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FUZZY LOGIC FOR IMPROVED DILEMMA ZONE
IDENTIFICATION: A SIMULATOR STUDY

1 Introduction

The Type-Il dilemma zone (DZ) describes a segménbadway on the approach
to a signalized intersection where drivers havéatity deciding to stop before
the intersection or proceed through it when preskntith the circular yellow
(CY) indication. The conflicts created in the TypebZ, also known as the
"indecision zone,” result in increased rear-endskeg as the result of abrupt
braking, and right-angle or left-turn head-on &iins as the result of poor
estimates of intersection clearance time. While@gmate signal timing or driver
failure to comply with signal operation (either ali®dience or distraction) can
result in collisions, it is thought that DZ conflccontribute significantly to the
overall safety of signalized intersections. Sonseagchers have even proposed
the number of vehicles caught in the dilemma zosereogate measure for safety
performance (Zimmerman & Bonneson, 2004). Despiéeimplications of these
conflicts, there has yet to be a set of nationalndgards to properly and

consistently address this issue.

The Manual on Uniform Traffic Control Devices (MUDJ provides guidance

for the installation and application of many trafiontrol devices including signs,
signals and pavement markings. This document pesval range of reasonable
yellow change interval durations as well as infatiorarelating the meaning and
sequence of the CY indication (MUTCD, 2009). In thiesence of a national

standard, the Institute of Transportation Engine@iicE) has developed a
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recommended approach to determining the lengthefY indication based on
several key factors, including approach grade, gmian-reaction time of the
driver, velocity and deceleration rate of the vehidength of the vehicle, and
width of the intersection (ITE, 1999). The Traffsagnal Timing Manual, which
provides a comprehensive overview of signal tinpnactices, puts forth the same
ITE equation when discussing timing of the yelloaoge interval (FHWA,
2008). However, there are still agencies that apply one of several alternative
approaches to determining the appropriate lengtheoCY indication. Regardless
of what approach is used, the initiation of the i@dication at the wrong time can

contribute to the potential for DZ conflicts.

An accurate identification of where the DZ existsiid allow engineers to reduce
the frequency with which drivers are caught in B Numerous technologies
have been developed to identify when a vehicle the DZ (defined in one way
or another) and then to delay the presentatioh@fY indication until there are
no (or few) vehicles in the DZ. These DZ protectaystems tend to operate with
a predetermined description of where the DZ exiats] the success of their
applications is based in part on the accuracy af flacement. With that said,
there are multiple definitions that have been usedlescribe where the DZ
occurs. One of the most commonly applied defingios based on a driver’s
decision to stop, identifying the downstream edighe DZ as the location where
10 percent of drivers stop and the upstream edgerevihO percent of drivers

continue through the intersection (Zegeer and D@&8i8). The other primary
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definition is based on a vehicle’s time-to-stopelimlescribing a DZ that exists
between 2.5-5.5 seconds from the intersection (Ghetnal., 1985). Recent
research has suggested, however, that these twutides potentially result in

different DZ locations on the same intersectionrapph (Hurwitz et al., 2011a).

This research aims to improve the identificatiorvehicles caught in the DZ as
this is a critical factor to both the efficient asdfe operation of signalized
intersections. A DZ definition that is too broadhdander signal operations, while
a narrowly defined DZ can unnecessarily exposeckehito DZ conflicts leading
to reduced safety performance. Building on the wafrliHurwitz et al. (2012a),
this research uses Fuzzy Logic (FL) as an analytical to improve DZ
identification. Hurwitz et al. proposed a model dxstrictly on vehicle position
that demonstrated the potential for improved DZnideation. This research
exploits the capabilities of a high-fidelity drign simulator to output
measurements of vehicle position and speed fifteees per second to develop a
more accurate model of DZ location on intersectproaches with different
speeds. Additionally, the probability to stop d&acompared to the previous
naturalistic experiments of Hurwitz et al. (201Bdahe test track experiments of
Rakha et al. (2007); while the deceleration dateoimpared to those reported by

Gates et al., (2006).



2 Literature Review

This literature review covers a variety of topicdsatt are central to the
development of a FL model for driver behavior. dtaritical to understand the
basic definitions and models currently used to desd®Zs. It is also important to
understand the characteristics of the yellow chantgval, including the laws

governing how drivers should react to its presémmatthe recommended
applications and durations, and the level to wiidchiers understand the intended
message communicated by the CY indication. Thealitee review also includes
a basic orientation to FL, as well as the use ofiry simulators for traffic

control and driver behavior experimentation.

2.1 Definition of Dilemma Zones

It is essential that an accurate definition of 2 problem be the first thing
established. Literature has identified two form®df that a driver can experience
as they approach an intersection and are presevithda CY indication. The
Type-l DZ was first referenced in 1960 by Gazisaét They identified the
possibility that the design parameters of an iegien (timing and phasing,
detector layout and operation, and geometry) makema impossible for a
motorist to either safely stop before the stop loresafely pass through the
intersection. This can be the result of poor sigmaing (excessively short yellow
change intervals) and/or detector placement (datessitbacks too short), while

site-specific characteristics such as approachegrageed, and available sight
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distance can also contribute to these errors. Shrealentification of this issue in
1960, signal timing practices have changed to auctar this possible conflict
and, when applied correctly, eliminate the potéritiaa Type-I DZ to occur.

An second form of DZ conflict (termed a Type-Il D&gs identified and formally
documented in a technical committee report prodimethe Southern Section of
ITE (Parsonson, 1974). This DZ refers to the amearo approach to a signalized
intersection where drivers have difficulty makinigetstop/go decision when
presented the CY indication. Literature has alsméel this the “dilemma zone”
or the “indecision zone” which reflects the dynamind probabilistic nature of the

Type-ll DZ (Gates et al., 2006). Figure 1 illustsiboth types of DZ.

Likely Indecision Likely
Go Zone Stop

|-v: Bt e >

Type Il DZ

—
Type | DZ

%“
Max Clearing Distance

Min Stopping Distance

Figure 1: Type-l and Type-ll DZ (Hurwitz et al., 2D
DZ incursions are important to mitigate because e associated with three

potential crash scenarios: rapid deceleration fgpth rear-end crashes, failure to
stop resulting in right-angle crashes, and incanuaigment of clearance distance

leading to left-turn head-on crashes. Many reseaffdrts focus on high-speed
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intersections because the increased speeds havmotiuetial to result in more

severe crashes (Zimmerman & Bonneson, 2004).

2.2 Guidance from Signal Timing Standards

The MUTCD describes the generally accepted stasdasdd for the design and
placement of traffic control devices such as sigsignals, and pavement
markings. The MUTCD provides the accepted meanihghe circular CY
indication as the following: “A yellow signal indition shall be displayed
following every CIRCULAR GREEN or GREEN ARROW sidnadication. The
exclusive function of the yellow change intervabltbe to warn traffic of an
impending change in the right-of-way assignmente Turation of a yellow
change interval shall be predetermined” (MUTCD, 200

The MUTCD clearly identifies the need for inclusiohthe CY indication in the
phasing sequence; however, it provides limited gueg when it comes to the
timing of the yellow change interval, stating tH#& yellow change interval
should have a minimum duration of three secondsaamé@ximum duration of six
seconds. The longer intervals should be reserveduse on approaches with
higher speeds” (MUTCD, 2009). The MUTCD also ndtest the duration of the
yellow change interval should not change on a ej@leycle basis.

The lack of design standards for the calculatiothefyellow change interval has
led to the adoption of numerous practices throughwicountry. One of the most
prominent approaches used to determine the durafidghe CY indication was

developed by the Institute of Transportation Engieg(ITE). The methodology,
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which accounts for many characteristics of the #jgeapproach, is as follows
(ITE, 1999):

Vv

" 2a+64.4g )

y=t

Where: y = length of the CY indication (S)

t = perception-reaction time (use 1.0 s)

V = 85" percentile speed (ft/s)

a = deceleration rate of vehicle (fy/guse 10.0 ftR

g = approach grade (decimal form)
The Traffic Signal Timing Manual (FHWA, 2008) praes the same equation
and description when discussing timing of the CYowedver, several other
strategies have been adopted to determine the @mdm length of the yellow
change interval. Some agencies simply set theweadltange interval equal to one
tenth of the operating speed, while others sim@g the same yellow change
interval for similarly classified or closely spacedersections (ITE, 1999). To
complicate the issue further, the laws dictatingv favivers should behave when

presented with the CY indication also vary geogregdly.

2.3 Differing Laws

When discussing DZs, it is important to mention diféerent meanings and laws
associated with the CY indications that are enfbitteoughout the country. Both
the Uniform Vehicle Code (UVC) and the MUTCD supparmermissive yellow

law, meaning that a vehicle can legally occupyrdarsection on red as long as it
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entered the intersection while the CY indicatiorsva@ing presented (NCUTLO,
1992). By 2009, at least half of the states wetkvong this rule, while the
remaining states follow one of two versions of strietive rule. The first version
of a restrictive rule asserts that a vehicle mtg svhen presented with the CY
indication unless it is unsafe to do so. The otlesion of a restrictive rule states
that a vehicle must clear the intersection befotearns red (i.e. the vehicle may
not enter or be in the intersection when the relication is presented) (Brustlin,
2009).

One could hypothesize that the majority of driveis not realize there are
multiple definitions, or what specific languageused in their state. However, a
traffic engineer should be aware of these subtierdnces as they design and
implement signal timing plans. Traffic engineerowd also be aware of the

various approaches used to identify the locatiothefDZ.

2.4 Existing Dilemma Zone Boundary Definitions

There have been numerous efforts to accuratelytiydhe location of the DZ.
One of the first approaches taken was to idenhtigy DZ boundaries in terms of
the driver's decision to stop or go. Supported g work of May (1968) and
Herman et al. (1963), Zegeer and Deen defined pseream terminus of the DZ
as the location where 90 percent of drivers stopgretidownstream terminus of
the DZ as the location where only 10 percent ofats stopped (1978).

In 1985, Chang et al. (1985) proposed definitiogeolbon a vehicles travel time to

the stop line (TTSL). The authors reported thap8&ent of drivers would stop if
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they were five or more seconds from the stop lened that nearly all drivers
continued through the intersection if they weres ldgan two seconds from the
stop line when presented with the CY indicationhé&texamples of defining DZ
boundaries in terms of TTSL can be found in ther&df by Webster & Elison
(1965) and Bonneson et al. (1994). Figure 2 prevalgraphical representation of

these two definitions from the Traffic Signal TingiManual (FHWA, 2008).

800

Beginning of Zone
End of Zone

600 fromommmmmm e AASHTO $8D~ _—

90% Stopping
400 - rShaR T N e -

200 ___________________:_;_“Lf—_______:_;_____;_;

— o —

Distance from Stop Line, ft

35 40 45 50 55 60 65
Approach Speed, mph

Figure 2: Type-Il DZ Boundary Definitions
Hurwitz et al. (2011a) used field observations wro1000 vehicles to perform a

comparison of the two most common Type-Il DZ défams. The authors found
that there was a statistically significant differenbetween the classification of
vehicles as either downstream, within, or upstreftine DZ when using the two
definitions. Specifically, it was found that thectgon to stop definition classified
far more vehicles as ‘within’ the DZ than the TT8e&finition, which classified

many more vehicles as ‘downstream’ of the DZ. Thierk illustrates the
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potential for a new model to more accurately anusstently identify the DZ for
each individual approaching vehicle. Regardlesw/lmit definition is used, it is
important to understand the natural tendenciesioéis being exposed to the CY

indication.

2.5 Advanced Vehicle Detection

In an effort to reduce the number of vehicles tha presented with the CY
indication while occupying the DZ, advanced vehagection systems have been
developed. These systems detect an approachingle/etietermine if it is in the
DZ based on one of the previous definitions, andstntmmmonly extend the
green allowing the vehicle to pass through the @fofe calling for the CY
indication to begin. These systems will continueetxtend the green while
vehicles occupy the DZ until it reaches a maximueeg time, at which point the
CY indication will be presented and vehicles cauglthe DZ are forced to make
the potentially difficult decision. This phase temation scenario is known as a
“max-out” and is much less desirable than “gap-outtiere the phase is
terminated due to the expiration of the passagertifromoting the safer phase
termination scenario of gap-out is a motivatingché® an accurate definition of
the DZ, so that acceptable gaps in the trafficastreare not missed, which

increases the likelihood of a max-out occurring.

Many of these systems use in-pavement loop detedcjperating in pulse mode
placed in advance of the intersection to detectragmhing vehicles. These

systems vary in sophistication, with the simplestigns providing DZ protection
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based simply on the single point vehicle pulses irfore complex systems use
sequential in-pavement loops and algorithms tomedg speed and length of
vehicles, resulting in improved identification oD& conflict. An example of the
latter can be found in the work of Zimmerman et(2012) in which a group of
in-pavement loops are placed 1000 ft. upstreamhefimtersection. These in-
pavement loops allowed for the determination of ediele’s position, speed,
length, and type. With this information, the asatenl software would compute a
“dynamic DZ” which was unique to each approachimdigle. If max-out was
unavoidable, the system would activate in-pavenh&ids to warn each vehicle

in the DZ of the impending shift of right-of-wayi(@merman et al., 2012).

A relatively new vehicle sensor system is the Wiarex Smartsensor, which is
designed specifically for DZ protection. This systeuses radar to detect
approaching vehicles up to 500 ft. away from thesee and measures their speed
and position throughout their approach to the saetion. Hurwitz et al. (2012b)
conducted a comparison between this radar-baserssystem and a typical in-
pavement loop detector system. It was found thataldar-based system reduced
the rate of drivers exposed to the CY indicationlevim the DZ by 20 percent and

red-light running rates by nearly 70 percent (Hizveit al., 2012b).

2.6 Driver Comprehension and Behavior

The engineering community acts under the assumftiaindrivers understand the

meaning of the CY indication as well as all othexffic control devices. The
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accuracy of this assumption was evaluated by Haretital. (2011b) in a survey-
based research effort (130 participants) consigeha following three questions:

1. Can drivers correctly identify the meaning of th¥ @dication? Results

showed that comprehension rates ranged from 20epero 69 percent
depending on the presentation.

2. Do drivers know what signal indication follows tH&Y indication? An

average of over 80 percent answered correctly.

3. Do drivers accurately estimate the duration of@heindication? It was found

that only 57 percent of drivers estimated the tiomaof the CY to be within

the MUTCD recommended three to six second range.

This research brings to light the fact that manyets struggle to understand the
simple message communicated by the CY indicatiois. dbvious that the signal
presentation is important, but even under the bestitions, only 69 percent of
drivers understand the meaning. The notion thatgusr half of drivers have an
accurate mental model of yellow change intervabtan could contribute to the
difficulty of identifying the boundaries of the DZ.

Rakha et al. (2007) used data from test-track exymasts to gain a better
understanding of driver behavior at the onset ef @Y indication. They found
that the probability of stopping varied from 100¢ent at a TSL of 5.5 seconds to
9 percent at a TTSL of 1.6 seconds Furthermoreh&a# al. reported that male

drivers are less likely to stop when compared ®rtfemale counterparts, and
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that drivers over the age of 65 are significandgsl likely to pass through the
intersection.

Gates et al. (2006) performed field observationwer 1000 vehicle that were
either the first-to-stop or last-to-go at the tevation of priority for that approach.
In addition to making detailed measurements of émasponse time and
deceleration rates, the authors evaluated thetseffecseveral variables on the
decision to stop/go, including: approach speedadce to the stop line, vehicle
type, headway, tailway, action of vehicles in adjgdanes, presence of opposing
vehicles/pedestrians/bicycles, presence of oppdgiftdurn vehicles, flow rate,
and cycle length. The authors report that the fastith the most influence on
driver decision making was the estimated TTSL, with following conditions
associated with a higher probability of stoppinigorser yellow interval, longer
cycle lengths, vehicle type, presence of oppostaglway users, and absence of
vehicles in adjacent through lanes (Gates et @6

Yet another research effort relying on empiricallyserved data focused on the
dynamic nature of the DZ. Liu et al. (2006) fouhdttthe length and location of
the DZ varies with the speed of the vehicle, reactime, and the operational
tendencies of different driving populations. Thehaws also found that there are
significant differences between the observed sizé lacation of the DZ and
theoretical estimates for these values. The neededoice or eliminate that
difference contributes to the argument to utilize & a new method to more

accurately model DZs.
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2.7 Fuzzy Logic and M odel Development

FL is a concept that was first described by Prafekstfi Zadeh at the University
of California Berkley. It was based on the idea thamans are capable of highly
adaptive control even though the inputs used arala@ys precise. In an attempt
to mimic the human decision making process, FL waseloped to make
decisions based on noisy and imprecise informatipats. “FL provides a simple
way to arrive at a definite conclusion based upague, ambiguous, imprecise,
noisy, or missing input information” (Kaehler, 1998 ypically, fuzzy systems
rely on a set of if/then rules paired with membgrdiinctions used to describe
input and output variables. In short, the fuzzyesulwork to ‘fuzzify’ and
aggregate the input values, convert them into teo®utput variables, and
finally ‘defuzzify’ the values of the output funotis (Celikyilmaz & Turksen,
20009).

Research efforts have focused on using FL to bettetel and understand driver
behavior as they interact with traffic control dms, such as traffic signals. As
drivers approaches a signalized intersection, tmeaxst base their actions on
assumptions about their speed, deceleration/aatieler capabilities, distance
from the intersection, and duration of the curnerdisplayed indication. To
further complicate things, a driver must continugusake these approximations
during the approach to the intersection, making form of driver behavior a

viable candidate for FL modeling.
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FL has been used as a tool for the developmentnacadaptive traffic signal
controller based on its ability to qualitatively ded complex systems (Yulianto,
2003). Yulianto took this approach a step furthesing it to control signal
operations under mixed traffic conditions (refegrito traffic streams composed
of vehicles with a wide range of operating chanasties; more commonly found
in developing countries). Results showed a gerdgatease in delay under FL
control when compared to fixed-timed control.

FL has also been proposed as a tool for calculétiegellow change and all-red
clearance intervals for a traffic signal. Kuo et(4P96) considered variable such
as level of congestion, vehicle location, speegyr@gch grade, and intersection
width as inputs to a FL model. This model was theed to determine the
appropriate yellow change interval time, all-rechdj and green extension time
for that phase. The authors suggest that FL hay madvantages over traditional
timing practices as it provides dynamic valuestfa yellow change and all-red
clearance intervals (Kuo et al., 1996).

It is important to note the uncertainty and anxi@sgociated with driver behavior
in the DZ. Rakha et al. (2007) performed a fielddgt on 60 participants and
evaluated their behavior at the onset of the CMcattbn. They modeled the
uncertainty in the decision-making process withegnation described by Yager

(1982) as seen in Equation 2:

A=1- [ ——da )
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WhereA is the level of uncertainty, ard, is the number of alternative choices.
Since there are only two alternatives a driver clamose from in reaction to the

CY indication, the previous equation can be reduodequation 3:
1 .
A=1-maxF; R )+§ min@s R ) 3)

WherePs andPg are the possibility of stopping and going, respety.

This research will build and expand upon the wofrkHarwitz et al. (2012a),
which focused on using fuzzy sets to better desdditiver behavior in the DZ.
The previous research effort used field data, $ipady the distance to the stop
line at the onset of the CY indication, from higheed signalized intersection
approaches in Vermont to build a FL model. Withultss comparable to the
previous efforts of Rakha et al. (2007), the audhargue that the FL model more

effectively accounts for driver behavior in the BWan previous models.

2.8 Simulator Validation and Standar ds of Practice

Several studies have focused on the validatiorriging) simulators to accurately
reflect a driver’'s behavior as they interact witbriv zones (Godly et al., 2002;
Bella, 2005: McAvoy et al., 2007; Bella, 2008; Matttet al., 2010). These studies
used the advantages associated with simulator iex@etation, including the
improved safety and efficiency of data acquisiteord the control of extraneous
variables. Simulator validation efforts will be dissed through the consideration

of work zones experiments as these are more nusenud their evaluations are
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dependent on similar performance metrics, includgspged across roadway
segments of interests.

Studies concerned with the validation of simulatorsspeed related research is
of particular interest to the DZ modeling effort. Has been repeatedly found
(Godley et al., 2002, Bella, 2008) that driversdté¢n travel at slightly higher
speeds in simulated environments, which some hantibuted to a difference in
perceived risk. Hurwitz et al. (2007) determinee@ #@ccuracy in which drivers
could perceive their speed in both a real worldiremment and a driving
simulator. It was found that drivers consistentivelled about 5 mph faster in
the simulated environment compared to the realdyavhich was consistent with
the findings of Godley (2002) and Bella (2008). Téathors concluded that
driving simulation could be an effective tool fopeged-related research if the
appropriate question was asked.

Bella (2005) tested the validity of the Inter-Unisity Research Center for Road
Safety (CRISS) simulator located at the Europegerumiversity Research Center
for Road Safety by recreating an existing work zonédighway Al in Italy.

Over 600 speed observations were taken throughewwork zone and compared
to the speed measurements from the simulated emwént. The study found that
there were no statistically significant differentetween field-observed speeds
and those from the simulated environment at angtioo throughout the work
zone (Figure 3). Additionally, Bella hypothesizédttthe lack of inertial forces

on the driver, since it was a fixed-base simulatontributed to a decrease in
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speed reliability under simulated conditions asrnfameuvers became more
complex.
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Figure 3: Results from simulator validation stu@gl{a, 2005)

In 2007, McAvoy et al. attempted to validate driyisimulation as a tool to
evaluate driver behavior under nighttime conditiofise validation process was
part of a larger experiment, including field obsdions and the simulated
experiment, looking at the effectiveness of tempoteaffic control devices with

nighttime applications. Spot speed data taken tiivout a series of work zones
was compared to similar speed data from 127 simwfarticipants, with results
suggesting that driver's perception of risk wasngigantly different under

simulated conditions and that driving simulationynmt be an appropriate tool
for evaluating driving behavior during nighttime netitions (McAvoy et al.,

2007). As can be seen in Figure 4, drivers in theulated environment did not

slow down through the work zone like those in tieéfstudy.
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Figure 4: Speed comparison (McAvoy et al., 2007)

Mathur et al. (2010) developed a potential framéwfor validation of a driving

simulator, which was demonstrated using a work zscenario. In a similar

fashion to the previously discussed studies, fiddgervations were taken through

a work zone on |-44 in Missouri which was then emted in a simulated

environment. Using the fixed-base simulator at Miss S&T, 46 participants

traversed the simulated work zone while speed data being recorded. An

objective evaluation was performed, beginning vétlgualitative, or graphical,

comparison of the speed data (Figure 5). Once staeafirmed that the data sets

were similar, an extensive statistical quantitatieealuation was performed

resulting in absolute and relative validation af gimulator.



20

Il
a0+ —sk— Sneeds fom Drving Simulator -
—— Sneeds forn GRS
é Speeds from Video
. | Standard Devigtion of Video Data
s *, - -
t\
Speed [
%*
(mph) L N
60} o .
a0 -
| | | | | | | I | | | | |

|
92 1T

182 1818 116 1|14 1812 181 1E08 1806 1804 1BDZ 18D 1788 17HB 1794 1T
Fye WIF DNP o (LGt SL LLE2  TA CA EW
Mile Markers

Figure 5: Speed comparison (Mathur et al., 2010)

Participants were also asked to complete a postrempntal survey in which
they rated the realism of several aspects of thmulator, resulting in generally
positive feedback (Mathur et al., 2010).

There is a persistent concern among researchenst ahe validity of using
driving simulation to evaluate driver behavior, doemarily to differences in
perceived risk between the simulated environmedttha real world. Validation
of a simulator can occur on one of two levels, eitlabsolute or relative
validation, based on observed differences in parémce measures such as speed
or acceleration (McAvoy et al., 2007; Bella, 2008).simulator is relatively
validated when the differences in performance oleskrin the simulated
environment are of similar magnitude and in the esaghrection from those

observed in the real world. A simulator becomesohitely validated when the
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magnitude of these differences is not significardifferent. For a simulator
experiment to be useful, it is not required thasahbite validity is obtained;

however, it is necessary that relative validitgssablished (Tornos, 1998).

2.9 Summary

The literature has revealed that differences indddndary definitions can result
in deficient DZ zone protection. Various techno&sghave been used to reduce
the number of vehicles caught in the DZ, but curpractices may not correctly
identify the location of the DZ, therefore, forcidgvers to make difficult stop/go
decisions. FL is widely accepted as a tool for niadesystems with imperfect
data, and the work by Hurwitz et al. (2012b) inthsait has the potential to
improve the identification of vehicles that may ¢mught in a dynamic DZ. A
limitation of that research effort, and many othevas the lack of high-fidelity
measurements of vehicle speed and position. Thk ofoGates et al. (2006) and
Rakha et al. (2007) identify speed as a criticatdaaffecting drivers’ decisions.
Results have shown that simulator studies are ¢tapzbefficiently providing
detailed and reliable results without exposing ehsvto potentially hazardous
conditions. It is hypothesized that a carefullyigesd simulator experiment will
contribute to existing gaps in knowledge relating DZ identification and

protection.
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3 Methodology

This section reviews the specific research objestias well as the experimental
methods implemented to address them. It also pesvidformation about the
Oregon State University (OSU) driving simulator attte scenario control

features used to develop the experimental scenarios

3.1 Research Objectives

This research focuses on the following objectives dontribute to the

understanding of driver behavior in DZs.

1) Analyze deceleration rates of stopping vehiclepoading to the yellow
light as measured in the driving simulator and carapghem to previous
measurements from the real-world to validate theufator results.

2) Develop and validate multiple FL models based timeeitime to stop bar,
position data, or speed data obtained from a djiveimulator and
compare the models.

3) Compare the probability to stop distributions frime driving simulator to
previously observed results by Rakha et al., (200% Hurwitz et al.,

(2012a).

3.2 Driving Simulator

The Oregon State driving simulator is a high-fiethotion base simulator. The
simulator consists of a full 2009 Ford Fusion cabunted on top of an electric

pitch motion system. The vehicle cab is mountedagritch motion system with
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the driver's eye-point located at the center of vleving volume. The pitch
motion system allows for onset cues for accelemaéind braking events. Three
projectors are used to project a 180 degree fr@w \and a fourth projector is
used to display a rear image for the driver’'s centgror. The two side mirrors
also have embedded LCD displays. The vehicle catruments are fully
functional and include a steering control loadirygtem to accurately represent
steering torques based on vehicle speed and gjemngie. The computer system
consists of a quad core host running Realtime Taolgies SimCreator Software
with an update rate for the graphics of 60 Hz. Sineulator software is capable of
capturing and outputting highly accurate valuesperformance measures such as

speed, position, brake, and acceleration. The sitois pictured in Figure 6.

Figure 6: Oregon State Driving Simulator

3.3 Scenario Layout and I nter section Control

The experiment was designed to maximize the nunobddZ conflicts while
limiting the driving time participants spent in tlsmulator. To validate the
measurements of driver response to the CY, thewawdcross-section and

adjacent land use were designed to be consistémthe previous work by Rakha
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et al. (2007) and Hurwitz et al. (2011a). In bo#se&s, roadway cross-sections
consisted of two lanes in the direction of trawelsubstantial clear zone and
minimal development of adjacent land. The Rakha esrpent required
participants to drive along a test track at 45 ngty the observed 85ercentile
speed in the Hurwitz study was 57.5 mph. With thepeeds in mind, the
experiment was divided into two parts: one withastpd speed of 45 mph and
one posted at 55 mph. The higher posted speedeivderced by a slightly wider
clear zone and less surrounding development. Figultastrates the typical road

environment used in this experiment.

Figure 7: Typical Roadway

Within each speed condition, drivers were exposedtié¢ CY indication at various
locations on their approach to the intersectionc&ithe prevailing DZ definition
uses a measure of TTSL, the presentation of thén@i¢ation was varied base on
the TTSL of the vehicle. To adequately cover thegeaof potential DZ conflicts,

each driver was presented with the CY indicatiorl htdifferent TTSL values
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ranging from 1 to 6 seconds at half-second intsrvAlseries of 22 approaches,
each separated by roughly 2000 feet of roadwaye werdeled forming a large

figure-eight as shown in Figure 8.
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Figure 8: Intersection Layout

The duration of the CY indication was determinethgthe ITE change interval
equation described in Equation 1, resulting in adTivation of 4.5 seconds for the
45 mph intersections and 5.5 seconds for the 55intprsections. The number of
participants assigned to traverse the high-speettieotow-speed portion of the
track first was counterbalanced. To further elinteneonfounding effects due to
the order of exposures, each participant was exbtsea randomly generated

order of TTSL CY indication triggers.
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A data collection sensor was placed on the apprt@melch intersection, tracking
specified parameters from about 650 ft. away framgtop line until the vehicle
cleared the intersection. The following parameteese recorded at roughly 15
Hz (15 times a second).

 Time

* Speed (instantaneous)

» Position (instantaneous)

» Acceleration/Deceleration (instantaneous)

» Signal Indication

A new text file was created each time the test alehéntered a sensor on the
approach to the next intersection. This allowed dar organized and efficient

transfer of data to a spreadsheet applicationuidhér analysis.
3.4 Texting as a Distractor

To reduce the likelihood that participants deduttelprimary research question
of the study, thereby potentially altering theithbeior in response, they were
asked to complete several texting tasks while tsang the route. As driver’s
approached the horizontal curves, they were predemith a message on a
billboard. Each message was a phrase or movieitithich one of the key
words was left out, and the participants were askedend a text message
containing the missing word to a phone number there given prior to
experimentation. Participants navigated a totakigfcorners (three high speed

and three low speed), two of which were controlthwio texting task, two of
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which required a short (three character) respoasd,two of which required a

longer (9 or 10 character) response (Tahle

Table 1: Text Message Prompts

Curve #| Speed | Condition Sign Response
Curve 1 Control None N/A
Curve 2 High Texting ___Ventura: Pet Detective Ace (3)
Speed lllegal
Texting |
Curve 3 Allowed ___Forest, Run! Run (3)
Curve 4 Control None N/A
Low Texting . . , .
Curve 5 Speed lllegal Pirates of the : Dead Man’s Chest Caribbean (9)
Texting e Chocolates
Curve 6 Allowed Life is Like a Box of (10)

Participants were instructed that the backgroundrcof the sign denoted the
laws governing texting while driving, with blue idting it is illegal and green
indicating it is legal. The data associated witlvelr glance patterns and vehicle
control parameters was not analyzed as a pariofeékearch, however it is hoped
to serve as a starting point for future researdortst Anecdotally, in post
experiment debriefing, nearly every driver supposieat the experiment was

concerned with texting while driving.

3.4 Procedure

Interested participants were asked to meet a studeearcher in Graf Hall at the
driving simulator laboratory. They were briefly iotluced to the facility before
being escorted to a nearby office where the infarncensent process was

completed. Upon returning to the lab, each pawitipvas equipped with the eye-
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tracking device and seated in the driver's seahefdriving simulator. A student
researcher informed the participants about drivmthe simulated environment,
and then each participant was allowed three minteslrive in a practice
environment to calibrate their driving in the simar and assess the potential for
simulator sickness.

Upon completion of the practice drive, participamere given additional
instruction on how to drive in the experimental rem#o. Each driver was
instructed to behave as they normally would andetact to all traffic control
devices in a manner consistent with their typicavidg behavior. They were
given instructions on how to perform the textingktand then they were allowed
to begin the experiment. Upon completion of the eexpent, drivers were
escorted back the nearby office where they comglat@ost-test questionnaire,
received a $20 cash compensation for participatamg, were debriefed on the

purpose of the experiment.

3.5 Participants

A total of 30 drivers were used to develop anddatk the FL model. To acquire
30 drivers, 38 drivers actually participated in &xperiment where five withdrew
due to simulator sickness, and an additional thmeee were deemed unreliable
due to highly questionable behavior by the driverall three cases, the drivers
focused completely on the texting task and failedespond in any way to the

intersections. Conversation following the experitnervealed that they did not
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understand how to respond to traffic control devicethe scenario and that they
would not normally drive in that fashion.

Table 2 provides the basic demographic informataescribing the driver
population used in this experiment. There was agr-oepresentation of college
aged students in the experiment, resulting in atixaly young subject
population. This is not atypical for a study ofsthiype (simulator experiment
taking place on a university campus).

Table 2: Subject Demographics

How many year s have you been alicensed driver ?

Possible Responses Number of Participants Percent of Participants
0-5 9 30%
6-10 13 43%
11-15 6 20%
16-20 1 3%
20+ 1 3%
How many milesdid you drive last year ?
Possible Responses Number of Participants Percent of Participants
0-5,000 8 27%
6,000-10,000 10 33%
11,000-20,000 8 27%
20,000+ 4 13%
What type of vehicle do you typically drive?
Possible Responses Number of Participants Percent of Participants
Passenger Car 21 70%
SUV 4 13%
Pickup Truck 5 17%
Van 0 0%
Gender
Possible Responses Number of Participants Percent of Participants
Male 17 56%
Female 13 44%
Age
Minimum Average Maximum

19 245 37



30

4 Resultsand Discussion

This chapter presents the findings from the evaloawof driver behavior
conducted in the OSU driving simulator. It explonesponses to the post-
experiment survey as well as considers variouscéspe the observed driver
response to the CY indication, including vehiclajectory, decision to stop/go,
and deceleration rates. It also proposes and eeslaaFL model to help describe

the boundaries of a Type-Il DZ.

4.1 Driver Behavior

4.1.1 Questionnaire and Driver Understanding
In the post-experiment questionnaire, drivers wasked questions related to

traffic signal operation and the CY indication, tlesults can be found in Table 3.
The aggregate response to the first question itelicdnat drivers think the CY
has a mean value of 3.6 seconds with a standardtaevof 1.0 seconds.

The second question reveals that the majority ofeds understand the Oregon
laws relating to the CY indication, which is bessdribed by the last option. This
finding is consistent with the research by Hurvétzl., which found that 69% of
drivers correctly understood the meaning of thei@cation (2011b).

Nearly all subjects agreed that their decision tap/go is influenced by both

speed and distance to the intersection, which stpplee development of a FL
model based on these parameters. Roughly halieadrlvers felt that presence of
law enforcement and the action of nearby vehiclemiley also affect their

behavior.
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Table 3: Driver Response to Questionnaire

How long do you think the typical yellow indication duration is?

Number of Percent of
Possible Responses Participants Participants
2 seconds 1 3%
3 seconds 17 57%
4 seconds 9 30%
5 seconds 1 3%
6 seconds 1 3%
7 seconds 1 3%

Which of thefollowing best describesthetraffic lawsrelating to the yellow
indication in Oregon?

Possible Responses Number of Percent of
Participants Participants
A vehicle can occupy the intersection on red as 4 13%
long as it enters the intersection while the
yellow indication is being presented.
A vehicle must clear the intersection before it 5 17%
turns red.
A vehicle must stop when presented the yellow 21 70%

indication unless it is unsafe to do so.

What factors do you fedl are critical when deciding to stop or go when presented
with the ydlow indication (circle all that apply):

Number of Percent of

Possible Responses Participants Participants
Intersection width 6 20%
Grade of approach 11 37%
Speed 30 100%
Distance to intersection 29 97%
Presence of law enforcement 16 53%

Action of nearby vehicles 14 47%



32

4.1.1 Vehicle Trajectory
Time-space diagrams can prove a valuable tool l{p \isualize the trajectory of

a vehicle approaching an intersection. Due to thistness and accuracy of this
data set, several time-space diagrams were devkhlopbelp understand driver
responses to the CY indication. Each line on tharés represent the path of a
single vehicle approaching the intersection. Fig®eand 10 show the vehicle
trajectories for a single participant under botd gosted 45 mph (9) and posted
55 mph (10) conditions. In these figures, the slopthe line represents the speed
of travel, and curvature indicates acceleratiorgtéation.

In both figures, the vehicles positioned closesih® stop line at the onset of the
CY indication are more likely to proceed througle tintersection, while those
further back are more likely to stop. For vehidlest stop, the degree of curvature
of the line is an indication of the deceleratioterthat was experienced to bring
the vehicle to a complete stop. In Figure 10, ih b&® seen that some vehicles
decelerated at a higher rate than others in oodstop before the stop line.

These figures assist in identifying inconsisterttdagor for an individual driver.
In Figure 9, you can see that the driver chosetdp the vehicle when it was
roughly 200 feet away from the intersection on timset of the CY, but then
chose to proceed through the intersection wherag mughly 250 feet away at
the onset of the CY. This inconsistency points tasasome degree of indecision
for the driver in this region on the approach te thtersection. It is difficult to

draw statistical conclusions based on data predestelusively in this fashion,
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but it provides a meaningful visualization of thevdr response to the CY

indication.
-100.00
100.00
|
El 1
i 200.00 :
o |
o
] |
@ 300.00 !
- |
[}
o 1
C
] |
4
a 400.00 |
|
1
| Yellow Trigger
S 4 500.00 + ! ,
i | — = Red Trigger
”, 1
i 1
|
”,
600.00 : — : :

Time (Sleconds} I

Figure 9: Lower Speed (45 mph)
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Figure 10: Higher Speed (55 mph)

Another way to visualize this type of data is tegday the trajectories for all of
the drivers on a single plot. By making each figigresent a single time-to-stop
line threshold, insight can be gained into where itiost inconsistent behavior
occurs. Figures 11, 12, and 13 provide trajectaitg dor all thirty drivers.

In Figure 11, it can be seen that vehicles areecloghe intersection at the onset
of the CY indication, and they consistently procéeeugh the intersection well
before the CR. Figure 12 shows that drivers belia\ee less consistent manner
when they are 3.5 second away from the intersecsometimes continuing
through and sometimes stopping. This figure alsavshvariability in the location

where vehicles completed their stop, some of winigty be attributed to a poor
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selection of deceleration, but mostly differenceshow drivers perceived their
position relative to the stop line. Figure 13 shdhat almost every driver stops

when they are 6 seconds away from the intersedaiothe onset of the CY

indication. It can be seen that there were twaaimsts of red light running.

Distanceto Stop Bar (Feet)

Yellow Trigger
— = -Red Trigger
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Figure 11: Vehicle trajectories for TTSL=1 sec
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Figure 13: Vehicle trajectories for TTSL=6 sec
4.1.2 Decision Making
A driver’'s decision to stop before or proceed tlgtouhe intersection is the
foundation for developing models to describe the R4s postulated that both
speed and position are highly influential to a dris decision; therefore driver
behavior is presented in relation to the TTSL (Whitcludes both factors). Table
4 and Figure 14 show that all drivers went whery there 2 seconds or less from
the intersection at the onset of the CY indicatibhis finding is consistent with
the finding of Chang et al. (1985) and Gates et(2006) who found that nearly

all vehicles proceeded through the intersectionnmviey were two seconds or
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less away at the onset of the CY. At a TTSL ofat.§reater, most drivers (93%)
stop before the intersection and red-light runrstagts to occur.

Table 4: Driver Decision

TTSL 1 15 2 2.5 3 3.5 4 4.5 5 5.5 6

Go 100% 100% 100% 93% 76% 41% 28% 10% 3% 7% 0%
Stop 0% 0% 0% 7% 24% 59% 72% 88% 93% 88% 97%
RunRed 0% 0% 0% 0% 0% 0% 0% 2% 3% 5% 3%
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By changing the horizontal axis from TTSL to vehigbosition, the driver’s

 Go
M Stop
i Run Red

Number of Decision
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Time to Stop Line @ Yellow Trigger (sec)

Figure 14: Driver Decision

decision data can be compared to empirically olexbdata sets used by Rakha et
al. (2007) and Hurwitz et al. (2011a). Figure 16vgh the probability of stopping
for all three experiments, one of which was condddh the field, one on a test

track, and one in a driving simulator.
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A two-sample Kolmogorov-Smirnov test was used tampare the three
distributions. It was found that there are no staal differences in the
distributions from research by Hurwitz et al. ardstresearch at the 95%
confidence level, and that the distribution fromkRa et al. did not share a
continuous distribution with either study at the¥®%onfidence interval. The
curve generated for this research is similar ireagrto the curve generated by
Hurwitz et al., (2011a), and similar in shape theve generated by Rakha et al.,
(2007). The shift to the left associated with thakRa et al. curve could be
attributed to a lower operating speed and a reddégtdnce range during data

collection.
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4.2 Deceler ation Rates

Deceleration rates are of critical importance whealuating drivers’ decisions to
stop or go. The ITE equation for the timing of tfeange interval (Equation 1)
incorporates an assumption for a comfortable demtite rate (10 ftA. To
support the validity of using a driving simulatoravaluate driver behavior in this
way, it is important that the observed deceleratates are comparable to that
threshold as well as other studies of this natdwerage deceleration rates were
calculated as the speed at initial brake applioativided by the time it took to
come to a complete stop. Figure 16 plots the cutiweladistribution of
deceleration rates for this study and several ptesviield studies. As shown, the
deceleration rates observed from the simulated rerpat are consistent with

previous field research.

100%
Gates et al., (2006) ~_

90%

20%

Williams (1977)
70%

250%
)

=
W50% -
o Wortman, Matthais (1983)

[
D a0%

30%
=== Noore, Hurwitz (2012)

20%

10%

0%
0 5 10 15 20 25
Deceleration Rate (feet/sec”2)

Figure 16: Average Deceleration Rates
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Table 5 provides summary statistics associated \hign deceleration rates
determined from this research as well as thoselajisd in Figure 16.
Deceleration rates for this experiment appear toslghtly higher than those
reported by Gates et al., (2006); however, theyeapfo fall within the range of
values reported by other studies. Figure 16 andleT&b demonstrate the
comparability of this data to that obtained fromeldi observations. The 95%
confidence intervals calculated and included inl@ab indicate no statistical
difference in the mean deceleration rates from tbsgarch and the research by
Gates et al., (2006). This finding provides prefiary evidence to support the
validation of the driving simulator for researchncerning driver response to
traffic signals on tangent road.

Table 5: Deceleration Parameters

95% ClI Deceleration Rate
Low High 15% 50% 85%

Authors Year Mean SD

Moore, Hurwitz 2012 11.7 4.0 3.62 19.78 8.0 10.5 15.8

Gates et al. 2006 10.1 2.8 444 15.76 7.2 9.9 12.9
Chang et al. 1985 9.5 - - - 5.6 9.2 13.5
Wortman, Matthais 1983 11.6 - - - 8.0 11.0 16.0

To aid in the visualization of the comparison, Feu7 displays the means and

95% confidence intervals for both studies.
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4.3 Fuzzy Logic Modd

This section presents the use of FL to model DZ$ thie model’s ability to
predict a driver’'s behavior given certain paranget@he FL models were created
and validated with the use of the FL toolbox avddain MATLAB. As
previously described, the general FL process ire®lusing predictor variable
data (i.e. speed and/or position) to create merhlgefanctions, a process which
is referred to as “fuzzification.” Inference is thesed to relate the input variables
to a specified output function, and finally “defifezation” is used to relate the
output to expected outcomes. Typically, visual extn of input variable data is
used to estimate the shape and parameters asdowdte input membership
functions.

The MATLAB toolbox allows the software to determispecific membership
function parameters for both input and output \@ea (and the rules relating
them) to be selected based on a “training” procksasses an Adaptive Neuro-

Fuzzy Inference System (ANFIS) to develop a FL nhdokesed on a set of
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training data. For this research, behavior datenfi randomly selected drivers
was used to “train” the creation of the FL modeid @ata from the remaining 15
drivers was used to validate the model and evaltaf@edictive power.
The models presented in this section are foundeditbier position (distance to
stop bar), or a combination of speed and position.

4.3.1 Position Based FL Model
The first FL Model developed was based exclusiwslya vehicles distance to the
stop line at the onset of the yellow indication gpion). The FL model was
developed in MATLAB by determining the shape andnber of membership
functions that should be used to describe eachtimptable. The FL model
development process previously described (Secti@®nrdsults in the creation of a

probability to stop curve, as shown in Figure 18.
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Figure 18: Position-Based FL Model Surface
Various shapes were evaluated, and it was detedmihat trapezoidal input
membership functions best describe this data. Busviresearch on DZs has
utilized triangular membership functions, which asemilar to trapezoidal
membership functions in that they consist of orfgight lines, but they lack the
horizontal surface at the peak. The more membefsinigtions that are included
to describe each input variable, the more closeily surface will resemble the
shape of the raw data. However, if too many mentiyersinctions are used, the
model will be over fit to the data and its predietiability will deteriorate. With

that in mind, three membership functions were usedescribe the input variable
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of position in this model and are defined in TaBleThis is consistent with
previously documented efforts by Hurwitz et al.0X2a) in which the three

membership functions were described as “close, imjdohd far distance.”

Table 6: Input Membership Functions for Vehicle iRos (VP)

Fuzzy Subsets Membership Function
1.0 VP <1282
Membership Function 1 FWP) ={237 - (%) VP, 1282 <VP < 222
0 222 <VP
( 0 . VP <1284
i -1.37 + (@) VP, 1284 <VP <2223
Membership Function 2 fvp) = 1 2223 <VP <£363.6
l 4.86 — (%) VP,  363.6 <VP < 457.7
0 457.7<VP
0 VP < 364
Membership Function 3 f(VP) =4-3.87 + (%) VP, 364 <VP <458
1 458 < VP

After creating and training the FL model, MATLABrcavaluate new input data
and provide the output value determined by the rdeesition data from the
second 15 drivers was input into the model andefach interaction with the
signal, a probability to stop was reported. A pialiy to stop greater than 0.5
was interpreted to identify a condition resultingghaa vehicle stopping before the
intersection, and a value less than 0.5 was irgeggdras a condition where the
vehicle continued through the intersection.

These values were compared to the actual obsemrviedvior of the second 15

drivers and the predictive power of this modelesatibed in Table 7.
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Table 7: Accuracy of Position-Based Model

Predicted
Stop Go % Correct
Stop 145 11 93%
Observed
Go 27 137 84%
Total 88%

As shown, the position based FL model correcltydjated the behavior for the
remaining 15 drivers with an accuracy of 88%. Tieisult is slightly better than
the 85% accuracy presented by Hurwitz et al. (2pi®atheir position-based FL
model. Raw data from the 2012 research was obtanddevaluated according
this position-based model and the results wereticknto those reported by
Hurwitz et al. This table also provides insight@asvhere the model is more prone
to generating errors, and in this case the majaftyhe errors (71%) occurred

when the model predicted a vehicle would stop whemas observed going.

4.3.2 Speed and Position FL Model
A new FL model was then created by adding speea sescond input variable.
The addition of a second input variable createslarntional surface to describe
a vehicle’s probability to stop as shown in Figlige Similar to the position-based

model, trapezoidal membership functions were useddéscribe the input

variables and are described in Table 8 and 9.
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Table 8: Input Membership Functions for Vehicle iRos (VP)

Fuzzy Subsets Membership Function
1.0 VP < 198.7
Membership Function 1 f(WVP) =<2.05— (TES) VP, 198.7 < VP < 387.2
0 387.2<VP
0 VP <198.2
Membership Function 2 FOVP) =1 -1.05 + (@) VP, 198.2 < VP < 386.9
1 3869 < VP

Table 9: Input Membership Functions for Vehicle &pévS)

Fuzzy Subsets Membership Function
1.0 VS < 43.39
Membership Function 1 FS) =13.99 — (%) VS, 4339 <VS<57.89
0 57.89 < VS
0 VS < 44.02
Membership Function 2 FVS) =4 342 + (ﬁ) VS, 44.02 <VS <5691
1 56.91 < VS
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Figure 19: Speed & Position-Based FL Model Surface
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Again, data from 15 drivers was used to developntibelel, which was then used
to predict behavior for the remaining 15 driverss shown in Table 10, the
accuracy of this model was slightly better thanrtimlel based on position alone;
however the pattern of errors shifted so that 66%he errors were associated

with a vehicle observed stopping when it was ptedit¢o go.

Table 10: Accuracy of Speed/Position-Based Model

Predicted
Stop Go % Correct
Stop 132 24 85%
Observed
Go 12 152 93%
Total 89%

4.33TTSL FL Model

Taking the previous model one step further, speetl @sition was combined
into a single variable (TTSL) prior to its use inF& model. This model was
developed using trapezoidal functions (describedTable 11) and a similar
process to that described for the other models. grbbability-to-stop surface,

shown in Figure 20, looks similar to that obtaitgdplotting the raw data.
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Table 11: Input Membership Functions for Time-Toystine (TTSL)

Fuzzy Subsets Membership Function
1.0 TTSL <1.76
. . 1
Membership Function 1 f(TTSL) =<2.74 — (m) TTSL, 1.76 < TTSL < 2.77
0 2.77 < TTSL
0 TTSL <1.77
1
—-1.79 + (m) TTSL, 1.77 < TTSL £ 2.76
Membership Function 2 f(TTSL) = 1 2.76 < TTSL < 4.33
1
3.7 — (m) TTSL, 433 <TTSL <5.5
t 0 55 < TTSL
0 TTSL <4.13
. . 1
Membership Function 3 f(TTSL) = { —3.44 + (ﬁ) TTSL, 4.13 <TTSL < 533
1 5.33 < TTSL
12 T T T T T T T T T
1 - —
08+ -
2 06 -
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Figure 20: TTSL-Based FL Model Surface

This model provides the highest predictive poweewhattempting to predict the

behavior of the remaining 15 drivers. Table 12 sholat this model is slightly
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more accurate than the previous ones, and thaettoes tend be related to

proceeding vehicles that were predicted to stopo)78

Table 12: Accuracy of TTSL Model

Predicted
Stop Go % Correct
Stop 149 7 96%
Observed
Go 25 139 85%
Total 90%

4.3.4 Model Comparison
The overall predictive power of all three modelsesy similar, between 88% and

90%. One might expect that the speed/position madelthe TTSL model would
produce the same result. While they are very smitee observed differences can
be attributed to slight variations in parameteresegbn during the model
development process. It was expected that the iaddibf speed would
significantly increase the accuracy of the modelsHould also be noted that
speeds were relatively consistent throughout thpeement and there was little
interference from other vehicles. This finding dam interpreted to suggest that
under similar conditions, distance to the inteisectlone provides much of the
predictive power of the model. If greater speedalality is present in the traffic
stream (due to congestion or other factors), imdial speeds may become more
important to accurately predict driver behavior.

It is interesting to consider the shift in the typlebehavior that was most often

predicted falsely. Both the position-based and T-b&ked models tended to
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predict a vehicle would stop at the intersectiohewin fact it proceeded through
it. The speed/position-based model seemed to revdsat trend, predicting a
vehicle would proceed through the intersection whestopped. This suggests
that an increased sample size and refinement ahtigels may lead to increased

accuracy.
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5 Conclusions

5.1 Simulator Validation
Driving simulation has been recognized as a sdfiejent, and effective method
to evaluate driver behavior under various condgioHowever, it is critically
important to scope research questions appropriately driving simulator, and
there is a need for extensive validation of thesltesobtained in laboratories of
this type. As such, efforts should be made to compasults from simulator
experiments with those obtained from alternativieegxnental mediums (surveys,

test-tracks, field study, etc.).

Driver decision making and vehicle deceleratiomsadre important factors when
attempting to evaluate and model driver behavid4is. Data collected as part of
this research to describe these two factors waspamed to several previous
research studies conducted in different experinhengliums on this topic. The
comparison provides evidence that driver respoasgaffic signals on tangent
segments of roadway can be effectively evaluated modeled in a driving

simulator of a similar configuration to the one @ted by the OSU Driving and

Bicycling Research Lab.

5.2 Model Development and Comparison
FL is a widely accepted and applied strategy fodetiog systems with imprecise
input data. In one sense, it enables a computéreasson” more like a person

would, making it a viable option for modeling dnvieehavior. In the moment a
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driver identifies that the traffic signal has tudngellow, they must make rough
estimates about their position, speed, and otletorfa to arrive at a decision to
stop or proceed. When applied to this type of @ohlFL essentially enables a
computerized model to replicate that decision n@kmocess with a similar

consideration of factors.

The FL models proposed in this research demonstretie ability to predict
driver behavior with a reasonably high degree @lusaacy (88% - 90%). Due to
similar accuracy thresholds, vehicle speed doesppear to be as influential as
expected for the scenario described in this rebe&s previously mentioned, it is
suspected that this might not be the case wher tisemore variability in the

speed of the traffic stream.

When the position-based FL model was applied taldta used by Hurwitz et al.
(2011), the predicted behavior was exactly the sasehat reported by the
authors. Since the previous work was founded dd beservations, this strongly
supports the validity of data collected in the ohgy simulator as well as the

procedure used to develop the FL models.

5.3 FutureWork
This research has developed preliminary evidenceuiggest the validity of
driving simulators for modeling driving responsetttaffic signals. With that said,

there is the potential for the following additionmabrk in this area:
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A larger, more diverse sample size would allowftother refinement of
the parameters used to develop the membershipidasctand ultimately

the predictive power of the model.

The models developed in this research focused eedspnd position.
While these are thought to be the most influerfaators, literature has
identified other factors (e.g. action of nearbyigkds) that could also help

explain driver behavior.

These models have demonstrated their ability talipredriver behavior
based on speed and position. One of the most impoguestions still
remaining is how these models can be applied tocrsignal design and
operations practice. This research contributesh® understanding of
driver behavior within the DZ, and the ultimate bathe application of

this information to improve DZ protection.
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