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INFINITELY MANY LATTICE SURFACES
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ABSTRACT. We give explicit pseudo-Anosov homeomorphisms with vanish-
ing Sah-Arnoux-Fathi invariant. Any translation surface whose Veech group
is commensurable to any of a large class of triangle groups is shown to have
an affine pseudo-Anosov homeomorphism of this type. We also apply a reduc-
tion to finite triangle groups and thereby show the existence of nonparabolic
elements in the periodic field of certain translation surfaces.

1. INTRODUCTION

By integration, a holomorphic 1-form w induces the structure of a translation
surface on a Riemann surface X. Veech [32] showed that the group SL(X, w) of
linear parts of the orientation-preserving affine automorphisms of the transla-
tion surface is a discrete subgroup of SL(2,R); that is, it is a Fuchsian group. A
lattice surface, also called a Veech surface, is a translation surface with SL(X, w)
a lattice in SL(2,R).

The Sah-Arnoux-Fathi (SAF) invariant for interval exchanges can be extended
to directional flows on translation surfaces by use of transversals. This invariant
vanishes for any direction of a periodic flow. After a suitable normalization, the
set of slopes of all directions on a lattice surface with vanishing Sah-Arnoux-
Fathi invariant is the projective line over a field, called the periodic field [12].
When this field is of degree at most two over the rationals Q (as is the case for
any translation surface of genus at most two), the corresponding directions on
the lattice surface are all periodic [27].

The hyperbolic elements of SL(X,w) correspond to pseudo-Anosov maps.
The above normalization results in SL(X,w) being a subgroup of the special
linear group over the periodic field. A hyperbolic element whose eigenvalues
are in this field is said to be special, the corresponding pseudo-Ansov maps are
also said to be special. We easily establish that any special affine pseudo-Ansov
automorphism has vanishing Sah—-Arnoux-Fathi invariant.

In fact, the periodic field of a lattice surface is also its trace field [12]. That is, it
is the extension over (Y generated by the traces of the elements of SL(X,w). One
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can also consider the invariant trace field, the field generated by the traces of
the squares of elements. Hooper [21] noted that a result of Kenyon-Smillie [22]
implies that a Fuchsian group with hyperbolic elements can only be realized as
some SL(X,w) if its trace and invariant trace fields are equal.

1.1. Main Result. Denote by A(m, n,c0) the triangle Fuchsian group formed by
the orientation-preserving subgroup of the group generated by reflections in
the sides of a hyperbolic triangle having one ideal vertex and the other two of
angles n/m and n/n.

THEOREM 1. Suppose that both m, n are even, and that the trace field and the
invariant trace field for the triangle group A(m, n,o0) coincide. If a translation
surface has Veech group commensurable to A(m, n,o0), then the surface admits
a pseudo-Anosov affine automorphism whose stable flow has vanishing Sah-
Arnoux—Fathi invariant.

Note that Bouw-Mbller [8], as confirmed by Hooper [21], have shown that up
to commensurability every A(m, n,c0) is realized as a Veech group. Hooper suc-
ceeded in giving an elementary construction of the surfaces found by Bouw and
Moller (as Hooper [21] verified for all but the case of m, n both even, and Wright
[34] for these remaining cases). Using these, we give fully explicit special affine
pseudo-Anosov diffeomorphisms, see Proposition 8, Example 9 and Figure 1.

We also show that certain other triangle groups are such that any translation
surface whose Veech group is commensurable to the triangle group must have
infinitely many nonperiodic directions with vanishing Sah-Arnoux-Fathi invari-
ant. Informed by this, we obtain a further new special affine pseudo-Anosov
diffeomorphism, see Example 19 and Figure 2. This particular example is on a
surface with cubic trace field, and hence the flow in the expanding direction of
the pseudo-Anosov map has rank three in the sense of McMullen [28]; we thus
can give a pictorial representation of this flow on a genus 15 surface of the type
that McMullen [28] gives for each of the cubic example of Arnoux and Yoccoz
and the recent cubic example of Lanneau, again see Figure 2.

We note here that we had previously [11] built continued fraction algorithms
for the Veech groups of the translation surfaces studied by [33]—these groups
are Fuchsian triangle groups A(3, n,00)— in anticipation of using them to find
nonparabolic directions on the surfaces or even special pseudo-Anosov diffeo-
morphisms. The Ward examples have proven to be significantly more resistant
to the search for such phenomena than were the original Veech examples, and
of course than the translation surfaces that we treat here.

1.2. Motivation and History. A holomorphic 1-form w, induces the structure
of a translation surface on a Riemann surface X—integration gives an atlas
off of the zeros of w with transitions functions being translations (completing
to the induced flat metric to the zeros results in cone singularities). An affine
diffeomorphism of the translation surface (X, w) to itself is a homeomorphism
taking singularities to singularities that is a diffeomorphism with respect to the
translation structure off of the singularities. In local coordinates, such a map
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is affine, with linear part constant on the surface. Veech [32] showed that the
group SL(X,w) of all of linear parts of the orientation-preserving affine diffeo-
morphisms is a discrete subgroup of SL(2,R). A lattice surface, also called a
Veech surface, is a translation surface with SL(X,w) a lattice in SL(2,R); that is,
SL(X, w) is of finite covolume with respect to Haar measure.

Any hyperbolic element of SL(X, w) is the linear part of a pseudo-Anosov map
(as defined by Thurston, see [31]); the stable directions of an affine pseudo-
Anosov map correspond to the eigenvectors of its linear part. The first return
map to any full transversal to the linear flow in a fixed direction of a translation
surface defines an interval exchange transformation. The Sah-Arnoux-Fathi
(SAF) invariant of the interval-exchange transformation vanishes for a periodic
flow. McMullen [27] reformulates the invariant as his “flux” and shows in [28]
that the vanishing of this flux for the flow in the expanding direction of an affine
pseudo-Anosov diffeomorphism implies zero average drift for the leaves of the
foliation; see also [3, 19, 20].

The first examples of an affine pseudo-Anosov with vanishing Sah-Arnoux—
Fathi invariant were given by Arnoux and Yoccoz [5]; they used a construction in-
volving suspension of interval-exchange transformations. Arnoux and Schmidt
[4] found further examples on the lattice surfaces given by gluing two copies of
the regular n-gon together along opposite edges for n € {7,9, 14,18, 20, 24}. The
discovery of these maps was especially surprising considering that the surfaces
themselves are among the well-studied first examples of Veech of nonarithmetic
lattice surfaces, [32]. Recently, McMullen [28] communicated an example found
by Lanneau of a special pseudo-Anosov diffeomorphism with vanishing Sah—
Arnoux-Fathi invariant on a genus three surface.

We give a large class of affine pseudo-Anosov diffeomorphisms with vanish-
ing Sah—-Arnoux-Fathi invariant. We do this by finding so-called special pseudo-
Anosov diffeomorphisms. Long and Ried [24] say that a hyperbolic element of
a Fuchsian group is special if its eigenvalues lie in the trace field of the group.
Accordingly, an affine pseudo-Anosov diffeomorphism is said to be special if
the eigenvalues of its linear part lie in the trace field of the Veech group of its
translation surface. Calta and Smillie [12] show that under fairly mild hypothe-
ses, see Lemma 2, one can normalize a translation surface so that the set of
(cotangents of) directions for flows with vanishing Sah-Arnoux-Fathi invariant
forms the trace field (and infinity). With this normalization, each special affine
pseudo-Anosov diffeomorphism has vanishing Sah-Arnoux-Fathi invariant.

2. BACKGROUND

2.1. Translation surfaces and Veech groups. A translation surface is a 2-mani-
fold with finitely many marked points and an atlas whose transition functions
are translations. This is equivalent to the definition of a translation surface as
a disjoint union of finitely many polygons Pi,---, P, in R? glued along parallel
edges to form a closed surface. The marked points are cone points, which can
arise at vertices of the P; when too many polygons are glued around a single
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vertex, resulting in a total angle at that vertex of 2kx where k =1 is an integer.
Equivalently, a translation surface can be seen as a pair (M, w) where M is a Rie-
mann surface and w an abelian differential on M—away from the zeros of the
abelian differential, integration of the abelian differential gives local coordinates
with transition functions that are translations.

The group SL(2,R) acts on the moduli space of translation surfaces, preserv-
ing genus and the number and order of cone points. In the polygonal model, if
S=P,...,P, is a surface and g € SL(2,R) then gS§ is defined as gPyU---U gP;,.
The stabilizer of a surface S under this action is called its Veech group, which
is always a noncocompact Fuchsian group. Generically this group is empty but
occasionally it is a lattice subgroup of SL(2,R), which is to say that it is has finite
covolume. In this case, we refer to the surface as a lattice surface. Veech [32]
proved that a pair of regular n-gons glued together along parallel sides forms
a lattice surface for n = 4. Whether or not a surface is a lattice surface has pro-
found implications for the dynamics of the linear flow on the surface. Veech
[32] proved that in any direction v on a lattice surface, the orbits of the linear
flow in that direction are either closed or connect two cone points, or all orbits
in that direction are uniformly distributed on the surface. In the literature, this
dynamic dichotomy has come to be called “optimal dynamics”.

2.2. The Sah-Arnoux-Fathi Invariant. Suppose f is an interval-exchange trans-
formation on a finite interval I, that is, a piecewise linear orientation-preserving
isometry of I. Then by definition f exchanges n intervals I; of lengths [; for
i =1,...,n by translating each I; by the amount ¢;. One can associate to f a cer-
tain invariant known as the Sah—Arnoux-Fathi (SAF) invariant that takes values
in RAgR and is defined as Z;’zl li Ag t;. The Sah-Arnoux-Fathi invariant is a
central tool in the study of the dynamics of the linear flow on translation sur-
faces. Given a direction v on a surface, one can choose an interval transverse to
the orbits of the flow in the direction v that meets every orbit. The first-return
map to this interval is an interval-exchange transformation. If the flow in the
direction v is periodic then the associated Sah-Arnoux-Fathi invariant is zero.
The converse, however, is false. The dynamics of the flow in SAF-zero directions
has been an object of recent interest and in this paper we show that there are
surfaces for which the flow in a particular SAF-zero direction is the expanding
direction of a pseudo-Anosov diffeomorphism.

There is another way to define the Sah-Arnoux-Fathi invariant of a direction
on a translation surface using the J-invariant of Kenyon and Smillie [22]. The J-
invariant of a polygon takes values in R? Ag R?. If the vertices of a polygon P are
vg,..., Uy, then J(P) = ?:0 Vi AVis1, where v,41 = 1. Since a translation surface
S can be realized as a disjoint union of polygons P; for i = 1,..., n glued along
parallel sides, we define J(S) to be Z?Zl J(P;). Then the projection J,(S) of J(S)
in the direction v is the Sah-Arnoux-Fathi invariant of the interval-exchange
transformation which is the first-return map on a full transversal to the linear
flow in the direction v. It is not hard to see that the Sah-Arnoux-Fathi invariant
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of a periodic interval-exchange transformation is zero. Thus the Sah-Arnoux—
Fathi invariant in a parabolic direction on a surface is zero.

Also note that Lemma 2.4 of the Appendix of Calta’s [10] directly implies that
the Sah—-Arnoux-Fathi invariant in the form of J,(S) is constant on SL;(R)-orbits,
in the sense that J,(S) = Jay (Ao S) for any A € SL,(R).

2.3. Fields and translation surfaces. If a translation surface has at least three
directions of vanishing Sah-Arnoux-Fathi invariant, then Calta and Smillie [12]
show that the surface can be normalized by way of the SL,(R)-action so that
the directions with slope 0, 1 and oo have vanishing Sah-Arnoux-Fathi invariant
and prove that on the normalized surface the set of slopes of directions with
vanishing invariant is a field union with infinity. A translation surface so nor-
malized is said to be in standard form, and the field so described is called the
periodic direction field. In this paper, we are primarily interested in directions
on a surface that come from the periodic direction field.

On the other hand, Kenyon and Smillie [22] defined the holonomy field of a
translation surface as the smallest field over which the set of holonomy vectors
is contained in a two-dimensional vector space. A holonomy vector is associated
via the developing map to a closed, nonsingular curve on the surface or to a
closed curve that is a union of saddle connections.

Gutkin and Judge define the trace field of a surface to be the extension of Q
generated by the traces of the elements of its Veech group. Since the trace is
a conjugacy invariant, the trace field of a given surface is the same for as that
of any other surface in its SL(2,R) orbit. Calta and Smillie [12] show that if S is
a lattice surface, then the holonomy, trace and periodic direction fields are all
equal.

The following is a direct implication of the Calta-Smillie [12] result that the
periodic field of a translation surface in standard form equals its trace field.

LEMMA 2. On a translation surface in standard form, the stable directions of an
affine pseudo-Anosov diffeomorphism have vanishing Sah-Arnoux—Fathi invari-
ant if and only if the pseudo-Anosov diffeomorphism is special.

2.4. Triangle groups and realizability. Of central importance to us is the fact
that triangle groups are (up to finite index) realized as Veech groups.

THEOREM 3 (Bouw-Moller, Hooper). Every hyperbolic triangle group with par-
abolic elements is commensurable to a group realized as the Veech group of a
translation surface.

However, not every full triangle group can be realized as a Veech group. Hu-
bert and Schmidt [18] remarked that one can use the fundamental observation
of Kenyon and Smillie [22] that the trace field of a translation surface is gener-
ated by the trace of any of its affine pseudo-Anosov diffeomorphisms to show
that no triangle group of signature (2,2n,00) can be realized as a Veech group.
Hooper [21] uses the observation in the form that a Fuchsian group can only
be realized as a Veech group if its trace field equals the field generated over
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the rationals by the traces of the squares of elements of the group; this latter
field is called the invariant trace field of the group, as Margulis proved that it
is an invariant of the (wide) commensurability class of the group, see [26] for a
discussion.

3. SPECIAL AFFINE PSEUDO-ANOSOV DIFFEOMORPHISMS

In this section, we focus on the arithmetic of triangle groups in order to find
the linear parts of special affine pseudo-Anosov diffeomorphisms. To do this,
Lemma 5 is key. It allows us to prove a more precisely worded version of our
main theorem, Theorem 7, thus giving fully explicit pseudo-Anosov maps, as
shown by Example 9 and Figure 1. In the final subsection, we give some results
about the groups for which the full triangle group is never a Veech group.

3.1. A special hyperbolic matrix. Our approach here is centered on properties
of groups realized as Veech groups of translation surfaces. Since any parabolic
direction on a translation surface has flow of vanishing Sah-Arnoux-Fathi in-
variant we use the following variation of a term used by Calta and Smillie [12].

DEFINITION 4. A Fuchsian group is in (group) parabolic standard form if its
set of parabolic fixed points (for its action on the Poincaré upper half-plane)
includes 0, 1 and co.

Note that since the Sah-Arnoux-Fathi invariant of a periodic flow is zero,
whenever the Veech group of a translation surface is in parabolic standard form,
the surface itself is in the standard form defined by Calta and Smillie.

To expedite discussion, we take a specific representation for each of the tri-
angle groups we consider. Let G, , be generated by

2cosm/m 1 _[(—2cosm/n 1
-1 0) -1 0/’

1 A=

1 20037t/m+2005n/n)
0 1 ’

and note that C = AB. The group is easily verified to be a Fuchsian triangle
group of signature (m, n,00). The trace field of G, ;, is

Kin,n=Q(cosm/m,cosn/n),
see [26, p. 159].

LEMMA 5. Suppose m, n are distinct and even. If a is a nonzero finite parabolic
fixed point of G, then multiplication by a™! defines a transformation that
conjugates Gy, , to a group in parabolic standard form, with special hyperbolic
elements.

Proof. Being generated by A and B, the group G,,,, clearly has infinity as a
parabolic fixed point. Since B sends 0 to infinity, 0 is also a parabolic fixed
point.

Recall that the product of any two distinct elliptic elements of order two in
PSL(2,R) is a hyperbolic element. Here, certainly B™/2, C™? are elliptic of order
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two, their product is thus hyperbolic. Now, for each integer £k,

b1 by ) k k(6k+1 —Ck )
2 Bk=( N , Ck=(-1
@ —br  —bg =D Ck —Ck-1

where by = sink—n’;/ sin--, and ¢ = sink—rf/ sin 7, see, say [9]; thus, one finds that
B™2.(+1)=7F1, C"?-(+1) = F1.

Thus, their product B™?C™'? fixes both —1 and 1.

Since G, € SL2(O), all finite parabolic fixed points of G, , lie in the field
K, n- Let a be as in our hypotheses. By the triple transitivity of SL,(R) acting
on the real projective line, there is an element M that sends a to 1 while fixing
both zero and infinity. But elementary considerations of 2 x 2-matrices show
that the action of M is simply multiplication by a~!. The conjugation of G, ,
by M is clearly in parabolic standard form and the hyperbolic fixed point 1
of G, corresponds to the point a~!—this is an element of K fixed by some
hyperbolic element of the conjugate group. That is, the conjugate group has
special hyperbolic elements. O

3.2. Special affine pseudo-Anosov diffeomorphisms. Recall that W. P. Hooper
determined conditions under which the trace field and invariant trace field of
a triangle group A(m, n,00) coincide; the conditions are given in terms of the
indices m, n and their greatest common divisor. Inequality of the two fields is
an obstruction to the group being a Veech group of any translation surface.

DEFINITION 6. Given a pair of integers m, n, let y = gcd(m, n). We say that the
pair m, n is unobstructed if neither of the following conditions hold:

1. y=2

2. m/y and n/y are both odd.

Our main result can be more precisely stated as follows.

THEOREM 7. Let m, n be an unobstructed pair of even integers, and suppose that
& is a translation surface whose Veech group is commensurable to G, ,. Then
some power of B™?C™? is the linear part of a special affine pseudo-Anosov au-
tomorphism of &.

Proof. Suppose that . is a translation surface whose Veech group is commen-
surable to G, ,. Using the SL,(R)-action, we may assume that . has as its
Veech group a finite-index subgroup of G, ,. Lemma 5 now provides an ele-
ment of SL,(R) conjugating G, , into parabolic standard form while conjugat-
ing B"2C™? to a special hyperbolic matrix.

The set of parabolic fixed points is unaltered by passage to a finite-index
subgroup, thus the image of . by this conjugating element is in standard form.
By the work of Calta and Smillie [12] the set of (nonvertical) directions for which
the flow has vanishing Sah—-Arnoux-Fathi invariant forms a field, the periodic
field, and since the translation surface certainly has some affine pseudo-Anosov
automorphism, this equals the trace field of the Veech group.
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Now, there is some nonzero power of our (special) hyperbolic element of
the larger group that belongs to the finite-index subgroup. Since the two fixed
points are common to the cyclic subgroup generated by a hyperbolic element,
this element of the Veech group fixes points in the periodic field. From this, the
corresponding pseudo-Anosov map has vanishing Sah—-Arnoux-Fathi invariant.
Finally, by [10, Lemma 2.4 of the Appendix], any M € SL,(R) sends this direc-
tion to a direction on the M-image of this surface that also has vanishing Sah—
Arnoux-Fathi invariant. In particular, we can return in this way to the original
direction and surface we began with; the result thus holds. O

Our construction easily leads to explicit examples. Hooper [21] explicitly real-
izes the Bouw-Moller translation surfaces in two different ways. (Wright [34] fin-
ishes the verification that Hooper’s surfaces are indeed those of Bouw-Méller.)
First, by way of grid graphs presenting the combinatorics of the intersections of
horizontal and vertical cylinders so as to apply the Thurston construction [31];
the resulting surfaces Hooper denotes by (X, ,,wm, ). Second, he denotes by
(Ym,n,Nm,n) the translation surfaces formed by appropriately identifying sides
of semiregular polygons. In the case where both m and n are even, there is
a natural involution on the surface. Hooper denotes the resulting respective
quotients by (X7, ,, 05, ), (Yy ,,n%, ,). Hooper shows that the Veech group of
(Xm,n, Wm,n) is an index-two subgroup of G, , and that the transformation z —
D, (z) = (cscm/n)z —cotm/n conjugates this to the Veech group of (Y, 5, 7, n)-

PROPOSITION 8. Suppose m,n is an obstructed pair of even integers. Then on
each of Hooper's translation surfaces (Y, n,Nm,n) and (Yy, ,,M%, ,,) the flow in the
direction (1 —cosn/n)/(sinn/n) is a stable direction of a special affine Anosov
diffeomorphism. Furthermore, letting

i n i n
_ cosmcosn+cosm+cosn+1

sin 7z sin %
the dilatation of this Anosov diffeomorphism is A if four divides gcd(m, n) and
A? otherwise.

Proof. Since any power of of B"™/2C™'? fixes the direction z = 1, we find that the
direction D, (1) = (1-cosn/n)/(sinw/n) determines a flow on each of (Yy; 11, 1, )
and (Y, ,, M5, ,) with vanishing Sah-Arnoux-Fathi invariant. Hooper shows that
B2, C? (in our notation) are in the Veech group of (X, n, wm,n), whereas neither
B nor C is. It follows that B™/2C™'? itself is in this group if and only if four di-
vides gcd(m, n). Otherwise it is the square of this special hyperbolic element
that belongs to the group.

The dilatation of an affine pseudo-Anosov automorphism is the larger of the
two eigenvalues of its linear part, and here this is the same as that of B”/2C"/?
or of its square. Thus, the dilatation is as claimed. O
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ExAMPLE 9. In Figure 1, we show the result when (m, n) = (8,4); the translation
surface (Yy,,7n5 ,) is a suspension surface over an interval-exchange transforma-
tion on eleven intervals with permutation in the usual redundant notation

1 23 4 5 6 7 8 9 10 11
7 5 2 10 3 1 11 8 4 6 9

The dilatation of this pseudo-Anosov map is the quartic number 3 +2v/2 +

V20 +14V/2.

FIGURE 1. A pseudo-Anosov map with vanishing Sah-Arnoux-
Fathi invariant, indicated as zippered rectangles on Hooper’s
translation surface (Yg,,ng ,). Thick (red) intervals comprise the
transversal to the flow; rectangles 1,2,3,9,11 are shaded.

3.3. Remarks on the “obstructed” setting. We now show that Lemma 5 cannot
provide information about the existence of special pseudo-Anosov maps when
the trace field of the group G, , differs from its invariant trace field.

PROPOSITION 10. If m,n are such that the trace field of G, , does not equal
its invariant trace field, then no nonzero parabolic fixed point of G,,, lies in its
invariant trace field.

Proof. Recall that the trace field K, , of G, , is generated over by the pair
{cosm/m,cosn/n} and Hooper shows that the triple

{cos2m/m,cos2n/n,cosnm/mcosn/n}
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generates the invariant trace field, k;, ,, see also p. 159 of [26]. Define 6 =
2(cos2m/n+1); note that § > 0 since n > 2. One easily shows that K, , = km,n(\/g)
since first a standard double angle formula implies that 2cos7/n = V/§, and then
of course cosz/m = (cosw/mcosn/n)/ cosx/n.

Any pair of the elements in (1) generate G,,,,, thus this group is generated by

-V 1 1 bVe
c=[2 o= V)
with
0 +4cos-cos ¥
B 5
Of course, b € k;;,,, and thus bV € Kmn~ km,n. We thus define two types of
elements of G, ,—an even element is of the form

(0\6;3 b:i/g) ’

with a, b, ¢, d € Ky, ,; similarly, an odd element is of the form

(mc/g d?/S) ;

in particular, A is of even type while C is of odd type. Multiplication thus is
similar to addition of integers in that the product of two elements of the same
type is an even element, whereas the product of two elements of distinct types
is an odd element. Now, any element of G, , is a product in powers of A and
C, and therefore is of one of the two types. But, the image of co under such a
group element is then of the form a/cv/§ or av/§/c; any nonzero a/c € ky,,, of
course has a multiplicative inverse in this field, and hence were the image of
infinity to be in k;; ,, the contradiction of v/& also belonging to this field would
follow. O

The notion of even and odd subgroups of G, ,, defined in the proof of Propo-
sition 10 generalizes a notion for the Hecke triangle groups, of signature (2, g,00)
with g even; see, say Rankin’s review MR0529968 in Mathematical Reviews.

LEMMA 11. Suppose that m, n are such that the trace field of G, , does not equal
its invariant trace field. If H is a subgroup of G, that contains a parabolic
element and H is realized as a Veech group of some translation surface, then H
is contained in the even subgroup of Gy, p.

Proof. The Kenyon-Smillie result shows that if a hyperbolic element of G, ;
lies in some Veech group, then this element is contained in the even subgroup.
Suppose now that some subgroup H is not contained in the even subgroup of
Gpm,n- Since parabolic elements of G, ,, are conjugates of powers of A they are
even elements; thus H either contains a hyperbolic element and we are done,
or it contains an odd elliptic element. Denote this odd elliptic element by E.
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Choose a parabolic element P € H, so P = MA"M~! for some M € G,,,, and
some integer r. Let F = M~'EM, so that

PE=MA"M 'MFM '=MA"FM™!

has the trace of A" F. Represent F as a 2 x 2 real matrix with (2,1)-entry c; this
entry is nonzero as F is elliptic. Thus, the trace of PE equals trF + r(2cosn/m+
2cosn/n)c. However, we can replace P € H by any power of P and hence ensure
that the trace of this odd element of H is greater than 2 in absolute value. That
is, we have found an odd hyperbolic element in H, obstructing this subgroup
from being the Veech group of any translation surface. O

4. NONPARABOLIC DIRECTIONS IN THE PERIODIC FIELD

We show that certain infinite families of G, , are such that any translation
surface with Veech group commensurable to G, , has infinite classes of non-
parabolic directions in its periodic field. A search through these classes can re-
veal special affine pseudo-Anosov automorphisms, as we found for the (m, n) =
(7,7) case; see Example 19. (This type of informed search was used in [4].)

The technique we employ is number-theoretic. Since all entries of the gener-
ators given in (1) are algebraic integers it easily follows that G, , is a subgroup
of SL»(Ok), where Ok is the ring of integers of the field K = K,;, ,. The quotient
of Ok by any of its prime ideals is a finite field F, and there is induced homomor-
phism from G, , to a subgroup of SL,(F), as well as from the projectivisation
of G, to PSLy(F); these reduction homomorphisms are defined by entrywise
reduction of the matrices in our group, that is each entry is sent to its equiva-
lence class modulo the ideal. Now, SL, (F) acts on the finite projective line PL(F),
and if the image of G,,,, fails to act transitively there, then G, , itself must fail
to act transitively on P1(K). In this case, the preimages of elements not in the
orbit of infinity are then elements of K that are not parabolic fixed points.

This method goes back to Borho [6] and Borho-Rosenberger [7], in the setting
of the Hecke triangle groups, where it was further pursued by a school about
Leutbecher, see [16] for a recent usage in that setting. Underlying the method
is the classification of the subgroups of the various PSL,(F) by Dickson [14]
and Macbeath’s [25] application of this to study finite triangle groups. We call
the kernel of the reduction homomorphism a congruence subgroup of G, ;.
Congruence subgroups of the Hecke triangle groups have been been studied
for various reasons, see for example [30, 15]. The action of the full Galois group
Gal(Q/Q) on the algebraic curves uniformized by those congruence subgroups
of Hecke groups corresponding to surjective reduction maps is studied in [29].
Indeed, as Macbeath showed, the reduction of a triangle group (with parabolics)
is almost always the full finite matrix group, see the recent work of Clark and
Voight [13] for further discussion.

REMARK 12. There is a more elementary manner to prove the existence of non-
parabolic points in special cases. Indeed, the trace field K = K, ,, of G ;, is to-
tally real, thus in the setting where G, ,, is a subgroup of SL»(C), the fact that
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the cusps of the Hilbert modular group SL,(Ck) are in 1-to-1 correspondence
with the elements of the class group of K shows that whenever the class number
of K is greater than one there must be elements of K that are nonparabolic fixed
points. See [4] for further discussion.

REMARK 13. In answer to a question from the referee, we point out that there is
to date no known example of a point in the periodic field of a lattice surface that
is neither a parabolic fixed point nor a hyperbolic fixed point. There is, however
at least one candidate for such a point, given by considering the double 11-
gon translation surface of the initial Veech [32] examples, in conjunction with
Example 3 of [16].

When considering quotients by prime ideals of rings of integers of fields gen-
erated by cosine values, the following lemma of Leutbecher is of great utility.

LEMMA 14 (Leutbecher [23]). Given an integer m =3, let A=A, =2cosn/m. If
m is not twice a power of a prime, then A is a unit in the ring of integers Ok of
K = Q(A). Otherwise, if m =2p* for some prime p, A*"™ is an associate in this
ring of p; here as usual ¢(-) denotes Euler’s totient function.

Similarly, we need the following.

LEMMA 15. If at least one of m,n is odd, then G, , is in parabolic standard
form.

Proof. Recall that both 0 and oo are parabolic fixed points of any G, ,. From
(2), we find thatif m=2¢+1or n=2j+1 is odd, then

B'.(-1) =0, ¢/-(1)=0,

respectively. This as, sin (g;ﬂ” = sin %, and similarly in the other case. Thus,
if at least one of m, n is odd, then all three of 0, 1,00 are parabolic fixed points

of our group. O

4.1. Nonparabolic directions: when m = 29 and n #2/ +1is odd.

PROPOSITION 16. Suppose m = 2% with d > 1 and that n is odd with n # 27 +1
forany f. Then Gy, is in parabolic standard form and is integrally normalized;
furthermore, any finite-index subgroup of G, that is realized as a Veech group
is such that the corresponding translation surface has nonparabolic directions
with vanishing Sah-Arnoux—Fathi invariant.

Proof. By Lemma 15 G, is in parabolic standard form. By Lemma 14 with
m = 29, we find that the rational integral ideal (2) factors as (2 cos/m)Pum
Now, with K = K,;; , choose any prime ideal of O lying above (2 cosn/m), say
p. We have Gk /p = F,r, where f is the residue degree of p. This induces a group
homomorphism PSL,(Cx) — PSL,(F,r) that sends B to an element of order two,
and hence the image of our group is a dihedral group of order 2n. Arguing as
in [7], this dihedral group is transitive on Pl (F,r) onlyif n= 2f +1. (Since (2) is
totally ramified to Q(2 cosm/m), the residue degree of p is the residue degree of
the ideal of Q(2cosnz/n) that p lies above.)
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Thus, when 7 is not of the form 2/ + 1 the orbit of infinity under G, , does
not equal all of P!(K). That is, there are elements of P! (K) that are not parabolic
fixed points. Since K = K;;, ,, also equals the invariant trace field k;,,, by [26, p.
159], and as verified in detail by Hooper, K is the trace field of any finite-index
subgroup of G,,,,. But, the union of the parabolic fixed points of any such sub-
group is simply the set of parabolic fixed points of G,,, . This is hence a proper
subset of the trace field of the subgroup. Since G,,,, is in parabolic standard
form, so is any finite-index subgroup; thus, by Calta—Smillie, P!(K) is the set
of directions with vanishing Sah—-Arnoux-Fathi invariant for the corresponding
surface. O

EXAMPLE 17. Let m =4 and n =7. Recall that Z[2cos /7] is the full ring of inte-
gers of Q(2cosn/7). The minimal polynomial of 2cosz/7 over  (and hence over
Z, as this is an algebraic integer) is p(x) = x3 — x? —2x + 1. The reduction of p(x)
modulo two is irreducible; from this, the ideal (2) is inert to Q(2cosn/7), and
the quotient field Z[2 cos7/7] modulo this ideal is thus a finite field of order 23.

Indeed, the orbit of co modulo 2 is (by calculations, based on the fact that
the orbit of 0 is given by its orbit under just the reduction of B, and using the
arithmetic of Q(2cosm/7) to simplify expressions)

0,00, , A2, 1,A+1,A%2+ A

where A =2cosn/7. Thus, any element of K in the G4 7 orbit of any element of
Ox equivalent to A% + A +1 is not a parabolic fixed point.

4.2. Nonparabolic directions: m = n odd and not divisible by any 2/ + 1; an-
other special pseudo-Anosov map.

PROPOSITION 18. Suppose that m = n is odd and not divisible by any integer
21 +1 for positive f. Any finite-index subgroup of G, that is realized as a Veech
group is such that the corresponding translation surface has nonparabolic direc-
tions with vanishing Sah-Arnoux—Fathi invariant.

Proof. Again, G, 5, is in parabolic standard form. The matrix A is now clearly
congruent to the identity modulo 20kx. We thus choose a prime Gk-ideal p
dividing the ideal 20k. By Lemma 14, neither B nor C is trivial when entries
are reduced modulo p. Thus, G, projects to a nontrivial cyclic subgroup of
SL(F,;) where f is the residue degree of p. The order of this homorphic image
must divide the orders of B and C, that is must divide m. Since P!(F,/) has
2/ +1 elements, we conclude that this homomorphic image is too small to act
transitively. But then G, ;, fails to act transitively on PL(K). O

EXAMPLE 19. One again finds that the class of A2 + 1 + 1 is not in the orbit of
infinity. In fact, this element itself is fixed by a hyperbolic element for G ;; for
simplicity, we take a conjugate element to get a simpler appearing matrix. Let

—1-2A%2 —2431+222

— 5 _
M=AC= -1 -1+A2
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(we reduced entries modulo p(x), the minimal polynomial of 1), so M fixes

3A+V7AZ+A-1
22 '

One calculates that 8 = (a+13)/(a—16) is a square root of & = 7A2+A—1. Thus M
does have fixed points in the trace field. There is correspondingly a special affine
pseudo-Anosov diffeomorphism of totally real cubic dilatation —91% + 101 + 16
on Hooper’s (Y7,7,177).

FIGURE 2. A pseudo-Anosov map with vanishing Sah—-Arnoux-
Fathi invariant, indicated as zippered rectangles on the normal-
ization of Hooper’s translation surface (Y77,17,7) such that all
vertices have coordinates in the periodic field. A deterministic
walk approximating a la McMullen [28] a zero flux leaf of this
rank three flow, as represented by using Galois automorphisms.

The periodic field here is totally real and cubic (over the rationals), but as
(Y77,m7,7) is of genus 15, this is certainly not the example of a totally real cu-
bic case of pseudo-Anosov map found by Lanneau and discussed by McMullen
in [28]. We now pursue McMullen’s idea of focussing on the rank of the flow.
To normalize the surface so that all of the coordinates lie in the periodic field,
we divide all x-coordinates by sinz/7 (including adjusting the flow direction,
of course), see the left-hand side of Figure 2. We choose a transversal (again
in a direction perpendicular to that of our pseudo-Anosov with vanishing Sah—
Arnoux-Fathi invariant) and explicitly find the interval-exchange transformation
given by first return to this transversal; both the set of widths and of translations
for this transformation are contained in the periodic field. We can now consider
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an initial piece of the orbit under the interval-exchange map of any point x on
the interval, (x,),<y and map this to ((x, — x)’, (x, — X)"") n<n, the ordered pairs
of the conjugates of the difference of the n™ image from x, see the right-hand
side of Figure 2. (There, after scaling the transversal interval to have length one,
we have taken x = 13/8.) As McMullen discusses, this deterministic walk approx-
imates the continuous leaf when identifying the first homology of the period
torus of the real part of (the normalization of) 177 with the periodic field itself.
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