
AN ABSTRACT OF THE THESIS OF

Jie Liu for the degree of Doctor of Philosophy in Computer Science presented on

September 22, 1993.

Title: Scheduling Non-uniform Parallel Loops on MIMD Computers

-Abstract approved.

Dr. Vikram A. Saletore.

Parallel loops are one of the main sources of parallelism in scientific applica-

tions, and many parallel loops do not have a uniform iteration execution time. To

achieve good performance for such applications on a parallel computer, iterations

of a parallel loop have to be assigned to processors in such a way that each proces-

sor has roughly the same amount of work in terms of execution time. A parallel

computer with a large number of processors tends to have distributed-memory. To

run a parallel loop on a distributed-memory machine, data distribution also needs

to be considered. This research investigates the scheduling of non-uniform parallel

loops on both shared-memory and distributed-memory parallel computers.

We present Safe Self-Scheduling (SSS), a new scheduling scheme that com-

bines the advantages of both static and dynamic scheduling schemes. SSS has two

phases: a static scheduling phase and a dynamic self-scheduling phase that together

reduce the scheduling overhead while achieving a well balanced workload. The tech-

niques introduced in SSS can be used by other self-scheduling schemes. The static

scheduling phase further improves the performance by maintaining a high cache hit

ratio resulting from increased affinity of iterations to processors. SSS is also very

well suited for distributed-memory machines.

We introduce methods to duplicate data on a number of processors. The

methods eliminate data movement during computation and increase the scalabil-

ity of problem size. We discuss a systematic approach to implement a given self-

Redacted for Privacy

scheduling scheme on a distributed-memory. We also show a multilevel scheduling

scheme to self-schedule parallel loops on a distributed-memory machine with a large

number of processors to eliminate the bottleneck resulting from a central scheduler.

We proposed a method using abstractions to automate both self-scheduling

methods and data distribution methods in parallel programming environments. The

abstractions are tested using CHARM, a real parallel programming environment.

Methods are also developed to tolerate processor faults caused by both physical

failure and reassignment of processors by the operating system during the execution

of a parallel loop.

We tested the techniques discussed using simulations and real applications.

Good results have been obtained on both shared-memory and distributed-memory

parallel computers.

© Copyright by Jie Liu
September 23, 1993

All Rights Reserved

Scheduling Non-uniform Parallel Loops

on MIMD Computers

by

Jie Liu

A Thesis

submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed September 22, 1993

Commencement June 1994

Approved:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of of Grp ate School

Date thesis is presented September 22, 1993

Typed by Jie Liu for Jie Liu

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I would like to express my deep appreciation to Dr. Vikram Saletore, my

thesis advisor; it is only with his guidance, insight, understanding, and patience

that the early part of my research developed into this thesis.

I thank Dr. Mike Quinn whose book "Designing Efficient Algorithms For

Parallel Computers" is like a fountainhead that tirelessly feeds me with knowledge.

I thank Dr. Bella Bose for his friendship and for those interesting discussions. I
thank Dr. Lawrence Crowl for his suggestions concerning this research. I thank Dr.

Wilson Schmisseur for serving on my committee and for his encouragement.

I have benefited in many ways from the discussions with fellow students

Bob Broeg, Phyl Crandall, Mark Clement, Jason Moore, Brad Seavers, Gowri Ra-

manathan, Seungjin Park, Manojith Pada la, Lam Ben Yiu, and Joseph Jacob. I

thank you all and wish you all the best.

My special thanks are due to my wife, Lan Chen, and my daughter Sandy,

for their support, understanding, patience, sacrifices, and love.

I thank my parents, Qing-huai Liu and Bao-ying Zhang, who have always

loved me, supported me, and encouraged me with the value of knowledge and a

good education. This thesis is part of my filial piety to them, and I am sure that it

will make them even happier. I also want to thank my younger brother Jin Liu for

always standing behind me.
I am grateful to the Department of Computer Science, Western Oregon State

College for employing me. I also thank Inner-Mongolia Agriculture and Animal

Husbandry College for sending me to the USA for my education.

Table of Contents

PageChapter

11 INTRODUCTION
31.1 Problems Studied

1.1.1	 Self-Scheduling of Parallel Loops on Shared-Memory Par-

allel Computers 5

1.1.2	 Self-Scheduling of Parallel Loops on Distributed-Memory

Parallel Computers 5

1.1.3	 Compiler Level Support of Self-Scheduling of Parallel
6 Loops

1.1.4	 Self-Scheduling of Parallel Loops under Faulty Processors 7

7 1.2 Contributions of This Research

1.3 Organization For the Rest of This Dissertation	 8

102	 RELATED WORK

2.1 The General Scheduling Problem	 10

2.2 Static Scheduling Schemes	 15

2.3 Self-Scheduling Schemes	 16

2.4 Dynamic Load Balancing on Distributed-Memory Machines . 23

2.5 Self-Scheduling on Distributed-Memory Machines	 24

2.6 Assumptions	 25

3 SAFE SELF-SCHEDULING	 26

3.1 Introduction	 26

3.2 The Basic Principle of Safe Self-Scheduling	 27

3.3 Theoretical Basis for SSS	 29

3.4 Simulation Results	 34

3.5 Comparison of SSS with Other Schemes	 41

3.6 Modifications on Safe Self-Scheduling	 44

3.6.1	 Achieving a Higher Degree of Balanced Workload . 44

3.6.2	 Tolerating Faulty Processors 46

3.6.3	 Differing Start Times 47

3.6.4	 Increasing Granularity 48

3.7 Experimental Results	 48

3.7.1	 A Parallel Loop With an If-then-else Statement 49

3.7.2	 Matrix Multiplication 54

3.7.3	 Gauss-Jordan 54

3.8 Conclusions	 57

4	 SAFE SELF-SCHEDULING ON DISTRIBUTED-MEMORY

MACHINES 59

4.1 Introduction	 59

4.2 Distributed SSS	 61

4.2.1	 Data Partitioning 62

4.2.2	 Task Assignment in the Dynamic Scheduling Phase . . 63

4.2.3	 An Example 63

4.3 Experimental Results	 65

4.3.1	 Simulation 65

4.3.2	 Monte Carlo Integration 67

4.3.3	 Generation of False-Color Image 68

4.4 Conclusions	 70

5 A GENERAL APPROACH FOR SELF-SCHEDULING ON

DISTRIBUTED-MEMORY MACHINES
72

72

5.1 Introduction

5.2 Self-Scheduling on Distributed-Memory Machines	 73

5.3 Data Distribution Policies for Self-scheduling	 76

5.3.1 Total Replication of Full Array	 78

5.3.2 Total Replication of Partial Array	 79

5.3.3 K-Duplication of Partial Array	 80

5.3.4 No Duplication	 87

5.4 Multilevel Scheduling	 88

5.5	 Experimental Results 91

92 5.6 Conclusions

6 INTEGRATING SSS INTO CHARM	 94

94 6.1 Introduction
966.2 Overview of CHARM

6.3 Abstractions for Data Distribution and Loop Scheduling	 97

6.3.1 Initial Data Distribution Abstractions	 97

6.3.2 Parallel Loop Scheduling Abstractions	 99

6.4 Implementation of Abstractions in CHARM	 100

6.4.1 Implementation of Data Distribution Abstractions	 100

6.4.2 Implementation of Scheduling Abstractions	 102

6.4.3 Data Redistribution	 104

6.5 When to Use What	 105

6.6 Performance	 108

6.6.1 False-Color Image	 108

6.6.2	 Subgraph Isomorphism 110

113 6.7 Conclusions

7 SELF-SCHEDULING UNDER FAULTY PROCESSORS 114

7.1 Introduction 114

7.2 Soft Fault 115

7.3 Hard Fault 121

7.4 Conclusions 126

8 CONCLUSIONS AND FUTURE WORK 128

Bibliography 131

List of Figures

Figure	 Page

2.1. Calculating 7r using the Monte Carlo method	 14

3.2. Safe self-scheduling, calculation of the first chunk size	 32

3.3. A parallel loop containing branches	 49

3.4. Cost curves for different scheduling schemes	 50

3.5. Standard deviations in workload for different scheduling schemes	 50

3.6. Speedup of different schemes on different granularities	 52

3.7. Standard deviations in workload for different schemes on dif-

ferent granularity 52

3.8. Speedup of different granularity under different a values .	 53

3.9. Standard deviations in workload for different granularity . .	 53

3.10. Matrix multiplication where many elements of matrix a are zero	 54

3.11. Execution cost for matrix multiply given in Figure 3.10.	 55

55 3.12. Gauss-Jordan

3.13. Costs of running different schemes on Gauss-Jordan.	 56

3.14. The effect of changing a on Gauss-Jordan.	 57

4.15. Calculating the squares.	 63

4.16. Code for Monte Carlo Integration	 68

5.17. The execution process of a parallel loop	 75

5.18. Grouping processors for decentralized control	 89

6.19. User's CHARM code for initial data distribution	 100

6.20. The resulting CHARM code for Figure 6.19 101

6.21. User's CHARM code for loop scheduling 102

6.22. The resulting CHARM code for Figure 6.21. 103

6.23. Algorithm for re-distribution 105

6.24. Algorithm for isomorphism 111

7.25. A parallel loop containing branches 116

7.26. Sensitivity of processor usage of SSS, GSS, and Factoring with
117 1 soft fault

7.27. Sensitivity of SSS, GSS, and Factoring to soft fault on 10 pro-

cessors with up to 5 faulty processors 118

120 7.28. SSS_GSS algorithm

7.29. Processor cost of different scheduling schemes 121

122 7.30. Standard deviation in workload for different scheduling schemes

7.31. Pseudocode for a processor to copy-out its results 123

7.32. Pseudocode for re-distributing iterations left by a faulty processor 125

. . 1267.33. Processor usage of SSS_Factoring with 1 processor hard-fault

http:Figure6.21

List of Tables

PageTable

I. The selection of then branch is uniform	 37

II. The selection of then branch follows an exponential curve	 38

III.	 The selection of then branch follows an bell shaped curve . 40

45IV.	 Chunk sizes for different scheduling schemes
64V.	 An Example of Data Distribution Table
66VI.	 Simulation

VII. Monte Carlo Integration	 69

VIII. Generation of a False-Color Image	 70

IX.	 The data distribution categories and the corresponding loop

78scheduling schemes

X. The values for elements of array chunks 0	 84

XI.	 The values for elements of array table [] 0 85

92XII.	 Generation of a False-Color Image

XIII.	 Supported loop scheduling schemes and the corresponding

data distribution policies 99

XIV.	 Loop scheduling schemes and the corresponding data distri

bution policies supported 104

XV.	 Generation of a False-Color Image on the Sequent Symmetry

on 512 x 512 pixels 109

XVI.	 Generation of a False-Color Image on the iPSC/2 on 512 x 512

109pixels

XVII.	 Generation of a False-Color Image on the iPSC/2 on

1024 x 1024 pixels 110

XVIII. Subgraph isomorphism on the Sequent Symmetry	 111

XIX.	 Subgraph isomorphism on the iPSC/2 112

XX.	 Subgraph isomorphism on the iPSC/2 with data redistribution 112

Scheduling Non-uniform Parallel Loops on MIMD Computers

Chapter 1

INTRODUCTION

Over the past fifty years we have witnessed dramatic increases in computing speed.

However fast the fastest computer of today may be, there are always applications de-

manding computers that are many orders of magnitude faster. For many years, corn-

puter engineers have been admirably successful in increasing the speed of computers

by employing better hardware technologies. Unfortunately, a limiting factorthe
speed of light in a vacuumis putting an end to this trend. It becomes inevitable

that a substantial increase in computer speed can only come about by increasing the

number of operations taking place concurrently. This fact has been well noted by

computer researchers and computer manufacturers. Consequently, a large number

of parallel computers have been built in research laboratories, and many parallel

computers are available commercially on the market.

The availability of parallel computers has led to an expectation that most

computation-intensive scientific applications will be routinely sped up using parallel

processing. In these applications, loops are the most time-consuming parts and are

the richest source of parallelism [68]. In many scientific applications that run on

parallel computers, the loop is (or can be converted into) a parallel loop, i.e., a loop

in which each iteration is independent of all others. A parallel loop, also called a

Do All loop, has no cycles in its dependence graph [54]. Iterations in a parallel loop

2

are independent and can be executed in any order. Parallel Do and SPREAD Do

in PCF Fortran and Butterfly Fortran are some of the other examples of parallel

loops.

When the iteration execution times of a parallel loop do not vary significantly,

the loop is a uniform parallel loop; otherwise, the loop is a non-uniform parallel

loop. In order to execute a parallel loop concurrently, iterations of the loop have to

be assigned to processors, either at compile time or at run time. Clearly, different

assignments of iterations to processors yield different execution times. Since one

of the main reasons to employ parallel computers is to reduce the total execution

time, assignments of iterations to processors rendering short completion times are

always desirable. A schedule of a parallel loop is an assignment listing, for each

iteration, the processor executing the iteration. A static scheduling scheme assigns

iterations to processors at compile time; in contrast, a dynamic scheduling scheme

assigns iterations to processors at run time.

To schedule a uniform parallel loop for maximum efficiency, an equal number

of iterations are assigned to each processor (assuming that processors start executing

the loop at the same time). In scheduling a non-uniform parallel loop, assigning an

equal number of iterations to each processor does not always result in each processor

having an equal amount of workload measured in some time units of execution time.

Since a parallel loop is finished only after all iterations have finished, a balanced

workload is a key factor to good performance for a non-uniform parallel loop. In the

presence of variable length iteration execution times, a dynamic scheduling scheme

is in principle superior in balancing the workload [79].

3

1.1 Problems Studied

The scheduling of parallel loops is a special case of the general scheduling problem,

which has been studied extensively by many researchers in a theoretical context

[12, 29]. Scheduling in general is NP-complete [12].

Let I = {t1,t2, , tN} be the iteration space formed by the N iterations of

a parallel loop. Let e(ti) be the execution time for iteration ti. Further, let M be a

parallel machine that has P processors denoted as {pi , p2, , pp}. N, P, and e(ti)

are positive integers and may be unknown at compile time. Let D = Udi , where

d, is a partition of I into P disjoint subsets 4. , II, and D is the collection

of all possible partitions. In addition, the size of D is PN. The loop scheduling

problem is to find an optimal partition do such thatl the execution time of the loop

is minimized. That is,

min { max E e(t > max { E e(ti)} (1.1)
diED 1<k<P 1<k<P

t,Erk

Except for some trivial cases, such as when P = 1, e(ti) are constants,

P = N, or other limited number of special cases discussed later, the yes-no version of

the scheduling problem is NP-complete [12]. To complete scheduling in a reasonable

amount of time, heuristics are used to approximate such problems in polynomial

time.

In practice, e(ti) is often not a constant and may not be known at com-

pile time; therefore dynamic scheduling techniques are applied to achieve a high

processor utilization. In this case the loop scheduling problem discussed in this dis-

sertation is different from the traditional one given above. Let ./.1 be the collection

of iterations assigned to processor Ri according to partition d1, E(.1.1) be the total

iteration execution time of the iteration in and 0; be the scheduling overhead

'Note that the scheduling cost if. neglected here.

4

for processor pi, then the total execution time of the parallel loop under partition

Di is

E(I) = inaix{E(Ii) (1.2)

From Eq.(1.2) we can see that either balancing E(Ii) or reducing Oi or

both together reduce the total execution time E(I). Balancing E(./.1) improves

performance because the total amount of work W of a parallel loop is independent

of both the assignment of iterations to processors and the number of processors

employed in executing the loop. When more than one processor is used to execute

the loop, the amount of work done by all the processors cannot be less than W.

Therefore, if a processor is assigned a smaller than the average amount of work,

there must be some other processors that are assigned a larger than the average

amount of work. In addition, since the execution of the loop is not completed until

all the iterations are executed, assigning each processor an equal amount of work

so that all processors finish at the same time, improves performance by achieving

a high processor utilization. The objectives of this study are to find practical

methods of partitioning the iteration space to produce a balanced workload with a

low scheduling overhead.

Self-scheduling is the most common approach to dynamic scheduling of non-

uniform parallel loops. In this approach, a ready task queue is created. Whenever a

processor becomes idle, it removes the first task from the queue and executes it, i.e.,

processors "self-schedule" themselves as the program executes [83]. The research in

this thesis investigates combining static scheduling and self-scheduling to schedule a

non-uniform parallel loop on both shared-memory and distributed-memory parallel

computers.

5

1.1.1	 Self-Scheduling of Parallel Loops on Shared-Memory Parallel Corn-

puters

A shared-memory parallel computer is an ideal environment to implement self-

scheduling schemes. Recall that a ready task queue needs to be maintained in

self-scheduling, and this ready task queue needs to be shared in the sense that

all processors have access to the queue. A parallel loop with N iterations can be

considered as a ready task queue with N tasks and the loop index points to the

head of the queue. When a processor removes an iteration, it only needs to modify

the loop index through exclusive access, however

The main issue in self-scheduling a parallel loop on a shared-memory machine

is balancing the trade-off between assigning each processor roughly the same amount

of workachieving a balanced workloadand incurring a low scheduling overhead.

On one hand, an unbalanced workload lengthens the execution time of the parallel

loop while, on the other hand, achieving a balanced workload by incurring a high

scheduling overhead may diminish the benefit of having a balanced workload.

When a parallel loop is enclosed in a serial loop, assigning an iteration of the

parallel loop to the same processor in every iteration of the serial loop also improves

the performance because this helps to maintain a high cache hit ratio.

1.1.2	 Self-Scheduling of Parallel Loops on Distributed-Memory Parallel

Computers

Self-scheduling on distributed-memory machines faces many challenges. The first

one is that since there is no shared-memory, the shared ready task queue has to

be either distributed or stored on some processors. If the queue is distributed on

all the processors, maintaining the consistency of the queue becomes too costly.

An alternative way is to designate a processor as the scheduling processor that

maintains the ready task queue. When a processor becomes idle, it sends a request

6

message to the scheduling processor requesting additional work.

If all the iterations are thus self-scheduled, a balanced workload may be

achieved but at the cost of a high communication overhead. In addition, the schedul-

ing processor may become a bottleneck as the number of processors increases.

Another issue is the need of a processor in a distributed-memory machine

to store the data needed by an iteration in order to execute the iteration. This is

not a trivial problem because data is usually distributed to processors before the

execution of a loop begins; in contrast, the iterations are assigned to processors

during the execution of the loop.

1.1.3 Compiler Level Support of Self-Scheduling of Parallel Loops

Few parallel languages or environment, support self-scheduling of parallel loops. It

is left totally to the user to implement the scheduling schemes of his or her choice.

Implementing a self-scheduling scheme is not an easy task. Bugs are often intro-

duced into the program during implementation. In addition, the code for scheduling

techniques is often interspersed with the code for the underlying algorithm. This

make the program more complicated, more difficult to port from one machine to

another, and more difficult to debug.

On a distributed-memory machine, the programmer also has to implement

some data distribution policies to ensure that an iteration is assigned to a processor

storing the data needed by the iteration. It is also possible that several parallel

loops in the same program need the same data. If these loops are scheduled using

different self-scheduling schemes, the data distribution suitable for one loop may

not be suitable for other loops. In this case data may need to be redistributed at

run time for efficiency reason.

7

1.1.4 Self-Scheduling of Parallel Loops under Faulty Processors

Although many schemes have been proposed in the past, they all assume that the

number of processors remains unchanged during the execution of the parallel loop.

However reliable today's computer may be, the more processors a system has, the

more likely one will become faulty. This can also happen during the execution of a

parallel loop. To ensure both the correctness and the efficiency of the execution of

a, parallel loop, measures must be taken to tolerate faulty processors.

Two different cases are studied. The first is a hardware failure; the second

is when the operating system reassigns processors from one task to another before

the first task is completed.

1.2 Contributions of This Research

In this dissertation we have studied how to efficiently execute a scientific application.

This problem is, to a certain extent, the essence of parallel processing.

We demonstrated a technique of combining a static scheduling scheme with

a dynamic scheduling scheme. This combination of schemes has the following ad-

vantages:

1. reducing the scheduling overhead,

2. achieving a balance workload,

3. simplifying data distribution,

4. making it easier to employ other well known scheduling schemes to utilize

their advantages, and

5. increasing the affinity of iterations to processors which further improves per-

formance by maintaining a high cache hit ratio.

8

The combination also makes self-scheduling a parallel loop on a distributed-memory

machine more feasible and dramatically increases the size of solvable problems.

Further contributions of our research follow below.

We developed a method for duplicating data on a number of processors. This

method eliminates any data movement during the computation of a parallel loop

and increases the problem size scalability.

We devised a systematic approach for implementing a given self-scheduling

scheme on a distributed-memory computer.

We also studied multilevel scheduling. This further enhanced the scalability

of self-scheduling schemes on distributed-memory machines.

We proposed a method using abstractions to automate both self-scheduling

of parallel loops and data distribution in parallel programming environments. The

method was tested using CHARM, a architecture independent parallel programming

environment [19].

Methods were developed to tolerate the loss of a processor because of physical

failure or reassignment by the operating system during the execution of a parallel

loop.

All the methods proposed in this dissertation have been implemented on

real parallel computers using both simulation and real applications. Good results

have been obtained. For example, we improve the performance by 79% over static

scheduling for the false color image problem on an NCUBE/7, a distributed-memory

machine.

1.3 Organization For the Rest of This Dissertation

Some of the well known self-scheduling schemes developed by other researchers

are presented in Chapter 2. The assumptions on which this research is based

9

is given in Chapter 2.

In Chapter 3 we present safe self-scheduling (SSS), a new scheme that self-

schedules parallel loops on shared-memory machines.

Chapter 4 discusses the implementation of SSS on a distributed-memory ma-

chine.

Chapter 5 introduces a general method for implementing a self-scheduling

scheme on a distributed-memory machine. Data distribution methods are

also the focus of this chapter.

We present an approach for automating data distribution methods and parallel

loop self-scheduling schemes in CHARM in Chapter 6.

In Chapter 7 we discuss methods for enhancing SSS to tolerate faulty proces-

sors.

In Chapter 8 we summarize our work and discuss related issues for future

studies.

10

Chapter 2

RELATED WORK

A scheduling problem emerges whenever there is a choice as to the order of per-

forming a number of tasks. The goal of scheduling is to determine an assignment

of tasks to processing elements and an order which achieves some optimal perfor-

mance measures. Scheduling problems can be found in a manufacturing plant where

a number of operations transform raw materials into a final product, in a bank where

customers wait to be served by tellers, in a computer lab where students wait for

computers, and in a parallel program where tasks need to be assigned to processors.

2.1 The General Scheduling Problem

In our research a schedule is a mapping of tasks to processors. A general task system

can be defined as a system (I, -<, [e(ti)], M) as follows:

1. I = {4,12, , tN} is the task space.

2. - represents the irreflexive partial orders defined on I.

3. e(ti) is the execution time for task ti

4. M = {pi, p2, , pp} is the processor space.

11

Often the tasks and the partial orders among the tasks can be represented in a

directed graph, the task graph, in which each task is represented as a node and the

partial order between two tasks ti and t, is represented by an edge from ti to t,.

Some researchers also consider the inter-processor communication cost [17]. In our

study, this cost is included in the scheduling overhead.

In the problem of assigning tasks to processors in a parallel computer, per-

formance is measured by the amount of time needed from the start of the first task

to the completion of the last task. This type of problem, usually referred to as

the minimum execution time multiprocessor scheduling problem, has been studied

by many researchers in a theoretical context [11, 12, 29, 90]. Scheduling in gen-

eral is NP-complete [26]. When the communication overhead is not considered and

the task execution times are identical, there are only three cases where an optimal

schedule can be obtained in polynomial time.

The first case is given in [34]. It is a linear algorithm (in number of tasks)

that give an optimal schedule for a tree shaped task graph. The second case is when

the task graph is in an interval order. The complexity of the algorithm is linear in

the sum of the number of nodes and edges of the task graph [76]. In the third case,

a quadratic algorithm (in number of tasks) exists producing an optimal schedule

for an arbitrary task graph on two processors [12]. Each algorithm above becomes

NP-complete if any of the restricting conditions assumed is removed. In practice,

however, the above algorithms are not very useful because they assume the task

execution times are identical.

The critical path algorithm and its many variations [12] are the central result

from classical scheduling. Again they are seldom useful in practice because they

assume that only serial tasks exist in a program and that the exact execution time

for each task is known. In general, neither of the two assumptions is valid when

used to schedule a parallel loop where each iteration can be considered as a task.

12

Even if we fully unroll a parallel loop and consider one iteration as a serial task, we

still cannot satisfy the first assumption for the following two reasons. The first is

that the number of iterations may not be known at compile time, and if the total

number of tasks is not known, a schedule cannot be constructed. The other reason is

that, even if the total number of tasks is known, it may be a very large number, say

several thousands of tasks. The corresponding task graph is so large that scheduling

becomes prohibitively expensive even using a linear heuristic algorithm. Also it is

likely that the resulting schedule is not optimal.

Scheduling schemes can be classified as either static or dynamic. A static

scheduling scheme assigns tasks to processors at compile time. The major advan-

tage of static scheduling schemes is that they impose no run time overhead. The

main drawback of static scheduling schemes is its inability to respond to an unbal-

anced workload among the processors. This imbalance may be caused by branch

instructions, memory conflicts, cache misses, and other random delays [5].

List scheduling [1, 11, 12] is an example of static scheduling. This type of

scheduling assumes that an ordered list (the priority list) of tasks is constructed

beforehand. Thus, tasks are assigned to processors by repeatedly scanning the list

to find the first unexecuted task that is ready for execution. List scheduling is

a polynomial time algorithm that produces a suboptimal solution in the case of

unlimited resources.

Dynamic scheduling schemes are designed to alleviate the problem of imbal-

ance in workload among processors. Dynamic scheduling schemes do not determine

the assignment of tasks to processors until the execution is underway. This allows

dynamic scheduling schemes to balance the workload more equitably, resulting in

more efficient use of processors. However, this adaptability comes at the cost of an

additional run time scheduling overhead.

13

Graham [29] showed that in many cases of random task graphs, optimal

schedules can be achieved by deliberately keeping one or more processors idle to

better utilize them at a later point in time. Detecting such anomalies requires the

information the entire task graph a priori. In addition, when the length of a task

is known only at run time, deliberately keeping a processor idle to achieve a better

utilization at a later time is not feasible because a task graph cannot be constructed.

In a dynamic scheduling scheme, a new task is assigned to a processor as

soon as the processor becomes idle. Clearly, dynamic scheduling may not always

produce an optimal schedule. However, it has been shown that assigning a task to

a processor whenever a processor becomes idle results in an execution time which,

theoretically, is never more than twice the optimal [12]. In real cases, the execution

times are very close to the optimal, assuming no overhead [79]. Thus, the overhead

factor is the critical optimization parameter of dynamic scheduling.

Robinson [87] gives an estimation of the expected execution time of a parallel

program with a "simple" task graph when the execution time is represented by a

random variable. It offers little help because it assumes no scheduling overhead and

assumes that the number of processors is not limited.

Scheduling a parallel loop has characteristics different from the traditional

job shopping problem. First, there is no partial order among iterations of a parallel

loop. Second, the execution time of an iteration may become known only after

the iteration is executed. Figure 2.1 is an example of such a parallel loop. For

loops of this kind, assign an equal number of iterations to each processor may result

in an unbalanced workload. Many approaches have been proposed for assigning

iterations of a parallel loop to processors of a parallel machine. In next two sections

we illustrate some of the well-known approaches by showing how they schedule a

parallel loop with N iterations on a parallel machine with P processors.

14

x = random();

y = random();

for i = 1 to 11 do

if W s2 + y2 < 1.0)

then

{

picount = picount -1- 1;
Emax

count = count + 1;

}

else

{

count = count + 1; Emin

}

Figure 2.1. Calculating r using the Monte Carlo method

15

2.2 Static Scheduling Schemes

A static scheduling scheme assumes that two processors with the same number of

iterations have roughly the same execution time. If we define that a chunk is a set

of consecutive iterations, then two chunks of the same size may require the same

amount of execution time. However, for non-uniform parallel loops, the probability

that two chunks with an equal number of iterations have the same execution time

is small. Static scheduling schemes are still in use because they are simple and

sometimes result in lower execution times than dynamic scheduling schemes.

A static scheduling scheme is better suited for a uniform parallel loop or

when the iteration execution times of a parallel loop are known.

Static Chunk (SC)

Static chunk assigns each processor [N/P1 consecutive iterations, except the last

processor which is assigned whatever iterations are left, at compile time. Except

for the case when the iteration execution time is the roughly the same, such an as-

signment may cause an unbalanced workload. The performance obtained using this

approach on a non-uniform parallel loop is unpredictable. That is, it is possible to

obtain good performance when the number of processors is a certain number; how-

ever, simply increasing the number of processors by one may cause the performance

to degrade significantly.

Round Robin (RR)

A modification of SC is to assign iterations to processors in a round-robin fashion,

rather than assigning a processor with a consecutive block of iterations. That is,

iteration i is assigned to processor i mod P. This approach is likely to produce a

more balanced workload than SC. One problem with this approach is that the cache

16

hit ratio may be low. A second problem is that the workload produced by RR is not

guaranteed to be better balanced than that of SC. This is because each processor

executes about N/P iterations, and if the set of iterations assigned to a processor

contains many relatively long iterations, it may take a longer than that average

execution time to complete, resulting in an unbalanced workload. In addition, as

long as the iterations assigned to one processor are relatively longer than those

of the other processors, the schedule is not balanced. The larger the number of

processors, the higher the chance such a processor exists.

2.3 Self-Scheduling Schemes

The basic principle of a self-scheduling scheme is that when a processor becomes

idle, it fetches one or more iterations and modifies shared variables such as the loop

index, however, exclusively. In this way, a processor obtains more work only if it

becomes idle; therefore, it does not delay the execution of the whole loop by having

too much work. Also, as long as there are iterations left, an idle processor always

works on them; therefore, these iterations are processed at the earliest possible time.

The result is a well balanced workload.

Pure Self-scheduling

A straight forward implementation of self-scheduling of parallel loops is the pure

self-scheduling (PSS) approach. In this approach, a processor fetches one iteration

at a time during run time by incrementing the loop index in a critical section when

it becomes idle. Completing the fetched iteration, the processor becomes idle again

and fetches another iteration. This process repeats until all the iterations have been

executed.

PSS always achieves a well balanced workload. However, this well balanced

17

workload does not always yield good performance. This is because the amount of

scheduling overhead due to the assignment of iterations to processors is proportional

to the number of iterations. This amount usually is significant compared to the

execution of a iteration. In addition, when the granularity of each iteration is small

and the execution times of different iterations do not vary significantly, the high

frequency of mutually exclusive access to shared variables, such as the loop index,

may become a bottleneck, and this may seriously degrade performance. Overall,

PSS may be appropriate for scheduling loops having relatively few iterations but

with very long variable length execution times when compared to the scheduling

overhead.

Chunk Self-scheduling

Chunk self - scheduling (CSS) is designed to overcome the problem of high scheduling

overhead in PSS by allocating a fixed number, k, of consecutive iterations to each

idle processor [4]. When k = 1, CSS becomes PSS. When k = NIP, CSS can be

carried out in the same way as SC.

By having processors fetch more iterations at a time, PSS reduces the schedul-

ing overhead, but it compromises load balancing. This is because the task allocation

is performed with a larger granularity than that of SC.

The main drawback of CSS is the dependence on both the chunk size and

the characteristics of each loop, either of which may not be known even at run

time. Worse yet, even for the same loop, the execution time does not monoton-

ically increase or decrease with chunk size [81]. Polychronopoulos and Kuck [79]

proved that there cannot be an optimal value of k even for the simplest cases. Poly-

chronopoulos further points out that CSS may even result in a slowdown, i.e., it

takes a longer time to execute a parallel loop using more than one processor than to

execute the loop sequentially, when the chunk size k assumes a value smaller than

18

some threshold [81].

Guided Self-scheduling

Polychronopoulos and Kuck [79] presented the guided self-scheduling (GSS) scheme.

In GSS, the number of iterations assigned to an idle processor is calculated dynami-

cally. An idle processor fetches 1/P of the unscheduled iterations. When processors

start executing the loop at different times, GSS produces a well balanced schedule

with a low overhead for a uniform parallel loop.

A significant contribution of GSS is that it assigns reduced sized chunks to

processors. By doing so, GSS is more likely to achieve a better balanced workload

than CSS, with a lower scheduling overhead than that of either PSS or CSS.

When GSS is applied to a non-uniform parallel loop with N iterations, as-

signing close to N/P iterations to the first several fetching processors may cause

a load imbalance if the iterations assigned to one processor need more than the

average time to finish. In addition, near the end of the scheduling process, GSS

produces many chunks of one or two iterations. This results in a large scheduling

overhead since GSS acts more like PSS. Thus, Polychronopoulos proposed GSS(t),

a modification which avoids the problem by allocating no less than t iterations at

a time to an idle processor [79]. This approach compromises a lower scheduling

overhead with a less balanced schedule. In addition, an optimal value of t that

results in a well balanced schedule with minimum overhead is both application and

hardware dependent [79]. Consequently, a number of schemes have been introduced

to overcome these problems.

Trapezoid Self-scheduling

Tzen and Ni [109] proposed the trapezoid self-scheduling (TSS) algorithm to improve

GSS. In their approach, TSS(N., Nf) assigns the first N3 iterations of a loop to the

19

processor starting the loop and the last N1 iterations to the processor performing the

last fetch, where N, and N1 are both specified by the programmer or the compiler.

This method linearly decreases the number of iterations assigned to each processor

at run time by some decreasing step 8. However, the selection of N, and N1 suffers

from the same problem as the selection of t in GSS(t) and k in CSS. Tzen and Ni

proposed TSS(N/2P, 1) as a general selection of N, and Nf.

It is stated in [109], for a given N, and Nf, that the total number of chunks

T is
2N

N,

The decreasing step S can be obtained by following formula

N, Nf (2.3)T 1
The basic idea of TSS is to extract the advantages of both CSS and GSS by

linearly decreasing the number of iterations assigned to processors. TSS may yield

an unbalanced workload because the difference between the number of iterations

assigned to two processors on their last fetch can be as large as P x 8. For example,

assume that TSS(N/2P, 1) is used to schedule a parallel loop with N = 1, 000, 000

iterations on a system with P = 256 processors. Then

Nf = 1953.125 1953;2P
2N r2 x 1,000,000iT= = 1024;N,+ Nf 1953 + 1

N, Nf 1953 1

I I

= = 1.908 r:--1 2.T 1 1024 1

In this example the difference is 512 iterations. It is true that the two

processors may not fetch at the same time. However, as long as the fetching times

of the two processors are not too far apart, the difference in finishing times between

the two processors could be significantly large. This weakness limits the usage of

this scheme for problems needing a large number of processors.

20

Another problem of TSS shows up when the decreasing step 6 calculated

by Eq.(2.3) is a real number and has to be converted to an integer. Ignoring the

fraction part results in the last several chunks being too large. Rounding up the

real number to the next integer causes many chunks of size 1 and a large T, the

total number of chunks.

For instance, in the above example, the value of h calculated by Eq.(2.3) is

1.908. Using b = 2 results in 45,472 chunks of 1 iteration. In this case TSS achieves

a balanced workload, however, with an enormous amount of scheduling overhead.

When 6 = 1, the last chunk has 1145 iterations. Clearly, this may not balance the

workload.

Factoring

Hummel et al. [21, 43] introduced Factoring. In Factoring, fixed sized chunks of it-

erations are allocated to processors in batches (P consecutive chunks form a batch),

and the sizes of chunks in the same batch are the same. This size is determined

using the no-more-than-half rule during implementation. This rule states that the

chunk size of a batch is half of the chunk size of the previous batch. The basic idea

of Factoring is the following: achieving an overall optimal finishing time requires,

for each batch scheduled, enough work being left to smooth over the uneven finish-

ing times of the batch. The rational for this reasoning is that if a bell shaped curve

for a large number of random variables (iteration execution times) with mean it is

assumed, the expected finishing time of the first P chunks of size F0 approaches

2µF0 when P is large enough.

Factoring is based on the following analytical results in calculating a chunk

size.

Ro = N
Rj+1 = R; PF;

21

R;Fi = xiP
P = 2 II P

xo = 1+423+08+2
si = 2 + bi + 4, for j > 0

where a and p are the variance and the mean of the iteration execution times,

respectively. The subscript indicates the batch.

According to the above formulae, the chunks in the first batch have a size

Fo = N /xoP. Concerning the value of xo, for the Matrix Multiplication problem

tested in [43], the coefficient of variance alp is 0.032. The problem size is 300 x 300,

and the number of processors used ranges from 4 to 56. When P = 30, then

Pbo = 21/X
30 x 0.0322 x 000 x 300

= 0.0016

xo = 1 -Fgd-boVb8-1- 2

= 1 + 0.00162 + 0.0016 x V0.00162 + 2

= 1.0022653

Therefore, based on the above formulae (from [43]), almost all iterations should

be assigned to processors at the first batch. However, in the experiments given in

[43], only half of the iterations were assigned to processors in the first batch. The

authors do not explain why the analytical results were not tested.

In addition, when 2p > the expected finishing time of the first P chunks

does not approach 2pFo. This is because the execution times of chunks in the first

batch cannot be greater than Ema, x Fo.

22

Affinity Scheduling

The benefit of processor affinity has been demonstrated in Affinity Scheduling intro-

duced by Markatos and Leblanc [68]. Affinity Scheduling divides the N iterations

of a parallel loop into P chunks within IN/P1 iterations each. The ith chunk is

placed on the local work queue of processor i. An idle processor removes 1/k of the

iterations from its local work queue and executes them, where it is suggested that

k be equal to P. When its work queue becomes empty, a processor finds the most

loaded processor, removes /P1 of the iterations from the remote processor's work

queue, and executes them.

Affinity Scheduling differs from other self-scheduling schemes in two ways.

One is that it does not have a shared ready task queue. Rather, each processor

has its own ready task queue. Such a distributed task queue approach eliminates

the bottleneck problem of other schemes. However, when we need to balance the

workload, the information regarding the workload is also distributed. This makes

it difficult to achieve a balanced schedule with a low cost. The second difference

is that when a processor's local ready task queue becomes empty, it attempts to

remove tasks from the most loaded processors. When the number of processors is

large, this approach is expensive. In addition, it may not lead to a well balanced

workload. This is because when a processor's local ready task queue becomes empty,

the same operation is performed regardless how many other processors are also in

the same situation. To see this, consider the following scenario.

Suppose several processors complete the tasks in their local task queues at

the same time and all find that a processor, say 131, is the most loaded processor.

When all try to fetch more iterations from /31, three cases could occur. The first case

is that each processor obtains some iterations and there are still some iteration left

in the local ready task queue of Pi. The second case is that each processor obtains

some iterations and there are no iterations left for Pi. The third case is that only a

23

few processors obtain some iterations.

The first case is what is planned and each idle processor makes a positive

step toward balancing the workload. When the second case happens, P1 then has

to find more iterations from another processor for itself. This obviously is more

expensive than using tasks in its own ready task queue. The third case is the most

expensive one. When it happens, the processors that do not obtain any iteration

waste their time locating the most loaded processor and trying to fetch iterations

from it. In addition, these processors and P1 have to attempt to fetch more tasks

from another processor. The same thing may happen to the most recent heavily

loaded processor.

2.4	 Dynamic Load Balancing on Distributed-Memory Ma-

chines

Many researchers [115, 105, 112] have studied the use of dynamic load balancing

for increasing processor utilization rather than scheduling. The difference between

dynamic load balancing and dynamic load scheduling is that the former achieves

load balance by moving processes from one processor to another while the latter

achieves load balance by assigning tasks only to processors that become idle.

Many methods have been proposed to achieve load balance on distributed-

memory parallel computers using dynamic load balancing. Based on how the infor-

mation regarding the load of each processor is collected and used, these methods

can be classified as centralized load balancing algorithms, fully distributed load bal-

ancing algorithms, or semi-distributed load balancing algorithms [117]. In addition,

these methods are further classified as sender initiated or receiver initiated [117].

In these approaches, the data partitioning problem is not addressed. Since

the data modified by a migrated process has to be sent back to the owner of the data,

24

information regarding the owner of a datum has to be stored with the datum in

order to have the result sent back to the owning processor. These approaches usually

operate in several phases, which include determining the local load of each processor,

exchanging information so each processor can check if there is a load imbalance in

the system, and migrating processes if necessary [108]. These approaches are not

suitable for the problem we are studying because the work load of each processor

can not be estimated accurately by counting the number of unexecuted tasks.

2.5 Self-Scheduling on Distributed-Memory Machines

Due to the mismatch between the architecture of a distributed-memory machine and

the basic principle of self-scheduling and a high communication cost of a distributed-

memory machine, static scheduling schemes were often used in scheduling iterations

to processors on a distributed-memory machine.

Rudolph and Polychronopoulos [89] reported an implementation of GSS on

distributed-memory machines using a centralized scheduling technique. They attack

the data distribution problem by replicating the data to every processor. To prepare

for the later usage of the data, the scheduling processor tracks, for each row of

the data array, the processor modifying the row. This approach has the following

problems:

1. The use of a centralized scheduling technique prevents the method from scaling

very well.

2. The data distribution method limits the granularity to the row level because

if we allow an arbitrary assignment of array elements to processors, then the

data structure describing the array distribution would have the same number

of elements as the array.

25

3. The problem size is limited by the scheduling processor's memory because it

has to store all the data.

2.6 Assumptions

To facilitate our presentation, we assume that parallel loop L's iteration execution

times follow an unknown probability distribution with mean p, standard deviation

o, maximum execution time Emax, and minimum execution time Emin We define

that a chunk is a set of consecutive iterations defined by a starting and an ending

iteration number. A fetching processor is a processor that modifies global variables

such as the loop index to obtain more work in the form of a chunk. The critical

chunk is the chunk finished last, and the critical processor is the processor executing

the critical chunk.

In the sequel, we assume the number of iterations N >> P; the value of

N and P are known before the loop is executed; the schedule is non-preemptive;

the processors of the parallel machine are homogeneous; and the parallel loop is

executed in a dedicated environment.

Many methods have been proposed to parallelize a wide range of serial loops

[54, 79, 114], and nested parallel loop can be coalesced to form a single parallel loop

[79]. In our study, we focus on scheduling a single parallel loop.

26

Chapter 3

SAFE SELF-SCHEDULING

3.1 Introduction

As we saw in the previous chapter, there are several self-scheduling schemes. How-

ever, each has weaknesses. In this chapter we introduce a new self-scheduling scheme

called Safe Self-scheduling (SSS) that takes advantages of both static scheduling

schemes and self-scheduling schemes.

SSS has been developed to schedule parallel loops with variable length iter-

ation execution times on multiprocessors. It has two phases: a static scheduling

phase and a dynamic scheduling phase. SSS achieves a well balanced workload with

a low scheduling overhead. In addition, SSS maintains a high cache hit ratio to

further improve the performance.

The theorems that support SSS are presented. The basis for combining static

scheduling and self-scheduling in SSS are explained. We also compare our scheme

with Factoring [21, 43] due the similarities between the implementations of SSS in

this chapter and Factoring.

The methods discussed in the chapter have been tested. SSS has been found

to surpass other schemes in most cases. In the experiment on Gauss-Jordan, an

application suitable for static scheduling schemes, SSS is the only self-scheduling

27

scheme that outperforms the static scheduling scheme. This indicates that SSS

achieves a balanced workload with a very small amount of overhead.

3.2 The Basic Principle of Safe Self-Scheduling

The basic principle of SSS is to assign each processor the largest number m of

consecutive iterations having a cumulative execution time just exceeding the average

processor workload E /P, i.e.,

s+m-1 E 8+7nE e(ti) < < E e(ti)Pi=3 1=3

where E = Er=i e(ti) and s is the starting iteration number of the chunk. We call

m the smallest critical chunk size because adding any more iterations to this chunk

further unbalances the schedule. Clearly, E I P can only be estimated using the

statistical information on the execution times of the tasks, the expected execution

time of tasks, the total number of tasks, and the number of processors. When

executing a parallel loop on a dedicated environment, the total number of tasks and

the number of processors are known before the computation.

In the implementation of SSS, when no information regarding a loop is

known, every P chunks form a batch and chunks in a batch are of the same size.

The size of chunks in batch i, denoted by CSi, is a x Ni /P, where a is called the

static allocation factor and 0 < a < 1 and Ni is the number of unscheduled iter-

ations at the beginning of the batch. Since the size of chunks in the first batch is

known, we propose that the chunks in the first batch are assigned to processors at

compile time. Scheduling these chunks forms the static scheduling phase of SSS.

The remaining chunks are self-scheduled. This forms the dynamic scheduling phase

or self-scheduling phase of SSS. During the dynamic scheduling phase, when a pro-

cessor finishes the iterations assigned to it the ith fetching processor is then assigned

28

a chunk of

max((1 a)r*1 x x a, k)

iterations, where k is used to control granularity. A general method for accurately

calculating a is given in form of a theorem later.

After the value of a is determined, SSS can be implemented as following.

(a) Before starting the statically assigned iterations, one processor (say pro-
1.

cessor 0) calculates the starting iteration numbers for the chunks sched-

uled in the dynamic scheduling phase and stores them in an array, say

chunkaist , and appends the array with P number of 0's.

(b) Processor 0 sets the shared variable count to 0 and then starts to execute

the chunk assigned to it statically.

(c) All other processors perform their computation on the statically sched-

uled chunks.

2. During the dynamic scheduling phase an idle processor does the following in

the given order:

(a) begins mutual exclusion;

(b) copies the value of count to i and increments count;

(c) ends mutual exclusion;

(d) if chunkaist [i+1] > 0, then executes the chunk defined by chunkaist

and chunk_list [i.+1] -1.

For systems such as RP3 of IBM [78] and Ultracomputer [28] that can

perform fetch&add atomically, the first three items of step 2 can be reduced to

i = fetch&add(count , 1).

Note that the calculation of chunks can be modified to suit the characteristics

of the loop executed to best realize the basic principle of SSS. Other scheduling

29

schemes such as GSS, TSS, or Factoring can also be used to calculated the chunk

sizes.

3.3 Theoretical Basis for SSS

We define the term balanced workload from our perspective of loop scheduling and

prove the following theorems that support SSS.

Definition (Balanced Workload): A schedule that maps iterations of a parallel

loop to processors of a parallel computer is balanced if the difference in work-

load between any two processors is not greater than the maximum execution

time of a loop iteration.

Theorem 3.1: If (i) we assign m iterations, where Eti e(ti) < E I P < e(ti)

to the first fetching processor, say pi; (ii) the remaining iterations are al-

located in such a way that all other processors have the same amount of

workload; and (iii) all P processors start to execute the loop at the same

time (iv) the scheduling overhead is neglected, then processor pi finishes no

later than the critical processor pc and the difference in workload between any

two processors is less than En.PAP 1).

Proof: Let E(I1) be the workload for processor pi and Eren, be the average work-

load of the remaining P 1 processors; we have

EE(I1) E e(ti) <Ef ,-E <E(I)Erem = P -1 p_i P -1 1 3 1

Since all the processors start to execute the loop at the same time, processors

with the same workload finish at the same time. In addition, since Efen, <

E(I1), processor pi finishes no later than the critical processor pc. Further,

let Ell' < e(ti) be represented as Erin_i e(ti) = E I P 0, where 0 < <

30

Emax, then

Ere, = E E fi P-1 P P-1.
The difference in workload between processor pi and any other processors is

E
P P 1'

which is /3P /(P 1). Since /3 < Emax, the difference in workload between

any two processors is less than EnitP/(P 1).

Theorem 3.1 states that assigning m consecutive iterations to the first fetch-

ing processor, when Eal e(ti) El P < Emax(P 1)/P, achieves a balanced work-

load with a minimum scheduling overhead since the processor only fetches once and

the difference in finish times between any two processors is less than Emax. Since the

difference in workload between any two processors is not greater than Erne then by

our definition, the workload is balanced. When >m 1 e(ti) E/P > E,,az(P 1)/P,

the difference in workload between any two processors is less than EmazP /(P 1)

and can be considered to be very well balanced for large P. However, it is generally

not possible to determine m since e(ti) can only be known after the task ti has been

executed.

Theorem 3.2 : If processor pi executes no more than EIPIErner-1 iterations and

all the processors start to execute the loop at the same time, then processor

pi will not be the critical processor.

Proof: Let E(I;) be the workload of processor pi, then

EP
E(.1;) < (

rnla 1)E,ax =

The average workload for other P 1 processors is E E(Ii)/(P 1). In

addition,

E E(Ii) E (E I P Emax) E Emax E
(P 1) (P 1) P (P 1) P

31

That is, there must exist at least one other processor that has a workload

greater than E(/1), therefore processor pi will not be the last one to finish.

According to Theorem 3.2, assigning a chunk with less than EIPI Emax 1

iterations to a processor guarantees that this particular chunk will not unbalance

the schedule. Therefore, E/P /Emax 1 is called the safe chunk size. Since it is

desirable to assign chunks with as many iterations as possible while maintaining load

balance, chunk sizes less than EIPI Emax 1 iterations should never be considered.

Theorem 3.3 : If (i) all the processors start to execute the loop at the same

time; (ii) the loop body consists of an if-then-else statement and prob(then)

is the probability of executing the then branch that has an execution time of

Emax; (iii) the distribution of prob(then) is uniform; (iv) processor pi is

assigned a chunk of size N/P and more than N/P x prob(then) iterations in

the chunk have a workload Emax; and (v) Emax > 2Emin, then the workload

cannot be balanced.

Proof: The average workload of a processor is:

E N(prob(then)Emax prob(else)Emin)
P

Let NIP xprob(then)+ 1 iterations of the N/P iterations assigned to processor

pj have a workload of Emax, then there must be a processor that has no more

than N/P x prob(then) 1 iterations having an execution time of Emax. The

minimum difference in workload between the two processors is 2(Emax Emin),

which is greater than Emax. Then according to our definition the workload is

not balanced.

Usually, for static scheduling, N/P iterations are assigned to a processor.

When the execution times of iterations vary, chunks of the same size may result

32

Probability of performing another fetch
Probability of NOT performing another fetch

Probability(then)/ \1 I ..

0
1 NE P NICSo

Ernax

Figure 3.2. Safe self-scheduling, calculation of the first chunk size

in different finishing times. Only if iterations assigned to one processor happen to

have more iterations having long execution times, the workload cannot be balanced.

For this reason, NI P is called the risk chunk size.

SSS selects the first chunk size to be the point at which the probability

that a fetching processor may or may not perform an additional fetch to be equal

(see Figure 3.2). For loops where the execution times follow Bernoulli distribution

with Emax having probability prob(Emax) and the probability distribution function

prob(Emax) is uniform, the size of the first chunk is the average of the safe chunk

size and the risk chunk size. Using p x N to replace its statistical equivalence E we

have
N prob(Emin)EminN (1 + prob(Emax)Em..PC SO = (3.4)

2 P 2

prob(else)Ein1 + prob(then) Emara = (3.5)
2

Note that, by assigning a larger number of iterations than the safe chunk

size, we have accepted a moderate amount of risk of imbalance in exchange for a

lower overhead. In case the overhead is small compared to the iteration execution

times, a smaller value of a may be used to balance the workload.

33

The smallest critical chunk size can be calculated according to the theorem

given below if we assume that the execution time of an iteration is independent and

all the iterations have their execution times follow the same distribution function.

Theorem 3.4: A set of static allocated n-iteration chunks where n is given by

2112 LFV_, c2 0.2 I p2 c2 o2)2 4p2 (P)2
n = (3.6)

2p2

with c > J2ln(P), will have an expected execution time less than NpIP.

Proof: The Central Limit Theorem states that the sums of independent random

variables tend to be normally distributed. Therefore, for a set of n-iteration

chunks, the expected execution time is n * p and the variance is n * 02. The

normal distribution curve is defined as,

f(t) = 1
e en for oo < t < +oo,2 ,

ro-n

where pn and on are the expected value and standard deviation of the values

of the random variable that has a normal distribution. In our case pn = n *p

and an = ,V7z * o. The probability for the chunks to finish before time to is,

pr(t <to) =
to.f(t)dt

Let
t pn c= (3.7)
on

pr(t < to) can then be calculated by

ico 1
pr(c < co) IC2 e 2 dc

-I -00 .N/Tr

Let co denote the value of c in Eq.(3.7) when to = Np /P, we have

N
Co = (3.8)

* (3-2

34

Kruskal and Weiss in [40] have shown that if each processor receives a chunk

of equal size n the expected finishing time can be approximated as,

n + V2no-21n(P)

Let the expected finishing time to be smaller than the average processor work-

load Np /P. Then we have:

n + 2n * o-21n(P) <

112n * a21n(P) <

21n(P) <

The R.H.S. is identical to co, so

co > /21n(P)

Solving n from equation (3.8), we have,

21,24 + 00.2 1A2/12114 c20-2)2 4p2(1)2
n

2p2

3.4 Simulation Results

In this section we discuss the simulations conducted to study the effects on per-

formance resulting from different values of a in SSS. In the simulation we assume

that the loop body is an if-then-else statement, and the loop has 5000 iterations.

The execution time of the then branch is set to be 4 time units and the else branch

is set to be 1 time unit. Which branch to execute is determined by comparing

two arrays uarray [] and parray 0 . If parray > uarray [i] then iteration i is

set to execute the then branch, otherwise it executes the else branch. Elements of

uarray are greater than 0.0 and smaller than 1.0 and uniformly distributed.

35

In order to test the effects on the selection of a in SSS on parallel loops with

different characteristics, we use three groups of data and store them in three arrays

P1 [] , P2 , and P3 to be used as the array parray . Pi contains 5000 random

numbers in the range of (0.0, 1.0). P2 consists of 5000 real numbers generated by

using the formula
e-rk x 0.8

2

where is an array of 5000 random numbers in the range of (0.0, 1.0). That is,

P2 0 is an array of 5000 real numbers in the range of (0.0, 0.08), and the values of

its elements follow an exponentially decreasing curve. Similarly, P3 0 comprises of

5000 real numbers generated by using the formula

(i -2500)2
e 2x0.0000001

x 0.8
2

P3 Cil is a number in the range of (0.0, 0.08), and elements of P3 0 follow a bell

shaped curve.

Each simulation is implemented as following. Given two array uarray 0 and

parray 0, a third array times 0 is generated where times [i] is 4 if parray[i]

> uarray [i] , or times [i] is 1 if uarray [i] <= parray [i.] . When this step is

finished, the total amount of the workload and the frequencies of executing each of

the branches are known. These pieces of information are then used to calculate the

value for a. Based on the number of processors assumed to be used in executing

the loop, we calculate the chunks and store the chunks in array chunks 0 . Then

the process of executing the loop using the given number of processors is simulated

assuming that there is no scheduling overhead. After the loop is finished, we find the

processor that has the most workload. The finish time of that processor becomes

the finishing time of the simulation. In the case that there are more than one

processor that all finished last, then the processor that performs the most fetches

is the critical processor. For each set of value of parray 0 , we collect the results of

36

using 75 different sets of values for uarray .

Table I, Table II, and Table III are the simulation results of using P1 0 , P2 0 ,
and P3 0 as parray to select which branch of the loop body to execute, respectively.

The results shown in the tables are the average of 75 runs. The number of processors

ranges from 6 to 20. What is given in the tables are the number of times the critical

processor fetched and the difference between the total amount of time units assigned

to the critical processor and the average workload E/P.

From Table I we can see that when a < 0.625 (the one marked with f),

workloads are balanced and the bigger the value for a the smaller the scheduling

overhead without losing any performance. When a selects the value calculated using

Eq.(3.5), the workloads are still with in 3% of the average and can be considered

as well balanced. The scheduling overhead, represented by the number of fetches

performed, is also small.

Table II represents the situation where the probability of an iteration exe-

cuting the then branch decreases exponentially. This is the worst case of using fixed

sized chunks in a batch because the actual amount of work represented by the first

chunk and the last chunk in the same batch may very significantly. For this kind of

parallel loops, chunk sizes in the same batch should increase.

From the table we can see that when a > 0.730 (the one marked with *),

workloads become unbalanced very quickly. Using Eq.(3.5), the calculated a is 0.73.

From the table we can see that when the number of processors is greater than 10,

the scheduling overhead is 0. This indicates that the statically scheduled chunks

unbalances the workloads, i.e., the a is too large. Although the calculated a is

larger than we would like it to be, the critical processor's workload is always with

in 40 time units of a processor's average workload out of a total workload of 9204

time units. The value of a that corresponds to the safe chunk size is 0.4602.

37

Table L The selection of then branch is uniform

Overhead/Amount of Time Units Over Optimal Time
a Number of Processors & Corresponding Optimal Times

6 8 10 12 14 16 18 20

Opt. 2062 1546 1237 1031 883 773 687 618

0.500 8/ 2 9/ 2 8/ 2 8/ 1 7/ 3 8/ 2 9/ 2 7/ 2
0.525 8/ 1 7/ 3 7/ 3 8/ 2 7/ 2 6/ 2 6/ 2 3/ 7
0.550 7/ 2 7/ 3 7/ 3 7/ 2 6/ 4 6/ 2 8/ 2 6/ 3
0.575 7/ 2 7/ 2 6/ 3 7/ 2 6/ 3 5/ 4 5/ 4 6/ 3
0.600 7/ 2 6/ 3 5/ 3 5/ 3 6/ 2 5/ 2 5/ 4 5/ 4

0.625f 6/ 2 5/ 3 4/ 4 5/ 3 5/ 4 4/ 3 5/ 4 4/ 4
0.650 5/ 3 6/ 3 4/ 4 4/ 4 3/ 7 3/ 7 4/ 4 3/ 6
0.675 4/ 7 4/ 6 4/ 5 3/ 5 3/ 6 3/ 5 3/ 5 3/ 6
0.700 3/ 7 3/ 11 3/ 9 3/ 6 3/ 8 3/ 8 2/ 8 2/ 9
0.725 3/ 9 3/ 10 3/ 7 2/11 2/ 9 2/13 2/11 2/10
0.750 2/ 15 2/ 15 2/ 13 2/ 12 2/ 12 2/ 9 2/ 10 2/ 12
0.775 2/ 21 2/ 18 2/ 17 2/ 16 2/ 13 2/ 17 1/ 14 1/ 15
0.800 2/16 2/14 2/13 2/14 2/17 1/16 1/ 21 1/ 20

0.809* 2/17 2/14 2/15 2/13 1/14 1/15 1/17 1/18
0.825 2/ 14 2/ 18 1/ 17 1/ 17 1/ 22 1/ 21 1/ 22 1/ 24
0.850 2/11 1/ 20 1/19 1/18 1/ 22 1/ 22 1/19 1/ 22
0.875 1/ 23 1/ 28 1/ 29 1/ 36 1/ 33 1/ 33 1/ 28 1/ 31
0.900 1/ 41 1/ 44 1/ 39 1/ 38 1/ 36 1/ 34 1/ 32 1/ 29
0.925 1/ 55 1/ 46 1/ 37 1/ 35 1/ 33 1/ 27 1/ 27 1/ 23
0.950 1/ 42 1/ 35 1/ 29 1/ 24 1/ 24 1/ 21 1/ 22 1/ 19
0.975 1/ 25 1/ 23 0/ 24 0/ 26 0/ 28 1/ 29 0/ 31 0/ 31
1.000 0/ 55 0/ 48 0/ 52 0/ 49 0/ 48 0/ 49 0/ 47 0/ 46

38

Table II. The selection of then branch follows an exponential curve

Overhead/Amount of Time Units Over Optimal Time

a Number of Processors & Corresponding Optimal Times

6 8 10 12 14 16 18 20

Opt.	 1534 1150 920 767 657 575 511 460

0.500	 8/ 2 9/ 2 8/ 2 8/ 2 7/ 3 7/ 2 8/ 3 7/ 3

8/ 1 7/ 3 7/ 3 7/ 2 7/ 3 6/ 3 6/ 3 6/ 4 0.525

7/ 2 6/ 3 6/ 3 6/ 2 6/ 3 6/ 3 6/ 3 5/ 3 0.550

7/ 2 6/ 3 6/ 3 5/ 3 5/ 3 5/ 4 5/ 4 5/ 3 0.575
5/ 4 0.600	 7/ 2 5/ 3 5/ 4 5/ 3 5/ 3 4/ 4 4/ 5
3/ 5 0.625	 5/ 3 4/ 4 4/ 4 4/ 4 4/ 6 3/ 5 4/ 6

3/ 7 2/ 7 0.650	 4/ 5 5/ 5 4/ 6 4/ 6 3/ 7 1/ 7

0.675	 3/ 9 2/ 11 2/11 2/11 2/13 1/13 1/12 2/12
1/ 20 0.700	 2/ 16 1/ 22 1/ 20 1/ 22 1/ 22 0/ 23 1/ 23

0.725	 2/ 18 1/ 30 0/ 34 0/ 34 0/ 35 0/ 33 0/ 34 0/ 33
0/ 35 0.730*	 2/ 21 1/ 35 0/ 37 0/ 36 0/ 39 0/ 36 0/ 37

0.750	 1/ 37 0/ 50 0/ 54 0/ 53 0/ 52 0/ 52 0/ 50 0/ 47

0.775	 0/ 69 0/ 83 0/ 85 0/ 79 0/ 73 0/ 70 0/ 68 0/ 63

0.800 0/ 110 0/ 118 0/ 113 0/ 106 0/ 96 0/ 89 0/ 85	 0/ 78

0.825 0/ 156 0/ 156 0/ 145 0/ 128 0/ 118 0/ 110 0/ 102	 0/ 96

0.850 0/ 204 0/ 193 0/ 176 0/ 157 0/ 139 0/ 129 0/ 119	 0/ 111

0.875 0/ 249 0/ 227 0/ 208 0/ 182 0/ 162 0/ 148 0/ 137	 0/ 126

0.900 0/ 293 0/ 265 0/ 264 0/ 206 0/ 186 0/ 168 0/ 153	 0/ 141

0.925 0/ 341 0/ 301 0/ 264 0/ 233 0/ 208 0/ 188 0/ 171	 0/ 157

0.950 0/ 388 0/ 336 0/ 290 0/ 257 0/ 230 0/ 204 0/ 188	 0/ 173

0.975	 0/ 436 0/ 372 0/ 318 0/ 284 0/ 251 0/ 223 0/ 204 0/ 188

0/ 309 0/ 274 0/ 244 0/ 221 0/ 204 1.000 0/ 484 0/ 405 0/ 348

39

The values in P31] follows a bell shaped curve, i.e, the closer an array element

is to the middle of the array, the higher the chance that the value is a value close

to 0.8, which is the largest value of the elements in P31]. When using a set of

random numbers to compare with the values in P30, more numbers in the middle

of P30 have a value greater than the corresponding random number; therefore,

more iterations near the middle of the iterations space have a longer execution

time. For the results presented in Table III, the value of a for the safe chunk size is

0.55 and the value of a calculated is 0.7748. From the table we can see that when

a = 0.7748, the workloads are well balanced and the scheduling overheads are small

too.

It is safe to conclude the following from this simulation. First, the smaller the

a, the higher the scheduling cost. Second, the safe chunk size results in a balanced

workload most of the time with a lower scheduling overhead than that of following

Factoring's no-more-than-half rule [43]. Third, we observed that the value of a near

the average of the calculated value and the one corresponding to the safe chunk size

yields a workload within 2% of the average workload. Fourth, Factoring produces

a schedule that has almost the same level of workload balance as that when using

a value for a that is smaller or equal to the safe chunk size.

In general, SSS achieves a well balanced workload with low scheduling over-

head most of the time. When the iterations execution times follow an exponentially

decreasing curve the calculated value for a results in too many iterations being

assigned to processors to start with, we argue that this represents the worst case

phenomenon. In addition, the final finish times obtained using a fixed sized chunks,

when a increased size chunks should be used, are within 7% of more than that of a

balanced workload.

40

548

Table M. The selection of then branch follows a bell shaped curve

Exe. time (sec) & overhead in 0

Number of Processorsa
18 2010 12 14	 166 8

783 685 609Opt. 1827 1370 1096 914

6/ 3 7/ 2 8/ 2 7/ 3
0.500	 8/ 2 9/ 2 8/ 2 8/ 2

6/ 3 6/ 3 6/ 4
0.525	 8/ 2 7/ 3 7/ 3 8/ 1 7/ 2

6/ 3 6/ 3 7/ 2 5/ 3
0.550	 8/ 2 6/ 3 7/ 3 6/ 2

6/ 2 5/ 3 5/ 4 5/ 3 5/ 3
0.575	 7/ 2 6/ 2 6/ 4

5/ 4 4/ 6 4/ 5
0.600 7/ 2 6/ 4 5/ 3 5/ 4	 5/ 3

0.625	 4/ 4 5/ 4 5/ 5 4/ 5 4/ 5 3/ 6 4/ 5 3/ 6
3/ 7 3/ 6 3/ 7

0.650	 4/ 5 4/ 5 4/ 6 3/ 6 3/ 6
2/ 9 2/ 9 2/ 8 2/ 9

0.675	 3/ 6 3/ 7 3/ 9 3/ 8
2/ 12 2/ 10 2/ 12 2/ 10 2/ 11

0.700 3/ 10 2/ 13	 2/ 11
1/15 1/13 1/ 13

0.725	 2/13 1/ 24 1/ 21 1/17 1/16
1/19 1/ 19 1/ 17 1/18

0.750	 2/16 2/ 32 1/ 22 1/ 20
1/ 27 1/ 25 1/ 23 1/ 23 1/ 21 1/ 21

0.7748* 2/ 17 1/ 38
1/ 25 1/ 22 1/ 21 1/ 21

0.775	 2/17 1/ 38 1/ 28 1/ 25
0/ 32 0/ 31 0/ 29 0/ 33 0/ 28

0.800	 0/ 37 1/ 39 1/ 31
0/ 49 0/ 48 0/ 47

0.825	 0/ 81 0/ 67 0/ 63 0/ 56 0/ 53
0/ 61

0.850	 0/139 0/ 112 0/ 93 0/ 85 0/ 76 0/ 72 0/ 67
0/ 92 0/ 88 0/ 81

0.875 0/197 0/ 154 0/ 130	 0/ 113 0/ 101

0.900	 0/242 0/ 196 0/ 164 0/ 140 0/ 127 0/ 113 0/ 102 0/ 97
0/ 121 0/ 114

0.925	 0/283 0/ 240 0/ 195 0/ 169 0/ 149 0/ 137
0/ 131

0.950	 0/330 0/ 271 0/ 230 0/ 194 0/ 175 0/ 157 0/ 142
0/ 163 0/ 149

0.975	 0/375 0/ 314 0/ 266 0/ 230 0/ 201 0/ 178
0/ 199 0/ 178 0/ 163

1.000 0/422 0/ 354 0/ 296 0/ 257 0/ 227

41

3.5 Comparison of SSS with Other Schemes

Comparing with GSS, SSS generates a smaller number of chunks. SSS's first several

chunks are also smaller than that of GSS, and SSS finishes with chunks of small

number of iterations. Comparing with TSS, SSS finishes with smaller chunks than

that of TSS resulting a better balanced workload. Comparing with the Affinity

Scheduling Scheme, SSS's static scheduling phase helps to maintains a high cache

hit ratio.

The particular implementation of SSS given in this chapter is similar to that

of Factoring [431 in the methods used to calculate the chunk sizes. Furthermore,

in both schemes the chunks in the same batch have the same size. However, there

are several major differences between the two schemes. The first one is that, Fac-

toring uses the no-more-than-half rule, i.e., a < 0.5 while in SSS, 0 < a < 1. The

second difference is that SSS has two phases: a static scheduling phase and a dy-

namic scheduling phase. In SSS, a processor starts to execute a parallel loop with

statically assigned iterations and smoothes out the uneven finishing times with a

self-scheduling scheme. Third, the implementation given in this chapter assumes

that little is known about the iteration execution time distribution. When more in-

formation is available, the amount of iterations assigned to each processor can also

vary to best fit SSS's basic principle. Fourth, SSS's static scheduling phase increases

the level of affinity between iterations and the processor. This property improves

the performance of SSS by increasing the ratio of cache hit and is proved to be

extremely useful in implementing self-scheduling on distributed-memory machines

[58, 92].

The argument given by Factoring is that, to achieve an overall optimal fin-

ishing time, for each batch scheduled there must be enough work left to smooth

42

out the uneven-finishing times of that batch [42]. They argue that for some of the

common distributions of chunk execution times including bell-shaped distributions,

the expected finishing time of the first batch approaches 2µF0 (F0 is the same as

CS0 used in this chapter) as the number of processors P increases. Therefore, there

must be PF0 iterations left to smooth out its unevenness. Hence, to have a high

probability of even finish times, no more than half the iterations should be scheduled

in the first batch.

Clearly, when 2p > E,naz the expected finishing time of the first batch does

not approach 2µF0 because the execution times of chunks in the first batch must

not be greater than Emax x Fo. Let further consider the following example.

Consider a for loop that has an if-then-else statement as its loop body. Let

N = 400, En./Emin = 4.0, prob(Ema) = 0.75, prob(Emin) = 0.25, and P = 5.

Therefore,

p = 0.75(4.0) + 0.25(1.0) = 3.25
N = 3.25(400/5) = 260.0

a2	 0.75(4.0 3.25)2 + 0.25(1.0 3.25)2 = 1.6875

400 x 3.25/4.0safe chunk size =	 = 65
5

400risk chunk size = 80
5

0.75 + 0.251 + 1 a =	 = 0.90625
2

400CS° = x 0.90625 ti 72

From the example we can see that by assigning a processor a chunk of 65

iterations (safe chunk size) cannot unbalance the workload. This is because each

processor needs to spend an average of 260 time units to finish the given parallel

loop. Had there existed a processor spending less than 260 time units on the loop,

43

there would have been another processor spending more than 260 time units on

the loop; therefore, the schedule would be less balanced. However, the longest

execution time of a 65-iteration chunk is 260 time units. Hence we conclude that

assigning a processor less than 65 iterations (equivalent to set a < 0.8125) only

results in an increased scheduling overhead. In general, for a parallel loop that has

an if-then-else statement as it loop body, at least NI P(prob(Eina)d- prob(E,nin) X

Eminl Emaz iterations should be assigned to a processor during the first batch, where

prob(Emax) is the probability of an iteration having an execution time of Emax.

Therefore, when prob(Emax) > 0.5, or Einin/E,, > (0.5 prob(Emax))prob(Emin)

and prob(Emax) < 0.5, we should not used a < 0.5.

In SSS, the value of a determines the total number of chunks produced during

the execution of a given parallel loop. The larger the value of a, the smaller the

number of chunks is produced, resulting in a smaller overhead. When a becomes

too large, chunks with long execution times may be produced resulting in load

imbalance. The smaller the value of a, the fewer the iterations that are fetched

by an idle processor, therefore better the balanced workload, however, with an

increased scheduling overhead. Choosing an a smaller than p I Eniax only causes

more scheduling overhead without further balancing the workload.

The total number of chunks produced by Factoring is at least P (1 lg(N/P))

The total number of chunks produced by SSS is P lg(N/P)/ lg(1/(1 a)). For the

example given above, SSS produces 10 chunks while Factoring produces at least 37

chunks. Note that a scheduling function needs to modify some global variables that

have to be accessed exclusively. Frequent accessing of the shared variables such

as loop index increases the time required to access them because these variables

must be accessed exclusively. We believe that for fine and medium grain parallel

44

loops or for systems where accessing shared variables is an expensive operation, SSS

will surpass Factoring. For large grain parallel loops, SSS will perform as good as

Factoring.

Finding an appropriate value of a requires some information, such as maxi-

mum and minimum execution times and prob(then) etc. We argue that it is possible

to obtain approximations of these pieces of information. The execution times can

be obtained through profiling utilities. The probabilities of a particular execution

times can be obtained through sampling [44]. In addition, a program that solves a

particular problem runs many times to solve different instances of the same prob-

lem. In cases like this, information regarding the parameters used in SSS can be

collected from the earlier runs and used to benefit the later runs.

Table IV shows the chunk sizes for several scheduling schemes on the example

used above. Since the safe chunk size is 65, it is not necessary to assign a processor

a chunk less than 65 iterations to start with. Note that although SSS generates

total of 15 chunks, which is the smallest among all the schemes, only 10 chunks are

assigned to processors during run time.

3.6 Modifications on Safe Self-Scheduling

In this section we introduce some of the simple modifications on SSS that further

improve the performance and the flexibility of SSS.

3.6.1 Achieving a Higher Degree of Balanced Workload

As mentioned earlier, selecting a value of a is a trade-off between increasing the

scheduling overhead and achieving a more balanced workload among the processors.

SSS can be easily modified to achieve a even better balanced workload with roughly

Table N. Chunk sizes for different scheduling schemes

Scheme Chunks N = 400 and P = 5

SSS 15 72 72 72 72 72 7 7 7 7 7 1 1 1 1 1

GSS 25 80 64 51 41 33 26 21 17 13 11 8 7 5 4 4 3 2 ...

TSS 16 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10

Factoring 40 40 40 40 40 40 20 20 20 20 20 10 10 10 10 5 5 5 ...

CSS [Nip f f f f f...

46

the same amount of overhead by applying a smaller value for a during the dynamic

scheduling phase. Since Factoring has demonstrated its ability of producing bal-

anced workload, using the no-more-than-half rule during the dynamic scheduling

phase of SSS may improve the performance, particularly for parallel loops where

iterations at the end of the loop are likely to have longer execution times than iter-

ations at the beginning of the loop. Reverse Adjoint-Convolution application [42]

is an excellent example that exhibits such a behavior.

3.6.2 Tolerating Faulty Processors

GSS is insensitive to faulty processors, i.e., even if one or more processors drop

out after executing some chunks GSS would still balance the workload. This is not

true with SSS. Consider the case when a processor drops out after executing some

chunks, the rest of chunks defined in the array chunk_list no longer reflects the

configuration of the the current system. This may cause an imbalance in workload.

We suggest the use of the GSS algorithm in the dynamic scheduling phase

to make SSS also insensitive to faulty processors. The SSS-GSS scheduling can be

described as given below.

1. Calculate the value for a.

2. Each processor is then assigned N/Pa iterations statically.

3. Set the global variable count to be the first unscheduled iteration's number.

4. (a) begins mutual exclusion;

(b) copies the value of count to i;

(c) t <- max((N - count) /p , 1);

(d) count <- count + t ;

47

(e) ends mutual exclusion;

(f) executes the chunk defined by i and i + t and repeats step 4 if i > N;

When the number of processors P is large, the value of P does not need to

be modified if some processors become faulty and drop out of the system. This

is because the old values of the chunk sizes are only slightly smaller than the new

ones that would have been calculated based on the new value of P. As we already

discussed, a schedule using smaller chunks, in general, results in at least as well a

balanced workload as a schedule using larger chunks. Note that the step 4 above

can be precalculated and stored in an array. By doing so, the critical section can be

replaced by a fetch&add command. More discussions on scheduling under faulty

processors can be found in Chapter 7.

3.6.3 Differing Start Times

It is possible that not all of the processors begin to execute the loop at the same

time. Waiting until all processors become free to start the loop will reduce the

overall processor utilization. However, assigning chunks in the first batch of N /Pa

iterations to a processor that starts at a much later time than the first processor

that starts the execution of the loop may lead to an unbalanced workload. To

prevent this from happening, we propose that SSS immediately enter the dynamic

phase and determine the first batch chunk sizes as follows. Let t, be the starting

time of the processor that starts first, and ti be the starting time of processor pi.

Then, a chunk of the size

N (4-4)
max (Pa ,0 (3.9)

it

48

is assigned to processor p2. When (aN I P (t1 ts)I it), the processor should then

use the first available chunk in the chunk_list 0 . The effect of this rule is that

the later a processor starts, the less work it should have to complete. Following the

first batch, the remaining batches are computed with the same approach previously

described. Using this approach, the SSS scheme continues to provide the benefits

of a low overhead and a balanced workload. If the maximum delay time

ts = max (t; ta)
J=1

for a processor is known, then (aN I P txl p)p iterations can be scheduled statically

by assigning to that processor with aNIP trip iterations at compile time.

3.6.4 Increasing Granularity

For fine grain parallel loop, the smallest chunk size could be more than 1. Using

the similar approach as GSS(t), SSS can be modified to schedule not less than t

iterations. We denoted it as SSS(t). When E,,,z < h, where h is the scheduling

overhead, we have t > h/Emax. When Erni?, > h, t = 1.

3.7 Experimental Results

Different scheduling schemes are evaluated on a 20-processor Sequent Symmetry, a

shared-memory parallel computer. In this section, we discuss the results of three

different test cases. The first test compares the SSS scheme with other well-known

scheduling schemes GSS [79], TSS [109], and Factoring [42] using a parallel loop

with an if-then-else statement as its loop body. We implement GSS as GSS(1) and

TSS as TSS(N/(2P), 1). In the other two experiments, we apply the SSS scheme

to real applications, namely matrix multiplication and Gauss-Jordan.

49

Doall i = 1 to SIZE do
if (A(i))

then for (j =0; j < DIVERSITY*N1; j++) ct 1 += 1;
else for (j =0; j < N1; j++) ct2 += 1;

Figure 3.3. A parallel loop containing branches

3.7.1 A Parallel Loop With an If-then-else Statement

The first test was conducted on the loop shown in Figure 3.3. The loop has four

parameters, i.e., SIZE, A(), N1, and DIVERSITY. SIZE indicates the problem size.

A() determines the frequency of executing the then branch. Parameter N1 speci-

fies the granularity of an iteration. Parameter DIVERSITY specifies the diversity

between the two branches.

We define the cost of executing a problem on a parallel system as the prod-

uct of the parallel executing time and the number of processors used. Clearly, a

smaller cost is more desirable. The cost curves for different self-scheduling schemes

executing the loop of Figure 3.3 up to 19 processors are shown in Figure 3.4. SSS

outperforms the other scheduling schemes. The performance of GSS was equiva-

lent to that for a static scheduling scheme (SC), because of uniform distribution of

prob(then) resulting in a small difference in the workload between any two chunks

of equal size.

Figure 3.5 shows the standard deviations for the processor workload on the

corresponding runs of Figure 3.4. The workload was calculated by counting DI-

VERSITY time units for the then branch and 1 time unit for the else branch. All

the self-scheduling schemes except TSS provide balanced workload. Factoring gives

the most balanced workload followed by GSS and SSS. The well balanced workload

50

Parallel Loop with Branches
Seq. Exe. Time: 285.96 sec

293
SSS

292 o Factoring

t> TSS291

o GSS
290

t * Static
289

288

287

286

1 3 5 7 9 11 13 15 17 19

Number of Processors

Figure 3.4. Cost curves for different scheduling schemes

200
SSS

180 o TSSSt 160 o GSSa n * Factoringd 140
a r 120d
d 100
e

80
a t
0

60

40 n
20

0 I I

1 3 5 7 9 11 13 15 17 19

Number of Processors
Figure 3.5. Standard deviations in workload for different scheduling schemes

51

of Factoring does not result in a good performance because it comes at the cost of

an increased overhead in scheduling.

Figure 3.6 shows that the speedup achieved by different scheduling schemes

using different values of granularity of iterations, i.e., Nl. Increasing the granularity

of an iteration decreases the ratio between communication time and computation

time. Therefore, all the scheduling schemes tested show improvement in perfor-

mance. The SSS scheme surpasses other schemes in all the tests with noticeable

margins. The corresponding workload balance indicated by the standard deviations

is given in Figure 3.7. The workload for static scheduling is 28.3 and is not shown in

the figure. The workload for TSS is also not shown in the figure since it is too large

(170) and does not change much. Although both GSS and Factoring have a better

balanced workload than SSS, they do not result in a better performance than SSS

because the balanced workload is achieved at the cost of a much higher scheduling

overhead.

Figure 3.8 shows the speedup achieved by SSS for different values of a for

different granularities. Again, the performance of SSS improves as the iteration

granularity increases. When the granularity is small, the selection of a has a greater

influence on the performance. An accurate value of a that reflects the characteris-

tics of the loop produces better performance. With increasing iteration granularity,

the value of a that yields the best performance decreases. This is because (1) work-

load balance plays a larger and important role in the overall performance and (2)

performance degradation caused by scheduling overhead becomes less significant.

This suggests that a relatively smaller value of a should be used when scheduling

parallel loops with a large granularity.

The workload balance of Figure 3.8 are indicated by the standard deviations

given in Figure 3.9. The figure shows that the workload is more balanced when the

iteration granularity increases. It also shows that, as long as the value of a is not

52

SSS

t> TSS

o GSS
* Factoring

o Static

10 20 30 40 50 60

Iteration Granularity

Figure 3.6. Speedup of different schemes on different granularities

22 SSS

S o GSS
t a * Factoring
n
d 17
a r
d
d e 12-
v
i a t
i
0 n
s

10 20 30 40 50 60

Iteration Granularity

Figure 3.7. Standard deviations in workload for different schemes on different granularity

53

16.0 r______s_ 4
K...--.........A.____,__,..,--..----."ir

15.6

S 15.2P e
3 u 14.8P

14.4

14.0
1 I	 1

05	 0.6 0.7 0.8
a

NI. = 60
* N1 = 30
* N1 = 15
r> N1 = 6
o N1 = 3
o N1 = 1

0 9

Figure 3.8. Speedup of different granularity under different a values

S
t a
d
n
a r
d

61

51-

41

d e v
i a

31
o e

i
O n
s

21

t>

11-
ri,

-x

1-;
05

1

0.6
I

0.7
I

0.8
a

N1 = 60
* N1 = 30
* N1 = 15
t> N1 = 6
o N1 = 3
o N1 = 1

0 9

Figure 3.9. Standard deviations in workload for different granularity

54

for i = 1 to N
for j = 1 to N

for k = 1 to N
if a[i] [k] <> 0 then

c[i }[j] = c[i][j] a[i][k] *b[k][j];

Figure 3.10. Matrix multiplication where many elements of matrix a are zero

too large, smaller a values do not necessarily result in a more balanced workload,

except when N1 = 1. Also, since with a larger value of a, more iterations are

scheduled statically (i.e. smaller scheduling overhead), a larger value of a should

be used whenever possible.

3.7.2 Matrix Multiplication

The code in Figure 3.10 performs matrix multiplication when many elements

of matrix a are zero. In our experiment, 43.75% of the elements in a are zero and

all of them are located in the lower-triangular portion of the matrix. The outer

two loops are coalesced [79]. The execution time of an iteration is between 297 ps

(microseconds) and 793 ps. Using the idea of Theorem 3.1, we find that a = 0.67.

Note that Eq.(1) is no longer applicable because the loop body is no longer a parallel

loop with an if-then-else statement. Rather, the loop body is a sequential loop. The

results of using SSS are shown in Figure 3.11 with the comparative results given by

SS (static scheduling), TSS, GSS, and Factoring. GSS assigns too much work at

the beginning. This results in a very unbalanced workload and poor performance.

3.7.3 Gauss-Jordan

Figure 3.12 shows the algorithm that performs Gauss-Jordan on an N x N

55

Matrix Multiplication
330 * Factoring
320 SSS

o GSS310
TSS

300 o SS

290C
0

280t
270

260

250

240

230 I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

number of processors

Figure 3.11. Execution cost for matrix multiply given in Figure 3.10.

for i = 1 to N
Doall 1 = 1 to N*(N - i) {

j = 1 div (N i);

k=i+ 1 -Flmod(N-i);
if (i j) then a[j][k] = a[j][k] - aliffira[i][1(] /a[i][i];

}

for j = 0 to N 1

if (i j) then a[j][i] = 0;

Figure 3.12. Gauss-Jordan

56

SSS

o SS
i> TSS

o GSS
* Factoring

I I I I I I I I

4 6 8 10 12 14 16 18 20

number of processors

Figure 3.13. Costs of running different schemes on Gauss-Jordan.

array. Note that the iteration granularity of Gauss-Jordan is small and is inde-

pendent of problem size. The amount of variance in iteration length is also small.

Problems of this kind are more suitable for static scheduling schemes than self-

scheduling schemes. To outperform the static scheduling schemes on problems of

this kind, a self-scheduling scheme must be able to achieve a well balanced load

with a very small scheduling overhead. As shown in Figure 3.13, SSS is the only

dynamic scheduling scheme that outperforms the static scheduling scheme. The

reason is that SSS schedules a major portion of iterations to processors statically,

the rest of the iterations being used to balance the workload dynamically.

Factoring does not perform well, particularly when the number of processors

increases. This is because in Factoring the processors perform the largest number

of fetches. The second reason is that since all except one processor obtain the same

amount of work, when one processor finishes its work, all other processors (except

57

23.6 SSS

E
23.4 o TSS

x
23.2 <> SSu t
23.0o	 o GSSn

t
22.8	 * Factoringm

e

22.6

22.4
04	 0.6 0.8 1.0

a

Figure 3.14. The effect of changing a on Gauss-Jordan.

one) also finish their work; therefore, the contention to access the critical section is

likely to be much higher than that for other schemes. This problem becomes even

serious when the number of processors increases.

Figure 3.14 shows how the scheduling overhead affects the performance on

eight processors. When a is small, the scheduling overhead is high. The result is

that the static scheduling scheme performs well. As the value of a increases, SSS's

performance improves. Finally, SSS outperforms the static scheduling scheme.

3.8 Conclusions

We have presented the Safe Self-Scheduling (SSS) scheme to schedule parallel loops

with variable length iteration execution times not known at compile time. We

have shown how to combine static and self-scheduling schemes in SSS and draw

the advantages from both. SSS schedules statically a major portion of the loop

58

iterations to processors to reduce the scheduling overhead while uses self-scheduling

to balance the workload at run time..

Experimental results obtained from a shared-memory parallel computer in-

dicate that while maintaining a well balanced workload, the performance of SSS is

superior to those provided by other well-known scheduling schemes.

SSS achieves a well balanced workload with a low scheduling overhead. SSS's

static scheduling phase improves the performance in two ways. One is that it

increases the affinity between an iteration and the processor executing the iteration

thus increases the ratio of cache hits. The other is that it reduces the scheduling

overhead by assigning a large portion of iterations to processors at compile time.

The importance of having a static scheduling phase is further demonstrated when

self-scheduling is implemented on distributed-memory machines [58, 92].

The preliminary work of adopting SSS to a distributed-memory machine can

be found in [92]. We believe that scheduling parallel loops on distributed-memory

parallel computers can benefit from the two phase approach in our SSS scheme

since the increased communication cost for a completely self-scheduling scheme will

degrade the performance.

59

Chapter 4

SAFE SELF-SCHEDULING ON
DISTRIBUTED-MEMORY MACHINES

4.1 Introduction

The majority of self-scheduling schemes are designed to run on shared-memory

machines because a self-scheduling scheme has to maintain a shared ready task

queue. A static scheduling, rather than a self-scheduling scheme, is often used to

schedule a parallel loop even with uneven iteration execution times.

In the last chapter we introduced self-scheduling scheme SSS to schedule

parallel loops with variable length iteration execution times on shared memory

parallel computers. SSS has a unique feature, i.e., it has two scheduling phases: a

static scheduling phase and a dynamic scheduling phase. We show in this chapter

that this feature of SSS makes it more suitable than other scheduling schemes to

run on distributed-memory machines. Another advantage is that the data used by

a statically scheduled iteration can be prefetched by the processor on which the

iteration is assigned.

This chapter presents the method we used to implement SSS on a distributed-

memory machine such as the NCUBE/7. We call this version of SSS as DSSS

(Distributed Safe Self-Scheduling). We also propose a data duplication method

60

to minimize data movement involved for bringing data to processors for iterations

scheduled in SSS's dynamic scheduling phase.

DSSS and other well known self-scheduling schemes were implemented on a

64 processor NCUBE/7. Experiments show that DSSS performs well on parallel

loops with different characteristics.

One possible implementation of a self-scheduling scheme on a distributed-

memory machine can be as follows. Since there is no shared-memory, the ready

task queue has to be stored on one processor or distributed on several processors.

Let us say processor p; stores the ready task queue, then when a processor becomes

idle, it sends a message to p; for more work. Upon receiving a request, p2 sends

the requesting processor more iterations. The following issues have to be addressed

before an efficient implementation is possible.

The first is that message passing on a distributed-memory machine takes a

much longer time than an exclusive access of a shared variable on a shared-memory

machine; therefore, the scheduling overhead is much higher than that on a shared-

memory parallel computer. The result of this is that load has to be balanced without

frequent access to the shared tasks queue.

The second is that, since the processor that stores the shared ready task

queue has to respond requests from other processors frequently, having this proces-

sor performs computation may delay the processing of request messages, resulting

in low performance. If this processor acts only as a scheduler and does not perform

any computation, the maximum potential speed up of the system becomes (P 1).

In addition, a single scheduling processor many become a bottleneck, degrading

performance further.

The third is that, to execute an iteration, a processor must store the data

needed by the iteration. If we assign iterations dynamically at run time, data

has to be distributed to anticipate this assignment because data movement on a

61

distributed-memory machine at run time degrades performance significantly.

Solutions to all the above three issues are discussed in this chapter. The

rest of the chapter is organized as follows. We first discuss the Distributed SSS

(DSSS) which tackles the same problems as SSS but targeted on distributed-memory

machines such as NCUBE/7. Section 4.3 shows the experimental results.

4.2 Distributed SSS

DSSS (Distributed Safe Self-Scheduling) is a self-scheduling scheme that schedules

parallel loops on distributed-memory machines. The parallel loops scheduled by

DSSS are characterized by having variable length iteration execution times not

known at compile time. DSSS has two scheduling phases: static and dynamic.

The static scheduling phase serves two purposes: reducing scheduling overhead and

helping data distribution. The dynamic scheduling phase balances the workload.

During the static scheduling phase, the first aN iterations, where 0 < a <

1, are divided into P equal sized chunks. Each of the P processors is assigned

one chunk. Since the assignment of iterations to processors is determined before

computation starts, data required by these iterations can also be distributed to the

corresponding processors.

Processors are self-scheduled during the dynamic scheduling phase. Self-

scheduling schemes can be implement on distributed-memory machine by designat-

ing one processor as the scheduler to handle all requests from other processors. A

processor, called scheduling processor, is designated to respond to other processors'

request for more chunks and assigns chunks to other processors during the dynamic

scheduling phase. Since no processor requests any chunk during the static schedul-

ing phase, the scheduling processor also performs some computation in that phase.

However, assigning N/Pa iterations to the scheduling processor may overload it.

62

The number of iterations processed by a scheduling processor should be greater

than aNEminl PEni, and less than aNP.

4.2.1 Data Partitioning

For a distributed-memory machine, data should be stored on the same processor on

which the task is executed. This is not a trivial problem, because data usually has

to be distributed before computation. Worse yet, when data needed by an iteration

is not stored on the same processor as the iteration is assigned to, either the data

must be sent to the processor or the iteration has to be reassigned to the processor

that owns the data.

One approach would be to replicate all the data on every processor. For

applications that process large amounts of data, as many of the applications us-

ing parallel computers do, data must be distributed among processors because the

amount of data may be too large to be stored on one processor.

In DSSS duplicated copies of data used in dynamic scheduling phase are

distributed onto one or more processors. Whenever a scheduling processor assigns

iterations to an idle processor, it always assigns iterations to a processor that has

the needed data.

In DSSS the data used by a set of iterations in dynamic scheduling is grouped

into a block. Each block is then stored on two or more processors but is owned by

only one processor which is responsible for updating the data in the block. The

block size t has to be determined by either the compiler or the programmer.

A table is constructed on the scheduling processor to describe the data dis-

tribution. We call this table the data distribution table. Each entry of the table

describes one block and has the following information: the starting iteration num-

ber, the ending iteration number, the owner of the block, and the processors where

the duplicate copies of the block of data are stored.

63

a[160] : integer;

forall i = 1 to 160 do
if (a[i] # 0)

then a[i] = a[i] *a[i];

else a[i] = 0;

Figure 4.15. Calculating the squares.

4.2.2 Task Assignment in the Dynamic Scheduling Phase

When processor pi finishes executing its statically assigned iterations, it sends the

scheduling processor a message together with its processor id requesting for more

work. The scheduling processor first tries to assign pi with iterations that need the

data owned by pi. If these iterations have already been scheduled, the scheduling

processor assigns a chunk of iterations whose data is owned by some other processors

but a duplicated copy exists on pi. To cope with the idea of SSS, the number

of blocks assigned to an idle processor may decrease exponentially after every P

assignments, where P is the number of processors.

4.2.3 An Example

Let us assume that we are scheduling the loop given in Figure 4.15 and see how to

schedule the loop onto 8 processors with a = 0.75 and N = 160.

Partitioning

The data partitioning is accomplished through the following two steps:

1. aN /P array elements are distributed to each of the P	 1 processors while

the scheduling processor keeps IaN /(2P)1 elements. For a = 0.75, N = 160,

64

Table V. An Example of Data Distribution Table

Starting Ending Owner lsi 2nd

Iteration Iteration Dup. Dup.

1 113 118 1 3 2

2 118 123 2 1 3

3 123 128 3 2 4

4 128 133 4 3 5

5 133 138 5 4 6

6 138 143 6 5 7

7 143 148 7 6 1

8 148 153 1 7 2

9 153 158 2 1 3

10 158 160 3 2 4

and P = 8, the first 113 array elements are distributed to the 8 processors

with 15 elements on each processor except that the scheduling processor, say

Po, with 8 elements .

2. Divide the (1	 a) x N LaN/(2P)] elements into 1 blocks of maximum e

elements each. Each block is stored on one or more processors and only one

processor owns the block. In this example, e = 5 and 1 = 10. If we decide

to duplicate each block on two other processors, the data distribution table is

then given as Table V.

65

Scheduling

The scheduling processor executes the first IaN /(2P)1 iterations while processor

pi, where i = 1, 2, ..., 7, execute the chunk from

ix--1Y-xaLax-2PJ

to

(i-I-1)xxaLax 2pJ-1
After pi finishes the chunk, it sends a message to the scheduling processor po

to obtain another chunk. po first tries to assign a chunk that has its data owned by

pi. If no such chunk exists, a chunk that has its data duplicated on pi is assigned to

it. When all the chunk in the data distribution table have been scheduled, po sends

every processor a message indicating that there are no more iterations left.

4.3 Experimental Results

In this section, we discuss experimental results for the different scheduling schemes.

The first experiment is a simulation. The second experiment uses the Monte Carlo

method to calculate the weight and center of mass for an object. The last experiment

applies an image processing algorithm to produce a false-color image. All the three

experiments are conducted on an NCUBE/7 distributed-memory computer.

4.3.1 Simulation

A 5000 iteration parallel loop with one if-then-else statement is used to conduct the

first simulation. For CSS (Chunk Self-Scheduling), 5 iterations at a time is assigned

to an idle processor. The ratio of execution time for the then branch to the else

branch is assumed to be 4. The user supplies the expected frequency with which

each branch is selected.

66

Table VI. Simulation

Execution time (sec) & speedup in ()
Sequential execution time 406.334(sec)

Schemes 4 8 16 32 64

DSSS 137.5
(3.0)

59.7
(6.8)

28.0
(14.5)

13.7
(29.6)

6.8
(59.5)

CSS(5) 154.2
(2.6)

66.3
(6.1)

31.1
(13.0)

15.2
(26.5)

7.7
(52.0)

PSS 156.7
(2.6)

68.1
(6.1)

32.6
(12.5)

16.4
(24.8)

8.7
(52.9)

GSS 154.5
(2.6)

66.8
(6.0)

31.5
(12.9)

15.3
(26.7)

7.1
(46.7)

Static 102.2
(4.0)

51.6
(7.9)

26.3
(15.5)

13.5
(30.2)

7.4
(55.1)

Factor-
ing

144.6
(2.8)

62.0
(6.6)

29.0
(14.0)

14.1

(28.8)
7.0

(57.9)

The simulation results are shown in Table VI. We also implemented static

chunk and other self-scheduling schemes such as PSS, GSS, and Factoring for com-

parison. DSSS performs well with 64 processors. Static scheduling performs better

than all the self-scheduling schemes because the variance of iteration execution time

is a uniform distribution.

67

4.3.2 Monte Carlo Integration

Monte Carlo integration is used to find the weight and the position of the center

of mass for an object of complicated shape [82]. It is used when the limits of

integration of the volume cannot easily be written in an analytically closed form.

To evaluate the integral of a function f over the multidimensional volume V, this

method selects N random points xl, xl, , xN over the volume and approximates

f fdV with VIN f (xi) [82].

It is not easy to sample random points within a volume with complicated

shape. In that case, the volume V can be enclosed by a larger volume W of a simple

shape. In our experiment, the object evaluated is put inside a rectangular volume

and sample points are chosen randomly. To ensure that the same set of sample

points is used in different processors, we apply a distributed random number gen-

erator [24]. The integral of the function f is estimated as the volume W multiplied

by the fraction of random points that fall within volume V.

The object in this experiment is defined by three simultaneous equations:

z2 Vx2 + y2 _ 3 < 1 (4.10)

x > 1 (4.11)

Y > 3 (4.12)

Suppose the object has a constant density p. We then estimate the weight

by f pdxdydz and the linear moments by f xpdxdydz, f ypdxdydz, and f zpdxdydz.

The coordinates of the center of mass is then the ratio of the linear moments to the

weight of the object.

The code is shown in Figure 4.16. It constitutes a parallel loop with one

if-then conditional statement. The number of iterations is the same as the data

points selected, which is 250,000.

The result of this experiment is shown in Table VII. When the number of

68

forall (i=0; i < 250000; i++)
x = 1.0 + 3.0 * random(&R, &A, &C);
y = (-3.0) + 7.0 * random(&R, &A, &C);
z = (-1.0) + 2.0 * random(&R, &A, &C);
if (sqr(z) + sqrt(sqr(x) + sqr(y) 3.0) < 1.0)

{

/* estimate the weights and linear moments */

}

Figure 4.16. Code for Monte Carlo Integration

processors is small, i.e., smaller than 16, static scheduling performed better than

other self-scheduling schemes. DSSS gives a better performance with more than 16

processors. The better performance results from a well balanced workload and a

low scheduling overhead. The expected frequency of executing the then branch is

estimated to be 0.75 and a is calculated to be 0.88.

4.3.3 Generation of False-Color Image

The color image produced by translating a monocolor image into a color presenta-

tion is called false-color. This technique is often used to display data that is not

inherently imaging in nature.

In this experiment, the monocolor image is stored in an array. Each element

of the array contains an integer ranging from 0 to 1000 to represent different gray

levels of a pixel. Each gray level is then mapped to a color which is represented

by a number ranging from 0 to 255. The computations among different pixels

are different because the execution time of the function that maps a gray level to

its corresponding color differs according to its input. We only implemented static

scheduling scheme and DSSS because other scheduling schemes do not include data

69

Table VII. Monte Carlo Integration

Execution time (sec) & speedup in ()
Sequential execution time 118.962(sec)

Schemes 4 8 16 32 64

DSSS 41.0 17.6 8.3 4.2 2.2
(2.9) (6.7) (14.3) (28.0) (55.3)

CSS 42.3 18.8 9.3 5.0 3.1

(2.8) (6.3) (12.8) (23.8) (38.9)

GSS 40.7 17.5 8.3 4.4 2.4
(2.9) (6.7) (14.3) (27.0) (49.7)

Factor- 41.8 17.5 8.1 4.4 2.3
ing (2.8) (6.8) (14.6) (27.3) (52.0)

Static 30.9 15.5 7.9 4.4 2.3
(3.9) (7.6) (15.1) (26.8) (52.4)

partitioning. The image tested has 512 x 512 pixels.

For DSSS, data needed in the static scheduling phase is prefetched. Data

needed in the dynamic scheduling phase is grouped into blocks of 16 elements and

duplicated copies are stored on all other processors. Table VIII shows the perfor-

mance of the DSSS with a = 0.55 and the static scheduling. The improvement in

speedup by DSSS comes from better utilization of processors. The time for 1 pro-

cessor is estimated, since the data array is too large to be stored on one processor.

70

Table VIII. Generation of a False-Color Image

Execution time (sec) & speedup in ()
Sequential execution time 81.707(sec)

Schemes 4 8 16 32 64

DSSS 24.1 11.1 5.5 2.8 1.5
(3.4) (7.4) (14.9) (29.5) (54.1)

Static 23.9 13.7 8.5 5.0 2.609
(3.4) (6.0) (9.6) (16.2) (31.3)

4.4 Conclusions

We demonstrated a successful attempt in applying SSS to schedule parallel loops

with variable length iteration execution times on distributed-memory machines.

The iteration execution times may not be known at compile time.

The approach introduced in this chapter makes good use of the two phases

approach of SSS. The advantage of applying SSS's static scheduling phase is that,

first, scheduling overhead is reduced, and, second, a major portion of data is dis-

tributed during this phase.

The dynamic scheduling phase balances the workload. The data needed in

the dynamic scheduling phase is grouped into small blocks. Each block is then

stored on one processor and that processor is designated as the owner of the block.

The same block of data is then duplicated on limited number of other processors.

In this way, an iteration can be assigned to a processor that either owns the data

needed by the iteration or has a duplicated copy of the data needed by the iteration.

We showed that DSSS offers better performance than other self-scheduling

schemes. Compared with static scheduling, DSSS surpasses static scheduling scheme

71

when the number of processors is large. As much as 79% of improvement over static

scheduling has been achieved by using DSSS. The same techniques used by DSSS

can also be applied to other self-scheduling schemes.

72

Chapter 5

A GENERAL APPROACH FOR
SELF-SCHEDULING ON

DISTRIBUTED-MEMORY MACHINES

5.1 Introduction

In the last chapter we discussed DSSS, an implementation of SSS on a distributed-

memory machine. Enlightened by the techniques used in DSSS, in this chapter

we present a general approach that supports the implementation of a given self-

scheduling scheme on distributed-memory machines.

This chapter discusses self-scheduling of non-uniform parallel loops on distributed-

memory machines. The chapter focuses on both workload balance and data distri-

bution, the two main issues in scheduling non-uniform parallel loops on distributed-

memory parallel computers.

The approach again has two phases: a static scheduling phase and a dynamic

scheduling phase. The static scheduling ameliorates the high scheduling overhead

in a distributed-memory machine and also makes it possible to prefetch the data

needed by the statically scheduled iterations. The workload is balanced in the

dynamic scheduling phase.

We classify data distribution methods into four categories and present k-

duplication of partial array, a method that allows the problem size to grow linearly

73

in the number of processors. We also present a multilevel scheduling scheme that

alleviates the problem of the scheduling processor being a bottleneck.

Combining the new data distribution methods with the general approach for

self-scheduling of parallel loops, a user can expect to solve larger problems efficiently

by employing more processors.

The rest of the chapter is organized as following. Section 5.2 discusses a

general approach for implementing self-scheduling schemes on distributed-memory

machines. Section 5.3 presents the data distribution policies needed by different

methods of assigning iterations to processors. We propose a multilevel scheduling

scheme in Section 5.4. Experimental results are presented in Section 5.5. We

conclude the chapter in Section 5.6.

5.2 Self-Scheduling on Distributed-Memory Machines

On a shared-memory machine, the ready task queue is stored in the shared-memory

where each processor has access to it; although, exclusive access is required to guar-

antee that every iteration is executed once and only once. On a distributed-memory

machine, unlike shared-memory machine, the ready task queue needs to be stored

on one or more processors' local memory. We call these processors the scheduling

processors. The other processors, which we call the working processors, then have

to request for a task by sending a message to a scheduling processor. In this sec-

tion we discuss a general method for implementing a self-scheduling scheme on a

distributed-memory machine with only one scheduling processor. This restriction

is then relaxed in later sections.

Let C1, C2, , CT be the T chunks generated by a self-scheduling scheme S

on the iteration space I = {t1,t2,- , tN} of parallel loop L. We propose the follow-

ing two-phase approach to implement the self-scheduling scheme S on a distributed-

74

memory machine. In the first phase, a chunk Ci is statically assigned to processor

i, where 1 < i < P. Since the assignment of iterations to processors is determined

at compile time2 data required by these iterations is also distributed to the corre-

sponding processors at compile time. For the self-scheduling scheme that generates

a decreased sized chunks, the first P statically allocated chunks usually account for

a major portion of the iterations.

In the second phase, processors are self-scheduled to balance the workload.

The processor that finishes first' in static scheduling phase becomes the schedul-

ing processor. The scheduling processor responds to other working processors' re-

quest for more iterations and assigns iterations to other processors during this self-

scheduling phase. Chunk C5, where p < j < T is assigned to a processor that stores

the data needed by the iterations in C5. How to distribute data is discussed in next

section.

Figure 5.17 (a) shows the flow chart for a scheduling processor. The pro-

cessor starts with executing its chunk of iterations allocated at compile time. It

then calculates the chunks scheduled in dynamic scheduling phase according to the

scheduling scheme S to generate a ready task queue. Upon receiving a request

from a working processor, it removes a chunk from the queue and assigns the chunk

to the working processor. When the list becomes empty, the scheduling processor

broadcasts a message to all the working processors to indicate that there is no more

tasks.

Figure 5.17 (b) is the flow chart for a working processor. After finishing the

2Here compile time means the time the values for parameters N, P, and the scheduling scheme

become available.
3In practice, identifying the first finished processor is non trivial problem. In our implementation

we always select processor 0 as the scheduling processor by assigning smaller number ofiterations

during the static scheduling phase.

75

START START

1 I.

Computing Computing

1

preparing sendingchunks a request
message

Accepting
a request Waiting the

request to be
processed

Assigning
a chunk

receiving the
task assignment

message
Broadcast

end of
computation

'Jr

FINISH

FINISH

a) For a scheduling processor b) For a working processor

Figure 5.17. The execution process of a parallel loop

76

statically assigned chunk, it sends a message to the scheduling processor requesting

another chunk of iterations. It then waits for a message from the scheduling proces-

sor. If the message contains a chunk, it performs the computation defined by the

chunk. For systems that have communication co-processors, the request messages

for additional tasks may even be sent before the completion of a chunk. By doing

so, the overhead in waiting for additional work from the scheduling processor can

be greatly reduced.

Note that designating a processor as the scheduling processor is not necessary

during the static scheduling phase since working processors do not make any requests

for iterations during this phase. However, a scheduling processor is necessary during

the dynamic scheduling phase to store the shared information such as the loop

index. To store the shared information on more than one processor incurs additional

overhead in maintaining the consistency of the information. Having the scheduling

processor also perform computation as other working processors in the dynamic

scheduling phase may result in a delay in processing the requests for additional

work from other processors.

5.3 Data Distribution Policies for Self-scheduling

In the last section we presented a method of assigning iterations of parallel loops to

processors of a distributed-memory parallel computer. To allow an efficient imple-

mentation of the method, data has to be distributed to anticipate the assignments

of iteration. In this section we discuss the data distribution policies that are suitable

for different scheduling schemes.

To schedule a parallel loop on a distributed-memory machine, an iteration

must be assigned to a processor that stores the data needed to execute the iteration.

Otherwise, the iteration has to be re-assigned (ideally) to a processor that stores

77

the data, or message passing has to be invoked to bring in the data to the processor

to which the iteration is assigned. Both of these methods are expensive to be

performed frequently and should be avoided.

Different scheduling schemes require data being distributed differently. For

example, if the parallel loop is scheduled statically, the data needed by an iteration

can be prefetched because the processor on which the iteration is assigned is prede-

termined. On the other hand, if the loop is scheduled using PSS, the data needed

by an iteration has to be stored on every processor so that a processor can carry

out the iteration immediately. This is because the iteration can be assigned to any

processor. We classify the data distribution policies into four categories:

1. Total Replication of Full Array (TRFA)

2. Total Replication of Partial Array (TRPA)

3. K-Duplication of Partial Array (KDPA)

4. No Duplication

Replication refers to a piece of data that is stored on all the processors.

Duplication refers to a piece of data that is stored on a fixed k number of processors.

This fixed number k is independent of the total number of processors and 1 < k < P.

Table IX lists the four data distribution categories and some of the scheduling

schemes that use them. Most of the self-scheduling schemes discussed in Chapter 2

require a total replication of data because an iteration can be assigned to any

processor. SSS for distributed-memory (DSSS) statically assigns the first P chunks;

therefore, the data associated with these chunks can be prefetched. Since data

needed by self-scheduled iterations can either be replicated or duplicated, data for

DSSS can be either partially replicated or partially duplicated, depending on the

amount of data needed by the loop.

78

Table IX. The data distribution categories and the corresponding loop scheduling schemes

Data distribution Scheduling schemes

total replication of full array GSS, TSS, FACTORING, PSS, CSS

total replication of partial array DSSS

k-duplication of partial array DSSS

no duplication Static scheduling schemes

For the general approach discussed in the last section, the data used by a

statically scheduled iteration does not need to be duplicated or replicated. Only

the data used in the dynamic scheduling phase needs to be either duplicated or

replicated. If a scheduling scheme uses no static scheduling phase then the total

replication of full array is used. In the absence of the dynamic scheduling phase no

data needs to be duplicated. Whether to use k-duplication of partial array or total

replication of partial array in the self-scheduling phase depends on many factors

that we discuss below.

5.3.1 Total Replication of Full Array

In the total replication of full array, the data used by an iteration is stored on all

the processors. This method should be used when a fixed amount of data is needed

by the entire loop. In addition, this amount is independent of the problem size and

the data is usually not modified. An example of this kind of applications is using

Monte Carlo integration to find the weight and the position of the center of mass

of a complicated shaped object [82].

The total replication of full array method is also used when all the iterations

79

are assigned to processors at run time. For example, if a parallel loop is sched-

uled using GSS, then the data has to be replicated to all the processors because

an iteration can be assigned to any processor. In this case, the largest problem

solvable using total replication of full array is limited to the problem solvable on a

single processor. For example, for a particular machine, if we can store 1 million

integers on one processor, then regardless of the number of processors the machine

has, the problems solvable on this machine cannot use more than 1 million integers.

This data distribution method has minimum scalability. Clearly, this is not accept-

able because many scientific computations often scale with the available processing

power. In addition, maintaining the consistency of the P copies of a piece of datum

distributed on all the processors may also severely degrade the performance.

5.3.2 Total Replication of Partial Array

In total replication of partial array, only a part of the data is stored on all the pro-

cessors and the rest of the data is partitioned into pieces and each piece is stored on

a different processor. For example, DSSS has two phases: a static scheduling phase

and a self-scheduling phase. A piece of data used by a statically scheduled iteration

needs only be stored on the processor to which the iteration is assigned. The data

used by a dynamically scheduled iteration is replicated to all the processors.

Theorem 5.1 Let N be the problem size that can be solved using the total repli-

cation of full array and N' be the problem size that can be solved using total

replication of partial array. Assuming that N' x /3 amount of data is stored

without duplication or replication and evenly distributed, where 0 < /3 < 1,

then we have
NN'=

1 + 1 p*P
Proof: For all the data stored on a processor, N'/P x /3 is stored on this

processor only and N'(1)6) is replicated on this and other processors. Since

80

the amount of memory used by both of these methods are the same, i.e.,

N= N1-13 + N'(1__ (5.13)

By solving N' from Eq.(5.13) we have

N
+1 (5.14)

0

Since #/P -I- 1 /3 < 1, it is always true that N' > N, i.e., we can always

solve larger problem by using total replication of partial array than using the total

replication of full array .

For example, if # = 0.9, then 90% of iterations are scheduled statically

and have their data stored on only one processor. Suppose that the rest of data

is replicated. For a particular machine, if we can store 1 million integers on one

processor, then for a machine with 16 processors, by using Eq.(5.14) with N =

1, 000, 000, ,8 = 0.9, and P = 16, the similar problems solvable can use as many as

6.4 million integers of data. This method can be used when the problem size, i.e.,

the number of iterations in the parallel loop, does not grow linearly in the number

of processors.

5.3.3 K-Duplication of Partial Array

K-duplication of partial array is similar to total replication of partial array except

that the replicated data is now duplicated to a fixed number of processors. In k-

duplication of partial array, no data (needed by only a particular iteration) is stored

on all the processors.

In order to implement a given scheduling scheme, chunk sizes are calculated

according to the scheme. The data used by a chunk of iterations is grouped together

and called a block. The block of data is stored on some fixed k number of processors,

http:Eq.(5.14

81

where 1 < k < P. The reason for k < P is that we assume one of the processors

is the scheduling processor and it does not perform any computation during the

dynamic scheduling phase. Each of these data blocks, although duplicated on more

than one processor, is owned only by a designated processor which is responsible

for updating its values. Every P 1 consecutive chunks of iterations form a batch.

Each of the P 1 chunks in a batch is assigned to a processor that owns the data

needed by that chunk. A block of data is also duplicated on other k 1 processors.

Note that a chunk may not necessarily be assigned to the designated processor

for execution during the dynamic scheduling phase. Rather, any processor that

stores the data needed by the chunk can execute the iterations in the chunk. The

information of this mapping of blocks of data to the P 1 processors is stored in a

table on the scheduling processor.

During the self-scheduling phase, an idle processor sends a request to the

scheduling processor for additional work. The scheduling processor first tries to

assign the requesting processor a chunk whose associated data block is owned by

the requesting processor. If that chunk has already been scheduled to another

processor, the scheduling processor then assigns a chunk within the same batch for

which the data is duplicated on the requesting processor. If all such chunks in

that batch are scheduled, the scheduling processor then attempts to assign a chunk

from the next batch in a similar fashion. For the reason of achieving a balanced

workload, a larger chunk should always be assigned before a small chunk. Since

chunk sizes decrease in the later batches, the scheduling processor always tries to

schedule larger chunks in the current batch before assigning chunks from the next

batch.

82

Assigning chunks of iterations

To assign chunks to processors efficiently, we propose a method below that uses three

arrays. The array chunks [] stores the chunks of iterations assigned to processors

during the dynamic scheduling phase. A chunk is defined by a starting iteration

number and an ending iteration number. Chunk i's starting iteration number is

stored in chunks [i] The ending iteration number is chunks [i + 1] The. 1.

array flags 0 is used to record if a chunk is scheduled or not. flags [i] is set to

false if chunk i has been scheduled and set to true otherwise. The sizes of array

chunks and flags [] are the same but vary for different scheduling schemes. The

array table [] [] is a two-dimensional array that has P 1 rows. Row i contains the

indices of the array elements of chunks 0 that have their data stored on processor

i+ 1. The size of a row is proportional to the size of chunks 0 . table [i] [0] is used

to index the next chunk, in row i, to be assigned to processor i +1. Before a chunk is

actually assigned, the scheduling processor checks the corresponding element in the

array flags [] whether the chunk has been assigned to another processor already,

and if so, table [i] [0] is incremented by one and the chunk indicated by the new

value of table [i] [0] is checked. This process continues until either an unassigned

chunk is found or all the chunks in row i have been scheduled.

For a simple implementation of above scheduling policy, we logically view

the processors connected in a ring. The data owned by a processor is duplicated on

its two neighboring processors. If a chunk whose data is owned by processor i + 1,

then the chunk number is stored in table [i] [j] where j mod k is equal to 1. If a

chunk that has its number stored in table [i] [j] where j mod k is not equal to 1,

it is duplicated on processor i + 1. Given a chunk c, its data is owned by processor

(c mod (P 1)) + 1.

The above method describes a simple method of deciding on which processors

a block of data should be duplicated. The data is not necessarily duplicated on the

83

neighboring processors. Other assignments can be chosen as well. In addition, the

data may also be duplicated on more than k = 3 processors. However, as k increases

there is more flexibility in assigning iterations to processors at run time; but the

storage requirement also increases proportionately.

An Example of K-Duplication

Let us study the scheduling of a parallel loop with 160 iterations on, for the purpose

of illustration, a 5-processor distributed-memory machine, i.e., N = 160 and P = 5.

Assume that the chunks are calculated using SSS with a = 0.8; the processors are

logically connected in a ring; the data associated with the chunks in the dynamic

scheduling phase is stored on three processors, i.e., k = 3. The data associated with

a chunk is duplicated on its owner's two neighboring processors.

Static scheduling phase

In static scheduling phase, there are 5 processors performing computation. A work-

ing processor executes

IN /P x al = 1_160 x 0.81 = 26
5

iterations. Assuming the scheduling processor only executes half of what other

processors execute, then 117 iterations are scheduled statically. The data associated

with these iterations is prefetched and stored in the local memory of each processor.

Dynamic scheduling phase

When the scheduling processor P3 finishes the chunk of iteration assigned to it

during the static scheduling phase, it fills in the array chunks according to the

specific self-scheduling scheme (SSS in this example). Table X shows the elements

of the array chunks 0 . There are 8 chunks in dynamic scheduling phase. Chunk

84

Table X. The values for elements of array chunks 0

values

indices 0 1 2 3 4 5 6 7 8

values 117 126 135 144 153 155 157 159 160

i's starting iterations number and ending iterations number are given by chunk[i]

and chunk[i + 1] - 1, respectively.

Information regarding the data distribution is stored in the array table 0.
Table XI shows the elements of the array table [] []. When an idle processor,

say processor 1, sends a request to P. for more iterations, Ps checks the first row

of table0 0 . If table [0] [0] is 1, the scheduling processor then attempts to

schedule the chunk indexed by table [0] [table [0] [0]] which is table [0] [1] and

has a value of 0 according to Table XI. If chunk 0 has not been scheduled, then

iterations from chunk [0] to chunk [1] 1, i.e. iteration from 117 through 125

are assigned to processor 1; table [0] [0] is incremented; and flags [0] is set to

false. However, if chunk 0 is already scheduled (when flags [0] is false), then

the scheduling processor increments table [0] [0] and checks the chunk indicated

by table [0] [table [0] [0]] . The scheduling processor repeats the process until an

unscheduled chunk is found or all the chunks indicated in the row are checked.

Clearly, k-duplication of partial array greatly increases the size of problems

solvable in terms of the data that can be stored. The actual amount of data can be

stored is given by the theorem below.

Theorem 5.2 Let N be the problem size that can be solved using the total repli-

cation of full array and N' be the problem size that can be solved using

k-duplication of partial array. Assuming that N' x /3 amount of data is not

85

Table XI. The values for elements of array table 0

values

Columns 0 1 2 3 4 5 6

table [0] 1 0 3 1 4 7 5

table [1] 1 1 0 2 5 4 6

table [2] 1 2 1 3 6 5 7

table [3] 1 3 2 0 7 6 4

duplicated, where 0 < 13 < 1. The rest of data is divided into blocks according

to chunks, and the data owned by a processor is duplicated on other k

processors, then we have

x PN, tiPe,
1 + k x (1 13)

Proof: For all the data stored on a processor, N' x /3/P amount of data is

stored on the processor only, N'(1 ,3)/(P 1) amount of data is owned by

and stored on the processor, and N'(1 /3) /(P 1) x (k 1) amount of data

is stored on but not owned by the processor. Since

N'(1 13) N'(1 /3)N = N'/3 + x (k 1) +p (P 1) (P 1)

we have
N' x 13 k x N'(1 13)N = +P (P 1)

If we approximate (P -1) with P, we then have

N'xi3 kxN'(1 13)
N P.,' +P P

1

86

0

By solving N' we have

N x P NxPN' ,-:,.
k 0 x (k 1) 1+ k x (1 /3)

Theorem 5.2 reveals two important properties about k-duplication of partial

array. First, assuming that each iteration needs a fixed amount of data, the problem

size solvable using this data distribution method is linear in the number of proces-

sors. This property is proved as a Corollary below. This is an important property

if we want to solve larger problems by increasing the number of processors.

Corollary 5.1 For a parallel loop, if each iteration needs a fixed amount of data

and the data is distributed using the k-duplication of partial array method,

then the size of problems solvable is linear in the number of processors.

Proof: From theorem 5.2 we have that the size of problems solvable on P

processors N' is approximated to be N x P(k /3 x (k 1)), where N is the

problem size solvable on one processor. Since both k and /3 are constants, so

we have 0(N') = 0(P).

The second property is that the selection of k is the result of considering the

trade-off between the problem size solvable and the possibility of an idle processor

having the data owned by a busy processor. A large k limits the size of problems

solvable because duplicated copies of data need additional memory space, while a

small k decreases the chance of an idle processor having the data owned by a busy

processor.

Note that chunks may not be assigned to processors by the order listed in

chunk [] . Instead, when a processor becomes idle, the biggest chunk whose data is

stored on the idle processor is assigned to the processor. When all the chunks whose

87

data stored on the idle processor have been assigned, the idle processor remains idle

until all the iterations are executed.

5.3.4 No Duplication

No duplication refers to the situation where data used by one iteration is stored

only on one processor. The only cases where this data distribution method should

be selected over others is when the parallel loop is statically scheduled. In this

case, the processor to which an iteration is assigned is known at compile time so

the data needed by the iteration can also be distributed to the processor before

computation. For applications where the execution times between iterations do

not vary much, static scheduling schemes are used in conjunction with this data

distribution method.

As mentioned before, when an iteration is assigned to a processor that does

not have the required data, the iteration can be re-assigned to a processor that has

the data or message passing can be invoked to bring in the data to the processor. If

any of the above two approaches of ensuring a processor having the data needed to

execute an iteration is used, data does not need to be duplicated. However, unless

loop size is small and the grain size is so large that the message passing overhead

can be neglected, the scheduling overhead will be prohibitively high to demonstrate

the benefit of balancing the workload. We believe that these approaches should not

be recommended as general approaches.

Can the Affinity Scheduling scheme [68] use no duplication as its data dis-

tribution policy? The fact is that in Affinity Scheduling the data may not need be

duplicated or replicated initially. However, when a processor executes iterations in

another processor's work queue, the data needed by these iterations has to be sent

to the processor on which the iterations are executed. This requires the data to be

at least partially duplicated. In addition, the overhead incurred by such a scheme

88

is higher than that of the method described earlier in k-duplication of partial array.

This is because, first, the messages are much larger because they contains data;

second, the message preparation takes a longer time because it has to pack and un-

pack data; third, for each of these messages there are two processors spending time

on non-computation tasks at the message sending and receiving end. In addition,

Affinity Scheduling requests an idle processor to obtain more iterations from the

"most loaded" processor. This is an expensive operation on a distributed-memory

machine and requires all the processors to participate.

5.4 Multilevel Scheduling

In a straightforward implementations of self-scheduling schemes on a distributed-

memory machine, task distribution is centralized. Unscheduled iterations are grouped

into chunks and stored in a queue on a designated scheduling processor. An idle

processor sends a request message to the scheduling processor for additional work.

When the number of processors increases, having only one scheduling pro-

cessor results in sequentialized task assignment to idle processors. Also, frequent

request messages sent by the idle processors to the scheduling processor may cause

a bottleneck due to the increased traffic.

To solve the sequentialized task assignment problem, more than one processor

may have to participate in scheduling. If these processors are spread evenly across

the system, then they may also alleviate the problem of bottleneck. This can only

be achieved at an increased cost in managing the scheduling. We discuss a method

that decentralizes the control by dividing recursively the processors into two or more

groups of equal size until each group has only e processors. We call the resulting

groups of e processors leaf groups. For each leaf group, there is one scheduling

processor and e 1 working processors. The scheduling processor is responsible for

89

0 0
0 0 0 ea)

0000 000© 0O@® oisioik
Figure 5.18. Grouping processors for decentralized control

two tasks: one, to assign tasks to the working processors in the same leaf group

to keep them busy, and two, to communicate with the scheduling processors of

neighboring groups to balance the global workload.

For example, if the target machine is a hypercube of dimension d, it is then

divided into 2d/e subcubes of size e (assume e is also power of two). The optimal

value for e depends on both the hardware and the problem itself.

If we assume that the underlying architecture is a hypercube, then the di-

vision of processors into two groups of equal size can be performed by dividing

the processors along a dimension. For example, for two leaf groups, the processors

having most significant bit 0 of their binary address form the first group, and the

rest form the second group. In general, if e = 21 then all the processors with the

rightmost 1 digits being 0 are scheduling processors. A scheduling processor's par-

ent processor can be obtained by flipping the right most bit with a value of 1 to

0. Figure 5.18 gives an example of such a grouping for a 4 dimensional hypercube

where e = 4. A scheduling processor's sibling scheduling processor at level 1 can be

obtained by flipping the l's most significant bit. Figure 5.18 shows that there are

four scheduling processors.

By employing a larger number of processors as scheduling processors, less pro-

90

cessors are available for computation. This weakness of using multilevel scheduling

can be partially relieved by assigning some iterations to the scheduling processors

during the static scheduling phase when working processors do not request for work.

Scheduling Protocol

Several different types of communication messages are sent, both by the working

processors and the scheduling processors during the dynamic scheduling phase, to

ensure that working processors do not idle.

When a working processor, say WP0, finishes its task and becomes idle, it

sends a request message to its parent scheduling processor SPo for more iterations.

For example, in figure 5.18, processor 5 sends a request to processor 4 when processor

5 becomes idle. If SPo has unscheduled iterations, it sends a chunk of iterations

to the working processor WP0. If SPo does not have any unscheduled iteration, it

tries to find work by communicating with other scheduling processors in the system.

In which case SPo sends a request message to its sibling scheduling processor SPi

for additional work. For example, when processor 8 runs out of tasks, it sends a

message to processor 12 for additional work.

If SPi receives a request from SPo for additional work, it shares its unsched-

uled iterations, if any, with SPo. However, if SP1 itself does not have any work,

it sends a message to SPo reporting unavailability of work if the SP1's id number

is larger than that of SPo. Upon receiving this message, SPo then attempts to

find work from the sibling processor at a level above the current level. If SP1's id

number is smaller than that of SPo, then SPi finds additional work from the sibling

processor at a level above the current level. The same protocol is used at the upper

levels of this multi-level scheduling scheme.

If no work is found on the way up the tree until the root is reached, the root

processor then sends a message to its children processors indicating that there is no

91

more work to be found in the loop. When a scheduling processor receives such a

message it informs all its children working processors that there is no more work in

the system.

5.5 Experimental Results

The fact that self-scheduling can be used on a distributed-memory machine to

improve performance has been demonstrated in the previous chapter. In this section

we use again the image processing algorithm that produces a false-color image to

illustrate the feasibility of the data distribution methods proposed.

The problem used in this section is similar to the one used in previous chap-

ter. The difference is that data distribution methods proposed in this chapter are

used to distribute data used by dynamically scheduled iterations. We implemented

the static scheduling and SSS schemes. For SSS we tested using total replication

of partial array as well as k-duplication of partial array to distribute the data. For

the static scheduling scheme, no data is duplicated or replicated. The image tested

has 512 x 512 pixels.

Table XII shows the performances of different schemes. For SSS, a value of

0.55 was used for a and the data in self-scheduling phase is replicated in SSS(TRPA)

and duplicated in SSS(KDPA), i.e., total replication of partial array policy and k-

duplication of partial array policy are used to distribute the data in SSS(TRPA)

and SSS(KDPA), respectively. The block size is calculated using SSS. A speedup

of 54 is achieved using total replication of partial array on an NCUBE/7 with 64

processors. The improvement in speedup in SSS(TRPA) and SSS(KDPA) come

from better utilization of processors. The overhead of k-duplication of partial ar-

ray of data is higher than that of using total replication of partial array of data.

This is expected because, comparing with total replication of partial array, a larger

92

Table XII. Generation of a False-Color Image

Execution time (sec) & speedup in ()
Sequential execution time 81.707(sec)

Schemes 4 8 16 32 64

SSS(TRPA) 24.0 11.1 5.5 2.8 1.5

(3.4) (7.4) (14.9) (29.5) (54.1)

SSS(KDPA) 24.1 11.3 6.0 2.95 1.7

(3.39) (7.2) (13.6) (27.7) (45.4)

Static 23.9 13.7 8.5 5.0 2.609
(3.4) (6.0) (9.6) (16.2) (31.3)

scheduling overhead is involved in assigning a chunk to an idle processor when data

is partial duplicated. The experiments were conducted on an NCUBE/7 with 64

processors. We assume that the times of loading and distributing the data depends

on hardware and are not considered.

5.6 Conclusions

Self-scheduling schemes are used, essentially on shared-memory machines, to sched-

ule parallel loops with variable length iteration execution times not known at com-

pile time. With an increase in the number of processors in a parallel computer,

memory tends to be distributed. In this chapter we have studied the problem

of implementing the concept of self-scheduling non-uniform parallel loops on a

distributed-memory environment.

The general approach introduced in this chapter is an extension of DSSS. In

93

addition to the advantages of using two phases in DSSS, the methods discussed pro-

vide a systematic way to implement a given self-scheduling scheme on a distributed-

memory machine. We have classified the data distribution methods into four cate-

gories based on the amount of data being replicated or duplicated. We also present

k-duplication of partial array, a method that permits problem size to grow linearly

in the number of processors. Using the method discussed in this chapter, a user can

expect to solve larger problems efficiently by employing more processors.

We also show that the k-duplication of partial array method of distribut-

ing data allows the system to self-schedule parallel loops with much greater data

size without significant loss in efficiency. To ease the bottleneck of a single proces-

sor as the scheduling processor, we have proposed and implemented a multi-level

scheduling scheme for parallel loops.

94

Chapter 6

INTEGRATING SSS INTO CHARM

6.1 Introduction

In this chapter we present techniques for automatic generation of code for user

selected self-scheduling scheme and the code of a data distribution policy that is

suitable for the selected scheduling scheme. The techniques are implemented in a

machine independent parallel programming environment, namely CHARM [19]. We

have developed high-level abstractions for distributing data and abstractions for a

variety of self-scheduling schemes on shared as well as distributed-memory machines.

These abstractions provide flexibility and machine independence for programs that

are easily portable across a variety of parallel computers.

Many parallel languages or environment support some form of parallel loops

but few support self-scheduling of parallel loops [39, 88]. Self-scheduling schemes

are often used to improve the processor utilization. However, implementing self-

scheduling requires extensive coding that is often left to the programmer. Different

self-scheduling schemes on a distributed-memory parallel computer may require that

data being distributed to processors differently. This makes implementing a self-

scheduling scheme even more difficult. In the case when different schemes are used

for different loops in the same program, data may need to be redistributed at run

95

time to support different schemes efficiently. In addition, the code for scheduling

schemes is often embedded and interspersed with the code for the underlying algo-

rithm. This makes the program more complicated, more difficult to port from one

machine to another, and harder to debug.

There are two approaches to deal with the distribution of data to processors.

First, a compiler may analyze the program and generate a distribution at compile

time for the program [23, 31, 56, 85]. The second approach is that the programmer

may provide some abstractions to indicate to the compiler on how the user want the

data to be distributed [39, 86, 88]. We have taken the second approach where the

programmer provides both a high level data distribution abstractions and parallel

loop scheduling abstractions. The compiler then uses these pieces of information to

insert code to realize the user's specifications. We provide abstractions to specify

how to distribute a data array initially and how to schedule the iterations of a par-

allel loop. If the data distribution does not result an efficient realization of the user

specified scheduling method on a parallel loop, functions are called automatically

at run time to redistribute the data. The abstractions are developed in CHARM, a

parallel programming language.

Analysis is presented to assist the user in determining which scheme to use in

scheduling a parallel loop. Experiment results show that the newly added features

greatly increase the usability of CHARM without sacrificing efficiency. Although the

studies are conducted using CHARM, the same techniques apply to other parallel

programming languages as well.

The rest of the chapter is organized as following. We give an overview of

CHARM in Section 6.2 and present the approach of supporting different scheduling

schemes and data distribution policies in CHARM in Section 6.3. Experimental

results obtained on two applications, namely false-color image and subgraph iso-

morphism are discussed in Section 6.4. We conclude this chapter in Section 6.5.

96

6.2 Overview of CHARM

CHARM is a message-driven machine independent parallel programming system

[19]. It allows parallel programs to run efficiently on different MIMD systems with-

out any modification to the code. The system can be a shared-memory machine,

distributed-memory machine, or a network of workstations. It supports an explic-

itly message-passing parallel language and helps control the complexity of parallel

programs by imposing a separation of concerns between the user program and the

system. The programmer is responsible for the static or dynamic creation of tasks or

processes and exchanging messages between them. The processes can be allocated

to processors statically or CHARM can also assume the responsibility of scheduling

the processes dynamically.

Conceptually, CHARM maintains a pool of work consisting of processes and

messages for existing processes. The system assigns processes in the pool non-

deterministically at run time to processors for execution. The programmer may

also specifically assign processes to processors. A message is sent to a process called

a chare. A chare has several entry points and a message must be sent to one of the

entry points. Processing a message involves jumping to the entry point specified

in the message and executing the code sequentially. Once a message is processed,

it always voluntarily relinquishes the processor, returning control to CHARM. The

execution of a message may result in new processes or new messages. These new

pieces of work are then put into the work pool for execution.

Although CHARM language provides machine-independent high level ab-

stractions for information sharing it does not provide data partitioning and distri-

bution abstractions or abstractions for scheduling loops. The rest of the chapter

describe the abstractions we have developed for CHARM to support the execution

of parallel loops and automation of data distribution.

97

6.3	 Abstractions for Data Distribution and Loop Schedul-

ing

We provide two sets of abstractions. One set specifies initial data distribution

policies when a global array is declared. The other set specifies methods of assigning

iterations to processors. We assume that the scheduling methods all have two

phases: a static scheduling phase and a dynamic scheduling phase. As discussed

in the earlier chapters, in the static scheduling phase, each processor is assigned

an equal amount of work. In dynamic scheduling phase, chunks are determined

according to SSS for the sake of discussion.

6.3.1	 Initial Data Distribution Abstractions

The initial data distribution abstractions specifies, for a global array, the data type,

dimension, the size on each dimension, the distributed dimension, and the initial

data distribution policy. The syntax is as follows:

distribute data_type name [size] * [size : d_method] [size] *

Or

distribute data_type name [size]+

The keyword distribute indicates that the array is a global array and must

be distributed according to the programmer's specification by the d_method field.

data_type defines the data type of an array element and it can be of any type

legal in CHARM. name is an identifier and size specifies the number of elements

in that dimension. Finally, d_method indicates the initial data distribution policy.

The d_method can be any one of the following policies: BLOCK, CYCLIC, TRPA(a) ,

KDPA(a) or REPLICATE. In both BLOCK and CYCLIC, no data is duplicated. TRPA

is for total replication of partial array and KDPA is for k-duplication of partial

array. The a in TRPA(a) and KDPA(a) is a number between 0 and 1 and indicates

98

the fraction of the total amount of data distributed with no duplication or replica-

tion. We assume that these two data distribution policies are used only if the user

plans to schedule the parallel loops in the program using self-scheduling and SSS is

used to calculate the chunks. The concept remains the same if other self-scheduling

schemes are used to calculate the chunks. The default data distribution policy is

REPLICATE where all data elements are replicated on all the processors.

Example 1

The declaration

distribute int a[1024:BLOCK];

declares an array of 1024 elements with the elements from i x 11024/P1 to (i + 1) x

11024/P1 1 resident on processor i where P is the total number of processors.

Example 2

The declaration

distribute int a[1024] [1024:BLOCK];

declares a two dimensional array of 1024 x 1024 elements with the elements on

column from i x 11024/P1 to (i + 1) x 11024/P1 1 resident on processor i. That

is, each processor has an array of integers a [1024] [11024/PD resident on it.

Example 3

The declaration

distribute int a[1024:TRPA(0.75)];

declares a one dimensional array of 1024 elements. Elements from i x 11024/P x 0.751

to (i 1) x 11024/P x 0.751 1 resident on processor i only. Elements from

http:a[1024:TRPA(0.75

99

Table XIII. Supported loop scheduling schemes and the corresponding data distribution policies

SCHEDULING_SCHEME Meaning Data Distribution

GSS, Factoring, PSS, CSS Using GSS Replicate

SSS(a) Using SSS TRPA

DSSS(a) Using DSSS KDPA

BLOCK Using static chunk No duplication

P x 11024/P x 0.751 to 1023 are replicated on all the processors.

6.3.2 Parallel Loop Scheduling Abstractions

A parallel loop scheduling abstractions specifies, for a forall loop, the starting

iteration number, ending iterations number, and the loop scheduling scheme. It has

the following format:

forall(var = starting; var < ending; var++; SCHEME) {

Loop body

The keyword forall indicates that the loop is a parallel loop and needs to

be executed on all the processors. SCHEME, when replaced by a key word listed in the

left most column of Table XIII, specifies a scheduling scheme, according to which

the iterations of the loop is assigned to processors.

Table XIII also lists the required data distribution method for each of the

scheduling schemes. The current implementation of the self-scheduling schemes uses

one processor as the scheduling processor on which the main chare executes.

100

distribute int a[128:TRPA(0.8)];

chare main{

entry Charelnit: {

bound("num.datn, a);
}

} /* end of main */

Figure 6.19. User's CHARM code for initial data distribution

6.4 Implementation of Abstractions in CHARM

6.4.1 Implementation of Data Distribution Abstractions

The data is initially distributed to processors in the main chare's Dat aInit entry

point by calling the function Bound (array_name , f ile_name) , where filename

is the name of the file that contains the data for array_name. The data is then

distributed to the processors according to the data distribution method defined in

the declaration of array_name.

Figure 6.19 shows a segment of the CHARM code using abstractions for

initial data distribution. This segment of code is then translated into the code

given in Figure 6.20 which creates a distributed array in a Branch Office Chare,

called _CK_LPJ3OC in Figure 6.20. A Branch Office Chare is similar to an ordinary

chare except it is created on every processor in the initialization stage of a CHARM

program's execution. Inside _CK_LP_BOC, we declare a pointer variable that points

to the first element of the distributed array.

Once this _CK_LP_BOC chare is created, CHARM executes the function

101

chare main{

entry Datalnit: {
Create BOC for data distribution;

}

entry Charelnit: {
Create climes that read in the data from file;

}

} /* end of main chare */

BranchOffice _CK_LP_BOC {

int *_ck_usr_data

entry RECEIVING DATA: {
allocate memory for _ck_usr_data and/or initialize it using the passed in message

}

public GetlntDataPtr(ptr) {
assign ptr with the memory address of data;

}

}

Figure 6.20. The resulting CHARM code for Figure 6.19.

102

chare working {

forall (i = 0; i < 128; i++; SSS(0.8))
A(a[i]);

}

Figure 6.21. User's CHARM code for loop scheduling

bound in the main chare's Charelnit entry point. In the function a file is randomly

accessed to read out values for only one processor at a time and the values are

packed into a message and sent to the processor's _CK_LP_BOC chare's RECEIV-

ING_DATA entry point. The pointer variable then points to the first data element.

If the data is not read from a file, then memory is allocated for the distributed

array and is pointed by the pointer variable. In Figure 6.20, the pointer variable is

_ck_usr.slata. To access the distributed array, a process calls the public function

GetlntDataPtr() to obtain the address of the array.

6.4.2 Implementation of Scheduling Abstractions

Finger 6.21 shows a forall loop. After translation, the loop body becomes a chare

with two entry points. The chare _CK_LP_CHARE in Figure 6.22 is the place where

the loop is actually executed.

The forall loop is replaced by a message that is sent to the main chare's

Schedulerinit entry point, which results in a chare named _CK_LP_SCHEDULER

being created on the scheduling processor. The _CK_LP_SCHEDULER chare has

different entry points for different scheduling schemes supported. Figure 6.22 shows

that chare _CK_LP_SCHEDULER has two entry points: SSS and SSS_REQUEST.

The first message to the chare is sent to the SSS entry point where the static

103

chare main{
entry _CK_SchedulerInit:

CreateChare(_CK_Scheduler, _CK_Scheduler@SSS)

} } /* end of main chare */
chare working {

SendMsg(main@SchedulerInit)

} /* end of "user working chare */

chare _CK_Scheduler

entry SSS:

for (i = 1; i < num_proc; i++)
CreateChare(_CK_LP_CHARE, _CK_LP_CHARE@EXECUTE)

}
entry SSS_REQUEST:

SendMsg(_CK_LP_CHARE@EXECUTE1)

}

} /* end of chare Scheduler */
chare _CK_LP_CHARE

int *_ck_dist_a;

entry EXECUTE: {
BranchCall(_CK_LP_BOC@IntDataPtr(Sz_ck_dist_a));

for (i = msg->lo; i < msg->hi; i++) A(_ck_dist_a[i - msg- >lo]);
SendMsg(_CK_Scheduler@SSS_REQUEST);

}
entry EXECUTE1 {

for (i = msg->lo; i < msg->hi; i++) A(_ck_dist_a[i - msg- >starting]);

SendMsg(_CK_Scheduler@SSS_REQUEST);

}
} /* end of the _CK_LP_CHARE chare */

Figure 6.22. The resulting CHARM code for Figure 6.21.

104

Table XIV. Loop scheduling schemes and the corresponding data distribution policies supported

Initial policies Redistributed to

BLOCK TRPA, KDPA, CYCLIC

CYCLIC TRPA, KDPA, BLOCK

TRPA BLOCK

KDPA BLOCK

scheduling phase of SSS is enforced. This results in the chare _CK_LP_CHARE

being created on every processor. In _CK_LP_CHARE, a processor first obtains the

memory address of the distributed array on that processor by calling the public

function GetlnitDataPtr() of chare _CK_LP_BOC. The processor then executes

the parallel loop on the iterations assigned to it. After finishing the iterations of

the first chunk, a processor sends a message to chare _CK_Scheduler's entry point

SSS..REQUEST requesting for more iterations. If there are unscheduled iterations,

a message is sent by chare _CK .Scheduler to the requesting processor's EXECUTE1

entry point, which is an entry point of chare _CK_LP_CHARE

6.4.3 Data Redistribution

Before a parallel loop is scheduled, data used by the loop needs to be dis-

tributed according to the scheduling scheme. If the data has been distributed for

another loop in the program, the data may deed to be redistributed to ensure an

efficient execution of the current loop. We currently support data redistribution

for schemes listed in Table XIV. The reason that REPLICATE is excluded from

the data redistribution is that, first, replicating the data may not be feasible due

105

for every processor do

1. calculates the amount of memory need by the new data distribution policy;

2. allocates memory;

3. divides the elements stored on itself into three groups

3.a. elements staying on itself

3.b. elements needed to be sent to other processors

3.c. elements needed to be broadcasted to all the processors

4. sends out elements in 3.b. to the corresponding processors

5. broadcasts elements in 3.c.

6. reads the message queue and copy the elements into correct

locations allocated in stem 2.

Figure 6.23. Algorithm for re-distribution

to the limitation provided by the amount of memory; second, if replication is used

then programs usually use small and fixed amount of data. Redistribution between

TRPA and KDPA is not supported for similar reasons. Changing the data distri-

bution from BLOCK or CYCLIC to TRPA or KDPA may not always be feasible

due to the limitation imposed by the amount of memory needed by the resulting

data distribution policies.

The data redistribution is achieved by having each processor executing a

segment of code specified in Figure 6.23

6.5 When to Use What

A user often has to make decisions about how to distribute the data. This is affected

by two factors. One is the amount of data that needs to be processed, and the other

106

is the scheduling scheme used. For algorithms that process large amount of data,

the data has to be distributed using either no duplication or k-duplication of partial

array. If a program has more than one parallel loop, the user may choose to use

different schemes for different loops. Following are three theorems that can be used

in assisting a user select a scheduling scheme(s).

Let L1 be an uniform parallel loop and L2 be a non-uniform parallel loop.

Let tl and t2 be the total sequential execution time of L1 and L2, respectively. Let

tsT and tsss be the execution time when both L1 and L2 are scheduled using a

static scheduling scheme and SSS, respectively. Let tREs be the execution time

when one of the loops, say L1, is scheduled using static scheduling and the other is

scheduled using SSS. That is,

tl t2
1ST (6.15)

+t2tsss (6.16)P+1
11 t2

1RES + is tred (6.17)P P 1
where timb is the delay in static scheduling caused by unbalanced workload; t, is the

scheduling cost for a balanced workload; and, tred is the overhead for redistributing

the data.

Theorem 6.1: tsT > tsss when timb > (ti t2)/(P x (P 1)) + ts

Proof: From Eq.(6.15) and Eq.(6.16) we have

tl F t2 t2
1ST > tSSS 1- 6bmP 1

_1 1p)
timb > t2 X

t2 ,

limb > P x (P 1) 1- 6

Theorem 6.2: tsT > tRES when timb > t2 /(P x (P 1)) + ts tred

http:Eq.(6.16
http:Eq.(6.15

107

Proof: From Eq.(6.15) and Eq.(6.17) we have

ti + t2 tl t2tsT > tRES + is + tredP "lb ' P P 1
2 t2 2 4,> + +timb ...r t 3 1. tred

t2 0===> timb > P x (P 1) + is + tred

Theorem 6.3: tsss > tRES when t1 > tred x P x (P 1)

Proof: From Eq.(6.16) and Eq.(6.17) we have

t2 t2
tSSS > tRES is to tredP+1 P P 1

ti ti > bredP 1 P
tl > tred x P x (P 1)

According to Theorem 6.1, self-scheduling should be used when the number

of processors is large. Since t1 t2 is fixed for a given loop, increasing the num-

ber of processors decreases the overhead of using self-scheduling schemes almost

quadratically assuming that ti, remains the same. In theorem 2, since the uniform

parallel loop L1 is scheduled statically, it needs not be considered in selecting a par-

ticular scheduling scheme. Therefore, the non-uniform parallel loop L2 determines

which scheme to select. Theorem 3 suggests that when t1 is large, one may consider

scheduling L1 statically.

The above theorems can be used to help the user determining how a given

loop should be scheduled. We understand it may be difficult to calculate the values

of some parameters such as timb and t.s. However, since the method presented in

this chapter allows a user to schedule a given loop using different schemes by simply

changing one parameter, the user can make a good use of the theorems to eliminate

some of wrong choices. Again, since a program runs many times in its life span,

after several execution of the program, the user may have a better estimation of the

parameters.

http:Eq.(6.17
http:Eq.(6.16
http:Eq.(6.17
http:Eq.(6.15

108

6.6 Performance

The techniques discussed in the previous sections are implemented in CHARM

and tested using a 16 node Intel hypercube iPSC/2 and a 20 processor Sequent

Symmetry. We present below the results of two experiments: false-color image and

subgraph isomorphism.

6.6.1 False-Color Image

The false-color image tested here is similar to the one discussed in the pre-

vious chapters. We show the results of scheduling the loop using static schedul-

ing scheme, SSS(TRPA), and SSS(KDPA). In both SSS(TRPA) and SSS(KDPA),

the chunk sizes are calculated using SSS with a being 0.8. The image tested has

512 x 512 pixels. Note that since one processor is used for scheduling, the potential

speedup cannot exceed P 1.

Table XV shows the performance of different schemes running on a Sequent

Symmetry. The improvements in speedup by both SSS(TRPA) and SSS(KDPA)

come mainly from better processor utilization. The sequential execution time is

obtained by running a C program that executes the same algorithm as the CHARM

code.

Table XVI shows the results of executing the same code on an Intel hyper-

cube iPSC/2. Clearly, self-scheduling schemes achieve better performance when the

number of processors is reasonably large. Both SSS and DSSS perform roughly the

same.

Table XVII shows the performance of the same problem except that the

problem size is increased to 1024 x 1024. The sequential time is estimated because

the problem size is too large to run on a single processor. Again, self-scheduling

schemes enjoy better performance when the number of processors is large.

109

Table XV. Generation of a False-Color Image on the Sequent Symmetry on 512 x 512 pixels

Execution time in seconds & speedup in ()
Sequential execution time 24.780 sec

Schemes

SSS(TRPA)

SSS(KDPA)

Static

4

8.32 (2.98)

8.28 (2.99)

7.63 (3.33)

8

3.69 (6.72)

3.62 (6.85)

4.75 (5.20)

16

1.73 (14.32)

1.80 (13.77)

3.00 (8.26)

Table XVI. Generation of a False-Color Image on the iPSC/2 on 512 x 512 pixels

Execution time in seconds & speedup in 0
Sequential execution time 16.895 sec

Schemes

SSS(TRPA)

SSS(KDPA)

Static

GSS

4

5.703 (2.96)

5.671 (2.98)

4.907 (3.44)

5.678 (2.75)

8

2.547 (6.63)

2.744 (6.16)

2.948 (5.73)

2.915 (5.80)

16

1.396 (12.1)

1.563 (10.8)

1.865 (9.06)

1.833 (9.22)

110

Table XVII. Generation of a False-Color Image on the iPSC/2 on 1024 x 1024 pixels

Execution time (sec) & speedup in 0
Estimated sequential execution time 65.602(sec)

Schemes 4 8 16

SSS 21.656 (3.03) 9.40 (6.98) 4.609 (14.23)

DSSS 21.618 (3.03) 9.33 (7.03) 4.454 (14.73)

Static 16.878 (3.89) 8.91 (7.36) 4.943 (13.27)

6.6.2 Subgraph Isomorphism

Two graphs G. = (V., Ea) and Gb = (Vb, Eb) are isomorphic to each other if there

is a one to one mapping 4i between V. and Vb so that Nix,y if (x, y) E E. then

(0(x), 0(y)) E Eb. The subgraph isomorphism problem is to find that if the number

of nodes in G. and Gb are not the same, it may be that the smaller of the two

graphs is isomorphic to a subgraph of the larger one. The problem we are solving

is to find all the isomorphisms for the two given graphs.

There are many possible algorithms for subgraph isomorphism. We report

here the performance of a brute-force approach. The algorithm used is summarized

in Figure 6.24. The number of leaf nodes in our test is 262144. Clearly, developing

an efficient algorithm for this problem is out of the scope of this chapter.

The execution time of first step, which makes up more than 75% of the total

computation time, is roughly the same for all the iterations. The time needed for the

second step differs from iteration to iteration because the checking is terminated on

the first finding of a non-matched edge. This makes the problem a good candidate

for data redistribution.

111

for every leaf node in the search tree do

1. find the corresponding mapping based on the location of the node

2. check if the mapping is isomorphic

Figure 6.24. Algorithm for isomorphism

Table XVIII. Subgraph isomorphism on the Sequent Symmetry

Execution time in seconds & speedup in 0
Sequential execution time 20.480 sec

Schemes 4 8 16

SSS 7.05 (2.90) 2.95 (6.94) 1.50 (13.65)

Static 5.59 (3.66) 2.90 (7.06) 1.68 (12.19)

We first measured the performance on both a Sequent Symmetry and an

Intel hypercube iPSC/2 without data redistribution. The results for the Sequent

Symmetry are shown in Table XVIII and for iPSC/2 are shown in Table XIX. The

results given in the table show that the efficiency of SSS increases while the efficiency

of static scheduling decrease. When the number of processor is 16, SSS surpasses

static scheduling.

Table XX shows the performance when data is redistributed. The parallel

loop is split into two parallel loops. First, static scheduling is used to carry out the

first loop. The data is then redistributed to processors. Finally, SSS is employed

to schedule the second loop. The results shows that this application does not have

enough computation to offset the overhead of data redistribution. However, the

112

Table XIX. Subgraph isomorphism on the iPSC/2

Execution time seconds & speedup in ()
Sequential execution time 22.932 sec

Schemes 4 8 16

SSS 7.683 (2.98) 3.324 (6.90) 1.59 (14.42)

Static 6.158 (3.72) 3.098 (7.40) 1.68 (13.67)

Table XX. Subgraph isomorphism on the iPSC/2 with data redistribution

Execution time & difference with that of SSS in Table XIX in ()
Sequential execution time 22.932 sec

Schemes 4 8 16

Static + SSS 11.805 (4.122) 7.476 (3.156) 5.601 (3.01)

results show that as the number of processors increases, the cost of redistribution

decreases. This is because the larger the number of processors, the smaller the

amount of data a processor receives. We also noticed that due to the characteristic

of CHARM, each data element is copied twice; once from a sending processor's

memory to the message and then from the message to receiving processor's memory.

This cost can be eliminated by implementing data redistribution at a lower level.

The same code, when running on a Sequent Symmetry, takes much longer to finish

mainly due to bus contention.

113

6.7 Conclusions

In this chapter we have presented techniques supporting automating self-

scheduling of parallel loops in a parallel programming language. Although the

studies are conducted using CHARM, the same techniques apply to other parallel

programming languages as well.

We have developed abstractions for self-scheduling parallel loops and data

distribution. These new abstractions have been added to the CHARM language. A

CHARM program with these new abstractions is translated to an ordinary CHARM

program. Data distribution methods that allow efficient execution of scheduling

schemes for parallel loops, both static and dynamic scheduling schemes, are sup-

ported. Even when the data distribution does not match with the desired schedul-

ing scheme, the system can detect this difference and automatically redistribute

the data. Analysis is presented to help user selects a suitable scheduling scheme.

The experimental results indicate that the newly added features greatly increase

the usability of CHARM without sacrificing efficiency.

114

Chapter 7

SELF SCHEDULING UNDER FAULTY
PROCESSORS

7.1 Introduction

Most of the self-scheduling schemes assume that the number of processors does not

change during the execution of a parallel loop. This chapter introduces methods

which tolerate the loss of processors during loop execution. We consider two cases.

The first is a hardware failure; the second is when the operating system reassigns

processors from one job to another. We refer to the first situation as a hard fault

and the second as a soft fault. An example of a soft fault can be found in the Intel

Paragon XP/S system: nodes can be partitioned so there are less computational

nodes during day time than during night time. In the case of a soft fault, we

assume the processor is reassigned by the operating system only after it finishes the

currently assigned task.

The main consideration of soft fault is performance since the correctness is

not affected. The soft fault is dealt with by taking advantage of the two phase

(static and self-scheduling) approach of SSS. We propose using a scheme which is

less sensitive to processor faults than SSS during its self-scheduling phase. The

second case is handled by adding a third phase to SSS. This phase performs self-

115

scheduling on the iterations of unfinished chunks due to processor failure. Both

methods are implemented, and benchmarks are given.

Chou and Abraham [9] discuss load redistribution in distributed systems

given failures. They assume that each processor in the system, when it fails, has

the capability of buffering jobs for later execution and that only one processor is

down at any time. These are not the assumptions in this chapter.

DAWGS (a Distributed Automated Workload balancinG System) [10] is a

fault-tolerant, load-balancing system. It guarantees that the job will be run at some

point in the future. However, it does not guarantee a minimum response time.

The rest of the chapter is organized as follows. Section 7.2 discusses soft

faults, and Section 7.3 discusses hard faults. Section 7.4 concludes the chapter.

7.2 Soft Fault

A soft fault denotes the case of a processor that has been working on a parallel

loop being reassigned by the operating system to run some other tasks not part

of the parallel loop. We assume the processor finishes all its assigned iterations

beforehand. In addition, it is difficult to detect when a soft fault occurs without

continually polling each processor. Therefore, in our discussions below, we will

assume the value of P, the number of available processors, remains constant when

we determine the chunk sizes even though the actual number of available processors

may be less.

Soft faults have minimum effect on workload balance for GSS. This is because

GSS calculates the ith chunk as Ni/P, where Ni is the number of unscheduled

iterations, and both hard and soft faults reduce P. Keeping the value of P constant

results in slightly smaller chunk sizes than if P were updated whenever a processor

is lost. This leads to a more balanced workload.

116

Doall i = 1 to SIZE do
if (A(i))

then for (j =0; j < DIVERSITY*N1; j++) ctl += 1;
else for (j =0; j < N1; j++) ct2 += 1;

Figure 7.25. A parallel loop containing branches

For Factoring, a processor reassigned at the ith batch, i > 1, results in at

least one other processor executing more than one chunk in the (i + 1)th batch.

That is, one processor has to execute another N/(2i+2P) iterations when it should

have executed only N/(2i+3P) iterations. Since the processor executing the extra

churik is the one which finished its chunk before the other processors, executing

the extra chunk does not affect performance as badly as it might first appear. For

Factoring, the chunk size decreases as the batch number increases; therefore, a soft

fault during an early stage of loop execution hurts workload balance more than it

does at a later stage.

Figure 7.26 shows an experiment conducted on the parallel loop given in

figure 7.25. A similar figure example has been used in Chapter 3. The difference is

that, in this experiment the number of soft faults was one.

Given a set M of P processors, po,p2, ,pp_i, and a set P1 (pf C M) of f

faulty processors, the processor usage is defined as

E (T(po) +Pdpi x (1131 IPA),,OPiPs EP/

where T(pi) is the time pi spent on the parallel loop. That is, processor usage is the

sum of the execution times of the faulty processors and the product of the number

of non-faulty processors and the execution time of the critical processor. In this

definition we assume that the reassigned processors are used by some other task

117

S
e

1.7 SSS

t SSS_GSS
1.5 * SSS_Factoring

o GSSn
1.3 * Factoring

t

V 1.1
t

y

0.9

0.7
10 12 14 16 18

Number of Processors

Figure 7.26. Sensitivity of processor usage of SSS, GSS, and Factoring with 1 soft fault

immediately and that the remaining non-faulty processors finishing early are idle

while the last processor finishes the loop.

Sensitivity, as shown in figure 7.26, is defined as PUf/PUf where PUnf is

the processor usage with no faults and PUf is the processor usage with faults. It

can be seen from the figure that both SSS and GSS are sensitive to soft faults.

This can be explained for SSS by the following. The chunk size of the ith

batch (i > 0) is (N x (1 - a)i x a)P. Therefore, the ratio of the number of iter-

ations between two chunks in consecutive batches is 1/(1 a). When a processor

drops out after finishing its chunk in the ith batch, there must be at least one pro-

cessor which fetches a chunk in the (i + 1)th batch that is 1/(1 a) times larger

than it was supposed to fetch. For example, when a = 0.8, 1/(1 a) = 5.

As figure 7.26 shows, when the number of processors increases, the sensitivity

of GSS increases. The main reason of this is that (1) as P increases, PUnf increases

118

1.0

SSS

S t> SSS_GSS0.9n

* SSS_Factoring t

o GSSt 0.8
Y

* Factoring

0.7 I I I

2 3 4 5

Number of Processors

Figure 7.27. Sensitivity of SSS, GSS, and Factoring to soft fault on 10 processors with up to 5

faulty processors

and (2) as P increases, PUf increases too, but at a slower rate than PUnf.

The primary cause of (1) is workload imbalance. When P increases, the first

several processors' workloads do not decrease proportionally. The explanation of (2)

is that a soft fault actually reduces the ratio of chunk size to number of processors,

resulting in a better balanced workload. This ratio is reduced because the value of

P is larger than the actual number of processors available.

In addition to testing sensitivity for one soft fault, the loop given in figure 7.25

was tested with up to 5 soft faults. Figure 7.27 gives the results of the experiment

with 10 processors. As can be seen, SSS continues to demonstrate sensitivity to

soft faults while the other schemes do not. The results obtained by using 12, 14,

16, and 18 processors and 1 to 5 soft faults are very similar to figure 7.27 and have

not been included because of space considerations.

119

To reduce the sensitivity of SSS to soft faults, modifications were made to

takes advantage of its two phases. Rather than using the same approach as SSS

during the dynamic scheduling phase, we suggest using GSS or Factoring. The

SSS using GSS in its dynamic scheduling phase is called SSS_GSS and is described

in figure 7.28. In our implementation, we calculate a chunk's boundary before

execution to reduce the time spent in the critical section. Chunk boundaries are

stored in an array called chunk_array. To fetch a chunk, a processor only needs

to f etch&add the array's index. Factoring can be used as the dynamic scheduling

phase of SSS simply by setting a to a number less than or equal to 0.5. This scheme

is called SSS_Factoring.

The sensitivity to a soft fault of SSS_GSS and SSS_Factoring is shown in

figure 7.26. Clearly, by using either GSS or Factoring in SSS's dynamic scheduling

phase, SSS offers better, more stable processor performance.

Another benefit of using GSS or Factoring in SSS's dynamic scheduling phase

is less processor cost. Figure 7.29 shows the cost of different scheduling schemes.

The cost of a schedule is defined in a similar manner as processor usage except that

the number of faulty processors is zero. Figure 7.29 shows that the cost of GSS

increases as the number of processors increases. For Factoring, SSS, SSS_GSS, and

SSS_Factoring there is no significant change in cost as the number of processors

increases. SSS_GSS and SSS_Factoring perform about the same and always offer

the best cost performance.

Performance improvement, defined as a lower cost, comes from a better bal-

anced workload as indicated by figure 7.30. The figure plots the standard deviation

of processor workload for the corresponding runs of figure 7.29. The workload was

calculated by counting DIVERSITY time units for the then branch and 1 time unit

for the else branch. In figure 7.30 the workload of GSS becomes less balanced as the

number of processors increases; in figure 7.29 the performance of GSS decreases as

120

1. Calculate the value for a.

2. Assign each processor a x NIP iterations statically.

3. Set the global variable count to be the first unscheduled iteration's number.

4. When a processor becomes idle, it performs the following

(a) begins mutual exclusion;

(b) copy the value of count to local variable i;

t <- max((N - count)/p, 1); (c)

(d) count <- count + t ;

(e) end mutual exclusion;

(f) execute the chunk defined by i and i + t and repeat step 4 if i > N;

Figure 7.28. SSS_GSS algorithm

the the number of processor increases. For SSS a better balanced workload in figure

7.30 always results in a better performance in figure 7.29. The only exception is

Factoring which has a well balanced workload curve but not a correspondingly good

performance. This is because Factoring's well balanced workload comes with great

scheduling overhead. SSS_Factoring reduces the scheduling overhead significantly

by statically scheduling a major portion of iterations.

121

1770

1760

1750 SSS
Pr 1740- * SSS_Factoring

S
1730- o GSS

* Factoring
o 1720 SSS_GSS r

1710
0
t 1700

1690

1680

1670
10 12 14 16 18

Number of Processors

Figure 7.29. Processor cost of different scheduling schemes

7.3 Hard Fault

A hard fault happens when a processor fails physically, e.g. a power failure. The

main difference between a soft and hard fault is that in a soft-fault, a faulty processor

finishes its currently assigned tasks (in our case the chunk of iterations) before

it "drops out"; this is not true if a processor fails physically. In additional, the

assumption that the failed processor can set a particular global variable indicating

its failure is unrealistic in a hard fault.

A common method of dealing with hardware failure is to issue checkpoints.

We propose to do the same. In our approach, a checkpoint is set whenever a

processor finishes a chunk. We assume that the computation in a chunk of iterations

is performed in a copy-in-copy-out fashion, i.e., the data associated with a chunk is

modified only if the entire chunk of iterations is executed. Under this assumption,

122

270

240 SSS
* SSS_Factoring

210
o GSSW

or 180 * Factoring
k D. SSS_GSS L 150
0
3 120

90

60

30 1 1 1

10 12 14 16 18

Number of Processors
Figure 7.30. Standard deviation in workload for different scheduling schemes

no computation needs to be "undone" when a failure occurs. However, the chunks

in which a processor failed must be re-executed.

The above indicates two issues relating to hard faults. One is to re-execute

the chunk of iterations, and the other is to balance the workload. Workload balanc-

ing can be performed in the same way as soft faults. We propose using Factoring in

SSS's dynamic scheduling phase. GSS is not recommended for reasons stated later.

The rest of this section discusses the problem of re-executing a chunk when a hard

fault occurs.

Assuming that the starting and ending iteration numbers of a chunk are

stored in the array chunk_array. To fetch a chunk, a processor only needs to copy,

using fetch8cadd, the current array index into, say, temp_index. The processor then

executes the iterations from chunk_array [temp_index] to chunk_array [temp_index

+ 1] 1. To set checkpoints dealing with hard faults, we propose using an-

other array in parallel with chunk_array which we call flag_array. Before a

123

1. begin mutual exclusion;

2. if flagl is true then copy-out;

3. end mutual exclusion;

Figure 7.31. Pseudocode for a processor to copy-out its results

processor fetches a new chunk, it writes to flag_array [temp_index] a value, say

-1. This assignment to flag_array [temp_index] indicates that the chunk from

chunk_array [temp_index] to chunk_array [temp_index + 1] 1 has been exe-

cuted. The processor can then update its value of temp_index by fetching a new

chunk.

When an element of flag_array has not been written back by a processor,

it is interpreted as a hard fault. However, it may also mean that the chunk is still

being executed. It is important, then, that the chunk size in the dynamic scheduling

phase not be too large. For this reason, when hardware failure is a consideration, the

Factoring scheduling scheme is recommended for use in SSS's dynamic scheduling

phase rather than GSS.

The approach we propose can best be described using the pseudocode of

figure 7.31. The dynamic scheduling phase of SSS is now divided into two sub-

phases: the execution subphase and the checking subphase. Flagl and flag2 are

global Boolean variables which are true during the execution and checking subphases

respectively.

The execution subphase begins with the dynamic scheduling phase of SSS.

As long as flagl is true, a processor writes back the result of executing a chunk

of iterations. The first processor, say pi, which tries to fetch a chunk and discovers

124

that all have been assigned performs the actions described by figure 7.32. This ends

the execution subphase and begins the checking subphase.

The first action taken by p2 is to set flagl to false. This prevents any pro-

cessor still working on a chunk from writing back its results so that these iterations

can be reassigned to other processors. P, then finds the first chunk whose corre-

sponding element in flag_array is not marked as completed. The iterations of this

chunk are redistributed by pi using the underlying scheduling scheme. Pi then sets

flag2 to true, starting the checking subphase.

A processor working in its execution subphase, finishing after pi, and finding

flagl set to false, discards its results and waits on flag2. When flag2 becomes

true, p2 has finished the redistribution process, and processors may now begin their

checking subphase in a manner similar to figure 7.31. The difference is that now

flag2 is used instead of flagl. This procedure can be generalized and the checking

subphase performed repeatedly until no faulty processor is found. This would be

done in case more than one processor fails.

Figure 7.33 shows the result of simulating the parallel loop of figure 7.25

with one processor hard-faulting. In the simulation a processor fails during the

second batch. Figure 7.33 also contains the results of a sequential execution and a

non-faulty execution for the purpose of comparison. It can be seen that processor

usage increases with the number of processors. This is expected: the larger the

number of processors, the higher the overhead incurred by a processor's exclusive

access to flagl. The increase, however, remains within 2% of processor usage in

the sequential case.

A drawback to this approach appears when a processor reaches the end of

its execution subphase. At this point, since Factoring is being used, a processor is

working zi small chunk. An e.Yro=s;vc-- amount of overhead accrues because of the

frequent reed for checking flagl and because the results from the late finishing

125

1. begin mutual exclusion;

2. if flagl is true then

(a) flagl = false;

(b) for all elements in flag_array not set by a processor executing the cor-

responding chunk, redistribute the chunk.

(c) flag2 = true;

3. end mutual exclusion;

4. while there are chunks

fetch and execute

Figure 7.32. Pseudocode for re-distributing iterations left by a faulty processor

processors are lost and must be re-calculated.

To overcome this, two modifications are made to the procedure above. First,

a processor working on a chunk in the last two batches need not check flagl

before writing back its results. Second, the first processor finished in the checking

subphase, pi, does not redistribute chunks in the last two batches to the task queue;

instead, it executes any chunk from these batches whose corresponding entry in

flag_array is not marked. Using these two modifications may cause some chunks

in the last two batches to be executed twice. However, there should be few such

chunks, and they should be small. This should not add significantly to the overhead.

126

1710 No fault

1705 o SEQ

1700 x Hard fault
P
o 1695

1690 s
1685 r

U 1680
s a 1675
e

1670

1665

1660
10 12 14 16 18

Number of Processors

Figure 7.33. Processor usage of SSS_Factoring with 1 processor hard-fault

7.4 Conclusions

In this chapter we have considered the problem of scheduling a parallel loop in the

presence of processor faults. We have defined two types of faults: a hard fault

results when a processor fails physically, and a soft fault results when a processor

is reassigned by the operating system to another task. This chapter presents a SSS

with a modified dynamic scheduling phase to tolerate processor loss.

Maintaining a high efficiency is the main concern for soft faults. To tolerate

soft faults we replaced the dynamic phase of SSS with either GSS or Factoring. Our

experiments suggest that both SSS_GSS and SSS_Factoring offer lower sensitivity to

soft faults and greater workload balance than either SSS, GSS or Factoring alone.

To deal with hard faults, we split the dynamic phase of SSS into two sub-

phases, an executi,m subphase and a checking subphase. Both nbphases continue

to use either Factoring as the underlying scheduling algorithm; however, together

127

they allow us to implement a method to mark completed chunks. In this way, SSS

is able to tolerate hard faults. Our experiments showed that the loss of processor

usage due to a hard fault is within 2% of processor usage in the sequential case.

Although our present results come from a small test suite, we believe our

method will scale well. From our analysis, however, we conclude that SSS along with

the modifications described in this chapter can be used to schedule a non-uniform

parallel loop given the presence of processor faults. These scheduling schemes offer

performance comparable to SSS but tolerate both hard and soft faults.

128

Chapter 8

CONCLUSIONS AND FUTURE WORK

The problem studied in this research is how to increase the performance of scientific

applications containing parallel loops. Loops in such applications are a rich source

of parallelism. This problem is, to a certain extent, what parallel processing is all

about. This study seeks its goal by devising methods to achieve high processor

utilization with low cost.

We demonstrated a technique of combining a static scheduling scheme with a

dynamic scheduling scheme. This combination of the schemes reduces the schedul-

ing overhead while achieving a balanced workload, makes data distribution easier,

makes it easier to employ other well known scheduling schemes to utilize their ad-

vantages, and increases the affinity of iterations to processors. This combination

also simplifies self-scheduling of a parallel loop on a distributed-memory machine

and dramatically increases the size of the problems solvable on such architectures.

We also developed methods to duplicate data on a number of processors.

This method eliminates data movement during computation, thus reducing the

communication cost and increasing the size of problems solvable. We evolved a

systematic approach to implement a given self-scheduling scheme on a distributed-

memory computer. We also studied using of a multilevel scheduling method to

self-schedule parallel loops oT ributed- memory machine with large number of

processors.

129

We introduced the use of abstractions to incorporate self-scheduling methods

and data distribution methods in parallel programming environments. The abstrac-

tions were implemented using CHARM, a real parallel programming environment.

Methods were developed to tolerate processor faults caused by both physical failure

and reassignment of processors by the operating system during the execution of a

parallel loop.

The techniques introduced in this dissertation have been tested using simu-

lations and real applications from different fields. Good results have been obtained

on both shared-memory and distributed-memory parallel computers.

The following are some interesting problems related to the problems discussed

in this dissertation. The first one is how to self-schedule and perform data distri-

bution on a network of workstations. Differing from a processor in a homogeneous

parallel computer, a workstation in a network, compared with other workstations in

the network, may not have the same configuration of amount of memory, amount of

storage (hard disk space), CPU speed, and number of users using the workstation.

Since the workload of a workstation changes dynamically, some forms of dynamic

scheduling must be used to assign iterations to a lightly loaded workstation. Again,

we would not assign an iteration to a processor that does not store the data needed

by the iteration. It would be interesting to modify the techniques discussed in this

dissertation to develop self-scheduling schemes suitable for scheduling parallel loops

on networks of computers.

An advantage of SSS is its utilization of the information regarding a parallel

loop. This information includes the minimum and maximum iteration execution

times, the mean execution times, etc. We did not elaborate on how to collect

this information. One idea is to insert segments of code capable of learning. The

insertion can be turned on and off. When turned on, it collects the above mentioned

information and, at the end, calculates a suitable value for a and stores it in a file.

130

Multilevel scheduling allows concurrent assignment of iterations to proces-

sors, and this requires a sophisticated policy to distribute data to processors. An-

other interesting issue is that the tree structure of multilevel scheduling can be

embedded into a hypertree. The question is, if an internal node of a hypertree can

also assign iterations to its children, can we modify our scheme to take advantage

of this?

Overall, we believe that we studied a realistic problem and have achieved

significant results. Many applications can benefit from our research, and we are

interested in seeing our approach being used on a large application requiring many

hours of execution time and running on a large system with thousands of processors.

131

BIBLIOGRAPHY

[1] Adam T.L., Chandy, K.M., and Dickson, J.R, "A Comparison of List Schedules for Parallel
Processing Systems," Communication of ACM, vol. 17, no. 12, Dec. 1974, pp. 685-690.

[2] Aho A. Sethi R, and J.D. Ullman Compilers, Principles, Techniques, and Tools, Adison-
Wesley Publishing Company, Reading, MA, 1986.

[3] Aho A. and J.D. Ullman Foundations of Computer Science, Computer Science Press, New
York, 1992.

[4] BBN Advanced Computer Inc., Cambridge, MA., "March 1000 Fortran Compiler Reference,"
revision 1.0 ed., Nov. 1988.

[5] Beckman C. J. and Polychronopolos C., "The Effect of Barrier Synchronization and Schedul-
ing Overhead on Parallel Loops," 1989 International Conference on Parallel Processing, vol.
II, 1989, pp. 200-204.

[6] Ben-Asher Y., Cohen A., Schuster A., and Sibeyn J.F, "The Impact of Task-Length Param-
eters on the Performance of the Random Load-Balancing Algorithm," in the Proceedings of
IPPS92, 1992, pp. 82-85.

[7] Bertsekas D.P., Ozveren C, Stamoulis G.D., and Tsitsiklis J.N., "Optimal Communication
Algorithms for Hypercubes," Journal of Parallel and Distributed Computing 11, 1991, pp.
263-275.

[8] Chen W.K. and Gehringer E.F., "A Graph-Oriented Mapping Strategy for a Hypercube,"
in the Proceedings of Hypercube, Concurrent Computer and Applications, vol I 1988, pp.
200-209.

[9] Chou T.C.K and Abraham J.A. "Load Redistribution Under Failure in Distributed Systems"
IEEE Trans. on Computers, vol. C-32, no. 9, Sept. 1983, pp. 799-808.

[10] Clark H., "DAWGSA Distributed Compute Server Utilizing Idle Workstations," Journal of
Parallel and Distributed Computing 14, 1992, pp. 175-186.

[11] Coffman E.G., Jr and Graham RI., "Optimal Scheduling on Two Processor System," Acta
Infromatica, vol. 1, no. 3, 1972, pp. 200-213.

132

[12] Coffman E.G. (ed), "Computer and Job-shop Scheduling Theory," John Wiley and Sons, New
York, 1976.

[13] Crovella M., Das P, Dubnicki C, and LeBlanc T.J. Markatos E.P., "Multiprogramming on
Multiprocessors," The University of Rochestor, Computer Science Department, TR 380, 1991.

[14] Crowl L.A. and LeBlanc T.J., "Control Abstraction in Parallel Programming Languages," in
the Proceedings of the 1992 International Conference on Computer Languages, Apr. 1992,
pp. 44-53. 1992.

[15] Cytron R., "Doacross: Beyond Vectorization for multiprocessors," in the Proceeding of 1986
International Conference on Parallel Processing, Aug. 1986, pp. 836-844.

[16] Eager D.L. and Zahorjan J., "Adaptive Guided Self-Scheduling," Department of Computer
Science and Engineering, University of Washington, Technical report 92-01-01, January 1992.

[17] El-Rewini H., Lewis T.G. and Ali H., Task Scheduling in Parallel and Distributed Systems
Prentice-Hall, New York, 1993.

[18] Fang Z., Tang P., Yew P., and Zhu C., "Dynamic Processor Self-Scheduling for General
Parallel Nested Loops," IEEE Transactions on Computers, vol. 39, no. 7, July 1990, pp.
919-929.

[19] Fenton W, Ramkumar B., Saletore V.A., Sinha A.B., and Kale L.V., "Supporting Machine
Independent Programming on Diverse Parallel Architectures," in the Proceedings of 1991
International Conference on Parallel Processing, 1991, pp. 193-201.

[20] Fisher J.A. "The VLIW machine: a multiprocessor for compiling scientific code," IEEE
Transactions on Computers, vol. 17, no. 7, July 1984, pp. 45-53.

[21] Flynn L.E. and Hummel S.F. "Scheduling Variable Length Parallel Subtasks," IBM Research
Report RC15492, Feb. 1990.

[22] Fowler R. and Kontothanassis L., "Improving Processor and Cache Locality in Fine-Grain
Parallel Computations using Object-Affinity Scheduling and Continuation Passing," The Uni-
versity of Rochester, Computer Science Department, TR 411, June 1992.

[23] Fox G.C, and Hiranandani S., Kennedy K., Koelbel C., Kremer U., Tseng C., and Wu M.,
"Fortran D Language Specification," Dept. of Computer Science, Rice University, TR90-141,
Dec., 1990.

[24] Fox G.C. et al., Solving Problems on Concurrent Processors, Prentice-Hall, Eng lle Cliffs, N.J.,
1988.

[251 Carey M.R., and Johnson D.S., Computer and Intractability - A guide to the Theory of
NP-Completeness, Freeman and Company, New York, 1979.

133

[26] Gibbons A. and Rytter W., Efficient Parallel Algorithms, Cambridge University Press, Cam-
bridge, 1989.

[27] Gottlieb A., Grishman R., Kruskal C.P., McAuliffe K.P., Rudolph L., and Snir M., "The NYU
ultracomputer Designing an MIMD shared-memory parallel computer," IEEE Transactions
on Computers, vol. C-32, no. 2, pp. 175-189, Feb. 1983.

[28] Graham R.L., "Bounds on Multiprocessor Scheduling Anomalies and Related Packing Algo-
rithms," in the Proceedings of Spring Joint Computer Conference, 1972, pp.205-217.

[29] Grunwald D.C., Nazief B.A.A., and Reed D.A., "Empirical Comparison of Heuristic Load
Distribution in Point-to-Point Multicomputer Networks," in the Proceedings of The Fifth
Distributed Memory Computing Conference, April 1990, pp. 984-993.

[30] Gupta M. and Banerjee P., "Demonstration of Automatic Data Partitioning Techniques for
Parallelizing Compilers on Multicomputers," IEEE Transactions on Parallel and Distributed
Systems, vol. 3, no. 2, March 1992, pp. 179-193.

[31] Gupta R. "Synchronization and Communication Costs of Loop Partitioning on Shared- Mem-
ory Multiprocessor Systems," 1989 International Conference on Parallel Processing, vol. II,
1989, pp. 23-30.

[32] Hatcher P.J. and Quinn M.J., Data-Parallel Programming on MIMD Computers, The MIT
Press, Cambridge, MA, 1991.

[33] Hu T.C., "Parallel sequencing and assembly line problem," Oper. Res., vol 9, Nov. 1961, pp.
841-848.

[34] Kaufman M.C., "An Almost-Optimal Algorithm for the Assembly Line Scheduling Problem"
IEEE Transactions on Computers, vol. c-23, 11, Nov. 74, pp. 1169-1174.

[35] Kasahara H. and Narita S., "Practical Multiprocessor Scheduling Algorithms for Efficient
Parallel Processing," IEEE Transactions on Computers, vol. c-33, no. 11, Nov. 84, pp.
1023-1029.

[36] Kishor S.T., Probability and Statics with Reliability, Queuing, and Computer Science	 Appli-
cations, Prentice-Hall, Englewood, NJ, 1982.

[37] Kimura K. and Ichuyoshi N., "Probabilistic Analysis of the Optimal Efficiency of the Multi-
Level Dynamic Load Balancing Scheme," in the Proceedings of The Sixth Distributed Memory
Computing Conference, 1991, pp. 145-152.

[38] Koelbel C. and Mehrotra P., "Compiling Global Name-Space Parallel Loops for Distributed
Execution," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 4, October
1991, pp. 440-451.

[39] Kruskal C.P., Weiss A., "Allocating (!:dependent Subtasks on Parallel	 Processors," IEEE
Transactions Software Engineering, vol. SE-11, no. 10, October 1985 pp. 1001-1016.

134

[40] Hatcher P.J., Quinn M.J., Lapadula	 Seevers B.K, Anderson R.J, and Jones R.R, "Data-
Parallel Programming on MIMD Computers, " in IEEE Transactions on parallel and dis-
tributed systems, vol 3. no. 2 , pp. 377-383, July 1991.

[41] Hummel S.F., Schonberg E., and Flynn L.E., "Factoring: A Practical and Robust Method
for Scheduling Parallel Loops," Supercomputing 91, 1991, pp. 610-619.

[42] Hummel S.F., Schonberg E., and Flynn L.E., "Factoring: A Method for Scheduling Parallel
Loops," Communications of ACM, vol. 35, no.8, Aug. 1992, pp. 90-101.

[43] Kant K., "Introduction to Computer System Performance evaluation," McGraw-Hill Inc.,
New York, 1992.

[44] King C. and Ni L.M., "Grouping in Nested Loops for Parallel Execution on Multicomputers,"
1989 International Conference on Parallel Processing, vol. II, 1989, pp. 31-38.

[45] Kohler W.H., "A preliminary Evaluation of the Critical Path Method for Scheduling Tasks
on Multiprocessor Systems," IEEE Transaction on Computer, vol. C-15, no. 12, Dec. 1975,
pp. 1235-1238.

[46] Krone M. "Heuristic Programming applied to scheduling models," in the Proceedings of
Fifth Anneal Conference on Information Science and Systems, Department of EE, Princeton
University, 1971, pp. 841-848.

[47] Kruskal C. and A. Weiss, "Allocating independence subtasks on parallel processor," IEEE
Transaction on Software Engineering, vol. SE-11, no. 10, October 1985, pp. 1001-1015.

[48] Kuck D.J. et al, "The Effect of Program Restructuring, Algorithm Change, and Architecture
Choice on Program Performance," in the Proceedings of 1984 International Conference in
Parallel Processing, Aug. 1984, pp. 129-138.

[49] Lam B.Y., Saletore V.A., and Liu J., "Analysis of SSS Scheme," Presented at Permian Basin
Supercomputing Conference, Permian Basin, Tx, March 13-15, 1992.

[50] Lam Y.B., Saletore V.A., and Liu J., "Conjugate Gradient Method Using CHARM on Parallel
Computers," to appear in the Proceedings of PARALLEL CFD93.

[51] Lee S.Y, and Aggarwal J.K., "A Mapping Strategy for Parallel Processing," IEEE Transaction
on Computer, vol. C-36, no. 4, April 1987, pp. 433-442.

[52] Lewis T., Curry R. and Liu J., "Data Parallel Program Design," in the Proceedings of the
First International Conference of ACPC, 1991, pp. 37-53.

[53] Lewis T.G. and El-Rewini H., Introduction to Parallel Computing, Prentice-Hall, New York,
1992.

[54] Li G. and Wah. B.W., "The design of optimal systolic arrays," IEEE Transactions on Com-
puters, Jan 1985, pp. 66-77.

135

[55] Li J. and Chen M., "Compiling Communication-Efficient Programs for Massively Parallel
Machines," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 3, July 1991,
pp. 361-377.

[56] Liu J, Saletore V.A, and Lewis T.G., "Scheduling Parallel Loops Containing If-Then-Else
statements," in the Proceedings of ISMM Fifth International Conference on Parallel and
Distributed Computing and Systems, Pittsburgh, Pennsylvania, October 1-3, 1992, pp. 83-
88.

[57] Liu 1. and Saletore V.A., "Self-Scheduling on Distributed-Memory Machines," to appear in
the Proceedings of Supercomputing 93, Portland, OR, Nov., 1993.

[58] Liu J., Saletore V.A., and Lewis T.G., "Safe Self-Scheduling:	 A Parallel Loop Scheduling
Scheme for Shared-Memory Multiprocessors," submitted to International Journal of Parallel
Programming, 1993.

[59] Liu J., Saletore V.A., and Lam B., "Partitioning of Arrays for High Performance," to appear
in Proceedings of Sixth International Conference on Parallel and Distributed Computing
Systems, 1993.

[60] Liu J., Marsaglia J., Broeg B, and Saletore V.A.,	 "Scheduling Parallel Loops Under Faulty
Processors," to appear in the Proceedings of Sixth International Conference on Parallel and
Distributed Computing Systems, 1993.

[61] Lo S.P. and Gligor, V.D., "Properties of Multiprocessor Scheduling Algorithms," in the Pro-
ceedings of ICPP87, pp. 867-870.

[62] Lo V.M., "Heuristic Algorithm for Tasks Assignment in Distributed Systems," IEEE Trans-
actions on Computers, vol. 37, no. 11, Nov. 1988, pp. 1384-1397.

[63] Lu L.C. and Chen M., "New Loop Transformation techniques for Massive Parallelism,"
YALEU/DCS/TR-833, October, 1990.

[64] Markatos E.P., Crovella M., Das P, Dubnicki C, and LeBlanc T.J., "The Effects of Multi-
programming on Barrier Sychronization," The University of Rochestor, Computer Science
Department, TR 380, 1991.

Locality Management in Shared-[65] Markatos E.P. and LeBlanc T.J., "Load Balancing vs.
Memory Multiprocessors," The University of Rochestor, Computer Science Department, TR
399, 1991.

[66] Markatos E.P. and LeBlanc T.J., "Using Processor Affinity in Loop Scheduling on Shared-
Memory," The University of Rochestor, Computer Science Department, TR 410, 1992.

[67] Moldovan, Dan I., Parallel Processing	 From Application to Systems, San Mateo, California:
Morgan Kanfirw:nn Pui;lishers, 1993

136

[68] Miranker, W.L., and Winkler, A., "Spacetime Representations of Computational Structures,"
Computing, pp. 93-114, 1984.

[69] Misicano A. J., "Efficient Dynamic Scheduling of Medium-Grained Tasks for General Pur-
posing Parallel Processing," in the Proceedings of ICPP88, vol. 1, 1988, pp. 166-175.

[70] Muntz R.R. and Coffman E.G., Jr "Optimal Preemptive Scheduling on Two Processor sys-
tems," IEEE Transactions on Computers, vol. c-18, no. 11, 1969, pp. 1014-1020.

[71] Ni L.M., Xu C.W., and Gendreau T.B., "A Distributed Drafting Algorithm for Load Bal-
ancing," IEEE Transactions on Software engineering, vol. SE-11, no. 10, October 1985, pp.
1153-1161.

[72] Ni L.M. and Wu C. E., "Design Tradeoffs for Process Scheduling in Shared Memory Multi-
processor Systems," IEEE Transactions on Software Engineering, vol. 15, no. 3, March 1989,
pp. 327-334.

[73] Nicol D.M. and Saltz J.H., "An Analysis of Scatter Decomposition," IEEE Transactions on
Computers, vol. 39, no. 11, Nov. 1990, pp. 1337-1345.

[74] Papadimitiou C. and Yannakakis M., "Scheduling Interval-ordered Tasks," SIAM Journal of
Computing , vol. 8, 1979, pp. 405-409.

[75] Parberry I., "Parallel Complexity Theory," Pitman, London, John Wiley and Sons, NewYork,
Toronto, 1987.

[76] Pfister G.F., Brantley W.C., George D.A., Harvey S.L., Kleinfelder W.J., McAuliffe K.P.,
Melton E.A., Morton V.A, and Weiss J., "An Introduction to The IBM Research Parallel
Processor Prototype (RP3)," in Experimental Compution Architechtures, Ed. J.J. Dongarra,
New York: Borth Holland, 1987.

[77] Polychronopoulos C. and Kuck D.J., "Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers," IEEE Transactions on Computers, vol. 36, no. 12, Dec. 1987,
pp. 1425-1439.

[78] Polychronopoulos C., "Compiler Optimization for Enhancing Parallelism and Their Impact
on Architecture Design," IEEE Transactions on Computers, vol. 37, no. 8, Aug. 1988, pp.
991-1004.

[79] Polychronopoulos C., "Toward Auto-Scheduling Compilers," TR, Center for Supercomput-
ing Research and Development and Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, 1988.

[80] Press W.H., Numerical Recipes in C: The An of Scientific Computing, Cambridge University
Press, New York, 1988.

[81] Quinn M.J., "Designing Efficient Algorithms for Parallel Computers," McGraw-Hill Book
Company, New York, 1987

137

[82] Ramamoorthy C.V., Chandy K.M, and Gonzalez M.J. Jr. "Optimal Scheduling Strategies
in a Multi-processor System," IEEE Transactions on Computer vol. C-21, no. 2, Feb. 1972,
pp. 137-146.

[83] Ramanujam J. and Sadayppan P. "Compile-Time Techniques for Data Distribution in Dis-
tributed Memory Machines," IEEE Transactions on Parallel and Distributed Systems, vol.
2, no. 4, October 1991, pp. 472-482.

[84] Rosing M, Schnabel R.B, and Weaver R.P., "Dino: Summary and Examples," in the Pro-
ceedings of Third Conference on Hypercube Con current Computer, 1988, pp. 312-316.

[85] Robinson J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algorithms,"
IEEE Transaction on Software Engineering, vol. SE-5, no. 1, January 1979, pp. 24-31.

[86] Rosing M and Weaver R.P., "Mapping Data to Processors in Distributed Memory Com-
putations," in the Proceedings of the Fifth Distributed Memory Computing Conference,
Charleston, SC, 1990.

[87] Rudolph D.C. and Polychronopoulos C., " An Efficient Message-Passing Scheduler Based on
Guided Self scheduling," in the Proceedings of the 3rd International Conference of Super-
computing, 1989, pp. 50-60.

[88] Saletore V.A., "A Distributed and Adaptive Dynamic Load Balancing Scheme for Parallel
Processing of Medium-Grain Tasks," in the Proceedings of The Fifth Distributed Memory
Computing Conference, April 1990, pp. 994-999.

[89] Saletore V.A., Liu, J., and Lam B.Y., "Scheduling Non-uniform Parallel Loops on Distributed
Memory Machines," in the Proceedings of Hawaii International Conference on System Sci-
ences," vol. II, pp. 516-525, January 1993.

[90] Saletore V.A. and Liu J., "Combining Self-scheduling and Data-Distribution Schemes for
Parallel Computations," submitted to Eighth International Parallel Processing Symposium
1993.

[91] Saletore V.A. and Liu J., " Scheduling and Data Distribution for Non-uniform Parallel Loops
on Distributed Memory Parallel Machines," submitted to IEEE Transactions on Parallel and
Distributed Systems, 1993.

[92] Saltz J., Crowley K., Mirchandaney R., and Berryman H., "Run-Time Scheduling and Execu-
tion of Loops on Message Passing Machines," Journal of Parallel and Distributed Computing
no. 8, 1990, pp. 303-312.

[93] Saltz J., Mirchandaney R., and Crowley K., "Run-Time Parallelization and Scheduling of
Loops," IEEE Transactions on Computers, vol. 40, no. 5, May 1991, pp. 603-612.

[94] Sarker V., "Partitioning and Scho.di-,iini.: Paralid Programs for Execution or:. Multiprocessors,"
Research Monographs in Parallel and Distributed Computing, London: :Pitman, 1989.

138

[95] Shang W. and Fortes J.A.B., "Time Optimal Linear Schedules for Algorithms with Uniform
Dependencies," IEEE Transactions on Computers, vol. 40, no. 6, June 1991, pp. 723-742.

[96] Shirazi B. and Wang M., "Analysis and Evaluation of Heuristic Methods for Static Task
Scheduling," Journal of Parallel and Distributed Computing 10, 1990, pp. 222-232.

[97] Skillicron D.B., "Architecture-Independent Parallel Computation," IEEE	 Computer, Dec.
1990, pp. 38-50.

[98] Smith Justin R., The deign and Analysis of Parallel Algorithms, Oxford, NewYork: Oxford
University Press, 1993.

[99] Snyder L. and Socha D., "An Algorithm Producing Balanced Partitionings of Data Arrays,"
in the Proceedings of DMCC5, 1990, pp. 867-875.

[100] Stallings W, Computer Origination and Architecture, MaCmillan Publishing Company, New
York, 1990.

[101] Taieb F.Z., Rami G.M., and Kirk R.P., "Dilation Based Bidding Schemes for Dynamic Load
Balancing On Distributed Processing Systems," in the Proceedings of Distributed Memory
Computing Conference, 1991, pp. 129-136.

[102] Tang P., Yew P., and Zhu C, "Impact of self-scheduling on performance of	 multiprocessor
systems," in the Proceeding of 1988 ACM International Conference on Supercomputing, July
1988, pp. 593-603.

[103] Tang P., Yew P., and Zhu C, "Compiler Techniques for Data Synchronization in Nested
Parallel Loops," in the Proceedings of International Supercomputing Conference, 1990, pp.
177-186.

[104] Tel G., Topics in Distributed Algorithms, Cambridge University Press, 1991.

[105] Tzen T.H. and Ni L.M., "Trapezoid Self-Scheduling: A practical Scheduling Scheme for
Parallel Compilers," IEEE Transactions on parallel and distributed systems, vol. 4, no 1,
Jan. 1993, pp. 87-98.

[106] Ulman J.D., "NP-Complete Scheduling Problems," Journal of Computer and System Science
10, 1975, pp. 384-393.

[107] Wang C. and Wang S, "Efficient Processor Assignment Algorithms and Loop Transforma-
tions for Executing Nested Parallel Loops on Multiprocessors," IEEE Transactions on parallel
and distributed systems, vol. 3, no. 1, January 1992, pp. 71-82.

[108] Willbeek-LeMair M. and Reeves A. P., "A localized Dynamic Load Balancing Strategy for
Highly Parallel Systems," Frontier 90, 1990. PP380-383.

[109] Wolf M.E. and Lam M.S., "A Loop Transformation Theory and an Algorithm to Maximize

139

Parallelism," IEEE Transactions on parallel and distributed systems, vol. 2 no. 4, October
1991, pp. 452-471.

[110] Wolfe M.J., " Massive Parallelism through program Restructuring," Frontier 90, pp. 407-
415.

[111] Xu J. and Hwang K., "Heuristic Methods for Dynamic Load Balancing in A Message-Passing
Supercomputer," in the Proceedings of Supercomputing, 1990, pp. 888-897

[112] Zima H., Bast H. -J, and Gerndt M., "SUPERB: A tool for semi-automatic MIMD/SIMD
parallelization," in Parallel Computing, vol. 6., 1988, pp. 1-18.

[113] Znati T.F., Melhem R.G., and Pruhs K.R., "Dilation based bidding schemes for dynamic
load balancing on distributed processing systems," in the Proceedings of The Sixth Dis-
tributed Memory Computing Conference, 1991, pp. 129-136.

