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S1TTHES I S OF ULT ITERM INAL R C NETWORKS 
WITH THE AID OF A MATRIX TRANSFOMATIO11 

L'TRODUCT ION 

in the synthesis of passive networks, one of the most 

Imoortant problems is to determine realizability concU- 

tions. That is, what are the necessary and sufficient 

conditions upon a set of network functions in order that 

tere may be a physical network possessing these particu- 

lar network functions. If the ordinary, lumped elements of 

all three kinds (R, L, and C) are allowed, including the 

existence of mutual inductance, and includin, the ida1 

transformers as elements; then the realizability conditicns 

for the networc transfer and driving point imnittances are 

well known. These conditions are that Zr s Ers be a 

positive real function for all arbitrary values of real 

variable Xr. Here rs designates the prescribed driving 

point or transfer immittance (3). ir the general m-termi- 

rial pair networks, it is equivalent to say that the pre- 

scribed inmiittance matrix is positive rea1(l2) 

Suppose more restrictions are introduced; such as the 

realization of RC networkswithout the use of ideal tra;is- 

formers, the situation is completely changed. The general 

case (r> 1) has not been coplotely solved t':ough a lot of 

work has been done on this problem (2, 8, 11). 

A real, symnetric matrix is defined as a "positive real" 
matrix if the qua'atic form associated with this matrix 
is a positive real function for any real vector. 



Nhen all the terminals of a network share a common 

ground, then this network is referred to as a "m-terminal't 

network. n1y this kind of networl' realization is dis- 

cussed here. That is, the objective of this thesis is to 

make an investigation on the realization of RC multiter- 

minal networks without the use of transformers. 

The approach presented hero is based on the princiole 

of equivalent networks. With the aii of a matrix transfor- 

nation, a group of node-admittance matrices (realizable and 

non-realizable) having the prescribed open-circuit imped- 

ance matrix can be detorminet. From this group of solu- 

tions a physical realizable network may be obtained if it 

does exist. On the other hand, a different attack has also 

been introduced in order to obtain a physical realizable 

network having the prescribed open-circuit impedance ma- 

trix. A particular structure, the ladder, has been assumed 

to have the proscribed open-circuit impedance matrix, and 

based on this assumption a syn.theis procedure is describe(. 

The cornerstone of the investigation is a general 

transformation theory for network synthesis. This trans- 

formation, involving the idea of equivalent networks, is 

very important to the whole development of this thesis, 

and will be introduced in the first section. 
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I. A GENERAL TRANFORMAT ION ThEORY 
FOR NETWORK SYNTHESIS 

In network analysis one cri dnscribe any linear, 

bilateral network with lumped elements by either a system 

of loop equations or a system of node equations. In the 

following discussions, a set of n independent node equa- 

tions hs been chosen to describe an arbitrary linear, 

bilateral, lumped network; written in Laplace transform 

as: 

= ± Y2E2 + 

'2 = Y21E1 22 2 + + Y2nEn 

..... . . . . 

= mll Ym2E2 ... mrnn 

. . . . I S ft I S t S S S S 

'n 'niEi n22 " + 

(1.1) 

Or, using matrix notation, (1.1) nay be rewritten as, 

n n n 
(1)1 = (Y)1 (E)1 (1.2) 

whe r e 

(I)]i = The column matrix of n rows for the 
current vector. 

n 
( )i = The column matrix of n rows for the 

voltage vector. 

(Y) = The n x n node-admittance matrix; i.e., 



Y11 Y12 .... 

Y21 22 2n 

(1.3) 
1 Y Ç) 
J_ 

1n1 n2 . nn 
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Suppose the first in node-pairs are used as the exter- 

n1 terr'inals of the network, then all the currents except 

thosc; at these terminals will be identically equal to zero. 

That is, 

U I+ = O, ... o 

The terminal characteristics of such a network with 

in-terrìlnal pairs can be described by the !open_circuit 

impedance rnatrix.' It will be seen that this matrix, 

written as can be derived from the node-admittance 

matrix (() descrIbed in (1.3) by means of a special matrix 

transformat ioi. 

Imaíine that there are a group of networIs, all of 

them are equivalent to the network specified in (1.3). 

here "Equivalencet' simply means that all of them have the 

same terminal characteristics; i.e., the same open-circuit 

impedance matrix (Z). The simplest kind of networks will 

be one with exactly m node pairs. Thus, for this network, 

(1.2) becomes, 

rn n m 
(I')i : ''i 



m 
Since (y')r is non-sinruiar, this eauation can be re- 

written as, 

( m',-1 m 
1(Y')rnJ ''i 
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Accordin to the definition of equivalent networks, 

the inverse of ()m should be exactly equal to the (Z)m, 

the open-circuit impedance matrix of the specified network. 

.oreover, the voltages and currents at the external termi- 

nais should be equal. That is, 

Ii = Ii' 12 12' ... 

L.jr1 = O .... I O 

end Ei E2' E2 2' ... Em 1m' (1.3) 

'n matrix notation, (1.4) can be rewritten as 

n n 
(1)i (0)m (I')i (1.6) 

n 
Here (0)m is the transformation matrix. It is apparent 

that, 

1,0 .. 

0,1 .... LI 

n JT. Tlmxmunitmatrix 
(c) 0,0 .. . . i m or O O (n-m)x m null 

d , O . . . . O matrix ( i . 7) 

0,0 .... On 

It s seen that the transformation matrix (C) is a 

de;eneratvo :1atrix with n rows and m coliunns. It is 

formed by a nl x m unit matrix in the first m rows and 

zeroes in the remaining n-m rows. 

Similarly, for the voltae vectors, (1.5) gives 

()ì; (E); (1. 



n 
where (c) Is the traspose of matrix (C)m. 

Bein equipped with these equations, one can easi1 
n ni 

determine the relations between (Y) and (Z). (10) 

m m -1 nl ni 
Iecal1ing ('')i L(2)m] (I')i (Z)m (I')i, one 

has, with the aid of (1.6) and (1.8); 

m ni in -m ni -.--m n 
()m (")i = (E')1 = (c) ()i ()n [(Y)J 

n ni 
(C)m (')i 

m 
Since this holds true for any vector (it), thus 

(I') can be cancelled, 

ni -1 n 
(Z). = (C) [(Y)J (C) (1.9) 

1.9) 8tates that one can determine the open-circuit 
m 

t, 

impedance matrix by appiying a so-ca1lec m-affine, 

degenerstive, conruence transformat±on" on the inverse of 
n 

the node adnittance matrix ()n That is, for any network 

ni 
with n-node pairs, having (2) as its open-circuit imped- 

ance matrix, it is necessary that its node-admittance m- 

trix (Y) hs to satisfy the equation (1.9). In otheï 

words, one may interpret that the equation (1.9) determines 

a :roup of networks (described by their node-admittance 

matrices) all of them will have the prescribed (. ) as their 

open-circuit impedance matrix. hence, from the synthesis 

standpoint, in order to realize a network from its pre- 

scribed impedance matrix (Z), a natural approach should 

n 
be: solve the equation (1.9) for (Y) subject to the 

realizability conditions 



The solution of equation (1.9); however, is clearly 

not unique. In order to solve this equation subject to 

certain realizaLility conditions, a kind of attack that is 

frequently used in applied mathematics has been chosen. 

First, a particular solution of' equation (1.9) is f oun, 

then from this particular solution one can generato all the 

possible solutions by means of' a matri'r transformation. 

Finally the realizability conditions are applied and thus 

it is possible to pick out from the group of solutions 

those that cari be realized as physical networks. The gen- 
n 

erating of all the possible solutions from a partic- 

ular solution, say (Y1) can be performed by the trans- 

forrnatio:r (4,5): 

(Y) = () (Y1) (T) (1.10) 

where (T) is a non-singular matrix in which the first 

m rows are rows from the unit matrix; Le., 

i o o o o o 
) 1 0 0 O 

; i o O 

T O 
.... 
O 

o . . . 

1 0 
. . . 

0 1.11. 
tm1,1 tiîUl,2 . . . . t-rnr-1,m+l tmrlfl 

ti tn,2 ..... tn,m+l 

The proof' of (1.10) comes directly from (1.9) . If 

(Y1) is a solution of (1.9), then 

(Z) = ( 1()) ( 
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n in 

Note that (C) (T) = (C), etc. one has, b: using 

(1.10) 

in 
(Z)1, = (C) (T)L(Y)J' (T) (c) 

= (0) 1(Y)J(C) 

Therefore, if (i) is a sol'tion rf (1.9) then (ï) 

given by 11.10) will also be a solution of (1.9). 

Furthermore, the enerating formula (1.1) is also 

n 
complete, i.e. equation (1.10) is t1so necssary. If (Y) 

is a solution of (1.9), then, 

() r(1)1 -1 (z) = {(Y)J'(c) 

in in n -1 
put (C) = () (T)J yields, 

m._,n_I n n 
-. 

n 112 

(C)rßT)n}(Yi)n (T)nJ 

One solution has to be: 

n n n n 
(T)rì i)n (T) = (Y) 

Thus, it is concluded that the equation (1.10) will 

generate all the possible solutions of the syr}iesi equa- 

tion (1.9) from a particular solution (Y1)Ç1. It will be 

seen ir the following sections how a physical network might 

be found from this roup of solutions. 



ra 

II. SYNTHESIS OF NULTITERMINAL RC NETWORKS 
FROM A PRESCRIBED OPEN-C IRCTJIT DIPEDANCE MATRIX 

The general transfornîation theory derived in the 

previous section will be appiie( to the synthesis of RC 

multitorminal plus ground networks (i.e., a multiterminal 

network with one node servin as the cormì.on ground). with- 

out the loss o eneraiity, one may assume that there are 

at most one resistance and one capacitance conrected in 

parallel between any two nodes of the network. The node- 

admittance matrix, in this case, becomes a linear function 

of s with matrix coefficients, i.e., 
As + fr) -, 

. i_ 

n 
where: A = is the capaetance matriz, 

n 
B (bj) is the resistance matrix 

The synthesis equation (1.9) becomes 

= C(As f C. (2.2) 

Some relevant questions may arise before solving the 

equation (2.2): 

a) W1iat properties that the open-circuit impedance 

matrix Z must have in order that it can probably 

be rea1zed as a multiterminal FC networic? In 

other words, wbt are the necessary conditions 

* From now on upper-case letters will represent matrices. 
Their order can be understood from the context. 
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that tho open-circuit impedance matrix has to 

satisf?j 

h) hat are the properties of the coefficent matri- 

ces A and B. Uñder what conditions (both noces- 

sary and sufficient) can they always be roalizedf 

These two questions will be discussed before beginning 

the solution of the synthesis equation (2.2). 

A. «pen-Circuit Impedance atrix Zm. 

Some necessary conditions of realizability that Zm has 

to satisfy are well-known. They are cited here without 

proof (11, 15). 

a) All poles are sinpie and restricted on the non- 

positive real axis. 

h) The zeroes of the diagonal elements (the drivinr;- 

point functions) must lie in the left-half plane, 

including the imaginary axis. 

c) The matrix of residues at each pole s positive- 

semidefinite 

The character of the matrix of residues plays a im- 

portant role in the synthesis. In general, they are highly 

deenorate and of unit rank (6). hon the matrix of 

A positive semidefinito matrix 
metric matrix whose associated 
negative for all values of the 
accordin.; to this terminology, 
matrix may be positive-definit 

is defined as a real, sym- 
quadratic form is non- 
real varIables. Thus, 
a positive-semidefinite 
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residues at a certain polo is a sinular matrix of urtit 

rank, this pole will be referred to as a pole 

(15). If ait the poles are copact, the network will be 

referred to as a 9compact network's. 

on-comnact networks maî also exist; however, their 

occurrence is comparatively rare. lor simplicity, only 

compact networks are investigated. The synthesis proce- 

dure can he applied to non-compact networks with slight 

modifications. 

F. ìode-Adrnitt anca I'atrices. 

In this section the node-admittance matrices Y = As 

B will be discussed in detail. In particular, a theorm 

is ;iven concerting the necessary and sufficient conditions 

that a matrix can be realized as a multiterminal RC net- 

work. 

iefinition (16): An n x n symmetric real matrix M 

(mj1) is defined as a "Dominant matri, if each of its 

mait-diagonal terms is not less thar the sum of the. abso- 

lute value of all the other elements in the same row, i.e., 

mii j1 
lmjjI i = j, i = i, , ... n) 

i)efinition: An n x n symmetric real matrix 

(ij). is called Uproper signe(1", if there exist n real 



numbers jA (1 1 2 ... ni auch that vry otf-tagon1 

tern of th intr1x ,AAí »j tj) nonpositiv. 

lit t.rm of the dtintttc'n 7tven bov, th theor 

øonoernin th ra1tzbi1ity eandittons on the ftode-aiIt- 

tance tr!.c Y M can be atftte. Ir rer to 

avoid an interrupttor in the cortext, thtr proof I 

In Appendix ¡. 

].'7). The nc4e-ac11ttrce nntri. 

AA - 

o*rt be realtze4 a a physietd notwor if, nd on1. 1f, 

i) A and I "proper-ainei tìothant" matrices. 

ti) The 3UM of At *nd f) is poe1tiv-definite. 

This leads to characteristics these 

node'ath1ttance n*trlces. They are d1ecusse1 a follows: 

a) The coefficient ratrice A and F are pos1tiv- 

gernidefinite. This is obvious since they are 

dortn*nt, an1 every dominant iatrtx must he 

pos Itive-sernidefinite. 
b) rh natural modes of s RC network must he real an 

nonpoettive. thce b considered a the 

inverse of an open-circuit impedance rtrix when 

every node le re;ardetl ni a terminal.. It has 

already been shown In the previous section that 

every pole of s FC network is rea]. and nonpostt1. 

?herefors, the natural -odes are all real and 
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nonpositive. In other words, the zeroes of the determinant 

equation lAs + i are real and nonposit.ive. 

c) The natural rodes need not be all distinct. How- 

ever, it will be seen that if they are all dis- 
tinet; then the open-circuit impedance matrix 

correspondin to this network will have degenera- 

tive residues matrix of unit rank at every pole. 

Th other words, every simple mode corresponds to a 

compact pole. For simplicity, it is assumed here 

all natural modes are distinct; i.e., a comiact 

network. 

d) It is weil-imown that a pair of symetric matrices 

can be diagonalized simultaneously if one of them 

is positive-definite (13) . This is actually a 

generalized eigenvalue problem. If all the eigen- 

values are distinìct, then it's always possible to 

find a set of indeperìtent elgenvectors to form a 

diagonalizin matrix. This matrix will simultane- 

ously diagonalize the pair of syxmetric rciatrices. 

The positive-definite matrix will be reduced into 

a unit matrix, while the other will become a diag- 

anal matrix whose elements are the eigenvalues; 

i.e., the roots of the determinant equation. 

since the sum of the two coefficient matrices is posi- 

tive-definite, there must exist a non-singular matrix p 
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which can simultaneously diaona1ize A + R and A; i.e., 

î' (A L) P = U. AP = E, where R dia. (2.) 

where are roots of the determinant equation ¡(A 

O. 

By a sip1e change of variah1e: 

-\ 
set 

then kj ( = 1, 2, 

where (-U1)'5 are the roots of determinant equation 

As + BI = O, le. the natural modes of the network. 

Hence, they must be real and nonpositivo. In general, they 

can be assumed as , O, -cri, -, . . . . -a-b n when 

all modes are finite and nonzero). The co:responding2jts 

in L:q. (2.3) will be 0, l -2 .. 2p. 
i.e. dias. (0, 1, 22 ..... 

1 i 

iet Q diag. (l, i 2 
2, ), and 

J = PQ 

Then AJQ,'APQQRQU (2.4) 

where = dia. (0, 1, 1, ... i) 

and '(A+B)J = Q1;' (A+P) Pc QIJQ 

= diag. (i, i, 22, ." A-1) (2.) 

subtractin (2.4) from (2.5), yields 

Ç4J :: L:? who r e ¿1 la . ( i , o , i ' ... 
a). (2.6) 
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Thus, the pair of coef:Licient matrices and B can be 

simultaneously reduced to diagonal forms as sho in (2.4) 

and (2.i). Observe thst in (2.4) the zero element repro- 

sents an infinite modo, and the zero element in (2.6) rep- 

resents a zero mode. All the todes are distinct, since the 

network is assumed to be compact. They will be confluent in 

the case of non-compact networks. That is, some diadonal 

elements in (2.4) and (2.6) will be repeated. 

From (2.4) and (2.6), using the notation "i-" for 

direct sums, one has, 

ynl = (s f :: J - 

)*l 

T [i 4- s (s +G) (s °2) - 

- (s a-r) 
J ' 

= j [i 4 -1 (s fc_i)_l ;. (s +ö2)1 

(s + Q)1} ' 

= d ± 
l 
Si (2.7) 

where J (1 - O - .... O) 

T0 = J (O - i - o 4- .. O) J 

1Ij=J(OO....1.) f' 

:vidently these matrices of residues aro denerato 

and of un1t rank. Thus, it is concluded that the inverse 

of node-admittance matrix can be expanded into partial 

fractions with unit rack matrix of residues at each pole. 
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C. Synìthesis rocedures. 

The conclusion iven at the end of the previous sec- 

tion is very important. It points out tI-st. the matrices of 

residues are degenerate and of unit rank. Hence, they ma: 

be faetorzed uniquely into the product of a colw'n iatnix 

br its transpose (7). 

= hjhj, where h is a n x i column matrix. 

a. (2,7) can be rewritten as 

(As + )l 
= 

'-s, '-'J 
h0h0 hh1 

(2.) 
s+Qj 

dq. (2..) is an important result. Tt states tHat 

can be expanded into partial fractions very matrix of 

residues can be considered as the product of a column 

'matrix by its transpose. 

imi1ar1y 'm can also be expanded, as, 

Zm K + f K 
s SOj 

-'.- 
P 

= i + 
k0<0 

(2.9) 

Where .K0 , X0, J{i are m X m residue matrix of unit 

rank; and k , k0, and kj are the corresponding m x i 

column matrios. 

From (2.8) and (2.9) it is but one ste to the SOIU- 

tion of synthesis eamation (2.2) . However, it is felt 

pertinent to discuss some basic geoietric idea involved in 
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the transformation theory. The arurnent presented hero is 

somewhat intuitive, but it might suggest a better point of 

view. 

RecaLiin, in the analysis of an arbit ary n node-pairs 

network, both the voltages arid currents are written in the 

form of n x 1 column matrices. Actually they can be inter- 

preted as two vectors in a n-dimensional space. These two 

ri-dimorsional vectors are related by an oporator That 

is, if the current vector is fixed, thefl the voltae vector 

is uniquely determined by the operator Y. In a selected 

reference frar .. e, the ;eometric oblects (v.1, and Y1) may be 

expresed in the form of atrices. Then one can write 

(V) = (y)l (I) to e'cpress the relation among th ose qua- 

tttes. In the synthesis problem, however, the operator 

15 no longer kept unehan;ed. ri j, for a íjxd current 

vector, the voltae vector is allowed to vary in such a 

manner that will keep the open-circuit impedance invarit. 

In other words, for a prescribed open-circuit impedance of 

m-torminal network, the first n components of the voltae 

vector (Le., the voltages at the external terminals) will 

not change, hut the remairìin: n-ri components may change in 

any way whatsoever. This is actually the caso since a m- 

dimensional space is mapped a n-dimensional space. 

T.Taturally a group of n-dimensional vectors Will be ener- 

ated by one rn-dimensional vector by the transformation 

Vm C V. low if the n x i colurrir matrix hj in q. (2.) 
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is interpreted as a n-dimensional vector, and the corre- 

spondïn m x i column matrix kj in Eq. (2.9) as a rn-dimen- 

sional vector, should they follow the same mapping rela- 

tion' 

That is, k 'h1 (2.10) 

The eauation (2.10) is evidently tru. Actually it 

can be easily derived by inserting (2.8) and (2.9) into 

the synthesis equation Zm C C, and identifying the 

correspond mR, terms. 
,1 

= C h h1 c = (Chm)(Chm) 

1eca1ling the uniqueness of factorization, (2.1': is 

thus proved. 

Referring back to the definition of matrices of ros- 

idues Hi in (2.7), lt is apuarent that: 

j =Lb , h0, hj, ... h] (2.11) 

Usin,) (2.4) and (2.6), one has, 

-'n 
As B 
_/1 

-I 

= j (t: + 't) j 

= lLi s (S +) ... (b p)3J (2.12) 

The equations (2.12), (2.11) and (2.10) may be used 

to determine the ;eneral solution of synthesis equation 

(2.2). However, since the realizability conditions cited 

in the teorm (nae 12) are difficult to aupl:1r, it seems 

much better to choose the attack described in the first 

section. First, a rarticular solution is determined, then 

Eq. (1.10) is used to cenerate all the possible solutions. 
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After such a process the realizability conditions miht 

possibly be examined for these solutions. 

The generating. transformation in Eq. (1.10) can be 

considered as a series of elementary con ruent transfor- 

mations (9). Tuo allowable transformations imply; 

(a) Interchange of column (row) i snd column (row) 

j, where i, j,m 

(b) Ju1tip1y column (row) i by any non-zero constant, 

where i> m 

(c) Adding to column (row) i by any multiple of 

colurin (row) j, where j> k. 

If a pT:sical realizable solution eists, it should 

be contained in the general solution. Hence, it would he 

possible to find it by operating on the particular solu- 

tion the allowable transformations listed above. In order 

to illustrate the synthesis procedures, a simple example 

is given as follows: 

xamp1e: 

rLlS22lQS±l25, 2452+323 
Zm 6s(sl)(s+2) 

[24S232, 64s2i2sJ 

i 

s 

2 

i i 

4 
s2 

4 

3actorize the rtatrix of residues at each pole. 

( 2 .l3) 



ko 

LI 

i 

4 
k1 = 

2 

k2 

2 
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The simplest solution of independent vectors h1 from 

(2.10) will be 

2 1 

4 

h00 h12 
0 0 1 

Inserting in 2.l1), yields 

1 1 

2 2 

t_0 o 

A particular solution is, from (2.12) 

2 0 0 0 0 2 1 i-1 

2 0 Os+lO 0 2 2 

2 1 o O s+2 O O i 

45 
-4 

-s 

s 65 -21 = -. 

-s !s4 49S12 

This is ::ot reellzable since it is not dominant. It 

can be made realizable by meens of the allowable opera- 

t ions. 



s «s - 
2 

s 65 
-. 

31 s+4 T5 
s-4 s+l2 - 

s 

: 65 . 31 
- -s-2 

s 31 42 
- -ï-' T3 
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The realized network is shown in Fi;. 1. A1ternte 

forms aro also possible, for instance, 

S q 
4s O 

2 

5 
- 

0 L) s4 
''1 
O 

O llsfll -s- 

s - 31 
-iv-2 

49 gs3 --1 -s -s-;: 4 

4s O -s 

O lÏs+li -lOs-lO 

-s -lOs-lO 

This realization is shown in Fig. 2. It has less 

elements than the rea1i2ation in Fig. 1. 
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F. 2. Alternate ea1ization 

of Zw(s). E. (2.15) 
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III. RC LADDER SYNTHESIS 

The synthesis method described in section 2 may lead 

to a physical realizable network having the proscribed 

open-circuit ipedance matrix. However, since rio suffi- 

oient condition has been obtained, there s no guarantee 

that the realizable solution exists, 

In this section a different aprroach has been chosen. 

Instead of seeking for a physical realizable network from 

the generai solution of the synthesis equation, a parti- 

cular model is chosen to fit the solution. That is, a 

particular structure is forced to be identified, if possi- 

ble, as a solution of the synthesis equation. The ladder 

networ: is a basic structure of primarT importance; there- 

fore, it is selected as the particular model to be iciriti- 

fled as a solution of the synthesis equatio. k1or simpli- 

city, only the three terminal network is discussed. m 
is, the sjrithesis of a "RC Quadropole" from a prescribed 

2 x 2 open-circuit impedance matrix, (i.e., the impedance 

function ll' l2' z22) is investigated. 

A ladder, such as sorn in Fig. 3 is represented by 

a special form of node-admittance matrix i As + as, 

* Rar convenience, the matrix is labeled in a reverse 
order. 
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as+b, a's+b', O 

5n 'S+br', an_1s-be_i, a_1s+b..l . . 

. . . 

(3.1) 

. . a2s+b2,a2's+b 

cs+b ais+bi 

This matrix is called the "Tripel diagonal form". 

In this matrix ali the elements except those on the main 

diagonal and those just above aïid below the main diaona1 

are equal to zero. It is also referred to as the 

"J'cohia matrxtt. 

Ior ccnvenlence, (3.1) is re'vritten as, 

Íi_n n ........ . . 

-qn -1--q.. 

O lrL-1 n-2 
=1 

. ............. ._q3 u 

............ -q3 2 -q 2 

....... t . . . o 2 l 

where Pj aj si-bi i i, 2, .. n 

3 . 2: 

-,-i = a1ts±b k 2, 3, ... n 

Ithe special feature of' a Jacobian matrix lies in the 

fact that any minors of this matrix can be represented as 

w it is obvious that P. and q need not be restricted as 
the parallel combinaion of a resistance and a canacitance 
as described in section 2. 



25 

the product of its o1mnts with its 'rinc1pa1 minors. A 

detailed discussion is iven in Appendix L. 

!'ow, suapce a ladder is chosen to be a physical real- 

izatioxi of a certain prescribed open-circuit impedance 

matrix, then necessarily the solution 0; the correspondinp 

synthesis equation (1.9) must be in the form of a Jacobian 

matrix. In other words, the prescribed open-circuit ini- 

pedan.ce matrix Zm has to be restricted ir sorne special 
manner. As usual, before the investiation for a synthesis 

procedure, an attempt is made to establish sorno necessary 

conditions. 

The necessary conditions that a prescribed opon-oir- 

cuit impedance matrix has to satisfy in order that it 

may possibly be rolized as an RC ladder network bave been 

well established (9). besides those conditions cited on 

page 10 there are some special characteristics of ladder 

networks, namely, 

(a) The poles of the transfer impedance Z12 must 

also be the poles of the driving point impedance 

:- and ¿ 22; hence, they must be real and nea- 
tive. Further;ørc, they have to be finite and 

dIfferent frau zero. 

(b) The zeroes of the transfer impedance 12 must be 

restricted to Lhe negative real exs, 

(e) The poles may be repeated. However, in the pres- 

ont discussions it will he assumed that they are 



di3tiflCt. That is, c r 1v the tcompact network 

is di8CU8OCì. The matrix of residue at eac!ì pole 

i3 hih1y degenerative and of unit rank. This 

matrix cf residues, in case of a three-terminal 

networ!z, ca be written as, 

(i (ii 

I II k12 

ii j) 
(i l 2, ... n) 

t.12 22 j 

::f the matrix should be degenerativ' and of u.ntt rank 

tkten necessarily its determinant must vanish, i.., 

(1) iì (i) 
k11 k - 

J 
' O 1 1, 2, ... n. 

(i) 
Thus, if k anc the residue of one of the driving 

(i) 
point impedance at a certain polo, say k92 , ere fixed, 

s' 
¼.) 

then the other one, k11 will be uniquely determine1. In 

other words, if a "compact network" has heen found to pos- 

sess the proscribed quantity 12 as its transfer impedance, 

and 12 its drivinç point impedanco at; one terminai, 

then necessarily it will have as th drivin-point 

impedance at the other terminal. Hence, only the reali- 

zatian of 12 ':22 (or ii need be considered in. a 

synthesis procedure. he third quantity (or Z) is 

realized as a consequence. 

returning to iq. (3.2), 5t s possible to determine 

the oper-circuit impedance rtix from the node-admit- 

tance matrix Y. However, it is noto that the 
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transformation matrix introduced in the first section needs 

a sii ht justification. Since in the present case tbe 

first and last, instead of the first rn node aro considered 

as the access terminais. If a new symbol ".L is used to 

denote this modified transformation matrIx, evidently, 

i .) 

u O 

= : : ::: (3.3) 
o o 

o i 

And the corresponding synthesis equation is simply 

î yn L (3.4) 

where the node-admittance matrix ï is in the form of 

a "Jacobian matrix" in the present case of ladder realiza- 

tion. 

From lOq. (3.2), (3.3), (3.4) it is possible to relate 

the elements in the Jacobian matrix with the prescribed 

quatities Zll i2' and 222. It i proved in ppen ix 

t hat 

- n2 q iI q32i 

11 - 
I 
n. 

,_ -2 --- 1P2 19i 

o 2 0 2 
li q21 q3 n_l' q 

'22 = ir- 102 - Ip ------ Pn-1 IPn 
(3.6) 

and 

- The conventional notation for continued fraction, (i.e., 
stieitlos fraction) is adapted. 



Z12 = i2 (3.7) 

f) 

where Y1) represents the determinant of the Jacobian 

matrix Y. 

q. (3.7) states that any zero of the transfer imped- 

'1 

ance Z12 must be a root of the equation qj = D Hence, 

the zeroes must be restricted to the negative real axis. 

Furthermore, it also sug)ests a possible synthesis proce- 

dure. It is observed that the series admittance qj is a 

linear factor of the numerator of the transfer impedance 

12' thus by the factorization of the numerator of the 

prescribed transfer impedance Z12, it is possible to choose 

one of its linear factors a q; and thus, i- turn, deter- 

mine P1 and the first section of the ladder. This process 

may be continued if the remainin. impedance is still a RC 

impedance function» Thus, a complete realization is pos 

sible and a three-terminal C ladder having the prescrihec 

quantities l2 Z22 can be thus constructed. This network 

will also possess Z11 as one of its driving pLint impedance 

A RC impedance function is defined as a rational function 
of s which can be realized as a drivin;., point impedance 
using resistance and capacitance only. 
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in case of a "compact" network. The synthesis procedure 

is best explained by the following example: 

'9s29s*3s 6srlO 

i i m - Ts-i)(s2)(s3) 
i65 18s257s4i 

iA o't 
i -, 

27(st2 11 
W2 

2 

_____ Ii -4 

+ 
27(5r3)[4 

l6j 
(3.) 

It is easily seen that the prescribed open-circuit 

impedance matrix Zm satisfies the necessary conditions 

cited on page 10. And, from the partial fraction expan- 

sion, evidently Zrn is compact at each pole. 

t'eferring to q. (3.7, t.L., 

z12 6s+1O (3.9) 
27(s+l)(s+2)(s3) 

i q9 q321 li352+578+41 
z12 jp2 _p3 27(s+l)(sf2)(si-3) (3.10) 

choose q2 = :x s+.) where a( is a constant. 

Subs. the above eq. into (3.10). 

i - 27(8b1)(s±2)(s3) , 2 

Z22(s 1S2.57s41 = Pi 

i q32 
(19J 

) (3.11) 



30 

putt 1n s yield s, 

= 2 

ifferentiata i and then et s - 
228) 

p; = 3 

3s4-7. 

2 1 q32h 27s'-45 

oC 1P3 1 
1S2+578+41 

chooae 3. i.e., q2 3s5, q 2, 

and 
ii 4j 35 

f 
1s257s41 

the f'irst section of the ladder network can 

b conttructe. The whole ntwork can be found by con- 

tinuing the procedures. 

From Eq. (12), it is seen, 

P2 
P3 

63+? - 

Pherefcre, P2 68+9 

P3 

ladder' networ' . ]own in ki. 4. 
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q,, 

- - - r 

'II II lI 

Fig. 3. A Ladder Network 

5 

31 12 

Fig. 4. RC Ladder Realization 
of Zm(5). Eq. (3.8) 
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Iv. co CiJSio 

Lhe syrithesis rrethod described in the previous sec- 

tions ca also be applied to the case of T-L arid LC net- 

works bT a sirple change of variables. It is well known 

that the substitutions s . and s t2 will chsn,e the 

hL a IC networks to an identical forri of i«TC networks 

respectively. The technique is treated in most books on 

network synthesis and thus its discussion here is unnec- 

essary. 

The network realization described here can be odi- 

fled to meet the synthesis problems involving active 

elements. Transfer functions with poles and zeroes an- 

where in the comniex plane can always be provided even 

with only two kinds of elements if active elomnts are 

utilized. The situation Lecoos somewhat simpler with 

the use of active elements since the dominant requireìn'nt 

on the node admittsxce matrix no longer bas to be satis- 

fled. And, this is just the cumbersome condition that 

usually renúors the problem unsolvable. Actually this 

transformation approach is more natural and has been 

reconizod as a powerful tool in the area of active 

networks. 

It would be appropriate to hive a comment on this 
synthesis method based on the equivalence of networks 

and some possible directions for fìrthor investiations. 



This synthesis method, though apparently a powerful tool, 

actually does riot lead to a fruitful result. This fact 

may be seen from the examples given In the previous sec- 

tions. This aprroach is based on the idea of equ'Lvalence 

of networks. And tbis seems to he a natural and general 

attack of the synthesis problem. Jrfortunately, it is 

scarcely )ossible to solve a problem base on a general 

approacb. The reason for the failure of this method is 

that there is no one-to-one correspondence between. the 

parameter matrix, and the associated network unless the 

network is restricted to a particular reference frame. 

And even if a rather convenient reference frame Is selec- 

relatively simple realizability condi- 

tions, the siplic1ty will he lost imediate1y as a result 

of subsequert manipulations. Synthesis based on network 

2quivalence is, so far, one of the trost subtle and least 

well-understood aspects in the area of network synthesis. 

TTowever, it is felt that a further investigation is still 

needed since the method provides a fundamental corcept to 

the problem of network synthesis. i;'oreuver, it would yield 

the cooplete solution of networ. synthesis if its inherent 

defects could be overcome. 

:t is fait that in order to overcome the inherent 

defects of matrix method, the transformation should be 

interpreted in terms of linear graphs. «atrices can onl: 

represent a "cross sectior view", so to speak, of the real 
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eometr1c object. iow could one be so fortunate to pick 

out a particular reference frame, among a great nu ber of 

choices, in which there is a weil-pose physical inter- 

pretation 

Thus, it seems more practical to select certain net- 

work structures such as the ladder realization described 

in section 3 and atteipt to identify these as solution 

of the synthesis equation. The disadvantaie of tu is ?t0r 

structedsolutionT! method is that it must he restrictec 

to the special form of selected structure. As a conse- 

quence more restrictiorn are imposed on the prescribed 

open-circuit iipeciance matrix m From this point of view 

one will naturally prefer to take the more eneral a- 

proach. it is believed that the general principle of 

equivalent networks will be proved useful and deserve 

rijore investigation. 

However, one might have a better chance of success if 

the approach based on equivalent networks is studied in 

the language of linear graphs instead of matrix transfor- 

mations. fïence, it is felt that ¶ttopologyt may assume 

fruitful role in a further investiïation of the network 

synthesis problem. 
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APP :i A 

.ecessary and Sufficient Conditions o [ea1izbi1ity 
of the oe_Adrnittanoe atrix L A8 

The theori cited in gectior 2 (pas :e 12) concerning 

tii3 realizRbility of node adriittance natrtx Y -t- b 

will be proved in this Appendix. 

jemma: ' n x n real natrix (mjji can be r,a1- 

ized as the node-admittance mstrix of a n node-pair resifl- 

tive netwcrk if, and only if, the uctrix i u "proper- 

signed" dominant matrix. 

The loima is j'ist a modified form of a theorm :ivoiì 

in many relevant papere (17). The usual condition re- 

quiree that each off-diagonal term of the matrix be non- 

positive. The proof for such a situation is really 

routine. 

ecessity cinies directly from writtn; the node-oqus- 

tians of a common roind networv. SuffiCiicycan be proved 

b/ a SirIpiC synthesis procedure, corroapodin. to each 

non-zero element mjj, a conductsnce equals to mjj is 

connected between node i and nodo j. hnd between each 

node j and the cormion ground a condwtance is connected 

with the value mj Z rìjj, sInce the atrix ta dortt- 

nant, hence - O 1, 7, ... 
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is attempted to aru;uo here that requiring all off- 

diagonal terms non-negativo is not essential. Any domi- 

narit matrix even with some positive off-dia,onal terms is 

realizable if lt can be converted into one with all off- 

diagonal elements non-positive when both voltages and 

currents are reversed in direction at some terminals. 

Since a reversal of both voltage and current at a certain 

node, say the j-th node, will lust cause a change in slLn 

for all the ofi-dlagonal terms In the j-th row and j-ith 

column. Therefore, all the possible changes in sign dis- 

tributlon may be performed as the matrix (jfr'j mj). 
Thus, if there exist n non-zero numbors/-(j i=l, 2, ... n) 

such that all the off-diagonal terms of the matrix /- j 

mj1) be no-positive, then a physical realization is always 

possible for the dominant matrix (mii). In other words, 

the matrix must ho a ?!proper_slgnedft dominant matrix. 

Hence, the lamma is proved. 

Theorm. The node-admittance matrix 

AS + i 

can be realized as a multltorminal RC plus 

ground network if, and only if, 

a) A and E are 'proper-slgrïed" dominant matrices. 

b) The sum of A and L is positive-definite. 

,t 
Proof . 

ecessitT: (a) is obviously true according to the 

lemnia. And since = B -ust he a positive real 



matrix when every node is considered as an. external ter- 

minal. Thus, As + E should be positive-definite Í'or s real 

and positive. Lettin, s 1, ±t is seen that A 13 has to 

be rositive cifinite. 

Sufficien: The network can be constructed In the 

manner described In the leimria. The condition (a) implies 

that each element in the network is real and non-negative. 

One needs only prove that (b) implies the network contains 

a tree. This may be nroved by appling the flaxwell Topo- 

logical rules as follows (14) 

= As tree admittance products of the 

network. Taking s = 1, Y will be positive-definite, 

thia it must be non-singular. This implies that the 

sunmation of treo admittance product not be eoual to zero. 

Thus, at least one tree product is different from zero. 

}ence, the network contaIns a tree, and the proof is 

completed. 
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APPFNDIX B 

valuation of Eqs. (3,5), (3.6), and (3.7) 

The Jacobian matrix is a "Triple diagonal form't, that 

is, all elenionts are zero, except toso on the rnairì-diay- 

onal and those just above and below the main dia;onal, i. 
Pn, q O 

q Pn-i qn-1 

U qn-i Pn-2 . , ...... 
V -- 'z 

n 
. ........ 3 q3 O ........ . q p 2 q2 

........ . C) q2 Pl 

set of subîiatries can be obtained by deleting 

first row and column, the first two rows and colunins,.... 

...etc., and the correspondini. determinants of these sub- 

atricos are desììateU by i 1)%, ... -1 rospec- 

tively. }Hsides, anoth9r set of submatrices can be alsO 

constructed by doletn the last row and column, the last 

two rows and colunns, .... etc., and the corresponding 

determinants of these subrnatricos aro desiiated by 

-2' . L, i4. irorn Eq. (3.2), lt is observed tbiat, 

Pi i-1 - qj2 D1...2 

and t 2 1 i-2, 3, ... 
Dj_1 - qr-j2 fli-2 

also D1 Pi Dj = P. 

and DD Yn 
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Ith the aid of these relatlon3, the Eqs. (3.5, 3.6, 

3.7) can be easily derived. 

Insertin .q. (3.2) Into the synthesis Lq. Z imn L 

yields, 

-1 
i i2 

_____ rn L I 

Li2 22) I--fl 

Z- (-qj) 

n 

21 (-qj) 
Ience Z12 i2 

Ami1ar1y 

n 

(-qj) 

T), -i 

__ - Do_i = 

- 2 -q 

i 1*t 
qy 

pn_ 
2 qn-i 1n-3 

Dri -2 

- _2:I q2 L1riI q321 q22j - 
I 

P IPri -1 (Pn_2 . . 
J 
P2 JPi ( 3 .5) 

I 

I 

, 

D 
2 

'in-1 
f 

: -1 
= q2 

z22 = 
D p D]-q2 -2 

2 

P2 

- -- _:J q2 r_i2 q2 - 
!Pi 

': !P:ì-i IPn 
3.6j 


