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SYNTHESIS OF MULTITERMINAL RC NETWORKS
WITH THE AID OF A MATRIX TRANSFORMATION

INTRODUCT ION

In the synthesis of passive networks, one of the most
important problems is to determine realizability condi-
tions. That 1is, what are the necessary and sufficient
conditions upon a set of network functions in order that
there may be a physical network possessing these particu-
lar network functions? If the ordinary, lumped elements of
all three kinds (R, L, and C) are allowed, including the
existence of mutual inductance, and including the ideal
transformers as elements; then the realizability conditions
for the network transfer and driving point immittances are
well known, These conditions are that 2 Xn Xg Fpg be a
positive real function for all arbitrary values of real
variable x,. Here Fpg designates the presaribed driving
point or transfer immittance (3). In the general m-termi-
nal pair networks, it is equivalent to say that the pre-
seribed immittance matrix is positive real™(12).

Suppose more restrictions are Introduced; such as the
realization of RC networks without the use of ldeal trans-
formers, the situation is completely changed. The general
case (m> 1) has not been completely solved though a lot of
work has been done on this problem (2, 8, 11).

* A real, symmetric matrix is defined as a "positive real"
matrix if the quadratic form associated with this matrix
is a positive real function for any real vector.
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When all the terminals of a network share a common
ground, then this network 1is referred to as a "m-terminal”
network. Only this kind of network realizationvin dis-~
cussed here. That is, the objective of this thesis is to
make an Investigation on the realization of RC multiter-
minal networks without the use of transformers.

The approach presented here is based on the principle
of equivalent networks. With the aid of a matrix transfor-
mation, a group of node-admittance matrices (realizable and
non-realizable) having the prescribed open-circuit imped-
ance matrix can be determined. From this group of solu-
tions a physical realizable network may be obtained if it
does exist. On the other hand, a different attack has also
been introduced in order to obtain a physical realizable
network having the preseribed open-circuit impedance ma-
trix. A particular structure, the ladder, has been assumed
to have the prescribed open-circuilt impedance matrix, and
based on this assumption a synthesis procedure is described.

The cormerstone of the investigation 1s a general
transformation theory for network synthesis. This trans-
formation, involving the idea of equivalent networks, is
very important to the whole development of this thesls,
and will be introduced in the first section.



I. A GENERAL TRANSFORMATION THEORY
FOR NETWORK SYNTHESIS

In network analysis one can describe any linear,
bilateral network with lumped elements by either a system
of loop equations or a system of node equntiqns. In the
following discussions, a set of n independent node equa-
tions has been chosen to describe an arbitrary linear,
bilateral, lumped network; written in Laplace transform
as:

Iy = Y38y + Yag82 + ..., * Yinkn

Ip = ¥g)E) + YpoBg + . ,, + Yonkn

Im = leEl » szEg SV YmmEn

(1.1)

In = Yn1E) + YpoB + ..oo + YppBy
Or, using matrix notation, (1.1) may be rewritten as,

(1) = (V)] (B)] (1.2)

n
(I); = The column matrix of n rows for the
current vector.

(E)1 = The column matrix of n rows for the
voltage vector.

n
(¥), = The n x n node-admittance matrix; i.e.,



Yll Ylg L Yln

Yo1 Yoo se.. Yon

. . . - . . -

(1.3)
le sz “s e Ymn

. . B . - - . .

Y1 ¥n2 eecs Ipn

\
Suppose the first m node-pairs are used as the exter-

nal terminals of the network, then all the currents except
those at these terminals will be identically equal to zero.
That is,

Im¢l =0, Im+2 =0, ceve In =0

The terminal characteristiecs of such a network with
m-terminal pairs can be deseribed by the "open-circuit
impedance matrix." It will be seen that this matrix,
written as (Z)ﬁ, can be derived from the node-admittance
matrix (Y)g desceribed in (1.3) by means of a special matrix
transformation.

Imagine that there are a group of networks, all of
them are equivalent to the network specified in (1.3).
Here "Equivalence" simply means that all of them have the
same terminal characteristics; i.e., the same open~circuilt
impedance matrix (Z)g. The simplest kind of networks will
be one with exactly m node pairs. Thus, for this network,
(1.2) becomes,

(1] = (Y1) (EN]



Since (Y')$ is non-gingular, this equation can be re-
written as,

20} = [enn]™ (]

According to the definition of equivalent networks,
the inverse of (Y)ﬁ ghould be exactly egual to the (Z):,
the open-circuit impedance matrix of the specified network.
Moreover, the voltages and currents at the external termi-
nals should be equal. That is,

In = it Ig = Ip' o, In = Iy!

It * 0 woee Iy » 0 (1.4)
and Ej = Eg' Eg = Eg' .... By = Ep (1.5)

In matrix notation, (l.4) can be rewritten as

(1)1 = (C)p (I')] (1.6)

n
Here (C)y 1s the transformation matrix. It is apparent

that,

1,0 eev. O .
0’1 L B O
n e o v o e U| U=mx munit matrix
(C)yy = [0,0 ¢oee 1m or(0O| O = (n-m)x m null
0,0 svee O matrix (1.7)
O’O LR A O n
~ 7/

It is seen that the transformation matrix (C)y is a
degenerative matrix with n rows and m colums. It is
formed by a m x m unit matrix in the first m rows and
zeroes in the remaining n-m rows.

Similarly, for the voltage vectors, (1.5) gives

(81)" = (O)F (B)} (1.8)



~ m n
where (C)p is the transpose of matrix (C)pm.
Being equipped with these equations, one can easily

determine the relations bestween (Y)g and (Z)z. (10).
Recalling (E')] = [(¥1)n] ™" (IN)] = (2)n (1)1, one
has, with the aid of (1.6) and (1.8);
(Z)m (1)1 = (B3 = (O)y (8)] = (C)p [(Wn]™*

n m
(Clm (I')q

m
Since this holds true for any vector (I');, thus

m
(I')y can be cancelled,

(2)p = (n [oa] 7 on (1.9)

(1.9) states that one can determine the open-circuit
impedance matrix (Z)g by applying a so-called "m-affine,
degenerative, congruence transformation" on the inverse of
the node admittanceimatrix (Y)ﬁ. That is, for any network

with n-node palrs, having (z>$ as its open-circuit imped-

ance matrix, it is necessary that its node-admittance ma-
trix (Y)g has to satisfy the equation (1.9). In othew
words, one may interpret that the equation (1.9) determines

a group of networks (described by their node-admittance
matrices) all of them will have the prescribed (Z)ﬁ as their
open-circuit impedance matrix. Hence, from the synthesis
standpoint, in order to realize & network from its pre-
scribed impedance matrix (Z)g, a natural approach should
be: solve the equation (1.9) for (Y)g subject to the
realizability conditions !
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The solution of equation (1.9); however, is clearly
not unique. In order to solve this equation subject to
certain realizability conditions, a kind of attack that is
frequently used in applied mathematics has been chosen.
First, a particular solution of equation (1.9) is found,
then from this particular solution one can generate all the
possible solutions by means of a matrix transformation.
Finally the realizability conditlons are applied and thus
it is possible to pieck out from the group of solutions
those that can be realized as physical networks. The gen-
erating of all the possible solutions ai;from a partic~
ular solution, say (Yi)g can be performed by the trans-
formation (4,5):

(D2 = (MY (vh (1] (1.10)

where (T)g is a non-singular matrix in which the first

m rows are rows from the unit matrix; i.e.,

[ 1 0 0 0. e 0 |
0 1 0 00 0
Q o 1 08 0
r =l 0 0 N 0 | (1,238
tm+1,1 tm+1,2 ..... tmel,m*l Pm¥i,n
tnl tn,2 ..... ta,m#l  tnn

N

The proof of (1.10) comes directly from (1.9). If

(Yl)g is a solution of (1.9), then
2 § yB

(20 = (O [(X)3] T €y
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~om n m
Note that (C)p (T)pn = (C)n, etc. one has, by using

(1.10)
(Z)p = (C)p (D) [(¥y)n] ™ (D) (C)
= @™ [(02](e)?
Therefore, if (Y1)n is a solution of (1.8) then (Y)n

given by (1.10) will also be a solution of (1.9).
Furthermore, the generating formula (1.10) is also

complete, i.e. equation (1.10) is also necessary. If (Y)g
is a solution of (1.9), then,

(B [(T)n] “* ()R = (2)3 = (B)0 [(Y)E]_‘(C),r;
put (C);‘ = (C)E [(T)g] -1 yields,

o [alxs [(ma] 1 (@R = @D

One solution has to be:

(T)p (¥y)p (P)p = (D)p

Thus, it is concluded that the equation (1.10) will
generate all the possible solutions of the synthesis equa-
tion (1.9) from a particular solution (Yl)g. It will be

seen in the following sections how a physical network might

be found from this group of solutions.



ITI. SYNTHESIS OF MULTITERMINAL RC NETWORKS

FROM A PRESCRIBED OPEN-CIRCUIT IMPEDANCE MATRIX

The general transformation theory derived in the
previous section will be applied to the synthesis of RC
maltiterminal plus ground networks {(i.e., a multiterminal
network with one node serving as the common ground). With-
out the loss of generality, one may assume that there are
at most one resistance and one capacitance connected in
parallel between any two nodes of the network. The node=-
admittance matrix, in this case, becomes a linear function
of 8 with matrix coefficients, i.e.,

Y, = As + B¥ (2.1)

n
where: A = (a34)p 1s the capacitance matrix,

B = (bij)§ is the resistance matrix

The synthesis equation (1.9) becomes

Zn = C(As + B)™} ¢. (2.2)

Some relevant questions may arise before solving the

equation (2.2):

a) What properties that the open-circuit impedance
matrix Zy, must have in order that 1t can probably
be realized as a multiterminal RC network? In

other words, what are the necessary conditions

* From now on upper=-case letters will represent matrices.
Their order can be understood from the contest.



b)
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that the open=-circuit impedance matrix 7, has to
satisfy?

What are the properties of the coefficlent matri-
ces A and B, Under what conditions (both neces~

sary and sufficient) can they always be realized?

These two questions will be discussed before beginning

the solution of the synthesis equation (2.2).

A. Open~Circuilt Impedance Matrix Z,.

Some necessary conditions of realizability that Zy has

to satisfy are well-kmown. They are cited here without

proof (11, 15).

a)

b)

c)

All poles are simple and restricted on the non-
positive real axis.

The zeroes of the diagonal elements (the driving-
point functions) must lie in the left-half plane,
ineluding the imaginary axis.

The matrix of residues at each pole is positive-
semidefinite.™

The character of the matrix of residues plays an im-

portant role in the synthesis. In general, they are highly

degenerate and of unit rank (6). When the matrix of

* A positive semidefinite matrix i1s defined as a real, sym-
metric matrix whose associated quadratic form is non-
negative for all values of the real variables. Thus,
according to this terminology, a positive-semidefinite
matrix may be positive-definite.
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residues at a certain pole is a singular matrix of unit
rank, this pole will be referred to as a "compact" pole
(15). If all the poles are compact, the network will be
referred to as a "compact network".

Non-compact networks may also exist; however, their
occurrence 1s comparatively rare. For simplicity, only
compact networks are investigated. The synthesis proce~-
dure can be applied to non-compact networks with slight

modifications.

B. Node-Admittance Matrices.

In this section the node-admittance matrices Y, = As
+ B will be discussed in detail. In pnfticular, a theorm
is given concerning the necessary and sufficient conditions
that a mnﬁrix can be realized as a multiterminal RC net-
work.

Definition (16): An n x n symmetric real matrix M =
(mij)g is defined as a "Dominant matrix", 1f each of its
main-diagonal terms is not less than the sum of the abso-

lute value of all the other elements in the same row, 1.e.,

n
mnzjél ’mu' (1= 3,11 =21, 2, ies n)

Definition: An n x n symmetric real matrix M =

(mij)g is called "proper signed", if there exist n real



18
numbers U 4 (1 =1, 2, ... n} such that every off-dliagonal
term of the matrix ( My ug wmy ,)‘,} is nonpositive.

In terms of the definitiéns given above, the theors
concerning the realizability econditions on the node-admit-
tance matrices Y, = Aa + U can be stated, In order to
avold an mecmptim in the context, thelr proof is glven
in Appendix A,

Theorem (3, 17). The node~admittance matrix

¥, = As + B

ean be realized as a physical network if, and only 1ir,

1) A and B are "proper-signed dominant" matrices.

11) The sum of A and P 1s positive-definite.

This thecrem leads to some charecteristics of these

node-admittance matrices. They are discussed as follows:

) The coefficient matrices A end B are positive-
semidefinite. This is obvious sinee they are
dominant, and every dominant matrix must be
positive~semidelinite.

b) The natural modes of a RC network must be real and
nonpositive. Sinece Y, can be considered as the
inverse of an open~¢circult impedance matrix when
every node is regarded as a terminal. It has
already been shown in the previous section that
svery pole of a RC network is real and nonpositive,
Therefore, the natural modes are all real and
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nonpositive. In other words, the zeroes of the determinant

equation |As + B| = 0 are real and nonpositive.

c)

d)

The natural modes need not be all distinet. How-
ever, it will be seen that if they are all dis-
tinet; then the open-circuit impedance matrix
corresponding to this network will have degenera=-
tive residues matrix of unit rank at every pole.
In other words, every simple mode corresponds to a
compact pole. For simplicity, it is assumed here
all natural modes are distinet; i.e., a compact
network.

It is well-known that a pair of symmetric matrices
can be diagonalized simultaneously if one of them
is positive-definite (13). This is actually a
generalized eigenvalue problem, If all the eigen=~
values are distinct, then it's always possible to
find a set of independent eigenvectors to form a
diagonalizing matrix. This matrix will simultane=-
ously diagonalize the palr of symmetriec matrices.
The positive-definite matrix will be reduced into
a unit matrix, while the other will become a diag=-
onal matrix whose elements are the eigenvalues;

i.6., the roots of the determinant equation.

Since the sum of the two coefficient matrices is posi-

tive~definite, there must exist a non-singular matrix p
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which can simultaneously diagonalize A + B and A; 1.e.,

F (A+B) P=U, PAP =R, where R = dlag. (1) (2.3)
where )\; are roots of the determinant equation [(A + B)A -
Al = 0.

By a simple change of variables:

. -
set A T"_i
-
then Ai"si-;a-:i' (4. =1, 8 .., 1)

where (~-¢3)'s are the roots of determinant equation
|As + B| = 0; i.e. the natural modes of the network.
Hence, they must be real and nonpositive. In general, they
can be assumed as o, 0, -0y, =0, .... ~0p (p = n when
all modes are finite and nonzero). The corresponding A4's

in Eq. (2.3) will be 0, 1, 21, A2, ... Ap.

i.e. R = diag. (0, 1, 21, 42, .... Ap)
o X ‘1
Let Q = diag. (1, 1, A4 ’5, Ao 2, ... ap-'g), and
J = PQ
Then JAT = Q PAPQ = QRQ = D (2.4)
where D =diag. (0, 1, 1, eee 1)

and J(A+B)J = QF (A+B) PQ = QUQ
= dtag. (1, 1,23"%, 2971, «v0 2p71) (2.5)
subtracting (2.4) from (2.5), yields
JBI = E where E = diag. (1, @, 03, +--
Tp) - (2.6)
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Thus, the palr of coefficient matrices A and B can be
simultaneously reduced to diagonal forms as shown in (2.4)
and (2.6). Observe that in (2.4) the zero element repre-
sents an infinite mode, and the zero element in (2.6) rep-
resents a zero mode. All the modes are distinet, since the
network is assumed to be compact. They will be confluent in
the case of non-compact networks. That 1s, some diagonal
elements in (2.4) and (2.6) will be repeated.

From (2.4) and (2.6), using the notation "+" for

direct sums, one has,

Y,"! = (As + B)"1 =7 (spD + E)"1 J
=J[1L+8+ (8+0T1) + (8+0g) + ,...
+ (s +rp) ]3’
=J1+erd(aroy)ld(sra)lioLL,

i (s + 0] T

P
TR L
= H o— aee— 2.7
o0 s 131 8""0‘1 ( )

TR b0 é .0 T

"

where H
Ho=Jd (0+#1+40+ ....%0) J

Hy=J (0+0+ .... +14,...) T

Evidently these matrices of residues are degenerate

and of unit rank. Thus, it is concluded that the inverse
of node-admittance matrix can be expanded into partial

fractions with unit rank'matrix of residues at each pole.
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C. Syntheslis Procedures.

The conclusion given at the end of the previous sec~
tion is very important. It points out that the matrices of
residues are degenerate and of unit rank., Hence, they may
be factorized uniquely into the product of a column matrix
by its transpose (7).

Hy = hi£;: where hy is a n x 1 columm matrix.

Eq. (247) can be rewritten as

Yol = (as + B)*L =n_§, + E%gé . 2§ 2%;% (2.8)

i=1

Eg. (2i8) is an important result. It states that Yn'l
can be expanded into partial fractions Every matrix of
residues can be considered as the product of a column
matrix by its transpose. ‘

Similarly Z, can also be expanded, as,

P
Zy = K, + i Y > K
® iz ®F0y
ol P
o kok kiky
= km k. pre oso + izzl E%—O-,i- (2.9)

Where K, }lo, Ki are m x m residue matrix of unit
rank; and k¥ , kg, and ky are the corresponding m x 1
colum matrices.

From (2.8) and (2.9) it is but one step to the solu-
tion of synthesis equation (2.2). However, it is felt

pertinent to discuss some basic geometric idea Involved in
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the transformation thaofy. The argument presented here is
somewhat intuitive, but it might suggest a better point of
view.

Recalling in the analysis of an arbitrary n node-pairs
network, both the voltages and currents are written in the
form of n x 1 column matrices. Actually they can be inter-
preted as two vectors in a n-dimensional space. These two
n-dimernsional vectors are related by an operator Y,. That
is, if the current vector is fixed, then the voltage vector
is uniquely determined by the operator Y,. In a selected
reference frame, the geometriec objects (V.I, and Y,) may be
expressed in the form of matrices. Then one can write
(V) = (Y'ﬂ)"1 (1) to express the relation among these guan=-
titiea. 1In the S}nthoais problem, however, the operator Y,
is no longer kept unchanged. That is, for a fixed current
vector, the voltage vector is allowed to vary in such a
manner that will keep the open-circuit impedance invarient.
In other words, for a preseribed open-cirecult impedance of
m-terminals network, the first m components of the voltage
vector (i.e., the voltages at the external terminals) will
not change, but the remaining n-m components may change in
any way whatsoever. This is actually the case since a m-
dimensional space is mapped "into" a n-dimensional space.
Naturally a group of n-dimensional vectors will be gener-
ated by one m-dimensional vector by the transformation

Vm = C V. Now if the n x 1 column matrix hy in gg. (2.8)
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is interpreted as a n-dimensional vector, and the corre-
sponding m x 1 column matrix ki in Eq. (2.9) as a m-dimen-
sional vector, should they follow the same mapping rela-
tion?

That 1s, kg = C hy (2.10)

The equation (2.10) is evidently truc. Actually it
can be easily derived by inserting (2.8) and (2.9) into
the synthesis equation Zy =’E Yh‘l C, and identifying the
corresponding terms.

ke%y = T hy By € = (Thy) (Chy)

Recalling the uniqueness of factorization, (2.10)1is
thus proved.

Referring back to the definition of matrices of res-
idues Hy in (2.7), it is apparent that:

3 =[h., hg, hy, ... hy] (2.11)

using (2.4) and (2.6), one has,

Y, =As + B

=F(sp + B) &
=T L[1 48+ (s+0q) + ... 4 (8 +ap)s7l (2.12)

The equations (2.12), (2.11) and (2.10) may be used
to determine the general solution of synthesis equation
(2.2). However, since the realizability conditions cited
in the theorm (page 12) are difficult to apply, it seems
much better to choose the attack described in the first
section. First, a particular solution 1s determined, then

Eq. (1.10) is used to generate all the possible solutions.
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After such a process the realizability conditions might
possibly be examined for these solutions.

The generating tranuformation in Eq. (1.10) can be
considered as a series of elementary congruent transfor-
mations (9). The allowable transformations imply;

(a) Interchange of column (row) i and column (row)

j, where 1, j>m

(b) Multiply column (row) i by any non-zero constant,

where i>m

(e) Adding to column (row) 1 by any multiple of

column (row) j, where j> k.

If a physical realizable solution exists, it should
be contained in the general solution. Hence, it would be
possible to find it by operating on the particular solu-
tion the allowable transformations listed above. In order
to illustrate the synthesis procedures, a simple example
is given as follows:

Example :

8182+2108+128, 248%+32s

s ) 2
“m 16s(s+1)(8+2)

2482+32, 6482+132s
3. % 1
' 6 2 7!
-4 + ‘lI 1 (2.13)
0 O 5 4 1 I

Factorize the matrix of residues at each pole.
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2 1 1
4.
ko = ki = k2 =
0 2 2

The simplest solution of independent vectors hy from
(2.10) will be

B
ho =(0 hl =2 h2 =| 2
0 o | 1

Inserting in (2.11), yilelds

- N

1 1
R .% %
Jd = |0 2 2

- SR I 4

~ ~

A particular solution is, from (2.12)

-~

2 0 0]° [s Yo 1 1)-1
Y=z 2 0 0stio | |0 2 2

% 2 1J 0 o0 s+2f [0 0 1]

(43 _% -8

S 65 - 1
2l=5 Ygsti —g -4

"8 Sheeq L9802

~

This 1s not realizable since it is not dominant. It

can be made realizable by means of the allowable opera-

tions.



The realized network is shown in Fig. 1.
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elements than the realization in Fig. 1.
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ITII. RC LADDER SYNTHESIS

The synthesis method described in section 2 may lead
to a physical realizable network having the prescribed
open=circuit impedance matrix. However, since no suffi-
clent condition has been obtained, there is no guarantee
that the realizable solution exists.

In this section a different approach has been chosen.,
Instead of seeking for a physical realizable network from
the general solution of the syntheslis equation, a parti-
cular model is chosen to fit the solution. That is, a
particular structure is forced to be identified, if possi-
ble, as a solution of the synthesis equation. The ladder
network 1s a basic structure of primary importance; there-
fore, it is selected as the particular model to be identi-
fied as a solution of the synthesis equation. For simpli-
eity, only the three terminal network 1is discussed. That
is, the synthesis of a "RC Quadropole"” from a prescribed
2 x 2 open~circuit impedance matrix, (i.e., the impedance
function Zy7, Z32, Zgg) is investigated.

A ladder, such as shown in Fig. 3 is represented by

a special form of node-admittance matrix Y, = As + B as,*

* For convenience, the matrix is labeled in a reverse
order.
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' 1

- - . . . ks

an's+bn', an-18+by-1, an-1s+bh-1%

24

(3.1)

. ags+bp, ap's+bg
aés+bé ajs+b)

7~

This matrix is called the "Tripel diagonal form".

In this matrix all the elements except those on the main

diagonal and those just above and below the main diagonal

are equal to zero.
"Jacobian matrix",

For convenience, (3.1)

Pn ‘Qn O . . +

An Pn-l-gpn.y; -+ -

0 <Gp.) Pn-2 . .

\l . Ll E . - . . .

where Pq = ajy s+by i=
-q1 = aj's+by k =

The speclal feature of

It is also referred to as the

is rewritten as,

(3.2)

- .

1, 2,
2’ 5’ .O'n

a Jacobian matrix lies in the

fact that any minors of this matrix can be represented as

* It is obvious that Py and g
the parallel combina%i
as described in section 2.

need not be restricted as

on of a reslstance and a capacitance



25
the product of its elements with its principal minors. A
detailed discussion is given in Appendix B.

Now, suppose a ladder is chosen %o be a physical real-
ization of a certain prescribed open-circuit impedance
matrix, then necessarily the solution of the corresponding
synthesis equation (1.9) must be in the form of a Jacobian
matrix. In other words, the prescribed open-circuit im-
pedance matrix Z, has to be restriected in some special
manner. As usual, before the investigatlion for a synthesis
procedure, an attempt is made to establish some necessary
conditions.

The necessary conditions that a prescribed open-cir-
cult impedance matrix Zy, has to satisfy in order that it
may possibly be realized as an RC ladder network have been
well established (9). Besides those conditions cited on
page 10 there are some special characteristics of ladder
networks, namely,

(a) The poles of the transfer impedance Zjo must

also be the poles of the driving point impedance
Z11 and Zgo; hence, they must be real and nega-
tive. Furthermore, they have to be finite and
different from zero.

(b) The zeroes of the transfer impedance Zjp must be

restricted to the negative real axis.

(c) The poles may be repeated. However, in the pres-

ent discussions it will be assumed that they are
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distinet. That is, only the "compact" network
is discussed., The matrix of residue at each pole
is highly degenerative and of unit rank. 7This
matrix of resldues, in case of a three~terminal
network, can be written as,

(1) (1)

k11 ST
Ki' (1) (1) (1'1' 2. Lae n)
K1pg  kgg

If the matrix should be degenerative and of unit rank,

then necessarily its determinant must vanish, i.s.,

(1) (1) (1)
k) Kpg === [kyp]°

i
Thus, if k;g) and the residue of one of the driving

= 0 i"l,z,...n-

(1
point impedance at a certain pole, say kgg), ere fixed,
(1)
then the other one, kj; will be uniquely determined. In

other words, i1f a "compact network" has been found to pos-
sess the prescribed quantity Z;p as its transfer impedance,
and Z3p &8s its driving point 1impedance at one terminal,
then necessarily it will have 733 as the driving-point
impedance at the other terminal., Hence, only the reali-
zation of 732 and Zgg (or Z3;) need be considered in a
synthesis procedure. The third quantity Z1; (or Zgz) 1s
resalized as a consequence,

Returning to Eq. (3.2), it is possible to determine
the open-circuit impedance matrix 7, from the node-admit-

tance matrix ¥,. However, it 1s noted that the
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transformation matrix introduced in the first section needs
a slight justification. Since in the present case the
first and last, instead of the first m node are considered
as the access terminals. If a new symbol "L" is used to

denote this modified transformation matrix, evidently,

4 ~

(3.3)

i
OO0 + O
HMO.s « OO

L ,

And the corresponding synthesis equation is simply

T =?:Yn"'1 L (3.4)

where the node-admittance matrix Y, is in the form of
a "Jacobian matrix" in the present case of ladder realiza-
tion.

From Eq. (3.2), (3.3), (3.4) it is possible to relate
the elements in the Jacobian matrix with the prescribed
quantities Z3y7, Z312, and Zgp. It ls proved in Appendix B
that

1, an® _ena2d a3 ag o
211 ”lpn = Pn~1 ‘th-z T TTT Tlpg TPy (3.5)

Fn lgﬁ ;ﬁn an-1%]  ap®|
‘g2 =y "2 "B3 "~ """ “bn-1 " bn (%6

and

* The conventional notation for continued fraction, (i.e.,
stielt jes fraction) is adapted.
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n
II (=-q1)
= i=2
[ 7]

where [Y,) represents the determinant of the Jacobian

212 (3.7)

matrix ¥,.

Eq. (3.7) states that any zero of the transfer imped-
n
ance Z12 must be a root of the equation 1=2 gqi = 0. Hence,

s

the zeroces must be restricted to the negative real axis,
Furthermore, it also suggests a possible synthesis proce=-
dure. It is observed that the series admittance gy is a
linear factor of the numerator of the transfer impedance
Z12, thus by the factorization of the numerator of the
prescribed transfer impedance Zjg, it 1s possible to choose
one of its linear factors as qg; and thus, in turn, deter-
mine P} and the first section of the ladder. This process
may be continued if the remaining impedance is still a RC
impedance function.® Thus, a complete realization is pos-
sible and a three-terminal RC ladder having the prescribed
quantities Zyg Zop can be thus constructed. This network

will also possess Zj] as one of its driving péint impedance

* A RC impedance function is defined as a rational function
of s which can be realized as a driving point impedance
using resistance and capacitance only.
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in case of a "compact" network. The synthesis procedure

is best explained by the following example:

982+308+38 6s8+10

" 27(s+1)(i+2)(8*57
6s+10 18s2+57s+41
o1 {:4 2} S 4 2
e, , (%8 |,
* BTTsvET ; -fI )
-4 16

It is easily seen that the prescribed open-cirecuit
impedance matrix Z, satisfles the necessary conditions
cited on page 10. And, from the partial fraction expan-
sion, evidently Z, is compact at each pole.

Referring to Eq. (3.7, 3.8),

Zre = 4243 o 65+10 3.9
12 7l T B (8920 (575) g

1, ao%  qg? 18524578441
Z12 =[Py ~[Pg [Pz - BV(s+I)(s+Z) (a+3) (3-10)

choose qg = &« (a+.§), where o 18 a constant.

Subs. the above eq. into (3.10).

1  _ 27(s+l)(s*+2)(s+3) _ 5,2
Zop(s) 18s2+57s+41  °1 “*?‘““3’

(ﬁ%?- ﬁ%ﬁfh (3.11)
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putting = =ﬂ§ yvields,

vl(ng) = 2

Differentiate __ 1 and then set s = =2
720 8) g

1
P1 («g) =3
pp = 38+7.
2 [E}J__ Q:,g[]. 8%5*-46
ol 2 3 168“+878+41

‘ choose <i= S. 1.04, qp = 38+, qg = 2, P = S56+7,

. Ba+5
1 4
135' . E;L mfﬁ‘;'vuu {8.,18)

Thus, the first section of the RC ladder network can

be constructed. The whole network can be found by con=-
tinuing the procedures.
From Eq. (12), it is seen,

= 4 E
bg P3 = Ga+0 - 525

Therefore, pg = 68+9
pz = B8+

This ladder network 1s shown in Fig, 4.
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7, % : L
S | e — %
R RS 4 R A r-4,

Fig. 3. A Ladder Network

i s
I :

N
’Vx\,

Fig. 4. RC Ladder Realization
of 2,(8). Eq, (3.8)
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IV, CONCLUSION

The synthesis method described in the previous sec-
tions can also be applied to the case of RL and LC net~-
works by a simple change of variables. It is well known °

that the substitutions s = % and s = t2 will change the

RL and LC networks to an identical form of RC networks
respectively. The technique is treated in most books on
network synthesis and thhn its discussion here is unnec~
essary. |

The network realization deseribed here can be modi-
fied to meet the synthesis problems involving actilve
elements. Transfer functions with poles and zeroes any-
where in the complex plane can always be provided even
with only two kinds of elements if active elements are
utilized. The situation becomes somewhat simpler with
the use of active elements since the dominant requirement
on the node admittance matrix no longer has to be satis-
fied. And, this 1s just the cumbersome condition that
usually renders the problem unsolvable. Actually this
transformation approach is more natural and has been
recognized as a powerful tool in the area of active
networks.

It would be appropriate to give a comment on this
synthesis method based on the equivalence of networks

and some possible directions for further investigations.
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This synthesis method, though apparently a powerful tool,
actually does not lead to a fruitful result. This fact
may be seen from the examples given in the previous sec-
tions. This approach is based on the idea of equivalence
of networks. And this seems to be a natural and general
attack of the synthesis problem. Unfortunately, it is
scarcely possible to solve a problem based on a general
approach. The reason for the failure of this method is
that there 1s no one-to-one correspondence between the
parameter matrix, and the associated network unless the
network 1s restricted to a particular reference frame.
And even if a rather convenient reference frame is selec-
ted resulting in relatively simple realizability condi-
tions, the simplicity will be lost immediately as a result
of subsequent manipulations. Synthesis based on network
equivalence is, so far, one of the most subtle and least
well-understood aspects in the area of network synthesis.
However, it is felt that a further investigation is still
needed since the method provides a fundamental concept to
the problem of network synthesis. MNorewver, 1t would yield
the complete solution of network synthesis if its inherent
defects could be overcome.

It 1s felt that in order to overcome the inherent
defects of matrix method, the transformation should be
interpreted in terms of linear graphs. Matrices can only

represent a "cross section view", so to speak, of the real
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geometric object. How could one be so fortunate to pick
out a particular reference frame, among a great number of
choices, in which there is a well-posed physical inter-
pretation?

Thus, it seems more practical to select certain net-
work structures such as the ladder realization described
in section 3 and attempt to identify these as a solution
of the symthesis equation. The disadvantage of this "con-
structed-solution™ method is that it must be restricted
to the special form of selected structure. As a conse-
gquence more restrictions are imposed on the presecribed
open~circult impedance matrix Z,. From this point of viey
one will naturally prefer to take the more general ap~-
proach. It is believed that the general prineciple of
equivalent networks will be proved useful and deserve
more investigation. |

However, one might have a better chance of success if
the approach based on equivalent networks is studied in
the language of linear graphs instead of matrix transfor-
mations. Hence, it is felt that "topology" may assume a
fruitful role in a further investigation of the network

synthesis problem.
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APPENDIX A
llecessary and Sufflcient Conditions of Realizability
of the Node~Admittance Matrix ¥, = As + B

The theerem cited in section 2 (page 12) concerning
the realizabllity of node admittance matrix Y, = Ag + B
will be proved in this Appendix.

Lemma: 4 n x n real matrix ¥ = (myy)D cen be real-
ized as the node-admittance matrix of a n node-pair resis-
tive network if, and only if, the matrix is a "proper-
signed" dominant matrix.

The lomma is just a modified form of a theorm given
in many relevant papers (17). The usual condition re-
guires that each off-diagonal term of the matrix be non-
positive. The proof for such a situation is really
routine.

Necessity comes directly from writing the node~equa~
tions of a common ground network. Sufficiencycan be proved
by & simple synthesls procedure, eorrtlponhing to each

non-zero element myj, a conductance equals to my g is

connected between node 1 and node j. And between each

node § and the common ground a conductance is connected

n
with the value mj = Z]. mg 4, sinece the matrix 1s domi-
i=

nant, hence m j . O J=1, 2, sse n.
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It 1s attempted to argue here that requiring all off=-
diagonal terms non-negative is not essential. Any domi-
nant matrix even with some positive off-diagonal terms is
realizable if it can be converted into one with all off-
diagonal elements non-positive when both voltages and
currents are reversed in direction at some terminals.
Since a reversal of both voltage and current at a certain
node, say the j-th node, will just cause a change in sign
for all the off-diagonal terms in the j-th row and j-ith
column. Therefore, all the possible changes in sign dis-
tribution may be performed as the matrix (./y /j myq).
Thus, if there exlst n non-zero numbers 43 (i=1, 2, ... n)
such that all the off-diagonal terms of the matrix (ﬁ/1f4j
mij) be non-positive, then a physical realization is always
possible for the dominant matrix (mij)° In other words,
the matrix must be a "proper-signed" dominent matrix.
Hence, the lamma is proved.
Theorm. The node-admittance matrix
A Y, = As + B
can be realized as a multiterminal RC plus
ground network if, and only if,
a) A and B are "proper-signed" dominant matrices.
b) The sum of A and B is positive-definite.
"Proof."
Necessity: (a) is obviously true according to the

lemma, And since Y, = As + B must be a positive real
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matrix when every node is considered as an exbternal ter-
minal. Thus, As + B should be positive-definite for s real
and positive. Letting s = 1, it is seen that A + B has to
be positive definite.

Sufficiency: The network can be constructed in the

menner deseribed in the lemma. The condition (a) implies
that each element in the network is real and non-negative.
One needs only prove that (b) implies the network contains
a tree. This may be proved by applying the Maxwell Topo-
logical rules as follows (14):

¥n = As + B = 25 tree admittance products of the
network. Taking s =1, ¥, will be positive-definite,
this it must be non-singular. This implies that the
summation of tree admittance product not be equal to zero.
Thus, at least one tree product is different from zero.
Hence, the network contains a tree, and the proof 1is

completed.
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APPENDIX B
Evaluation of Eqs. (3.5), (306), and (507)

The Jacobian matrix is a "Triple diagonal form", that
is, all elements are zero, except those on the main-diag-

onal and those just above and below the main diagonal, i.e.
(Pn» 9n O F

4% Pn-l Gn-l

| 0 qxl"l pn"2 L R TR e A SN A

Y, = (3.2)
RN R R it Fa RN e S pa q3 <

........oQ3PQQQ

ooo-nooooo qul

A set of submatrices can be obtained by deleting the
first row and colum, the first two rows and colums,....
ess8tc., and the corresponding determinants of these sub-
matrices are designated by Dy.j, Dn-g2, ... Dg, D] respec-
tively. Besides, another set of submatrices can be also
constructed by deleting the last row and columm, the last
two rows and colums, .... etc., and the corresponding
determinants of these submatrices are designated by Dnil,
Dnlz, e Dé, Di. From Eq, (3.2), it is observed that,

Dy = pg Di-1 = q1° Di-2

.nd 1 1 2 | (\122, 3’ ce n)
D1 = Pn-1+1 D11 - Gn-142 Di-2

also D1 = p1, Di = Pn-
end Dp =Dy = Y, .



With the ald of these relations,
3.7) can be easily derived.

41
the Eqsc (3.5’ 306)

Inserting Eq. (3.2) into the synthesis Eq. 2, = L ¥, L

yields, n
Zm = | i 1 i=2 3
Zi2 Zpz) I 41%'( . -
- -q o
12D i n=-1
n
§ﬁ1(°qi)
Hence Zjp = i=2
|
le = On-1 = Dna1 = 1
PnPn=1-9“Pn-3 e 2 Pn-2
Pn qn D
n=-1
1
= = L .
an )
Pn = 3
Pnel - 3n-1 Dna3
n-o
1| [i_qnz_l o el _az?| f
“Pa "~ Pn-1 " Pn-2 — °°°* T [Pg "Py (3.85)
Similarly
' 1
Dn.y Dn.ay 1
Z = = . & -
% " Dn " 7y Da-1-az? Dp-z | .. Qg%
S g
43" Dn-3
P2
n-2

[Pn-1

=o-oo=p1 pi "...
¥

~9n-1% -rrlq"z (3.6)



