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Parallel loops are one of the main sources of parallelism in scientific applica-

tions, and many parallel loops do not have a uniform iteration execution time. To 

achieve good performance for such applications on a parallel computer, iterations 

of a parallel loop have to be assigned to processors in such a way that each proces-

sor has roughly the same amount of work in terms of execution time. A parallel 

computer with a large number of processors tends to have distributed-memory. To 

run a parallel loop on a distributed-memory machine, data distribution also needs 

to be considered. This research investigates the scheduling of non-uniform parallel 

loops on both shared-memory and distributed-memory parallel computers. 

We present Safe Self-Scheduling (SSS), a new scheduling scheme that com-

bines the advantages of both static and dynamic scheduling schemes. SSS has two 

phases: a static scheduling phase and a dynamic self-scheduling phase that together 

reduce the scheduling overhead while achieving a well balanced workload. The tech-

niques introduced in SSS can be used by other self-scheduling schemes. The static 

scheduling phase further improves the performance by maintaining a high cache hit 

ratio resulting from increased affinity of iterations to processors. SSS is also very 

well suited for distributed-memory machines. 

We introduce methods to duplicate data on a number of processors. The 

methods eliminate data movement during computation and increase the scalabil-

ity of problem size. We discuss a systematic approach to implement a given self-
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scheduling scheme on a distributed-memory. We also show a multilevel scheduling 

scheme to self-schedule parallel loops on a distributed-memory machine with a large 

number of processors to eliminate the bottleneck resulting from a central scheduler. 

We proposed a method using abstractions to automate both self-scheduling 

methods and data distribution methods in parallel programming environments. The 

abstractions are tested using CHARM, a real parallel programming environment. 

Methods are also developed to tolerate processor faults caused by both physical 

failure and reassignment of processors by the operating system during the execution 

of a parallel loop. 

We tested the techniques discussed using simulations and real applications. 

Good results have been obtained on both shared-memory and distributed-memory 

parallel computers. 
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Scheduling Non-uniform Parallel Loops on MIMD Computers  

Chapter 1  

INTRODUCTION  

Over the past fifty years we have witnessed dramatic increases in computing speed. 

However fast the fastest computer of today may be, there are always applications de-

manding computers that are many orders of magnitude faster. For many years, corn-

puter engineers have been admirably successful in increasing the speed of computers 

by employing better hardware technologies. Unfortunately, a limiting factorthe 
speed of light in a vacuumis putting an end to this trend. It becomes inevitable 

that a substantial increase in computer speed can only come about by increasing the 

number of operations taking place concurrently. This fact has been well noted by 

computer researchers and computer manufacturers. Consequently, a large number 

of parallel computers have been built in research laboratories, and many parallel 

computers are available commercially on the market. 

The availability of parallel computers has led to an expectation that most 

computation-intensive scientific applications will be routinely sped up using parallel 

processing. In these applications, loops are the most time-consuming parts and are 

the richest source of parallelism [68]. In many scientific applications that run on 

parallel computers, the loop is (or can be converted into) a parallel loop, i.e., a loop 

in which each iteration is independent of all others. A parallel loop, also called a 

Do All loop, has no cycles in its dependence graph [54]. Iterations in a parallel loop 
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are independent and can be executed in any order. Parallel Do and SPREAD Do 

in PCF Fortran and Butterfly Fortran are some of the other examples of parallel 

loops. 

When the iteration execution times of a parallel loop do not vary significantly, 

the loop is a uniform parallel loop; otherwise, the loop is a non-uniform parallel 

loop. In order to execute a parallel loop concurrently, iterations of the loop have to 

be assigned to processors, either at compile time or at run time. Clearly, different 

assignments of iterations to processors yield different execution times. Since one 

of the main reasons to employ parallel computers is to reduce the total execution 

time, assignments of iterations to processors rendering short completion times are 

always desirable. A schedule of a parallel loop is an assignment listing, for each 

iteration, the processor executing the iteration. A static scheduling scheme assigns 

iterations to processors at compile time; in contrast, a dynamic scheduling scheme 

assigns iterations to processors at run time. 

To schedule a uniform parallel loop for maximum efficiency, an equal number 

of iterations are assigned to each processor (assuming that processors start executing 

the loop at the same time). In scheduling a non-uniform parallel loop, assigning an 

equal number of iterations to each processor does not always result in each processor 

having an equal amount of workload measured in some time units of execution time. 

Since a parallel loop is finished only after all iterations have finished, a balanced 

workload is a key factor to good performance for a non-uniform parallel loop. In the 

presence of variable length iteration execution times, a dynamic scheduling scheme 

is in principle superior in balancing the workload [79]. 
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1.1 Problems Studied 

The scheduling of parallel loops is a special case of the general scheduling problem, 

which has been studied extensively by many researchers in a theoretical context 

[12, 29]. Scheduling in general is NP-complete [12]. 

Let I = {t1,t2, , tN} be the iteration space formed by the N iterations of 

a parallel loop. Let e(ti) be the execution time for iteration ti. Further, let M be a 

parallel machine that has P processors denoted as {pi , p2, , pp}. N, P, and e(ti) 

are positive integers and may be unknown at compile time. Let D = Udi , where 

d, is a partition of I into P disjoint subsets 4. , II, and D is the collection 

of all possible partitions. In addition, the size of D is PN. The loop scheduling 

problem is to find an optimal partition do such thatl the execution time of the loop 

is minimized. That is, 

min { max E e(t > max { E e(ti)} (1.1)
diED 1<k<P 1<k<P

t,Erk 

Except for some trivial cases, such as when P = 1, e(ti) are constants, 

P = N, or other limited number of special cases discussed later, the yes-no version of 

the scheduling problem is NP-complete [12]. To complete scheduling in a reasonable 

amount of time, heuristics are used to approximate such problems in polynomial 

time. 

In practice, e(ti) is often not a constant and may not be known at com-

pile time; therefore dynamic scheduling techniques are applied to achieve a high 

processor utilization. In this case the loop scheduling problem discussed in this dis-

sertation is different from the traditional one given above. Let ./.1 be the collection 

of iterations assigned to processor Ri according to partition d1, E(.1.1) be the total 

iteration execution time of the iteration in and 0; be the scheduling overhead 

'Note that the scheduling cost if. neglected here. 
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for processor pi, then the total execution time of the parallel loop under partition 

Di is 

E(I) = inaix{E(Ii) (1.2) 

From Eq.(1.2) we can see that either balancing E(Ii) or reducing Oi or 

both together reduce the total execution time E(I). Balancing E(./.1) improves 

performance because the total amount of work W of a parallel loop is independent 

of both the assignment of iterations to processors and the number of processors 

employed in executing the loop. When more than one processor is used to execute 

the loop, the amount of work done by all the processors cannot be less than W. 

Therefore, if a processor is assigned a smaller than the average amount of work, 

there must be some other processors that are assigned a larger than the average 

amount of work. In addition, since the execution of the loop is not completed until 

all the iterations are executed, assigning each processor an equal amount of work 

so that all processors finish at the same time, improves performance by achieving 

a high processor utilization. The objectives of this study are to find practical 

methods of partitioning the iteration space to produce a balanced workload with a 

low scheduling overhead. 

Self-scheduling is the most common approach to dynamic scheduling of non-

uniform parallel loops. In this approach, a ready task queue is created. Whenever a 

processor becomes idle, it removes the first task from the queue and executes it, i.e., 

processors "self-schedule" themselves as the program executes [83]. The research in 

this thesis investigates combining static scheduling and self-scheduling to schedule a 

non-uniform parallel loop on both shared-memory and distributed-memory parallel 

computers. 
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1.1.1	 Self-Scheduling of Parallel Loops on Shared-Memory Parallel Corn-

puters 

A shared-memory parallel computer is an ideal environment to implement self-

scheduling schemes. Recall that a ready task queue needs to be maintained in 

self-scheduling, and this ready task queue needs to be shared in the sense that 

all processors have access to the queue. A parallel loop with N iterations can be 

considered as a ready task queue with N tasks and the loop index points to the 

head of the queue. When a processor removes an iteration, it only needs to modify 

the loop index through exclusive access, however 

The main issue in self-scheduling a parallel loop on a shared-memory machine 

is balancing the trade-off between assigning each processor roughly the same amount 

of workachieving a balanced workloadand incurring a low scheduling overhead. 

On one hand, an unbalanced workload lengthens the execution time of the parallel 

loop while, on the other hand, achieving a balanced workload by incurring a high 

scheduling overhead may diminish the benefit of having a balanced workload. 

When a parallel loop is enclosed in a serial loop, assigning an iteration of the 

parallel loop to the same processor in every iteration of the serial loop also improves 

the performance because this helps to maintain a high cache hit ratio. 

1.1.2	 Self-Scheduling of Parallel Loops on Distributed-Memory Parallel 

Computers 

Self-scheduling on distributed-memory machines faces many challenges. The first 

one is that since there is no shared-memory, the shared ready task queue has to 

be either distributed or stored on some processors. If the queue is distributed on 

all the processors, maintaining the consistency of the queue becomes too costly. 

An alternative way is to designate a processor as the scheduling processor that 

maintains the ready task queue. When a processor becomes idle, it sends a request 
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message to the scheduling processor requesting additional work. 

If all the iterations are thus self-scheduled, a balanced workload may be 

achieved but at the cost of a high communication overhead. In addition, the schedul-

ing processor may become a bottleneck as the number of processors increases. 

Another issue is the need of a processor in a distributed-memory machine 

to store the data needed by an iteration in order to execute the iteration. This is 

not a trivial problem because data is usually distributed to processors before the 

execution of a loop begins; in contrast, the iterations are assigned to processors 

during the execution of the loop. 

1.1.3 Compiler Level Support of Self-Scheduling of Parallel Loops 

Few parallel languages or environment, support self-scheduling of parallel loops. It 

is left totally to the user to implement the scheduling schemes of his or her choice. 

Implementing a self-scheduling scheme is not an easy task. Bugs are often intro-

duced into the program during implementation. In addition, the code for scheduling 

techniques is often interspersed with the code for the underlying algorithm. This 

make the program more complicated, more difficult to port from one machine to 

another, and more difficult to debug. 

On a distributed-memory machine, the programmer also has to implement 

some data distribution policies to ensure that an iteration is assigned to a processor 

storing the data needed by the iteration. It is also possible that several parallel 

loops in the same program need the same data. If these loops are scheduled using 

different self-scheduling schemes, the data distribution suitable for one loop may 

not be suitable for other loops. In this case data may need to be redistributed at 

run time for efficiency reason. 
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1.1.4 Self-Scheduling of Parallel Loops under Faulty Processors 

Although many schemes have been proposed in the past, they all assume that the 

number of processors remains unchanged during the execution of the parallel loop. 

However reliable today's computer may be, the more processors a system has, the 

more likely one will become faulty. This can also happen during the execution of a 

parallel loop. To ensure both the correctness and the efficiency of the execution of 

a, parallel loop, measures must be taken to tolerate faulty processors. 

Two different cases are studied. The first is a hardware failure; the second 

is when the operating system reassigns processors from one task to another before 

the first task is completed. 

1.2 Contributions of This Research 

In this dissertation we have studied how to efficiently execute a scientific application. 

This problem is, to a certain extent, the essence of parallel processing. 

We demonstrated a technique of combining a static scheduling scheme with 

a dynamic scheduling scheme. This combination of schemes has the following ad-

vantages: 

1. reducing the scheduling overhead, 

2. achieving a balance workload, 

3. simplifying data distribution, 

4. making it easier to employ other well known scheduling schemes to utilize 

their advantages, and 

5. increasing the affinity of iterations to processors which further improves per-

formance by maintaining a high cache hit ratio. 
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The combination also makes self-scheduling a parallel loop on a distributed-memory 

machine more feasible and dramatically increases the size of solvable problems. 

Further contributions of our research follow below. 

We developed a method for duplicating data on a number of processors. This 

method eliminates any data movement during the computation of a parallel loop 

and increases the problem size scalability. 

We devised a systematic approach for implementing a given self-scheduling 

scheme on a distributed-memory computer. 

We also studied multilevel scheduling. This further enhanced the scalability 

of self-scheduling schemes on distributed-memory machines. 

We proposed a method using abstractions to automate both self-scheduling 

of parallel loops and data distribution in parallel programming environments. The 

method was tested using CHARM, a architecture independent parallel programming 

environment [19]. 

Methods were developed to tolerate the loss of a processor because of physical 

failure or reassignment by the operating system during the execution of a parallel 

loop. 

All the methods proposed in this dissertation have been implemented on 

real parallel computers using both simulation and real applications. Good results 

have been obtained. For example, we improve the performance by 79% over static 

scheduling for the false color image problem on an NCUBE/7, a distributed-memory 

machine. 

1.3 Organization For the Rest of This Dissertation 

Some of the well known self-scheduling schemes developed by other researchers 

are presented in Chapter 2. The assumptions on which this research is based 
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is given in Chapter 2. 

In Chapter 3 we present safe self-scheduling (SSS), a new scheme that self-

schedules parallel loops on shared-memory machines. 

Chapter 4 discusses the implementation of SSS on a distributed-memory ma-

chine. 

Chapter 5 introduces a general method for implementing a self-scheduling 

scheme on a distributed-memory machine. Data distribution methods are 

also the focus of this chapter. 

We present an approach for automating data distribution methods and parallel 

loop self-scheduling schemes in CHARM in Chapter 6. 

In Chapter 7 we discuss methods for enhancing SSS to tolerate faulty proces-

sors. 

In Chapter 8 we summarize our work and discuss related issues for future 

studies. 
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Chapter 2 

RELATED WORK  

A scheduling problem emerges whenever there is a choice as to the order of per-

forming a number of tasks. The goal of scheduling is to determine an assignment 

of tasks to processing elements and an order which achieves some optimal perfor-

mance measures. Scheduling problems can be found in a manufacturing plant where 

a number of operations transform raw materials into a final product, in a bank where 

customers wait to be served by tellers, in a computer lab where students wait for 

computers, and in a parallel program where tasks need to be assigned to processors. 

2.1 The General Scheduling Problem 

In our research a schedule is a mapping of tasks to processors. A general task system 

can be defined as a system (I, -<, [e(ti)], M) as follows: 

1. I = {4,12, , tN} is the task space. 

2. - represents the irreflexive partial orders defined on I. 

3. e(ti) is the execution time for task ti 

4. M = {pi, p2, , pp} is the processor space. 
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Often the tasks and the partial orders among the tasks can be represented in a 

directed graph, the task graph, in which each task is represented as a node and the 

partial order between two tasks ti and t, is represented by an edge from ti to t,. 

Some researchers also consider the inter-processor communication cost [17]. In our 

study, this cost is included in the scheduling overhead. 

In the problem of assigning tasks to processors in a parallel computer, per-

formance is measured by the amount of time needed from the start of the first task 

to the completion of the last task. This type of problem, usually referred to as 

the minimum execution time multiprocessor scheduling problem, has been studied 

by many researchers in a theoretical context [11, 12, 29, 90]. Scheduling in gen-

eral is NP-complete [26]. When the communication overhead is not considered and 

the task execution times are identical, there are only three cases where an optimal 

schedule can be obtained in polynomial time. 

The first case is given in [34]. It is a linear algorithm (in number of tasks) 

that give an optimal schedule for a tree shaped task graph. The second case is when 

the task graph is in an interval order. The complexity of the algorithm is linear in 

the sum of the number of nodes and edges of the task graph [76]. In the third case, 

a quadratic algorithm (in number of tasks) exists producing an optimal schedule 

for an arbitrary task graph on two processors [12]. Each algorithm above becomes 

NP-complete if any of the restricting conditions assumed is removed. In practice, 

however, the above algorithms are not very useful because they assume the task 

execution times are identical. 

The critical path algorithm and its many variations [12] are the central result 

from classical scheduling. Again they are seldom useful in practice because they 

assume that only serial tasks exist in a program and that the exact execution time 

for each task is known. In general, neither of the two assumptions is valid when 

used to schedule a parallel loop where each iteration can be considered as a task. 
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Even if we fully unroll a parallel loop and consider one iteration as a serial task, we 

still cannot satisfy the first assumption for the following two reasons. The first is 

that the number of iterations may not be known at compile time, and if the total 

number of tasks is not known, a schedule cannot be constructed. The other reason is 

that, even if the total number of tasks is known, it may be a very large number, say 

several thousands of tasks. The corresponding task graph is so large that scheduling 

becomes prohibitively expensive even using a linear heuristic algorithm. Also it is 

likely that the resulting schedule is not optimal. 

Scheduling schemes can be classified as either static or dynamic. A static 

scheduling scheme assigns tasks to processors at compile time. The major advan-

tage of static scheduling schemes is that they impose no run time overhead. The 

main drawback of static scheduling schemes is its inability to respond to an unbal-

anced workload among the processors. This imbalance may be caused by branch 

instructions, memory conflicts, cache misses, and other random delays [5]. 

List scheduling [1, 11, 12] is an example of static scheduling. This type of 

scheduling assumes that an ordered list (the priority list) of tasks is constructed 

beforehand. Thus, tasks are assigned to processors by repeatedly scanning the list 

to find the first unexecuted task that is ready for execution. List scheduling is 

a polynomial time algorithm that produces a suboptimal solution in the case of 

unlimited resources. 

Dynamic scheduling schemes are designed to alleviate the problem of imbal-

ance in workload among processors. Dynamic scheduling schemes do not determine 

the assignment of tasks to processors until the execution is underway. This allows 

dynamic scheduling schemes to balance the workload more equitably, resulting in 

more efficient use of processors. However, this adaptability comes at the cost of an 

additional run time scheduling overhead. 
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Graham [29] showed that in many cases of random task graphs, optimal 

schedules can be achieved by deliberately keeping one or more processors idle to 

better utilize them at a later point in time. Detecting such anomalies requires the 

information the entire task graph a priori. In addition, when the length of a task 

is known only at run time, deliberately keeping a processor idle to achieve a better 

utilization at a later time is not feasible because a task graph cannot be constructed. 

In a dynamic scheduling scheme, a new task is assigned to a processor as 

soon as the processor becomes idle. Clearly, dynamic scheduling may not always 

produce an optimal schedule. However, it has been shown that assigning a task to 

a processor whenever a processor becomes idle results in an execution time which, 

theoretically, is never more than twice the optimal [12]. In real cases, the execution 

times are very close to the optimal, assuming no overhead [79]. Thus, the overhead 

factor is the critical optimization parameter of dynamic scheduling. 

Robinson [87] gives an estimation of the expected execution time of a parallel 

program with a "simple" task graph when the execution time is represented by a 

random variable. It offers little help because it assumes no scheduling overhead and 

assumes that the number of processors is not limited. 

Scheduling a parallel loop has characteristics different from the traditional 

job shopping problem. First, there is no partial order among iterations of a parallel 

loop. Second, the execution time of an iteration may become known only after 

the iteration is executed. Figure 2.1 is an example of such a parallel loop. For 

loops of this kind, assign an equal number of iterations to each processor may result 

in an unbalanced workload. Many approaches have been proposed for assigning 

iterations of a parallel loop to processors of a parallel machine. In next two sections 

we illustrate some of the well-known approaches by showing how they schedule a 

parallel loop with N iterations on a parallel machine with P processors. 
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x = random(); 

y = random(); 

for i = 1 to 11 do 

if W s2 + y2 < 1.0) 

then 

{ 

picount = picount -1- 1; 
Emax 

count = count + 1; 

} 

else 

{ 

count = count + 1; Emin 

} 

Figure 2.1. Calculating r using the Monte Carlo method 
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2.2 Static Scheduling Schemes 

A static scheduling scheme assumes that two processors with the same number of 

iterations have roughly the same execution time. If we define that a chunk is a set 

of consecutive iterations, then two chunks of the same size may require the same 

amount of execution time. However, for non-uniform parallel loops, the probability 

that two chunks with an equal number of iterations have the same execution time 

is small. Static scheduling schemes are still in use because they are simple and 

sometimes result in lower execution times than dynamic scheduling schemes. 

A static scheduling scheme is better suited for a uniform parallel loop or 

when the iteration execution times of a parallel loop are known. 

Static Chunk (SC) 

Static chunk assigns each processor [N/P1 consecutive iterations, except the last 

processor which is assigned whatever iterations are left, at compile time. Except 

for the case when the iteration execution time is the roughly the same, such an as-

signment may cause an unbalanced workload. The performance obtained using this 

approach on a non-uniform parallel loop is unpredictable. That is, it is possible to 

obtain good performance when the number of processors is a certain number; how-

ever, simply increasing the number of processors by one may cause the performance 

to degrade significantly. 

Round Robin (RR) 

A modification of SC is to assign iterations to processors in a round-robin fashion, 

rather than assigning a processor with a consecutive block of iterations. That is, 

iteration i is assigned to processor i mod P. This approach is likely to produce a 

more balanced workload than SC. One problem with this approach is that the cache 
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hit ratio may be low. A second problem is that the workload produced by RR is not 

guaranteed to be better balanced than that of SC. This is because each processor 

executes about N/P iterations, and if the set of iterations assigned to a processor 

contains many relatively long iterations, it may take a longer than that average 

execution time to complete, resulting in an unbalanced workload. In addition, as 

long as the iterations assigned to one processor are relatively longer than those 

of the other processors, the schedule is not balanced. The larger the number of 

processors, the higher the chance such a processor exists. 

2.3 Self-Scheduling Schemes 

The basic principle of a self-scheduling scheme is that when a processor becomes 

idle, it fetches one or more iterations and modifies shared variables such as the loop 

index, however, exclusively. In this way, a processor obtains more work only if it 

becomes idle; therefore, it does not delay the execution of the whole loop by having 

too much work. Also, as long as there are iterations left, an idle processor always 

works on them; therefore, these iterations are processed at the earliest possible time. 

The result is a well balanced workload. 

Pure Self-scheduling 

A straight forward implementation of self-scheduling of parallel loops is the pure 

self-scheduling (PSS) approach. In this approach, a processor fetches one iteration 

at a time during run time by incrementing the loop index in a critical section when 

it becomes idle. Completing the fetched iteration, the processor becomes idle again 

and fetches another iteration. This process repeats until all the iterations have been 

executed. 

PSS always achieves a well balanced workload. However, this well balanced 
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workload does not always yield good performance. This is because the amount of 

scheduling overhead due to the assignment of iterations to processors is proportional 

to the number of iterations. This amount usually is significant compared to the 

execution of a iteration. In addition, when the granularity of each iteration is small 

and the execution times of different iterations do not vary significantly, the high 

frequency of mutually exclusive access to shared variables, such as the loop index, 

may become a bottleneck, and this may seriously degrade performance. Overall, 

PSS may be appropriate for scheduling loops having relatively few iterations but 

with very long variable length execution times when compared to the scheduling 

overhead. 

Chunk Self-scheduling 

Chunk self - scheduling (CSS) is designed to overcome the problem of high scheduling 

overhead in PSS by allocating a fixed number, k, of consecutive iterations to each 

idle processor [4]. When k = 1, CSS becomes PSS. When k = NIP, CSS can be 

carried out in the same way as SC. 

By having processors fetch more iterations at a time, PSS reduces the schedul-

ing overhead, but it compromises load balancing. This is because the task allocation 

is performed with a larger granularity than that of SC. 

The main drawback of CSS is the dependence on both the chunk size and 

the characteristics of each loop, either of which may not be known even at run 

time. Worse yet, even for the same loop, the execution time does not monoton-

ically increase or decrease with chunk size [81]. Polychronopoulos and Kuck [79] 

proved that there cannot be an optimal value of k even for the simplest cases. Poly-

chronopoulos further points out that CSS may even result in a slowdown, i.e., it 

takes a longer time to execute a parallel loop using more than one processor than to 

execute the loop sequentially, when the chunk size k assumes a value smaller than 
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some threshold [81]. 

Guided Self-scheduling 

Polychronopoulos and Kuck [79] presented the guided self-scheduling (GSS) scheme. 

In GSS, the number of iterations assigned to an idle processor is calculated dynami-

cally. An idle processor fetches 1/P of the unscheduled iterations. When processors 

start executing the loop at different times, GSS produces a well balanced schedule 

with a low overhead for a uniform parallel loop. 

A significant contribution of GSS is that it assigns reduced sized chunks to 

processors. By doing so, GSS is more likely to achieve a better balanced workload 

than CSS, with a lower scheduling overhead than that of either PSS or CSS. 

When GSS is applied to a non-uniform parallel loop with N iterations, as-

signing close to N/P iterations to the first several fetching processors may cause 

a load imbalance if the iterations assigned to one processor need more than the 

average time to finish. In addition, near the end of the scheduling process, GSS 

produces many chunks of one or two iterations. This results in a large scheduling 

overhead since GSS acts more like PSS. Thus, Polychronopoulos proposed GSS(t), 

a modification which avoids the problem by allocating no less than t iterations at 

a time to an idle processor [79]. This approach compromises a lower scheduling 

overhead with a less balanced schedule. In addition, an optimal value of t that 

results in a well balanced schedule with minimum overhead is both application and 

hardware dependent [79]. Consequently, a number of schemes have been introduced 

to overcome these problems. 

Trapezoid Self-scheduling 

Tzen and Ni [109] proposed the trapezoid self-scheduling (TSS) algorithm to improve 

GSS. In their approach, TSS(N., Nf) assigns the first N3 iterations of a loop to the 
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processor starting the loop and the last N1 iterations to the processor performing the 

last fetch, where N, and N1 are both specified by the programmer or the compiler. 

This method linearly decreases the number of iterations assigned to each processor 

at run time by some decreasing step 8. However, the selection of N, and N1 suffers 

from the same problem as the selection of t in GSS(t) and k in CSS. Tzen and Ni 

proposed TSS(N/2P, 1) as a general selection of N, and Nf. 

It is stated in [109], for a given N, and Nf, that the total number of chunks 

T is 
2N 

N, 

The decreasing step S can be obtained by following formula 

N, Nf (2.3)T 1  
The basic idea of TSS is to extract the advantages of both CSS and GSS by 

linearly decreasing the number of iterations assigned to processors. TSS may yield 

an unbalanced workload because the difference between the number of iterations 

assigned to two processors on their last fetch can be as large as P x 8. For example, 

assume that TSS(N/2P, 1) is used to schedule a parallel loop with N = 1, 000, 000 

iterations on a system with P = 256 processors. Then 

Nf = 1953.125 1953;2P 
2N r2 x 1,000,000iT= = 1024;N,+ Nf 1953 + 1 

N, Nf 1953 1 

I I 

= = 1.908 r:--1 2.T 1 1024 1 

In this example the difference is 512 iterations. It is true that the two 

processors may not fetch at the same time. However, as long as the fetching times 

of the two processors are not too far apart, the difference in finishing times between 

the two processors could be significantly large. This weakness limits the usage of 

this scheme for problems needing a large number of processors. 
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Another problem of TSS shows up when the decreasing step 6 calculated 

by Eq.(2.3) is a real number and has to be converted to an integer. Ignoring the 

fraction part results in the last several chunks being too large. Rounding up the 

real number to the next integer causes many chunks of size 1 and a large T, the 

total number of chunks. 

For instance, in the above example, the value of h calculated by Eq.(2.3) is 

1.908. Using b = 2 results in 45,472 chunks of 1 iteration. In this case TSS achieves 

a balanced workload, however, with an enormous amount of scheduling overhead. 

When 6 = 1, the last chunk has 1145 iterations. Clearly, this may not balance the 

workload. 

Factoring 

Hummel et al. [21, 43] introduced Factoring. In Factoring, fixed sized chunks of it-

erations are allocated to processors in batches (P consecutive chunks form a batch), 

and the sizes of chunks in the same batch are the same. This size is determined 

using the no-more-than-half rule during implementation. This rule states that the 

chunk size of a batch is half of the chunk size of the previous batch. The basic idea 

of Factoring is the following: achieving an overall optimal finishing time requires, 

for each batch scheduled, enough work being left to smooth over the uneven finish-

ing times of the batch. The rational for this reasoning is that if a bell shaped curve 

for a large number of random variables (iteration execution times) with mean it is 

assumed, the expected finishing time of the first P chunks of size F0 approaches 

2µF0 when P is large enough. 

Factoring is based on the following analytical results in calculating a chunk 

size. 

Ro = N 
Rj+1 = R; PF; 
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R;Fi = xiP 
P = 2 II P 

xo = 1+423+08+2 
si = 2 + bi + 4, for j > 0 

where a and p are the variance and the mean of the iteration execution times, 

respectively. The subscript indicates the batch. 

According to the above formulae, the chunks in the first batch have a size 

Fo = N /xoP. Concerning the value of xo, for the Matrix Multiplication problem 

tested in [43], the coefficient of variance alp is 0.032. The problem size is 300 x 300, 

and the number of processors used ranges from 4 to 56. When P = 30, then 

Pbo = 21/X 
30 x 0.0322 x 000 x 300 

= 0.0016 

xo = 1 -Fgd-boVb8-1- 2 

= 1 + 0.00162 + 0.0016 x V0.00162 + 2 

= 1.0022653 

Therefore, based on the above formulae (from [43]), almost all iterations should 

be assigned to processors at the first batch. However, in the experiments given in 

[43], only half of the iterations were assigned to processors in the first batch. The 

authors do not explain why the analytical results were not tested. 

In addition, when 2p > the expected finishing time of the first P chunks 

does not approach 2pFo. This is because the execution times of chunks in the first 

batch cannot be greater than Ema, x Fo. 
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Affinity Scheduling 

The benefit of processor affinity has been demonstrated in Affinity Scheduling intro-

duced by Markatos and Leblanc [68]. Affinity Scheduling divides the N iterations 

of a parallel loop into P chunks within IN/P1 iterations each. The ith chunk is 

placed on the local work queue of processor i. An idle processor removes 1/k of the 

iterations from its local work queue and executes them, where it is suggested that 

k be equal to P. When its work queue becomes empty, a processor finds the most 

loaded processor, removes /P1 of the iterations from the remote processor's work 

queue, and executes them. 

Affinity Scheduling differs from other self-scheduling schemes in two ways. 

One is that it does not have a shared ready task queue. Rather, each processor 

has its own ready task queue. Such a distributed task queue approach eliminates 

the bottleneck problem of other schemes. However, when we need to balance the 

workload, the information regarding the workload is also distributed. This makes 

it difficult to achieve a balanced schedule with a low cost. The second difference 

is that when a processor's local ready task queue becomes empty, it attempts to 

remove tasks from the most loaded processors. When the number of processors is 

large, this approach is expensive. In addition, it may not lead to a well balanced 

workload. This is because when a processor's local ready task queue becomes empty, 

the same operation is performed regardless how many other processors are also in 

the same situation. To see this, consider the following scenario. 

Suppose several processors complete the tasks in their local task queues at 

the same time and all find that a processor, say 131, is the most loaded processor. 

When all try to fetch more iterations from /31, three cases could occur. The first case 

is that each processor obtains some iterations and there are still some iteration left 

in the local ready task queue of Pi. The second case is that each processor obtains 

some iterations and there are no iterations left for Pi. The third case is that only a 
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few processors obtain some iterations. 

The first case is what is planned and each idle processor makes a positive 

step toward balancing the workload. When the second case happens, P1 then has 

to find more iterations from another processor for itself. This obviously is more 

expensive than using tasks in its own ready task queue. The third case is the most 

expensive one. When it happens, the processors that do not obtain any iteration 

waste their time locating the most loaded processor and trying to fetch iterations 

from it. In addition, these processors and P1 have to attempt to fetch more tasks 

from another processor. The same thing may happen to the most recent heavily 

loaded processor. 

2.4	 Dynamic Load Balancing on Distributed-Memory Ma-

chines 

Many researchers [115, 105, 112] have studied the use of dynamic load balancing 

for increasing processor utilization rather than scheduling. The difference between 

dynamic load balancing and dynamic load scheduling is that the former achieves 

load balance by moving processes from one processor to another while the latter 

achieves load balance by assigning tasks only to processors that become idle. 

Many methods have been proposed to achieve load balance on distributed-

memory parallel computers using dynamic load balancing. Based on how the infor-

mation regarding the load of each processor is collected and used, these methods 

can be classified as centralized load balancing algorithms, fully distributed load bal-

ancing algorithms, or semi-distributed load balancing algorithms [117]. In addition, 

these methods are further classified as sender initiated or receiver initiated [117]. 

In these approaches, the data partitioning problem is not addressed. Since 

the data modified by a migrated process has to be sent back to the owner of the data, 
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information regarding the owner of a datum has to be stored with the datum in 

order to have the result sent back to the owning processor. These approaches usually 

operate in several phases, which include determining the local load of each processor, 

exchanging information so each processor can check if there is a load imbalance in 

the system, and migrating processes if necessary [108]. These approaches are not 

suitable for the problem we are studying because the work load of each processor 

can not be estimated accurately by counting the number of unexecuted tasks. 

2.5 Self-Scheduling on Distributed-Memory Machines 

Due to the mismatch between the architecture of a distributed-memory machine and 

the basic principle of self-scheduling and a high communication cost of a distributed-

memory machine, static scheduling schemes were often used in scheduling iterations 

to processors on a distributed-memory machine. 

Rudolph and Polychronopoulos [89] reported an implementation of GSS on 

distributed-memory machines using a centralized scheduling technique. They attack 

the data distribution problem by replicating the data to every processor. To prepare 

for the later usage of the data, the scheduling processor tracks, for each row of 

the data array, the processor modifying the row. This approach has the following 

problems: 

1. The use of a centralized scheduling technique prevents the method from scaling 

very well. 

2. The data distribution method limits the granularity to the row level because 

if we allow an arbitrary assignment of array elements to processors, then the 

data structure describing the array distribution would have the same number 

of elements as the array. 
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3. The problem size is limited by the scheduling processor's memory because it 

has to store all the data. 

2.6 Assumptions 

To facilitate our presentation, we assume that parallel loop L's iteration execution 

times follow an unknown probability distribution with mean p, standard deviation 

o, maximum execution time Emax, and minimum execution time Emin We define 

that a chunk is a set of consecutive iterations defined by a starting and an ending 

iteration number. A fetching processor is a processor that modifies global variables 

such as the loop index to obtain more work in the form of a chunk. The critical 

chunk is the chunk finished last, and the critical processor is the processor executing 

the critical chunk. 

In the sequel, we assume the number of iterations N >> P; the value of 

N and P are known before the loop is executed; the schedule is non-preemptive; 

the processors of the parallel machine are homogeneous; and the parallel loop is 

executed in a dedicated environment. 

Many methods have been proposed to parallelize a wide range of serial loops 

[54, 79, 114], and nested parallel loop can be coalesced to form a single parallel loop 

[79]. In our study, we focus on scheduling a single parallel loop. 
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Chapter 3 

SAFE SELF-SCHEDULING  

3.1 Introduction 

As we saw in the previous chapter, there are several self-scheduling schemes. How-

ever, each has weaknesses. In this chapter we introduce a new self-scheduling scheme 

called Safe Self-scheduling (SSS) that takes advantages of both static scheduling 

schemes and self-scheduling schemes. 

SSS has been developed to schedule parallel loops with variable length iter-

ation execution times on multiprocessors. It has two phases: a static scheduling 

phase and a dynamic scheduling phase. SSS achieves a well balanced workload with 

a low scheduling overhead. In addition, SSS maintains a high cache hit ratio to 

further improve the performance. 

The theorems that support SSS are presented. The basis for combining static 

scheduling and self-scheduling in SSS are explained. We also compare our scheme 

with Factoring [21, 43] due the similarities between the implementations of SSS in 

this chapter and Factoring. 

The methods discussed in the chapter have been tested. SSS has been found 

to surpass other schemes in most cases. In the experiment on Gauss-Jordan, an 

application suitable for static scheduling schemes, SSS is the only self-scheduling 
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scheme that outperforms the static scheduling scheme. This indicates that SSS 

achieves a balanced workload with a very small amount of overhead. 

3.2 The Basic Principle of Safe Self-Scheduling 

The basic principle of SSS is to assign each processor the largest number m of 

consecutive iterations having a cumulative execution time just exceeding the average 

processor workload E /P, i.e., 

s+m-1 E 8+7nE e(ti) < < E e(ti)Pi=3 1=3 

where E = Er=i e(ti) and s is the starting iteration number of the chunk. We call 

m the smallest critical chunk size because adding any more iterations to this chunk 

further unbalances the schedule. Clearly, E I P can only be estimated using the 

statistical information on the execution times of the tasks, the expected execution 

time of tasks, the total number of tasks, and the number of processors. When 

executing a parallel loop on a dedicated environment, the total number of tasks and 

the number of processors are known before the computation. 

In the implementation of SSS, when no information regarding a loop is 

known, every P chunks form a batch and chunks in a batch are of the same size. 

The size of chunks in batch i, denoted by CSi, is a x Ni /P, where a is called the 

static allocation factor and 0 < a < 1 and Ni is the number of unscheduled iter-

ations at the beginning of the batch. Since the size of chunks in the first batch is 

known, we propose that the chunks in the first batch are assigned to processors at 

compile time. Scheduling these chunks forms the static scheduling phase of SSS. 

The remaining chunks are self-scheduled. This forms the dynamic scheduling phase 

or self-scheduling phase of SSS. During the dynamic scheduling phase, when a pro-

cessor finishes the iterations assigned to it the ith fetching processor is then assigned 
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a chunk of 

max((1 a)r*1 x x a, k) 

iterations, where k is used to control granularity. A general method for accurately 

calculating a is given in form of a theorem later. 

After the value of a is determined, SSS can be implemented as following. 

(a) Before starting the statically assigned iterations, one processor (say pro-
1. 

cessor 0) calculates the starting iteration numbers for the chunks sched-

uled in the dynamic scheduling phase and stores them in an array, say 

chunkaist , and appends the array with P number of 0's. 

(b) Processor 0 sets the shared variable count to 0 and then starts to execute 

the chunk assigned to it statically. 

(c) All other processors perform their computation on the statically sched-

uled chunks. 

2. During the dynamic scheduling phase an idle processor does the following in 

the given order: 

(a) begins mutual exclusion; 

(b) copies the value of count to i and increments count; 

(c) ends mutual exclusion; 

(d) if chunkaist [i+1] > 0, then executes the chunk defined by chunkaist 

and chunk_list [i.+1] -1. 

For systems such as RP3 of IBM [78] and Ultracomputer [28] that can 

perform fetch&add atomically, the first three items of step 2 can be reduced to 

i = fetch&add(count , 1). 

Note that the calculation of chunks can be modified to suit the characteristics 

of the loop executed to best realize the basic principle of SSS. Other scheduling 
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schemes such as GSS, TSS, or Factoring can also be used to calculated the chunk 

sizes. 

3.3 Theoretical Basis for SSS 

We define the term balanced workload from our perspective of loop scheduling and 

prove the following theorems that support SSS. 

Definition (Balanced Workload): A schedule that maps iterations of a parallel 

loop to processors of a parallel computer is balanced if the difference in work-

load between any two processors is not greater than the maximum execution 

time of a loop iteration. 

Theorem 3.1: If (i) we assign m iterations, where Eti e(ti) < E I P < e(ti) 

to the first fetching processor, say pi; (ii) the remaining iterations are al-

located in such a way that all other processors have the same amount of 

workload; and (iii) all P processors start to execute the loop at the same 

time (iv) the scheduling overhead is neglected, then processor pi finishes no 

later than the critical processor pc and the difference in workload between any 

two processors is less than En.PAP 1). 

Proof: Let E(I1) be the workload for processor pi and Eren, be the average work-

load of the remaining P 1 processors; we have 

EE(I1) E e(ti) <Ef ,-E <E(I)Erem = P -1 p_i P -1 1 3 1 

Since all the processors start to execute the loop at the same time, processors 

with the same workload finish at the same time. In addition, since Efen, < 

E(I1), processor pi finishes no later than the critical processor pc. Further, 

let Ell' < e(ti) be represented as Erin_i e(ti) = E I P 0, where 0 < < 
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Emax, then  

Ere, = E E fi P-1 P P-1. 
The difference in workload between processor pi and any other processors is 

E 
P P 1' 

which is /3P /(P 1). Since /3 < Emax, the difference in workload between 

any two processors is less than EnitP/(P 1). 

Theorem 3.1 states that assigning m consecutive iterations to the first fetch-

ing processor, when Eal e(ti) El P < Emax(P 1)/P, achieves a balanced work-

load with a minimum scheduling overhead since the processor only fetches once and 

the difference in finish times between any two processors is less than Emax. Since the 

difference in workload between any two processors is not greater than Erne then by 

our definition, the workload is balanced. When >m 1 e(ti) E/P > E,,az(P 1)/P, 

the difference in workload between any two processors is less than EmazP /(P 1) 

and can be considered to be very well balanced for large P. However, it is generally 

not possible to determine m since e(ti) can only be known after the task ti has been 

executed. 

Theorem 3.2 : If processor pi executes no more than EIPIErner-1 iterations and 

all the processors start to execute the loop at the same time, then processor 

pi will not be the critical processor. 

Proof: Let E(I;) be the workload of processor pi, then 

EP
E(.1;) < ( 

rnla 1)E,ax = 

The average workload for other P 1 processors is E E(Ii)/(P 1). In 

addition, 

E E(Ii) E (E I P Emax) E Emax E 
(P 1) (P 1) P (P 1) P 
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That is, there must exist at least one other processor that has a workload 

greater than E(/1), therefore processor pi will not be the last one to finish. 

According to Theorem 3.2, assigning a chunk with less than EIPI Emax 1 

iterations to a processor guarantees that this particular chunk will not unbalance 

the schedule. Therefore, E/P /Emax 1 is called the safe chunk size. Since it is 

desirable to assign chunks with as many iterations as possible while maintaining load 

balance, chunk sizes less than EIPI Emax 1 iterations should never be considered. 

Theorem 3.3 : If (i) all the processors start to execute the loop at the same 

time; (ii) the loop body consists of an if-then-else statement and prob(then) 

is the probability of executing the then branch that has an execution time of 

Emax; (iii) the distribution of prob(then) is uniform; (iv) processor pi is 

assigned a chunk of size N/P and more than N/P x prob(then) iterations in 

the chunk have a workload Emax; and (v) Emax > 2Emin, then the workload 

cannot be balanced. 

Proof: The average workload of a processor is: 

E N(prob(then)Emax prob(else)Emin) 
P 

Let NIP xprob(then)+ 1 iterations of the N/P iterations assigned to processor 

pj have a workload of Emax, then there must be a processor that has no more 

than N/P x prob(then) 1 iterations having an execution time of Emax. The 

minimum difference in workload between the two processors is 2(Emax Emin), 

which is greater than Emax. Then according to our definition the workload is 

not balanced. 

Usually, for static scheduling, N/P iterations are assigned to a processor. 

When the execution times of iterations vary, chunks of the same size may result 
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Probability of performing another fetch
Probability of NOT performing another fetch 

Probability(then)/ \1 I .. 

0
1 NE P NICSo 

Ernax 

Figure 3.2. Safe self-scheduling, calculation of the first chunk size 

in different finishing times. Only if iterations assigned to one processor happen to 

have more iterations having long execution times, the workload cannot be balanced. 

For this reason, NI P is called the risk chunk size. 

SSS selects the first chunk size to be the point at which the probability 

that a fetching processor may or may not perform an additional fetch to be equal 

(see Figure 3.2). For loops where the execution times follow Bernoulli distribution 

with Emax having probability prob(Emax) and the probability distribution function 

prob(Emax) is uniform, the size of the first chunk is the average of the safe chunk 

size and the risk chunk size. Using p x N to replace its statistical equivalence E we 

have 
N prob(Emin)EminN (1 + prob(Emax)Em..PC SO = (3.4)

2 P 2 

prob(else)Ein1 + prob(then) Emara = (3.5)
2 

Note that, by assigning a larger number of iterations than the safe chunk 

size, we have accepted a moderate amount of risk of imbalance in exchange for a 

lower overhead. In case the overhead is small compared to the iteration execution 

times, a smaller value of a may be used to balance the workload. 
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The smallest critical chunk size can be calculated according to the theorem 

given below if we assume that the execution time of an iteration is independent and 

all the iterations have their execution times follow the same distribution function. 

Theorem 3.4: A set of static allocated n-iteration chunks where n is given by 

2112 LFV_, c2 0.2 I p2 c2 o2)2 4p2 (P )2 
n = (3.6)

2p2 

with c > J2ln(P), will have an expected execution time less than NpIP. 

Proof: The Central Limit Theorem states that the sums of independent random 

variables tend to be normally distributed. Therefore, for a set of n-iteration 

chunks, the expected execution time is n * p and the variance is n * 02. The 

normal distribution curve is defined as, 

f(t) = 1 
e en for oo < t < +oo,2 , 

ro-n 

where pn and on are the expected value and standard deviation of the values 

of the random variable that has a normal distribution. In our case pn = n *p 

and an = ,V7z * o. The probability for the chunks to finish before time to is, 

pr(t <to) = 
to.f(t)dt 

Let  
t pn c= (3.7) 
on  

pr(t < to) can then be calculated by 

ico 1 
pr(c < co) IC2 e 2 dc 

-I -00 .N/Tr 

Let co denote the value of c in Eq.(3.7) when to = Np /P, we have 

N 
Co = (3.8) 

* (3-2 
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Kruskal and Weiss in [40] have shown that if each processor receives a chunk 

of equal size n the expected finishing time can be approximated as, 

n + V2no-21n(P) 

Let the expected finishing time to be smaller than the average processor work-

load Np /P. Then we have: 

n + 2n * o-21n(P) < 

112n * a21n(P) < 

21n(P) < 

The R.H.S. is identical to co, so 

co > /21n(P) 

Solving n from equation ( 3.8), we have,  

21,24 + 00.2 1A2/12114 c20-2)2 4p2(1)2  
n 

2p2 

3.4 Simulation Results 

In this section we discuss the simulations conducted to study the effects on per-

formance resulting from different values of a in SSS. In the simulation we assume 

that the loop body is an if-then-else statement, and the loop has 5000 iterations. 

The execution time of the then branch is set to be 4 time units and the else branch 

is set to be 1 time unit. Which branch to execute is determined by comparing 

two arrays uarray [] and parray 0 . If parray > uarray [i] then iteration i is 

set to execute the then branch, otherwise it executes the else branch. Elements of 

uarray are greater than 0.0 and smaller than 1.0 and uniformly distributed. 
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In order to test the effects on the selection of a in SSS on parallel loops with 

different characteristics, we use three groups of data and store them in three arrays 

P1 [] , P2 , and P3 to be used as the array parray . Pi contains 5000 random 

numbers in the range of (0.0, 1.0). P2 consists of 5000 real numbers generated by 

using the formula 
e-rk x 0.8 

2 

where is an array of 5000 random numbers in the range of (0.0, 1.0). That is, 

P2 0 is an array of 5000 real numbers in the range of (0.0, 0.08), and the values of 

its elements follow an exponentially decreasing curve. Similarly, P3 0 comprises of 

5000 real numbers generated by using the formula 

(i -2500)2 
e 2x0.0000001 

x 0.8 
2 

P3 Cil is a number in the range of (0.0, 0.08), and elements of P3 0 follow a bell 

shaped curve. 

Each simulation is implemented as following. Given two array uarray 0 and 

parray 0, a third array times 0 is generated where times [i] is 4 if parray[i] 

> uarray [i] , or times [i] is 1 if uarray [i] <= parray [i.] . When this step is 

finished, the total amount of the workload and the frequencies of executing each of 

the branches are known. These pieces of information are then used to calculate the 

value for a. Based on the number of processors assumed to be used in executing 

the loop, we calculate the chunks and store the chunks in array chunks 0 . Then 

the process of executing the loop using the given number of processors is simulated 

assuming that there is no scheduling overhead. After the loop is finished, we find the 

processor that has the most workload. The finish time of that processor becomes 

the finishing time of the simulation. In the case that there are more than one 

processor that all finished last, then the processor that performs the most fetches 

is the critical processor. For each set of value of parray 0 , we collect the results of 
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using 75 different sets of values for uarray . 

Table I, Table II, and Table III are the simulation results of using P1 0 , P2 0 , 
and P3 0 as parray to select which branch of the loop body to execute, respectively. 

The results shown in the tables are the average of 75 runs. The number of processors 

ranges from 6 to 20. What is given in the tables are the number of times the critical 

processor fetched and the difference between the total amount of time units assigned 

to the critical processor and the average workload E/P. 

From Table I we can see that when a < 0.625 (the one marked with f), 

workloads are balanced and the bigger the value for a the smaller the scheduling 

overhead without losing any performance. When a selects the value calculated using 

Eq.(3.5), the workloads are still with in 3% of the average and can be considered 

as well balanced. The scheduling overhead, represented by the number of fetches 

performed, is also small. 

Table II represents the situation where the probability of an iteration exe-

cuting the then branch decreases exponentially. This is the worst case of using fixed 

sized chunks in a batch because the actual amount of work represented by the first 

chunk and the last chunk in the same batch may very significantly. For this kind of 

parallel loops, chunk sizes in the same batch should increase. 

From the table we can see that when a > 0.730 (the one marked with *), 

workloads become unbalanced very quickly. Using Eq.(3.5), the calculated a is 0.73. 

From the table we can see that when the number of processors is greater than 10, 

the scheduling overhead is 0. This indicates that the statically scheduled chunks 

unbalances the workloads, i.e., the a is too large. Although the calculated a is 

larger than we would like it to be, the critical processor's workload is always with 

in 40 time units of a processor's average workload out of a total workload of 9204 

time units. The value of a that corresponds to the safe chunk size is 0.4602. 
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Table L The selection of then branch is uniform 

Overhead/Amount of Time Units Over Optimal Time 
a Number of Processors & Corresponding Optimal Times 

6 8 10 12 14 16 18 20 

Opt. 2062 1546 1237 1031 883 773 687 618 

0.500 8/ 2 9/ 2 8/ 2 8/ 1 7/ 3 8/ 2 9/ 2 7/ 2  
0.525 8/ 1 7/ 3 7/ 3 8/ 2 7/ 2 6/ 2 6/ 2 3/ 7  
0.550 7/ 2 7/ 3 7/ 3 7/ 2 6/ 4 6/ 2 8/ 2 6/ 3  
0.575 7/ 2 7/ 2 6/ 3 7/ 2 6/ 3 5/ 4 5/ 4 6/ 3  
0.600 7/ 2 6/ 3 5/ 3 5/ 3 6/ 2 5/ 2 5/ 4 5/ 4  

0.625f 6/ 2 5/ 3 4/ 4 5/ 3 5/ 4 4/ 3 5/ 4 4/ 4  
0.650 5/ 3 6/ 3 4/ 4 4/ 4 3/ 7 3/ 7 4/ 4 3/ 6  
0.675 4/ 7 4/ 6 4/ 5 3/ 5 3/ 6 3/ 5 3/ 5 3/ 6  
0.700 3/ 7 3/ 11 3/ 9 3/ 6 3/ 8 3/ 8 2/ 8 2/ 9  
0.725 3/ 9 3/ 10 3/ 7 2/11 2/ 9 2/13 2/11 2/10  
0.750 2/ 15 2/ 15 2/ 13 2/ 12 2/ 12 2/ 9 2/ 10 2/ 12  
0.775 2/ 21 2/ 18 2/ 17 2/ 16 2/ 13 2/ 17 1/ 14 1/ 15  
0.800 2/16 2/14 2/13 2/14 2/17 1/16 1/ 21 1/ 20  

0.809* 2/17 2/14 2/15 2/13 1/14 1/15 1/17 1/18  
0.825 2/ 14 2/ 18 1/ 17 1/ 17 1/ 22 1/ 21 1/ 22 1/ 24  
0.850 2/11 1/ 20 1/19 1/18 1/ 22 1/ 22 1/19 1/ 22  
0.875 1/ 23 1/ 28 1/ 29 1/ 36 1/ 33 1/ 33 1/ 28 1/ 31  
0.900 1/ 41 1/ 44 1/ 39 1/ 38 1/ 36 1/ 34 1/ 32 1/ 29  
0.925 1/ 55 1/ 46 1/ 37 1/ 35 1/ 33 1/ 27 1/ 27 1/ 23  
0.950 1/ 42 1/ 35 1/ 29 1/ 24 1/ 24 1/ 21 1/ 22 1/ 19  
0.975 1/ 25 1/ 23 0/ 24 0/ 26 0/ 28 1/ 29 0/ 31 0/ 31  
1.000 0/ 55 0/ 48 0/ 52 0/ 49 0/ 48 0/ 49 0/ 47 0/ 46  
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Table II. The selection of then branch follows an exponential curve 

Overhead/Amount of Time Units Over Optimal Time 

a Number of Processors & Corresponding Optimal Times 

6 8 10 12 14 16 18 20 

Opt.	 1534 1150 920 767 657 575 511 460 

0.500	 8/ 2 9/ 2 8/ 2 8/ 2 7/ 3 7/ 2 8/ 3 7/ 3  

8/ 1 7/ 3 7/ 3 7/ 2 7/ 3 6/ 3 6/ 3 6/ 4 0.525  

7/ 2 6/ 3 6/ 3 6/ 2 6/ 3 6/ 3 6/ 3 5/ 3 0.550  

7/ 2 6/ 3 6/ 3 5/ 3 5/ 3 5/ 4 5/ 4 5/ 3 0.575  
5/ 4 0.600	 7/ 2 5/ 3 5/ 4 5/ 3 5/ 3 4/ 4 4/ 5  
3/ 5 0.625	 5/ 3 4/ 4 4/ 4 4/ 4 4/ 6 3/ 5 4/ 6  

3/ 7 2/ 7 0.650	 4/ 5 5/ 5 4/ 6 4/ 6 3/ 7 1/ 7  

0.675	 3/ 9 2/ 11 2/11 2/11 2/13 1/13 1/12 2/12  
1/ 20 0.700	 2/ 16 1/ 22 1/ 20 1/ 22 1/ 22 0/ 23 1/ 23  

0.725	 2/ 18 1/ 30 0/ 34 0/ 34 0/ 35 0/ 33 0/ 34 0/ 33  
0/ 35 0.730*	 2/ 21 1/ 35 0/ 37 0/ 36 0/ 39 0/ 36 0/ 37  

0.750	 1/ 37 0/ 50 0/ 54 0/ 53 0/ 52 0/ 52 0/ 50 0/ 47  

0.775	 0/ 69 0/ 83 0/ 85 0/ 79 0/ 73 0/ 70 0/ 68 0/ 63  

0.800 0/ 110 0/ 118 0/ 113 0/ 106 0/ 96 0/ 89 0/ 85	 0/ 78  

0.825 0/ 156 0/ 156 0/ 145 0/ 128 0/ 118 0/ 110 0/ 102	 0/ 96  

0.850 0/ 204 0/ 193 0/ 176 0/ 157 0/ 139 0/ 129 0/ 119	 0/ 111  

0.875 0/ 249 0/ 227 0/ 208 0/ 182 0/ 162 0/ 148 0/ 137	 0/ 126  

0.900 0/ 293 0/ 265 0/ 264 0/ 206 0/ 186 0/ 168 0/ 153	 0/ 141  

0.925 0/ 341 0/ 301 0/ 264 0/ 233 0/ 208 0/ 188 0/ 171	 0/ 157  

0.950 0/ 388 0/ 336 0/ 290 0/ 257 0/ 230 0/ 204 0/ 188	 0/ 173  

0.975	 0/ 436 0/ 372 0/ 318 0/ 284 0/ 251 0/ 223 0/ 204 0/ 188  

0/ 309 0/ 274 0/ 244 0/ 221 0/ 204 1.000 0/ 484 0/ 405 0/ 348  
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The values in P31] follows a bell shaped curve, i.e, the closer an array element 

is to the middle of the array, the higher the chance that the value is a value close 

to 0.8, which is the largest value of the elements in P31]. When using a set of 

random numbers to compare with the values in P30, more numbers in the middle 

of P30 have a value greater than the corresponding random number; therefore, 

more iterations near the middle of the iterations space have a longer execution 

time. For the results presented in Table III, the value of a for the safe chunk size is 

0.55 and the value of a calculated is 0.7748. From the table we can see that when 

a = 0.7748, the workloads are well balanced and the scheduling overheads are small 

too. 

It is safe to conclude the following from this simulation. First, the smaller the 

a, the higher the scheduling cost. Second, the safe chunk size results in a balanced 

workload most of the time with a lower scheduling overhead than that of following 

Factoring's no-more-than-half rule [43]. Third, we observed that the value of a near 

the average of the calculated value and the one corresponding to the safe chunk size 

yields a workload within 2% of the average workload. Fourth, Factoring produces 

a schedule that has almost the same level of workload balance as that when using 

a value for a that is smaller or equal to the safe chunk size. 

In general, SSS achieves a well balanced workload with low scheduling over-

head most of the time. When the iterations execution times follow an exponentially 

decreasing curve the calculated value for a results in too many iterations being 

assigned to processors to start with, we argue that this represents the worst case 

phenomenon. In addition, the final finish times obtained using a fixed sized chunks, 

when a increased size chunks should be used, are within 7% of more than that of a 

balanced workload. 
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Table M. The selection of then branch follows a bell shaped curve 

Exe. time (sec) & overhead in 0 

Number of Processorsa 
18 2010 12 14	 166 8 

783 685 609Opt. 1827 1370 1096 914 

6/ 3 7/ 2 8/ 2 7/ 3
0.500	 8/ 2 9/ 2 8/ 2 8/ 2 

6/ 3 6/ 3 6/ 4
0.525	 8/ 2 7/ 3 7/ 3 8/ 1 7/ 2 

6/ 3 6/ 3 7/ 2 5/ 3
0.550	 8/ 2 6/ 3 7/ 3 6/ 2 

6/ 2 5/ 3 5/ 4 5/ 3 5/ 3
0.575	 7/ 2 6/ 2 6/ 4 

5/ 4 4/ 6 4/ 5
0.600 7/ 2 6/ 4 5/ 3 5/ 4	 5/ 3 

0.625	 4/ 4 5/ 4 5/ 5 4/ 5 4/ 5 3/ 6 4/ 5 3/ 6 
3/ 7 3/ 6 3/ 7

0.650	 4/ 5 4/ 5 4/ 6 3/ 6 3/ 6 
2/ 9 2/ 9 2/ 8 2/ 9

0.675	 3/ 6 3/ 7 3/ 9 3/ 8 
2/ 12 2/ 10 2/ 12 2/ 10 2/ 11

0.700 3/ 10 2/ 13	 2/ 11 
1/15 1/13 1/ 13

0.725	 2/13 1/ 24 1/ 21 1/17 1/16 
1/19 1/ 19 1/ 17 1/18

0.750	 2/16 2/ 32 1/ 22 1/ 20 
1/ 27 1/ 25 1/ 23 1/ 23 1/ 21 1/ 21

0.7748* 2/ 17 1/ 38 
1/ 25 1/ 22 1/ 21 1/ 21

0.775	 2/17 1/ 38 1/ 28 1/ 25 
0/ 32 0/ 31 0/ 29 0/ 33 0/ 28

0.800	 0/ 37 1/ 39 1/ 31 
0/ 49 0/ 48 0/ 47

0.825	 0/ 81 0/ 67 0/ 63 0/ 56 0/ 53 
0/ 61

0.850	 0/139 0/ 112 0/ 93 0/ 85 0/ 76 0/ 72 0/ 67 
0/ 92 0/ 88 0/ 81

0.875 0/197 0/ 154 0/ 130	 0/ 113 0/ 101 

0.900	 0/242 0/ 196 0/ 164 0/ 140 0/ 127 0/ 113 0/ 102 0/ 97 
0/ 121 0/ 114

0.925	 0/283 0/ 240 0/ 195 0/ 169 0/ 149 0/ 137 
0/ 131

0.950	 0/330 0/ 271 0/ 230 0/ 194 0/ 175 0/ 157 0/ 142 
0/ 163 0/ 149

0.975	 0/375 0/ 314 0/ 266 0/ 230 0/ 201 0/ 178 
0/ 199 0/ 178 0/ 163

1.000 0/422 0/ 354 0/ 296 0/ 257 0/ 227 
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3.5 Comparison of SSS with Other Schemes 

Comparing with GSS, SSS generates a smaller number of chunks. SSS's first several 

chunks are also smaller than that of GSS, and SSS finishes with chunks of small 

number of iterations. Comparing with TSS, SSS finishes with smaller chunks than 

that of TSS resulting a better balanced workload. Comparing with the Affinity 

Scheduling Scheme, SSS's static scheduling phase helps to maintains a high cache 

hit ratio. 

The particular implementation of SSS given in this chapter is similar to that 

of Factoring [431 in the methods used to calculate the chunk sizes. Furthermore, 

in both schemes the chunks in the same batch have the same size. However, there 

are several major differences between the two schemes. The first one is that, Fac-

toring uses the no-more-than-half rule, i.e., a < 0.5 while in SSS, 0 < a < 1. The 

second difference is that SSS has two phases: a static scheduling phase and a dy-

namic scheduling phase. In SSS, a processor starts to execute a parallel loop with 

statically assigned iterations and smoothes out the uneven finishing times with a 

self-scheduling scheme. Third, the implementation given in this chapter assumes 

that little is known about the iteration execution time distribution. When more in-

formation is available, the amount of iterations assigned to each processor can also 

vary to best fit SSS's basic principle. Fourth, SSS's static scheduling phase increases 

the level of affinity between iterations and the processor. This property improves 

the performance of SSS by increasing the ratio of cache hit and is proved to be 

extremely useful in implementing self-scheduling on distributed-memory machines 

[58, 92]. 

The argument given by Factoring is that, to achieve an overall optimal fin-

ishing time, for each batch scheduled there must be enough work left to smooth 
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out the uneven-finishing times of that batch [42]. They argue that for some of the 

common distributions of chunk execution times including bell-shaped distributions, 

the expected finishing time of the first batch approaches 2µF0 (F0 is the same as 

CS0 used in this chapter) as the number of processors P increases. Therefore, there 

must be PF0 iterations left to smooth out its unevenness. Hence, to have a high 

probability of even finish times, no more than half the iterations should be scheduled 

in the first batch. 

Clearly, when 2p > E,naz the expected finishing time of the first batch does 

not approach 2µF0 because the execution times of chunks in the first batch must 

not be greater than Emax x Fo. Let further consider the following example. 

Consider a for loop that has an if-then-else statement as its loop body. Let 

N = 400, En./Emin = 4.0, prob(Ema) = 0.75, prob(Emin) = 0.25, and P = 5. 

Therefore, 

p = 0.75(4.0) + 0.25(1.0) = 3.25 
N = 3.25(400/5) = 260.0 

a2	 0.75(4.0 3.25)2 + 0.25(1.0 3.25)2 = 1.6875 

400 x 3.25/4.0safe chunk size =	 = 65 
5 

400risk chunk size = 80 
5 

0.75 + 0.251 + 1 a =	 = 0.90625 
2 

400CS° = x 0.90625 ti 72 

From the example we can see that by assigning a processor a chunk of 65 

iterations (safe chunk size) cannot unbalance the workload. This is because each 

processor needs to spend an average of 260 time units to finish the given parallel 

loop. Had there existed a processor spending less than 260 time units on the loop, 
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there would have been another processor spending more than 260 time units on 

the loop; therefore, the schedule would be less balanced. However, the longest 

execution time of a 65-iteration chunk is 260 time units. Hence we conclude that 

assigning a processor less than 65 iterations (equivalent to set a < 0.8125) only 

results in an increased scheduling overhead. In general, for a parallel loop that has 

an if-then-else statement as it loop body, at least NI P(prob(Eina)d- prob(E,nin) X 

Eminl Emaz iterations should be assigned to a processor during the first batch, where 

prob(Emax) is the probability of an iteration having an execution time of Emax. 

Therefore, when prob(Emax) > 0.5, or Einin/E,, > (0.5 prob(Emax))prob(Emin) 

and prob(Emax) < 0.5, we should not used a < 0.5. 

In SSS, the value of a determines the total number of chunks produced during 

the execution of a given parallel loop. The larger the value of a, the smaller the 

number of chunks is produced, resulting in a smaller overhead. When a becomes 

too large, chunks with long execution times may be produced resulting in load 

imbalance. The smaller the value of a, the fewer the iterations that are fetched 

by an idle processor, therefore better the balanced workload, however, with an 

increased scheduling overhead. Choosing an a smaller than p I Eniax only causes 

more scheduling overhead without further balancing the workload. 

The total number of chunks produced by Factoring is at least P (1 lg(N/P)) 

The total number of chunks produced by SSS is P lg(N/P)/ lg(1/(1 a)). For the 

example given above, SSS produces 10 chunks while Factoring produces at least 37 

chunks. Note that a scheduling function needs to modify some global variables that 

have to be accessed exclusively. Frequent accessing of the shared variables such 

as loop index increases the time required to access them because these variables 

must be accessed exclusively. We believe that for fine and medium grain parallel 
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loops or for systems where accessing shared variables is an expensive operation, SSS 

will surpass Factoring. For large grain parallel loops, SSS will perform as good as 

Factoring. 

Finding an appropriate value of a requires some information, such as maxi-

mum and minimum execution times and prob(then) etc. We argue that it is possible 

to obtain approximations of these pieces of information. The execution times can 

be obtained through profiling utilities. The probabilities of a particular execution 

times can be obtained through sampling [44]. In addition, a program that solves a 

particular problem runs many times to solve different instances of the same prob-

lem. In cases like this, information regarding the parameters used in SSS can be 

collected from the earlier runs and used to benefit the later runs. 

Table IV shows the chunk sizes for several scheduling schemes on the example 

used above. Since the safe chunk size is 65, it is not necessary to assign a processor 

a chunk less than 65 iterations to start with. Note that although SSS generates 

total of 15 chunks, which is the smallest among all the schemes, only 10 chunks are 

assigned to processors during run time. 

3.6 Modifications on Safe Self-Scheduling 

In this section we introduce some of the simple modifications on SSS that further 

improve the performance and the flexibility of SSS. 

3.6.1 Achieving a Higher Degree of Balanced Workload 

As mentioned earlier, selecting a value of a is a trade-off between increasing the 

scheduling overhead and achieving a more balanced workload among the processors. 

SSS can be easily modified to achieve a even better balanced workload with roughly 



Table N. Chunk sizes for different scheduling schemes 

Scheme Chunks N = 400 and P = 5 

SSS 15 72 72 72 72 72 7 7 7 7 7 1 1 1 1 1 

GSS 25 80 64 51 41 33 26 21 17 13 11 8 7 5 4 4 3 2 ... 

TSS 16 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 

Factoring 40 40 40 40 40 40 20 20 20 20 20 10 10 10 10 5 5 5 ... 

CSS [Nip f f f f f... 
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the same amount of overhead by applying a smaller value for a during the dynamic 

scheduling phase. Since Factoring has demonstrated its ability of producing bal-

anced workload, using the no-more-than-half rule during the dynamic scheduling 

phase of SSS may improve the performance, particularly for parallel loops where 

iterations at the end of the loop are likely to have longer execution times than iter-

ations at the beginning of the loop. Reverse Adjoint-Convolution application [42] 

is an excellent example that exhibits such a behavior. 

3.6.2 Tolerating Faulty Processors 

GSS is insensitive to faulty processors, i.e., even if one or more processors drop 

out after executing some chunks GSS would still balance the workload. This is not 

true with SSS. Consider the case when a processor drops out after executing some 

chunks, the rest of chunks defined in the array chunk_list no longer reflects the 

configuration of the the current system. This may cause an imbalance in workload. 

We suggest the use of the GSS algorithm in the dynamic scheduling phase 

to make SSS also insensitive to faulty processors. The SSS-GSS scheduling can be 

described as given below. 

1. Calculate the value for a. 

2. Each processor is then assigned N/Pa iterations statically. 

3. Set the global variable count to be the first unscheduled iteration's number. 

4. (a) begins mutual exclusion; 

(b) copies the value of count to i; 

(c) t <- max( (N - count) /p , 1);  

(d) count <- count + t ; 
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(e) ends mutual exclusion; 

(f) executes the chunk defined by i and i + t and repeats step 4 if i > N; 

When the number of processors P is large, the value of P does not need to 

be modified if some processors become faulty and drop out of the system. This 

is because the old values of the chunk sizes are only slightly smaller than the new 

ones that would have been calculated based on the new value of P. As we already 

discussed, a schedule using smaller chunks, in general, results in at least as well a 

balanced workload as a schedule using larger chunks. Note that the step 4 above 

can be precalculated and stored in an array. By doing so, the critical section can be 

replaced by a fetch&add command. More discussions on scheduling under faulty 

processors can be found in Chapter 7. 

3.6.3 Differing Start Times 

It is possible that not all of the processors begin to execute the loop at the same 

time. Waiting until all processors become free to start the loop will reduce the 

overall processor utilization. However, assigning chunks in the first batch of N /Pa 

iterations to a processor that starts at a much later time than the first processor 

that starts the execution of the loop may lead to an unbalanced workload. To 

prevent this from happening, we propose that SSS immediately enter the dynamic 

phase and determine the first batch chunk sizes as follows. Let t, be the starting 

time of the processor that starts first, and ti be the starting time of processor pi. 

Then, a chunk of the size 

N (4-4)
max ( Pa ,0 (3.9) 

it 
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is assigned to processor p2. When (aN I P (t1 ts)I it), the processor should then 

use the first available chunk in the chunk_list 0 . The effect of this rule is that 

the later a processor starts, the less work it should have to complete. Following the 

first batch, the remaining batches are computed with the same approach previously 

described. Using this approach, the SSS scheme continues to provide the benefits 

of a low overhead and a balanced workload. If the maximum delay time 

ts = max (t; ta)
J=1 

for a processor is known, then (aN I P txl p)p iterations can be scheduled statically 

by assigning to that processor with aNIP trip iterations at compile time. 

3.6.4 Increasing Granularity 

For fine grain parallel loop, the smallest chunk size could be more than 1. Using 

the similar approach as GSS(t), SSS can be modified to schedule not less than t 

iterations. We denoted it as SSS(t). When E,,,z < h, where h is the scheduling 

overhead, we have t > h/Emax. When Erni?, > h, t = 1. 

3.7 Experimental Results 

Different scheduling schemes are evaluated on a 20-processor Sequent Symmetry, a 

shared-memory parallel computer. In this section, we discuss the results of three 

different test cases. The first test compares the SSS scheme with other well-known 

scheduling schemes GSS [79], TSS [109], and Factoring [42] using a parallel loop 

with an if-then-else statement as its loop body. We implement GSS as GSS(1) and 

TSS as TSS(N/(2P), 1). In the other two experiments, we apply the SSS scheme 

to real applications, namely matrix multiplication and Gauss-Jordan. 
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Doall i = 1 to SIZE do 
if (A(i)) 

then for (j =0; j < DIVERSITY*N1; j++) ct 1 += 1; 
else for (j =0; j < N1; j++) ct2 += 1; 

Figure 3.3. A parallel loop containing branches 

3.7.1 A Parallel Loop With an If-then-else Statement 

The first test was conducted on the loop shown in Figure 3.3. The loop has four 

parameters, i.e., SIZE, A(), N1, and DIVERSITY. SIZE indicates the problem size. 

A() determines the frequency of executing the then branch. Parameter N1 speci-

fies the granularity of an iteration. Parameter DIVERSITY specifies the diversity 

between the two branches. 

We define the cost of executing a problem on a parallel system as the prod-

uct of the parallel executing time and the number of processors used. Clearly, a 

smaller cost is more desirable. The cost curves for different self-scheduling schemes 

executing the loop of Figure 3.3 up to 19 processors are shown in Figure 3.4. SSS 

outperforms the other scheduling schemes. The performance of GSS was equiva-

lent to that for a static scheduling scheme (SC), because of uniform distribution of 

prob(then) resulting in a small difference in the workload between any two chunks 

of equal size. 

Figure 3.5 shows the standard deviations for the processor workload on the 

corresponding runs of Figure 3.4. The workload was calculated by counting DI-

VERSITY time units for the then branch and 1 time unit for the else branch. All 

the self-scheduling schemes except TSS provide balanced workload. Factoring gives 

the most balanced workload followed by GSS and SSS. The well balanced workload 
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Parallel Loop with Branches 
Seq. Exe. Time: 285.96 sec 
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Figure 3.4. Cost curves for different scheduling schemes 
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Figure 3.5. Standard deviations in workload for different scheduling schemes 
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of Factoring does not result in a good performance because it comes at the cost of 

an increased overhead in scheduling. 

Figure 3.6 shows that the speedup achieved by different scheduling schemes 

using different values of granularity of iterations, i.e., Nl. Increasing the granularity 

of an iteration decreases the ratio between communication time and computation 

time. Therefore, all the scheduling schemes tested show improvement in perfor-

mance. The SSS scheme surpasses other schemes in all the tests with noticeable 

margins. The corresponding workload balance indicated by the standard deviations 

is given in Figure 3.7. The workload for static scheduling is 28.3 and is not shown in 

the figure. The workload for TSS is also not shown in the figure since it is too large 

(170) and does not change much. Although both GSS and Factoring have a better 

balanced workload than SSS, they do not result in a better performance than SSS 

because the balanced workload is achieved at the cost of a much higher scheduling 

overhead. 

Figure 3.8 shows the speedup achieved by SSS for different values of a for 

different granularities. Again, the performance of SSS improves as the iteration 

granularity increases. When the granularity is small, the selection of a has a greater 

influence on the performance. An accurate value of a that reflects the characteris-

tics of the loop produces better performance. With increasing iteration granularity, 

the value of a that yields the best performance decreases. This is because (1) work-

load balance plays a larger and important role in the overall performance and (2) 

performance degradation caused by scheduling overhead becomes less significant. 

This suggests that a relatively smaller value of a should be used when scheduling 

parallel loops with a large granularity. 

The workload balance of Figure 3.8 are indicated by the standard deviations 

given in Figure 3.9. The figure shows that the workload is more balanced when the 

iteration granularity increases. It also shows that, as long as the value of a is not 
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for i = 1 to N 
for j = 1 to N 

for k = 1 to N 
if a[i] [k] <> 0 then 

c[i }[j] = c[i][j] a[i][k] *b[k][j]; 

Figure 3.10. Matrix multiplication where many elements of matrix a are zero 

too large, smaller a values do not necessarily result in a more balanced workload, 

except when N1 = 1. Also, since with a larger value of a, more iterations are 

scheduled statically (i.e. smaller scheduling overhead), a larger value of a should 

be used whenever possible. 

3.7.2 Matrix Multiplication 

The code in Figure 3.10 performs matrix multiplication when many elements 

of matrix a are zero. In our experiment, 43.75% of the elements in a are zero and 

all of them are located in the lower-triangular portion of the matrix. The outer 

two loops are coalesced [79]. The execution time of an iteration is between 297 ps 

(microseconds) and 793 ps. Using the idea of Theorem 3.1, we find that a = 0.67. 

Note that Eq.(1) is no longer applicable because the loop body is no longer a parallel 

loop with an if-then-else statement. Rather, the loop body is a sequential loop. The 

results of using SSS are shown in Figure 3.11 with the comparative results given by 

SS (static scheduling), TSS, GSS, and Factoring. GSS assigns too much work at 

the beginning. This results in a very unbalanced workload and poor performance. 

3.7.3 Gauss-Jordan 

Figure 3.12 shows the algorithm that performs Gauss-Jordan on an N x N 
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Figure 3.11. Execution cost for matrix multiply given in Figure 3.10. 

for i = 1 to N 
Doall 1 = 1 to N*(N - i) { 

j = 1 div (N i); 

k=i+ 1 -Flmod(N-i); 
if (i j) then a[j][k] = a[j][k] - aliffira[i][1(] /a[i][i]; 

} 

for j = 0 to N 1  

if (i j) then a[j][i] = 0;  

Figure 3.12. Gauss-Jordan 
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Figure 3.13. Costs of running different schemes on Gauss-Jordan. 

array. Note that the iteration granularity of Gauss-Jordan is small and is inde-

pendent of problem size. The amount of variance in iteration length is also small. 

Problems of this kind are more suitable for static scheduling schemes than self-

scheduling schemes. To outperform the static scheduling schemes on problems of 

this kind, a self-scheduling scheme must be able to achieve a well balanced load 

with a very small scheduling overhead. As shown in Figure 3.13, SSS is the only 

dynamic scheduling scheme that outperforms the static scheduling scheme. The 

reason is that SSS schedules a major portion of iterations to processors statically, 

the rest of the iterations being used to balance the workload dynamically. 

Factoring does not perform well, particularly when the number of processors 

increases. This is because in Factoring the processors perform the largest number 

of fetches. The second reason is that since all except one processor obtain the same 

amount of work, when one processor finishes its work, all other processors (except 
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Figure 3.14. The effect of changing a on Gauss-Jordan. 

one) also finish their work; therefore, the contention to access the critical section is 

likely to be much higher than that for other schemes. This problem becomes even 

serious when the number of processors increases. 

Figure 3.14 shows how the scheduling overhead affects the performance on 

eight processors. When a is small, the scheduling overhead is high. The result is 

that the static scheduling scheme performs well. As the value of a increases, SSS's 

performance improves. Finally, SSS outperforms the static scheduling scheme. 

3.8 Conclusions 

We have presented the Safe Self-Scheduling (SSS) scheme to schedule parallel loops 

with variable length iteration execution times not known at compile time. We 

have shown how to combine static and self-scheduling schemes in SSS and draw 

the advantages from both. SSS schedules statically a major portion of the loop 
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iterations to processors to reduce the scheduling overhead while uses self-scheduling 

to balance the workload at run time.. 

Experimental results obtained from a shared-memory parallel computer in-

dicate that while maintaining a well balanced workload, the performance of SSS is 

superior to those provided by other well-known scheduling schemes. 

SSS achieves a well balanced workload with a low scheduling overhead. SSS's 

static scheduling phase improves the performance in two ways. One is that it 

increases the affinity between an iteration and the processor executing the iteration 

thus increases the ratio of cache hits. The other is that it reduces the scheduling 

overhead by assigning a large portion of iterations to processors at compile time. 

The importance of having a static scheduling phase is further demonstrated when 

self-scheduling is implemented on distributed-memory machines [58, 92]. 

The preliminary work of adopting SSS to a distributed-memory machine can 

be found in [92]. We believe that scheduling parallel loops on distributed-memory 

parallel computers can benefit from the two phase approach in our SSS scheme 

since the increased communication cost for a completely self-scheduling scheme will 

degrade the performance. 
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Chapter 4 

SAFE SELF-SCHEDULING ON  
DISTRIBUTED-MEMORY MACHINES  

4.1 Introduction 

The majority of self-scheduling schemes are designed to run on shared-memory 

machines because a self-scheduling scheme has to maintain a shared ready task 

queue. A static scheduling, rather than a self-scheduling scheme, is often used to 

schedule a parallel loop even with uneven iteration execution times. 

In the last chapter we introduced self-scheduling scheme SSS to schedule 

parallel loops with variable length iteration execution times on shared memory 

parallel computers. SSS has a unique feature, i.e., it has two scheduling phases: a 

static scheduling phase and a dynamic scheduling phase. We show in this chapter 

that this feature of SSS makes it more suitable than other scheduling schemes to 

run on distributed-memory machines. Another advantage is that the data used by 

a statically scheduled iteration can be prefetched by the processor on which the 

iteration is assigned. 

This chapter presents the method we used to implement SSS on a distributed-

memory machine such as the NCUBE/7. We call this version of SSS as DSSS 

(Distributed Safe Self-Scheduling). We also propose a data duplication method 
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to minimize data movement involved for bringing data to processors for iterations 

scheduled in SSS's dynamic scheduling phase. 

DSSS and other well known self-scheduling schemes were implemented on a 

64 processor NCUBE/7. Experiments show that DSSS performs well on parallel 

loops with different characteristics. 

One possible implementation of a self-scheduling scheme on a distributed-

memory machine can be as follows. Since there is no shared-memory, the ready 

task queue has to be stored on one processor or distributed on several processors. 

Let us say processor p; stores the ready task queue, then when a processor becomes 

idle, it sends a message to p; for more work. Upon receiving a request, p2 sends 

the requesting processor more iterations. The following issues have to be addressed 

before an efficient implementation is possible. 

The first is that message passing on a distributed-memory machine takes a 

much longer time than an exclusive access of a shared variable on a shared-memory 

machine; therefore, the scheduling overhead is much higher than that on a shared-

memory parallel computer. The result of this is that load has to be balanced without 

frequent access to the shared tasks queue. 

The second is that, since the processor that stores the shared ready task 

queue has to respond requests from other processors frequently, having this proces-

sor performs computation may delay the processing of request messages, resulting 

in low performance. If this processor acts only as a scheduler and does not perform 

any computation, the maximum potential speed up of the system becomes (P 1). 

In addition, a single scheduling processor many become a bottleneck, degrading 

performance further. 

The third is that, to execute an iteration, a processor must store the data 

needed by the iteration. If we assign iterations dynamically at run time, data 

has to be distributed to anticipate this assignment because data movement on a 
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distributed-memory machine at run time degrades performance significantly. 

Solutions to all the above three issues are discussed in this chapter. The 

rest of the chapter is organized as follows. We first discuss the Distributed SSS 

(DSSS) which tackles the same problems as SSS but targeted on distributed-memory 

machines such as NCUBE/7. Section 4.3 shows the experimental results. 

4.2 Distributed SSS 

DSSS (Distributed Safe Self-Scheduling) is a self-scheduling scheme that schedules 

parallel loops on distributed-memory machines. The parallel loops scheduled by 

DSSS are characterized by having variable length iteration execution times not 

known at compile time. DSSS has two scheduling phases: static and dynamic. 

The static scheduling phase serves two purposes: reducing scheduling overhead and 

helping data distribution. The dynamic scheduling phase balances the workload. 

During the static scheduling phase, the first aN iterations, where 0 < a < 

1, are divided into P equal sized chunks. Each of the P processors is assigned 

one chunk. Since the assignment of iterations to processors is determined before 

computation starts, data required by these iterations can also be distributed to the 

corresponding processors. 

Processors are self-scheduled during the dynamic scheduling phase. Self-

scheduling schemes can be implement on distributed-memory machine by designat-

ing one processor as the scheduler to handle all requests from other processors. A 

processor, called scheduling processor, is designated to respond to other processors' 

request for more chunks and assigns chunks to other processors during the dynamic 

scheduling phase. Since no processor requests any chunk during the static schedul-

ing phase, the scheduling processor also performs some computation in that phase. 

However, assigning N/Pa iterations to the scheduling processor may overload it. 
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The number of iterations processed by a scheduling processor should be greater 

than aNEminl PEni, and less than aNP. 

4.2.1 Data Partitioning 

For a distributed-memory machine, data should be stored on the same processor on 

which the task is executed. This is not a trivial problem, because data usually has 

to be distributed before computation. Worse yet, when data needed by an iteration 

is not stored on the same processor as the iteration is assigned to, either the data 

must be sent to the processor or the iteration has to be reassigned to the processor 

that owns the data. 

One approach would be to replicate all the data on every processor. For 

applications that process large amounts of data, as many of the applications us-

ing parallel computers do, data must be distributed among processors because the 

amount of data may be too large to be stored on one processor. 

In DSSS duplicated copies of data used in dynamic scheduling phase are 

distributed onto one or more processors. Whenever a scheduling processor assigns 

iterations to an idle processor, it always assigns iterations to a processor that has 

the needed data. 

In DSSS the data used by a set of iterations in dynamic scheduling is grouped 

into a block. Each block is then stored on two or more processors but is owned by 

only one processor which is responsible for updating the data in the block. The 

block size t has to be determined by either the compiler or the programmer. 

A table is constructed on the scheduling processor to describe the data dis-

tribution. We call this table the data distribution table. Each entry of the table 

describes one block and has the following information: the starting iteration num-

ber, the ending iteration number, the owner of the block, and the processors where 

the duplicate copies of the block of data are stored. 
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a[160] : integer; 

forall i = 1 to 160 do 
if (a[i] # 0) 

then a[i] = a[i] *a[i]; 

else a[i] = 0; 

Figure 4.15. Calculating the squares. 

4.2.2 Task Assignment in the Dynamic Scheduling Phase 

When processor pi finishes executing its statically assigned iterations, it sends the 

scheduling processor a message together with its processor id requesting for more 

work. The scheduling processor first tries to assign pi with iterations that need the 

data owned by pi. If these iterations have already been scheduled, the scheduling 

processor assigns a chunk of iterations whose data is owned by some other processors 

but a duplicated copy exists on pi. To cope with the idea of SSS, the number 

of blocks assigned to an idle processor may decrease exponentially after every P 

assignments, where P is the number of processors. 

4.2.3 An Example 

Let us assume that we are scheduling the loop given in Figure 4.15 and see how to 

schedule the loop onto 8 processors with a = 0.75 and N = 160. 

Partitioning 

The data partitioning is accomplished through the following two steps: 

1. aN /P array elements are distributed to each of the P	 1 processors while 

the scheduling processor keeps IaN /(2P)1 elements. For a = 0.75, N = 160, 
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Table V. An Example of Data Distribution Table 

Starting Ending Owner lsi 2nd  

Iteration Iteration Dup. Dup.  

1 113 118 1 3 2 

2 118 123 2 1 3 

3 123 128 3 2 4 

4 128 133 4 3 5 

5 133 138 5 4 6 

6 138 143 6 5 7 

7 143 148 7 6 1 

8 148 153 1 7 2 

9 153 158 2 1 3 

10 158 160 3 2 4 

and P = 8, the first 113 array elements are distributed to the 8 processors 

with 15 elements on each processor except that the scheduling processor, say 

Po, with 8 elements . 

2. Divide the (1	 a) x N LaN/(2P)] elements into 1 blocks of maximum e 

elements each. Each block is stored on one or more processors and only one 

processor owns the block. In this example, e = 5 and 1 = 10. If we decide 

to duplicate each block on two other processors, the data distribution table is 

then given as Table V. 
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Scheduling 

The scheduling processor executes the first IaN /(2P)1 iterations while processor 

pi, where i = 1, 2, ..., 7, execute the chunk from 

ix--1Y-xaLax-2PJ 

to 

(i-I-1)xxaLax 2pJ-1 
After pi finishes the chunk, it sends a message to the scheduling processor po 

to obtain another chunk. po first tries to assign a chunk that has its data owned by 

pi. If no such chunk exists, a chunk that has its data duplicated on pi is assigned to 

it. When all the chunk in the data distribution table have been scheduled, po sends 

every processor a message indicating that there are no more iterations left. 

4.3 Experimental Results 

In this section, we discuss experimental results for the different scheduling schemes. 

The first experiment is a simulation. The second experiment uses the Monte Carlo 

method to calculate the weight and center of mass for an object. The last experiment 

applies an image processing algorithm to produce a false-color image. All the three 

experiments are conducted on an NCUBE/7 distributed-memory computer. 

4.3.1 Simulation 

A 5000 iteration parallel loop with one if-then-else statement is used to conduct the 

first simulation. For CSS (Chunk Self-Scheduling), 5 iterations at a time is assigned 

to an idle processor. The ratio of execution time for the then branch to the else 

branch is assumed to be 4. The user supplies the expected frequency with which 

each branch is selected. 
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Table VI. Simulation 

Execution time (sec) & speedup in () 
Sequential execution time 406.334(sec) 

Schemes 4 8 16 32 64 

DSSS 137.5 
(3.0) 

59.7 
(6.8) 

28.0 
(14.5) 

13.7 
(29.6) 

6.8 
(59.5) 

CSS(5) 154.2 
(2.6) 

66.3 
(6.1) 

31.1 
(13.0) 

15.2 
(26.5) 

7.7 
(52.0) 

PSS 156.7 
(2.6) 

68.1 
(6.1) 

32.6 
(12.5) 

16.4 
(24.8) 

8.7 
(52.9) 

GSS 154.5 
(2.6) 

66.8 
(6.0) 

31.5 
(12.9) 

15.3 
(26.7) 

7.1 
(46.7) 

Static 102.2 
(4.0) 

51.6 
(7.9) 

26.3 
(15.5) 

13.5 
(30.2) 

7.4 
(55.1) 

Factor-
ing 

144.6 
(2.8) 

62.0 
(6.6) 

29.0 
(14.0) 

14.1 

(28.8) 
7.0 

(57.9) 

The simulation results are shown in Table VI. We also implemented static 

chunk and other self-scheduling schemes such as PSS, GSS, and Factoring for com-

parison. DSSS performs well with 64 processors. Static scheduling performs better 

than all the self-scheduling schemes because the variance of iteration execution time 

is a uniform distribution. 
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4.3.2 Monte Carlo Integration 

Monte Carlo integration is used to find the weight and the position of the center 

of mass for an object of complicated shape [82]. It is used when the limits of 

integration of the volume cannot easily be written in an analytically closed form. 

To evaluate the integral of a function f over the multidimensional volume V, this 

method selects N random points xl, xl, , xN over the volume and approximates 

f fdV with VIN f (xi) [82]. 

It is not easy to sample random points within a volume with complicated 

shape. In that case, the volume V can be enclosed by a larger volume W of a simple 

shape. In our experiment, the object evaluated is put inside a rectangular volume 

and sample points are chosen randomly. To ensure that the same set of sample 

points is used in different processors, we apply a distributed random number gen-

erator [24]. The integral of the function f is estimated as the volume W multiplied 

by the fraction of random points that fall within volume V. 

The object in this experiment is defined by three simultaneous equations: 

z2 Vx2 + y2 _ 3 < 1 (4.10) 

x > 1 (4.11) 

Y > 3 (4.12) 

Suppose the object has a constant density p. We then estimate the weight 

by f pdxdydz and the linear moments by f xpdxdydz, f ypdxdydz, and f zpdxdydz. 

The coordinates of the center of mass is then the ratio of the linear moments to the 

weight of the object. 

The code is shown in Figure 4.16. It constitutes a parallel loop with one 

if-then conditional statement. The number of iterations is the same as the data 

points selected, which is 250,000. 

The result of this experiment is shown in Table VII. When the number of 
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forall (i=0; i < 250000; i++) 
x = 1.0 + 3.0 * random(&R, &A, &C); 
y = (-3.0) + 7.0 * random(&R, &A, &C); 
z = (-1.0) + 2.0 * random(&R, &A, &C); 
if (sqr(z) + sqrt(sqr(x) + sqr(y) 3.0) < 1.0) 

{ 

/* estimate the weights and linear moments */ 

} 

Figure 4.16. Code for Monte Carlo Integration 

processors is small, i.e., smaller than 16, static scheduling performed better than 

other self-scheduling schemes. DSSS gives a better performance with more than 16 

processors. The better performance results from a well balanced workload and a 

low scheduling overhead. The expected frequency of executing the then branch is 

estimated to be 0.75 and a is calculated to be 0.88. 

4.3.3 Generation of False-Color Image 

The color image produced by translating a monocolor image into a color presenta-

tion is called false-color. This technique is often used to display data that is not 

inherently imaging in nature. 

In this experiment, the monocolor image is stored in an array. Each element 

of the array contains an integer ranging from 0 to 1000 to represent different gray 

levels of a pixel. Each gray level is then mapped to a color which is represented 

by a number ranging from 0 to 255. The computations among different pixels 

are different because the execution time of the function that maps a gray level to 

its corresponding color differs according to its input. We only implemented static 

scheduling scheme and DSSS because other scheduling schemes do not include data 
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Table VII. Monte Carlo Integration 

Execution time (sec) & speedup in () 
Sequential execution time 118.962(sec) 

Schemes 4 8 16 32 64 

DSSS 41.0 17.6 8.3 4.2 2.2 
(2.9) (6.7) (14.3) (28.0) (55.3) 

CSS 42.3 18.8 9.3 5.0 3.1 

(2.8) (6.3) (12.8) (23.8) (38.9) 

GSS 40.7 17.5 8.3 4.4 2.4 
(2.9) (6.7) (14.3) (27.0) (49.7) 

Factor- 41.8 17.5 8.1 4.4 2.3 
ing (2.8) (6.8) (14.6) (27.3) (52.0) 

Static 30.9 15.5 7.9 4.4 2.3 
(3.9) (7.6) (15.1) (26.8) (52.4) 

partitioning. The image tested has 512 x 512 pixels. 

For DSSS, data needed in the static scheduling phase is prefetched. Data 

needed in the dynamic scheduling phase is grouped into blocks of 16 elements and 

duplicated copies are stored on all other processors. Table VIII shows the perfor-

mance of the DSSS with a = 0.55 and the static scheduling. The improvement in 

speedup by DSSS comes from better utilization of processors. The time for 1 pro-

cessor is estimated, since the data array is too large to be stored on one processor. 
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Table VIII. Generation of a False-Color Image 

Execution time (sec) & speedup in () 
Sequential execution time 81.707(sec) 

Schemes 4 8 16 32 64 

DSSS 24.1 11.1 5.5 2.8 1.5 
(3.4) (7.4) (14.9) (29.5) (54.1) 

Static 23.9 13.7 8.5 5.0 2.609 
(3.4) (6.0) (9.6) (16.2) (31.3) 

4.4 Conclusions 

We demonstrated a successful attempt in applying SSS to schedule parallel loops 

with variable length iteration execution times on distributed-memory machines. 

The iteration execution times may not be known at compile time. 

The approach introduced in this chapter makes good use of the two phases 

approach of SSS. The advantage of applying SSS's static scheduling phase is that, 

first, scheduling overhead is reduced, and, second, a major portion of data is dis-

tributed during this phase. 

The dynamic scheduling phase balances the workload. The data needed in 

the dynamic scheduling phase is grouped into small blocks. Each block is then 

stored on one processor and that processor is designated as the owner of the block. 

The same block of data is then duplicated on limited number of other processors. 

In this way, an iteration can be assigned to a processor that either owns the data 

needed by the iteration or has a duplicated copy of the data needed by the iteration. 

We showed that DSSS offers better performance than other self-scheduling 

schemes. Compared with static scheduling, DSSS surpasses static scheduling scheme 
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when the number of processors is large. As much as 79% of improvement over static 

scheduling has been achieved by using DSSS. The same techniques used by DSSS 

can also be applied to other self-scheduling schemes. 
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Chapter 5 

A GENERAL APPROACH FOR  
SELF-SCHEDULING ON  

DISTRIBUTED-MEMORY MACHINES  

5.1 Introduction 

In the last chapter we discussed DSSS, an implementation of SSS on a distributed-

memory machine. Enlightened by the techniques used in DSSS, in this chapter 

we present a general approach that supports the implementation of a given self-

scheduling scheme on distributed-memory machines. 

This chapter discusses self-scheduling of non-uniform parallel loops on distributed-

memory machines. The chapter focuses on both workload balance and data distri-

bution, the two main issues in scheduling non-uniform parallel loops on distributed-

memory parallel computers. 

The approach again has two phases: a static scheduling phase and a dynamic 

scheduling phase. The static scheduling ameliorates the high scheduling overhead 

in a distributed-memory machine and also makes it possible to prefetch the data 

needed by the statically scheduled iterations. The workload is balanced in the 

dynamic scheduling phase. 

We classify data distribution methods into four categories and present k-

duplication of partial array, a method that allows the problem size to grow linearly 
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in the number of processors. We also present a multilevel scheduling scheme that 

alleviates the problem of the scheduling processor being a bottleneck. 

Combining the new data distribution methods with the general approach for 

self-scheduling of parallel loops, a user can expect to solve larger problems efficiently 

by employing more processors. 

The rest of the chapter is organized as following. Section 5.2 discusses a 

general approach for implementing self-scheduling schemes on distributed-memory 

machines. Section 5.3 presents the data distribution policies needed by different 

methods of assigning iterations to processors. We propose a multilevel scheduling 

scheme in Section 5.4. Experimental results are presented in Section 5.5. We 

conclude the chapter in Section 5.6. 

5.2 Self-Scheduling on Distributed-Memory Machines 

On a shared-memory machine, the ready task queue is stored in the shared-memory 

where each processor has access to it; although, exclusive access is required to guar-

antee that every iteration is executed once and only once. On a distributed-memory 

machine, unlike shared-memory machine, the ready task queue needs to be stored 

on one or more processors' local memory. We call these processors the scheduling 

processors. The other processors, which we call the working processors, then have 

to request for a task by sending a message to a scheduling processor. In this sec-

tion we discuss a general method for implementing a self-scheduling scheme on a 

distributed-memory machine with only one scheduling processor. This restriction 

is then relaxed in later sections. 

Let C1, C2, , CT be the T chunks generated by a self-scheduling scheme S 

on the iteration space I = {t1,t2,- , tN} of parallel loop L. We propose the follow-

ing two-phase approach to implement the self-scheduling scheme S on a distributed-
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memory machine. In the first phase, a chunk Ci is statically assigned to processor 

i, where 1 < i < P. Since the assignment of iterations to processors is determined 

at compile time2 data required by these iterations is also distributed to the corre-

sponding processors at compile time. For the self-scheduling scheme that generates 

a decreased sized chunks, the first P statically allocated chunks usually account for 

a major portion of the iterations. 

In the second phase, processors are self-scheduled to balance the workload. 

The processor that finishes first' in static scheduling phase becomes the schedul-

ing processor. The scheduling processor responds to other working processors' re-

quest for more iterations and assigns iterations to other processors during this self-

scheduling phase. Chunk C5, where p < j < T is assigned to a processor that stores 

the data needed by the iterations in C5. How to distribute data is discussed in next 

section. 

Figure 5.17 (a) shows the flow chart for a scheduling processor. The pro-

cessor starts with executing its chunk of iterations allocated at compile time. It 

then calculates the chunks scheduled in dynamic scheduling phase according to the 

scheduling scheme S to generate a ready task queue. Upon receiving a request 

from a working processor, it removes a chunk from the queue and assigns the chunk 

to the working processor. When the list becomes empty, the scheduling processor 

broadcasts a message to all the working processors to indicate that there is no more 

tasks. 

Figure 5.17 (b) is the flow chart for a working processor. After finishing the 

2Here compile time means the time the values for parameters N, P, and the scheduling scheme 

become available. 
3In practice, identifying the first finished processor is non trivial problem. In our implementation 

we always select processor 0 as the scheduling processor by assigning smaller number ofiterations 

during the static scheduling phase. 
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statically assigned chunk, it sends a message to the scheduling processor requesting 

another chunk of iterations. It then waits for a message from the scheduling proces-

sor. If the message contains a chunk, it performs the computation defined by the 

chunk. For systems that have communication co-processors, the request messages 

for additional tasks may even be sent before the completion of a chunk. By doing 

so, the overhead in waiting for additional work from the scheduling processor can 

be greatly reduced. 

Note that designating a processor as the scheduling processor is not necessary 

during the static scheduling phase since working processors do not make any requests 

for iterations during this phase. However, a scheduling processor is necessary during 

the dynamic scheduling phase to store the shared information such as the loop 

index. To store the shared information on more than one processor incurs additional 

overhead in maintaining the consistency of the information. Having the scheduling 

processor also perform computation as other working processors in the dynamic 

scheduling phase may result in a delay in processing the requests for additional 

work from other processors. 

5.3 Data Distribution Policies for Self-scheduling 

In the last section we presented a method of assigning iterations of parallel loops to 

processors of a distributed-memory parallel computer. To allow an efficient imple-

mentation of the method, data has to be distributed to anticipate the assignments 

of iteration. In this section we discuss the data distribution policies that are suitable 

for different scheduling schemes. 

To schedule a parallel loop on a distributed-memory machine, an iteration 

must be assigned to a processor that stores the data needed to execute the iteration. 

Otherwise, the iteration has to be re-assigned (ideally) to a processor that stores 
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the data, or message passing has to be invoked to bring in the data to the processor 

to which the iteration is assigned. Both of these methods are expensive to be 

performed frequently and should be avoided. 

Different scheduling schemes require data being distributed differently. For 

example, if the parallel loop is scheduled statically, the data needed by an iteration 

can be prefetched because the processor on which the iteration is assigned is prede-

termined. On the other hand, if the loop is scheduled using PSS, the data needed 

by an iteration has to be stored on every processor so that a processor can carry 

out the iteration immediately. This is because the iteration can be assigned to any 

processor. We classify the data distribution policies into four categories: 

1. Total Replication of Full Array (TRFA) 

2. Total Replication of Partial Array (TRPA) 

3. K-Duplication of Partial Array (KDPA) 

4. No Duplication 

Replication refers to a piece of data that is stored on all the processors. 

Duplication refers to a piece of data that is stored on a fixed k number of processors. 

This fixed number k is independent of the total number of processors and 1 < k < P. 

Table IX lists the four data distribution categories and some of the scheduling 

schemes that use them. Most of the self-scheduling schemes discussed in Chapter 2 

require a total replication of data because an iteration can be assigned to any 

processor. SSS for distributed-memory (DSSS) statically assigns the first P chunks; 

therefore, the data associated with these chunks can be prefetched. Since data 

needed by self-scheduled iterations can either be replicated or duplicated, data for 

DSSS can be either partially replicated or partially duplicated, depending on the 

amount of data needed by the loop. 
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Table IX. The data distribution categories and the corresponding loop scheduling schemes 

Data distribution Scheduling schemes 

total replication of full array GSS, TSS, FACTORING, PSS, CSS 

total replication of partial array DSSS 

k-duplication of partial array DSSS 

no duplication Static scheduling schemes 

For the general approach discussed in the last section, the data used by a 

statically scheduled iteration does not need to be duplicated or replicated. Only 

the data used in the dynamic scheduling phase needs to be either duplicated or 

replicated. If a scheduling scheme uses no static scheduling phase then the total 

replication of full array is used. In the absence of the dynamic scheduling phase no 

data needs to be duplicated. Whether to use k-duplication of partial array or total 

replication of partial array in the self-scheduling phase depends on many factors 

that we discuss below. 

5.3.1 Total Replication of Full Array 

In the total replication of full array, the data used by an iteration is stored on all 

the processors. This method should be used when a fixed amount of data is needed 

by the entire loop. In addition, this amount is independent of the problem size and 

the data is usually not modified. An example of this kind of applications is using 

Monte Carlo integration to find the weight and the position of the center of mass 

of a complicated shaped object [82]. 

The total replication of full array method is also used when all the iterations 
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are assigned to processors at run time. For example, if a parallel loop is sched-

uled using GSS, then the data has to be replicated to all the processors because 

an iteration can be assigned to any processor. In this case, the largest problem 

solvable using total replication of full array is limited to the problem solvable on a 

single processor. For example, for a particular machine, if we can store 1 million 

integers on one processor, then regardless of the number of processors the machine 

has, the problems solvable on this machine cannot use more than 1 million integers. 

This data distribution method has minimum scalability. Clearly, this is not accept-

able because many scientific computations often scale with the available processing 

power. In addition, maintaining the consistency of the P copies of a piece of datum 

distributed on all the processors may also severely degrade the performance. 

5.3.2 Total Replication of Partial Array 

In total replication of partial array, only a part of the data is stored on all the pro-

cessors and the rest of the data is partitioned into pieces and each piece is stored on 

a different processor. For example, DSSS has two phases: a static scheduling phase 

and a self-scheduling phase. A piece of data used by a statically scheduled iteration 

needs only be stored on the processor to which the iteration is assigned. The data 

used by a dynamically scheduled iteration is replicated to all the processors. 

Theorem 5.1 Let N be the problem size that can be solved using the total repli-

cation of full array and N' be the problem size that can be solved using total 

replication of partial array. Assuming that N' x /3 amount of data is stored 

without duplication or replication and evenly distributed, where 0 < /3 < 1, 

then we have 
NN'= 

1 + 1 p*P 
Proof: For all the data stored on a processor, N'/P x /3 is stored on this 

processor only and N'(1 )6) is replicated on this and other processors. Since 



80 

the amount of memory used by both of these methods are the same, i.e., 

N= N1-13 + N'(1__ (5.13) 

By solving N' from Eq.(5.13) we have 

N 
+1 (5.14) 

0 

Since #/P -I- 1 /3 < 1, it is always true that N' > N, i.e., we can always 

solve larger problem by using total replication of partial array than using the total 

replication of full array . 

For example, if # = 0.9, then 90% of iterations are scheduled statically 

and have their data stored on only one processor. Suppose that the rest of data 

is replicated. For a particular machine, if we can store 1 million integers on one 

processor, then for a machine with 16 processors, by using Eq.(5.14) with N = 

1, 000, 000, ,8 = 0.9, and P = 16, the similar problems solvable can use as many as 

6.4 million integers of data. This method can be used when the problem size, i.e., 

the number of iterations in the parallel loop, does not grow linearly in the number 

of processors. 

5.3.3 K-Duplication of Partial Array 

K-duplication of partial array is similar to total replication of partial array except 

that the replicated data is now duplicated to a fixed number of processors. In k-

duplication of partial array, no data (needed by only a particular iteration) is stored 

on all the processors. 

In order to implement a given scheduling scheme, chunk sizes are calculated 

according to the scheme. The data used by a chunk of iterations is grouped together 

and called a block. The block of data is stored on some fixed k number of processors, 

http:Eq.(5.14
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where 1 < k < P. The reason for k < P is that we assume one of the processors 

is the scheduling processor and it does not perform any computation during the 

dynamic scheduling phase. Each of these data blocks, although duplicated on more 

than one processor, is owned only by a designated processor which is responsible 

for updating its values. Every P 1 consecutive chunks of iterations form a batch. 

Each of the P 1 chunks in a batch is assigned to a processor that owns the data 

needed by that chunk. A block of data is also duplicated on other k 1 processors. 

Note that a chunk may not necessarily be assigned to the designated processor 

for execution during the dynamic scheduling phase. Rather, any processor that 

stores the data needed by the chunk can execute the iterations in the chunk. The 

information of this mapping of blocks of data to the P 1 processors is stored in a 

table on the scheduling processor. 

During the self-scheduling phase, an idle processor sends a request to the 

scheduling processor for additional work. The scheduling processor first tries to 

assign the requesting processor a chunk whose associated data block is owned by 

the requesting processor. If that chunk has already been scheduled to another 

processor, the scheduling processor then assigns a chunk within the same batch for 

which the data is duplicated on the requesting processor. If all such chunks in 

that batch are scheduled, the scheduling processor then attempts to assign a chunk 

from the next batch in a similar fashion. For the reason of achieving a balanced 

workload, a larger chunk should always be assigned before a small chunk. Since 

chunk sizes decrease in the later batches, the scheduling processor always tries to 

schedule larger chunks in the current batch before assigning chunks from the next 

batch. 
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Assigning chunks of iterations 

To assign chunks to processors efficiently, we propose a method below that uses three 

arrays. The array chunks [] stores the chunks of iterations assigned to processors 

during the dynamic scheduling phase. A chunk is defined by a starting iteration 

number and an ending iteration number. Chunk i's starting iteration number is 

stored in chunks [i] The ending iteration number is chunks [i + 1] The. 1.  

array flags 0 is used to record if a chunk is scheduled or not. flags [i] is set to 

false if chunk i has been scheduled and set to true otherwise. The sizes of array 

chunks and flags [] are the same but vary for different scheduling schemes. The 

array table [] [] is a two-dimensional array that has P 1 rows. Row i contains the 

indices of the array elements of chunks 0 that have their data stored on processor 

i+ 1. The size of a row is proportional to the size of chunks 0 . table [i] [0] is used 

to index the next chunk, in row i, to be assigned to processor i +1. Before a chunk is 

actually assigned, the scheduling processor checks the corresponding element in the 

array flags [] whether the chunk has been assigned to another processor already, 

and if so, table [i] [0] is incremented by one and the chunk indicated by the new 

value of table [i] [0] is checked. This process continues until either an unassigned 

chunk is found or all the chunks in row i have been scheduled. 

For a simple implementation of above scheduling policy, we logically view 

the processors connected in a ring. The data owned by a processor is duplicated on 

its two neighboring processors. If a chunk whose data is owned by processor i + 1, 

then the chunk number is stored in table [i] [j] where j mod k is equal to 1. If a 

chunk that has its number stored in table [i] [j] where j mod k is not equal to 1, 

it is duplicated on processor i + 1. Given a chunk c, its data is owned by processor 

(c mod (P 1)) + 1. 

The above method describes a simple method of deciding on which processors 

a block of data should be duplicated. The data is not necessarily duplicated on the 
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neighboring processors. Other assignments can be chosen as well. In addition, the 

data may also be duplicated on more than k = 3 processors. However, as k increases 

there is more flexibility in assigning iterations to processors at run time; but the 

storage requirement also increases proportionately. 

An Example of K-Duplication 

Let us study the scheduling of a parallel loop with 160 iterations on, for the purpose 

of illustration, a 5-processor distributed-memory machine, i.e., N = 160 and P = 5. 

Assume that the chunks are calculated using SSS with a = 0.8; the processors are 

logically connected in a ring; the data associated with the chunks in the dynamic 

scheduling phase is stored on three processors, i.e., k = 3. The data associated with 

a chunk is duplicated on its owner's two neighboring processors. 

Static scheduling phase 

In static scheduling phase, there are 5 processors performing computation. A work-

ing processor executes 

IN /P x al = 1_160 x 0.81 = 26 
5 

iterations. Assuming the scheduling processor only executes half of what other 

processors execute, then 117 iterations are scheduled statically. The data associated 

with these iterations is prefetched and stored in the local memory of each processor. 

Dynamic scheduling phase 

When the scheduling processor P3 finishes the chunk of iteration assigned to it 

during the static scheduling phase, it fills in the array chunks according to the 

specific self-scheduling scheme (SSS in this example). Table X shows the elements 

of the array chunks 0 . There are 8 chunks in dynamic scheduling phase. Chunk 
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Table X. The values for elements of array chunks 0 

values 

indices 0 1 2 3 4 5 6 7 8 

values 117 126 135 144 153 155 157 159 160 

i's starting iterations number and ending iterations number are given by chunk[i] 

and chunk[i + 1] - 1, respectively. 

Information regarding the data distribution is stored in the array table 0. 
Table XI shows the elements of the array table [] []. When an idle processor, 

say processor 1, sends a request to P. for more iterations, Ps checks the first row 

of table0 0 . If table [0] [0] is 1, the scheduling processor then attempts to 

schedule the chunk indexed by table [0] [table [0] [0] ] which is table [0] [1] and 

has a value of 0 according to Table XI. If chunk 0 has not been scheduled, then 

iterations from chunk [0] to chunk [1] 1, i.e. iteration from 117 through 125 

are assigned to processor 1; table [0] [0] is incremented; and flags [0] is set to 

false. However, if chunk 0 is already scheduled (when flags [0] is false), then 

the scheduling processor increments table [0] [0] and checks the chunk indicated 

by table [0] [table [0] [0] ] . The scheduling processor repeats the process until an 

unscheduled chunk is found or all the chunks indicated in the row are checked. 

Clearly, k-duplication of partial array greatly increases the size of problems 

solvable in terms of the data that can be stored. The actual amount of data can be 

stored is given by the theorem below. 

Theorem 5.2 Let N be the problem size that can be solved using the total repli-

cation of full array and N' be the problem size that can be solved using 

k-duplication of partial array. Assuming that N' x /3 amount of data is not 
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Table XI. The values for elements of array table 0 

values 

Columns 0 1 2 3 4 5 6 

table [0] 1 0 3 1 4 7 5 

table [1] 1 1 0 2 5 4 6 

table [2] 1 2 1 3 6 5 7 

table [3] 1 3 2 0 7 6 4 

duplicated, where 0 < 13 < 1. The rest of data is divided into blocks according 

to chunks, and the data owned by a processor is duplicated on other k 

processors, then we have 

x PN, tiPe, 
1 + k x (1 13) 

Proof: For all the data stored on a processor, N' x /3/P amount of data is 

stored on the processor only, N'(1 ,3)/(P 1) amount of data is owned by 

and stored on the processor, and N'(1 /3) /(P 1) x (k 1) amount of data 

is stored on but not owned by the processor. Since 

N'(1 13) N'(1 /3)N = N'/3 + x (k 1) +p (P 1) (P 1) 

we have 
N' x 13 k x N'(1 13)N = +P (P 1) 

If we approximate (P -1) with P, we then have 

N'xi3 kxN'(1 13)
N P.,' +P P 

1 
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0 

By solving N' we have 

N x P NxPN' ,-:,. 
k 0 x (k 1) 1+ k x (1 /3) 

Theorem 5.2 reveals two important properties about k-duplication of partial 

array. First, assuming that each iteration needs a fixed amount of data, the problem 

size solvable using this data distribution method is linear in the number of proces-

sors. This property is proved as a Corollary below. This is an important property 

if we want to solve larger problems by increasing the number of processors. 

Corollary 5.1 For a parallel loop, if each iteration needs a fixed amount of data 

and the data is distributed using the k-duplication of partial array method, 

then the size of problems solvable is linear in the number of processors. 

Proof: From theorem 5.2 we have that the size of problems solvable on P 

processors N' is approximated to be N x P(k /3 x (k 1)), where N is the 

problem size solvable on one processor. Since both k and /3 are constants, so 

we have 0(N') = 0(P). 

The second property is that the selection of k is the result of considering the 

trade-off between the problem size solvable and the possibility of an idle processor 

having the data owned by a busy processor. A large k limits the size of problems 

solvable because duplicated copies of data need additional memory space, while a 

small k decreases the chance of an idle processor having the data owned by a busy 

processor. 

Note that chunks may not be assigned to processors by the order listed in 

chunk [] . Instead, when a processor becomes idle, the biggest chunk whose data is 

stored on the idle processor is assigned to the processor. When all the chunks whose 
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data stored on the idle processor have been assigned, the idle processor remains idle 

until all the iterations are executed. 

5.3.4 No Duplication 

No duplication refers to the situation where data used by one iteration is stored 

only on one processor. The only cases where this data distribution method should 

be selected over others is when the parallel loop is statically scheduled. In this 

case, the processor to which an iteration is assigned is known at compile time so 

the data needed by the iteration can also be distributed to the processor before 

computation. For applications where the execution times between iterations do 

not vary much, static scheduling schemes are used in conjunction with this data 

distribution method. 

As mentioned before, when an iteration is assigned to a processor that does 

not have the required data, the iteration can be re-assigned to a processor that has 

the data or message passing can be invoked to bring in the data to the processor. If 

any of the above two approaches of ensuring a processor having the data needed to 

execute an iteration is used, data does not need to be duplicated. However, unless 

loop size is small and the grain size is so large that the message passing overhead 

can be neglected, the scheduling overhead will be prohibitively high to demonstrate 

the benefit of balancing the workload. We believe that these approaches should not 

be recommended as general approaches. 

Can the Affinity Scheduling scheme [68] use no duplication as its data dis-

tribution policy? The fact is that in Affinity Scheduling the data may not need be 

duplicated or replicated initially. However, when a processor executes iterations in 

another processor's work queue, the data needed by these iterations has to be sent 

to the processor on which the iterations are executed. This requires the data to be 

at least partially duplicated. In addition, the overhead incurred by such a scheme 
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is higher than that of the method described earlier in k-duplication of partial array. 

This is because, first, the messages are much larger because they contains data; 

second, the message preparation takes a longer time because it has to pack and un-

pack data; third, for each of these messages there are two processors spending time 

on non-computation tasks at the message sending and receiving end. In addition, 

Affinity Scheduling requests an idle processor to obtain more iterations from the 

"most loaded" processor. This is an expensive operation on a distributed-memory 

machine and requires all the processors to participate. 

5.4 Multilevel Scheduling 

In a straightforward implementations of self-scheduling schemes on a distributed-

memory machine, task distribution is centralized. Unscheduled iterations are grouped 

into chunks and stored in a queue on a designated scheduling processor. An idle 

processor sends a request message to the scheduling processor for additional work. 

When the number of processors increases, having only one scheduling pro-

cessor results in sequentialized task assignment to idle processors. Also, frequent 

request messages sent by the idle processors to the scheduling processor may cause 

a bottleneck due to the increased traffic. 

To solve the sequentialized task assignment problem, more than one processor 

may have to participate in scheduling. If these processors are spread evenly across 

the system, then they may also alleviate the problem of bottleneck. This can only 

be achieved at an increased cost in managing the scheduling. We discuss a method 

that decentralizes the control by dividing recursively the processors into two or more 

groups of equal size until each group has only e processors. We call the resulting 

groups of e processors leaf groups. For each leaf group, there is one scheduling 

processor and e 1 working processors. The scheduling processor is responsible for 
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Figure 5.18. Grouping processors for decentralized control 

two tasks: one, to assign tasks to the working processors in the same leaf group 

to keep them busy, and two, to communicate with the scheduling processors of 

neighboring groups to balance the global workload. 

For example, if the target machine is a hypercube of dimension d, it is then 

divided into 2d/e subcubes of size e (assume e is also power of two). The optimal 

value for e depends on both the hardware and the problem itself. 

If we assume that the underlying architecture is a hypercube, then the di-

vision of processors into two groups of equal size can be performed by dividing 

the processors along a dimension. For example, for two leaf groups, the processors 

having most significant bit 0 of their binary address form the first group, and the 

rest form the second group. In general, if e = 21 then all the processors with the 

rightmost 1 digits being 0 are scheduling processors. A scheduling processor's par-

ent processor can be obtained by flipping the right most bit with a value of 1 to 

0. Figure 5.18 gives an example of such a grouping for a 4 dimensional hypercube 

where e = 4. A scheduling processor's sibling scheduling processor at level 1 can be 

obtained by flipping the l's most significant bit. Figure 5.18 shows that there are 

four scheduling processors. 

By employing a larger number of processors as scheduling processors, less pro-
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cessors are available for computation. This weakness of using multilevel scheduling 

can be partially relieved by assigning some iterations to the scheduling processors 

during the static scheduling phase when working processors do not request for work. 

Scheduling Protocol 

Several different types of communication messages are sent, both by the working 

processors and the scheduling processors during the dynamic scheduling phase, to 

ensure that working processors do not idle. 

When a working processor, say WP0, finishes its task and becomes idle, it 

sends a request message to its parent scheduling processor SPo for more iterations. 

For example, in figure 5.18, processor 5 sends a request to processor 4 when processor 

5 becomes idle. If SPo has unscheduled iterations, it sends a chunk of iterations 

to the working processor WP0. If SPo does not have any unscheduled iteration, it 

tries to find work by communicating with other scheduling processors in the system. 

In which case SPo sends a request message to its sibling scheduling processor SPi 

for additional work. For example, when processor 8 runs out of tasks, it sends a 

message to processor 12 for additional work. 

If SPi receives a request from SPo for additional work, it shares its unsched-

uled iterations, if any, with SPo. However, if SP1 itself does not have any work, 

it sends a message to SPo reporting unavailability of work if the SP1's id number 

is larger than that of SPo. Upon receiving this message, SPo then attempts to 

find work from the sibling processor at a level above the current level. If SP1's id 

number is smaller than that of SPo, then SPi finds additional work from the sibling 

processor at a level above the current level. The same protocol is used at the upper 

levels of this multi-level scheduling scheme. 

If no work is found on the way up the tree until the root is reached, the root 

processor then sends a message to its children processors indicating that there is no 



91 

more work to be found in the loop. When a scheduling processor receives such a 

message it informs all its children working processors that there is no more work in 

the system. 

5.5 Experimental Results 

The fact that self-scheduling can be used on a distributed-memory machine to 

improve performance has been demonstrated in the previous chapter. In this section 

we use again the image processing algorithm that produces a false-color image to 

illustrate the feasibility of the data distribution methods proposed. 

The problem used in this section is similar to the one used in previous chap-

ter. The difference is that data distribution methods proposed in this chapter are 

used to distribute data used by dynamically scheduled iterations. We implemented 

the static scheduling and SSS schemes. For SSS we tested using total replication 

of partial array as well as k-duplication of partial array to distribute the data. For 

the static scheduling scheme, no data is duplicated or replicated. The image tested 

has 512 x 512 pixels. 

Table XII shows the performances of different schemes. For SSS, a value of 

0.55 was used for a and the data in self-scheduling phase is replicated in SSS(TRPA) 

and duplicated in SSS(KDPA), i.e., total replication of partial array policy and k-

duplication of partial array policy are used to distribute the data in SSS(TRPA) 

and SSS(KDPA), respectively. The block size is calculated using SSS. A speedup 

of 54 is achieved using total replication of partial array on an NCUBE/7 with 64 

processors. The improvement in speedup in SSS(TRPA) and SSS(KDPA) come 

from better utilization of processors. The overhead of k-duplication of partial ar-

ray of data is higher than that of using total replication of partial array of data. 

This is expected because, comparing with total replication of partial array, a larger 
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Table XII. Generation of a False-Color Image 

Execution time (sec) & speedup in () 
Sequential execution time 81.707(sec) 

Schemes 4 8 16 32 64 

SSS(TRPA) 24.0 11.1 5.5 2.8 1.5 

(3.4) (7.4) (14.9) (29.5) (54.1) 

SSS(KDPA) 24.1 11.3 6.0 2.95 1.7 

(3.39) (7.2) (13.6) (27.7) (45.4) 

Static 23.9 13.7 8.5 5.0 2.609 
(3.4) (6.0) (9.6) (16.2) (31.3) 

scheduling overhead is involved in assigning a chunk to an idle processor when data 

is partial duplicated. The experiments were conducted on an NCUBE/7 with 64 

processors. We assume that the times of loading and distributing the data depends 

on hardware and are not considered. 

5.6 Conclusions 

Self-scheduling schemes are used, essentially on shared-memory machines, to sched-

ule parallel loops with variable length iteration execution times not known at com-

pile time. With an increase in the number of processors in a parallel computer, 

memory tends to be distributed. In this chapter we have studied the problem 

of implementing the concept of self-scheduling non-uniform parallel loops on a 

distributed-memory environment. 

The general approach introduced in this chapter is an extension of DSSS. In 
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addition to the advantages of using two phases in DSSS, the methods discussed pro-

vide a systematic way to implement a given self-scheduling scheme on a distributed-

memory machine. We have classified the data distribution methods into four cate-

gories based on the amount of data being replicated or duplicated. We also present 

k-duplication of partial array, a method that permits problem size to grow linearly 

in the number of processors. Using the method discussed in this chapter, a user can 

expect to solve larger problems efficiently by employing more processors. 

We also show that the k-duplication of partial array method of distribut-

ing data allows the system to self-schedule parallel loops with much greater data 

size without significant loss in efficiency. To ease the bottleneck of a single proces-

sor as the scheduling processor, we have proposed and implemented a multi-level 

scheduling scheme for parallel loops. 
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Chapter 6 

INTEGRATING SSS INTO CHARM  

6.1 Introduction 

In this chapter we present techniques for automatic generation of code for user 

selected self-scheduling scheme and the code of a data distribution policy that is 

suitable for the selected scheduling scheme. The techniques are implemented in a 

machine independent parallel programming environment, namely CHARM [19]. We 

have developed high-level abstractions for distributing data and abstractions for a 

variety of self-scheduling schemes on shared as well as distributed-memory machines. 

These abstractions provide flexibility and machine independence for programs that 

are easily portable across a variety of parallel computers. 

Many parallel languages or environment support some form of parallel loops 

but few support self-scheduling of parallel loops [39, 88]. Self-scheduling schemes 

are often used to improve the processor utilization. However, implementing self-

scheduling requires extensive coding that is often left to the programmer. Different 

self-scheduling schemes on a distributed-memory parallel computer may require that 

data being distributed to processors differently. This makes implementing a self-

scheduling scheme even more difficult. In the case when different schemes are used 

for different loops in the same program, data may need to be redistributed at run 
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time to support different schemes efficiently. In addition, the code for scheduling 

schemes is often embedded and interspersed with the code for the underlying algo-

rithm. This makes the program more complicated, more difficult to port from one 

machine to another, and harder to debug. 

There are two approaches to deal with the distribution of data to processors. 

First, a compiler may analyze the program and generate a distribution at compile 

time for the program [23, 31, 56, 85]. The second approach is that the programmer 

may provide some abstractions to indicate to the compiler on how the user want the 

data to be distributed [39, 86, 88]. We have taken the second approach where the 

programmer provides both a high level data distribution abstractions and parallel 

loop scheduling abstractions. The compiler then uses these pieces of information to 

insert code to realize the user's specifications. We provide abstractions to specify 

how to distribute a data array initially and how to schedule the iterations of a par-

allel loop. If the data distribution does not result an efficient realization of the user 

specified scheduling method on a parallel loop, functions are called automatically 

at run time to redistribute the data. The abstractions are developed in CHARM, a 

parallel programming language. 

Analysis is presented to assist the user in determining which scheme to use in 

scheduling a parallel loop. Experiment results show that the newly added features 

greatly increase the usability of CHARM without sacrificing efficiency. Although the 

studies are conducted using CHARM, the same techniques apply to other parallel 

programming languages as well. 

The rest of the chapter is organized as following. We give an overview of 

CHARM in Section 6.2 and present the approach of supporting different scheduling 

schemes and data distribution policies in CHARM in Section 6.3. Experimental 

results obtained on two applications, namely false-color image and subgraph iso-

morphism are discussed in Section 6.4. We conclude this chapter in Section 6.5. 
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6.2 Overview of CHARM 

CHARM is a message-driven machine independent parallel programming system 

[19]. It allows parallel programs to run efficiently on different MIMD systems with-

out any modification to the code. The system can be a shared-memory machine, 

distributed-memory machine, or a network of workstations. It supports an explic-

itly message-passing parallel language and helps control the complexity of parallel 

programs by imposing a separation of concerns between the user program and the 

system. The programmer is responsible for the static or dynamic creation of tasks or 

processes and exchanging messages between them. The processes can be allocated 

to processors statically or CHARM can also assume the responsibility of scheduling 

the processes dynamically. 

Conceptually, CHARM maintains a pool of work consisting of processes and 

messages for existing processes. The system assigns processes in the pool non-

deterministically at run time to processors for execution. The programmer may 

also specifically assign processes to processors. A message is sent to a process called 

a chare. A chare has several entry points and a message must be sent to one of the 

entry points. Processing a message involves jumping to the entry point specified 

in the message and executing the code sequentially. Once a message is processed, 

it always voluntarily relinquishes the processor, returning control to CHARM. The 

execution of a message may result in new processes or new messages. These new 

pieces of work are then put into the work pool for execution. 

Although CHARM language provides machine-independent high level ab-

stractions for information sharing it does not provide data partitioning and distri-

bution abstractions or abstractions for scheduling loops. The rest of the chapter 

describe the abstractions we have developed for CHARM to support the execution 

of parallel loops and automation of data distribution. 
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6.3	 Abstractions for Data Distribution and Loop Schedul-

ing 

We provide two sets of abstractions. One set specifies initial data distribution 

policies when a global array is declared. The other set specifies methods of assigning 

iterations to processors. We assume that the scheduling methods all have two 

phases: a static scheduling phase and a dynamic scheduling phase. As discussed 

in the earlier chapters, in the static scheduling phase, each processor is assigned 

an equal amount of work. In dynamic scheduling phase, chunks are determined 

according to SSS for the sake of discussion. 

6.3.1	 Initial Data Distribution Abstractions 

The initial data distribution abstractions specifies, for a global array, the data type, 

dimension, the size on each dimension, the distributed dimension, and the initial 

data distribution policy. The syntax is as follows: 

distribute data_type name [size] * [size : d_method] [size] *  

Or 

distribute data_type name [size]+ 

The keyword distribute indicates that the array is a global array and must 

be distributed according to the programmer's specification by the d_method field. 

data_type defines the data type of an array element and it can be of any type 

legal in CHARM. name is an identifier and size specifies the number of elements 

in that dimension. Finally, d_method indicates the initial data distribution policy. 

The d_method can be any one of the following policies: BLOCK, CYCLIC, TRPA(a) , 

KDPA(a) or REPLICATE. In both BLOCK and CYCLIC, no data is duplicated. TRPA 

is for total replication of partial array and KDPA is for k-duplication of partial 

array. The a in TRPA(a) and KDPA(a) is a number between 0 and 1 and indicates 
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the fraction of the total amount of data distributed with no duplication or replica-

tion. We assume that these two data distribution policies are used only if the user 

plans to schedule the parallel loops in the program using self-scheduling and SSS is 

used to calculate the chunks. The concept remains the same if other self-scheduling 

schemes are used to calculate the chunks. The default data distribution policy is 

REPLICATE where all data elements are replicated on all the processors. 

Example 1 

The declaration 

distribute int a[1024:BLOCK];  

declares an array of 1024 elements with the elements from i x 11024/P1 to (i + 1) x 

11024/P1 1 resident on processor i where P is the total number of processors. 

Example 2 

The declaration 

distribute int a[1024] [1024:BLOCK];  

declares a two dimensional array of 1024 x 1024 elements with the elements on 

column from i x 11024/P1 to (i + 1) x 11024/P1 1 resident on processor i. That 

is, each processor has an array of integers a [1024] [11024/PD resident on it. 

Example 3 

The declaration 

distribute int a[1024:TRPA(0.75)]; 

declares a one dimensional array of 1024 elements. Elements from i x 11024/P x 0.751 

to (i 1) x 11024/P x 0.751 1 resident on processor i only. Elements from 

http:a[1024:TRPA(0.75
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Table XIII. Supported loop scheduling schemes and the corresponding data distribution policies 

SCHEDULING_SCHEME Meaning Data Distribution 

GSS, Factoring, PSS, CSS Using GSS Replicate 

SSS(a) Using SSS TRPA 

DSSS(a) Using DSSS KDPA 

BLOCK Using static chunk No duplication 

P x 11024/P x 0.751 to 1023 are replicated on all the processors. 

6.3.2 Parallel Loop Scheduling Abstractions 

A parallel loop scheduling abstractions specifies, for a forall loop, the starting 

iteration number, ending iterations number, and the loop scheduling scheme. It has 

the following format: 

forall(var = starting; var < ending; var++; SCHEME) {  

Loop body  

The keyword forall indicates that the loop is a parallel loop and needs to 

be executed on all the processors. SCHEME, when replaced by a key word listed in the 

left most column of Table XIII, specifies a scheduling scheme, according to which 

the iterations of the loop is assigned to processors. 

Table XIII also lists the required data distribution method for each of the 

scheduling schemes. The current implementation of the self-scheduling schemes uses 

one processor as the scheduling processor on which the main chare executes. 
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distribute int a[128:TRPA(0.8)]; 

chare main{ 

entry Charelnit: { 

bound("num.datn, a); 
} 

} /* end of main */ 

Figure 6.19. User's CHARM code for initial data distribution 

6.4 Implementation of Abstractions in CHARM 

6.4.1 Implementation of Data Distribution Abstractions 

The data is initially distributed to processors in the main chare's Dat aInit entry 

point by calling the function Bound (array_name , f ile_name) , where filename 

is the name of the file that contains the data for array_name. The data is then 

distributed to the processors according to the data distribution method defined in 

the declaration of array_name. 

Figure 6.19 shows a segment of the CHARM code using abstractions for 

initial data distribution. This segment of code is then translated into the code 

given in Figure 6.20 which creates a distributed array in a Branch Office Chare, 

called _CK_LPJ3OC in Figure 6.20. A Branch Office Chare is similar to an ordinary 

chare except it is created on every processor in the initialization stage of a CHARM 

program's execution. Inside _CK_LP_BOC, we declare a pointer variable that points 

to the first element of the distributed array. 

Once this _CK_LP_BOC chare is created, CHARM executes the function 
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chare main{ 

entry Datalnit: { 
Create BOC for data distribution; 

} 

entry Charelnit: { 
Create climes that read in the data from file; 

} 

} /* end of main chare */ 

BranchOffice _CK_LP_BOC { 

int *_ck_usr_data 

entry RECEIVING DATA: { 
allocate memory for _ck_usr_data and/or initialize it using the passed in message 

} 

public GetlntDataPtr(ptr) { 
assign ptr with the memory address of data; 

} 

} 

Figure 6.20. The resulting CHARM code for Figure 6.19. 
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chare working { 

forall (i = 0; i < 128; i++; SSS(0.8))  
A(a[i]);  

} 

Figure 6.21. User's CHARM code for loop scheduling 

bound in the main chare's Charelnit entry point. In the function a file is randomly 

accessed to read out values for only one processor at a time and the values are 

packed into a message and sent to the processor's _CK_LP_BOC chare's RECEIV-

ING_DATA entry point. The pointer variable then points to the first data element. 

If the data is not read from a file, then memory is allocated for the distributed 

array and is pointed by the pointer variable. In Figure 6.20, the pointer variable is 

_ck_usr.slata. To access the distributed array, a process calls the public function 

GetlntDataPtr() to obtain the address of the array. 

6.4.2 Implementation of Scheduling Abstractions 

Finger 6.21 shows a forall loop. After translation, the loop body becomes a chare 

with two entry points. The chare _CK_LP_CHARE in Figure 6.22 is the place where 

the loop is actually executed. 

The forall loop is replaced by a message that is sent to the main chare's 

Schedulerinit entry point, which results in a chare named _CK_LP_SCHEDULER 

being created on the scheduling processor. The _CK_LP_SCHEDULER chare has 

different entry points for different scheduling schemes supported. Figure 6.22 shows 

that chare _CK_LP_SCHEDULER has two entry points: SSS and SSS_REQUEST. 

The first message to the chare is sent to the SSS entry point where the static 
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chare main{ 
entry _CK_SchedulerInit: 

CreateChare(_CK_Scheduler, _CK_Scheduler@SSS ) 

} } /* end of main chare */ 
chare working {  

SendMsg(main@SchedulerInit )  

} /* end of "user working chare */  

chare _CK_Scheduler  

entry SSS:  

for (i = 1; i < num_proc; i++) 
CreateChare(_CK_LP_CHARE, _CK_LP_CHARE@EXECUTE ) 

} 
entry SSS_REQUEST: 

SendMsg(_CK_LP_CHARE@EXECUTE1 ) 

} 

} /* end of chare Scheduler */ 
chare _CK_LP_CHARE 

int *_ck_dist_a; 

entry EXECUTE: { 
BranchCall(_CK_LP_BOC@IntDataPtr(Sz_ck_dist_a));  

for (i = msg->lo; i < msg->hi; i++) A(_ck_dist_a[i - msg- >lo]);  
SendMsg(_CK_Scheduler@SSS_REQUEST);  

} 
entry EXECUTE1 { 

for (i = msg->lo; i < msg->hi; i++) A(_ck_dist_a[i - msg- >starting]); 

SendMsg(_CK_Scheduler@SSS_REQUEST); 

} 
} /* end of the _CK_LP_CHARE chare */ 

Figure 6.22. The resulting CHARM code for Figure 6.21. 



104 

Table XIV. Loop scheduling schemes and the corresponding data distribution policies supported 

Initial policies Redistributed to 

BLOCK TRPA, KDPA, CYCLIC 

CYCLIC TRPA, KDPA, BLOCK 

TRPA BLOCK 

KDPA BLOCK 

scheduling phase of SSS is enforced. This results in the chare _CK_LP_CHARE 

being created on every processor. In _CK_LP_CHARE, a processor first obtains the 

memory address of the distributed array on that processor by calling the public 

function GetlnitDataPtr() of chare _CK_LP_BOC. The processor then executes 

the parallel loop on the iterations assigned to it. After finishing the iterations of 

the first chunk, a processor sends a message to chare _CK_Scheduler's entry point 

SSS..REQUEST requesting for more iterations. If there are unscheduled iterations, 

a message is sent by chare _CK .Scheduler to the requesting processor's EXECUTE1 

entry point, which is an entry point of chare _CK_LP_CHARE 

6.4.3 Data Redistribution 

Before a parallel loop is scheduled, data used by the loop needs to be dis-

tributed according to the scheduling scheme. If the data has been distributed for 

another loop in the program, the data may deed to be redistributed to ensure an 

efficient execution of the current loop. We currently support data redistribution 

for schemes listed in Table XIV. The reason that REPLICATE is excluded from 

the data redistribution is that, first, replicating the data may not be feasible due 
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for every processor do 

1. calculates the amount of memory need by the new data distribution policy; 

2. allocates memory; 

3. divides the elements stored on itself into three groups 

3.a. elements staying on itself 

3.b. elements needed to be sent to other processors 

3.c. elements needed to be broadcasted to all the processors 

4. sends out elements in 3.b. to the corresponding processors 

5. broadcasts elements in 3.c. 

6. reads the message queue and copy the elements into correct 

locations allocated in stem 2. 

Figure 6.23. Algorithm for re-distribution 

to the limitation provided by the amount of memory; second, if replication is used 

then programs usually use small and fixed amount of data. Redistribution between 

TRPA and KDPA is not supported for similar reasons. Changing the data distri-

bution from BLOCK or CYCLIC to TRPA or KDPA may not always be feasible 

due to the limitation imposed by the amount of memory needed by the resulting 

data distribution policies. 

The data redistribution is achieved by having each processor executing a 

segment of code specified in Figure 6.23 

6.5 When to Use What 

A user often has to make decisions about how to distribute the data. This is affected 

by two factors. One is the amount of data that needs to be processed, and the other 
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is the scheduling scheme used. For algorithms that process large amount of data, 

the data has to be distributed using either no duplication or k-duplication of partial 

array. If a program has more than one parallel loop, the user may choose to use 

different schemes for different loops. Following are three theorems that can be used 

in assisting a user select a scheduling scheme(s). 

Let L1 be an uniform parallel loop and L2 be a non-uniform parallel loop. 

Let tl and t2 be the total sequential execution time of L1 and L2, respectively. Let 

tsT and tsss be the execution time when both L1 and L2 are scheduled using a 

static scheduling scheme and SSS, respectively. Let tREs be the execution time 

when one of the loops, say L1, is scheduled using static scheduling and the other is 

scheduled using SSS. That is, 

tl t2 
1ST (6.15) 

+t2tsss (6.16)P+1 
11 t2 

1RES + is tred (6.17)P P 1 
where timb is the delay in static scheduling caused by unbalanced workload; t, is the 

scheduling cost for a balanced workload; and, tred is the overhead for redistributing 

the data. 

Theorem 6.1: tsT > tsss when timb > (ti t2)/(P x (P 1)) + ts 

Proof: From Eq.(6.15) and Eq.(6.16) we have 

tl F t2 t2 
1ST > tSSS 1- 6bmP 1 

_1 1p)
timb > t2 X 

t2 , 

limb > P x (P 1) 1- 6 

Theorem 6.2: tsT > tRES when timb > t2 /(P x (P 1)) + ts tred 

http:Eq.(6.16
http:Eq.(6.15
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Proof: From Eq.(6.15) and Eq.(6.17) we have 

ti + t2 tl t2tsT > tRES + is + tredP "lb ' P P 1 
2 t2 2 4,> + +timb ...r t 3 1. tred 

t2 0===> timb > P x (P 1) + is + tred 

Theorem 6.3: tsss > tRES when t1 > tred x P x (P 1) 

Proof: From Eq.(6.16) and Eq.(6.17) we have 

t2 t2 
tSSS > tRES is to tredP+1 P P 1 

ti ti > bredP 1 P  
tl > tred x P x (P 1) 

According to Theorem 6.1, self-scheduling should be used when the number 

of processors is large. Since t1 t2 is fixed for a given loop, increasing the num-

ber of processors decreases the overhead of using self-scheduling schemes almost 

quadratically assuming that ti, remains the same. In theorem 2, since the uniform 

parallel loop L1 is scheduled statically, it needs not be considered in selecting a par-

ticular scheduling scheme. Therefore, the non-uniform parallel loop L2 determines 

which scheme to select. Theorem 3 suggests that when t1 is large, one may consider 

scheduling L1 statically. 

The above theorems can be used to help the user determining how a given 

loop should be scheduled. We understand it may be difficult to calculate the values 

of some parameters such as timb and t.s. However, since the method presented in 

this chapter allows a user to schedule a given loop using different schemes by simply 

changing one parameter, the user can make a good use of the theorems to eliminate 

some of wrong choices. Again, since a program runs many times in its life span, 

after several execution of the program, the user may have a better estimation of the 

parameters. 

http:Eq.(6.17
http:Eq.(6.16
http:Eq.(6.17
http:Eq.(6.15
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6.6 Performance 

The techniques discussed in the previous sections are implemented in CHARM 

and tested using a 16 node Intel hypercube iPSC/2 and a 20 processor Sequent 

Symmetry. We present below the results of two experiments: false-color image and 

subgraph isomorphism. 

6.6.1 False-Color Image 

The false-color image tested here is similar to the one discussed in the pre-

vious chapters. We show the results of scheduling the loop using static schedul-

ing scheme, SSS(TRPA), and SSS(KDPA). In both SSS(TRPA) and SSS(KDPA), 

the chunk sizes are calculated using SSS with a being 0.8. The image tested has 

512 x 512 pixels. Note that since one processor is used for scheduling, the potential 

speedup cannot exceed P 1. 

Table XV shows the performance of different schemes running on a Sequent 

Symmetry. The improvements in speedup by both SSS(TRPA) and SSS(KDPA) 

come mainly from better processor utilization. The sequential execution time is 

obtained by running a C program that executes the same algorithm as the CHARM 

code. 

Table XVI shows the results of executing the same code on an Intel hyper-

cube iPSC/2. Clearly, self-scheduling schemes achieve better performance when the 

number of processors is reasonably large. Both SSS and DSSS perform roughly the 

same. 

Table XVII shows the performance of the same problem except that the 

problem size is increased to 1024 x 1024. The sequential time is estimated because 

the problem size is too large to run on a single processor. Again, self-scheduling 

schemes enjoy better performance when the number of processors is large. 
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Table XV. Generation of a False-Color Image on the Sequent Symmetry on 512 x 512 pixels 

Execution time in seconds & speedup in ()  
Sequential execution time 24.780 sec  

Schemes  

SSS(TRPA)  

SSS(KDPA)  

Static  

4 

8.32 (2.98) 

8.28 (2.99) 

7.63 (3.33) 

8 

3.69 (6.72) 

3.62 (6.85) 

4.75 (5.20) 

16 

1.73 (14.32) 

1.80 (13.77) 

3.00 (8.26) 

Table XVI. Generation of a False-Color Image on the iPSC/2 on 512 x 512 pixels 

Execution time in seconds & speedup in 0  
Sequential execution time 16.895 sec  

Schemes  

SSS(TRPA)  

SSS(KDPA)  

Static  

GSS  

4 

5.703 (2.96) 

5.671 (2.98) 

4.907 (3.44) 

5.678 (2.75) 

8 

2.547 (6.63) 

2.744 (6.16) 

2.948 (5.73) 

2.915 (5.80) 

16 

1.396 (12.1) 

1.563 (10.8) 

1.865 (9.06) 

1.833 (9.22) 
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Table XVII. Generation of a False-Color Image on the iPSC/2 on 1024 x 1024 pixels 

Execution time (sec) & speedup in 0 
Estimated sequential execution time 65.602(sec) 

Schemes 4 8 16 

SSS 21.656 (3.03) 9.40 (6.98) 4.609 (14.23) 

DSSS 21.618 (3.03) 9.33 (7.03) 4.454 (14.73) 

Static 16.878 (3.89) 8.91 (7.36) 4.943 (13.27) 

6.6.2 Subgraph Isomorphism 

Two graphs G. = (V., Ea) and Gb = (Vb, Eb) are isomorphic to each other if there 

is a one to one mapping 4i between V. and Vb so that Nix,y if (x, y) E E. then 

(0(x), 0(y)) E Eb. The subgraph isomorphism problem is to find that if the number 

of nodes in G. and Gb are not the same, it may be that the smaller of the two 

graphs is isomorphic to a subgraph of the larger one. The problem we are solving 

is to find all the isomorphisms for the two given graphs. 

There are many possible algorithms for subgraph isomorphism. We report 

here the performance of a brute-force approach. The algorithm used is summarized 

in Figure 6.24. The number of leaf nodes in our test is 262144. Clearly, developing 

an efficient algorithm for this problem is out of the scope of this chapter. 

The execution time of first step, which makes up more than 75% of the total 

computation time, is roughly the same for all the iterations. The time needed for the 

second step differs from iteration to iteration because the checking is terminated on 

the first finding of a non-matched edge. This makes the problem a good candidate 

for data redistribution. 
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for every leaf node in the search tree do 

1. find the corresponding mapping based on the location of the node 

2. check if the mapping is isomorphic 

Figure 6.24. Algorithm for isomorphism 

Table XVIII. Subgraph isomorphism on the Sequent Symmetry 

Execution time in seconds & speedup in 0 
Sequential execution time 20.480 sec 

Schemes 4 8 16 

SSS 7.05 (2.90) 2.95 (6.94) 1.50 (13.65) 

Static 5.59 (3.66) 2.90 (7.06) 1.68 (12.19) 

We first measured the performance on both a Sequent Symmetry and an 

Intel hypercube iPSC/2 without data redistribution. The results for the Sequent 

Symmetry are shown in Table XVIII and for iPSC/2 are shown in Table XIX. The 

results given in the table show that the efficiency of SSS increases while the efficiency 

of static scheduling decrease. When the number of processor is 16, SSS surpasses 

static scheduling. 

Table XX shows the performance when data is redistributed. The parallel 

loop is split into two parallel loops. First, static scheduling is used to carry out the 

first loop. The data is then redistributed to processors. Finally, SSS is employed 

to schedule the second loop. The results shows that this application does not have 

enough computation to offset the overhead of data redistribution. However, the 
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Table XIX. Subgraph isomorphism on the iPSC/2 

Execution time seconds & speedup in () 
Sequential execution time 22.932 sec 

Schemes 4 8 16 

SSS 7.683 (2.98) 3.324 (6.90) 1.59 (14.42) 

Static 6.158 (3.72) 3.098 (7.40) 1.68 (13.67) 

Table XX. Subgraph isomorphism on the iPSC/2 with data redistribution 

Execution time & difference with that of SSS in Table XIX in () 
Sequential execution time 22.932 sec 

Schemes 4 8 16 

Static + SSS 11.805 (4.122) 7.476 (3.156) 5.601 (3.01) 

results show that as the number of processors increases, the cost of redistribution 

decreases. This is because the larger the number of processors, the smaller the 

amount of data a processor receives. We also noticed that due to the characteristic 

of CHARM, each data element is copied twice; once from a sending processor's 

memory to the message and then from the message to receiving processor's memory. 

This cost can be eliminated by implementing data redistribution at a lower level. 

The same code, when running on a Sequent Symmetry, takes much longer to finish 

mainly due to bus contention. 
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6.7 Conclusions 

In this chapter we have presented techniques supporting automating self-

scheduling of parallel loops in a parallel programming language. Although the 

studies are conducted using CHARM, the same techniques apply to other parallel 

programming languages as well. 

We have developed abstractions for self-scheduling parallel loops and data 

distribution. These new abstractions have been added to the CHARM language. A 

CHARM program with these new abstractions is translated to an ordinary CHARM 

program. Data distribution methods that allow efficient execution of scheduling 

schemes for parallel loops, both static and dynamic scheduling schemes, are sup-

ported. Even when the data distribution does not match with the desired schedul-

ing scheme, the system can detect this difference and automatically redistribute 

the data. Analysis is presented to help user selects a suitable scheduling scheme. 

The experimental results indicate that the newly added features greatly increase 

the usability of CHARM without sacrificing efficiency. 
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Chapter 7 

SELF SCHEDULING UNDER FAULTY  
PROCESSORS  

7.1 Introduction 

Most of the self-scheduling schemes assume that the number of processors does not 

change during the execution of a parallel loop. This chapter introduces methods 

which tolerate the loss of processors during loop execution. We consider two cases. 

The first is a hardware failure; the second is when the operating system reassigns 

processors from one job to another. We refer to the first situation as a hard fault 

and the second as a soft fault. An example of a soft fault can be found in the Intel 

Paragon XP/S system: nodes can be partitioned so there are less computational 

nodes during day time than during night time. In the case of a soft fault, we 

assume the processor is reassigned by the operating system only after it finishes the 

currently assigned task. 

The main consideration of soft fault is performance since the correctness is 

not affected. The soft fault is dealt with by taking advantage of the two phase 

(static and self-scheduling) approach of SSS. We propose using a scheme which is 

less sensitive to processor faults than SSS during its self-scheduling phase. The 

second case is handled by adding a third phase to SSS. This phase performs self-
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scheduling on the iterations of unfinished chunks due to processor failure. Both 

methods are implemented, and benchmarks are given. 

Chou and Abraham [9] discuss load redistribution in distributed systems 

given failures. They assume that each processor in the system, when it fails, has 

the capability of buffering jobs for later execution and that only one processor is 

down at any time. These are not the assumptions in this chapter. 

DAWGS (a Distributed Automated Workload balancinG System) [10] is a 

fault-tolerant, load-balancing system. It guarantees that the job will be run at some 

point in the future. However, it does not guarantee a minimum response time. 

The rest of the chapter is organized as follows. Section 7.2 discusses soft 

faults, and Section 7.3 discusses hard faults. Section 7.4 concludes the chapter. 

7.2 Soft Fault 

A soft fault denotes the case of a processor that has been working on a parallel 

loop being reassigned by the operating system to run some other tasks not part 

of the parallel loop. We assume the processor finishes all its assigned iterations 

beforehand. In addition, it is difficult to detect when a soft fault occurs without 

continually polling each processor. Therefore, in our discussions below, we will 

assume the value of P, the number of available processors, remains constant when 

we determine the chunk sizes even though the actual number of available processors 

may be less. 

Soft faults have minimum effect on workload balance for GSS. This is because 

GSS calculates the ith chunk as Ni/P, where Ni is the number of unscheduled 

iterations, and both hard and soft faults reduce P. Keeping the value of P constant 

results in slightly smaller chunk sizes than if P were updated whenever a processor 

is lost. This leads to a more balanced workload. 
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Doall i = 1 to SIZE do 
if (A(i)) 

then for (j =0; j < DIVERSITY*N1; j++) ctl += 1; 
else for (j =0; j < N1; j++) ct2 += 1; 

Figure 7.25. A parallel loop containing branches 

For Factoring, a processor reassigned at the ith batch, i > 1, results in at 

least one other processor executing more than one chunk in the (i + 1)th batch. 

That is, one processor has to execute another N/(2i+2P) iterations when it should 

have executed only N/(2i+3P) iterations. Since the processor executing the extra 

churik is the one which finished its chunk before the other processors, executing 

the extra chunk does not affect performance as badly as it might first appear. For 

Factoring, the chunk size decreases as the batch number increases; therefore, a soft 

fault during an early stage of loop execution hurts workload balance more than it 

does at a later stage. 

Figure 7.26 shows an experiment conducted on the parallel loop given in 

figure 7.25. A similar figure example has been used in Chapter 3. The difference is 

that, in this experiment the number of soft faults was one. 

Given a set M of P processors, po,p2, ,pp_i, and a set P1 (pf C M) of f 

faulty processors, the processor usage is defined as 

E (T(po) +Pdpi x (1131 IPA),,OPiPs EP/ 

where T(pi) is the time pi spent on the parallel loop. That is, processor usage is the 

sum of the execution times of the faulty processors and the product of the number 

of non-faulty processors and the execution time of the critical processor. In this 

definition we assume that the reassigned processors are used by some other task 
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Figure 7.26. Sensitivity of processor usage of SSS, GSS, and Factoring with 1 soft fault 

immediately and that the remaining non-faulty processors finishing early are idle 

while the last processor finishes the loop. 

Sensitivity, as shown in figure 7.26, is defined as PUf/PUf where PUnf is 

the processor usage with no faults and PUf is the processor usage with faults. It 

can be seen from the figure that both SSS and GSS are sensitive to soft faults. 

This can be explained for SSS by the following. The chunk size of the ith 

batch (i > 0) is (N x (1 - a)i x a)P. Therefore, the ratio of the number of iter-

ations between two chunks in consecutive batches is 1/(1 a). When a processor 

drops out after finishing its chunk in the ith batch, there must be at least one pro-

cessor which fetches a chunk in the (i + 1)th batch that is 1/(1 a) times larger 

than it was supposed to fetch. For example, when a = 0.8, 1/(1 a) = 5. 

As figure 7.26 shows, when the number of processors increases, the sensitivity 

of GSS increases. The main reason of this is that (1) as P increases, PUnf increases 
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Figure 7.27. Sensitivity of SSS, GSS, and Factoring to soft fault on 10 processors with up to 5 

faulty processors 

and (2) as P increases, PUf increases too, but at a slower rate than PUnf. 

The primary cause of (1) is workload imbalance. When P increases, the first 

several processors' workloads do not decrease proportionally. The explanation of (2) 

is that a soft fault actually reduces the ratio of chunk size to number of processors, 

resulting in a better balanced workload. This ratio is reduced because the value of 

P is larger than the actual number of processors available. 

In addition to testing sensitivity for one soft fault, the loop given in figure 7.25 

was tested with up to 5 soft faults. Figure 7.27 gives the results of the experiment 

with 10 processors. As can be seen, SSS continues to demonstrate sensitivity to 

soft faults while the other schemes do not. The results obtained by using 12, 14, 

16, and 18 processors and 1 to 5 soft faults are very similar to figure 7.27 and have 

not been included because of space considerations. 
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To reduce the sensitivity of SSS to soft faults, modifications were made to 

takes advantage of its two phases. Rather than using the same approach as SSS 

during the dynamic scheduling phase, we suggest using GSS or Factoring. The 

SSS using GSS in its dynamic scheduling phase is called SSS_GSS and is described 

in figure 7.28. In our implementation, we calculate a chunk's boundary before 

execution to reduce the time spent in the critical section. Chunk boundaries are 

stored in an array called chunk_array. To fetch a chunk, a processor only needs 

to f etch&add the array's index. Factoring can be used as the dynamic scheduling 

phase of SSS simply by setting a to a number less than or equal to 0.5. This scheme 

is called SSS_Factoring. 

The sensitivity to a soft fault of SSS_GSS and SSS_Factoring is shown in 

figure 7.26. Clearly, by using either GSS or Factoring in SSS's dynamic scheduling 

phase, SSS offers better, more stable processor performance. 

Another benefit of using GSS or Factoring in SSS's dynamic scheduling phase 

is less processor cost. Figure 7.29 shows the cost of different scheduling schemes. 

The cost of a schedule is defined in a similar manner as processor usage except that 

the number of faulty processors is zero. Figure 7.29 shows that the cost of GSS 

increases as the number of processors increases. For Factoring, SSS, SSS_GSS, and 

SSS_Factoring there is no significant change in cost as the number of processors 

increases. SSS_GSS and SSS_Factoring perform about the same and always offer 

the best cost performance. 

Performance improvement, defined as a lower cost, comes from a better bal-

anced workload as indicated by figure 7.30. The figure plots the standard deviation 

of processor workload for the corresponding runs of figure 7.29. The workload was 

calculated by counting DIVERSITY time units for the then branch and 1 time unit 

for the else branch. In figure 7.30 the workload of GSS becomes less balanced as the 

number of processors increases; in figure 7.29 the performance of GSS decreases as 
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1. Calculate the value for a. 

2. Assign each processor a x NIP iterations statically. 

3. Set the global variable count to be the first unscheduled iteration's number. 

4. When a processor becomes idle, it performs the following 

(a) begins mutual exclusion; 

(b) copy the value of count to local variable i; 

t <- max((N - count)/p, 1); (c) 

(d) count <- count + t ;  

(e) end mutual exclusion; 

(f) execute the chunk defined by i and i + t and repeat step 4 if i > N; 

Figure 7.28. SSS_GSS algorithm 

the the number of processor increases. For SSS a better balanced workload in figure 

7.30 always results in a better performance in figure 7.29. The only exception is 

Factoring which has a well balanced workload curve but not a correspondingly good 

performance. This is because Factoring's well balanced workload comes with great 

scheduling overhead. SSS_Factoring reduces the scheduling overhead significantly 

by statically scheduling a major portion of iterations. 
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Figure 7.29. Processor cost of different scheduling schemes 

7.3 Hard Fault 

A hard fault happens when a processor fails physically, e.g. a power failure. The 

main difference between a soft and hard fault is that in a soft-fault, a faulty processor 

finishes its currently assigned tasks (in our case the chunk of iterations) before 

it "drops out"; this is not true if a processor fails physically. In additional, the 

assumption that the failed processor can set a particular global variable indicating 

its failure is unrealistic in a hard fault. 

A common method of dealing with hardware failure is to issue checkpoints. 

We propose to do the same. In our approach, a checkpoint is set whenever a 

processor finishes a chunk. We assume that the computation in a chunk of iterations 

is performed in a copy-in-copy-out fashion, i.e., the data associated with a chunk is 

modified only if the entire chunk of iterations is executed. Under this assumption, 
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Figure 7.30. Standard deviation in workload for different scheduling schemes 

no computation needs to be "undone" when a failure occurs. However, the chunks 

in which a processor failed must be re-executed. 

The above indicates two issues relating to hard faults. One is to re-execute 

the chunk of iterations, and the other is to balance the workload. Workload balanc-

ing can be performed in the same way as soft faults. We propose using Factoring in 

SSS's dynamic scheduling phase. GSS is not recommended for reasons stated later. 

The rest of this section discusses the problem of re-executing a chunk when a hard 

fault occurs. 

Assuming that the starting and ending iteration numbers of a chunk are 

stored in the array chunk_array. To fetch a chunk, a processor only needs to copy, 

using fetch8cadd, the current array index into, say, temp_index. The processor then 

executes the iterations from chunk_array [temp_index] to chunk_array [temp_index 

+ 1] 1. To set checkpoints dealing with hard faults, we propose using an-

other array in parallel with chunk_array which we call flag_array. Before a 
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1. begin mutual exclusion; 

2. if flagl is true then copy-out; 

3. end mutual exclusion; 

Figure 7.31. Pseudocode for a processor to copy-out its results 

processor fetches a new chunk, it writes to flag_array [temp_index] a value, say 

-1. This assignment to flag_array [temp_index] indicates that the chunk from 

chunk_array [ temp_index] to chunk_array [temp_index + 1] 1 has been exe-

cuted. The processor can then update its value of temp_index by fetching a new 

chunk. 

When an element of flag_array has not been written back by a processor, 

it is interpreted as a hard fault. However, it may also mean that the chunk is still 

being executed. It is important, then, that the chunk size in the dynamic scheduling 

phase not be too large. For this reason, when hardware failure is a consideration, the 

Factoring scheduling scheme is recommended for use in SSS's dynamic scheduling 

phase rather than GSS. 

The approach we propose can best be described using the pseudocode of 

figure 7.31. The dynamic scheduling phase of SSS is now divided into two sub-

phases: the execution subphase and the checking subphase. Flagl and flag2 are 

global Boolean variables which are true during the execution and checking subphases 

respectively. 

The execution subphase begins with the dynamic scheduling phase of SSS. 

As long as flagl is true, a processor writes back the result of executing a chunk 

of iterations. The first processor, say pi, which tries to fetch a chunk and discovers 
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that all have been assigned performs the actions described by figure 7.32. This ends 

the execution subphase and begins the checking subphase. 

The first action taken by p2 is to set flagl to false. This prevents any pro-

cessor still working on a chunk from writing back its results so that these iterations 

can be reassigned to other processors. P, then finds the first chunk whose corre-

sponding element in flag_array is not marked as completed. The iterations of this 

chunk are redistributed by pi using the underlying scheduling scheme. Pi then sets 

flag2 to true, starting the checking subphase. 

A processor working in its execution subphase, finishing after pi, and finding 

flagl set to false, discards its results and waits on flag2. When flag2 becomes 

true, p2 has finished the redistribution process, and processors may now begin their 

checking subphase in a manner similar to figure 7.31. The difference is that now 

flag2 is used instead of flagl. This procedure can be generalized and the checking 

subphase performed repeatedly until no faulty processor is found. This would be 

done in case more than one processor fails. 

Figure 7.33 shows the result of simulating the parallel loop of figure 7.25 

with one processor hard-faulting. In the simulation a processor fails during the 

second batch. Figure 7.33 also contains the results of a sequential execution and a 

non-faulty execution for the purpose of comparison. It can be seen that processor 

usage increases with the number of processors. This is expected: the larger the 

number of processors, the higher the overhead incurred by a processor's exclusive 

access to flagl. The increase, however, remains within 2% of processor usage in 

the sequential case. 

A drawback to this approach appears when a processor reaches the end of 

its execution subphase. At this point, since Factoring is being used, a processor is 

working zi small chunk. An e.Yro=s;vc-- amount of overhead accrues because of the 

frequent reed for checking flagl and because the results from the late finishing 
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1. begin mutual exclusion; 

2. if flagl is true then 

(a) flagl = false; 

(b) for all elements in flag_array not set by a processor executing the cor-

responding chunk, redistribute the chunk. 

(c) flag2 = true;  

3. end mutual exclusion; 

4. while there are chunks 

fetch and execute 

Figure 7.32. Pseudocode for re-distributing iterations left by a faulty processor 

processors are lost and must be re-calculated. 

To overcome this, two modifications are made to the procedure above. First, 

a processor working on a chunk in the last two batches need not check flagl 

before writing back its results. Second, the first processor finished in the checking 

subphase, pi, does not redistribute chunks in the last two batches to the task queue; 

instead, it executes any chunk from these batches whose corresponding entry in 

flag_array is not marked. Using these two modifications may cause some chunks 

in the last two batches to be executed twice. However, there should be few such 

chunks, and they should be small. This should not add significantly to the overhead. 
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Figure 7.33. Processor usage of SSS_Factoring with 1 processor hard-fault 

7.4 Conclusions 

In this chapter we have considered the problem of scheduling a parallel loop in the 

presence of processor faults. We have defined two types of faults: a hard fault 

results when a processor fails physically, and a soft fault results when a processor 

is reassigned by the operating system to another task. This chapter presents a SSS 

with a modified dynamic scheduling phase to tolerate processor loss. 

Maintaining a high efficiency is the main concern for soft faults. To tolerate 

soft faults we replaced the dynamic phase of SSS with either GSS or Factoring. Our 

experiments suggest that both SSS_GSS and SSS_Factoring offer lower sensitivity to 

soft faults and greater workload balance than either SSS, GSS or Factoring alone. 

To deal with hard faults, we split the dynamic phase of SSS into two sub-

phases, an executi,m subphase and a checking subphase. Both nbphases continue 

to use either Factoring as the underlying scheduling algorithm; however, together 
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they allow us to implement a method to mark completed chunks. In this way, SSS 

is able to tolerate hard faults. Our experiments showed that the loss of processor 

usage due to a hard fault is within 2% of processor usage in the sequential case. 

Although our present results come from a small test suite, we believe our 

method will scale well. From our analysis, however, we conclude that SSS along with 

the modifications described in this chapter can be used to schedule a non-uniform 

parallel loop given the presence of processor faults. These scheduling schemes offer 

performance comparable to SSS but tolerate both hard and soft faults. 
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Chapter 8 

CONCLUSIONS AND FUTURE WORK  

The problem studied in this research is how to increase the performance of scientific 

applications containing parallel loops. Loops in such applications are a rich source 

of parallelism. This problem is, to a certain extent, what parallel processing is all 

about. This study seeks its goal by devising methods to achieve high processor 

utilization with low cost. 

We demonstrated a technique of combining a static scheduling scheme with a 

dynamic scheduling scheme. This combination of the schemes reduces the schedul-

ing overhead while achieving a balanced workload, makes data distribution easier, 

makes it easier to employ other well known scheduling schemes to utilize their ad-

vantages, and increases the affinity of iterations to processors. This combination 

also simplifies self-scheduling of a parallel loop on a distributed-memory machine 

and dramatically increases the size of the problems solvable on such architectures. 

We also developed methods to duplicate data on a number of processors. 

This method eliminates data movement during computation, thus reducing the 

communication cost and increasing the size of problems solvable. We evolved a 

systematic approach to implement a given self-scheduling scheme on a distributed-

memory computer. We also studied using of a multilevel scheduling method to 

self-schedule parallel loops oT ributed- memory machine with large number of 

processors. 
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We introduced the use of abstractions to incorporate self-scheduling methods 

and data distribution methods in parallel programming environments. The abstrac-

tions were implemented using CHARM, a real parallel programming environment. 

Methods were developed to tolerate processor faults caused by both physical failure 

and reassignment of processors by the operating system during the execution of a 

parallel loop. 

The techniques introduced in this dissertation have been tested using simu-

lations and real applications from different fields. Good results have been obtained 

on both shared-memory and distributed-memory parallel computers. 

The following are some interesting problems related to the problems discussed 

in this dissertation. The first one is how to self-schedule and perform data distri-

bution on a network of workstations. Differing from a processor in a homogeneous 

parallel computer, a workstation in a network, compared with other workstations in 

the network, may not have the same configuration of amount of memory, amount of 

storage (hard disk space), CPU speed, and number of users using the workstation. 

Since the workload of a workstation changes dynamically, some forms of dynamic 

scheduling must be used to assign iterations to a lightly loaded workstation. Again, 

we would not assign an iteration to a processor that does not store the data needed 

by the iteration. It would be interesting to modify the techniques discussed in this 

dissertation to develop self-scheduling schemes suitable for scheduling parallel loops 

on networks of computers. 

An advantage of SSS is its utilization of the information regarding a parallel 

loop. This information includes the minimum and maximum iteration execution 

times, the mean execution times, etc. We did not elaborate on how to collect 

this information. One idea is to insert segments of code capable of learning. The 

insertion can be turned on and off. When turned on, it collects the above mentioned 

information and, at the end, calculates a suitable value for a and stores it in a file. 
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Multilevel scheduling allows concurrent assignment of iterations to proces-

sors, and this requires a sophisticated policy to distribute data to processors. An-

other interesting issue is that the tree structure of multilevel scheduling can be 

embedded into a hypertree. The question is, if an internal node of a hypertree can 

also assign iterations to its children, can we modify our scheme to take advantage 

of this? 

Overall, we believe that we studied a realistic problem and have achieved 

significant results. Many applications can benefit from our research, and we are 

interested in seeing our approach being used on a large application requiring many 

hours of execution time and running on a large system with thousands of processors. 
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