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Detection and Diagnosis of Parameters Change in Linear System

Using Time-Frequency Transformation

CHAPTER 1

INTRODUCTION

The problems of change detection arise in many areas of

automatic control and signal processing, and may be classified as

follows:

tasks:

1) Segmentation of signals for the purpose of recognition, and

monitoring of dynamical systems.

2) Failure detection in controlled systems.

3) Reinitialization of adaptive algorithms, for tracking quick

variations of the parameters.

The change detection procedure essentially comprises two

a) Generating "residuals" or change indicating signal, and

b) Designing decision rules based on these residuals.

Both deterministic and stochastic approaches for solving these

two tasks are discussed in the literature. There is an excellent

survey by Willsky [1] of methods for the detection of abrupt changes in

the state and output variables of a dynamical system. The survey
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deals mainly with sensors and actuators failure in dynamical systems.

There is also a comprehensive survey by Basseville [2] on detection of

parameters change in signals and systems. In [2], the focus is on the

change of coefficients of AR or ARMA models, and the change of

eigenstructure of system models in a random environment. Both [1]

and [2] assume an abrupt change or jump in parameters as the change

model.

Here the methods for detecting change in parameters of linear

systems are studied. The parameters of a linear system are

understood as constants or time-dependent coefficients in the system

equations [3]. When the parameters of a continuous, linear, time-

invariant systems change, the output of such a system is a "non-

stationary" signal in the sense that it can be characterized by a varying-

in-time power spectrum or varying-in-time energy spectrum.

To analyze "non-stationary" signals we can use so-called short-

time Fourier transform (STFT). The Fourier transform provides a

powerful tool for analysis of stationary signal whose spectral content

does not change in time. The SIP I can be used to analyze non-

stationary signal by windowing the signal in time domain so that over

the length of the window the signal is stationary (short time stationary

signals). The Fourier transform of this windowed signal is used to

characterize the energy distribution at a time that is given by the

center of the window. Sliding the window over the entire signal

displays the variations of the distribution in time. This approach

yields so-called spectrogram [20], which is commonly used to analyze

non-stationary signals. The major drawback of spectrogram based
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analysis is that the window length is directly related to the frequency

resolution. To increase the frequency resolution, one has to take a

longer window, which means that non-stationarities occurring during

this interval will be smeared out in time and frequency.

The second approach to analyze non-stationary signals uses the

notion of instantaneous power spectrum. In general, this approach

consists of a signal transformation that depends on two variables:

time and frequency. Various time-frequency distributions have been

proposed, each with different properties. These transformations

offer finer resolution in both, time and frequency, as compared to the

short-time Fourier transformation. Cohen [10] introduced a general

class of time-frequency transformations with each member of this

class given by:

,,,w;0).,f-L-f
+00

, e-i'+it j44 (13,(,t) 2 ) f i11-7) dt d ail.

In Eq.(1-1), f(t) is the time signal, f*(t) is its complex conjugate, and

(1)(,T) is an arbitrary function called kernel function. Various

transformations are obtained by choosing a particular kernel. For

example the Wigner, the rule of Born and Jordan, and Choi-Williams

transformation are obtained by choosing (1)(,T) = 1, (1)(,t) = 2sin(T/2)/ T,

and (1)(4,-c) = exp(--2T2/o), respectively.

There are many applications of non-stationary signal analysis

using the time-frequency transformation [19, 26, 27, 28, 29, 30, 31].

One approach is to calculate the transformation to see whether it
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reveals more information than the spectrogram. This technique was

successfully applied by Janse and Kaizer [26] to a loudspeaker design.

The Wigner transformation was calculated for a number of standard

filters and found to be a particularly useful tool in handling the

inherently non-stationary signals encountered in loudspeaker

operation. Another method is to use particular properties of time-

frequency transformation, such as those of local moments. For

example, Boashash et al. (19] used Wigner-Ville transformation to

extract the instantaneous frequency with application to geophysical

exploration. Various transformations have their merits and

drawbacks. An obvious objective in their application is to emphasize

the merits and limit the drawbacks. This is accomplished by

imposing proper constraints on the kernel function.

This thesis presents a systematic approach to selecting and

optimizing kernel function for a given signal analysis problem. In

particular the issue of detecting the parameter changes in linear time-

invariant (LTI) system is addressed. To this end the time-frequency

transformation is applied to the output of LTI system and the local

moments of such transformation are obtained. The optimal kernel

function is sought, such that the local moments are most sensitive to

selected parameter changes.

A secondary goal accomplished in this research is to diagnose

(identify) the type of parameter change using a particular kernel

function.
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The local moment approach to change detection provides a

systematic, theoretical methodology. The kernel functions are

determined based on the combined criteria of maximum sensitivity

with respect to parameters change and minimum distortion of their

physical interpretation. The local moments with some constraints

on the kernel function have "physical" meaning, thus aiding the

change diagnosis. The local moments often can be calculated

directly without actually performing the time-frequency

transformation. The latter is particularly important in on-line

implementation of proposed detection algorithms. Although the

study does not take into account noise effects in the signal

measurement, the solution to the deterministic problem should

provide a good basis for developing solution to the corresponding

stochastic problems.

The main contribution of this work is in developing the methods

of systematic optimization of the Cohen class transformations for a

given non-stationary signal analysis problem. The results are

presented in the form of the case studies for detecting parameter

changes in linear system dynamics.

Thesis Outline:

Chapter 2 discusses the basic concepts of time-frequency

transformation (TFT) and its properties which result from the kernel

constraints. The introductory paper of Claasen and Mecklenbrauker

[9] is used here as the main reference. Next the properties of a TFT
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applied to the output of a LTI system are studied. These properties

depend on both; the kernel and the system parameters.

Chapter 3 introduces the criteria for selecting the best kernel

for the detection of parameter changes in a LTI system. Optimizing

the kernel with respect to these criteria results in the constraints of

the kernel function. In particular, the maximum sensitivity of the

local moments with respect to parameter change is sought. The

derivation of a general local moment equation is presented. A

criterion for the moment sensitivity is established and related to a

general form of kernel function. Finally, the best kernel is

characterized by the constraints on the initial value and derivatives of

the kernel function.

In Chapter 4 an application of the proposed methodology to

detect parameters change a continuous time LTI system is discussed

and the computer simulation of change detection is presented. The

possible extensions to a nth order linear system are discussed.

Chapter 5 summarizes results obtained in this thesis and

discusses future development of the proposed methodology.



CHAPTER 2

BASIC CONCEPTS

2.1. Time-Frequency Representation

The general class of time-frequency transformations (TFT) is

given by Eq.(1-1), rewritten here for convenience:

1 1 -k"'e HTCO±i -j41.Cf4,0);(1)) - (1)(,T) )7 f g---2-) clt d dg.

7

(2-1)

In the above f(t) denotes a complex time signal defined for t E (-00,+°°);

f(t)* denotes its complex conjugate, and (1)(4,t) represents the kernel

function, which is either real or complex function of its arguments.

The kernel function defines a particular member of the Cohen class.

In terms of the Fourier transform of the signal, each member of the

Cohen class can be expressed as

00 -Fe. +00

cf(t,ao) = 7JILL e +jTg-it6)(1)(,T)F(i.1+7)F*(1.t--2-.) d'r d dg,

(2-2)

where F(w) denotes the Fourier transform of f(t). There are many

well-known members of the Cohen class of transformations [14, 15,

16, 17, 18]. The properties of a particular transformation result

from the constraints imposed on the kernel. In the sequel Cf is

referred to as a time-frequency signal transformation or simply

transformation.
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2.2. General Description of Kernel Function

The kernel function can be a function of time t, frequency (1.) and,

in general, a function of the signal f(t) (131. In this thesis, unless

otherwise stated, it is assumed that 4) is not a function of time or

frequency and that it is independent of the signal. As is shown later,

independence of time and frequency of the kernel function assures

that the transformation is time and shift invariant. Also if the kernel

is independent of the signal, then the transformation is said to be

quadratic in the signal.

An important subclass of the Cohen transformations are those

transformations for which the kernel is a function of the product of its

arguments, i.e., ep(4,t) = (1)(4t). This product form is particularly

attractive for the analysis of non-stationary signals, i.e., the signals for

which the spectral content varies significantly in time (e.g., "chirp"

signals). If the signal to be analyzed is a stationary signal, then a

convenient kernel function is a product of two functions, i.e., (1)(4,t) =

4)A)02(T).

For the time-frequency transformation to exist, the kernel

function must be integrable in the domain of signal support, i.e.,

EE I (I)(4,T) I (14 der < 0.. (2-3)

Assuming that the kernel function is Fourier transformable in 4 and t

separately, Eq.(2-1) can be rewritten as



Ct,co;(13.) = f+ f(p.+3-.)f*(p-I) h( ) d
2 2 Y /1'1 e

and Eq.(2-2) can be rewritten as

cfo,(0) e'S +-Fri.t.4)F*( --1) H( ) ei4t
27c 2 ) 0-t 2 ) dp.,

where h and H are the following Fourier-like transformations:

h(0,t) = f,1)(4,T) esie d4,

9

(2-4)

(2-5)

(2-6)

H( ,T1) = (I)(4,t) e-Yrn dt. (2-7)

Eq. (2 -4) shows that a time-frequency transformation is obtained

through the convolution in time t of a kernel ORM with the signal

"correlation" f(t+T/2)f*(t-V2) and the Fourier transform in time

variable T. Similarly, Eq.(2-5) shows that a time-frequency

transformation is obtained through the convolution in frequency co of a

kernel H(4,co) with the spectrum "correlation" F(co+4/2)F*(o.)-4/2),

followed by the inverse Fourier transform in frequency variable 4.

2.3. Relationship Between Kernel Function and Signal Properties

Assume that 01)(4,t) = ep(4t), that the time signal f(t) = a(t) eillf(t), and

that the Fourier transform of f(t) is F(w) = A(co) eigi(a)).
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2.3.1. Instantaneous power and energy density spectrum

Cf(t,w;4) represents a joint time-frequency signal power

distribution, if it satisfies certain consistency conditions. For

example, when the frequency variable is integrated out we expect to

obtain the instantaneous power If(t)12, and similarly when the time is

integrated out we expect to obtain the energy density spectrum IF(co)12.

Integrating Eq.(2-1) with respect to co, we have

+00

Cf(t,C04) = 0(0) I f(t) 12. (2-8)

In order for Eq.(2-8) to be equal to I f(t) 1 2, we must have

4)(0) = 1.

Therefore, with the constraint (2-9), we have

(2-9)

+.

1 Cf(t,co;ep) dw = I f(t) 12. (2-10)

Similarly, it can be shown that

+00

fCf(t,co.,0) dt = I F(w) 12, (2-11)

requires that condition (2-9) be satisfied. An immediate consequence

is that if the constraint (2-9) is satisfied then the integral Cf(t,c»;4)) over

the whole (t,co)-plane is equal to the total signal energy.
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2.3.2. First order local moment and instantaneous frequency

The nth order local moment at time t is defined as

z(t)
Mn(t) _-. ,

zo(t)

where

(2-12)

+.0

4.,(t)=-= $ con Cf(t,co;(1)) dw. (2-13)

For n = 1, Eq.(2-12) represents the first order local moment at time t:

ico Cf(t,co4) dco

M1(t) = c.,
fCf(t,co;43,) dco

2 (1)'(0) a(t)'
+ v(t)',

O(0) a(t)
(2-14)

where the prime denotes differentiation. The second equality

results from the assumed form of f(t) = a(t)exp(jv(t)). When an

analytical signal is analyzed, the so-called instantaneous frequency is

often defined as the derivative of the phase W(t) [17]. Assuming that

the signal is analytical, M1(t) is equal to v(t)' if

(1)(0)' = O. (2-15)

Thus, we can obtain the instantaneous frequency under the constraint

(2-15) from the first local moment of an analytical signal:

M1(t) = W(t)'. (2-16)
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Similarly, the first order local moment at frequency co is equal to 'FM'

with the constraints (2-15), thus,

M1 (w) = W(co)', (2-17)

where

ft Cf(t,co.,0) dt

M1(0= -1
Cf(t,o);4) dt

(2-18)

For an analytical signal, the first local moment in frequency indicates

group delay, which is defined as the phase derivative in frequency

domain. Note that both, the instantaneous frequency and the group

delay, are important characteristics of any dynamical behavior.

2.3.3. Second order local moment and spread

For n=2, Eq.(2-12) represents the second order local moment at

time t:

co2 Cf(t,co;0) do)

M2 (t) =

fCf(t,co;0) dco

20"(0) a(t)12 a(t)" 1 '( 2a(t)'

OW) 11_ a(t) a(t) I+ (0) L a(t) Njt; Nitj"

1 f a(t)' 12 a(t)" 1 e02.
211_ a(t) a(t) ) (2-19)
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The second equality results from the assumed form of

f(t) = a(t)exp(jw(t)). With the constraint (2-15), the second order

local moment at time t can be expressed as

M2(0= 2
1 + 4401[4a

1 1 4.°=1)111
r a(t)"1

0(0) L a(t)

The spread at time t is defined as

M 2(t) mi (t)2 = [ 1 + 4 0(0'11 2 _ I-1 ep(0)"11- a (0"1
2 (1)(0) a(t) L 0(3) _IL a(t) Y

(2-20)

(2-21)

where M1(t) and M2(t) represent the first and the second local moment

at time t, respectively. Again the second equality is valid for

f(t) = a(t)exp(jv(t)). Eq.(2-21) may become negative for some of the

TFT's. For the Wigner transformation, (1)(,t) = 1, the spread is

obtained by setting (1)"(0) = 0 in Eq.(2-22):

2 1 a(0'12 a(t)"1.
M2(t) Mi (t) 7 L a(t) 2 L a(t)

(2-22)

As pointed out by Classen and Mecklenbrauker Eq.(2-22) can

become negative and cannot be properly interpreted as the "variance"

of the time-frequency distribution. Using the so-called Choi-

Williams kernel, (1)(,t) = exp(-42T2/6), the spread is obtained by setting

(1)"(0) = -2/a in Eq.(2-21):

I 1[ a(t)' 2
11--

+
a(t)"

M2 (t) M kti = 6 2 1 iL a(t) J
(2-23)
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Eq.(2-23) produces negative values for the signal a(t) = exp(-at) and

o > 0. In order for the spread to preserve its intuitive interpretation

of "variance", Eq.(2-21) should stay always nonnegative. The following

constraint

4)"(0) =

yields:

2 a(tY 12
M2 (t) M1 (t) L a(t) J

(2-24)

(2-25)

Therefore, with the constraints (2-15) and (2-24), a nonnegative value for

the spread is secured. There are many transformations satisfying

Eq.(2-9), (2-15), and (2-24), for example, the modified exponential

kernels introduced by Cohen [1 1] :

t2r2

(131(t) = ci)(t) e

t2,r2

= ( CO + 4't C242T2 ) e G . (2-26)

where co, c1, c2 .... are constant coefficients. Rewriting Eq.(2-26) in

terms of x = we we have:

2
X

ep(X) = ( Co + Ci X + C2X
2 + ) e .

Therefore the kernel function at the origin is

(2-27)

4)(0) = co. (2-28)

From constraint (2-9) we have co = 1. Taking the first and second

derivative with respect to x at the origin we have, respectively,
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CO) = ci, (2-29)

0"(0) = 2c2 6
(2-30)

From constraints (2-15) and (2-24), we can solve for ci and c2:

C1 = 0,

1 1

C/2 8 4. -6'

Thus one of the modified exponential kernels that satisfies the

constraints (2-9), (2-15), and (2-24) is:

2,c2

(1)(t) = (1 ± CA2T2) e 0 ,

where c2 is given by Eq.(2-32).

2.4. Selected TFT Properties

(2-31)

(2-32)

(2-33)

In general, the kernel function can be a function of time and

frequency [9]. Therefore a general class of quadratic time-frequency

transformations has the kernel function: 1(4,T,w,t), where , T, co, and t

denote the integration variable of frequency, the integration variable of

time, frequency variable, and time variable, respectively.



Eq.(2-1) can be now generalized as follows:

1 +- 00 CO

Cfg(t,co,0 - e-Ym+-14t -i411

f(p.-F-1)g*(1.-1) dti d dg,

16

(2-34)

where Cfg(.) represents "cross-transformation" of signals f(t) and g(t).

For f E g, Cff(.) belongs to the Cohen class of transformations.

Claasen and Mecklenbrauker [ 9] related certain properties of

general TFTs to the corresponding constraints on the kernel. In

the following notation, "Pk" and "Ck" stand for properties and the

corresponding kernel constraints, respectively.

P1: If g(t) = f(t to) then Cg(t,co;s:9 = Cf(t to,co;0), provided that

C1: (1)(,t,co,t) = (1)(,T,co), i.e., 4 does not depend on t.

P2: If g(t) = f(t)e-i°)0t then Cg(t,co;0)= Cf(t,0 co0;0), provided that

C2: (1)(,T,CO3t) = (1)(,t,t), i.e. (1:. does not depend on co.

Properties P1 and P2 state that shifts in time or frequency of a signal

result in corresponding shifts in the distribution. These properties

are essential if we want time and frequency variables of the

transformation to correspond to a signal and its spectrum

independent variables, respectively. Constraints Ci and C2 demand

the kernel to be independent of time and frequency.
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P3: If f(t) = 0 for I ti > T then Cf(t,co4) = 0 for I t i > T, provided that

C3: h(t,t) = 0 for 1 i I < 2 1 t 1 .

P4: If F(w) = 0 for 1 co 1 > 52 then Cf(t,co;0) = 0 for 1 co 1 > S2, provided that

C4: H(4,C0) = 0 for I < 210.

In the above h(.) and H(.) are given by Eq.(2-6) and Eq.(2-7). The finite

support properties P3 and P4 are important from the application point

of view. They state that if a signal has a support region in time or

frequency, then its transformation will have the same support region

in time or frequency, respectively.

P5: CAt,C0;0) = C*At,(0;(1)), provided that

Cs: (13,(4,t) =

Property P5 is also very convenient from a practical point of view,

stating that the 1141' is real valued. This contrasts with the fact that

the Fourier transform is, in general, complex valued.

Finally we can recover the signal from Cf(t,co;(1)) uniquely up to a

constant multiplier. To obtain the signal from a TFT we take the

inverse Fourier transformation of Eq. (2 -1) and obtain

Cf(The);40
e +1u0+All di do) d,

4)(4 t)
f w*)f*(t) .L2 7,

(2-35)



The above assumes that

cf01,0);0)

18

(2-36)

is integrable in the variables E,,rl and a By setting j.t = t /2 and ti = t, we

have

1 r4-14-Cf(t) = cf(11'"(1)) eitco+A(÷ ) do) d4,f*(0) 4( ,t)
(2-37)

that is, f(t) is reconstructed uniquely up to the constant P(0). Some

of the properties of TFT's presented here are used in the sequel using

the equation numbers as a reference. It should be pointed out that

this chapter represents only a small portion of the properties of TFT.

For a complete survey see [9].
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CHAPTER 3

KERNEL DERIVATION FOR DETECTION

3.1. Introduction

The time-frequency transformations which are members of the

generalized Cohen's class have received a considerable attention as the

tools for analyzing non-stationary signals [9, 14, 15, 16, 17, 18, 25].

The review paper by Cohen [13] discusses the well known time-

frequency transformations, their properties, and applications.

Cohen's class is defined by Eq.(2-1), with various transformations

obtained by choosing a particular kernel function 0. The properties

of a particular transformation are controlled by choosing the

constraints on the kernel. Choi and Williams [14] devised a very

interesting method to analyze the effects of the kernel constraints, by

examining the local autocorrelation function. They pointed out that

since the main interest in a TFT is to study a "local" signal

phenomena a relatively large weight should be given to f(p.T/2)f*(vT/2)

when the integration variable 11 is close to t, to emphasize the events

near time t. This concept was very effectively used in devising the

so-called Choi-Williams kernel. Zhao, Atlas, and Marks [25] proposed

a special type of "cone-shaped kernel" which produces good resolution

in both time and frequency and at the same time suppresses

transformation artifacts. The basic question in all these studies is

how to derive the constraints on the kernel in order to obtain the

desirable properties of the TFT. Some of the existing results on this

subject are summarized in Chapter 2.
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In this chapter the constraints for the kernel function are

determined, such that the local moments become most sensitive for

parameter change in a linear system. To achieve this objective, the

following steps are taken:

1. A general formula for the local moments equation is derived.

2. A criterion is established for the moment sensitivity evaluation

and it is expressed in terms of the kernel function values.

3. The optimized kernel function is proposed.

These results are applied to parameter change detection in

linear time-invariant systems.

3.2. Derivation of the Best Kernel for Detection

3.2.1. Preliminary concepts

Let u(t) and y(t), t e (0,.) denote the input and output of a single

input, single output (SISO), continuous-time linear system,

respectively. Assume that the system parameters a change at

unknown time t* E (0,T), that is a --= ao for t < t* and a E al for t ?.. t*.

The choice of the input plays an important role in parameter change

detection analysis. We may for example want to study the detection

in the "worst" input case (i.e., the change of system parameters are

"masked" by the input characteristics). It may be also desirable to

study the most "convenient" inputs (i.e., inputs which "expose" the

system parameters change in the output waveform).
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To emphasize the dependence of the output on the system

parameters a, we write y(a,t) and express it in terms of the input u(t)

and the impulse response h(a,t,t):

00

y(a,t) = f h(a,toi) an) dri. (3-1)

For a linear, time-invariant, and causal system, Eq.(3-1) becomes

y(a,t) = f u(ti) h(a,ti) drl. (3-2)

For simplicity we assume that u(t) = 0 for i < 0. Next, we transform

y(a,t) through the time-frequency transformation and derive the local

moments. Finally, we select a best kernel function which yields

maximum sensitivity of these local moments with respect to the

change in parameters a.

3.2.2. Criteria for the best kernel for detection

To define the criteria for the best kernel function for detecting

parameters changes, we introduce a payoff function. This payoff

function should measure the sensitivity of the TET with respect to the

parameter changes. In this thesis we propose the use of local

moments for change detection. The local moments represent

(under proper kernel constraints) physical properties of the signal

and thus are convenient tools for parameter change diagnosis. Also

it is worth noticing that the local moments can be calculated without

performing entire TFT thus increasing the feasibility of
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implementation. Using the local moments the payoff function may

take the following form:

J(a,a0,4,u,t) = II Mn(a.,0,u,t) Mn(a0,0,u,t) II , (3-3)

where u(t), ep, Mn and II II denote input, kernel function, nth order

local moment, and a norm, respectively. The parameter vector a

consists of m elements:

a = [at a2 an, ]T. (3-4)

Assuming that Mn ( a,1:1),u,t) is continuously differentiable with respect

to a, Eq.(3-4) can be approximated by expanding Mn( a,(1),u,t) into the

Taylor series, around a = ao:

Mn(a,(1),U,t) a--- Mii(00O3(p,U,t) + VM(a,(p,u,t) I a . a0 (a ao),

where

VMn(OC,(1),U,t) =
Mn(a4,u,t) aMn(a,(),u,t) aMii(a,4,u,t)1T

aa, aa2 aain _I

(3-5)

(3-6)

The payoff function becomes the local sensitivity function as expressed

by

J (a,a0,0,u,t) = S(a0,4,u,t),

where

s(ao,o,u,t) -7.--. II vmn(a,o,u,t) I (z.ao II .

(3-7)

(3-8)
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Two approaches are proposed for obtaining an approximate payoff

function as illustrated in Fig. 3.1 and Fig. 3.2. Since Mn is defined by

Zn/Zo (see Eq.(2-12) and (2-13)) we obtain an approximation of (3-8) by

calculating the following gradient (Fig. 3.1)

amr,(a,o,t)
I =aa a ao

a
r

Zn(a,0,01
Zo(a,0,t)]

aa I a =ao

Ca4.,(a,o,t)
Z0(a4,t)

azda,0,0]
L aa aa

azn(a,4) ,t)

Ia =ao.
Zo(a,0,02

as a = ao is expressed in terms of the system output in

Appendix A.

For the second case (Fig. 3.2), we have (see Appendix A)

a
Zne(a,0 ,t) 1

ame(a,o,t) azo(a,0 ,t) 1

as I a = ao= aa I a - ao

[ aZnE(a,(1),t) aZo(a,(134,t)
0(aZ

]
E

0(a,,t)o,,t) [ aaaa
= L I a =a

0
= 0,

zo(oc,0,02

(3-9)

(3-10)
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and thus an approximation of Eq.(3-3) calls for the second order terms

in the Taylor series expansion and calculation for the corresponding

Hessian are presented in Appendix A.

3.2.3. Derivation of local moments formula

The nth order local moment at time t from the system output

y(a,t) is defined by Eq.(2-12). In order to express local moments in

terms of kernel function, Eq.(2-12) can be rewritten as

Mn(a,0,t) =
Zn(a,0,t)

(3-11)
ZD(c1,0,t)

where

and

4.2.0 +0. +0. -F..

Z(a4,t) = con e --ju"..j4t --)4g (1).(,t).
TC 00 0. 00 0.

(oc,p.+1)v*(oc
' 2

di d dco
2 -

+00 .0 +0. +0.3
1 jn to) + At j4t.

to J (I) e-CO -00

[ ep(,t) g(a,g,t) l cit dE dµ dco, (3-12)

g(a,11,,t) = y(a,11+1)Y*(a,1-1-7). (3-13)

Assuming that the impulse response function is n-time continuously

differentiable at zero we have:
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fe-ju°h(c) dco clt = 2n (-j)n h(n)(T) IT =0, (3-14)
--0,0

where 11(1)(t) denotes the nth order derivative of h(t). Integrating

Eq.(3-12) with respect to w and ti variables and using Eq.(3-14) yields

+00 -Fos

41(a 4't) (H)11 [1:1)(t) g(a41,T)1(n) I =0 ej(t-11) d

where

[(1)(W g(a,g,t)](n) I, =0= V (1)(n)(0) g(a,g,0)

n -1 o(n-1)(0) [ ag(c:cli,t) IT =01

[(n)(n -1) n -2 o(n-2)(0) a2g(a,11,T) 1

IT 0i at2

+

(n) 0(1)(0) [ an lea,VC)
atn-i =0

+ 0(0) [ ang(a'g't) 0].
ain

Integrating Eq.(3-15) with respect to the andµ variables yields:

zn(a,o,t) = o(n)(0) ang(a4,t)

+ o(n-1)(0) (n) ( ang(a4-1,t) IT =
=

0

at ap.n-i

o(n-2)(0) n(11-1) (j)2 ang(a41,t) I =
2 at2 agn_2 = t

(3-15)

(3-16)



and

0(1)(0) (n) (H)n-1 ang(a'µ,'L) =-L?

ae-1

1, =0+4)(o)(--ip
a

= t/
tn
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(3-17)

70(a,(1),t) = 0(0) g(a,t), (3-18)

where

g(a,t) = g(a,g,t) I T.,=?. (3-19)

From Eq.(3-11), Eq.(3-17), and Eq.(3-18), the local moments equation for

Mn(a,0,t) is obtained as:

i =n

[ 0(i)(0)1( n ang(a4,t) ,,,=oir 1

( )

(3-20)

Mija,(1),t) = 0(0) _1
d

t g(oc,t) J
[

conveniently as

i =0

Eq.(3-20) can be rewritten

Mn(a,K,t) = KTP + R,

where

(3-21)

K =[K1 K2 Kn

P = [ (a,t) P2(a,t)

R = R(a,t),

Pn(a,t)]T,

(3-22)



and

4)(1)(0) ONO)
K1 = , K = ep(n)(0),

4)(0) 4)(0) ' n OW)

Pi(OC,t) (H) [ It 7-0]atn_I

R(a,t) (-)ri rang(a,Pls 1atn g(a,t) j

.[ g(oc,t)1
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(3-23)

(3-24)

From Eq.(3-21), it is seen that the nth order local moment is a linear

function of K. When nth order moment is used as a change detector,

the K vector relates the properties of this moment to the properties of

the kernel 4). Note that K provides complete local characterization

of 4) as n goes to infinity. We can constrain the kernel function 4)

knowing the values of K1 through Kn.

moment becomes:

V'Mn(a,K,u,t) I a = = WK + V,

where

w= [ wi, w2, , wn],

api api i T

a = o
CC

I toa2 aam

aR aR aR
V

acci acc2 aam ' 0

The gradient of nth order local

(3-25)

(3-26)
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In the Eq.(3-26), W is a m x n matrix and V is a m x 1 column vector,

elements of which are functions of time. The m and n represent the

number of parameters and the order of local moments, respectively.

3.2.4. Determination of the best kernel function

In this section, we obtain the best kernel function for detection

of parameter changes in a linear time-invariant system.

Eq.(3-25) shows that the sensitivity function is a linear function of

K, i.e., the sensitivity is unbounded in K. Additional constraints on K

come from the constraints on the properties of the kernel function 4).

As an example consider problem of limiting the bias of local moments

which constrains the kernel function and thus the values of K. We

illustrate this approach by studying several special cases.

Method 1: Limiting the bias of the first moment as an estimator

of instantaneous frequency

From Eq.(2-14) and Eq.(3-21), we can obtain M1(t) in terms of

amplitude and phase of an analytical signal f(t) = a(t) exp[jv(0]:

M1(t) = KiPi + R1,

where

a(tY
P1 =1 2 a(t) ,

(3-27)

(3-28)
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R1 = v(t)'. (3-29)

Recall that the instantaneous frequency M1(t) is obtained under the

assumption that 4p(0) = 1 and 01(0) = 0. Hence from Eq.(3-21), the bias

of M1(t) is given by

K1 P1. (3-30)

The sensitivity function becomes now

S1 = 111(iWi + V1 li , (3-31)

where W1 and V1 are given by Eq.(3-26) for n =1. Eq.(3-30) and (3-31)

represent conflicting goals for minimizing the bias of M1 and

maximizing M1(t) sensitivity. The payoff function may take the

following form:

t

gi(Ki) = ch.{
2

iKT P dt q2 Si,
1

ti

with the additional constraint:

Ki

ft 2
Pi dt

t i
1

I 5-61,t

It2R1 dt

where qi , q2 denote weighting functions, and Ei represents bias

tolerance limits. Si is represented by:

i =m

(3-32)

(3-33)

(3-34)
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In the above equations [ti,t2] defines the change detection interval.

Minimization of gi belongs to the class of non-linear programing

optimization problems. Obviously, the optimum value of K1 depends

on the interval t1 and t2, weights qi, q2, tolerance El, and nominal value

of all Selection of t1 and t2 is guided by both the requirement for

change detection time and the mathematical constraints (e.g.,

existence of the corresponding integrals of P1 and R1). When P1 and

R1 are periodic functions, the t1 and t2 can be determined by their

period. Thus, the determination of t1 and t2 depends on P1 and R1.

Method 2: Constraining the spread of the TFT

From Eq.(2-20) and Eq.(3-21), we obtain M2(t) in terms of amplitude

and phase of an analytical signal:

M2(t) = P21K1 P22K2 + R2,

where

(3-35)

P21

2 v(0,1
(3-36)

a(t)

tt?

P22 2{ [4a 12+.'a.
(3-37)

.12_{ aa((tt);
2

aa((tt))" 0,]2.
(3-38)

A positive spread is obtained for 4)(0) = 1, 4)'(0) = 0, and 4)"(0) = 1/4.

This defines K1 = 0 K2 = 1/4 thus not allowing to manipulate the

sensitivity function of the second order local moment
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(3-39)

with W1, W2, and V2 given by Eq.(3-26) for n = 2. Since both, the

maximum sensitivity and the positiveness of the spread, are desirable,

we propose the following constrained optimization problem:

max S2,

subject to the constraint:

m2(0-m1(02 0.

(3-40)

(3-41)

Obviously the optimum values of K resulting from Method 1 are not the

same as that from Method 2. We can "cascade" Methods 1 and 2 by

first securing (for example) K1 which limits bias of M1 and maximize its

sensitivity. Next, using this K1 as a fixed value in Method 2 we find

an optimum value of K2 which maximizes the sensitivity of M2(t) and

ensures the positiveness of the spread function. Finally from the

characterization of by K1 and K2 we can obtain (for example) the

modified exponential transformation (Eq.(2-24)) by choosing proper c1

and c2. Of course many parametrized TFTs can be adjusted to yield

proper K1 and K2.

Methods 1 and 2 can be easily extended to include higher than

the second order local moments. The main concept is to introduce

payoff functions which compromise between maximum moment

sensitivity and minimum deterioration of the TFT properties. The

payoff function proposed in Method 1 and Method 2 take advantage of

a "physical meaning" of M1(t) and M2(t) as pointed out in Chapter 2.
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CHAPTER 4

APPLICATION OF AN OPTIMIZED KERNEL FUNCTION TO

CHANGE DETECTION IN LINEAR TIME-INVARIANT SYSTEMS

In Chapter 3 the procedure for obtaining an optimal kernel

function was developed. In this chapter, the choice of an optimal

kernel for change detection in the linear time-invariant (LTI) system

is studied. We begin by deriving a formula for the first local moment

as a function of the system input and impulse response. Next a

payoff function is proposed, and the sensitivity of the first local

moment with respect to the input parameters is analyzed. The most

"convenient" and the "worst" input from the point of view of change

detection are determined. Application of the obtained results to the

second order LTI system is presented. The possible extensions to a

nth order linear system are discussed.

4.1. The First Order Local Moment for Sensitivity Analysis

Using Eq.(3-13) and Eq.(3-20), we can express the first order local

moment as

M1(a,K1,u,t) = K1P1 + R1,

where

r ag1
P1 [ 11_ 1'1=0 [ 1 ag2 0

t
+ g2(a,t)1L 7DFI, IR= t

(4-1)



and

1 ag2 =o

gi(a,t) at g2(a,tR1= (i){[ agl +[ ) 1 a1 iµ ="

g1 = (a,1-1.,T) =

g2 = g2(a,g,t) = r-0

2 h(a,11+2-11) u(i)

2 h*(a4t--1-i) u*(i)

g(a,g,t) = (a,j.t,t) g2(a,pt,t).

Setting [t = t and 'T = 0 in Eq.(4-3) yields

gi(a,t) = So h(a,t-i) u(i) di,

g2(a,t) = So h*(a,t-r1) u(1)

g(a,t) = g1(a,t) g2(a,t).
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(4-2)

(4-3)

(4-4)

Taking the first partial derivative of Eq.(4-3) with respect to 1.t and T,

and setting 11 = t and ti = 0 in Eq.(4-2), we obtain

P1 =

and

t ah(a,11+12 --i)
h(a,0) u(t) + SO I

T = 0
t u(i)

ft
JO h(a,t-r1) u(11)

t ah*(a,1-1-1-11)
h*(a,0) u*(t) + .f0 u*(1)

it
joh*(a,t-n) u*(11)

(4-5)



{
fah(a,p.+1_)

So h(a,t-ri) u(rl) chi .111:7

o
ap.

ul)dilh(a,0) u(t) +

t

ah*(a,g---11)
h*(a,0) u*(t) + ft

o aµ i`:7 u*(r1) chi

f,

oh*(a,til) u*(n) di
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The gradient of the first local moment can be expressed as follows:

VNI1(a,Ki,u,t)la=ce0=WiKi +V1,

where

F api apt apt iT F aR aR aR 1 T

W1 L aal Da2 as i and vi '---L aal aa,2 aan i

(4-6)

(4-7)

(4-8)

The sensitivity function is obtained as the norm of the gradient of the

first local moment.

S(a0,1(1,u,t) = II Wi Ki + v1 II . (4-9)

The sensitivity function depends on the input and system parameters.

In order to obtain the best kernel, the following optimization problem

is solved:

max min S(ao,K,u,t), (4-10)
K E K. u E U

where K represents the constraint set for K1. The minimization over

U E u represents the "worst" case input for detecting parameters
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change. The best kernel function can be obtained by solving the

constrained minimax problem (4-10).

4.2. Choice of Input and Impulse Response

To emphasize a point made earlier that the choice of input u(t)

plays an important role in detection, we concentrate here on complex

exponential input u(t) = tq exp(- (3t + jot), parametrized by q, (3, and CO.

The values of q, 13, and rm can be obtained by solving (4-10). Note that

replacing min with max in Eq. (4 -10) allows for study of the most
ue U 11 E

"convenient" input from the point of view of change detection. The

set u is defined now by the sets constraining q, 13, and a

The impulse response of a linear time-invariant system can be

modeled as

h(a,t) tr e-xrti-icort + e4.,..t+itornt + t
Cn e .

r m n
(4-11)

For simplicity, we focus on the linear time-invariant system which has

the impulse response h(a,t) = trexp(-Xt + jot). The analysis of such a

system provides good basis for analyzing a higher order system. The

parameters of this LTI system are r, X., and co. Given the input

u(t) = tq exp(-(3t + jet) and the impulse response

h(a,t) = trexp(-Xt + jot), the output can be expressed as follows:

y(a,t) = h(a,t- ii)u(i) di



t

= (t-TOr e-x(t-i)jrjw(t-TI)riqe-h +iml dr
0

(p--201 +.05--°))1 drt .e-Xt f ii )r 11q
o
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(4-12)

For the first order LTI system, the impulse response is

h(a,t) = exp( -At). From Eq.(4-5) and Eq.(4-6), P1 and R1 are obtained

as:

P1= -2 X + (A + B) and R1 = (D( A B) , (4-13)

where

tq e-zit tq e-z2`A= and B =
$

t

e dr q d
0

e z2r1

-Z111

(4-14)

= ((3 X) jtu and Z2 := ((3 a.) +.03 . (4-15)

Assume that q fixed.

obtained as:

where

and

From Eq.(4-8) and Eq.(4-13), W1 and V1 are

j)(aA__ aB)ix_xo,aA
as ix and Vi = (7) ,Dx, ax) (4-16)

[-2 + +

[tq+1 pnq [tq e-Ziti[ triq+1 e-Zin did
DA 0

2

[ft
7

0lq
"

chi]

(4-17)



Since

DB
[tcti-i ezif ftilqe-21 diii [t" e-zif Intl q+1 ez21 di]

ax I x=2,0= 2

[Pollq C21 dri]

r

it r -a
JO

el r! -at
r+i

I r! tK

CC
Kt rx+1 'K!

x=0

we can simplify the expressions for Wi and V1.

selection problem is now formulated as

max min S(1,0,K1,q,13,63,0,
K1 E 2( Om

where
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(4-18)

(4-19)

The optimal kernel

(4-20)

S(X0,Ki,q,(3,ti3,t) = II WiKi + V1 II . (4-21)

For q=0 and q=1, Eq.(4-14), Eq.(4-17), and Eq.(4-18) can be further

simplified:

and

For q=0:

tZi e-z
1

A-
(1 Czit)

Z2 e-z2t
B=

(1 Cz2t)

(4-22)

(4-23)

(4-24)



and

OB e-z2t (Z2t + e-Z2t -1)
ax

(1 e-z2`)2

For q=1:

A=
[1 t te-zit]

Z2teZ'`

Z22te-z2t
B=

[1 Cz2t Z2te-z2t]

aA zit e-zi [ t + t t + 2e-z1 2]

ax ' xo
[ 1 t tf

aB z2t e-z2t z2 t + Z2 t CZ2 t + 2e-Z2 t

ax { e_z2 t _z2 t]2

For q=0, the first moment and its gradient with respect to X, are

obtained using the following equations:

Mi(A,,Ki,u,t) I k=k0= K1P1 +1Z1,

and
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(4-25)

(4-26)

(4-27)

(4-28)

(4-29)

(4-30)

VM1(X,K1,u,t) IX, =W1K1 + V1, (4-31)

where P1, R1, W1, and V1 are given by Eq.(4-13), Eq.(4-16), Eq.(4-22), Eq.(4-

23), Eq.(4-24), and Eq.(4-25). The sensitivity analysis is performed by

inspecting the behavior of the gradient in terms of W1 and V1, (note

that the sensitivity is proportional to the gradient norm). Due to the

complexity of the corresponding equations for W1 and V1, a numerical
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analysis is performed. Computer simulation is performed by varying

the input parameters 13 and (0, with fixed q and Xo. Assume that all

the parameters are positive. Fig. 4.1 shows the input, impulse

response, and output for input parameters: 13 = 1(a) and 13 = 3(b) with

fixed X0 = 2, q = 0, and 63=7C. As 13 becomes larger the output

settling time, approximated by 4/13, becomes smaller. In this

simulation, we use the observation interval of 5 seconds.

W1 and V1 are plotted separately to observe their individual

behavior. Fig. 4.2 shows the gradient for various values of 0 with ko =

2, 03 = 0, and q = 0. In case of to = 0, and q = 0, it is easy to calculate

y(t), P1(t), R1(t), Wi(t), and V1(t) from the input and impulse response of

the first order linear time-invariant system directly. From Eq.(3-2),

y(t) is given by

-Aot
e _(x, _ p)

y(t) = fe 0 1].
ko 13

(4-32)

Let define p -L-- ko -13, then from Eq.(3-28) and Eq.(3-29) P1(t) and R1(t) are:

and

2p et
P1 . -2a..0 + ,

ePt 1

(4-33)

R1 = 0, (4-34)

since y(t) = a(t).
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IMPULSE RESPONSE, INPUT, AND OUTPUT
(LAMBDA -2. BETA -I. OME0A74)

- IMPULSE RESPONSE
TIME IN SECONDS

INPUT

(a)

OUTPUT

IMPULSE RESPONSE, INPUT, AND OUTPUT
(LAMBDA -2. BETAa OM£OAp

- IMPULSE RESPONSE
TIME IN SECONDS

INPUT -- OUTPUT

(b)

Fig. 4.1. Signal Analysis 1: Input, impulse response, and output

for (a) f3 = 1 and (b) = 3 with ?t,o = 2, c = n, and q = 0
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SENSITIVITY ANALYSIS
(LAMBDA."2. OMEOA.0. LAMBDA > BETA)
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From Eq.(3-26) W1(t) and V1(t) are:

and

W 2
e2pt pt ept ept

1=1 1,
(ept 1)2
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(4-35)

V1 = 0. (4-36)

Therefore, in the limiting cases of p we have:

and

h
e2pt pt ept ept

m
p >0 (ept 1)2 2,

. e2pt pt ept
ept

lun 1,

P (ept

. e2pt pt ept ept
hm 0.

P (ept 1)2

(4-37)

(4-38)

(4-39)

Similar limits are obtain for limits in t. The sensitivity is constant

(equal to -1), for p > 0 the sensitivity decreases monotonically as t > co

to zero and for p < 0 the sensitivity monotonically increases as t > co to

a finite value (equal to -2).

Discussion: 13 = 0 corresponds to the step input. It is seen that

for fixed X this gives the least desirable sensitivity. As (3 -3 co the

input approximates an impulse of a finite amplitude. For finite 13 the

linearity of system dynamics allows to conclude that impulse input is

the best from the point of view of maximum sensitivity.
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Fig. 4.3 and Fig. 4.4 show the W1 and V1 for various values of p

with X0 = 2, 63 = TC, and q = 0. The gradient becomes unbounded as

approaches Xo, and the maximum peak position of W1 coincides with

that of V1. As 13 becomes larger for 13 > X0 the W1 goes to finite value

and V1 to zero similar to the case of 63 = 0. Therefore we have the

maximum sensitivity when 13 = X0 with 63 # 0 (see Fig. 4.4 (a)), thus

defining the most "convenient" input. As shown in Fig. 4.3 and Fig.

4.4 non-zero 53 causes fluctuations in sensitivity. Thus the increase

in sensitivity comes at the expense of uniformity, while an uniform

sensitivity is desired for better detection performance during the

observation period. Next, we analyze the sensitivity for q = 1. Fig.

4.5 shows the input, impulse response, and output for p = 1 (a) and

= 3 (b) with A. = 2 and 63 = rt. The variation of the gradient with

respect to parameter in the case of q = 1 is similar to that of q = 0.

We analyze the variation of gradient with varying [3 only for fixed t13 = IC.

In Fig. 4.6 and Fig. 4.7, we have the maximum value of gradient at

approximately 13 = 2.6 c(3 Xo, see Fig. 4.7 (b)) in the observation interval.

As shown in Fig. 4.8 as 13 becomes larger the gradient becomes

bounded for 0 > A.o similarly to the case of q = 0.

The simulation results for the first order LTI system can be

summarized as follows:

1. As the (3 approaches A.0 for 63 # 0 and q = 0, the maximum

sensitivity value becomes unbounded and has more

fluctuation.
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2. As 13 become larger for 13 > Xo, then the sensitivity becomes

uniform.

3. As the 03 increases, the maximum sensitivity value increases

but exhibits more fluctuations.

Conclusion: for the first order linear system, we can obtain the

most "convenient" input by setting 13= X0, 03# 0, and q = 0. We have

the minimum sensitivity with 13 = 0, ti = 0, and q = 0. Also we have

more uniform sensitivity with large 13. The input signal exp(-(3t) and

exp(-(t) give the same moments because of normalization (Eq.(2.1 2))

and the system linearity. Therefore we conclude that the impulse

function:

hm*

P> (4-40)

where p =1(3 Xo 1 , is the most convenient input for 63 = 0 and q = 0.

4.3. Application to Second Order LTI System

In this section, we apply the methodology of Chapter 3 to find

the best kernel for the second order LTI system. This provides

further insight into the properties of the best kernel function of the

nth order linear systems. The impulse response of a second order

LTI system is obtained by setting r = 0 in h(a,t) = tr exp(-Xot + jwot).

The first moment, second moment, and spread are:

Mi(0= 2 Xo Ki wo, (4-41)
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M2(t) = -4XowoK1 4X2oK2 (DO, (4-42)

M2(t) M1(t)2 42k.,?) K2 424)
2

Ki2 , (4-43)

where X0 0 and wo 0. Eq.(4-41), (4-42), and (4-43) do not depend on

time. We find the optimal kernel functions for the three cases: (1)

only X changes, (2) only co changes, (3) both, w and X change. All

sensitivity functions are obtained from the Euclidian norm of the

gradient. In Case 1, the sensitivity functions of first and second

moment with respect to X and the payoff function of Method 1 are

given by:

Siw =21Ki

XI)S2(k) = 4 (1)011(1 2 K2 I ,
COO

g1(K1) =K1( 4 qiiX2() 4q1 2),

(4-44)

(4-45)

(4-46)

where the subscripts 1(X) and 2(X) denote the sensitivity of the first

and second moment,respectively. qii and 812 denote the weights of

the payoff function gi of Method 1 (3-32).

In Case 2, the sensitivity functions of the first and second

moment with respect to w and payoff function of Method 1 are

S1(0)) = 1,

Xo
S2(co) = 2(0011 2--K1 ,

oo

2gi(Ki) = 4 q11X20 K1 q12.

(4-47)

(4-48)

(4-49)
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Finally, in Case 3, the sensitivity function with respect to X and 0)

and payoff function of Method 1 are

S1((ox =

S2(0),20 =

g1(K1) =

The constraint

C10)0

+

2[ 166)0

Ki( 411120

for

Ei2X

1) 7,

2

4(.4(1

(112

2k°

(4-50)

(4-51)

(4-52)

(4-53)

4112)

K1 is (see Eq.(3-33)):

coo

Ki)2]
coo

5_1(1 .
22L0

The optimal kernel function (I) for each case is obtained by cascading

Methods 1 and 2. From Eq.(4-43), we have K2 ?_ Ki to yield a positive

spread. From sensitivity function (4-45), we observe that K1 and K2

have to have opposite signs in order to maximize the sensitivity and

therefore K1 must have negative value. We introduce the bias of

spread as follows:

2

M2(t) M1(t)2 (4-54)

where P1 = -24 (see Eq.(3-28)). Substituting the expression for P1

into Eq.(4-54) yields

4X2 0K2 441( x20. (4-55)

The payoff function which compromises between a minimum bias and

maximum sensitivity takes the following form:



g2(Ki ,K2) = q21(44K2 42t,,W 2L20)2 q22(s2)2,
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(4-56)

where q21 and q22 denote weights. S2's for each case are given by

Eq.(4-45), (4-48), and (4-51), respectively. The constraints represent

limits of the deterioration of the properties of time-frequency

transformation. The payoff function g2(4-56) has the general

quadratic form:

g2(K2) = al Ki + a2 K2 + a3, (4-57)

with K1 obtained from Method 1. In order for g2 to have minimum

value with respect to K2, al has to be positive. If

a2_ 2Ki,
2ai

then the optimal K2 becomes

(4-58)

a2
K2 =

2a1 ' (4-59)

otherwise K2 = Ki, which provides zero spread.

or

Case 1:

The payoff function (4-46) has the minimum when:

Ki =0, qi1X20 > qi2,

()0
K1 = ± 61 2k0 , ql 1X

20

< q12

(4-60)

(4-61)



For each case of K1, the payoff functions g2 (4-56) are:

and

g2((2) I Ki =o = (16 A,40 q21 64 2,) q22) K22' 8 X,40 q21 K2 + ?k,', q21,

g2(K2) I i.e
12A0
."..! = (16 X40 q21 64 X.20 q22) Ki

(.0(2, x 2 (002 x,20)+ [ + 32 Ei

22, El WO1 2 2 ,2 \ 2
± [ k E 1 WO + AO) c121 ( z .LH (422]

,,,o
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(4-62)

(4-63)

al is positive if the following inequality is satisfied (see Eq.(4-57)),

X0 Ci21 > 4 q22. (4-64)

If Eq.(4-58) is satisfied then the optimal K2 for each case of K1 are:

for K1 = 0,

A2

2
AO q21

K2
4 A,0 q21 16 CI22

and for K1 = ± Ei wo
2X0 '

12( 2 2 + 12 1
±4E1W20 q22 ''-Ok ElWO -1- ''.0,c121

K2 =
4A.Z(AZ q21 4 q22)

(4-65)

(4-66)

For example, if we choose E1= 1/157-c and qii< 1/5, and q21 = 0.906 for Xo

= 4 and coo = 4Oic then the optimized kernel becomes K1 = -1/3 and

K2= 1/2.
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Fig. 4.9 and Fig. 4.10 compare the sensitivity results of the new

kernel function versus those of the unbiased kernel function for X0 = 4

and coo = 40n. The parameter X0 = 4 changes to X1 = 5 at time t*=

0.25 second. The new kernel is more sensitive to change in Xo

which shows as more pronounced jumps in the first and second

moment at t = t*. The modified exponential kernel from Eq.(2-27) is

42c2

(I)(4,t) = (1 + ci4T +c2et2) e- (4-67)

where c1 = -1/3 and c2 = 1/4 + 1/a to yield K1= -1/3 and K2= 1/2.

Case 2:

Next, we obtain the optimized kernel function when w changes.

From Eq.(4-47), the sensitivity function of the first moment is

independent of K1, and we obtain that K1 = 0 from the payoff function

(4-49). With K1 = 0, we have always positive spread for K2 > 0. The

payoff function g2 (4-57) becomes:

g2(K2)1K1=0 = (4 K2 1) XLP q21 4 c4 (1 + Ei)2 q22. (4-68)

From Eq.(4-68), g2 has the minimum value at K2 = 1/4. Therefore the

optimal kernel function satisfies K1 = 0 and K2 = 1/4 which coincides

with the unbiased kernel function. Fig. 4.11 and Fig. 4.12 show signal

and the first moment, the second moment and spread for K1 = 0 and

K2 = 1/4. The parameter wo=40n changes to co1 =48n at time t*=0.25

second.



0A
00

0.0
00
0.4

02
0.1

0

-OA

- 0.4

-04
-0.T
- OA
-OA

0

57

IMPULSE RESPONSE
(CASE 1)

0.0 0.8
TIME IN SECONDS

(a)

FIRST MOMENT
(CASE 1.NEW KERNEL AND UNBIASED KERNEL)

1

0.4 0.O 0.6 1

TIME IN SECONDS
NEW KERNEL UNBIASED KERNEL

(b)

Fig. 4.9. Case 1: (a) signal and (b) the first moment for changes

only



TO

00

50

40

30

20

Z 10

0

-10

NO

00

00

DO

40

30

-40

PO

30

58

SECOND MOMENT
(CASE 1sNEW KERNEL AND UNBIASED KERNELI

0 as 0.4

---- NEW KERNEL
TIME IN SECONDS

UNBIASED KERNEL

(a)

SPREAD
(CASE leIVEW KERNEL AND UNBIASED KERNEL)

a6 1

0

-- NEW KERNEL

0.4 0.0
TIME IN SECONDS

UNBIASED KERNEL

as

(b)

Fig. 4.10. Case 1: (a) second moment and (b) spread for A. changes

only

1



5

O

0.0
0.8
0.7
0.0
0.5
0.4
0.3
0.2
0.1

0
-0.1

-0.2
-0.3
-0.4
-0.5
-0.0
-0.7
-0.8
-0.0

30
20
28
27
20
25
24
23
22
21

20
10

18

17

10
10 -
14
13

12

59

IMPULSE RESPONSE
(CASE 2)

0.2 0.4 0.0 0.8

TIME IN SECONDS

(a)

FIRST MOMENT
(CASE 2)

1

nR
0 0.2 0.4 0.0 0.8

TIME IN SECONDS

(b)

Fig. 4.11. Case 2: (a) signal and (b) the first moment for t5

changes only



700

600

60

SECOND MOMENT
(CASE 2)

40

CO

DO

20
CLai

20
$

10

10

0.2 0.4 0.0
TIME IN SECONDS

(a)

SPREAD
(CASE 2)

0.8

-

O

O

1

0.2 0.4 0.0
TIME IN SECONDS

0.8

(b)

Fig. 4.12. Case 2: (a) second moment and (b) spread for tu

changes only



61

As shown in Fig. 4.11 and Fig. 4.12, the first moment and square

root of spread correspond to w and X, respectively. The modified

exponential kernel function with K1= 0 and K2 = 1/4 is given by Eq.(2-

34).

Case 3:

Finally, when the two parameters change at the same time we

obtain different kernel function than in the first and second case.

The criteria for the optimal kernel function is a compromise between

the criteria of the first and second cases. If we choose ei = 1/10n,

< 1/5, and q2i= 0.816 for = 4 and wo = 40m then the optimal

kernel function becomes K1 = -1/2 and K2 = 1. Fig. 4.13 and Fig. 4.14

show the first and second moment with the optimal kernel function

satisfying K1 = -1/2 and K2 = 1. The parameters X0= 4 and coo = 40tz

change to X1= 5 and wi = 48n at t* = 0.25 second. We observe again

that the optimal kernel function yields a bigger jump than the

unbiased kernel function at t = t*. The modified exponential kernel

function with K1 = -1/2 and K2 = 1 is given by Eq.(4-57) where Cl = -1/2

and c2 = 1/2 + 1/a.

4.4. Diagnosis of Parameters Change in LTI System

4.4.1. The relationship between TFT moments and signal

characteristics

We recall here the results presented in Chapter 2.
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Instantaneous power and energy density spectrum

If O(0) = 1, then

1 1+- +-
Cf(t,c),11)) do) = 1f(01 2, and Cgt,co.,(0) dt = 1F(0))1 2.

First order local moment and instantaneous frequency

The instantaneous frequency V(t) equals the first order local

moment M1(t) of an analytical signal with the constraint (1)'(0) = 0.

Second order local moment and spread

With constraint 4'(0) = 0 and 4 "(0) = 1/4, we have a positive

spread, which for an analytical signal is given by:

M2(0 MI (02 =
[

a(t)

Lemma 1

Under the constraints (2-9), (2-16) and (2-25) the first order local

moment and the spread of a complex impulse response of a second

order linear system represent the natural frequency and damping

coefficient, respectively.
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Proof:

If a signal is a complex exponential signal f(t) = exp( -Xot + jcoot ),

then the first order local moment and spread of the first order local

moment are xo and coo, respectively. Using Eq.(2-14) and Eq.(2-20), we

have

M1(t) = v(t)'= 00, (4-69)

2 a(t)12
M2( M1 (t) =

[
a(t) = Xo

2
(4-70)

Note: the first order local moment and spread do not depend on time.

Lemma 2

If the first order local moment and spread do not depend on

time, then the corresponding signal is a complex exponential signal.

Proof:

Assume that the first order local moment and variance are

constant, that is,

xv(t)' = w, (4-71)

a(t)' 1

a(t)
(4-72)
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where 7 and co are constants. Solving the differential equation Eq.(4-

71), we have

iv(t) = cot + cl, (4-73)

where c1 is a constant. Eq.(4-72) can be expressed as

d a(t)
= dt .

a(t)

Integrating both sides of Eq.(4-74) with respect to time, we have

(4-74)

a(t) = c2 e (4-75)

where c2 is a constant. From Eq.(4-71) and Eq.(4-75), we derive a

formula for complex exponential signal.

4.4.2. Diagnosis of parameters change

The local moments with constraints (2-16) and (2-25) can be used

for the diagnosis of parameters change. Basically, these moments

work very well for the monocomponent signal, where the

monocomponent signal is defined as a signal which has concentrated

energy in time-frequency domain. A signal having more than one

energy concentration patterns is called a multicomponent signal.

The energy maxima in monocomponent signals coincide with the

instantaneous frequency. This interpretation is lost for the

multicomponent signals. Lost of the instantaneous frequency

interpretation makes diagnosis of parameter changes in higher
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dimensional systems less intuitive. Similar comments apply to the

interpretation of the spread.

Remark: in order to test if the signal is coming from a linear

system we can apply series of tests. The following example provides

a test for second order linear system

M3(t) = 3 M2 (t) Ml (t) 2 Mi(t). (4-76)

Such test gives a necessary condition for a signal to be equal to

A exp( -?.ot + jwt). In general this test is not a sufficient condition for

such a signal. Test for linearity is an important practical

consideration since in the real measurement situation nonlinearity of

the system may interfere with detection argorithm performance.

4.4.3. On-line implementation

An efficient use of time-frequency transformation for non-

stationary real signal requires, in general, analytical signals. There

are basically two reasons for using analytical signals in calculating the

time-frequency transformation. First, some of the TFT's give the

first order local moment equal to the instantaneous frequency, which

in turn has some physical meaning. Second, while sampling at the

Nyquist rate (twice the maximum bandwidth of signal) we can avoid

aliasing. In general, the aliasing in TFT's is avoided by sampling at

twice the Nyquist rate. In addition, Boashash [241 emphasized the

use of analytical signal in Wigner transformation since it reduces the
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interaction between frequency components which in turn cause

artifacts. The analytical signal f(t) is defined by [17].

At) = s(0-Fish(t), (4-77)

where sh(t) is the Hilbert transform of s(t):

4
sh(t) =-Lf s(' di

71 _,,c, t 11

The analytical signal has a spectrum given by

{2S(co),

co>0

F(co) = S(0), c3=0

0, co<0

where S(co) is the Fourier transform of s(t).

we have:

At) = s(t) + jsh(0

4( s (t)

= V S(t)2 + Sh(t)
2

eJtan TT).

(4-78)

(4-79)

If the signal is analytical

(4-80)

From Eq.(2-17), Eq.(2-26), and Eq.(4-80), the instantaneous frequency

and the spread can be obtained as

sh(t)'s(t) sh(t)s(t)1
Mt (t) (4-81)=

S(02 + Sh(02

and

2 S(t)S(t)' + Sh(t)Sh(t)' 2

M2( t) Ml(t) = (4-82)
2

S(t)2 + Sh (t)
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Quadrature approximation to the Hilbert transform of modulated

exponential signal

Let s(t), sh(t), and sq(t) denote a(t)cos(wot), the Hilbert transform

of s(t), and the quadrature version of s(t), which is a(t)sin(coot),

respectively. The quantitative measure of approximation of sh(t) by

sq(t) is the energy in the difference function:

4 4.
E = f Esh(t) sq(t)]2 dt 2it f I Sh(w) Sq(o)) 1 2 do), (4-83)

where Sh(co) denotes the Fourier transform of sh(t), and Sq(w) denotes

the Fourier transform of sq(t). In order for s(t) and sq(t) to be a

Hilbert transform pairs, it is necessary and sufficient that the Fourier

transform A(w) of a(t) be zero for co < coo [23]. Thus the following

quantity becomes a measure of approximation of sh(t) by sq(t):

-.0
LA(w) 12 dco. (4-84)

If the quantity given by Eq.(4-84) is small then:

Hilbert transform of [ a(t) cos(wot)] --- a(t) sin(wot). (4-85)

For f(t) which satisfies Eq.(4-85), we can calculate instantaneous

frequency and the spread without performing the time-frequency

transformation. Now we can implement Eq.(4-81) and Eq.(4-82) by

using the FIR Hilbert transformer [22] and differentiator [21]. This

significantly reduces the amount of computations as compared to

calculating I k I .
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4.5. Comments on Extending the Results to Nth Order LTI System

In general, the impulse response of a nth order LTI system is a

multi-component signal. This means that the interpretation of

moments becomes less physical. Also the expressions for the

moments become highly complicated functions of system parameters.

This makes the detection and diagnosis that much more difficult.

However, the main concepts of defining sensitivity function and

selecting the best kernel by maximizing the sensitivity under

constraints imposed on the kernel are still valid. With loss of

physical interpretation of the moments the concept of bias is also lost.

This means that the constraints have to come from different sources,

for example from the interpretation of TFT as an energy distribution

function. Introduction of higher than second moments seems to be

natural extension for nth order LTI system, but it complicates even

more the corresponding expressions. A practical approach to

analysis of the nth order LTI systems would be to pre-filter their

output in order to separate its component and deal with each

component similarly to the case of second order LTI system.

We conclude, that while the basic concepts of sensitivity and

payoff function can easily be extended to the nth order LTI system, at

the same time the analytical difficulties seems to be overwhelming.

Note that the basic linear-in-K form of the nth order local

moment does not depend on the system order. With properly

defined payoff functions, the optimal kernel selection problem will be

that of quadratic programing with linear constraints. More generally
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the optimization of the kernel function as proposed in this thesis

belongs to the nonlinear (static) programing.



CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1. Summary

72

The time-frequency transformation (TFT) is a good tool in

analyzing non-stationary signals. Various members of Cohen-

transformations are obtained by selecting a particular kernel function.

The properties of time-frequency transformation are related to the

constraints imposed on the kernel. Setting those constraints

properly makes the applications of TFT even more attractive and

efficient. In this thesis the concept of selecting the best kernel for a

given signal analysis application is studied. In particular an

application of TFT to parameter change detection in LTI systems is

discussed. The underlying idea is to monitor the local moments of

the TFT applied to the system output signal. The best kernel is

selected to maximize the sensitivity of the local moments with respect

to the parameters change.

The main contribution of this study can be divided into two

parts: development of the TFT kernel optimization methodology and

application to the change detection. This thesis provides systematic

derivation of the general formula for local moments and their

sensitivity functions. Next the special form of the LTI output is

explored and the sensitivity is directly related to the TFT kernel.

Examples of optimized kernels for simple case studies are provided.

It is shown that the introduced concepts produce indeed useful

results in the form of an efficient parameters change detector. The
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kernel optimization procedure is reduced to solving the problem of

quadratic programing with linear constraints. As an additional result

the change diagnosis is possible for monocomponent signals. The

latter restricts the applications to first and second order LTI systems.

Comments on efficient implementation of the proposed detection

methodology are provided, and it is shown that the local moments can

be calculated without performing actual TFT. It is expected that this

study provides solid basis for extending the obtained results to multi-

dimensional linear systems.

5.2. Future Research

Presented here results apply to the detection problems in

deterministic LTI systems. In the presence of noise, the choice of

the best kernel function must compromise between maximum

sensitivity with respect to parameter changes and minimum sensitivity

with respect to random errors. The TFT approach is known to be

sensitive to noisy signal and some form of pre-filtering seems to be

necessary. This pre-filtering may be combined with separation of

components of a multi-component signal.

An interesting analogy between the classical correlation methods

used in identification and the TFT ratios can be explored. The

correlation methods have been applied widely in system identification

[32]. For the LTI system we define:

Ryu +'*h Ruu(t) dt, (5-1)
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where Ruu(t) and Ryu(T) are the sample auto-correlation of input u(t) and

the sample cross-correlation of output y(t) and input u(t), respectively.

Likewise (13.(w) and (13yu(w) are the auto-spectrum of u(t) and cross-

spectrum of y(t) and u(t) defined by

(DUU(W) 14.'s RuA) e-i4°) dco, (5-2)

4-00

cpyu(co) == f Ryu(4) e-i4°)cico. (5-3)

The Cohen's class time-frequency transformation can be expressed by

local correlation function [131

+03
Cfg t,C0) = J

where

RAO et) (c) e-itwdt,

f(gFIgig-1)0 (,t) e-R(t-1))Rgogo(t) dg.

(5-4)

(5-5)r1'"727t

Comparing Eq.(5-2) and (5-4) with (5-4) we define new detector function:

Cyy(t,co)
H(t,co) =

Cy.(t,o)) (5-6)

where Cyy(t,co) and Cyu(t,co) represent the auto-time-frequency

transformation of y(t) and cross-time-frequency transformation of y(t)

and u(t), respectively. Eq.(5-6) represents the "time-frequency"

transfer function, thus generalizing the well known methods of

frequency domain. This "new" transfer function can be used for

detection algorithm design by maximizing its sensitivity with respect

to parameter changes. The maximization is again accomplished by
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properly adjusting the kernel function of Cyy and Cyu. The advantage

of this approach over the old one is that the input affects the

sensitivity both in explicit and implicit (thru y) fashion.
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APPENDIX A

GRADIENT AND HESSIAN OF MOMENTS

Gradient of Output Signal Moment

aZt(a,(1) ,t)

as I - ao

2.i ooJT (on e-jto.)+At-j41.1

as [ a ,1-1+ ) Y*( a 2)1 I a dr didµ tho

r÷r-f+-r-f-f-cone,.+At_i4,,,,.

i[ 7i Y(a4+1)][ Y*(c"/-2)]+

[ 73ca Y *()]F Y( a,1-1-+1)1} I a= a
0

dt d4dµ dco

Gradient of Error Signal Moment

aZne(a,a0,0 ,t)

as I a _
0

27r f 'f ÷-1_00 _00 _00

i[4rc E(oc,ao,1-1A-1)][E*(a,ao,li-1)]+

[ :AT Eict,ao,11-1)1[ E(a,a0,1-1.4)]} I a = dt d dµ dco

=0
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Hessian of Error Signal Moment

a2znE(a,a0,0 ,t)

aa2 la=a

27C f 1.1' (1)n Cit°)+At (1) (4,T ).

[ 7a E(OC,000,1.1-1:1)1[ 3 TE*(0C,OCcof.t+-2-T )] I a CPC d4 dp, dco

1 r 41 41 1-'s (on Cita) +At Ail (
2TC j

[ ToTa y(a,p,+1)1[ y*(a4t-F2)1 di d4 dp, do)
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