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ABSTRACT

There  is  growing  recognition  worldwide  that  the  impacts  of  fishing  on  non-targeted  components  of 
marine  ecosystems should be included in the assessment  of  fisheries  sustainability.  This  leads  to the 
inclusion of new constraints in evaluations of the long-term bio-economic performance of fisheries. In 
this paper, we analyze the implications of such constraints based on the case of bycatch of juvenile hake 
in the Bay of Biscay (ICES area VIIIa,b) trawl fishery for nephrops. The analysis is based on a discrete 
time  model  of  the  trawl  fishery  including  an  age-structured  representation  of  stock  dynamics,  with 
uncertainty. We define sustainability using the viability framework of analysis:  viability objectives are 
represented as constraints which relate to the economic status of the fishing fleet and to the biological 
status of fish stocks. We include an ecological constraint defined as a minimal target threshold for the 
recruitment of mature hakes, which is related to the fishing mortality induced by trawlers on juvenile 
hake.  Based  on  stochastic  analysis,  we  define  the  probability  that  both  economic  and  ecosystemic 
constraints  are  met,  as  a  function  of  the  level  of  these  constraints.  We use  the  model  to  assess  the 
sustainability of the fishery under different scenarios as regards bycatch reduction strategies.

Keywords: Sustainable fish eries, management procedures, stochastic viability

INTRODUCTION
Excess capacity of global fishing fleets leads to the capability for these fleets to considerably alter the size 
of both exploited fish populations and other species. Present political objectives for fisheries management 
include stopping overfishing, rebuilding overfished stocks, minimizing bycatch and protecting essential 
fish habitats. The European Commission and the FAO emphasize the importance of an ecosystem-based 
framework for fisheries management (Garcia et al., 2003). The purpose of such integrated approaches is 
to provide sustainable  management  tools  that  simultaneously take into account  biological,  social  and 
economic objectives. However developing an operational framework for an ecosystem-based approach to 
fisheries  management  is  technically  difficult,  as  it  requires  taking  into  account  several  dynamics 
(biological, economic and social), their interactions, and a large degree of uncertainty. An important issue 
is to develop this approach without excess complexity in the models used to describe fisheries (Charles, 
2005).  One  way  of  escaping  from  this  excess  complexity  is  to  extend  the  use  of  single  species 
performance  measures  and  references  points,  by  taking  into  account  specific  interactions  with  non-
targeted species. 

Performance measures and reference points for the management of target species are now widely used in 
fisheries (ICES, 2003a,b). For example, the International Council for the Exploration of the Sea (ICES) 
develops management tools -- the so called precautionary approach --  based on reference points  Blim 
(and Bpa) and indicators Flim (and Fpa), focusing respectively on the spawning stock biomass (SSB) and 
fishing mortality of targeted species. From a general point of view, limit reference points define cut-off 
points below or above which recruitment overfishing and/or risk of stock collapse is unacceptably high. 
De Lara et al.  (2007) interpret these thresholds as constraints that the dynamic fisheries system must 
satisfy to  remain  perennial.  Applying  the  viability  framework  of  analysis,  they show that  the  ICES 
precautionary approach is sustainable if and only if the lowest possible sum of survivors in a fished stock 
(weighted by growth and maturation) and newly recruited spawning biomass, is above Blim. 

The ICES precautionary approach is designed for single species management.  A first  step in moving 
towards an ecosystem-based fisheries management  framework is  to expand single-species  approaches 
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centered  on  the  target  species,  by  considering  non-target  species  impacted  by  fishing  (Hall  and 
Mainprize., 2004). We consider such an extended approach applied to the Bay of Biscay (ICES fishing 
areas VIIIa and VIIIb) Hake-Nephrops mixed fishery. This fishery has major economic importance both 
at the French regional and national scale. The Bay of Biscay hosts one of the most important nurseries of 
the Northern stock of Hake (ICES, 2003a). In recent years, estimated fishing mortality of Hake was just 
above the fishing mortality corresponding to the precautionary approach (Fpa) and the Hake spawning 
stock biomass has declined until  stabilizing to a low level in the early 90's,  raising serious concerns 
regarding the stock’s viability. A recovery plan was enforced in 2004. Hake constitutes an important by-
catch  in  the  Bay of  Biscay Nephrops  fishery.  Nephrops  fisheries  induce  at  least  half  of  the  fishing 
mortality of the three first age groups of Hake (immatures).  A recovery program concerning the Hake 
population must thus take Nephrops fishing activity into account. According to Drouineau et al. (2006), it 
is urgent to find new Management Procedures in order to achieve sustainability of this mixed fishery. An 
important issue is thus to examine the possibility to define a viable exploitation of the Bay of Biscay 
Nephrops while limiting the by-catch impact on Hake.

Butterworth et al. (1997) define a Management Procedure (MP) as a set of clearly defined rules, which 
translate data from a fishery into a regulatory mechanism (defining for example Total Allowable Catches, 
or Fishing effort, each year). The main objective of a MP is to define a harvesting strategy guaranteeing 
allowable catches that provide acceptable stability to the fishing industry while at the same time resulting 
in biological risks that are acceptable in terms of scientifically established norms (Geromont et al., 1999). 
According to Kell et al. (2005), stocks may crash at fishing levels that standard stochastic projections 
would  suggest  were  safe.  It  is  thus  necessary  to  develop  models  that  capture  the  characteristics  of 
fisheries dynamics, and develop management procedure that are robust to a broad range of uncertainty. 
Notwithstanding the difficulty to define MP that are robust to uncertainty, another problem faced by MP 
evaluation is to encompass a sufficiently wide range of plausible scenarii for resource status in the face of 
high variability of resources, and to try to manage conflicting fisheries in a joint MP (Geromont et al., 
1999). From a more general point of view, the issue is to take into account conflicting objectives in an 
uncertain environment.

When technical interactions exist between the catches of two species, joint management procedure are 
needed to provide Total Admissible Catches (TAC) recommendations for both species simultaneously. 
This  is  for  example the case in South African pelagic  fisheries  where juvenile  pilchard are taken as 
bycatch in the anchovy fishery (De Oliveira and Butterworth, 2004). This is also the case in our problem, 
where Hake is a bycatch to the Bay of Biscay Nephrops fishery.

In this paper, we propose to enlarge the approach to Management Strategy Evaluations applied to such 
contexts. The analysis aims at:

1. defining  a  theoretical  framework  that  makes  it  possible  to  analyze  trade-offs  between 
sustainability objectives in fisheries management, when environmental uncertainty occurs;

2. applying this framework to the more specific case of technical interactions in fisheries;
3. analyzing possible  management  options,  such  as  increased  selectivity,  in  a  particular  fishery 

model.

We propose to represent the set of sustainability objectives (including economic and ecological objectives 
of fisheries management)  by a set of constraints on indicator levels. In a multi-criteria framework, we 
seek to identify management strategies that allow to respect all the constraints over the planning horizon, 
i.e. to achieve all of the sustainability objectives in the long-run. We do not give priority to an objective 
over the others. As we are interested in analyzing the robustness of management strategies to uncertainty, 
we use the viability approach in a stochastic framework, and examine the probability that sustainability 
objectives are achieved over a finite time horizon.
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To illustrate the general approach, we propose a viability analysis of the Hake-Nephrops fisheries. We 
examine how to conciliate economic objectives for the Nephrops fishery while taking into account the 
impact of its fishing activity on the Hake population. Two sustainability objectives are considered: (i) on 
one hand, a minimal profit defines the economic viability of the Nephrops fishery; (ii) on the other hand, 
viability of the Hake stock is defined in terms of biological limits allowing reproduction of the fish stock. 
The recruitment of mature Hake in the fishery is used as a proxy indicator of this viability constraint.

We develop a discrete time dynamic model with uncertainty in recruitment. In a stochastic framework, we 
measure viability by the probability that there exists feedback controls (management procedure) ensuring 
that constraints are satisfied along a given finite horizon. This viability probability obviously depends on 
the levels of these constraints. We perform a Monte Carlo estimation of this probability as a function of 
the constraints level. This allows us to measure trade-offs in viability constraints.

We then analyze the implication of a change in the exploitation diagram of the Nephrops fishery (for 
example due to a change in fishing gear) in order to reduce bycatch by increasing selectivity. For that 
purpose, we examine the viability probability associated with the new exploitation pattern.

THE BIOECONOMIC MODEL

The population dynamics models and economic dynamics

TWe model the biological dynamics of two species: European Hake (merlucius merlucius) and Nephrops 
(Nephrops  norvegicus).  These  two species  are  represented  as  aged-structured  stocks  (Gulland,  1967; 
Xiao, 2007), with A age groups for each stock (in this case, 9 age groups for each stock).

The abundance of each species is defined by a number of individuals in age groups a=1,...,A. We denote 

by N s(t) the abundance of species s at year t, where s=h,n respectively for Hake and Nephrops: N s(t) is a 

vector whose component N sa(t) represents the abundance of the a-group.

The dynamics of the resource is described by

N s(t+1)=G(N s(t),u(t),w(t))                                                                    (1)

It  depends  on  the  resource  stock,  the  decision  parameter  u(t) which  represents  fishing  effort  of  the 
Nephrops fleet, and the uncertainty parameter w(t).

The first group (a=1) is composed of the new recruits to the stock. The number of recruits may depend on 
many factors,  including  the  size  of  the  genitor  stock  and  some environmental  factors.  This  leads  to 
uncertainty on recruitment. To represent this uncertainty, we define recruitment as a function of stock 
biomass and an uncertainty parameter w(t):

N s(t+1)= f s (N s(t),w(t)).                                                                   (2)

For age groups from 2 to A-1, the number of individuals of age a in year t+1 depends on the number of 

individuals of age a-1 in year t that survived. We distinguish the natural mortality rate M sa of species s at 

age a, and the fishing mortality F sa(t). The dynamics read

N sa(t+1) = N sa-1(t) (1 – M sa-1  – F sa-1 (t))                                                  (3)
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The A age-group is a ``plus-group''  composed by the survivors of  both  A and  A-1 age-groups at  the 
previous period. Its population evolves as follows

N sA(t+1) = N sA-1(t) (1 – M sA-1  – Fs
A-1 (t)) +  N sA (t) (1 – Ms

A  – Fs
A (t))             (4)

The Nephrops fishery targets Nephrops but catches Hake as bycatch. It thus induces a fishing mortality 

Fn(t) and a fishing mortality Fh(t). Hake is also caught by other fleets, leading to an additional fishing 

mortality F h#(t) considered constant in the present analysis. Fishing mortalities at year t thus vary with 
the fishing effort of the fleet targeting Nephrops. This effort is defined with respect to a reference fishing 

mortality F sref(t), and an effort multiplier u(t). We thus have

F n(t) = u(t) F nref                                                                                  (5)

F h(t) = u(t) F href + Fh#                                                                       (6)

We are interested in two categories of catches by the Nephrops fishery: Nephrops catches that generate 
the gross return of the fleet, and catches of juvenile Hakes that induce ecological (and economic) losses 
(hake bycatch, being discarded, generates no return to the nephrops trawling fleet).

The catches Cs
a(t) of fish belonging to the a age group in year t are defined by

Cs
a(t)= Fs

a(t) Ns
a(t)                                                                              (7)

Part of these catches are discarded according to discard rate ds
a. For the estimation of discard rates we 

refer to Talidec et  al.  (2005) and ICES (2003a,b).  Considering the mean weight at  age  ws
a for each 

species, and the price per kilo for the corresponding market class ps
a, we can compute the gross return of 

the Nephrops fishery, and define the economic profit at year  t, given the costs Q(t)=u(t)qref where qref 

are the fishing costs associated to the fishing effort of the reference year. The profit is defined by 

π(t,Nn(t),u(t)) = Σa [ pn
a wn

a (1-dn
a) Cn

a  (t)] – Q(t)  

= u(t) (Σa [ pn
a wn

a (1-d na) Nn
a  (t) F nref ] - qref )                        (8)

Sustainability objectives: viability constraints

We define sustainability of the fishery by taking into account economic objectives and the ecological 
impact of the Nephrops fishery on the Hake population. Sustainability is defined as the satisfaction of 
economic and ecological constraints dynamically.

De Oliveira and Butterworth (2004) define Joint Management Procedures of two fisheries with technical 
interactions by setting a TAC on the targeted species and a limit on the bycatch level for the other species 
(Total  Admissible Bycatch,  TAB). We argue here that  the viability of  the bycaught  species  will  not 
depend on the absolute level of bycatch, but on a minimal recruitment of mature individuals in the fish 
stock, whatever the level of bycatch is. Also, we consider that the economic viability of the fishery will 
not only depend on target species catches (and thus on a TAC level), but on the profit derived from the 
fishery.
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We thus define the following viability constraints for the fishery. On one hand, we consider that the 
Nephrops fishery is economically viable if profit is greater than a threshold πmin. This minimal threshold 
is the economic objective for sustainability. On the other hand, we consider that the fishery is ecologically 
viable if its impact on Hake biology is compatible with a minimum level of recruitment of mature Hake. 
The ogive of sexual maturity for Hake is as follows:

Age group 1 2 3 4 5 6 7+

% of mature individuals 0 0 0 0.2 0.6 0.9 1

The fourth age group of Hake is the first group to contain mature individuals. Given that bycatch of the 
first three age groups of Hake by Nephrops fishing vessels is important (ICES, 2003a,b ; Talidec et al., 

2005),  we define a target recruitment for  the fourth age group of Hakes  Nh
min.  As the mortality of 

juveniles is mainly due to the Nephrops fishery, a constraint on recruitment of mature Hakes will induce a 
need to limit Nephrops fishing activity1. To be sustainable, the Nephrops fishery must thus satisfy the 
following conditions in any year t (t=t0,...,T):

π (t,Nn(t),u(t)) ≥ πmin                                                                             (9)

Nh
4 (t) ≥  Nh

min                                                                                   (10)

If one of these constraints is not respected, the Nephrops-Hake mixed fishery faces a crisis situation, 
either from the biological or from the economic point of view.

STOCHASTIC VIABILITY AS A TOOL FOR MANAGEMENT STRATEGIES EVALUATION

We propose  to  examine the  viability  of  management  procedures  with  respect  to  both  economic  and 
ecological objectives. Both the objectives must be achieved over the planning horizon for the fishery to be 
said viable.

The  purpose  of  Management  Strategy  Evaluations  is  to  evaluate  the  consequences  of  management 
procedures  with  respect  to  the  fisheries  objectives.  This  includes  evaluating  the  consequences  of 
uncertainty  by  means  of  simulation  tests  and  subsequently  developing  MP  that  are  robust  to  this 
uncertainty  in  the  long  run  (Geromont  et  al.,  1999).  The  method  consists  in  testing  a  particular 
management  procedure  in  a  great  number  of  simulations  over  a  given  time  period,  each  simulation 
representing a plausible  ``state  of  nature''  (scenario),  and in performing statistics over  the simulation 
results  to  summarize  the  performance  of  the  particular  Management  Procedure  (De  Oliveira  and 
Butterworth, 2004). When comparing Management Procedures, their performance is considered to be best 
when the risk of reducing abundance to a low level is small, the variations in allowable catches from year 
to year are low, and average catches are high. To represent these objectives, statistics are thus computed 
regarding depletion risk, Total Allowable Catches variability, and average catch. As these objectives are 
often in conflict, choice of management procedure usually implies trade-offs between them.

1 The ecological constraint thus defined, based on this proxy indicator (recruitment of the fourth age-group), follows 
the analysis  of De Lara et al. (2007) who examine the conditions for ICES management tools to ensure viable 
fisheries. Management decisions based on precautionary minimal biomass and maximal fishing mortalities, Bpa and 
Fpa,  are  viable  if  a  minimal  number of  genitors  is  recruited each year,  assuming this  minimum number to  be 
constant.
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We propose to enlarge the usual Management Procedure Evaluation approach by using viability theory. 
To  characterize  the  sustainability  of  the  fishery,  we  use  the  viability  approach  (Aubin  1991).  This 
framework  allows  us  to  study  the  consistency between  inter-temporal  trajectories  and  constraints  in 
dynamic systems. It has been applied to the sustainability issue in Martinet and Doyen (2007), and to the 
study of fisheries sustainability and recovery processes in Martinet et  al.  (2007). It is advocated as a 
relevant approach to fisheries management in an ecosystemic perspective by Cury et al. (2005). We use 
this framework to to identify decision rules that make it possible to achieve sustainability objectives at all 
periods of the planning horizon, without giving priority of one of the objective, for example the TAC 
level.  In  the  proposed framework,  a  management  procedure  will  be  preferred  if  it  leads  to  a  higher 
viability probability.

In the present analysis, we consider a finite time horizon. An exploitation trajectory is viable if both the 
economic  constraint  (9)  and  the  ecological  constraint  (10)  are  satisfied  for  all  t=t0,...,T.  We aim at 
defining  Management  Strategies  that  result  in  viable  trajectories  of  the  system,  i.e.  inter-temporal 
trajectories that respect the economic constraint (9) and the ecological constraint (10) through time. We 
adopt a stochastic approach by fixing a given probability P on the set of scenarios w(.)=(w(t0),...,w(T)),  
representing the uncertainty inherent to our dynamic model representing the fishery.

We are interested in the definition of the probability to achieve viability goals from the initial state of the 

fishery  (Nh(t0),Nn(t0)).  For  any  couple  of  sustainability  objectives  (πmin,Nh
min),  we  define  the 

probability that  there exists  exploitation decision rules  that  make it  possible  to achieve sustainability 

objectives, and denote this probability P(πmin,Nh
min).This measures the probability that the fishery will 

not face a crisis situation over the time horizon T. The policy objective is to define management strategies 
that maximize this probability. Hence, the approach seeks to identify both the probability to achieve a set 
of  given  sustainability  objectives  in  the  fishery,  and  the  decision  rule  (management  procedure)  that 
maximizes that probability.

ANALYZING MIXED FISHERIES VIABILITY

In  order  to  analyze  the  viability of  the  mixed  fishery with  respect  to  both  economic and ecological 
objectives, we compute the viability probability associated with the objectives. Carrying out a sensitivity 
analysis on the level of the objective values then allows us to describe the trade-offs between:
− the economic and ecological objectives;
− the level of the objectives and the probability to achieve them.

We compute,  for  a range of economic and ecological  viability objectives,  the probability that  viable 
decisions and inter-temporal paths exist, given the uncertainty on recruitment w(.)=(w(t0),...,w(T-1)). This 
means that the computed probability is the probability that  one of the possible management procedures 
leads to a viable fishery. To compute this probability, we must in theory simulate the consequences of all 
possible Management Procedures. We thus do not limit our study to the examination of the consequences 
of  a  particular  management  procedure,  but  can  nevertheless  identify  the  management  procedure  that 
maximizes the probability of a viable fishery, using the result of De Lara and Martinet (2008).

From an operational point of view, instead of analyzing all possible management procedures resulting in 

inter-temporal  fishing  effort  u(.)  and  inter-temporal  trajectories  (Nh(t),Nn(t)) starting  from the  initial 

biological state (Nh(t0),Nn(t0)), we use the fact that the greater the fishing effort, the greater the annual 
gross return, and the lower the remaining fish stock. We apply the result of De Lara and Martinet (2008), 
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defining  the  management  procedure  that  maximizes  the  viability  probability  of  our  problem,  with 
reference to a limit harvesting strategy u*.

We define the minimum effort consistent with the profit target πmin:

u*(t,Nn) = inf { u | π(t,Nn,u) ≥ πmin }                                                        

=> u*= πmin /( ∑a [ pn
a wn

a (1-d na) Fnref Nn ] - qref )               (11)

Numerical approach

We  estimate  the  viability  probability  associated  with  various  constraint  levels  by  Monte-Carlo 
simulations, approximating probabilities by frequencies.  As there are no established stock-recruitment 

relationships for the two species studied, we consider that the sequences N s1(t0+1), ..., N s1(T) for s=h,n 

are independent i.i.d. sequences. Each N s1(t) is supposed to follow a Normal distribution with estimated 

mean recruitment N s0 and standard deviation defined using available data.
We determine the viability probability on a range of constraints levels. For each couple of constraints 
levels,  we  generate  10 000  recruitment  scenarii  and  check  whether  the  minimal  harvesting  strategy 
satisfying the economic constraint (9) also satisfies the ecological constraint (10). We thus obtain the 
frequency  of  viable  trajectories,  which  is  an  approximation  of  the  viability  probability.  Results  are 
presented on Fig.1.

Fig. 1: Viability probability for a range of sustainability objectives  πmin and  Nh
min

As expected, we observe on Fig.1 that the probability to have a viable exploitation decreases when the 

constraints levels  πmin  and  Nh
min increase. Trade-offs between the sustainability objectives and the 

probability to achieve these objectives in an uncertain world can thus be quantified.

Moreover, our analysis makes it possible to define a set of management objectives with an associated risk 
(probability of success). We can define the set of sustainability objectives that can be achieved with a 
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probability level greater than β. For example, the set of sustainability management objectives that can be 
achieved with a probability greater than β=0.9 is presented on Fig.2.

Fig. 2: Sustainability objectives that are achievable with a probability greater than 0.9

Fig.  2  illustrates  the  trade-offs  in  defining  the  ecological  and the  economic  constraint:  for  the  same 
probability of keeping the fishery within the specified constraints, increasing the tightness of ecological 
objectives  (in  our  case,  increasing the  minimum recruitment of  adult  Hake)  will  imply lowering  the 
economic viability constraint (in our case, lowering the minimum profit for the Nephrops fishing fleet). 
The trade-off is not constant with the level of the ecological constraint: as the strictness of this constraint 
is increased, keeping a high probability of ecological-economic viability will imply strong reductions in 
the minimum gross turnover. If the ecological constraint is set too high, it will not be possible for the 
fishery to be viable with the required probability.

This analysis provides a description of the trade-offs in defining sustainability objectives for the fishery. 
One  can  not  have  at  the  same  time  high  economic  and  ecological  requirements  and  an  important 
robustness to uncertainty. In particular, the current objectives for the Nephrops fishery of maintaining 
recent years profit while diminishing the bycatch of Hake is associated with a very low probability of 
achievement, hence little chances of success. In its present exploitation configuration, the fishery thus 
displays limited viability, based on our definition of viability objectives.

Alternative exploitation pattern

Based on our approach, we can assess the capacity of alternative management scenarii to contribute to 
maintain the fishery within the pre-specified economic and ecological constraints. In order to analyze a 
management procedure that aims at reducing the bycatch level, we consider the implication of a change in 
the exploitation diagram of the Nephrops fishery due to a modification of the selectivity of Nephrops 
trawls. This technical change entails a reduction of fishing mortalities on Hakes, but also reduces the 
catching efficiency on small Nephrops.

We define new fishing mortalities Fn and Fh of the Nephrops fishery for the two species, corresponding 
to the alternative selectivity of the Nephrops fishing fleet on both species. Fig.3 presents the viability 
probability associated with the same range of constraints as before, but with the new selectivity measure.
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Fig. 3: Viability probability with an alternative selectivity pattern

The  viability  probability  decreases  when  the  selectivity  of  fishing  gears  is  increased.  This  can  be 
explained by the fact that imposing gear restrictions in order to improve selectivity implies a reduction of 
both bycatch AND catch. This entails lower profit for the Nephrops fishery. As our viability analysis is 
based on both ecological and economic objectives, the economic sustainability objective will be harder to 
achieve, and the overall viability probability is reduced.

An additional consequence which the analysis allows to illustrate is that if the economic objective is not 
achieved, the fishery will face an economic crisis. Fishers are thus bound to be strongly opposed to gear 
restrictions and effort limitation, as such measures would reduce their  profit  in the short run. From a 
general point of view, increases in the selectivity of fishing gear will result in higher stock levels in the 
medium term, and the short term costs will often be lower than the long-run benefits. Nevertheless, given 
the multi-dimensional nature of constraints applying to fisheries recovery programs, and in particular the 
importance of acceptability constraints (Martinet and Thébaud, 2008), a management program based on a 
reduction of bycatch will require compensation mechanisms to deal with the initial decrease of profit, if 
one wants the program to succeed.

CONCLUSION

In this paper, we propose to use the viability framework as a tool to evaluate Management Strategies in 
fisheries. The approach is based on the definition of a set of constraints representing the sustainability 
objectives of the fishery, and on the definition of management decisions that allow the fishery to satisfy 
all the constraints at all times. Uncertainty is included by adopting a stochastic framework of analysis. We 
define the probability that a set of sustainability objectives are achieved, and the management procedure 
that maximizes that probability. The viability probability represents the possibility for the fishery to avoid 
a crisis over the planning horizon, that is, the probability to meet all the objectives dynamically, without 
giving priority to any one of them.
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We apply this framework to analyze the sustainability of a mixed fishery, where technical interactions 
exist  between the catches of  two species.  As a case-study, we consider the Bay of Biscay Nephrops 
fishery,  which targets Nephrops and catches juvenile Hake as bycatch, jeopardizing the viability of the 
Hake fishery. We characterize the sustainability of the fishery using two indicators: On one hand, we 
consider that the Nephrops fishery is economically viable if the profit is greater than a minimal threshold; 
on the other hand, we consider that the fishery has a sustainable ecological impact on the Hake species if 
the abundance of the fourth age-group of Hake is higher than a threshold. This latter constraint is based 
on the viability analysis developed by De Lara et al. (2007), and on the fact that the fourth age-group is 
the first to include mature Hake.

We treat the levels of the economic and ecological constraints as parameters, and develop a sensitivity 
analysis based on these two parameters. Doing this,  we define the viability probability for a range of 
sustainability objectives. This allows us to exhibit the trade-offs between sustainability objectives, and 
between  the  sustainability  requirements  and  the  probability  that  these  goals  can  be  achieved.  More 
specifically, we show that the higher the sustainability objectives, the lower the viability probability. We 
also show that, if one wants the sustainability objectives to be achieved with a minimal probability (e.g. 
90%), one must choose these objectives within a reduced set. A major difference between our approach 
and standard Management Strategy Evaluation is that it is not based on statistics computations on the 
indicators (for example mean of the catches, variance of TAC...). In particular, the viability constraints 
have to be respected at any time for the fishery to be said sustainable.

In our particular case study, we show that the configuration of the fishery is lowly compatible with the 
objectives of having a high profit and low bycatch. We examine the impact of a measure increasing the 
selectivity of fishing gear in order to reduce bycatch. It appears that such a measure is associated with a 
lower probability to satisfy the viability constraint, as short term costs jeopardize the economic viability 
of the fishery. This emphasizes the necessity to define regulated transition phases in the definition of 
recovery programs.
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