand particles, and

the coefficients ǫb and ǫs are empirical, whose values will be taken as 0.135 and 0.015,

respectively (Thornton et al. (1996)). Analysis of the various terms in this model shows

that the transport is mostly dependent on wave skewness (∼ |~u|3) and undertow (ū). This

model gives good results when undertow (which causes offshore sediment movement) or

wave (velocity) skewness (which cause shoreward sediment movement) are strong. It fails

to predict transport when undertow is weak and waves are more asymmetric than skewed

(Thornton et al. (1996); Gallagher et al. (1998)).

The lack of success of the energetics model is due to the fact that one of the dominant

wave-induced transport terms in Equation 2.10, < ũ3 >, goes zero for asymmetric waves.

As experiments by King (1990), Ribberink et al. (2000) and Dohmen-Janssen & Hanes
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(2002) have shown, for the same value of skewness, waves that have a certain degree of

asymmetry transport much more sediment than waves that are purely skewed. Later, Elgar

et al. (2001) observed that free-stream velocity asymmetry is closely related to acceleration

skewness. Acceleration can be assumed to be represented by pressure gradients, and thus

skewed acceleration time series will generate large pressure gradients under the sharp

front face of asymmetric waves, and weaker pressure gradients under the mild rear of

asymmetric waves. If these pressure gradients are strong enough, sediment is put into

motion. These observations led Drake & Calantoni (2001) to suggest a threshold factor

above which sediment is put into motion by the effects of acceleration skewness. Hoefel

& Elgar (2003) incorporated this last idea in the model developed by Bailard (1981) and

Bowen (1980) to compute total sediment flux QT in the nearshore:

QT = QBailard +Qacc (2.11)

where Qacc accounts for the cross-shore sediment transport caused by wave asymmetry

(acceleration skewness) effects:

Qacc =





Ka (aspike − sign(aspike)acrit) if aspike ≥ acrit

0 if aspike ≤ acrit

where acceleration skewness is parameterized by aspike =
〈
a3

〉
/

〈
a2

〉
, with a the low-

passed filtered acceleration signal (we chose a cutoff frequency fc = 1Hz to remove seich-

ing signal), and brackets represent the averaging operation. Ka is a calibration constant,

and acrit is an acceleration threshold for initiation of transport. Hoefel & Elgar (2003)

suggested Ka = 1.410−4m/s and acrit = 0.2m/s2. This model will be referred as the

Enhanced Energetics Model (EEM) in the remainder of this paper.
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2.5.2 Wave-Resolved Model

As an alternative to the wave-averaged model, we also modeled bedload and suspended

sediment transport with a wave-resolving model. We combined an eddy-diffusive sus-

pended sediment transport model, following the work of Henderson et al. (2004). We

modeled bedload from wave-resolved velocity near the bed using the sheet flow formula-

tion of Ribberink (1998).

To run our suspended and bedload models, we simulated velocity time series in the

lower portion of the water column from the weakly nonlinear model of Henderson et al.

(2004), which was developed for the wave bottom boundary layer (WBBL):

∂u

∂t
− 1

Co
u
∂u

∂t
+ w

∂u

∂z
= (2.12)

[
∂uT

∂t
− 1

Co
uT ∂u

T

∂t
+ wT ∂u

T

∂z
− ∂

∂z
(νt

∂uT

∂z
)

]
+

∂

∂z
(νt

∂u

∂z
) (2.13)

where Co =
√
gh, the wave phase speed in shallow water, and u(x,z,t) and w(x,z,t) are

the horizontal and vertical fluid velocities evaluated at each vertical grid point z of the

model domain. The first term between brackets on the right hand side of Equation 2.13

represents the second order estimate of the pressure gradient inside the WBBL (for details,

cf. Appendix B of Henderson et al. (2004)), which is computed using measured velocities

at the top of the domain, uT . Eddy viscosity νt(x, z, t) is computed at each time step

from a k − ǫ turbulence closure scheme (Pope (2000); see also Appendix A of Henderson

et al. (2004)). These equations were developed assuming that waves were in shallow water

and of permanent form. In addition, Henderson et al. (2004) assumed that low-frequency

signals were in a constant stress layer, which means that vertical derivatives of mean shear

stress is zero.

To estimate suspended load, we followed the work of Henderson et al. (2004), in which

sediment is mobilized at bed level by a pickup function dependent on bed shear stress
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(Equation (15) of Henderson et al. (2004)):

− νt
∂C

∂z
=





ζwoCref if τb > τc

0 if τb ≤ τc

(2.14)

Instantaneous bed shear stress τb was estimated from τb = νt∂zu(x, zl, t), where u(x,z,t)

was the modeled time series of horizontal velocity at the lowermost grid point zl. ∂z

denotes the derivative with respect to z. In Equation 2.14, ζ is a function of sediment

diameter and bed shear stress. Cref is a reference concentration estimated two grain

diameters above the bed, and is a function of the excess shear stress (Smith & McLean

(1977)):

Cref = α

(
τ − τc
τc

)β

(2.15)

Coefficients α and β were introduced by Henderson et al. (2004) as calibration parameters.

Once the concentration of sediment at the lowermost grid point in the computational

domain had been estimated, we distributed it in the water column following the classical

advection/diffusion equation (Fredsøe & Deigaard (1992), Nielsen (1982)):

∂C

∂t
+ u

∂C

∂x
+ (w − wo)

∂C

∂z
=

∂

∂z

(
ǫf
∂C

∂z

)
(2.16)

where C(z,t) ([Vol/Vol]) is the sediment concentration, wo the sediment fall velocity (see

Section 2.2), and ǫf is the sediment eddy diffusivity. Total suspended sediment flux Qs

was computed by:

Qs(x) =

∫ zT

zL

〈C(x, z, t)u(x, z, t)〉 dz (2.17)

where zL represents the height of the lowermost model grid point and zT represents the

elevation at the top of the computational domain.

Bedload transport Qb under sheet flow conditions was estimated by the formulation of
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Ribberink (1998), which is a modification of the Meyer-Peter & Müller (1948) equation:

Qb = Ψ
√

(s− 1)gd3 (2.18)

where Ψ =
〈
11 θ/|θ|[|θ| − θc]

1.65
〉

is the non-dimensional transport rate, with

θ =
τb

ρ(s− 1)gd
(2.19)

the Shields parameter. θc (=0.05) is the critical Shields parameter for sediment motion.

The parameters τb, ρ, s, and d represent the bed shear stress, water density, sediment

specific gravity and sediment diameter, respectively.

Bed shear stress due to wave and current, τb, was computed by:

τb = τc + τw (2.20)

where subscripts w and c represent components of the shear stress τ .

Shear stress due to waves only, τw, was computed assuming law-of-the-wall formulation

(Hsu et al. (2006)):

τw = ρ

(
κ

ln(30zl/ks)

)
ũ(zl, t)|ũ(zl, t)| (2.21)

where ũ(zl, t)(zl, t) represents demeaned wave velocity at the first grid point zl above the

bed, and κ = 0.4. The roughness height coefficient ks is a calibration factor. Shear stress

due to the undertow was computed with:

τc =
1

2
ρfcu|u| (2.22)

where u represents the strength of the undertow at the first grid point, and fc is a friction

factor. From the application of bedload and suspended load model, total sediment trans-

port flux was evaluated by adding bedload and suspended flux QT = Qs +Qb .
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2.6 Modeling Results

We applied the EEM and wave-resolved models to the dataset, and evaluated their relative

performance. Our objective was to identify components of the models that correctly repro-

duce the observed magnitude and modes of sediment transport (suspended and bedload).

As mentioned in Section 2.3, waves and hydrodynamics were affected by the bathymetric

changes that took place from one run to another. However, we also estimated that vari-

ations in velocity moments was relatively limited across one phase. We will assume that

any measurement made during a phase of bed evolution was representative of this phase.

2.6.1 Enhanced Energetics Model

To apply the EEM model to our dataset, we had to change the calibration coefficients

proposed by Hoefel & Elgar (2003). Similar to Hoefel & Elgar (2003), we used all velocity

measurements from the ADV located below 25 cmab. We calibrated the model by mini-

mizing rms errors between measured and modeled sediment fluxes , for each phase of bed

evolution identified in Section 2.3. This operation yielded different values of calibration

coefficients Cf , Ka and acrit (Equations 2.10 and 2.11) for each phase of bed evolution. In

order to use only one model parametrization for all phases considered herein, we decided

to use values of Cf = 1.2, Ka = 8.510−6, and acrit = 0.08. These coefficients are different

from the ones proposed by Hoefel & Elgar (2003) (see Section 2.5) and were obtained by

minimizing rms errors between modeled and measured sediment fluxes during offshore and

middle bar generation phases only.

Figures 2.16 to 2.18 compare modeled and measured sediment flux, for offshore bar

generation and middle bar generation and stagnation. For the offshore bar generation

phase (Figure 2.16), modeled and measured fluxes do not agree (R2 = 0.27). The model

underestimates the offshore transport of sediment in the surf zone and fails to reproduce
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the shoreward transport that occurred at X ≈ 60m. In another study, Thornton et al.

(1996) explained the observed shoreward sand migration in regions offshore of the surf

zone have been by action of wave skewness. In our study, transport terms due to velocity

skewness indicated offshore transport.

In the surf zone, QBailard was oriented offshore and, with the friction factor chosen, ap-

proximates 70% of the observed transport (Figure 2.16). The shoreward oriented flux due

to acceleration skewness Qacc was quite large, and reduced the influence of QBailard in the

total modeled transport. Most of the transport in QBailard was due to the suspended load

term, which was twice as large as the bedload term. QBailard approximated the suspended

flux relatively well; difference between measured and modeled suspended flux was 19%

and gave an R2 of 0.6. However, more than 50% of the transport was due to wave action,

which as contrary to observation. To calibrate the EEM specifically for this case, the ac-

celeration skewness term would need to be eliminated, and the friction factor Cf increased.

The EEM explained middle bar generation well (Figure 2.17), yielding an R2 value of

0.8. If the measurement at X ≈ 78m is excluded, R2 increases to 0.95. As expected from

observation in Section 2.3, acceleration skewness (Qacc) explained most of the shoreward

transport observed in regions offshore of the middle bar. The Bailard term (QBailard)

contributed little to the observed positive flux. Shoreward of bar M (X > 68m), the

importance of undertow in QBailard increased, and the importance of velocity skewness

weakened. A strong offshore flux resulted, which balanced the action of acceleration skew-

ness, and yielded a total transport with the correct sign and magnitude. In accordance

with observations, suspended transport was weak overall, and approximated measured

flux by a factor of two in the surf zone (R2 < 0). Offshore of the bar crest, the disagree-

ment was more pronounced. Here, the model predicted shoreward suspended flux on the

offshore face of the bar, when in reality suspended sediment was moving offshore (Figure

2.14).
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Fig. 2.16: EEM results for offshore bar generation. Top panel: Measured (orange curve)
versus modeled (blue curve) sediment flux using EEM for offshore bar gener-
ation. Error bars represents 1 standard deviation around the mean. Middle
panel: QBailard (red curve) decomposition into bed load (dashed blue curve)
and suspended load (green dashed curve). Bottom panel: Estimate of Qacc.
Measured suspended transport is indicated by black crosses. Dashed and
dashed-dotted lines represent average location of offshore and middle bars,
respectively.
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Fig. 2.17: EEM results for middle bar generation. Top panel: Measured (orange curve)
versus modeled (blue curve) sediment flux using EEM for offshore bar gener-
ation. Error bars represents 1 standard deviation around the mean. Middle
panel: QBailard (red curve) decomposition into bed load (dashed blue curve)
and suspended load (green dashed curve). Bottom panel: Estimate of Qacc.
Measured suspended transport is indicated by black crosses. Dashed and
dashed-dotted lines represent average location of offshore and middle bars,
respectively.
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Fig. 2.18: EEM results for middle bar stagnation. Top panel: Measured (orange curve)
versus modeled (blue curve) sediment flux using EEM for offshore bar gener-
ation. Error bars represents 1 standard deviation around the mean. Middle
panel: QBailard (red curve) decomposition into bed load (dashed blue curve)
and suspended load (green dashed curve). Bottom panel: Estimate of Qacc.
Measured suspended transport is indicated by black crosses. Dashed and
dashed-dotted lines represent average location of offshore and middle bars,
respectively.
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Finally, application of the model to middle bar stagnation yielded reasonable results

(Figure 2.18) . The model correctly predicted the shoreward movement of sediment off-

shore of the middle bar. In the surf zone, the model overestimated the offshore sediment

flux at X ≈ 74m, but correctly predicted the shoreward flux closer to the shoreline. After

eliminating the data point at X ≈ 74m, R2 increased to 0.73. Similar to the previous case,

most of the shoreward sediment transport was explained by the action of the acceleration

skewness. The wave transport term in the Bailard formulation was, on average, directed

shoreward, but was fairly weak compared to the sum of gravity and undertow-driven

transport. In the surf zone, the model predicted that the wave term would move sediment

offshore with greater capability than would undertow and gravity, which is contrary to our

observations. Interestingly, suspended load predicted by the Bailard formulation approx-

imated measured suspended load fairly well, except at X ≈ 74m, and slightly offshore of

the bar.

In summary, the EEM demonstrated some ability in reproducing the observed sediment

flux in the flume during the three bed evolution phases. The inclusion of the accelera-

tion skewness term (Qacc) negatively impacted the model during offshore bar generation.

Neglecting this term would have resulted in improved prediction skill. However, during

middle bar generation and middle bar stagnation, the inclusion of Qacc was critical to

calculate shoreward sediment transport, as the Bailard term predicted offshore transport.

Finally, frequency decompositions of the Bailard suspended transport terms (follow-

ing Thornton et al. (1996)), indicated that wave and low-frequency components did not

balance each other in the surf zone. Undertow and low-frequency terms also dominated

in regions offshore of the bar. This is different from the suspended sediment flux balance

observed in the flume (see Section 2.4.2). These findings suggest that the Bailard model

did not accurately reproduce the details of sediment transport, even though it reproduced

the bulk sediment flux quite well.
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2.6.2 Results of Wave-Resolved Model

We used the wave boundary layer model developed by Henderson et al. (2004) to obtain

velocity time series in a computational domain defined between 25 and 0.8 cmab. Model

outputs were used to model observed suspended sediment transport and bedload. Rough-

ness height was fixed at 2 times the mean sediment diameter. Following Henderson et al.

(2004), the model was driven with a velocity signal measured at 25 cmab; when signals at

25cmab are too noisy, velocity measured at 10cmab was used instead, but domain height

remained at 25 cm.

Boundary Layer Model: Hydrodynamic Module

Henderson et al. (2004) assumed that waves were in a constant stress layer in the compu-

tational domain. Our observations contradicted this assumption, which indicated strong

mean velocities from 25 to 1 cmab (see error bars in Figure 2.5). Our modification of

the model involved the addition of a depth uniform pressure gradient to the expression

of the second order pressure gradient (term between brackets on the RHS of Equation

2.13, or see Equation 10 of Henderson et al.(2004)). To perform this calibration, we made

sure that model and measured mass flux matched over the same portion of the water

column:
∫ z2

z1
Umeas dz =

∫ z2

z1
Umodel dz, where Umeas and Umodel represent measured and

modeled undertow values. To improve our estimates, measured undertow values were fit

to a parabolic profile between z1 and z2, an elevation range where valid measurements

of the undertow were obtained. We could not justify pressure gradient values added to

the model. However, they generally increased with distance along the flume towards the

shoreline, which is physically reasonable. Alternatively, one can assume that undertow

is uniform throughout the water column and simply add a depth-averaged value of the

undertow (e.g., obtained from a wave driver) to the model. Conclusions presented herein

hold under these circumstances as well.

After calibrating the user-defined pressure gradient, percent rms error between mea-
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sured and modeled undertow was on the order of 20% in the surf zone. This value is

comparable to error reported elsewhere between estimates and modeled depth-averaged

undertow values (Dally & Brown (1995)). In offshore regions (at approximately 10 meters

offshore of the crests of offshore and middle bars), the percent rms error was greater, on

the order of 70%. We noticed also that estimates of undertow closer to the bed tended to

be worse than higher up in the water column.

For each run simulated in the model, we evaluated how well measured and modeled

velocity compared. We estimated rms error, R2 and best fit slope β between modeled

and measured velocity at 15, 10, 5 and 1 cmab. We show cross-shore averaged values of

these statistics in Table 2.3. In general, error increased closer to the bed, but the model

performed relatively well, given the strong assumptions that were made during its devel-

opment. For each phase of bed evolution considered, rms error values were on the order of

0.1 m/s higher in the surf zones than in shoaling regions. Similarly, R2 values decreased

by approximately 0.1 between shoaling region and surf zone. In addition, the model was

generally accurate at reproducing measured low-frequency and wave variance σ2
Wave and

σ2
LF . R2 values were on the order of 0.7, with lower values at 1cmab than at 15 cmab.

Also, rms error was on the order to 7.10−3 at 15 cmab and increased to 12.10−2 m2/s at 1

cmab. Best-fit slope was on the order of 1.1 from 15 to 10 cmab, and decreased to approx-

imately 0.7 at 1cmab. This result indicates that, modeled velocities should reproduce the

observed balance between undertow, wave and low-frequency suspended sediment fluxes.

Table 2.3: Statistics between Measured and Modeled Velocities
Inst. Elev. [cmab] R2 Error (rms) [m/s] β

15 0.97 0.08 1
10 0.95 0.1 0.94
5 0.88 0.13 1
1 0.72 0.2 0.65

In summary, a weakly nonlinear, shallow water boundary layer model approximated
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closely the velocities in the lower portion of the water column. Error increased closer to

the bed and in higher energetic regions but, given the strong assumptions that were used

in the development of these equations, the model performed relatively well. We do not

expect this model to be a major source of error in the modeling of suspended sediment

transport.

Boundary Layer Model: Sediment Module

The sediment module estimates reference concentration at each time step at the lower

boundary of the model by assuming a Shield’s law parametrization (see Section 2.5). As

shown in Equation 2.15, the sediment reference concentration is a function of the ex-

cess shear stress estimated at the bed. This shear stress is strongly dependent on wave

motions. After the model determines that excess shear stress is positive, sediment is

advected/diffused following the classical advection/diffusion equation and using eddy vis-

cosity as sediment eddy diffusivity (see Equation 2.16).

In our dataset, sediment concentration signals were correlated in the water column.

Specifically, in regions of high suspended load, the correlation coefficient between adjacent

sensors was around 0.55 at the 95% confidence level. Correlation coefficients between

sensors in the water column and the sensor at 0.8 cmab was around 0.45 at the 95% con-

fidence level. However, sediment concentration spectra did not show any significant peak

at the frequencies of wave or low-frequency cyclic motions. Sediment suspension signals

were highly intermittent. Although some datasets of nearshore sediment concentration ex-

hibited a direct correspondence between sediment suspension and wave forcing (Ruessink

et al. (1998), Jaffe et al. (1984), Conley & Beach (2003)), measurements of intermittent

suspended sediment signals have been reported (Smith & Mocke (1993); Jaffe & Rubin

(1996); Kobayashi et al. (2005); Wang et al. (2002); among others). Such intermitence

could be associated with wave-induced dissipation (Smith & Mocke (1993); Hsu & Liu

(2004)). This is in line with findings of Cox & Kobayashi (2000), who showed that surface
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generated turbulence often reaches the bed. Consequently, a parametrization of sediment

reference concentration based on excess shear stress (Smith & McLean (1977)) might not

be appropriate for our study. The inadequacy of such models has also been showed by

Nielsen et al. (2002). Instead, we evaluated sediment advection/diffusion in our model

domain by using measured sediment concentration time series at 0.8 cmab as the concen-

tration at the first grid point.

Finally, although eddy viscosity and eddy diffusivity are often assumed to be equal

(van Rijn (1984)), we found it necessary to increase the eddy-viscosity values computed

by the k− ǫ model. Few publications have evaluated the ratio β between eddy diffusivity

and eddy viscosity. From measurements on the continental shelf, values of the coefficient

β were above and below unity, but in general less than 1.5 (Lees (1981); Dyer & Soulsby

(1988); Ogston & Sternberg (2002)). van Rijn (2006) proposed a value of less than 1.5 for

nearshore regions. Thorne et al. (2009) indicated that this ratio might be much greater

than 4 over rippled beds in the surf zone, and Nielsen (1982) recommended a value of

β = 4. For each bed phase considered herein, calibration values were around 10 in the

shoaling region of the waves. In the surf zone, calibration coefficient β was approximately

5 (for an heuristic justification of these calibration numbers, see Appendix B.1).

After this calibration, the correlation between measured and modeled time series of sed-

iment concentration averaged 0.5 for all phases considered, throughout the flume. Visual

inspection of measured and modeled time series of sediment concentration indicated that

the model reproduced the same sediment suspension events that were detected throughout

the water column, but the model underestimated the peak values of sediment concentra-

tions. The agreement improved in the surf zone, where correlation values sometimes

reached 0.7.

For all phases of bed evolution, the model correctly estimated the observed suspended

sediment flux (Figure 2.19). R2 between measured and modeled total suspended sedi-
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ment flux was 0.88 during generation of bar O, 0.6 during generation of bar M, and 0.7

during stagnation of bar M. Except in regions far offshore (X ≈ 55m) where suspended

sediment transport was small, the model predicted the correct direction and magnitude

of transport in the flume. Additionally, transport due to low- and wave-frequencies were

balanced, even though the model under-estimated the strength of the wave-only transport.

Bed Load and Total Load Model Results

As indicated in Section 2.5.2, bedload was estimated from the MPM formula. Shear stress

was estimated as the sum of wave and current shear stress, from Equations 2.21 and

2.22. For each phase of bar evolution, shear stress was calibrated by using cross-shore

uniform roughness height ks and friction coefficient fc (see Equations 2.21 and 2.22). The

cross-shore uniformity of the calibration coefficient, though practical, is probably slightly

erroneous. Roughness can vary in the cross-shore region and increase in the surf zone

(Feddersen et al. (2003)). However, for our study, ks and fc serve as calibration factors.

We first applied the bed load model to the offshore bar generation case. Bed roughness

ks was set at 1d, where d represents sediment median grain size. This value is representa-

tive of relatively flat beds, where sheet flow is likely to occur. The friction factor fc was

set at 0.035, within the range of standard values but an order of magnitude larger than

the expression proposed by Soulsby (1997).

Overall, the model correctly predicted the strength of bed load in regions closer to

shore (X > 70m), but underestimated transport closer to the offshore bar trough, where

highest sediment flux was observed (Figure 2.19), X ≈ 63m). Analysis of model results

with and without mean currents indicated that total bed transport during generation

of bar O was dominated by the undertow, with wave transport moving sediment shore-

ward. R2 between measured and modeled bed transport was 0.1. This low R2 value can

be attributed to the model inability to reproduce the strong undertow that occurred at
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X ≈ 63m. When we used measured mean velocity instead of modeled velocity, the R2

was 0.5.

To model shoreward transport during middle bar generation, roughness height ks was

increased to 8d. This value is higher than during offshore bar generation. However, if we

had used the dimension of the ripples observed in the flume, we would have obtained a

roughness of approximately 30d, following Nielsen (1982). Although ks is here a calibra-

tion coefficient, the lower value of 8d that we obtained is, once again, an indication that

our assumption of flat bed (sheet flow conditions) is sensible. We used fc = 0.005, which

is 30% higher than the value obtained using the expression proposed by Soulsby (1997).

Overall, the model correctly predicted the shoreward transport of sediment that we ob-

served in the shoaling region (Figure 2.19, X < 70m), but over-estimated the strength of

transport in the surf zone. For the whole profile, R2 values were negative. Omitting the

surf zone, R2 value increased to 0.8. Comparison between model resuls with and without

mean current indicated that most of the bedload was due to the action of wave orbital

velocity.

During middle bar stagnation, ks was changed to 6d, and fc was set to 0.025, which

an order of magnitude larger than the expression proposed by Soulsby (1997). Similar

to the middle bar generation phase, the model predicted the correct suspended sediment

flux magnitude in the shoaling region, but overestimated the strength of the flux in the

surf zone (Figure 2.19). Overall R2 value was negative, but, omitting surf zone region

(X > 70m), R2 value increased to 0.7.

Finally, Figure 2.19 shows our modeled values of total flux, obtained by summing bed

and suspended fluxes. For the generation of bar O, the R2 value was estimated to be

approximately 0.6. It increased to 0.7 when we used measured mean velocities. For the

generation and stagnation phases of bar M, the R2 value was negative when we considered

the whole profile. It increased to 0.6 for bar M generation, and 0.4 for bar M stagnation,
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when we only considered regions offshore of the breakpoint, at X ≈ 70m. Despite some

errors in the surf zone during the generation and degeneration of bar M, our model repro-

duced total transport in regions of maximum sediment fluxes relatively well, for all cases

considered.
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Fig. 2.19: Suspended, bedload and total sediment fluxes obtained with the wave-resolving model. Top panels: Comparison between
measured total (orange curve), measured suspended (blue stars) and modeled suspended (red circles) sediment flux, during
offshore bar generation (‘OG’), left column, middle bar generation (‘MG’), middle column, and middle bar degeneration
(‘MS’), right column. Middle panel: Comparison between measured total sediment flux(orange curve), measured bedload
(blue stars) and modeled bedload (red circles). Bottom panel: Comparison between measured total (orange curve), and
modeled total (red circles) sediment flux
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2.7 Conclusion

We successfully modeled the generation and degeneration of two sandbars under labo-

ratory settings. A sandbar, which we named offshore bar, or bar O, was formed under

storm conditions. It was generated by the offshore transport of sediment from nearshore

regions. Both bedload and suspended sediment transport played an important role in the

formation of the bar. Under milder conditions, sediment originating from the offshore bar

moved shoreward to form another sandbar, which we named middle bar or bar M. Such

shoreward movement is likely due to effects of acceleration skewness. The final position

of the middle bar during these conditions was close to the breakpoint. In the surf zone,

we observed little total transport. After slight changes in wave conditions, undertow in-

creased and acceleration skewness decreased. The stagnation of the sand bar resulted, but

shoreward movement of sand was observed offshore of the bar, in regions where undertow

was weak.

Sediment moved offshore mostly as suspended load, and we hypothesized that most

shoreward transport occurred as bedload. Suspended load was dominated by the under-

tow throughout the water column. Fluxes due to wave and low-frequency motions were

non-negligible and balanced each other. As observed at other studies, sediment suspen-

sion signals were episodic and did not respond to the cyclic wave or low-frequency forcing.

These results show that both modes of transport have to be taken into account when mod-

eling sediment transport in nearshore regions, and that bed load and suspended sediment

flux can sometimes move in opposite direction. Also, they confirm the non-negligible role

of wave and low-frequency suspended sediment transport.

Finally, the energetics model of Hoefel & Elgar (2003) reproduced observed transport

of sediment with a high accuracy. It also modeled observed suspended sediment flux fairly

well during offshore bar generation and stagnation, which would indicate that effects of

acceleration skewness induce bedload transport. However, the model does not reproduce

the observed balance between wave and low-frequency fluxes. We also successfully mod-
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eled the observed sediment transport by combining a suspended load model and a bed load

model, using velocity time series modeled with an eddy-diffusive boundary layer model.

We were unable to model observed profiles of sediment concentration time series using

a wave-dependent shear stress. This indicates that intermittent sediment concentration

time series can not be modeled using pickup functions that are directly proportional to

wave shear stress. An advection/diffusion model reproduced observed profiles of sediment

concentration if turbulent eddy viscosity, computed from a k − ǫ model, is multiplied by

a factor of approximately 4-5 in the surf zone. The bedload model that we used assumed

sheet flow condition, and was able to reproduce the observed shoreward sediment transport

that occurred in the shoaling regions, during middle bar generation and stagnation. We

used different calibration factors for each phase of bed evolution, which highlights the del-

icate balance between wave and undertow forcing. Our study showed that wave-resolved

model can be used reproduce detailed observations of sediment movement in the surf zone.
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3. 3. MODELING OF THE UNDERTOW

3.1 Introduction

The undertow is a weak wave-induced current, generated to compensate for the shoreward

mass flux due to waves (Dyhr-Nielsen & Sørensen (1970); Dally (1980)). This current

plays a major role in controlling cross-shore bathymetric variability, and more precisely

offshore/shoreward sandbar migration (Dyhr-Nielsen & Sørensen (1970); Dally (1980);

Thornton et al. (1996); Gallagher et al. (1998)). Near the bed, the undertow interacts

with wave motion in the wave boundary layer, to generate a bottom shear stress. The

shear stress, in turn, plays a key role in determining the amount of sediment that is resus-

pended in the water column (Fredsøe & Deigaard (1992); Nielsen (1982); van Rijn (1993);

Soulsby (1997)).

In the water column, the undertow moves sediment offshore, counteracting effects of

suspended flux due to waves (see e.g. Hanes & Huntley (1986); Conley & Beach (2003);

Osborne & Greenwood (1992b), among others). Hence, this current is a key player in

determining not only the amount of sediment that is suspended, but also the strength and

direction of the suspended transport. It is therefore crucial for the success of cross-shore

sediment transport models to determine accurately the vertical profile of undertow as well

as its value in the proximity of the bed.

Steady state, wave-averaged undertow models are the most widely used in the math-

ematical modeling of coastal hydrodynamics (Christensen et al. (2002)). These models

have achieved good results in reproducing observed undertow profiles both laboratory and

field settings (Svendsen (1984b), Stive & Wind (1986), Smith & Putrevu (1992), Deigaard

et al. (1991); Haines & Sallenger (1994); Garcez-Faria et al. (2000); Newberger & Allen
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(2007b), among others). Such models solve the steady state, wave-averaged momentum

equations to obtain the depth variation of the undertow U(x, z) They are generally of the

form (Dally (1980); Svendsen (1984b)):

∂τ̄

∂z
=

∂

∂z

(
ρνt

∂U(x, z)

∂x

)
= F (3.1)

where νt is the turbulent eddy viscosity, and F a forcing function.

Three boundary conditions are available to solve this equation for U :

1. a shear stress at the top of the domain (referred to as surface shear stress herein),

which has been defined as the wave trough level (Stive & Wind (1986); Deigaard &

Fredsøe (1989)), or the mean water level (Dally (1980); Stive & De Vriend (1994))

2. a shear stress at the bed (Svendsen (1984a))

3. the continuity equation, which dictates that the depth-averaged undertow is com-

pensated by the shoreward mass flux due to waves and rollers

So, a priori, there should only be one solution to Equation 3.1, assuming that the eddy

viscosity νt is known. However, a wide range of solutions exist in the literature, and they

have not been reconciled.

To obtain an expression for the undertow U(x, z), Equation 3.1 must be integrated

twice in the vertical dimension. Whereas most models compute the forcing F from wave

models (Borecki (1982); Dally & Dean (1984); Svendsen (1984b); Stive & Wind (1986)),

others express F by invoking surface or bottom shear stress boundary conditions (Apos-

tos et al. (2007); Tajima & Madsen (2006); Cox & Kobayashi (1997)) or the continuity

equation (Apostos et al. (2007); Reniers et al. (2004)). Furthermore, most of these models

assume that F is uniform with depth, and justify this depth uniformity based on the ex-

perimental evidence (for example, Nadaoka & Kondoh (1982); Stive & Wind (1982, 1986);

Cox & Kobayashi (1996)), or linear long-wave theory (Svendsen (1984b); Stive & Wind
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(1986); Garcez-Faria et al. (2000); Tajima & Madsen (2006), among others).

Once F has been defined, Equation 3.1 is integrated once, and an expression for the

depth variation of the mean shear stress is obtained. To solve this equation, some models

use a bottom shear stress boundary condition (e.g., Borecki (1982); Dally & Dean (1984);

Svendsen (1984b)), while others use a surface shear stress (Stive & Wind (1986); Deigaard

& Fredsøe (1989); Apostos et al. (2007)). Although Svendsen (1986) argued that bottom

or surface shear stress boundary conditions should yield identical results, numerical solu-

tions still show differences (see e.g., Garcez-Faria et al. (2000); Spielmann et al. (2004)).

Moreover, among models that use the surface shear stress as a boundary condition, the

exact formulation of this stress varies. For example, Garcez-Faria et al. (2000) used the

expression of Stive & Wind (1986); Apostos et al. (2007) used the expression of Stive & De

Vriend (1994); Rakha (1998) used the expression of Deigaard & Fredsøe (1989); Tajima

& Madsen (2006) derived a new expression. These surface shear stress expressions all

yielded good results of undertow profiles when each was applied to a particular dataset.

However, when compared to a same set of data, the profiles of surface shear stress differ,

and some of them (Stive & Wind (1986); Tajima & Madsen (2006) have erroneous phys-

ical implications (Dingemans et al. (1987); de Vriend & Kitou (1990)). The wide variety

of solutions to Equation 3.1 might seem puzzling, considering there should be only one

solution. Thus, it is important to reconcile these solutions.

In addition to the formulation of the forcing F and of the surface shear stress, an-

other obstacle to find a solution to Equation 3.1 is the issue of turbulence closure. The

eddy viscosity νt has been expressed using turbulence closure schemes based on wave-

resolving (Rakha (1998)) or wave-averaged models (Deigaard et al. (1991); Newberger &

Allen (2007b)). However, in general, νt is expressed using a parametrization based on

bathymetric or wave variables (Stive & Wind (1986); Svendsen (1987); Haines & Sallenger

(1994); Reniers et al. (2004)). Most of the parametrizations of the eddy viscosity that

have been proposed in the literature have each been developed based on only one dataset,
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obtained at a particular site. For example, Svendsen et al. (2004) used the dataset of

Nadaoka & Kondoh (1982) to justify their formula, Haines & Sallenger (1994) used a

dataset obtained at Duck, N.C., in 1982, and Reniers et al. (2004) calibrated their ex-

pression using different dataset obtained at Duck, N.C., in 1997 (even though Reniers

et al. (2004) claim that they are developing a predictive model, they use measurements

to find their forcing Fi). Such site-specific formulations have been used to estimate un-

dertow profiles at entirely different sites (Apostos et al. (2007)). Existing eddy viscosity

parametrizations have not been tested using a wide range of datasets to evaluate their

generality.

In this paper, our purpose is to highlight discrepancies in the existing formulations

of the undertow that have been developed using Linear Wave Theory (LWT) and phase-

averaged models. We will explain their differences and reconcile them when possible. This

paper is organized as follows. In Section 3.2, we will show that the forcing of the undertow

is constant over depth. We will also arrive at the expression of surface shear stress de-

rived by Deigaard & Fredsøe (1989). We will conduct our derivations by assuming LWT,

but we will relax the assumption of shallow water waves, or linear long waves. Because

recent publications have recognized the role played by mean current advective terms and

bed shear stress in the forcing of the undertow (Garcez-Faria et al. (2000); Newberger

& Allen (2007a); Apostos et al. (2007)), we will keep these terms in our derivation but

we will assume a weak vertical variation of the undertow. In Section 3.3, we will present

the measured profiles of wave height, mean water level and undertow that will be used

to solve the equations presented in Section 3.2. We will show that, among all possible

parametrizations of the eddy viscosity that we found in the literature, a depth-independent

formulation matches our dataset the best. In Section 3.4, we will evaluate the performance

of our undertow model on the datasets presented in the previous section. In Section 3.5 we

will discuss our results and look at the relative importance of each term in the momentum

equations that we presented. Finally, we conclude this paper in Section 3.6.
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3.2 General Formulation

3.2.1 General Properties

We formulate the problem in a 2D vertical Eulerian reference system, where horizontal and

vertical position (x,z ) and velocity (u(x,z,t),w(x,z,t)) of water particles are described with

x pointing shoreward, and z pointing upwards. Vertical origin is at the still water level

(SWL), and η(x, t) is the free water surface elevation. Partial differentiation with respect

to any variable α (where α represents, for example, time or position) will sometimes be

denoted by ∂α.

We decompose horizontal and vertical velocities u(x,z,t) and w(x,z,t) into mean, wave

and turbulent parts, e.g. for the horizontal velocity: u(x, z, t) = U(x, z, t) + ũ(x, z, t) +

u′(x, z, t). These quantities satisfy u = U , ũ = 0 and u′ = 0, where the overbar rep-

resents wave averaging of any function ψ(z, x, t): ψ(x, z, t) = 1
T

∫ T
0 ψ(x, z, t) dt, with T

the wave period. We assume that the mean velocity U is defined from the Mean Water

Level (MWL) elevation, z = η to the bed, z = −d. Total water depth is represented by

h = d+η. Finally, we assume that turbulent and wave velocities are uncorrelated: ũu′ = 0.

The governing equations for inviscid unidirectional flows between z = η(x, t), and

z = −d are:

∂u

∂x
+
∂w

∂z
= 0 (3.2)

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −1

ρ

∂p

∂x
(3.3)

∂w

∂t
+
∂uw

∂x
+
∂w2

∂z
= −1

ρ

∂p

∂z
− g (3.4)

where p(x,z,t) represents the pressure. Equation 3.2 is the continuity equation, or the

conservation of mass combined with incompressibility. Equations 3.3 and 3.4 are the

horizontal and vertical momentum equations. Additionally, we need free surface and
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bottom kinematic boundary conditions for a sloping bottom (Dean & Dalrymple (1984)):

∂η

∂t
+ u

∂η

∂x
− w = 0 at z = η (3.5)

u
∂d

∂x
+ w = 0 at z = −d (3.6)

The depth integration of the fluid density ρ multiplied by the horizontal velocity u

yields an expression for the mass flux (or momentum) MT :

MT =

∫ η

−h
ρu dz =

∫ η

−h
ρU dz +

∫ η

η
ρũ dz +

∫ η

η
ρu′ dz (3.7)

or

MT = Mm +Mw +M t (3.8)

where Mm is the mass flux (momentum) due to mean current, which, per our definition,

is confined to a region between bed and MWL. Mw is the net mass flux (momentum) due

to waves, and is confined to a region between MWL and free surface. Finally, M t is the

mass flux due to turbulent motion, and is also confined to a region between MWL and

free surface. We will assume that this term is zero for the remainder of this paper.

To relate the mean current momentum to wave momentum, we first integrate from bed

to free surface elevation the continuity equation (Equation 3.2). Next, we average it over

a wave period. After invoking the kinematic free surface and bottom boundary conditions

(Equations 3.5 and 3.6) we obtain another expression for the total momentum MT :

ρ
∂η

∂t
+
∂MT

∂x
= 0 (3.9)

Under steady state conditions, this last equation becomes ∂xM
T = 0. Because the

beach is a fixed boundary that can be considered impermeable, we write Equation 3.9

as: MT = Constant = 0, which means that Mm +Mw = 0.
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This last equation indicates that, under 2DV conditions, the net shoreward mass flux

due to the waves must be returned in its entirety. In other words, from Equation 3.8, an

offshore-directed current U is generated from the shoreward mass flux due to the waves

(Svendsen (2006)):

Mw = −Mm = −
∫ η

−h
ρU dz = −ρhUr (3.10)

where Ur is the depth averaged value of the undertow (defined between MWL and bed).

3.2.2 Forcing of the Undertow

General Solution

To derive an equation for the forcing of the mean current, we decompose the velocity

into mean and fluctuating parts, and wave-average the horizontal momentum equation

(Equation 3.3) neglecting horizontal turbulent mixing terms u′2:

∂U

∂t
+
∂ũ2

∂x
+
∂U2

∂x
+
∂ũw̃

∂z
+
∂UW

∂z
= −1

ρ

∂p

∂x
− ∂u′w′

∂z
(3.11)

The vertical gradient of mean turbulent shear stress (τ(z) = −∂zu′w′) is expressed by

the vertical mixing of horizontal mean momentum τ(z) = ∂z(νt∂zU), where νt is an eddy

viscosity coefficient representative of the turbulence level in the water column.

We also express the wave-averaged pressure by wave-averaging the vertical momen-

tum equation (Equation 3.4), and neglecting the mixing term w′2 (Stive & Wind (1982),

Svendsen (2006) Ch. 11):

p = −ρw̃2 − ρW 2 + ρg(η − z) (3.12)

Contrary to our references, this expression includes mean vertical velocity W.

Finally, following Garcez-Faria et al. (2000), we simplify the expression of the wave
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shear stress, ∂zũw̃, by using the decomposition presented by Rivero & Arcilla (1995):

∂ũw̃

∂z
= −1

2

∂

∂x

(
ũ2 − w̃2

)
+ ω̃w̃ (3.13)

where ω̃ represents wave-induced vorticity. We have thus transformed Equation 3.11 into:

ρ
∂U

∂t
+

1

2

∂

∂x
ρ

(
ũ2 − w̃2

)
+ ρω̃w̃

︸ ︷︷ ︸
F

+ ρg
∂η

∂x︸ ︷︷ ︸
P

+ ρ
∂U2

∂x
− ρ

∂W 2

∂x
+ ρ

∂UW

∂z︸ ︷︷ ︸
G

=
∂τ

∂z
(3.14)

where F is a force due to action of waves only, P is a pressure force induced by gradients in

MWL, and G is a force induced by advection of mean currents. This expression is exact

and can be solved with any wave theory. It necessitates two boundary conditions. In

general, they consist of a mean bottom or surface shear stress, τb or τs, and the continuity

equation, Equation 3.10.

Solution Using Linear Wave Theory

To solve Equation 3.14, we will use Linear Wave Theory (LWT), but we will keep horizontal

and vertical mean velocities. We first simplify the wave stress terms in Equation 3.14 to

obtain (see Appendix C.2 for details):

ρ
1

2

∂

∂x
(ũ2 − w̃2) =

∂

∂x

(
Sxx − Ew/2

h

)
(3.15)

where, under the confines of LWT, the energy density of a Rayleigh distributed wave field

is represented by Ew = 1/8ρgH2
rms, where Hrms =

√
8η2. Sxx represents the radiation

stress due to waves only. The vorticity term in Equation 3.14 disappears under the as-

sumptions of LWT.

Equation 3.15 shows that, in Equation 3.14, the combination of the wave velocity

advective term ũ2, the dynamic pressure term w̃2 and the wave-induced shear stress ũw̃

generated a depth uniform forcing term for the undertow. This result is in line with pre-
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vious experimental observations (Nadaoka & Kondoh (1982); Stive & Wind (1982, 1986)),

but is valid only if one uses LWT. Using a weakly nonlinear wave theory, Zou et al. (2006)

expressed the wave-induced vertical shear stress ũw̃ as a function of the bed shear stress.

Such dependence on the bed shear stress causes its vertical derivative (∂zũw̃) to become

non-depth uniform.

Finally, we assume that second-order terms in W are negligible (see Appendix C.3),

and rewrite Equation 3.14 as:

ρ
∂U

∂t
+

∂

∂x

(
Sxx − Ew/2

2h

)
+ ρg

∂η

∂x
+ ρ

∂U2

∂x
+ ρ

∂UW

∂z
=
∂τ

∂z
(3.16)

Equation 3.16, which reduces to the one derived by Newberger & Allen (2007a) in

shallow water (see Equation B3 in Newberger & Allen (2007a)), shows that, in shoaling

regions as well as in the surf zone, the undertow is forced by two depth uniform forces, F

and P, and a depth-varying force G :

Force =
∂

∂x

(
Sxx − E/2

2h

)

︸ ︷︷ ︸
F(x)

+ ρg
∂η

∂x︸ ︷︷ ︸
P(x)

+

[
ρ
∂U2

∂x
+ ρ

∂UW

∂z

]

︸ ︷︷ ︸
G(x,z)

(3.17)

The depth uniform force F, first term on the right hand side (RHS), is due to the wave

momentum flux; we will see in Section 3.2.3 that it can be expressed as a function of the

total radiation stress gradient, as Newberger & Allen (2007a) also showed. The second

part of the forcing P, the middle term on the RHS, is a depth uniform pressure gradient

due to wave setup/setdown (∂xη). The third part of the forcing G, the last term between

brackets on the RHS, is a depth-varying force caused by the horizontal and vertical ad-

vection of the mean current, U(x, z).
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3.2.3 Boundary Conditions

To solve the wave-averaged mean current equation, Equation 3.16, two boundary condi-

tions are necessary. The first condition is the depth-averaged continuity equation, Equa-

tion 3.10. The second condition is a boundary condition, which can either be a mean

bottom shear stress condition τb (Svendsen (1984b); Cox & Kobayashi (1997); Garcez-

Faria et al. (2000)), or a mean shear stress at the MWL or at the trough level (Dally

(1980); Stive & Wind (1986); Deigaard et al. (1991); Reniers et al. (2004); among others).

In this section, we will first present expressions for bottom and surface shear stress that

have been proposed in the literature. Next, we will use the equations presented in Section

3.2 to show that the expression of surface shear stress originally derived by Deigaard &

Fredsøe (1989) can be arrived at by relaxing assumptions of shallow water linear waves.

Existing Expressions for Mean Bottom and Surface Shear Stress, τb and τs

The mean bottom shear stress, τb = ρνt∂zU|zo
, where zo represents the bed level, is usually

expressed empirically by using a friction factor (Jonsson (1966)) fwc. For example, such

an expression takes the form (see Nielsen (1982), or Fredsøe & Deigaard (1992), or Soulsby

(1997),or Svendsen (2006) for example):

τb =
2

π
ρfwcũbUδ (3.18)

where ũb represents the wave orbital velocity at the bed, and Uδ is the mean velocity right

above the WBBL. In practice, Uδ = U(z = −d), for models which assume a slip boundary

condition. The friction factor fwc is a function of wave and mean current strength at the

bed.

Similarly, various expressions for the surface shear stress have been suggested. One of
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the first expressions of the surface shear stress was developed by Dally (1980):

τs = −1

2

∂E

∂x
(3.19)

Dally (1980) derived this expression by integrating the wave-averaged horizontal momen-

tum equation (Equation 3.14) between a level z in the water column, (z < η), and the

free water surface η. He neglected wave stress terms between MWL and free surface and

assumed vertical velocity was negligible. He also assumed that all stress terms between

MWL and free surface can be averaged at the MWL.

Later, Stive & Wind (1986), following Svendsen (1985) (see also Svendsen (2006), p.

613), derived an identical expression for the surface shear stress at the trough level. They

integrated the momentum equation between trough level and free surface assuming shallow

water conditions and a locally horizontal flat bottom. More recently, Tajima & Madsen

(2006) re-evaluated the same integral that Dally (1980) evaluated, by assuming that LWT

theory holds from trough to crest, and that the mean velocity is constant in that region.

They arrived at an expression that differs from Equation 3.19, because it includes wave

and mean current variables (for details, see Tajima & Madsen (2006)).

The expressions presented by Dally (1980), Stive & Wind (1986) and Tajima & Madsen

(2006) generate a surface shear stress in regions where no occurs at the MWL. As Dinge-

mans et al. (1987) and de Vriend & Kitou (1990) have argued, this outcome is physically

unrealistic because, if a shear stress exists, the work done by this internal force has to

generate dissipation. In the absence of wave breaking no dissipation exists and no surface

shear stress.

Deigaard (1993), following the work of Deigaard & Fredsøe (1989), heuristically devel-

oped an expression for τs by equating work done by the shear stress at the trough level to
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wave and roller dissipation:

τs =
Dw

C
− ∂2Er

∂x
(3.20)

where Dw is wave dissipation and Er is the average roller kinetic energy (Svendsen

(1984b)). Stive & De Vriend (1994) arrived at the same expression of the surface shear

stress by depth-integrating the linearized momentum equation from bed to the mean wa-

ter level (Stive & De Vriend (1994)). They assumed linear shallow water wave theory

to express wave-induced radiation stress and neglected bottom shear stress in the depth-

integrated, depth-averaged total momentum equation (see Section 3.2.3). Newberger &

Allen (2007a) also arrived at the same expression by integrating the full horizontal momen-

tum equations, nonlinear terms included, from the mean water level to the free surface.

They expressed the mean surface shear stress by expanding Mw at the MWL using a Tay-

lor expansion of the horizontal momentum equation (Equation 3.3). They also assumed

linear shallow water wave theory, as well as depth uniform horizontal currents. They

added the roller contribution ad-hoc.

Finally, Stive & De Vriend (1994), following the work of Nairn et al. (1990), argued

that:

τs =
1

C
Dw − 1

C

∂2ErC

∂x
(3.21)

In this expression, Stive & De Vriend (1994) assumed that ∂xC << 1 (which is consistent

with the assumption of a flat bottom), and included in Equation 3.20 the dissipation that

occurs between wave and roller. Deigaard (1993) (see also the Appendix of Stive & De

Vriend (1994)) explained that the extra term in τs in Equation 3.21, represents the ex-

change of mass (momentum) between wave and roller during the roller growth and decay

phases. Deigaard (1993) excluded that term in his derivation of the surface shear stress.

Reniers & Battjes (1997) assumed that the equation of the surface shear stress pre-

sented by Stive & De Vriend (1994) could be used to express the dissipation of roller

energy and expressed it as Dr = Cτt, where now τt represents the shear stress between
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Fig. 3.1: Comparison between the various formulation of shear stress at the MWL pre-
sented in Section 3.2.3 for the SCOMAL dataset (see Section 3.3). Formulations
of Deigaard (1993) and Stive & De Vriend (1994) correctly predict a relatively
small, if not zero, shear stress offshore of the breaking point, a region where
wave and roller dissipation should also relatively small, if not zero.

wave and roller. We have found that all expressions of surface shear stress presented so far

in this section have been used to model the undertow. For example, Garcez-Faria et al.

(2000) and Spielmann et al. (2004) referred to Stive & Wind (1986), Deigaard (1993) and

Rakha (1998) used Equation 3.20, and Apostos et al. (2007) used Equation 3.21. Al-

though the difference between Equations 3.20 and 3.21 can be considered to be relatively

minor (Rakha (1998)), these expressions are not identical, and they are based on different

assumptions.

For completeness, we show in Figure 3.1 comparison of surface shear stress computed

from the various formulas presented in this section. This figure has been created with

the SCOMAL dataset, which will be presented in Section 3.3. Only the expressions of

Deigaard & Fredsøe (1989) and Stive & De Vriend (1994) generate zero shear stress in

regions where dissipation does not occur. Differences between these two formulations are

small.
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Derivation of Surface Shear Stress

All the derivations of surface shear stress that were reviewed by us were derived assuming

shallow water LWT, negligible bottom shear stress and, with the exception of Newberger

and Allen (2007a), neglected the nonlinear advection terms. On the other hand, most

undertow profiles that will be analyzed in this paper (see Section 3.3) were measured in

intermediate waters (i.e. kh > π/10, according to LWT); waves were, in general, in shal-

low water for only approximately 30% of the surf zones.

To demonstrate the generality of Equation 3.20, we express the surface shear stress in

this section by evaluating the time evolution of the total momentum equation (Equation

3.8), advection terms included. We do not make any assumptions about the relative water

depth and do not neglect bottom shear stress in the momentum equations (Equations 3.3

and 3.4). We assume that waves are described by LWT, and we assume that higher-order

horizontal currents terms are depth-uniform. This assumption is necessary in order to

obtain an evolution equation for the wave momentum evolution, ∂tM
w. In the remainder

of this paper, we will drop the tilde over wave velocities (ũ = u) and the overbar over

mean shear stress (τ = τ).

To obtain an equation for the surface shear stress, we will first obtain an evolution

equation for MT by depth-integrating the horizontal momentum equation from the bed

to the free water surface. Second, we will obtain an evolution equation for Mm by depth-

integrating the wave-averaged mean momentum equation (Equation 3.16), from the bed

to the mean water surface. In the process, the shear stress at the MWL, τs, will explicitly

appear. Third, we will obtain an expression for the evolution of Mw by re-arranging the

various terms of the wave action equation, following the work of Smith (2006). Finally,

we will use the time derivative of the depth-integrated momentum equation to equate the

evolution equations of total, mean and wave momentum, ∂tM
T = ∂tM

m + ∂tM
w, and

obtain an expression for τs in the absence of rollers. We finally include the roller terms

in the momentum equations following Svendsen (1984a) and obtain the same equation for
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the surface shear stress shown in the previous section, Equation 3.20.

In the remainder of this paper, wave height will be represented by H, and wave period

by T . Wave period is related to wavelength (L) and associated wavenumber (k = 2π/L),

by the linear dispersion relationship, which reads, in the presence of a depth-uniform

current Uo: σ = Uok + σr, where σ2
r = gk tanh kh is the relative frequency of the wave.

The wave energy density travels at the wave group velocity Cga:

Cga = nC + Uo = Cg + Uo =
1

2

(
2kh

sinh 2kh
+ 1

)
C + Uo (3.22)

where the relative celerity C of the wave is:

C =

√
gk tanh kh

k
=

2π/T − Uok

k
(3.23)

.

We obtain an expression for the evolution of total momentum, ∂tM
T , by wave-averaging

the depth-integrated horizontal momentum equation, Equation 3.3, from z = −d to z = η

(Svendsen (2006), p.544), and by neglecting wind stress and atmospheric pressure:

∂MT

∂t
+
∂Sxx

∂x
+ ρgh

∂η

∂x
+ ρ

∂hU2
r

∂x
+ 2

∂UrM
w

∂x
+ τb = 0 (3.24)

Although Svendsen (2006) neglected mean vertical currents in his derivation, this as-

sumption is not necessary to obtain Equation 3.24. In the depth integration of the hor-

izontal momentum equation (Equation 3.3), we combine the nonlinear term containing

vertical current (third term on the RHS of Equation 3.3) with the first and second terms

on the RHS of the same equation. Next, after applying the Leibniz rule on the intregral,

terms containing the total vertical velocity vanish because of the surface and bed surface

boundary conditions, Equations 3.5 and 3.6 (for details, see Svendsen (2006), Equations

11.4.6 and 11.4.7). Furthermore, terms containing pressure at the free surface and at the

bottom appear in the depth integration of the horizontal momentum equation.
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The expression for the vertical variation of pressure is obtained from the depth inte-

gration of the vertical momentum equation, Equation 3.4. Vertical velocity appears in

the expression of the pressure at the free surface, but we neglect atmospheric pressure.

Vertical velocity also appears in the expression of the pressure at the bed as a shear stress

term. However, we assume that neighboring water columns do not carry the weight of a

column of water (see Svendsen (2006), p. 539), and the pressure at the bottom is assumed

to be hydrostatic. Consequently, Equation 3.24 is consistent with our assumption that

first order mean vertical currents are not neglected. We show in Appendix C.3 that second

order mean vertical currents can be neglected.

To obtain an evolution equation for the mean current momentum, ∂tM
m, we first

integrate the wave-averaged mean momentum equation, Equation 3.16, between the bed

-d and MWL η, and invoke the Leibniz rule:

∂

∂t

∫ η

−d
ρU dz + h

∂

∂x

(
Sxx − E/2

2h

)
+ ρgh

∂η

∂x
+

∂

∂x

∫ η

−d
ρU2 dz +

ρU2
|−d

∂d

∂x
− ρ (UW )|−d − ρU2

|η
∂η

∂x
+ ρ (UW )|η + τb − τs = 0 (3.25)

To simplify this expression, we wave-average the kinematic boundary conditions, Equa-

tions 3.5 and 3.6, and obtain (see Hasselmann (1971), Smith (2006) and also Appendix A

of Newberger & Allen (2007a)):

∂η

∂t
+ U

∂η

∂x
−W +

1

ρ

∂Mw

∂x
= 0 at z = η (3.26)

U
∂d

∂x
+W = 0 at z = −d (3.27)

where Mw = Ew/C (Starr (1947)).

Combining Equations 3.25, 3.26 and 3.27, and assuming depth uniform currents in the



89

second order current terms, we obtain an equation for the mean momentum equation:

∂Mm

∂t
+h

∂

∂x

(
Sxx − E/2

2h

)
+ρgh

∂η

∂x
+ρ

∂hU2
r

∂x
+Ur

(
∂Mw

∂x
+ ρ

∂η

∂t

)
+ τb − τs = 0 (3.28)

Finally, we derive the evolution equation of net wave momentum ∂tM
w from the

wave action equation (Bretherton & Garrett (1968); Christoffersen & Jonsson (1980);

Christoffersen (1982)), which is expressed as:

∂

∂t

Ew

σr
+

∂

∂x

Ew(Cg + Ur)

σr
= −Dw

σr
(3.29)

where σr =
√
gk tanh kh. In this equation, the dissipation term Dw represents the dissi-

pation of wave energy, neglecting effects of bottom friction. Following the work of Smith

(2006) (Section 2.c) and, after a few manipulations summarized in Appendix C.4, we

obtain an evolution equation for the wave momentum:

∂Mw

∂t
+
∂Sxx

∂x
− h

∂

∂x

(
Sxx − E/2

2h

)
+
Dw

C
+
∂UrM

w

∂x
+Mw ∂Ur

∂x
= 0 (3.30)

This equation was first derived by Longuet-Higgins (1973) for waves in the absence of mean

currents. It shows that the radiation stress gradient can be expressed as (1) a portion of

the depth uniform forcing of the undertow F (see Equation 3.17), (2) wave dissipation,

which only exists when waves are breaking, and (3) wave-current interaction terms.

We combine the evolution equations total, mean and wave momentum to generate an

expression for the surface shear stress τs:

∂MT

∂t
− ∂Mw

∂t
− ∂Mm

∂t
= ρUr

∂η

∂t
+
Dw

C
− τs = 0 (3.31)

which, for steady state, becomes:

τs = Dw/C (3.32)

where C is the relative speed of the wave with respect to the current Ur, given by Equation
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3.23.

This expression is identical to the one derived by Deigaard & Fredsøe (1989), Stive &

De Vriend (1994) and Newberger & Allen (2007a), in shallow water and in the absence

of a roller. It shows that the dissipation of wave energy exerts a stress at the MWL. Un-

der our assumption of depth-uniform second-order horizontal current, all non-linear terms

vanish exactly, and thus have no influence on the surface stress. This finding, which differs

from Tajima & Madsen (2006), is consistent with physical reasoning (Deigaard & Fredsøe

(1989); de Vriend & Kitou (1990)). It shows that the work of an internal force, i.e. τsC,

only generates dissipation. Finally, this stress was derived at the MWL, and not at the

trough level. The same result could not be found at the trough level following our method.

Wave dissipation is characterized by the formation of a roller, which absorbs some of

the excess momentum of the waves. Hence, to complete Equation 3.32, it is necessary to

account for the roller momentum flux, which we will refer to as M r. In the absence of

a formal derivation for roller momentum evolution, we used the heuristic expressions for

roller momentum and roller radiation stress derived by Svendsen (1984a).

The total momentum equation thus becomes (see Svendsen (1984b) and Svendsen

(2006), p.279):

∂MT

∂t
+
∂Sxx

∂x
+
∂Rxx

∂x
+ ρgh

∂η

∂x
+ ρ

∂hU2
r

∂x
+ 2

∂UrM
w

∂x
+ τb = 0 (3.33)

where Rxx = 2Er. Furthermore, following Svendsen (1984a), the depth-averaged return

current Ur becomes:

ρhUr = −Mw
T = −(Mw +M r) = −(

E

C
+ 2

Er

C
) (3.34)

where M r = 2Er/C is the momentum of the roller, and Er the roller energy. With this

definition of Ur, we once again evaluate the time derivative of Equation 3.8, but writ-
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ten as: ∂tM
T = ∂tM

m + ∂tM
w
T . We obtain Equation 3.20 for the surface shear stress:

τs = Dw/C − ∂x2Er.

Our expression for the surface shear stress exerted by breaking waves on the water

column is the same as reported by Deigaard (1993). We relaxed the shallow water wave

approximation, and we included bottom shear stress and mean currents. From our ap-

proach, the mean surface shear stress is expressed at the MWL, similarly to Stive & De

Vriend (1994) and Newberger & Allen (2007a).

3.2.4 Solutions

We obtain the solution to the mean momentum equation and for the profile of undertow

in the water column, Equation 3.16, by integrating it twice in z, and by applying either

one of the boundary conditions presented in the previous section. This solution requires

knowledge of the wave variables as well as eddy viscosity in the fluid. In previous pub-

lications, researchers compared the merits of applying a surface versus a bottom shear

stress condition, in addition to using mass conservation (see,e.g., Spielmann et al. (2004);

Garcez-Faria et al. (2000); Dally & Dean (1986)). More recently, Tajima & Madsen (2006)

presented a formulation of the undertow based on the difference between surface and bot-

tom shear stresses (i.e., ∂z(τ(z)) = f(τs − τb)). In this section, we examine the various

possible solutions to Equation 3.16, and we show that they are all equivalent. Specifically,

we show that there is no difference in a solution computed using surface shear stress or

bottom shear stress as a boundary condition. We also show that the solution is similar

whether one takes the difference between surface and bottom shear stress or uses the depth

uniform forces F and P presented in Equation 3.16 to express the vertical variation of

undertow.

First, we integrate Equation 3.16 once in z, and use the bottom shear stress boundary
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condition. We obtain:

τ(z) = (F + P )(z + d) + ρ
∂

∂x

∫ z

−d
U2 dz − ρU2 ∂z

∂x
+ ρUW + τb (3.35)

where we invoked the wave-averaged kinematic bottom boundary condition, Equation

3.27. Alternatively, when we use a mean shear stress at the MWL, the expression of the

undertow reads:

τ(z) = (F + P )(z − η) − ρ
∂

∂x

∫ η

z
U2 dz − ρU2 ∂z

∂x
+ ρUW − ρU|η

∂Mw

∂x
+ τs (3.36)

where we invoked the wave-averaged free surface kinematic boundary condition, Equation

3.26.

To show that these two expressions are similar, we subtract both equations, and obtain:

hF + hP + ρ
∂

∂x

∫ η

−d
U2 dz + ρU|η

∂Mw

∂x
= τs − τb (3.37)

which is the steady-state mean momentum equation for depth-varying mean currents,

Equation 3.25. After we express (F + P ) from this equation, and insert it in Equation

3.36, we obtain a third expression for the solution to Equation 3.16:

τ(z) =
τs − τb
h

(z + d) + τb− (3.38)
(
ρ
∂

∂x

∫ η

−d
U2 dz + ρU|η

∂Mw

∂x

)
z + d

h
+ ρ

∂

∂x

∫ z

−d
U2 dz − ρU2 ∂z

∂x
+ ρUW

Thus, the solution to the mean current equation, Equation 3.16, is the same whether

one imposes a surface or a bottom shear stress boundary condition. Equations 3.35 and

3.36 yield the same expression for the mean shear stress τ(x, z), as was argued by Svendsen

(1986). Additionally, comparison of Equations 3.35 3.36, and 3.38 shows that the solution

is also the same if one expresses it using the depth-uniform forcing F +P (Equations 3.35
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and 3.36) or a difference of surface and bottom shear stresses τs − τb (Equation 3.38).

We simplify these equations in order to compare them with the ones shown in, for

example, Garcez-Faria et al. (2000), Spielmann et al. (2004) or Tajima & Madsen (2006).

We once again assume that the vertical variation of second order nonlinear terms is neg-

ligible, which means that terms on the RHS of Equations 3.35, 3.36, and 3.38 are depth

uniform. Under this assumption, these equations become (see Appendix C.5 for details):

ρνt
∂U

∂z
=

[
∂

∂x

(
Sxx − E/2

2h

)
+ ρg

∂η

∂x
+ ρUr

∂Ur

∂x

]
(z + d) + τb (3.39)

and

ρνt
∂U

∂z
=

[
∂

∂x

(
Sxx − E/2

2h

)
+ ρg

∂η

∂x
+ ρUr

∂Ur

∂x

]
(z − η) + τs (3.40)

and

ρνt
∂U

∂z
=
τs − τb
h

(z + d) + τb (3.41)

The nonlinear term in Equation 3.39 or 3.40 is half the term in Garcez-Faria et al. (2000)

because our derivation included mean vertical velocity. All non-linear terms vanished from

Equation 3.41.

To summarize this section, we re-write the mean momentum equation (Equation 3.28)

as (see e.g., Dingemans et al. (1987)):

∂Ur

∂t
+ Ur

∂Ur

∂x
= −g ∂η

∂x
I

−
[
1

ρ

∂

∂x

(
Sxx − E/2

2h

)
− τs
ρh

]

II

− 2

h
Ur
∂Mw

∂x
III

− τb
ρh
IV

(3.42)

Our expression for the forcing of the undertow validates the conceptual explanation

presented by Dyhr-Nielsen & Sørensen (1970). The mean current is forced by four pro-

cesses. The first process (term I on the RHS) is the pressure gradient induced by wave

setup/setdown. The second process is a wave-induced force (term II on the RHS), which

is decomposed into a portion of the depth uniform force in Equation 3.16, and another

stress term which is related to the shoreward directed surface shear stress. This term is
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only present when wave dissipation occurs. The third process is a wave-current interaction

force (term III on the RHS), which is also a mass source/sink at the surface caused by

the change in wave momentum, as pointed out by Smith (2006) and Newberger & Allen

(2007a). The fourth process is caused by the bottom shear stress (term IV on the RHS).

3.3 Dataset and Wave Models

3.3.1 Dataset

To apply the undertow equations presented in Section 3.2, we used four datasets obtained

under random waves. Three datasets were obtained in the laboratory (Sultan (1995),

Okayasu & Katayama (1992) and Scott et al. (2005)) and one dataset was obtained in the

field (Garcez-Faria et al. (1998)). Undertow profiles measured by Sultan (1995), Okayasu

& Katayama (1992) and Scott et al. (2005) spanned the shoaling and surf regions of the

flume. Undertow profiles measured by Garcez-Faria et al. (2000) were confined to the surf

zone.

The undertow profiles collected by Sultan (1995) (referred to herein as the Sultan

dataset, see Figure 3.2) were generated in a two-dimensional wave tank with glass side-

walls. The flume was 0.91 m wide and 36 m long, equipped with a hinged flap wavemaker.

Water depth at the wavemaker was 0.46 m. The beach was simulated by a painted ply-

wood 1:35 sloping surface, which occupied half of the tank. We used experimental results

obtained from Sultan’s spilling wave test, for which deep water wave conditions were

Hrms = 0.0829m and Tp = 1.5 s. This random wave field was simulated using a TMA

spectrum (Bouws et al. (1985)) with a peak enhancement factor γ of 7. Water velocity

was measured using a Argon-Ion Laser Doppler Velocimeter (LDV).

The dataset collected by Okayasu & Katayama (1992) (referred to herein as the OKA

dataset, see Figure 3.3) was generated in a 17 m long, 0.5 m wide and 35 cm deep wave

flume. In this paper we only considered data collected during their case 3, where the beach
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profile was barred, with offshore and surf zone slopes of 1/20. Random waves followed the

Bretshneider-Mitsuyasu spectrum, with Hrms = 3.97 cm and T = 0.945 s. Water velocity

was measured using an Helium-Neon LDV.

The dataset collected by Scott et al. (2005) (referred to herein as the SCOMAL dataset,

see Figure 3.4) was generated in a 104 m long, 3.7 m wide and 4.6 m deep wave flume.

Random waves (Ho = 0.59m and Tp = 4 s) were generated by a flap wavemaker using a

TMA spectrum (Bouws et al. (1985)) with a peak enhancement factor γ of 20. Velocity

was measured by three parallel stacks of Acoustic Doppler Velocimeter.

Finally, we examined the undertow profiles measured at the U.S. Army Corps of Engi-

neers Field Research Facility at Duck, N.C., during the DUCK94 experiment (Garcez-Faria

et al. (1998)). During this field experiment, wave height was measured at fixed cross-shore

positions across the beach profile with bottom-mounted pressure sensors. Vertical profiles

of total velocity were measured at a fixed cross-shore position, for approximately 1 hour

at a time (1 run), by a stack electromagnetic current meters mounted on a mobile sled.

Bathymetry was collected daily, and the overall area was found to be fairly longhshore

uniform. For more information on wave conditions during these runs (i.e wave height

and period, wave angle, tide elevations, etc.), the reader is referred to Garcez-Faria et al.

(2000). In this paper, we will use the 8 vertical profiles of undertow (8 runs) measured on

October 11, 1994 (see Figure 3.5).

3.3.2 Wave Models

To model the wave field observed during the collection of the flume dataset, we calibrated

the breaking dissipation model presented by Baldock et al. (1998):

Dw =
1

4
BρgT exp

[
−

(
Hb

H

)2
]

(
H2

b +H2
)

(3.43)
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where B is a calibration factor, and Hb was determined from the breaking parameter

proposed by Ruessink et al. (2003a):

Hb =
0.88

k
tanh

(
γkh

0.88

)
(3.44)

where γ = 0.76kh + 0.29. We modeled wave evolution observed at Duck with the model

of Thornton & Whitford (1990) (see Church & Thornton (1993)); average values of the

calibration coefficient for this model for all 8 runs were γ ≈ 0.35 and B ≈ 0.05. The model

of Thornton & Whitford (1990) was chosen because it yielded smaller rms error than the

model of Thornton & Guza (1983).

Roller energy was modeled according to Reniers & Battjes (1997). For the flume

datasets, we calibrated the roller angle β to yield the smallest rms error between modeled

and measured Ur. Depth-averaged return current Ur was estimated from measurements

by fitting measured undertow profiles with a parabolic shape, and integrating the profile

from the bed to the measured MWL η. (We found percent rms errors of the order of 10%

when we used cubic splines or some of the other shapes presented in Section 3.4 compared

to using a parabolic shape).

We performed the calibration of the roller model by letting the roller angle β vary

between 0.05 and 0.5. This sometimes led to higher errors in the estimate of the MWL

elevation η (estimated from Equation 3.33, without bottom shear stress). For the Duck

dataset, we first tried to obtain the best agreement of Ur for each run, and found that the

roller angle had to vary between 0.02 and 0.8 rads. However, we could not confidently use

these values, because they were found by optimizing the model based on only one value of

Ur for each run. Instead, we used a fixed roller angle of β = 0.1 for all runs. Calibration

coefficients B and β for the flume dataset are presented in Table 3.1.

For all datasets, we first calibrated wave and roller models from Equation 3.29 without
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Table 3.1: Calibration Coefficients B and β

Dataset B β

Sultan 0.6 0.12
OKA 0.45 0.8
SCOMAL 1.0 0.06

Table 3.2: Percent rms error and R2 values between modeled and measured profiles of
Ur

Dataset %rms Error R2

Sultan 39 0.5
OKA 40 < 0
SCOMAL 20 0.6
Duck94 31 0.5

the wave-current interaction term. We subsequently re-ran these models including wave-

current interaction, but we did not change the calibration coefficients previously obtained.

Comparison between profiles of wave heights, MWL and Ur, as well as profiles of mea-

sured undertow for the four dataset are presented in Figures 3.2 to 3.5. Percent rms error

as well as R2 values between measured and modeled profiles of Ur are presented in Table 3.2

3.3.3 Characteristics of Undertow Profiles

Undertow profiles exhibited a fair amount of 2DV structure for all four datasets. As shown

in Figure 3.6, the undertow was strongest in the surf zone, approximately 20% shoreward

of the breakpoint, near the bed. In this region, the undertow profile was convex (∂2
zU > 0,

Figures 3.2 to 3.5), i.e. stronger offshore-directed velocities (which are negative in the

reference frame used throughout this paper) were observed in the lower portion of the

water column. Velocities in the water column deviated from the depth-averaged value by

approximately 25%, in general. One exception is the OKA dataset, for which the varia-

tion was around 50%. In the shoaling region, the undertow profile was straight or concave

(∂2
zU < 0; Figures 3.2 to 3.5). Contrary to the surf zone region, velocity at the trough

level was offshore-directed and generally exceeded velocities near the bottom. In these
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Fig. 3.2: Wave and undertow profiles for Sultan dataset. Wave height(top panel), MWL
(second panel),depth-averaged return current Ur (third panel) and undertow
profiles measured (squares) and modeled with the no-slip model (see Section
3.4.1), with and without wave-current interaction (dashed and solid lines)

regions, the return current measured near the trough level was sometimes as strong as the

highest velocity measured in the surf zone. Closer to the bed, weak shoreward velocities

(due to streaming, see Longuet-Higgins (1953)) were observed in the SCOMAL and OKA

dataset.

In previous publications, undertow profiles have been found to fit parabolic shapes

best (Svendsen & Hansen (1988); Stive & Wind (1986); Garcez-Faria et al. (2000)). Con-

sequently, some models have been developed assuming a parabolic shape (see e.g., Cox

& Kobayashi (1997); Apostos et al. (2007)). Such a shape is generated by assuming a

constant eddy viscosity νt in Equation 3.16. However, other formulations for the eddy

viscosity have been proposed, and each formulation yields different shapes of undertow

profiles.



99

1 2 3 4 5 6 7
0.03

0.04

0.05

0.06

W
av

e 
H

ei
gh

t [
m

]

1 2 3 4 5 6 7
−2

0

2

4

M
W

L 
<

η>
 [m

]

1 2 3 4 5 6 7
0

0.02

0.04

0.06

|U
r| [

m
/s

]

1 2 3 4 5 6 7
−0.2

−0.15

−0.1

−0.05

0

0.05

0.05m/s0.05m/s0.05m/s0.05m/s0.05m/s0.05m/s

E
le

v.
 a

bv
 B

ed
 [m

]

Cross−Shore Distance [m]

Fig. 3.3: Wave and undertow profiles for OKA dataset. Wave height(top panel), MWL
(second panel),depth-averaged return current Ur (third panel) and undertow
profiles measured (squares) and modeled with the no-slip model (see Section
3.4.1), with and without wave-current interaction (dashed and solid lines)

Eddy viscosity has been assumed to take multiple forms: constant (see, e.g., Stive &

Wind (1986); Svendsen & Hansen (1988); Reniers et al. (2004)), linear (see, e.g., Okayasu

et al. (1988); Grant & Madsen (1979)), quadratic (see e.g., Roelvink & Reniers (1994)),

exponential (Svendsen (1984b)), or a function of
√
z (see, e.g.,Tajima & Madsen (2006)).

We analyzed which shape fits our dataset best. This exercise is important for the develop-

ment of a deterministic model based on a parametric representation of the eddy viscosity.

It also provides some insight into the nature of the solutions that we developed, as well

as to the relevance of parametric representations.

In order to determine which formulation of eddy viscosity fits most datasets, we first

developed a set of solutions to Equation 3.40 based on the various profiles of eddy viscos-
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Fig. 3.4: Wave and undertow profiles for SCOMAL dataset. Wave height(top panel),
MWL (second panel),depth-averaged return current Ur (third panel) and un-
dertow profiles measured (squares) and modeled with the no-slip model (see
Section 3.4.1), with and without wave-current interaction (dashed and solid
lines)

ity presented above. A list of solutions is presented in Appendix C.6. Next, we used a

least-square fitting technique between observed values of undertow profiles and the vari-

ous theoretical solutions presented in Appendix C.6. We excluded from the dataset any

measured undertow velocity above the trough level.

To estimate the goodness of fit of the least-square regression, we computed the coeffi-

cient of variation R2 between measured and fitted undertow profiles at each cross-section:

R2 = 1 −

N∑

n=1

(
Umeas

i − Ufit
i

)2

N∑

n=1

(Umeas
i − < Ui >

meas)2

(3.45)
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Fig. 3.5: Wave and undertow profiles for , for Run 3 of Duck dataset. Wave height(top
panel), MWL (second panel),depth-averaged return current Ur (third panel)
and undertow profiles measured (squares) and modeled with the no-slip model
(see Section 3.4.1), with and without wave-current interaction (dashed and solid
lines). MWL measurements were not available; undertow profiles plotted on top
of bathymetry measured during Run 8, tide included.

where Umeas
i represents the discrete measurements of vertical velocity at the ith cross-

shore position, < Ui >
meas is the mean value of Umeas

i . Ufit
i represents the values of

fitted profile U(z), for the various expressions of νt, at the same elevation as the measured

undertow Umeas
i . An R2 value of 1 represents a perfect fit. A negative R2 value indicates

that the mean value < Ui >
meas represents the data vertical variation better than the

theoretical formulation.

We performed the least-square fitting of the measured undertow profiles by imposing

physically realistic values on possible combinations of νt and bed velocity values such that

10−6 ≤ νt ≤ 0.1, and Uo−0.1 ≤ C ≤ Uo +0.1. Uo is the measured at about 1 cm above the
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Fig. 3.6: Profiles and contour plots of undertow for the dataset of Sultan (top left panel),
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bed, for all laboratory datasets, and at 0.4 m for the Duck dataset. Cross-shore profiles of

R2 for the three expressions of νt that yielded highest R2 values are presented in Figure

3.3.3. When R2 values were negative (i.e. analytical fit was worse than taking the vertical

mean), we imposed R2 = 0.

Generally, R2 was zero in regions offshore of the breaking point. This result is expected

because the forcing F is positive and cannot generate a concave profile. The solution can

be linear at best, and our model represents them by taking U(z) ≈ Ur, which means that

calibrated values of νt might be unrealistically high. The shape of the profiles in offshore

regions cannot be explained by the equations presented in this paper. Although expla-

nations have been attempted to justify these shapes (e.g., Monismith et al. (2007), Lentz

et al. (2008)), no unifying theory has been proposed. In the remainder of this paper, we
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will model profiles of undertow for all observations. We will gage the relative success of

our model by its performance in the surf zone.

Indeed, according to our theoretical work, formulations performed better in the surf

zone, where the forcing F is positive and generates convex profiles. However, R2 values

vary widely for a given dataset, and they vary from one dataset to another. For example,

a constant eddy viscosity parametrization for the Sultan dataset yielded a high R2 value

(R2 ≈ 0.7) at cross-shore position X = 4 m, and a negative R2 value (R2 ≈ −0.01) at

X = 4.5 m. This difference of R2 values points to the fact that some profiles in a same

dataset fit a certain shape, e.g. a parabola, better than other profiles. Thus, for a certain

parametrization of eddy viscosity, errors will vary in the cross-shore direction. In any case,

we found that, overall, the best fit were obtained by taking νt = Constant = α. This is

in line with the findings others (e.g., Svendsen & Hansen (1988) or Garcez-Faria et al.

(2000)), who tested their model on only one dataset.

3.4 Modeling Results

3.4.1 Solution for Depth-Uniform Eddy-Viscosity νt

We solved the equation of the undertow, Equation 3.41, by calibrating it for a constant

eddy viscosity νt to observed values of undertow. Cross-shore variation of wave parameters

(wave height, MWL, radiation stress etc.) were obtained from the wave models presented

in Section 3.3. Surface shear stress was obtained from Equation 3.20, and bottom shear

stress was obtained from Equation 3.18. The constant of integration was defined by solv-

ing the depth-integrated continuity equation, Equation 3.34.

We solved all momentum evolution equations, Equations 3.28, 3.29, and, 3.33 in a

consistent manner, as follows. First, we solved the total momentum equation, Equation

3.33, for η, neglecting bottom shear stress. Next, we calibrated one of the mean current
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equations, Equation 3.38, to find the depth-uniform eddy viscosity values that yielded

lowest rms error between modeled and measured undertow profiles. During calibration,

we allowed νt to vary between 10−6 and 0.1. We linearly interpolated best-fit values of

eddy viscosity over the computational domain, and we iterated total momentum and mean

current equations, Equations 3.38 and 3.33, to find the cross-shore distribution of U(x,z),

Uδ(x), and bed shear stress τb(x). To estimate the friction factor fwc in Equation 3.18,

we used the wave-current friction factor presented by Soulsby (1997). We conducted our

iteration until bottom shear stress and mean velocity converged. Finally, when advection

of mean currents was included (neglected) in Equations 3.38 and 3.33, we included (ne-

glected) it in Equation 3.29.

We modeled profiles of undertow by first assuming a slip bottom boundary con-
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dition (i.e., U(z = −h) 6= 0), and then a no-slip bottom boundary condition (i.e.,

U(z = −h) = 0). We will refer to these two models as the slip and no-slip model, respec-

tively. For the slip model, we evaluated the bed shear stress from Equation 3.18, where

Uδ is the theoretical mean velocity at the bed. For the the no-slip model, we assumed

that the velocity followed a logarithmic velocity profile in the wave bottom boundary layer

(WBBL), following observations by Cox et al. (1996). We estimated the thickness of the

WBBL following Madsen (1994) and Madsen & Salles (1998) (initial values of bottom

shear stress in their method were estimated by using Equation 3.18, with fw = 0.01,

and Uδ = Ur). We computed the bottom shear stress in the no-slip model from the

depth-averaged total momentum equation, Equation 3.8, following the method proposed

by Tajima (1990):

∫ η

−d

(∫ z

−d

[
τs − τb
νth

(z + d) +
τb
νt

]
dz

)
dz = −Mw (3.46)

The solution to Equation 3.38 in the no-slip model was iterated until convergence of un-

dertow and bed shear stress is achieved.

We first solved Equations 3.28, 3.29, and, 3.33 with the slip and no-slip models, neglect-

ing mean current advection terms. Both models yielded almost identical eddy viscosity

values and undertow profiles above the BBL (Figure 3.4.1). This is in line with find-

ings of Svendsen et al. (1987)). In addition, we found a 20% rms error between bottom

shear stress estimated from the slip and no-slip bottom models. Bottom shear stress was

strongest when estimated from the no-slip condition model (Figure 3.4.1). This indicates

that the model of Madsen & Salles (1998) and Equation 3.18, with friction factors formu-

lations of Soulsby (1997) or Nielsen (1982), permit acceptable estimations of bed shear

stress. In the remainder of this paper, we will use the no-slip model.

To evaluate the importance of advective terms, we did not recalibrate the equations

for wave dissipation and roller energy, but recomputed best-fit values of νt for each un-
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dertow profile. Comparison between velocity profiles, with and without nonlinear terms,

are presented in Figures 3.2 through 3.5. RMS error and calibration coefficient for each

dataset are summarized in Table 3.3. Neither best fit νt values, nor modeled profiles dif-

fered greatly between the two approaches. Percent rms difference in profiles of radiation

stress gradient, MWL and bed shear stress was approximately 15%. This difference is

mainly reflective of the role of advection, although some of the error resulted from the the

solutions to the wave-action and depth-averaged mean momentum equations.

The model performed relatively well in the surf zone, but it performed poorly in the

offshore (especially for the SCOMAL dataset). This finding was expected from the results

presented in Section 3.3.3. Our derivation of the forcing yields convex profiles, and the

best approximation of a concave profile is a depth-uniform one, was achieved by using a

high eddy viscosity. Neglecting offshore profiles, we obtained negative R2 values for most

profiles in our database. The SCOMAL dataset is an exception, where R2 values were on

average 0.6 for the convex profiles in the surf zone. If we used measured depth-average

currents instead of model results, we obtained R2 values that were on the order of 0.4 for

most profiles. This indicates that the model has some skill if estimates of Ur are accurate.

Table 3.3: Best-Fit Eddy Viscosity and RMS Error for Modeled Undertow Profiles

Profile # 1 OKA Sultan SCOMAL Duck94
νt error [cm/s] νt error [cm/s] νt error [cm/s] νt error [cm/s]

1 3.10−5 1.2 9.10−4 2.25 4.10−5 3.14 0.1 4.2
2 1.10−3 2.4 1.10−3 2.1 2.5.10−4 3 0.1 6.2
3 3.10−3 2 5.6.10−3 6.2 0.1 6.1 5.2.10−2 4.4
4 1.10−4 1.3 2.4.10−3 1.3 3.5.10−2 2.4 3.10−2 0.1
5 9.10−3 2.2 1.6.10−3 3 2.10−2 1.8 9.6.10−2 2.5
6 0.1 3 2.2.10−3 2 9.8.10−3 2.7 5.46.10−2 2.2
7 - - 2.4.10−3 1.1 0.1 2.8 8.3.10−2 3
8 - - 2.4.10−3 3.1 - - 2.5.10−2 1.9
9 - - 1.10−3 2.6 - - - -
10 - - 1.4.10−4 3.6 - - - -
11 - - 6.10−4 1.9 - - - -
12 - - 3.10−4 2.2. - - - -

1Profiles are counted from offshore to nearshore regions.
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Table 3.4: R2 values and best-fit slopes between measured and estimates of bed velocities

Estimate of Umeas
δ R2 β

Umod
δ 0.20 (0.50) 1.20 (1.30)

Umod
r 0.52 (0.55) 0.74 (0.75)

Umeas
r 0.88 (0.90) 0.87 (0.88)

Finally, we evaluated the model performance at reproducing observed velocity Umeas
δ

on top of the boundary layer, which is used to estimate bed shear stress, Equation 3.18.

The mean velocity obtained from the no-slip model, Umod
δ , was compared to the observed

velocity, Umeas
δ . We estimated Umeas

δ by fitting measured profiles of undertow with a

parabolic formulation, and extracted the velocity at the top of the modeled boundary

layer, z = δ, from the fitted profile. These Umeas
δ values were also compared to the mod-

eled and measured depth-averaged velocity, Umod
r and Umeas

r . Results are presented in

Figure 3.9. In general, the modeled bed velocity, Umod
δ is largest for the Duck dataset,

where Umeas
δ is strongest. R2 and best-fit slopes β values between measured bed velocity

and modeled bed velocity, Umod
δ , modeled depth-averaged current, Umod

r , and measured

depth-average current, Umeas
r , are presented in Table 3.4. In this table, we also show in

parenthesis the same parameters for laboratory dataset only.
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3.4.2 Deterministic Undertow Model

In this section, we explore the possibility of a deterministic formulation of the undertow.

Such a formulation would require a specification of eddy viscosity, νt, which would give

the same level of accuracy as the one we obtained through calibration, and thus reasonable

results for many datasets. We hypothesized that, given various parametric expressions, a

depth-independent eddy viscosity yields optimum modeling results. Therefore, we eval-

uated existing formulations of constant νt against our dataset. Various expressions for

constant eddy viscosity are reported in the literature, including:

1. νt = A1h
√
gh (Svendsen (1987), who recommended A1 ≈ 0.01 )

2. νt = A1(kh)
2/σ(Dw/ρ)

2/3 (Haines & Sallenger (1994) who recommended A1 = 1)

3. νt = A1κuoh
√
fw/2 + A2h(Dw/ρ)

1/3, where κ = 0.4, and uo is the wave orbital

velocity at the bed (Svendsen et al. (2004), who recommended A1 ≈ 0.2, and 0.05 ≤

A2 ≤ 0.1)

4. νt = A1κhu
∗
b +A2κh(Dw/ρ)

1/3, where u∗b =
√
|τb|/ρ (de Vriend & Stive (1987), who

recommended A1 = A2 = 1)

5. νt = A1κhu
∗
b + A2κhu

∗
s, where u∗s =

√
|τs|/ρ + (Dw/ρ)

1/3 (adapted from Tajima &

Madsen (2006))

In all above equations, A1 and A2 are calibration coefficients. Ideally, these coefficients

should lie in the range recommended by the authors.

To determine which of the above formulations is most appropriate for a parametric

representation of eddy viscosity, we first solved the mean current equation expressed by

using the difference between surface and bottom shear stress, Equation 3.41, for a wide

range of eddy viscosity values: 10−6 ≤ νt ≤ 0.1. Next, we estimated the rms error between

modeled and measured profiles of undertow in the surf zone for each eddy viscosity value:

Error =

√∑
(Umod − Umeas)

2

∑
U2

meas

(3.47)
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where Umod is the modeled undertow profile and Umeas is the measured profile. Lowest

rms error yielded the value of the best-fit eddy viscosity.

For each formulation of νt listed above, we performed a least-square regression analysis

to determine coefficients A1 and/or A2. This analysis minimized the difference between

theoretical formulation and best-fit νt values in the surf zone, keeping A1 and/or A2 be-

tween 0 and 1. To improve our prediction of the calibration coefficients A1 and A2, we

also included values of νt that were ±10% around the optimal νt, for each profile. The

inclusion of additional points was designed to account for sources of error in our procedure,

permitting us to find the optimal calibration values for eddy viscosity.

The least square fit analysis yielded negative R2 values. Moreover, values of A1 and

A2 proposed by Haines & Sallenger (1994), Svendsen et al. (2004), and de Vriend & Stive

(1987) were different from the values obtained, except for the formulation of Svendsen

(1987) (e.g., νt ≈ 0.01h
√
gh). Hence, although undertow profiles best fit parabolic pro-

files, the suggested cross-shore distributions of eddy viscosity cannot be considered to be

universal.

3.5 Discussion

We have shown in this paper that, using LWT, nearly all of the formulations of undertow

published are similar. Throughout our derivations, we relied on the evolution equations

of total momentum (Equation 3.24), mean momentum(Equation 3.28), and wave momen-

tum (Equation 3.29). These equations are all linked by the equation of mass conservation

(Equation 3.8). Errors between solutions occur if one is not consistent in the method-

ology used to solve the three evolution equations. Specifically, three common types of

inconsistencies have been identified:

1. Inclusion of advective terms in the depth-averaged cross-shore momentum equation

(Equation 3.24) and in the mean current equation (Equation 3.16), but not in the
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wave action equation, Equation 3.29.

2. Omission of the wave stress ũw̃ in the mean current equation (Equation 3.16), but

inclusion of surface shear stress terms τs (Equation 3.20) in the solution.

3. Omission of bottom shear stress in wave-averaged total momentum equation.

Based on our calculations, these errors are relatively small, but they do explain some of

the discrepancies between solutions found in the literature (Rakha (1998); Garcez-Faria

et al. (2000); Spielmann et al. (2004)).

To evaluate the relative importance of bed shear stress and advective terms on the

solution, we examined the balance of terms in the total and mean momentum equations

(Equations 3.33 and 3.28) in Figures 3.10 through 3.13. These equations yielded the

undertow profiles presented in Section 3.4.1. The figures also show the decomposition of

radiation stress which was obtained from the wave momentum equation (Equation 3.30),

and the decomposition of the surface shear stress (Equation 3.20). For convenience, we

rewrite the equations of momentum evolution:

∂MT

∂t
+
∂Sxx

∂x
+
∂Rxx

∂x
+ ρgh

∂η

∂x
+ ρ

∂hU2
r

∂x
+ 2

∂UrM
w

∂x
+ τb = 0 (3.48)

∂Mm

∂t
+h

∂

∂x

(
Sxx − E/2

2h

)
+ρgh

∂η

∂x
+ρ

∂hU2
r

∂x
+Ur

(
∂Mw

∂x
+ ρ

∂η

∂t

)
+ τb − τs = 0 (3.49)

∂Mw

∂t
+
∂Sxx

∂x
− h

∂

∂x

(
Sxx − E/2

2h

)
+
Dw

C
+
∂UrM

w

∂x
+Mw ∂Ur

∂x
= 0 (3.50)

We will refer to the depth-uniform force generated be radiation stress gradients in Equa-

tion 3.49, (Sxx − E/2)/(2h), as hF or dSxxUnif.
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For all cases (Figures 3.10 through 3.13), analysis of balance of terms in the total

momentum equation indicates that gradients in MWL (∂xη) are generally counteracted

by gradients in wave-induced radiation stress (dSxx). Gradients in roller momentum flux

(dRxx) initially opposed the wave radiation stress gradient, before counteracting the pres-

sure gradient due to η inside the surf zone. As expected, the action of the roller moves

the point where the pressure gradient changes sign shoreward, thereby the point of max-

imum setdown. Furthermore, advection and bottom shear stress terms have, in general,

the same relative strength, and their influence is small compared to gradients in MWL,

wave- and roller-induced radiation stress. This finding was also reported by Newberger &

Allen (2007b). Even though bed shear stresses are small, their effect can sometimes be

important in the calculation of wave setup. Apostos et al. (2007) estimated that, for their

dataset, neglecting bottom shear stress yielded an increase in rms error of 27% between

modeled and measured setup. However it is unclear how much of the error was caused by

the omission of advective terms in their model.

Analysis of the terms in the mean momentum equation indicated that the force gener-

ated by gradients in MWL, ∂xη is balanced by the combined action of surface shear stress

(τs) and the depth-uniform force hF (dSxxUnif in the figures). The relative role of the

surface shear stress varies between datasets. For the Sultan dataset hF is relatively small

and overwhelmed by the wave dissipation, as shown in Figure 3.10. On the other hand,

for the three barred beach profiles (OKA, SCOMAL and Duck94), surface shear stress is

twice as important as the depth uniform force hF . Bed shear stress and advective have

the same relative strength and are relatively weak.

Finally, decomposition of the radiation stress gradient indicates that, wave dissipation

is more important than hF . Also wave dissipation opposed hF right after initiation of

wave breaking. Advective terms played a relatively minor role in the decomposition of the

radiation stress gradient, but, in all cases, strengthened it in the surf zone. Decomposition

of surface shear stress shows that roller growth (dRxx < 0) counteracts the effects of wave
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Fig. 3.10: Balance of momentum equations for Sultan dataset. Balance of terms in total
momentum balance Equation 3.33(top left subplot) and in Equation 3.28 (top
right subplot) versus cross-shore position; terms in the decomposition of ra-
diation stress gradient according to Equation 3.29 (bottom left subplot) and
in the decomposition of the surface shear stress according to Equation 3.20
(bottom right subplot) versus cross-shore position

dissipation, and reduces the strength of the surface shear stress. When the roller decays

(dRxx > 0), it acts in conjunction with wave dissipation to push water shoreward at

the MWL. In all cases, the effect of the roller is to push the location of maximum surface

shear stress shoreward and sustain the surface shear stress when wave dissipation weakens.

3.6 Conclusion

In this paper, we presented various formulations of the undertow based on LWT and ob-

tained the expression for surface shear stress originally presented by Deigaard & Fredsøe

(1989). The derivations are valid for all relative water depths, and included effects of bot-
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Fig. 3.11: Balance of momentum equations for OKA dataset. Balance of terms in total
momentum balance Equation 3.33(top left subplot) and in Equation 3.28 (top
right subplot) versus cross-shore position; terms in the decomposition of ra-
diation stress gradient according to Equation 3.29 (bottom left subplot) and
in the decomposition of the surface shear stress according to Equation 3.20
(bottom right subplot) versus cross-shore position
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Fig. 3.12: Balance of momentum equations for SCOMAL dataset. Balance of terms in
total momentum balance Equation 3.33(top left subplot) and in Equation 3.28
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Fig. 3.13: Balance of momentum equations for Duck dataset. Balance of terms in total
momentum balance Equation 3.33(top left subplot) and in Equation 3.28 (top
right subplot) versus cross-shore position; terms in the decomposition of ra-
diation stress gradient according to Equation 3.29 (bottom left subplot) and
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tom shear stress as well as mean currents. Second order mean current terms were assumed

to be negligible. Under these conditions, the forcing of the mean shear stress (τ = νt∂zU)

is depth-uniform, and the mean shear stress is linear. The forcing can be expressed as

a function of gradients in wave velocity and MWL, or by taking the difference between

surface and bottom shear stresses.

The formulations were used on four datasets (3 laboratory and 1 field dataset). After

establishing that measured undertow profiles best fit a parabolic shape, and thus that using

a constant eddy-viscosity would yield lowest rms error, slip and no-slip models were tested.

Little difference was found in modeling results. Similarly, little difference was found when

advective terms were incorporated in the model. A universal formulation for eddy viscos-

ity could not be obtained. Future work might involve the use of turbulence closure models.

Analysis of the balance of terms in the momentum evolution equation confirmed that

pressure gradient induced by variation in MWL is mainly balanced by gradients in radia-

tion stress. Advection terms and bed shear stress are relatively weak, but have the same

magnitude. Also, the surface shear stress dominates the depth-uniform force generated

by wave radiation stress gradients by a factor of approximately two. Similarly, wave dis-

sipation dominates the depth-uniform force generated by wave radiation stress gradients.

Finally, the surface stress is controlled equally by wave dissipation and gradients in roller

momentum flux. During their growth phase, rollers decrease the strength of the surface

shear stress. During their decay phase, they increase the strength of the surface shear

stress.
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4. 4. GENERAL CONCLUSION

The objectives of this dissertation were to analyze in detail the modes of transport of

sediment during the offshore and shoreward migration of sandbars. These observations

were used to evaluate the performance of two process-based sediment transport models.

Finally, based on the finding that undertow current was one of the major factors responsi-

ble for sand transport, we reconciled most formulations of undertow based on linear water

wave theory, for all relative water depths.

During CrossTex, we successfully observed the generation and degeneration of two

sandbars under laboratory setting. Under the action of strong undertow currents, a sand-

bar, which we called the offshore sandbar, was generated by the offshore movement of

sediment originating from the surf zone that accumulated at or near the breakpoint. This

sediment moved as suspended load, although bedload was as important. Under milder

conditions, the offshore sandbar moved shoreward and degenerated. Sediment from that

offshore bar moved shoreward to form another bar, which we called the middle bar. We

found a strong similarity between shoreward sediment flux signal and profile of velocity

asymmetry, which is closely related acceleration skewness. Sediment moved shoreward

mainly as bedload, which was in the opposite direction of suspended sediment flux.

We modeled the observed transport using two process-based models. The EEM had

some skill in reproducing observed sediment flux. However, this model is difficult to

calibrate to match all observed phases of bed evolution. Further, the model did not rep-

resent the observed balance between low- and wave-frequency suspended sediment fluxes.

Based on this finding, questions arise as to the usability of the EEM in all engineering

applications. We also tested the combination of a wave-resolved eddy-diffusive suspended

sediment model and a sheet-flow model on our dataset. The velocity field for these two
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models was obtained through an eddy-diffusive boundary layer model. Once calibrated for

the undertow, the hydrodynamic model had some skill in reproducing the velocity field in

the flume. Suspended sediment flux proved difficult to model because of the inadequacy

of pickup functions to represent the observed intermittent sediment concentration signal.

Once calibrated with observed values of sediment concentration, and after we increased

modeled values of eddy viscosity, observed and suspended sediment fluxes were similar.

The bed load model reproduced the offshore and shoreward transport of sediment fairly

well. Results from this effort demonstrate that detailed modeling of sediment transport

is possible. However, robust models for sediment suspension and undertow are still lacking.

We investigated existing formulations of the undertow, and showed that most of these

formulations are similar, regardless of the relative water depth. Assuming linear wave

theory and depth-uniform mean current advection terms, the forcing of the undertow is

depth-uniform. The forcing can be expressed as a function of gradients in wave radiation

stress and MWL, or as the difference between surface and bottom shear stress. Further,

we highlighted the generality of the expression for surface shear stress that Deigaard &

Fredsøe (1989) originally derived. To investigate the possibility of a simple, robust deter-

ministic model, we applied our model to four observed profiles of undertow. Most profiles

were parabolic in shape, which would imply that a constant eddy viscosity parametriza-

tion is a sensible choice. However, none of the existing formulations for constant eddy

viscosity is universal.

In summary, we have demonstrated that existing process-based models can reproduce

details of observed movement of sediment in the nearshore. Also, formulations for the

undertow, which is one of the main forcing responsible for sediment movement, have been

presented. This research has created many opportunities for future work. First, the results

of the CrossTex experiments have highlighted the need to better understand the forcing

mechanism behind sediment mobilization and suspension. Furthermore, mechanisms of

sediment diffusion in the water column are still unclear, and few studies looked at the re-
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lationship between sediment eddy diffusivity and turbulent eddy viscosity in the surf zone.

Another avenue for future work involves the formulation of an hydrodynamic model that

correctly reproduces observed mean current profiles in the water column and in the wave

bottom boundary layer, in a deterministic way. A possible starting point might be the de-

terministic 3D circulation model developed by Newberger & Allen (2007a), which achieves

good results when applied to a field dataset (Newberger & Allen (2007b)). Applying this

model to various datasets can yield great insights into the nature of the undertow.

———————————————————-
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B.1 Mobilization and Advection/Diffusion of Suspended Sediment

Sediment that is activated at a certain depth can move as bedload, or can be put in
suspension if conditions are dynamic enough (van Rijn (2006). Once ejected from the
bed by the action of waves and currents, suspended sediment can follow many paths in
the water column. It can fall due to the action of gravity, or be advected vertically or
horizontally by fluid motions. It can also be diffused upward because of the presence of a
concentration gradient (Nielsen (1982)). In general, sediment concentration is modeled by
the advection/diffusion equation presented in Section 2.5.2, Equation 2.13. In this equa-
tion, ǫf represents sediment eddy diffusivity, which is controlled by wave-induced, bed- or
surface-generated turbulence (Nielsen (1982); Smith & Mocke (1993); van Rijn (1993)),
or vortex motions originating from vortex ripples (when they are present, Chung et al.
(2000)).

In the absence of horizontal advection, sediment is mainly advected/diffused upwards.
This translates into a high correlation between concentration values measured by verti-
cally adjacent sensors. Therefore, we computed the correlation between signals measured
by adjacent FOBS sensors from 0.8 to 17 cmab (i.e., correlation between 1st and 2nd, 2nd
and 3rd sensors, etc.). We also computed the correlation between sensor at 0.8 cmab and
all other sensors above (i.e., correlation between 1st sensor and 2nd, 1st and 3rd, etc.)
to assess how much of the sediment suspended above the bed made its way up the water
column.

Profiles of correlation between FOBS sensors are presented in Figure B.1. We created
these profiles by averaging all correlation values above the 95% significance level at the
same cross-shore location, for a certain phase of bar evolution. We also show in this fig-
ure the average slope of the correlation profiles computed at fixed cross-shore locations.
A high (low) slope value indicates that correlation values were fairly variable (constant)
between time series along the stack of FOBS sensors, and variable (constant) correlation
values between times series of sediment concentration indicates that signals are (are not)
affected by external sources, such as a plume of sediment horizontally advected within a
small or large portion of the water column.

During offshore bar generation, all signals were correlated with adjacent records, and
with the signal measured at 0.8 cmab, above the 95% significance level. Correlation pro-
files peak near the trough, where strongest suspended sediment flux and sediment load
were observed. They decreased in the surf zone. From this, we infer that sediment concen-
tration time series exhibited the same characteristics from the bed up to at least 17 cmab.
This is confirmed by the low slope of correlation profiles, which also reaches a minimum
at the trough.

During middle bar generation and stagnation, 98% of adjacent signals were correlated
above the significance level. Correlation levels are, in general, smaller than during offshore
bar generation, but they increase steadily in the surf zone. In the surf zone, the relatively
high correlation between adjacent sensors, and the low slope of correlation profiles, sug-
gests that sediment concentration signals were fairly similar in the water column. The
lower correlation and higher slope values observed in the shoaling regions implies that, al-
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Fig. B.1: Top left panel:mean correlation between signals measured by adjacent sensors.
Top right panel:average slope of vertical profile of correlation between signals
measured by adjacent sensors. Bottom left panel: Mean correlation between
signals measured at 0.8 cmab and sensors above. Bottom right panel:average
slope of vertical profile of correlation between signals measured at 0.8 cmab
and sensors above. Values computed for offshore bar generation are in blue,
values for middle bar generation are in red, and for middle bar stagnation in
green. Dashed and dashed dotted lines represent average location of offshore
and middle bars, respectively.
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though sediment suspension signals had some commonality, there was also a fair amount
of variability in sediment concentration in the water column.

Also during middle bar generation and stagnation, correlation levels between sensors
in the water column and the one at 0.8 cmab are lower than correlation level between
adjacent sensors,and the slope of correlation level is also higher. Additionally, less than
50% of the signals measured offshore of the middle bar were correlated with the signal
measured at 0.8 cmab above the 95% significance level. However, the correlation level
increases in the surf zone, and more than 60% of the signals measured in in the surf zone
were correlated with the signal measured at 0.8 cmab above the 95% significance level.
This suggest that, as observed in Section 2.4.1, some of the sediment suspended in the
lower portion of the water column did not get advected/diffused upwards, especially in
offshore regions. However, more sediment suspended at 0.8 cmab made its way up the
water column in regions of highest total suspended sediment tranport, i.e. in the surf
zone, than in regions where suspended sediment transport was low.

Overall, offshore of the bars, signals at two different sensors sometimes did not see the
same event, or were affected by the presence of sediment coming from another location.
On the other hand, in the surf zone and close to the bars (in the breaking region), resus-
pension events were measured by most sensors in the water column, and there was little
pollution from sediment coming from other regions. Additionally, for middle bar genera-
tion and stagnation, correlation between sensor at 0.8 cmab and those above was weaker
than correlation between adjacent sensors. This indicates that some of the suspended sed-
iment remained in the lower portion of the water column, and was not diffused/advected
as far up as during offshore bar generation. This is further illustrated by the fact that the
slope of correlation between sensors at 0.8cmab and those above is higher than the slope
of correlation between adjacent sensors.

Based on these observations, it is reasonable to assume that, in the surf zone, the
bed responded to wave and current action by ejecting plumes of sediment that were dif-
fused/advected vertically fairly high up into the water column. This is especially the case
for region where suspended sediment load and transport are highest. Also, it is reasonable
to assume that horizontal advection of sand was probably important in offshore regions,
but can be neglected in surf zone and breaking regions. Consequently, we will neglect
horizontal advection in the remainder of this section.

To evaluate the role of vertical advection, we time-average Equation 2.16 and rewrite
it as:

WwCw − woC = ǫf
∂C

∂z
(B.1)

where Ww and Cw represent the demeaned and low-passed filtered (turbulence excluded)
vertical velocity and sediment concentration time series. We will solve this equation for
ǫf , with and without the vertical advection terms WwCw. If estimates of eddy diffusivity
after both calculation, it means that vertical advection plays a relatively small role.

Because the quality of vertical velocity measurements was often poor, Ww time series
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were approximated using linear water wave theory (Sheng & Hay (1995)):

Ww =
1

C

∂Uw

∂t
z (B.2)

where Uw represents measured wave velocity measured by ADV, and C represents the
phase velocity of the waves.

Observed profiles are not smooth, especially in regions of highest suspended load, where
vertical advection/diffusion is more important. To obtain an expression for sediment con-
centration C, we fitted observed mean sediment concentration profiles to various existing
theoretical expressions (see Soulsby (1997), p.131), namely, after dropping the bar over
C :

C(z) =





Coe
−z/l (Exponential profile)

Co

[
z
zo

h−zo

h−z

]−b
(Rouse profile)

Co

(
z
zo

)−b
(Power profile)

In the exponential profile, l is a decay length scale (Nielsen (1982); Soulsby (1997)). In
the Rouse and power profiles, h is the water depth, zo a reference height above the seabed
where the reference concentration Co is defined (we take zo = 0.8 cmab herein), and b is
a suspension parameter (Soulsby (1997)):

b =
wo

κu∗
(B.3)

with u∗ the friction velocity, and κ = 0.4 the von Karman constant.

The exponential profile was observed when sediment was being resuspended by vortex
shedding over rippled beds (Nielsen (1982); Ribberink & Al-Salem (1994)). The Rouse
profile was originally derived for flows in rivers or channels, but has been used to explain
profiles of suspended sediment measured under waves (Soulsby (1997)). The power-law
profile was derived by Smith (1977) has been observed in the field and in the laboratory
(Dohmen-Janssen & Hanes (2002); Sumer et al. (1996); Ribberink & Al-Salem (1995);
Lee et al. (2004), and is indicative of sheet flow conditions (Soulsby (1997)). Under the
assumption of a pure diffusive process, Rouse profiles yield a parabolic eddy diffusivity
variation, and a power profile yield a linear one. We note that other formulations exist,
but they tend to describe the mean sediment concentration profile as a sum of various pro-
files in the water column (see e.g., van Rijn (1984); Glenn & Grant (1987), Soulsby (1997)).

We fitted our measured profiles with the distributions presented in Equation B.3,
computed values of the coefficient of determination R2 for each profile:

R2 = 1 −

N∑

n=1

(
Cmeas

i − Cfit
i

)2

N∑

n=1

(Cmeas
i − < Ci >

meas)2

(B.4)
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where Cmeas
i represents the discrete measurements of mean sediment concentration at the

ith cross-shore position, < Ci >
meas is the mean value of Cmeas

i . Cfit
i represents the val-

ues of fitted profile C(z), for the various expressions of νt, at the same elevation as the
measured undertow Cmeas

i . An R2 value of 1 means perfect fit, i.e. theoretical formu-
lation matches exactly measured profile. A negative R2 value indicates that the mean
value < ci >

meas represents the vertical variation of the data better than the theoretical
formulation. We fitted the measured profile with theoretical values between zo = 0.8 to
z = 17 cmab. We also performed the same operation with zo = 1.8 cmab and zo = 5
cmab but did not notice any significant change in the results. Consequently, we will use
zo = 0.8 cmab in the remainder of this paper.

The exponential profile did not fit our observations very well (R2 < 0 for all datasets
but 5), but the Rouse and power profiles performed equally well (R2 ≥ 0.9 during phases
‘OG’ and ‘MS’, R2 ≈ 0.7 in the surf zone and R2 ≈ 0.5 for all profiles). In view of the
similar performance of both Rouse and power profiles, we decided to evaluate Equation
B.1 by fitting measured mean sediment concentration profiles with a power-law profile,
because they are more suitable for nearshore environments than Rouse profiles (Soulsby
(1997)). We note, in passing, that the poor performance of the exponential fit, and the
good performance of the power profile indicate that sheet flow conditions probably dom-
inated during the experiment, and the ripples observed did not contribute to sediment
transport.

We solved Equation B.1 for eddy diffusivity ǫf , with and without vertical advection,
and rms error between the two profiles of ǫf is presented in Figure B.1. In general, rms
error is less than 10%, which suggests that the role of vertical advection is relatively small.
We also estimated that, when compared to a purely diffusive process, vertical advection
generally accounted for less than 20% of the total value of the sediment eddy diffusiv-
ity. Consequently, we deduce that suspended sediment was mainly diffused upwards in
the breaking and surf zone regions; vertical and horizontal advection played a smaller role.

Depth-averaged values of eddy diffusivity are presented in Figure B.1. Because the role
of vertical advection was limited, profiles of ǫf (z) were fairly linear, and depth-averaged
values are also an indication of the slope of the profiles. In general, eddy diffusivity are
higher in the surf zone than in offshore regions. We also notice that, especially during
middle bar generation and stagnation, ǫf steadily increases in the surf zone to reach a
maximum near the shoreline. Also, eddy diffusivity values are of the same order of mag-
nitude as eddy viscosity in the surf zone, but one to two order of magnitude larger than
typical eddy viscosity values in shoaling regions. However, we can not fully trust values
obtained in the offshore regions, as horizontal advection might have played a role.

In the surf zone (X ≥ 65m) values of eddy diffusivity obtained in this section are, on
average, 4 to 6 times higher than eddy viscosity computed with the k − ǫ model.
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Fig. B.2: Depth-averaged eddy diffusivity during offshore bar generation (‘OG’), middle
bar generation (‘MG’) and middle bar stagnation (‘MS’).

C.2 Simplification of Wave Stress Terms

Consistent with LWT, we assume that the flow is irrotational, which means that ω̃ = 0.
We decompose the vertical derivative of ¯̃u ¯̃w as (Rivero & Arcilla (1995)):

∂

∂z

(
ũw̃

)
= −1

2

∂

∂x

(
ũ2 − w̃2

)
(C.5)

Dropping the tildes over wave velocity (ũ = u), we combine this expression with the
other wave velocity terms in Equation 3.14 to obtain (Garcez-Faria et al. (2000)):

∂u2 − w2

∂x
+
∂uw

∂z
=

1

2

∂u2 − w2

∂x
(C.6)

We further simplify this latter equation by using the LWT expressions of u and w to obtain
a depth uniform term (Longuet-Higgins & Stewart (1962), Dally (1980), Rivero & Arcilla
(1995)):

ρ(u2 − w2) =
2kEw

ρ sinh(2kh)
(C.7)

The wave radiation stress is expressed as (Longuet-Higgins & Stewart (1962, 1964)):

Sxx =

∫ η

−h
ρũ2 + p dz − 1

2
ρg(h+ η)2 (C.8)

= Ew

(
2
Cg

C
− 1

2

)

=
2khEw

sinh 2kh
+
Ew

2
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so, Equation C.7 becomes:

ρ(u2 − w2) =
Sxx − E/2

h
(C.9)

C.3 Dimensional Analysis for Mean Vertical Velocity

To estimate the relative order of mean vertical velocity with respect to mean horizontal ve-
locity, we first decompose horizontal and vertical velocities into mean, wave and turbulent
components:

u = U + ũ+ u′ (C.10)

w = W + w̃ + w′ (C.11)

We apply this decomposition to the continuity equation, Equation 3.2, and obtain after
wave-averaging:

∂U

∂x
+
∂W

∂x
= 0 (C.12)

Now, we assume that mean velocities vary on an horizontal length scale X = LU , which
is much longer than the wave length scale Lw = 2π/k, a vertical length scale equal to the
total water depth Z = h, and a time scale TU which is much larger than the waves timescale
Tw = 2π/σ. We then define non-dimensional velocities U∗ and W ∗ as: U∗ = TUU/LU and
W ∗ = TUW/LU , and we define non-dimensional length scale as:x∗ = x/X and z∗ = z/Z.
Hence the wave-averaged continuity equation becomes:

∂U

∂x
+
∂W

∂x
=
LU

TU

1

LU

∂U∗

∂x∗
+
LU

TU

1

h

∂W ∗

∂z∗
(C.13)

which yields W ∼ ǫU , with ǫ = h/L. Consequently, in the wave-averaged horizontal
momentum equation, Equation 3.14, we have:

∂U2

∂x
+
∂W 2

∂x
=
L2

U

T 2
U

1

LU

∂U∗2

∂x
+
L2

U

T 2
U

1

LU

∂W ∗2

∂z∗
(C.14)

which means that ∂xW
2 ∼ ǫ2∂xU

2. We now decide that, although we will keep terms of
order ǫ in the remainder of this paper, we will neglect terms of order ǫ2. Consequently, we
will neglect terms in W 2, but keep terms in W in the wave-averaged horizontal momentum
equation.

C.4 Evolution Equation for M
w

The wave action equation reads (Mei (1989); Svendsen (2006)):

∂

∂t

Ew

σr
+

∂

∂x

Ew(Cg + Ur)

σr
= −D

σr
(C.15)

whereA = Ew/σr is the wave action, and (2π/T−Urk)
2 = σ2

r = gk tanh kh. Expanding
this equation by recognizing that the net wave momentum Mw is Mw = Ak = kEw/σr =
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Ew/C gives:

∂Mw

∂t
+

∂

∂x
Mw(Cg + Ur) −A

(
∂k

∂t
+ (Cg + Ur)

∂k

∂x

)
= −kD

σr
(C.16)

To simplify this expression, we use the expression of the kinematical conservation
equation (Phillips (1977), p.23):

∂k

∂t
+ ∇(σr + kUr) =

∂k

∂t
+ (Cg + Ur)

∂k

∂x
+ k

∂Ur

∂x
+
∂σr

∂h

∂h

∂x
= 0 (C.17)

where we used ∂kσr = Cg. Hence, Equation C.16 becomes:

∂Mw

∂t
+

∂

∂x
Mw(Cg + Ur) = −kD

σr
−A

(
k
∂Ur

∂x
+
∂σr

∂h

∂h

∂x

)
(C.18)

Equation C.18 is further simplified by expressing A∂hσr using the expression of Cg

and trigonometric identities:

Ew

σr

∂σr

∂h
=
Ew

σr

σrk

sinh(2kh)
= kE

2n− 1

2kh
(C.19)

where n = Cg/C. Consequently Equation C.18 becomes (see Smith (2006), Equation
2.27):

∂Mw

∂t
+

∂

∂x
Mw(Cg + Ur) = −kD

σr
−Mw ∂Ur

∂x
−MwE(n− 1/2)

h

∂h

∂x
(C.20)

Recognizing that Sxx = 2MwCg − E/2 = E(2n− 1/2), we can rewrite Equation C.20
as:

∂Mw

∂t
+
∂Sxx

∂x
− ∂

∂x

E(2n− 1)

2
−hE(2n− 1)

2

∂

∂x

(
1

h

)
+
∂MwUr

∂x
+Mw ∂Ur

∂x
= −D

C
(C.21)

Finally, the wave action equation becomes:

∂Mw

∂t
+
∂Sxx

∂x
− h

∂

∂x

(
Sxx − E/2

2h

)
+
∂MwUr

∂x
+Mw ∂Ur

∂x
= −D

C
(C.22)

C.5 Derivation of Undertow Forcing for Depth-Uniform Horizontal
Current

In Section 3.2.4, we derived an expression for the solution of the wave-averaged momentum
equation, Equation 3.16, using a bottom shear stress boundary condition:

τ(z) = (F + P )(z + d) + ρ
∂

∂x

∫ z

−d
U2 dz − ρU2 ∂z

∂x
+ ρUW + τb (C.23)
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We can simplify the nonlinear terms of this expression assuming a weak vertical variation
of the mean horizontal current, i.e. U(x, z) = Ur(x, z) + ǫU1(x, z), with ǫ << 1:

ρ
∂

∂x

∫ z

−d
U2 dz + ρUW =

∫ z

−d
ρ
∂U2

r

∂x
+ ρ

∂UrW

∂z
dz

= ρ
∂U2

r

∂x
(z + d) + ρ(W (z) −W (−d))

= ρUr
∂Ur

∂x
(z + d) − ρU2

r

∂z

∂x
(C.24)

where we neglected ∂xz and used the integral the wave-averaged continuity equation
(Equation 3.2) between z and -d : (z + d)∂xUr + W (z) −W (−d) = 0. Hence Equation
C.23 becomes:

ρνt
∂U

∂z
=

[
∂

∂x

(
Sxx − E/2

2h

)
+ ρg

∂η

∂x
+ ρUr

∂Ur

∂x

]
(z + d) + τb (C.25)

Similarly, the expression for the solution of the wave-averaged momentum equation,
Equation 3.16, using a shear stress at the MWL as boundary condition was:

ρνt
∂U

∂z
= (F + P )(z − η) − ρ

∂

∂x

∫ η

z
U2 dz − ρU2 ∂z

∂x
+ ρUW − ρU|η

∂Mw

∂x
+ τs (C.26)

and after simplifying the nonlinear terms in this equation, assuming a weak vertical vari-
ation of the mean horizontal current, and invoking the wave-averaged continuity equation
(Equation 3.2) between z and MWL η, we obtain:

ρ
∂

∂x

∫ η

z
U2 dz − ρU2 ∂z

∂x
+ ρUW − ρU|η

∂Mw

∂x
= ρUr

∂Ur

∂x
(η̄ − z) (C.27)

and we obtain in Equation C.26:

ρνt
∂U

∂z
=

[
∂

∂x

(
Sxx − E/2

2h

)
+ ρg

∂η

∂x
+ ρUr

∂Ur

∂x

)
(z − η] + τs (C.28)

Subtracting Equation C.28 from Equation C.25 yields the steady state mean momen-
tum equation:

h
∂

∂x

(
Sxx − E/2

2h

)
+ ρgh

∂η̄

∂x
+ ρhUr

∂Ur

∂x
+ τb − τs = 0 (C.29)

Finally, if we express F + P from Equation C.25, we find that Equation C.29 becomes:

ρνt
∂U

∂z
=
τs − τb
h

(z + d) + τb (C.30)

where all explicit non-linear terms have now vanished.
We now point out that Equation C.29 is identical to the steady state momentum
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equation derived in Section 3.2.3, Equation 3.28, because:

∂U2
r h

∂x
+ Ur

∂Mw

∂x
= 2hUr

∂Ur

∂x
− Urh

∂Ur

∂x

= hUr
∂Ur

∂x
(C.31)

These equalities are exact because hUr = −Mw. But, in the surf zone, hUr = −M r +Mw.
So, for Equation C.31 to hold, we need to redefine Mw as Mw = Mw +M r (see Svendsen
(1984a)). But if we do so, then we can no longer arrive at the wave action equation,
Equation 3.29, since it was derived in Section C.4 by taking Mw = Ew/C.

Consequently, for all equations to be consistent, we need to take roller into account in
the evolution of wave action. This problem illustrates once again the need to develop a
rigorous equation for the wave roller evolution that can be incorporated in the momentum
equation.

C.6 Solutions to Eddy Viscosity Parametrizations

Equations 3.35, 3.36 and 3.38 are all of the form:

νt
∂U

∂z
= Az +B (C.32)

The solution to this equation for the different formulations of eddy viscosity presented
in Section 3.3 are:

1. If νt = α, then U(x, z) = A
2αz

2 + B
α z + C,

2. If νt = αz + β, then U(x, z) = A
α z + Bα−Aβ

α2 ln(αz + β) + C,

3. If νt = α
√
z+β, then U(x, z) = 2A

3α z
3/2−Aβ

α2 z+
2(Aβ2+Bα2)

√
z

α3 −2(Aβ3+Bα2β) ln (α
√

z+β)
α4 +

C,

4. If νt = α(z − z2) + β, then U(x, z) = (A+ 2B)
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5. If νt = α(h+ z)
√
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6. If νt = α exp(−βz), then U(x, z) = A+βAz+βB
αβ2 exp(βz) + C

where α and/or β are calibration constants, and C is a constant of integration.


