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Enumerative combinatorics is an area of mathematics that is both highly accessible for students 

and widely applicable to other sciences and areas of mathematics (Kapur, 1970; Lockwood, 

Wasserman, & Tillema, 2020). One important class of problems in combinatorics is combinatorial 

proofs of binomial identities, which is a type of proof that argues for the veracity of an identity by 

arguing that each side enumerates a (finite) set of outcomes. The validity of a combinatorial proof 

lies in the fact that a set can have only one cardinality. Such proofs suggest an analytical proof 

scheme (Harel and Sowder, 1998) and have been considered to be examples of proofs that explain 

(in the sense of Hersh, 1993) with respect to an enumerative representation system (Lockwood, 

Caughman, & Weber, 2020). Combinatorial proofs also differ from other types of proofs students 

may encounter in several important ways. One feature of combinatorial proofs is that they are 

comprised exclusively of sentences and paragraphs; that is, a student producing a combinatorial 

proof must combinatorially interpret symbols appearing in the identity without algebraically 

manipulating those symbols. This feature has potential implications for students, since researchers 

have found that combinatorial reasoning can be a notoriously difficult for students (e.g., Batanero 



   

 

et al., 1997, and Lockwood, 2014b) and that some students are less likely to accept an argument 

to be a rigorous mathematical proof if it does not contain symbolic manipulations (e.g., Martin & 

Harel, 1989). In addition, while there are a couple of prior studies that have looked at students’ 

combinatorial proof activity (Engelke & CadwalladerOlsker, 2010; Lockwood, Reed, & Erickson, 

in press), much remains unknown regarding what students and mathematicians attend to as they 

produce combinatorial proofs. For instance, it has also never been verified with empirical evidence 

whether or not students or mathematicians do indeed consider combinatorial proofs to be proofs 

that explain, and even less is known regarding whether these populations consider combinatorial 

proofs to be proofs that convince.  

In my dissertation study, I seek to answer the following research questions:  

1. To what extent do experienced provers (including students and mathematicians) believe 

that combinatorial proofs of binomial identities are convincing and/or explanatory, and 

why? 

2. What proof schemes do undergraduate students who are experienced provers use to discuss 

and characterize combinatorial proof? 

3. What do the answers to these questions say about the nature of combinatorial proof 

(including how it may differ from other types of proof)? 

4. What are some other insights about combinatorial proof that can be gained from 

interviewing experienced provers? 

 

To answer these questions, I conducted clinical interviews with five upper-division 

mathematics students and eight mathematicians to investigate what they attended to as they 

produced and evaluated combinatorial proofs and how they viewed combinatorial proof as 

different from other types of proof. This dissertation begins with overall summaries of relevant 

literature, theory, and the methods involved in the overall study. Then, the results of the 

dissertation are presented in three manuscripts, where I describe the students’ and mathematicians’ 

perceptions of combinatorial proof using two theoretical frameworks: proofs that explain and/or 

convince (Hersh, 1993) and proof schemes (Harel & Sowder, 1998). I also use Lockwood’s (2013) 



   

 

model and the construct of cognitive models to describe an important aspect of students’ and 

mathematicians’ combinatorial reasoning that had implications for their success producing 

combinatorial proofs: cognitive models of multiplication.  

In the first manuscript chapter of my dissertation, I describe the results of my investigation into 

whether students and mathematicians viewed combinatorial proof as explanatory or convincing 

(Hersh, 1993), and why. I found that all 13 participants felt that combinatorial proofs are equally 

or more explanatory than other types of proofs, but participants demonstrated a variety of 

perspectives regarding the extent to which combinatorial proofs are convincing. These findings 

provide empirical evidence for Lockwood et al.’s (2020) claim that combinatorial proofs are 

usually proofs that explain within the enumerative representation system, as well as provide 

insights on the nature of combinatorial proof as a mathematics topic.  

In the second manuscript chapter of my dissertation, I discuss the proof schemes (Harel & 

Sowder, 1998) that students used to discuss and characterize combinatorial proof compared with 

other types of proof. I found that students used authoritarian, ritual, perceptual empirical, 

transformational analytical, and contextual restrictive proof schemes, and that these proof schemes 

had implications for the students’ perspectives regarding whether (and why) combinatorial proof 

constitutes rigorous mathematical proof. I also discuss whether and how other proof schemes may 

emerge for students engaging in combinatorial proof.  

Finally, in my third manuscript chapter, I focus on a specific phenomenon that emerged during 

my interviews with mathematicians and students as they engaged in combinatorial proof 

production. In particular, participants used a wide variety of cognitive models to interpret 

multiplication by a constant when reasoning about binomial identities, some of which seemed to 

be more (or less) effective in helping produce a combinatorial proof. I present these cognitive 



   

 

models and describe episodes that illustrate implications of these cognitive models for my 

participants’ work on proving binomial identities. My findings both inform research on 

combinatorial proof and highlight the importance of understanding subtleties of the familiar 

operation of multiplication. 

Overall, in addition to the specific results and findings presented in each of the papers, these 

three manuscripts supported four main takeaways regarding students’ and mathematicians’ 

reasoning about and engagement with combinatorial proof: 1) students can successfully produce 

combinatorial proofs and recognize their activity constitutes proof; 2) combinatorial proof may be 

viewed by some students as intuitive arguments but not formal proofs; 3) the contexts used in 

combinatorial proofs are important; and 4) difficulties in solving counting problems can carry over 

to difficulties in combinatorial proof production. These findings have implications practitioners 

and researchers. For a start, both teachers and researchers should be aware that students may have 

a variety of conceptions about combinatorially proof as they teach and conduct proof-education 

research, respectively. In the classroom, instructors should understand that some students may 

believe combinatorial proof is less valid than algebraic, induction, or other types of proof for a 

variety of reasons, and so instructors should clarify for students why correct combinatorial proofs 

are indeed mathematically rigorous and logically valid. Instructors should also have discussions 

with their students about the element selection cognitive model of multiplication and highlight its 

relationship with the Multiplication Principle. Lastly, when researchers draw conclusions about 

student thinking about proof, they should be mindful that some of these conclusions may apply 

differently to student thinking about combinatorial proof. 
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CHAPTER 1 – Introduction 

Enumerative combinatorics is an area of mathematics that is both highly accessible for students 

and widely applicable to other sciences and areas of mathematics (Kapur, 1970; Lockwood, 

Wasserman, & Tillema, 2020). One important topic in combinatorics education is combinatorial 

proof of binomial identities, which comes up in discrete mathematics, statistics, probability, 

number theory, and other contexts, and yet has received little attention in the mathematics 

education literature. Combinatorial proof is a proof method that establishes the veracity of an 

equation by arguing that the expressions on either side of the equation each enumerate a set 

(possibly the same set) of equal cardinality (Lockwood, Reed, & Erickson, in press; Rosen, 2012).  

Consider, for example, Pascal’s identity, (𝑛
𝑘

) = (𝑛−1
𝑘

) + (𝑛−1
𝑘−1

).1 This identity can be proven 

by considering the set of committees of size k which can be formed from a group of n (distinct) 

people. The left side of the identity counts this, since (𝑛
𝑘

) counts the number of unordered selections 

of size k that can be formed from a set of n distinct things. For the right side, suppose without loss 

of generality that one of the n people is named Sofía. Then, (𝑛−1
𝑘

) counts the number of committees 

that can be formed excluding her (since there are n – 1 remaining people who can be on the 

committee), and (𝑛−1
𝑘−1

) enumerates the committees that include her (since there are k – 1 remaining 

spots on the committee and n – 1 remaining people). Since this case breakdown (those without and 

with Sofía, respectively) encompasses all possibilities, the left side also counts the same set of 

 

 
1 For this and all subsequent binomial identities in this dissertation, I consider the domain for the variables involved 

to be nonnegative integers, which was also made clear to all research participants. However, I also acknowledge that 

many of the identities in this paper may also hold for other real values. 
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committees2. The validity of a combinatorial proof lies in the fact that a set can have only one 

cardinality. 

Because combinatorial proof of binomial identities does not involve algebraic manipulation 

but instead requires the prover to articulate combinatorial processes underlying binomial 

expressions, combinatorial proof can provide opportunities for students to encounter analytic proof 

schemes and proofs that explain (Harel & Sowder, 1998; Hersh, 1993). Despite the utility and 

pedagogical advantages of combinatorial proof, however, little is understood about student beliefs 

about combinatorial proof or what students attend to as they write combinatorial proofs. The few 

existing studies that target undergraduate students’ activity with and beliefs about combinatorial 

proof rely only on artifact-based data (Engelke & CadwalladerOlsker, 2010; Engelke Infante & 

CadwalladerOlsker, 2011), or were conducted with novice provers who may have limited 

perspectives about combinatorial proof as a proof method (Lockwood et al., in press). Furthermore, 

even less is understood about how mathematicians may conceptualize or engage in these proofs.  

In this dissertation, I report on a qualitative study investigating upper-division mathematics 

students’ and mathematicians’ conceptions of and engagement with combinatorial proof. To 

examine students’ and mathematicians’ conceptions, I applied the applied two well-studied 

frameworks in proof literature: proofs that convince and proofs that explain (Hersh, 1993) and 

proof schemes (Harel & Sowder, 1998). In addition, I used Lockwood’s (2013) model of students’ 

combinatorial thinking to characterize combinatorial proof for this study and as a theoretical lens 

to frame students’ and mathematicians’ engagement with combinatorial proof.  

 

 
2 This proof exemplifies an Approach 1 combinatorial proof (Lockwood et al., in press), and I acknowledge that 

there are other kinds of combinatorial proofs that exist (such as those that involve establishing a bijection). I do not 

discuss these other types of combinatorial proof in this dissertation, as they were not the focus of my study. 
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A broad goal of the study is to characterize how the nature of combinatorial proof differs from 

other types of proof, as well as the extent to which students may consider combinatorial proof to 

be a legitimate method of mathematical proof. Some of my own experience in research and in the 

classroom has suggested that some undergraduate students may be uncomfortable with the idea of 

combinatorial proof—feeling that it is not as convincing as an algebraic proof, or that a 

combinatorial proof resembles a fallacious “proof by example” since it establishes a general 

identity by placing it within a specific combinatorial context (e.g., counting committees of a 

particular size, counting binary strings, etc.). There have been two prior studies that have looked 

at what students may attend to as they produce combinatorial proofs (Engelke Infante & 

CadwalladerOlsker, 2011; Lockwood et al., in press), and there are many opportunities for 

investigation into a number of aspects of combinatorial proof. In particular, none of these studies 

have specifically targeted experienced provers’ conceptions about combinatorial proof, and no 

prior studies have examined mathematicians’ combinatorial proof production. I elaborate existing 

literature on combinatorial proof in more detail in subsequent sections of this dissertation.  

1.1 Research Questions  

To address these existing gaps in the literature, overall my qualitative study aims to answer the 

following research questions: 

1. To what extent do experienced provers (including students and mathematicians) believe 

that combinatorial proofs of binomial identities are convincing and/or explanatory, and 

why? 

2. What proof schemes do undergraduate students who are experienced provers use to discuss 

and characterize combinatorial proof? 

3. What do the answers to these questions say about the nature of combinatorial proof 

(including how it may differ from other types of proof)? 

4. What are some other insights about combinatorial proof that can be gained from 

interviewing experienced provers? 
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In this dissertation, these questions are motivated and contextualized in Chapters 2 and 3, 

where I expand on relevant literature and theory from combinatorics and proof education literature, 

respectively. Then, in Chapter 4, I describe the methods I used to conduct and analyze the interview 

data I collected for my study. The results of this study are presented in three manuscripts. The first, 

Combinatorial Proofs as Proofs That Convince and Proofs That Explain (Chapter 5), addresses 

Research Questions 1 and 3 by reporting on data regarding mathematicians’ and students’ 

perspectives about combinatorial proofs as more or less convincing and explanatory  (Hersh, 1993) 

than other types of proof. The second manuscript of my dissertation, Investigating Undergraduate 

Students’ Proof Schemes and Perspectives about Combinatorial Proof as Rigorous Mathematical 

Proof (Chapter 6), addresses Research Questions 2 and 3 by describing the results of my analysis 

looking at the proof schemes (Harel & Sowder, 1998) upper-division mathematics students used 

to characterize combinatorial proof as more or less rigorous than other types of proof (such as 

algebraic and induction), and why. The third manuscript, Investigating Combinatorial Provers’ 

Reasoning about Multiplication (Chapter 7), addresses Research Question 4 by reporting on an 

unexpected interesting phenomenon that emerged in my thematic analysis (Braun & Clarke, 2006) 

of students’ and mathematicians’ combinatorial proof production, namely the emergence of 

different cognitive models for multiplication the students and mathematicians used. As I discuss, 

these cognitive models were not only surprisingly varied but also had implications for students’ 

success at combinatorial proof tasks. I submitted a manuscript based on this chapter with Dr. 

Lockwood to the International Journal of Research in Undergraduate Mathematics Education, 

and it has been accepted with revision. Finally, in Chapter 8, I discuss overall conclusions from 

my study, as well as its limitations and potential avenues for future research. Overall, I describe 

some important ways that students and mathematicians characterize combinatorial proof as 
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different from other types of proof using the lens of proofs that explain/convince (Hersh, 1993) 

and proof schemes (Harel & Sowder, 1998), and I argue for the importance of considering 

cognitive models when considering students’ and mathematicians’ combinatorial proof 

production.  

Ultimately, this dissertation offers contributions both to combinatorics and proof education 

literature. My study sheds light on an important topic in combinatorics education—combinatorial 

proof—that has received little attention thus far, and it provides evidence for ways students and 

mathematicians may view combinatorial proof differently from other types of proof. In addition, 

my study offers a novel application of the widely used proof schemes framework (Harel & Sowder, 

1998) and offers empirical contributions to conversations researchers have begun having about 

combinatorial proofs as convincing and explanatory (e.g., Lockwood et al., 2020).  
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CHAPTER 2 – Literature Review and Theory about Combinatorics 

 

In this chapter, I review relevant literature in combinatorics education to provide context and 

background for my study. First, in Section 2.1, I summarize some of the work that has been done 

on students’ solving of counting problems, and in Section 2.2 I review Lockwood’s (2013) model 

of students’ combinatorial thinking. In Section 2.3 I discuss all prior research that has been 

conducted on combinatorial proof. The purpose of this chapter is to provide a brief, general 

overview of the most relevant literature for my study; in Chapters 5-7 of this dissertation I provide 

more detailed discussions of existing literature that is most relevant to each manuscript. 

2.1 Combinatorics Education 

It has been said that the road to solving counting problems is strewn with pitfalls (Hadar & 

Hadass, 1981). Authors have described the difficulties associated with teaching students to count, 

because oftentimes there is no rigid formula or procedure that can be applied generally (Annin & 

Lai, 2010). Students can find it challenging to articulate a plan for approaching counting problems, 

or even articulate exactly what they are trying to count (Hadar & Hadass, 1981). Furthermore, 

there are many subtle errors one can easily commit while solving counting problems, even if at 

first glance the solution seems correct (Annin & Lai, 2010; Lockwood, 2014b). Indeed, even when 

a student’s solution is correct, they can still lack sufficient ability to justify their solutions 

(Lockwood et al., 2015b). Because students can face so many difficulties, there a clear need for 

more investigations into ways to help students be more successful in solving combinatorial 

problems. Researchers have taken a variety of approaches to helping address these challenges 

students face solving counting problems, including categorizing common counting errors 

(Batanero et al., 1997), advocating for a set-oriented perspective (e.g., Lockwood, 2014a; 

Wasserman & Galarza, 2019), investigating aspects of students’ reasoning about particular 
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concepts such as multiplication (e.g., Lockwood & Purdy, 2019a; Tillema, 2013) or permutations 

and combinations (Lockwood, Wasserman, & McGuffey, 2018), and creating models to describe 

students’ combinatorial thinking (Lockwood, 2013). In the next section, I expand on Lockwood’s 

(2013) model, as it is both an important piece of the combinatorics education literature and informs 

the way in which I characterize combinatorial proof in my study. 

2.2 A Model of Students’ Combinatorial Thinking 

Lockwood (2013) said there are three components that may be present in a student’s reasoning 

about a counting problem: sets of outcomes, counting processes, and formulas/expressions. See 

Figure 2.1. Sets of outcomes represent collections of objects that are enumerated, which also 

encompasses different ways those objects may be represented or “encoded” (Lockwood et al., 

2015a). Examples may include representing outcomes as binary strings or as sequences where 

order of the items does not matter. Counting processes describe the mental or physical operations 

a counter uses to generate or enumerate sets of outcomes. For instance, this could include use of 

the Multiplication Principle3 or constructing a case breakdown. Finally, formulas/expressions 

include mathematical expressions whose numerical value(s) are the cardinality of the set of 

outcomes being enumerated. These are often considered the “answer” to the counting problem.  

 

 
3 Tucker (2002) offers my preferred statement of the Multiplication Principle: “Suppose a procedure can be broken 

down into m successive (ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the 

second stage, …, and rm different outcomes in the mth stage. If the number of outcomes at each stage is independent 

of the choices in the previous stages, and if the composite outcomes are all distinct, then the total procedure has 

𝑟1 × 𝑟2 × ⋯ × 𝑟𝑚 different composite outcomes” (p. 170). 
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Figure 2.1. Lockwood’s (2013) model of students’ combinatorial thinking (p. 253). 

 

Between each of these components there are also bidirectional relationships that Lockwood 

(2013) and Lockwood, Swinyard, and Caughman (2015b) describe. For example, a counting 

process which involves picking a committee (i.e., an unordered selection) of four people from a 

set of fifteen people and then picking one of those four people to be the chairperson of the 

committee would yield the expression (15
4

) × (4
1
). Similarly, and critically for combinatorial proof, 

a given expression may suggest a particular underlying counting process. The expression 

(𝑛
1

) × (𝑛−1
𝑘−1

), for instance, may suggest a counting process in which 1 object is selected first from 

a group of n distinct objects, and then an unordered selection of k – 1 objects is then made from 

the remaining n – 1 objects. Other mathematical operations can suggest different underlying 

counting processes; for example, addition may indicate a counting process involving a case 

breakdown.  
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Several researchers have applied Lockwood’s (2013) model to investigate various aspects of 

student thinking about counting problems (e.g. Halani, 2013; Hidayati et al., 2019; Lockwood, 

2014; Lockwood et al., 2018; Lockwood & Erickson, 2017; Lockwood & Gibson, 2016; 

Lockwood & Purdy, 2019a). Only one previous study has applied her model to examine student 

thinking about combinatorial proof specifically (Lockwood et al., in press), outlining 

combinatorial proof activity as commonly involving starting with sets of outcomes, then moving 

to counting processes, and then sets of outcomes. Throughout my dissertation study I broadly used 

Lockwood’s model in a similar manner as Lockwood et al. (in press), and in the third manuscript 

of this dissertation I applied Lockwood’s model as a theoretical lens to study students’ and 

mathematicians’ combinatorial proof production. In the next subsection I review all pre-existing 

literature targeting combinatorial proof specifically, including the aforementioned study. 

2.3 Literature on Combinatorial Proof 

There have been some studies which have looked at children’s combinatorial understandings 

of binomial identities (for example, Maher, Powell, & Uptegrove, 2011), but these studies do not 

look at combinatorial proof as I have defined it. There have been few studies that specifically 

addressed combinatorial proof at the undergraduate level. The first of these was conducted by 

Engelke Infante and CadwalladerOlsker (described both in Engelke and CadwalladerOlsker, 2010, 

and Engelke Infante and CadwalladerOlsker, 2011), who looked at upper-division undergraduate 

and graduate students’ written solutions to combinatorial proof problems on exams. In their study, 

they rated the students’ proofs on a scale from 1-4 based on how successful the proofs were, and 

they categorized difficulties that they observed students seemed to encounter with combinatorial 

proof. They additionally found some evidence that having students ask a specific “How many…?” 

question may help students be more successful at completing a correct combinatorial proof, and 
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they also posited that some students may engage in “pseudo-semantic proof production” (2011, p. 

96), a construct based on the distinction between semantic and syntactic proof production 

articulated by Weber and Alcock (2004).  

More recently, Lockwood, Caughman, and Weber (2020) wrote a theoretical piece that focused 

on giving researchers tools and insights to more effectively understand and use the constructs of 

convincing and explanatory proofs (in the sense of Hersh, 1993), and they illustrated their theory 

by applying it to combinatorial proof. They argued that depending on the reader, combinatorial 

proofs are generally considered explanatory proofs within the enumerative representation system, 

because they can explain why a binomial identity holds combinatorially (but they do not explain 

algebraically, for instance, why a binomial identity holds). I expound upon this paper in the first 

manuscript chapter (Chapter 5), which involves discussing proofs that convince and/or explain.  

Finally, the most recent study I identified in the literature targeting combinatorial proof was 

conducted by Lockwood et al. (in press). They found that the students in their study benefitted 

from two particular instantiations while trying to construct combinatorial proofs: contextual 

instantiation and numerical instantiation. By contextual instantiation, the authors referred to 

having students focus on one particular context in which to situate their combinatorial thinking, 

such as committees, and they used numerical instantiation to mean having students substitute 

specific values in for the variables appearing in a binomial identity. Lockwood et al. additionally 

found that combinatorial proof required the students to reconsider previous concepts they had 

internalized about algebraic expressions being “different.” In particular, when the numerical 

equivalence of two expressions was apparent, the students occasionally struggled to distinguish 

between each side of the identity as counting a set of outcomes in two different ways. 
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Lockwood et al. (in press) used Lockwood’s (2013) model to frame their investigation into 

students’ thinking about combinatorial proof, which was a novel application of the model that was 

originally intended to frame student thinking about counting problems. I now review how they 

applied Lockwood’s model, because I characterize combinatorial proof in a similar manner in this 

dissertation (this thus elaborates my own understanding of combinatorial proof as situated within 

existing literature). When a student is engaging in combinatorial proof activity, they can be 

considered as moving counterclockwise around Lockwood’s model. See Figure 2.2. First, when a 

student is given a binomial identity to prove combinatorially, they must begin by picking one side 

of the identity to consider. That side of the identity is a formula/expression which the student must 

interpret as having an underlying counting process. That counting process enumerates or generates 

a particular set of outcomes, which includes the context (say, committees) that the students chooses 

to use. Then the student must start back again in the formulas/expressions component with the 

other side of the binomial identity, and they must interpret it as having some other underlying 

counting process which enumerates the same set of outcomes4. This manner of applying 

Lockwood’s model as a theoretical lens to study to combinatorial proof worked effectively for 

Lockwood et al. (in press), and in the third manuscript of this dissertation (Chapter 7) I use 

Lockwood’s model as a theoretical lens in the same way. Additionally, throughout this dissertation 

I broadly characterize combinatorial proof using the language of formulas/expressions, counting 

processes, and sets of outcomes for the purposes of my study. 

 

 
4 This process describes one type of combinatorial proof, specifically those that utilize “Approach 1” (Lockwood et 

al., in press). While this type of combinatorial proof is the focus of this paper, I again acknowledge that other types 

of combinatorial proof, such as bijective proofs, do also exist.  
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Figure 2.2. Lockwood’s (2013) model as a lens for combinatorial proof (Lockwood et al., in 

press). 

 

In conclusion, combinatorial proof is a topic that has received little attention in the mathematics 

education community, and much remains unanswered about how students engage with 

combinatorial proof tasks, or how they may think about combinatorial proof as different or similar 

to other types of proof. Furthermore, there have been no prior studies that have looked at 

mathematicians’ reasoning about and engagement with combinatorial proof. In the following 

section, I describe two additional theoretical perspectives I used from the proof education literature 

to address some of these questions: proofs that convince and proofs that explain (Hersh, 1993) and 

Harel and Sowder’s (1998) proof schemes. 
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CHAPTER 3 – Literature Review and Theory about Proof 

 

In this chapter, I now turn to reviewing relevant literature from the proof education literature. 

I begin in Section 3.1 by clarifying what I took to constitute proof in my study, and in Sections 3.2 

and 3.3 I discuss two theoretical lenses I am bringing to answer Research Questions 1, 2, and 3. 

These two theoretical lenses are proofs that explain and proofs that convince (Hersh, 1993) and 

Harel and Sowder’s (1998) proof schemes. As with Chapter 2, the purpose of this chapter is to 

provide a brief, overarching review of the literature I drew from for my study. I provide more 

details on the proof literature most relevant to the respective manuscripts in Chapters 5 and 6. 

3.1 How I Am Taking Proof 

Since this study centers combinatorial proof, I specify what I take to constitute proof. Currently 

in the mathematics education community, there is a wide array of perspectives on what should be 

taken as a mathematical proof. There is even debate around issues as structurally basic as whether 

a proof without words, such as a proof consisting only of a picture, really constitutes mathematical 

proof (e.g., Gierdien, 2007). Some researchers have articulated a dichotomy of formal proofs and 

acceptable proofs. For instance, Hanna (1990) explained that formal proofs are theoretical and 

exist as a string of sentences such that the first sentence is an axiom, and each consequent sentence 

either follows from those previous or is an axiom. However, Hanna (1990) also recognized that 

this is not how mathematics is usually done in the real world, and consequently Hanna (1990) said 

that acceptable proof can be thought of as what mathematicians actually do: produce proofs that 

are considered acceptable and valid within a qualified community. Other characterizations of proof 

by mathematics education researchers have distinguished between an argument that may be found 

personally convincing versus a proof that could persuade a broader community. Harel and Sowder 

(2007) used the terms ascertaining and persuading to describe these different types of proofs, 
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respectively, and Raman (2003) discussed a similar distinction between private and public 

arguments.  

The above represents a small sample of the ways that proof and proof production have been 

defined and characterized by mathematics education researchers. For the purposes of my 

dissertation study, I sought a definition of proof that is student-centered and that attends to the way 

students choose to represent particular mathematical objects (such as (𝑛
𝑘

)). Thus, I adapted the 

definition given below by Stylianides (2007, p. 291; emphasis in original): 

Proof is a mathematical argument, a connected sequence of assertions against a mathematical 

claim, with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted statements) 

that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 

community. 

 

Stylianides (2007) used observations from a third-grade classroom to elaborate on elements of 

this definition and to illustrate its applicability, hence his use of the term “classroom community.” 

In my dissertation study, I utilize a broader meaning of the term “community” to also encompass 

other communities (such as a group of peers, the community in a prior class, or the larger 

mathematics community) that may be important to the perspectives of students and 

mathematicians. 

3.2 Proofs That Convince and Proofs That Explain 

As mentioned previously in Section 2.3, Lockwood et al. (2020) said that combinatorial proofs 

can be considered proofs that explain why two quantities are equal, rather than merely convincing 

a reader that they are equal. To fully understand what they mean, in this section I discuss the 



  15 

 

 

ongoing conversation among mathematics-education researchers regarding the distinction between 

proofs that explain and proofs that convince (Hersh, 1993). 

Similarly to Hanna's (1990) distinction between formal and acceptable proof, Hersh (1993) 

observed that in real-world mathematical practice, proofs are not often presented in an absolute 

sense, as if they exist purely as a sequence of statements manipulated using formal rules of logic 

apart from human activity. Instead, the term “proof” often has less to do with formal logic and is 

used more broadly to mean, “convincing argument, as judged by qualified judges” (p. 389). Based 

on this, Hersh (1993) articulated that proof can be divided into two categories, depending on the 

context and purpose of the proof. He said that in mathematical research, the purpose of proof is to 

convince, and to do so it must reach some standard of rigor and honesty as defined by the 

mathematical community. In the classroom however, he said that the purpose of proof is to explain, 

that is, proofs should be enlightening and stimulate students’ mathematical understanding. The 

value of proofs that explain is not limited to the classroom though. Hersh (1993) stated, “More 

than whether a conjecture is correct, mathematicians want to know why it is correct” (p. 390), and 

he used the historical example of Paul Halmos' complaints regarding the Appel-Haken theorem, 

which used computation to aid in proving the Four-Color Theorem.  

Other researchers have also expanded on the categories of proofs that convince and proofs that 

explain. Hanna (2000) stated similarly that the two fundamental functions of proof are verification 

and explanation, and Weber (2010) touched on this distinction in a study investigating the different 

ways that mathematicians view proof. Weber (2010) found that often mathematicians find great 

value in proofs that explain (not just proofs that convince). For example, he noted that proofs are 

read by mathematicians to help them gain new insights and proof techniques within their field, as 

well as provide new ways of thinking about mathematical objects. Weber (2010) also expanded 
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on Hersh’s (1993) conception of proofs that explain by saying that explanatory proof should be 

thought of as an interaction between the proof and its reader, rather than considering ‘being 

explanatory” to be a factor inherent to a proof, separate from any human interaction. He stated, 

“I conceptualize a proof that explains as a proof that enables the reader of the proof to 

reverse the connection—that is, this proof allows the reader to translate the formal 

argument that [they are] reading to a less formal argument in a separate semantic 

representation system” (p. 34). 

 

As mentioned previously, Lockwood et al. (2020) have since adopted the similar term 

representation system, which they define as “consist[ing] of configurations that are used to 

represent mathematical objects and inferential schemes that can be used to deduce new facts about 

these objects” (p. 3). This reframing allows the discussion regarding proofs that convince and 

proofs that explain to be more reader-centered, opening the possibility that—depending on the 

representation system used—a proof could be considered explanatory or not depending on the 

reader. With this more flexible and student-centered framing in mind, in my study I draw upon the 

definitions of proofs that convince and proofs that explain from Weber (2002): 

• “A proof that convinces begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity is unknown.... The intent of this type 

of proof is to convince one's audience that the proposition in question is valid. By 

inspecting the logical progression of the proof, the individual should be convinced 

that the proposition being proved is indeed true” (p. 14). 

• “A proof that explains also begins with an accepted set of definitions and axioms 

and concludes with a proposition whose validity is not intuitively obvious, although 

another proof of this theorem might already be known. In contrast to proofs that 

convince, proofs that explain need not be totally rigorous.... The intent of this proof 

is to illustrate intuitively why a theorem is true. By focusing on its general structure, 

an individual can acquire an intuitive understanding of the proof by grasping its 

main ideas” (p. 14). 

 

From these definitions, proofs that are carried out solely by manipulating symbols or 

employing an “algebraic trick” are usually considered proofs that convince (and not proofs that 

explain). Additionally, other researchers have argued that proofs by induction or by contradiction 
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are usually only proofs that convince (Hanna, 2000; Lange, 2009), though it certainly is not a 

settled issue (for instance, Stylianides, Sandefur, & Watson, 2016, outlined some criteria in which 

a proof by induction could be considered explanatory). Here, again, the use of representation 

systems can be useful, because an algebraic or induction proof could be considered explanatory to 

some readers if they are situated in an algebraic or inductive representation system (Lockwood et 

al., 2020). 

In my study, I am motivated to learn more about combinatorial proof and its status among other 

types of proof, particularly among experienced provers, and so I view the distinction between 

proofs that explain and proofs that convince as a way to understand more about how people view 

relationships among types of proof. In particular, a broad goal was to empirically investigate 

Lockwood et al.’s (2020) theoretical assertions about combinatorial proof and its status as 

explanatory and/or convincing. 

3.3 Proof Schemes 

The other theoretical lens I am using from the proof literature is Harel and Sowder’s (1998) 

proof schemes. This framework has been used by researchers to study proof comprehension and/or 

proof production in children, undergraduate students, and pre- and in-service teachers in several 

mathematical areas (e.g., Blanton & Stylianou, 2014; Çontay & Duatepe Paksu, 2018; Ellis, 2007; 

Fonseca, 2018; Healy & Hoyles, 2000; Housman & Porter, 2003; Jankvist & Niss, 2018; Kanellos, 

2014; Koichu, 2010; Liu & Manouchehri, 2013; Gülcin Oflaz et al., 2016; Ören, 2007; Pence, 

1999; Sen & Guler, 2015; Şengül, 2013). The fact that many researchers have used this framework 

in a variety of content areas and with different populations speaks to its broad applicability and 

utility in characterizing proof in mathematics education. However, perhaps in part because 

combinatorial proof has not been studied extensively to date, no researcher has previously applied 
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Harel and Sowder’s framework to combinatorial proof. For my study, I chose to use proof schemes 

to analyze students’ thinking about combinatorial proof, believing that it would be productive to 

interpret combinatorial proof through the well-known lens of proof schemes. Further, because it is 

a widely used and accepted perspective, I suggest that it can help to better inform how 

combinatorial proof compares to other kinds of mathematical proof, which is related to Research 

Question 3. Finally, I posit that this research can contribute to the large existing body of work that 

uses proof schemes as a lens to understand proof in mathematics education. My examination of 

combinatorial proof can provide insight into how the proof schemes framework might be applied 

to a type of proof to which it has not previously been applied.  

To elaborate the proof schemes framework, Harel and Sowder (1998) contended that generally 

there are three non-mutually exclusive categories of proof schemes that a prover can use (each of 

which have subcategories): external conviction, empirical, and analytical (see Figure 3.1). 

External proof schemes describe situations where students’ doubts are removed by the presence 

(or absence) of certain ritualistic characteristics of an argument, the word of an authority, or the 

symbolic form of an argument. For instance, if a student rejects a given combinatorial proof 

because it does not contain symbolic manipulation, the student would be using an external 

conviction proof scheme. On the other hand, a student can be said to be using an empirical proof 

scheme when, “conjectures are validated, impugned, or subverted by appeals to physical facts or 

sensory experiences” (p. 252). Harel and Sowder further distinguished between inductive and 

perceptual empirical proof schemes. Finally, Harel and Sowder stated that analytical proof 

schemes involve validation conjectures by means of logical deductions (p. 258). In total, these 

three categories of proof schemes represent hierarchical cognitive stages in a student’s 

mathematical development, with external conviction being the least sophisticated and analytical 
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being the most sophisticated. Further details about these three categories of proof schemes and 

each of their subcategories can be found in Chapter 6 of this dissertation. 

 

 

Figure 3.1. Harel and Sowder’s (1998) proof schemes framework (p. 245). 

 

This is just a brief overview of the relevant proof literature for my investigation into 

experienced provers’ perceptions of combinatorial proof. I will draw on the lens of proofs that 



  20 

 

 

convince and proofs that explain (Hersh, 1993) to answer Research Questions 1 and 3, and I will 

use Harel and Sowder’s (1998) proof schemes to address Research Questions 2 and 3. Further 

details about these two proof schemes can be found in Chapters 5 and 6 of this dissertation. 
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CHAPTER 4 – Methods 

In this section I describe the methodology I used for data collection and subsequent analysis 

for my study. In the following subsections I discuss the participants involved in data collection, 

the recruitment of these participants, procedures used for data collection, and techniques for data 

analysis.  

4.1 Participants 

I collected data from two populations for this study, on which I elaborate below. 

4.1.1 Mathematicians. I recruited eight mathematicians from three different universities for 

this study. The mathematicians were a convenience sample of professors to whom I had access, 

and they were recruited via email. I sought mathematicians who had a range of experiences 

teaching and/or conducting research involving binomial identities and combinatorial proofs. 

Specifically, I recruited between 2-3 mathematicians from each of the following groups: i) 

mathematicians who conduct research in combinatorics and who teach combinatorics and discrete 

mathematics (3), ii) mathematicians whose research area is not in combinatorics yet who still teach 

combinatorics and discrete mathematics at least occasionally (2); and iii) mathematicians whose 

research area is not in combinatorics and who do not typically teach combinatorics or discrete 

mathematics (3). I did not conduct selection interviews for the mathematicians, and they were 

compensated monetarily for their time.   

4.1.2 Students. I recruited five suitable students for the study. To recruit the students, I handed 

out fliers at upper-division mathematics courses at a large university in the western United States. 

The reason for recruiting in upper-division courses was that I sought students with some 

experience with college-level proof-based mathematics. I conducted selection interviews with the 

seven students who responded to the fliers, and five of them who fit the selection criteria 
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participated in the study. Selection criteria included demonstrating: i) knowledge of counting 

problems and binomial coefficients, ii) competency with basic proof techniques, and iii) an ability 

and willingness to clearly explain their reasoning aloud. The students were compensated 

monetarily for their time. 

4.2 Data Collection 

The design of my study was to conduct semi-structured, individual, task-based clinical 

interviews with each participant (Hunting, 1997). Each interview was audio- and video-recorded. 

Most of the interviews were conducted with me as the sole interviewer, although for two 

mathematician interviews and nine student interviews, another researcher was also present and 

helped run the camera. This other researcher’s involvement in data collection was limited by 

scheduling constraints. 

4.2.1 Mathematician data collection. The 90-minute interviews with each mathematician 

were conducted in person. I first asked the mathematicians the following series of questions aimed 

at gaining an understanding of their prior experience with combinatorial proof: 

• What is your research area? How long have you been conducting mathematics research? 

• How would you define a mathematical proof? 

• How would you define a combinatorial proof? 

• Do you ever use combinatorial proof in your research? How important is combinatorial 

proof in your field? 

• Do you ever teach classes that cover combinatorial proof of binomial identities? How 

frequently? When did you teach combinatorial proof most recently? 

 

Then, I asked the mathematicians to prove a series of binomial identities using combinatorial 

proof. This portion of the interviews ensured that later when I asked these mathematicians 

questions about combinatorial proof, they would have recent prior combinatorial proof activity 

upon which they could reflect. I also intended to study how these mathematicians approached 

combinatorial proof and intended to compare this with how undergraduate students in my study 



  23 

 

 

approached combinatorial proof. The binomial identities I gave the mathematicians are discussed 

in further detail in Section 4.3.1. This portion of the interviews allowed me to address Research 

Question 4 from Section 1.1.  

I next gave the mathematicians noncombinatorial and combinatorial proofs of three binomial 

identities, and then I provided them with the following definitions of a proof that convinces and a 

proof the explains from Weber (2002) to ensure we had a shared understanding of these terms: 

• “A proof that convinces begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity is unknown…. The intent of this type of proof 

is to convince one’s audience that the proposition in question is valid. By inspecting the 

logical progression of the proof, the individual should be convinced that the proposition 

being proved is indeed true” (p. 14). 

• “A proof that explains also begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity is not intuitively obvious, although another 

proof of this theorem might already be known. In contrast to proofs that convince, proofs 

that explain need not be totally rigorous…. The intent of this proof is to illustrate intuitively 

why a theorem is true. By focusing on its general structure, an individual can acquire an 

intuitive understanding of the proof by grasping its main idea” (p. 14). 

 

After giving the mathematicians time to examine these noncombinatorial and combinatorial 

proofs and read the definitions, I asked the mathematicians reflection questions aimed at gauging 

their perspectives on how convincing and/or explanatory (in the sense of Hersh, 1993) 

combinatorial proofs are compared to other types of proof and why. This part of the interviews 

directly targeted Research Questions 1, 2, and 3 from Section 1.1.  

4.2.2 Student data collection. The 60-minute selection interviews with students were 

conducted in person. The tasks in the selection interviews are elaborated in Section 4.3.2. In the 

selection interviews, I first asked the students to solve a series of counting problems aimed at 

probing their knowledge of binomial coefficients and proficiency with counting. Next, I asked the 

students to write proofs for three straightforward theorems about integers to test their proof-writing 

competency. Without this base skill set (being able to correctly apply combinations to counting 
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problems and structure a basic mathematical proof), it was unlikely that a student in my study 

would be able to provide meaningful data aimed at understanding how students with prior counting 

and proof experience engage with and think about combinatorial proof of binomial identities. 

Students in these selection interviews who solved many of the counting problems incorrectly or 

who could not navigate a basic proof were not selected for my study. I also asked the students 

reflection questions targeting their understanding of what a mathematical proof is and what the 

purpose of proof is in mathematics. 

The students who showed competency using combinations in counting problems and proving 

straightforward mathematical theorems were selected to participate in my study; I subsequently 

interviewed these students individually in four 60-minute in-person sessions (for approximately 

four total hours per person after the selection interviews). In these interviews, I first asked the 

students to solve more counting problems involving combinations, as well as tasks aimed at 

helping them to think about what counting processes (Lockwood, 2013) may underlie given 

binomial expressions. As the students solved these tasks, I asked them to articulate their thinking 

and to justify their combinatorial reasoning, such as how they knew to apply multiplication rather 

than, say, addition when solving a counting problem. The purpose of these tasks was to reinforce 

the skills I anticipated they would need to be successful at producing combinatorial proofs: solving 

counting problems correctly, making connections between the components of Lockwood's (2013) 

model (sets of outcomes, counting processes, and formulas/expressions), articulating how 

mathematical operations structure and organize the outcomes of a counting problem, and creating 

bijections. See Section 4.3.3 for a more detailed discussion of these combinatorial tasks.  

Next, I asked the students to justify some binomial identities (see Section 4.3.3) by arguing 

that each side of the identity enumerates some set of outcomes. As they worked, I continued in 
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asking them to articulate their thinking out loud and to explain their reasoning. During this section 

of the interviews, I asked the students some of the following questions if they were “stuck” trying 

to come up with a combinatorial justification for why a binomial identity held: 

• What could this be counting? 

• What if you tried plugging in a specific value for n? 

• Could you think of this side (of the identity) as counting something related to [committees, 

binary strings, or some other specific context]? 

 

These questions (particularly the last two) are in alignment with Lockwood et al. (in press), 

who found that contextual and numerical instantiations were useful in helping students 

successfully produce combinatorial proofs. Although I was careful to avoid referring to the 

students’ activity as “proof” (since this may influence their conceptions regarding the extent to 

which combinatorial proofs are rigorous mathematical proofs), these tasks were aimed at 

addressing Research Question 4 from Section 1.1. 

The next portion of the interviews was centered around investigating the extent to which the 

students characterized combinatorial proofs as convincing and explanatory (Hersh, 1993) 

compared with other types of proof. To do this, I began by showing them noncombinatorial and 

combinatorial proofs of three binomial identities (see Section 4.3.3). Some of the combinatorial 

proofs I showed the students used abstract contexts like sets and subsets, and some of the 

combinatorial proofs used more concrete contexts such as binary strings and committees. After 

getting the students’ initial impressions of these six total proofs, I then asked the students what 

they thought it meant for a proof to be convincing and what it meant for a proof to be explanatory, 

and then I read to them Weber’s (2002) definitions of a proof that convinces and a proof that 

explains out loud. I then proceeded to ask the students a line of questioning aimed at determining 

whether the students characterized combinatorial proofs as convincing and/or explanatory 
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compared with other types of proof (such as algebraic and induction), and I also asked the students 

whether they thought combinatorial proofs constituted rigorous mathematical proof (and why). 

This task and line of questioning were aimed at addressing Research Questions 1, 2, and 3. 

After this, I asked the students to write combinatorial proofs of more challenging binomial 

identities, continuing to ask them to articulate their thinking and from time to time asking them 

again whether they thought their combinatorial proving activity constituted rigorous mathematical 

proof. By “more challenging,” I mean that these latter identities may require an Approach 2 

combinatorial proof (Lockwood et al., in press), which I conjecture to be more difficult for students 

to produce, or the identities are less readily transferable to an intuitively conceived context. For 

example, to prove that  

(
𝑛 + 1

𝑘 + 1
) = ∑ (

𝑖

𝑘
)

𝑛

𝑖=𝑘

 

it is useful to consider the RHS of the identity as counting subsets of {1, 2, …, n, n + 1} of size k 

+ 1 where the largest element is i + 1. The purpose of giving students these more challenging 

binomial identities to prove was to further address Research Question 4 (stated in the 

Section 1.1). A list of these identities can be found in Section 4.3.3. As the students proved these 

more challenging binomial identities, I again encouraged the students if they got stuck to try using 

specific values in the place of variables, or I asked them what a particular expression may be 

counting within a specific context (following Lockwood et al., in press). These tasks allowed me 

to further observe their combinatorial proving activity and address Research Questions 2, 3, and 

4. 

4.3 Interview Tasks 
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In this subsection, I discuss in more detail the specific interview tasks I gave to the research 

participants and provide justification for why these tasks were chosen.  

4.3.1 Interview tasks for the mathematicians. In this section, I provide the binomial 

identities that I gave to the mathematicians to prove in order to study their approach to 

combinatorial proving. Each mathematician was asked to prove a subset of the identities given in 

Table 4.1. 

Table 4.1. Identities given to the mathematicians to provide a combinatorial argument. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) × 𝑘 = 𝑛 × (

𝑛 − 1

𝑘 − 1
) (

𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

∑ (
𝑛

𝑖
)

𝑛

𝑖=1

𝑖 = 𝑛 ⋅ 2𝑛−1 (
2𝑛

𝑛
) = ∑ (

𝑛

𝑖
)

2
𝑛

𝑖=0

 

∑ (
𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 
∑ (

𝑖

𝑘
)

𝑛

𝑖=𝑘

= (
𝑛 + 1

𝑘 + 1
) 

𝑛

𝑘
(

𝑛 − 1

𝑘 − 1
) = (

𝑛

𝑘
) 

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) = (

𝑛

𝑘
) 

 

These binomial identities were chosen because I wanted these mathematicians to have to work 

with a variety of basic operations in binomial identities to see how they would approach proving 

them combinatorially. This list also represents a wide array of difficulty levels for combinatorial 

proofs, allowing me to see what these mathematicians’ “go-to” combinatorial contexts were (such 

as committees, block-walking, etc.) as well as what reasoning they used and what contexts they 

explored for more difficult combinatorial proofs. Full details of my protocol for the interviews 

with the mathematicians can be found in Appendix A. 

4.3.2 Interview tasks for the selection interviews. In this subsection I describe the counting 

problems I asked the students to solve and the theorems they were asked to prove during the 
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selection interviews. First, the following are the four counting problems I gave to the students, one 

at a time. 

Domino Problem. A domino is a small, thin rectangular tile that has dots on one of its 

broad faces. That face is split into two halves, and there can be zero through six dots on 

each of those halves. Suppose you want to make a set of dominos (i.e., include every 

possible domino). How many distinguishable dominos would you make for a complete set?5 

 

I selected this problem because it cannot readily be solved using any of the four fundamental 

counting formulas (𝑛𝑟, 𝑛!, 𝑛𝑃𝑟, and (𝑛
𝑟
)). However, there are only 28 outcomes, and so it was 

possible for the students to list all the outcomes. Thus, this problem was useful to see whether the 

students were attuned to the sets of outcomes component of Lockwood’s (2013) model, or if they 

were more prone to applying counting formulas without justification. 

Committees Problem. A university department has 30 faculty members. 

a) How many ways could a 5-member hiring committee be formed? 

b) How many ways could a 5-member hiring committee be formed if one of the 

committee members must be the chairperson? 

c) In the university department, 17 faculty members are professors and 13 are 

instructors. How many ways could a 5-member hiring committee be formed if the 

committee must consist of 3 professors and 2 instructors? (The committee won’t 

have a chairperson.) 

 

I selected this problem to see how comfortable and proficient the students would be with using 

binomial coefficients to solve counting problems, and to see if they knew how to apply the 

Multiplication Principle. This counting problem also represented the context for a combinatorial 

proof of the binomial identity ((𝑛
𝑘

) × 𝑘 = 𝑛 × (𝑛−1
𝑘−1

)), which students would see later in the 

selection interview and, if asked to participate in subsequent interviews, be asked to justify 

combinatorially. 

Power Set Problem. Let 𝑆 be a set containing 5 (distinct) elements. How many subsets are 

there of the set 𝑆? (That is, what is the cardinality of 𝑃(𝑆), the power set of 𝑆?) 

 

 
5 This problem is used with permission from (Lockwood, Swinyard, Caughman, 2015). 
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This problem offered another opportunity to see if the students could either correctly apply the 

Multiplication Principle, or else use addition to solve the problem via a case breakdown. In 

particular, students who were familiar with the strategy of enumerating subsets by considering 

whether each individual element is contained in the subset or not might find that the solution is 25  

using the Multiplication Principle. Otherwise, if they had never seen this strategy or did not think 

to use it, they could also find that the solution is (5
0
) + (5

1
) + (5

2
) + (5

3
) + (5

4
) + (5

5
) by counting 

all subsets of a fixed size. 

Binary Strings Problem. A binary string is a finite sequence containing only 1s and 0s. 

a) How many binary strings of length 8 contain exactly 5 0s? 

b) How many binary strings of length 𝑛 contain exactly 𝑘 0s? 

 

I included this problem because Lockwood, Swinyard, and Caughman (2015a) found that 

students who are otherwise very successful counters can struggle to encode the outcomes of these 

kind of combination problems in a way that lets them leverage binomial identities. They found that 

students may be more likely to know that (𝑛
𝑘

) counts the number of groups of a certain size where 

order does not matter, but they may not realize that they can count these binary strings by 

enumerating groups of size 5 (or 𝑘) from a set of 8 (or 𝑛) positions. To successfully prove binomial 

identities combinatorially, it is essential to have the ability to flexibly apply combinations to a 

variety of contexts, so this problem was included to help me determine the flexibility of the 

students’ understanding and use of combinations. 

Next, I present the three theorems I asked the students to prove after solving the four counting 

problems described above. 

Theorem 1. The sum of two even integers is an even integer. 
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This was the first theorem I included in my selection interviews since it should have been 

straightforward for any student in an upper-level mathematics course. When the students proved 

this theorem, I was checking to ensure they could navigate a basic proof, including defining the 

relevant variables and writing using coherent, logically correct, complete sentences. 

Theorem 2. Let n be a nonnegative integer. Then, 

∑ 𝑖

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2
 

 

This theorem was included in the selection interviews so that I could see if the students were 

able to navigate a straightforward proof by induction (if that was the proof method they chose), or 

otherwise ensure they could interpret and write a correct, coherent proof of a statement involving 

a summation. 

Theorem 3. Let 𝑛 and 𝑘 be nonnegative integers such that 𝑛 ≥ 𝑘. Then, 

(
𝑛

𝑘
) × 𝑘 = 𝑛 × (

𝑛 − 1

𝑘 − 1
) 

 

This theorem was given to the students as written, although I did tell them the factorials 

formula for (
𝑛
𝑘

) if they asked for it (i.e. (𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!⋅𝑘!
). This was also one theorem where it might 

be natural for some students to try a combinatorial proof, and so another reason I included it was 

to see if they would approach the proof combinatorially.  

In summary, the selection interviews included tasks aimed at evaluating various aspects of 

students’ skills at solving counting problems and writing proofs of basic mathematical theorems. 

While the students needed not be expert counters or provers, the tasks helped me to ensure that the 

students who were selected for future interviews had the pre-requisite skills necessary to provide 

meaningful data when asked to prove binomial identities in subsequent interviews/situations. Full 

details of my selection interview protocol can be found in Appendix B. 
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4.3.3 Subsequent interview tasks for those students who met selection criteria. In this section, 

I will review the tasks I gave to the students who I selected to participate in my study, and I will 

justify why I chose these tasks. During the four follow-up clinical interviews with each student, I 

asked them to complete a sequence of combinatorial tasks intended to help build scaffolding for 

these students to successfully produce combinatorial proofs. See Table 4.2 for a list of these tasks. 

Several of these tasks were intended to ensure the students had a robust, flexible understanding of 

combinations, that is, problems where the solution can be readily expressed using one or more 

binomial coefficients. Lockwood et al. (2018) found that students distinguish between two 

different types of problems that can be solved with binomial coefficients, so I felt it was important 

to ensure they could solve tasks involving either type of problem. Additionally, the fifth task I 

asked the students to solve, the Reverse Counting Problem, asked students to interpret an 

expression as the solution to a counting problem. The ways of thinking the students had to engage 

in to solve this task is very similar to that needed to prove a binomial identity combinatorially, so 

this task provided the most direct scaffolding for subsequent combinatorial proof tasks. 

Before continuing, I want to make two points about the combinatorial tasks I gave the students. 

First, during the interviews I felt I did not have to give them more than these five tasks, because in 

the selection interviews these students had already shown that they were familiar with and could 

solve counting problems, so I did not feel it was necessary to have them solve too many more 

counting problems before asking them to engage in combinatorial argumentation. Second, several 

of the tasks in this table were intended to lay the necessary groundwork for students to make 

Table 4.2. Combinatorial tasks for students to scaffold combinatorial proof. 

Task Intended Purpose 

1. Spoonbill Problem. The scientific name of 

the roseate spoonbill (a species of large, 

wading bird) is Platalea ajaja. How many 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

ordered sequences of two indistinguishable 
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arrangements are there of the letters in the 

word AJAJA? Can you list all of the 

outcomes? 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) when 

counting. 

2. Subsets Problem. How many 3-element 

subsets are there of the set {1, 2, 3, 4, 5}? Can 

you list all of the outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

unordered selections of distinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) when 

counting. 

3. Find-a-Bijection Problem. Describe a 

bijection between the outcomes in the 

Spoonbill Problem and the Subsets Problem. 

Facilitate a robust, flexible understanding of 

combinations. Lay groundwork for students to 

solve bijective combinatorial-proof problems. 

4. Even- and Odd-Sized Sets Problem. Let 

S={1, 2, 3, 4, 5, 6}. (a) List all of the even-

sized subsets of S. How many should there be? 

(b) List all of the odd-sized subsets of S. How 

many should there be? (c) Find a bijection 

between the subsets in parts (a) and (b) by 

considering whether the subsets contain the 

item 1. 

Continue to facilitate a solid understanding of 

combinations. Provide scaffolding for students 

to eventually prove the identity  
∑ ( 𝑛

2𝑖
)𝑖≥0 = ∑ ( 𝑛

2𝑖+1
)𝑖≥0  using a bijective 

combinatorial proof. 

5. Reverse Counting Problem. (a) Write 

down a counting problem whose answer is 25. 

(b) Write down a counting problem whose 

answer is 15 × (14
3

). 

Provide scaffolding for the concept of a 

combinatorial proof by asking students to 

interpret expressions in a combinatorial 

context. 

 

bijective combinatorial proofs of binomial identities6. I included these tasks in this section for 

completeness, and because these tasks helped to ensure the students could work with binomial 

coefficients effectively. However, bijective combinatorial proofs are not a focus of this paper, and 

so I do not include details of their work on these types of proofs here. 

After the students completed these tasks, I gave them a sequence of binomial identities (where 

all variables involved were nonnegative integers), and with these identities I gave the prompt: 

“Argue that the identity holds by arguing that each side counts something.” I was careful to avoid 

 

 
6 That is, proofs which involve arguing that each side of the binomial identity counts a different set, and then making 

a bijection between the sets to establish their cardinalities are the same—and therefore the identity holds. 
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using the word “proof” to describe the tasks, because I planned to ask the students later in the 

interviews whether they felt their combinatorial arguments constituted proofs that explain or 

proofs that convince (or even whether combinatorial arguments can be proofs at all), and I did not 

want to influence the students’ opinions. Each student was given a subset of the identities in Table 

4.3 (as time in the interviews permitted). 

Table 4.3 Identities given to the students to provide a combinatorial argument. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) (

𝑘

𝑟
) = (

𝑛

𝑟
) (

𝑛 − 𝑟

𝑘 − 𝑟
) (

𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

∑ (
𝑛

𝑖
)

𝑛

𝑖=1

𝑖 = 𝑛 ⋅ 2𝑛−1 
∑ (

𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 

∑ (
𝑛

𝑖
) (

𝑛

𝑛 − 𝑖
)

𝑛

𝑖=0

= (
2𝑛

𝑛
) ∑ (

𝑚

𝑖
) (

𝑛

𝑘 − 𝑖
)

𝑘

𝑖=0

= (
𝑚 + 𝑛

𝑘
) 

𝑛

𝑘
(

𝑛 − 1

𝑘 − 1
) = (

𝑛

𝑘
) 

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) = (

𝑛

𝑘
) 

∑ (
𝑖

𝑘
)

𝑛

𝑖=𝑘

= (
𝑛 + 1

𝑘 + 1
) 

 

 

Finally, in the last or second-to-last interview with each student (depending on how far they 

had progressed), I gave them the same six proofs (three combinatorial, and three non-

combinatorial) to read as the mathematicians, except that on the students’ handout each proof was 

labeled an “argument.” Again, this was because I did not want to influence their opinions regarding 

whether they thought combinatorial proofs constituted convincing or explanatory mathematical 

proofs (or not). The details of these six proofs are given in Table 4. As with the mathematicians, I 

asked the students to read each handout and first give me their overall impression of the arguments 

they read. Once the students had finished giving me their impressions, I asked them what they 

thought it might mean for a proof to be convincing, and what they thought it might mean for a 
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proof to be explanatory. Once they gave their answers, I then read them the same definitions of 

proofs that convince and proofs that explain from Weber (2002) that I had given the 

mathematicians. I next asked them a series of reflection questions aimed at probing their beliefs 

about combinatorial arguments as proofs, as well as combinatorial and non-combinatorial 

arguments (e.g., induction or algebraic) as proofs that explain and proofs that convince. Full details 

of my protocol for the interviews with the students can be found in Appendix C. 

4.4 Data Analysis 

Directly after data collection, the interview data were de-identified by assigning a code (a 

number, then a pseudonym) for each participant, and I referred to participants exclusively by these 

codes in all subsequent analysis. After conducting and recording interviews, I created enhanced 

transcripts with relevant screenshots from the video-recorded data capturing the participants work 

on the interview tasks. Broadly, I analyzed the data by drawing on multiple 

frameworks/perspectives, including Lockwood’s model (2013), proofs that convince and proofs 

that explain (Hersh 1993), and Harel and Sowder’s (1998) proof schemes. I utilized thematic 

analysis (Boyatzis, 1998; Braun & Clarke, 2006) since it is a well-established methodology in 

social science research and could provide me with a detailed and nuanced account of qualitative 

data. In this section, I first discuss the thematic analysis qualitative research methodology, and 

then I give more specific details describing how I used thematic analysis to analyze my interview 

data with the mathematicians and students. Additional details about data analysis are included in 

each of the manuscript chapters, Chapter 5, 6, and 7 of this dissertation.  

4.4.1 Thematic analysis. Braun and Clarke (2006, p. 87) broadly outlined six phases of 

thematic analysis:  

1. Familiarize yourself with the data; 



  35 

 

 

2. Generate initial codes; 

3. Search for themes (i.e., gather codes into potential themes); 

4. Review themes (including checking to ensure they accurately represent the data); 

5. Define and name themes (as part of ongoing analysis to refine themes); 

6. Produce the report (including selecting compelling episodes from the data to illustrate 

the theme). 

 

Familiarizing oneself with the data may involve tasks such as re-watching interview videos, 

transcribing data, and noting initial ideas. Generating initial codes involves systematically 

organizing interesting occurrences or ideas throughout the data set to produce an initial coding 

scheme. The phases searching for themes and reviewing themes include gathering the initial codes 

with relevant data into themes, ensuring the themes work across the entire data set, and generating 

a “thematic ‘map’” of analysis (Braun & Clarke, p. 87). Themes are further refined in the defining 

and naming themes phase, and finally producing the report includes the production of a scholarly 

report of the results of data analysis complete with compelling, illustrative examples from the data. 

I carried out these six phases for my analysis of the interview data with the mathematicians and 

with the students; more details are provided in Sections 4.4.2 and 4.4.3, as well as in the three 

result manuscript chapters of this dissertation.  

Braun and Clarke (2006) also articulated that the thematic analysis can be inductive or 

deductive, that themes can be semantic or latent, and that the researcher can adopt an essentialist 

or constructionist epistemology. For my study, I assumed an essentialist epistemology, since it 

was sufficient for me to characterize meanings related to combinatorial proof as essential to each 

individual participant, rather than necessarily to seek sociocultural explanations for the utterances 

and activity related to combinatorial proof exhibited by the mathematician and student participants. 

Also, the themes I searched for were semantic, because in order to answer my research questions 

they only needed to be descriptive of the data without additionally requiring interpretation of 
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underlying ideas beyond what the participants said or wrote. Finally, some portions of my thematic 

analysis were inductive, and some were deductive depending on the research question I was 

focusing on in that moment. In particular, to answer Research Questions 1, 2, and 3, I had specific 

theoretical perspectives I was bringing to my coding of the data—namely Hersh’s (1993) notion 

of proofs that convince/explain and Harel and Sowder’s (1998) proof schemes. Therefore, that 

portion of the thematic analysis was deductive. However, to answer Research Question 4 (which 

I view as being broader than the other three), I wanted to be more open to whatever salient themes 

may emerge related to mathematicians’ and students’ perceptions of combinatorial proof and 

combinatorial proving activity. Generally, I characterized their combinatorial proving activity 

using the components of Lockwood’s (2013) model, but I also engaged in thematic analysis to be 

more data-driven without trying to apply a prescriptive theoretical perspective.  

While the previous broad description summarizes my overarching approach to analyzing my 

interview data via thematic analysis, in the following subsections I offer more detail into how I 

specifically analyzed the mathematicians’ and students’ utterances and activity related to 

combinatorial proof. Throughout the next two sections, I connect my analysis back to the six 

phases of analysis as characterized by Braun and Clarke (2006). I organize my discussion by first 

describing my analysis of the data related to how the mathematicians and students perceived 

combinatorial proof (which directly addresses Research Questions 1, 2, and 3) and, second, by 

describing my analysis of the mathematicians’ and students’ combinatorial proving activity (which 

addresses Research Question 4). Further details can also be found in Chapters 5, 6, and 7 of this 

dissertation. 

4.4.2 Analysis of mathematicians’ and students’ perceptions of combinatorial proof. For 

my interviews with the mathematicians, I began with Phases 1 and 2 of thematic analysis (Braun 
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& Clarke, 2006) by looking for instances in the data where they described their impressions of 

combinatorial proof (either a specific proof or combinatorial proof in general) and coded these 

impressions. I also recorded the mathematicians’ responses to Weber’s (2002) definitions of proofs 

that convince and explain. Following Phase 3 of thematic analysis, I organized my codes into 

potential themes, including to what extent the mathematicians felt that combinatorial proofs are 

proofs that explain or proofs that convince (or neither or both), how combinatorial proof compares 

to other types of proof (e.g., induction or algebraic), as well as other interesting themes as they 

emerged from the data analysis.  

For my interviews with the students, I also looked for instances in the data where they 

described their impressions of combinatorial argumentation and coded these impressions 

following Phases 1 and 2 of thematic analysis (Braun & Clarke, 2006). I coded to what extent the 

students felt that combinatorial arguments are proofs that explain or proofs that convince compared 

with other types of proof (such as algebraic or induction arguments) and why. In addition, I flagged 

episodes in the data when the students discussed whether they considered combinatorial proof to 

be rigorous mathematical proof in comparison to other types of proof, and I coded their reasoning 

in these cases using Harel and Sowder’s (1998) proof schemes. For instance, if a student made 

utterances about the correctness of the logical structure of a combinatorial argument, I took that as 

evidence that the student was using an analytical proof scheme. If the student alluded to an 

authority (e.g., claiming they did not think their instructor would accept a combinatorial proof) or 

appealed to ritualistic features of a combinatorial proof (e.g., claiming a combinatorial argument 

did not constitute proof because it did not involve symbolic manipulation), then I took that to 

signify that the student was using an authoritarian or ritual proof scheme, respectively. I also 

recorded each students’ concept definitions (Tall & Vinner, 1981) of a proof, as well as what they 
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thought it might mean for a proof to be convincing and/or explanatory. These codes were organized 

into initial themes following Phase 3 of thematic analysis.  

After completing Phases 1-3 of thematic analysis (Braun & Clarke, 2006) with my interview 

data with the students and mathematicians, I carried on to Phase 4 by reviewing the interview data, 

verifying that my themes were appropriate, and checking to see if there were any other episodes 

that may warrant further analysis. Any ambiguous episodes were discussed thoroughly with 

another experienced researcher until both that researcher and I were confident that the themes 

being applied were appropriate. Continuing to Phase 5 of thematic analysis, I discussed the themes 

with the other researcher to refine my overall themes to ensure they were clear and well-defined. 

Eventually I completed the final stage of thematic analysis (Phase 6) by drafting the results and 

discussion sections for the first and second manuscripts of this dissertation, including choosing 

compelling and representative excerpts from the data for each theme. I read these drafts and revised 

them, in some cases adjusting my organization and structure to make sure I was accurately 

characterizing the themes that had emerged from the data.   

In summary, I followed deductive thematic analysis to code relevant episodes in the interview 

data to determine whether the mathematicians and students considered combinatorial proofs to be 

convincing or explanatory (and why), and I further coded relevant episodes in my interviews with 

the students to determine the proof schemes they used to characterize combinatorial proof. This 

enabled me to address Research Questions 1, 2, and 3. Further details can be found in Chapters 5 

and 6 of this dissertation. 

4.4.3 Analysis of mathematicians’ and students’ combinatorial proof production. As I 

mentioned above in Section 4.4.1, I used an inductive approach to analyze the data that were 

relevant to Research Question 4. This enabled me to proceed with coding the interview data 
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without being constrained by a prescriptive coding frame—though I did broadly interpret 

mathematicians’ and students’ combinatorial proving activity using the components of 

Lockwood’s (2013) model. First, following Phase 1 of thematic analysis (Braun & Clarke, 2006), 

I familiarized with the data by re-watching the interview videos and making note of episodes that 

seemed relevant to Research Question 4. I then re-examined these episodes in Phases 2-3 of 

thematic analysis and noticed patterns occurring in the ways that the students and mathematicians 

engaged with the combinatorial proof interview tasks. These patterns enabled me to conceive of 

initial coding schemes, which were then refined into more robust themes as I made multiple passes 

through the data with my evolving codes. I also went back to the literature and looked for relevant 

prior research that could help me think of how to appropriately categorize the phenomena I was 

observing. I continued through Phases 4 and 5 of thematic analysis until I had clear, distinct themes 

that saturated the data, all while discussing key episodes and findings that were emerging with 

another experienced researcher. We discussed the themes that were being used to ensure that they 

faithfully represented the data, and any episodes that were challenging to assign to a theme were 

discussed thoroughly until both my research colleague and I were confident that the themes being 

applied were appropriate. Finally, in Phase 6 of thematic analysis I produced a report by drafting 

the results and discussion sections for the third manuscript of this dissertation, including choosing 

compelling, representative excerpts from the data for each theme. Further details can be found in 

Chapter 7 of this dissertation.  

 



 40 

Chapter 5 (Paper 1) – Combinatorial Proofs as Proofs That Convince and Proofs That 

Explain 

Abstract. Combinatorial proof, an important topic in enumerative combinatorics, has received 

relatively little attention from the mathematics education community. No prior studies have 

examined whether students and mathematicians view combinatorial proofs as explanatory or 

convincing (in the sense of Hersh, 1993). I interviewed 13 experienced provers (five upper-division 

mathematics students and eight mathematicians) to investigate whether they considered 

combinatorial proofs to be proofs that explain and/or convince compared to other types of proof, 

and why. All 13 participants felt that combinatorial proofs are equally or more explanatory than 

other types of proofs, but participants demonstrated a variety of perspectives regarding the extent 

to which combinatorial proofs are convincing. These findings further ongoing discussions in proof 

education literature on proofs that explain and/or convince, as well as help address gaps in 

combinatorics education literature on students thinking about combinatorial proof. 

Keywords: Combinatorics, Combinatorial proof, Proofs that convince, Proofs that explain 

 

1. Introduction 

Enumerative combinatorics is an area of mathematics that is both highly accessible for students 

and widely applicable to other sciences and areas of mathematics (Kapur, 1970; Lockwood, 

Wasserman, & Tillema, 2020). One important topic in combinatorics education that comes up in 

discrete mathematics, statistics, probability, number theory, and other contexts is combinatorial 

proof of binomial identities. Combinatorial proof is a proof method that establishes the veracity of 

an equation by arguing that the expressions on either side of the equation each enumerate a set 

(possibly the same set) of equal cardinality (Lockwood, Reed, & Erickson, in press; Rosen, 2012).  

Consider for example Pascal’s identity, (𝑛
𝑘

) = (𝑛−1
𝑘

) + (𝑛−1
𝑘−1

). This identity can be proven by 

considering the set of committees of size k which can be formed from a group of n (distinct) people. 

The left side of the identity counts this, since (𝑛
𝑘

) counts the number of unordered selections of 

size k that can be formed from a set of n distinct things. For the right side, suppose without loss of 

generality that one of the n people is named Sofía. Then, (𝑛−1
𝑘

) counts the number of committees 
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that can be formed excluding her (since there are n – 1 remaining people who can be on the 

committee), and (𝑛−1
𝑘−1

) enumerates the committees that include her (since there are k – 1 remaining 

spots on the committee and n – 1 remaining people). Since this case breakdown (those without and 

with Sofía, respectively) encompasses all possibilities, the left side also counts the same set of 

committees. Since both the left and right sides of the identity enumerate the same set, we can 

conclude they must be equal in value. The validity of a combinatorial proof lies in the fact that a 

set can have only one cardinality.   

Because combinatorial proof of binomial identities does not involve algebraic manipulation 

but instead requires the prover to articulate combinatorial processes underlying binomial 

expressions, combinatorial proof can provide opportunities for students to engage in semantic 

proof production (Weber & Alcock, 2004), use analytical proof schemes (Harel & Sowder, 1998), 

and encounter proofs that explain (Hersh, 1993). Despite its utility and these potential pedagogical 

advantages of combinatorial proof, however, little is known about students’ perceptions regarding 

the nature of combinatorial proof. The few existing studies that target undergraduate students’ 

thinking about combinatorial proof rely on artifact-based data (Engelke Infante & 

CadwalladerOlsker, 2011; Engelke & CadwalladerOlsker, 2010) or were conducted with novice 

provers who may have limited experience with mathematical proof (Lockwood et al., in press). 

Additionally, even less is known about how mathematicians may conceptualize these proofs. In 

this paper, I attempt to address these gaps in the literature by presenting findings from a study in 

which I conducted clinical interviews with upper-division mathematics students and 

mathematicians, aimed at answering the following research questions: 

1. To what extent do experienced provers consider combinatorial proofs of binomial identities 

to be convincing or explanatory compared with other types of proofs, and why? 
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2. What do experienced provers’ perceptions of combinatorial proof as convincing or 

explanatory tell us about the nature of combinatorial proof (including its similarities and 

differences to other types of proof)? 

Addressing these questions can contribute both to answering open questions in the relevant 

combinatorics education literature, as well as add to ongoing discussions in proof education 

literature about proofs that convince and/or explain. To these ends, I gave upper-division 

mathematics students and mathematicians tasks aimed at eliciting combinatorial proof activity and 

asked them reflection questions on their conceptions of combinatorial proof. Specifically, I sought 

to determine if the students and mathematicians found combinatorial proof to be convincing or 

explanatory (in the sense of Hersh, 1993).  

In the proceeding section, I situate this research by first discussing relevant studies in the 

combinatorics education literature, including Lockwood’s (2013) model of students’ 

combinatorial thinking and the few existing studies that have focused specifically on combinatorial 

proof. Later, I also discuss the relevant literature from proof education research I drew from to 

inform my investigations. 

2. Literature Review 

Enumerative combinatorics is widely acknowledged as an important area of mathematics 

(Kapur, 1970), and combinatorial proof is a highly useful topic within combinatorics and has 

applications ranging from statistics and probability to computer science. Combinatorics and 

combinatorial proof are also ideal settings for students to grapple with difficult, important 

mathematical ideas (such as isomorphism, relation, and equivalence), since counting is highly 

accessible and does not require a lot of prior mathematical background such as calculus (Kapur, 

1970). In the classroom, counting and combinatorial proof provide ample opportunities for 

students not only to problem-solve, but also to justify why and how the solution to a mathematics 
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problem works (Hurdle, Warshauer, & White, 2016). Unfortunately, it is also widely 

acknowledged that students of all ages struggle to solve counting problems correctly (e.g., Annin 

& Lai, 2010; Batanero, Navarro Pelayo, & Godino, 1997; Lockwood & Gibson, 2016). While 

some research has been conducted to address such difficulties with counting generally, much less 

has been formally studied about how students understand combinatorial proof or what they think 

about as they go about writing them. 

Combinatorial proof is also an area that is ripe for advancing the mathematics education 

research area of proof. While proof at secondary and tertiary levels has been studied for decades 

(e.g., Hanna, 2000; Harel & Sowder, 1998; Mejía-Ramos et al., 2015; Mingus & Grassl, 1999; 

Raman et al., 2009; J. Selden & Selden, 1995; Stylianou et al., 2015), the majority of these studies 

have focused on proof in domains such as analysis, number theory, and algebra. There have been 

very few studies conducted that focus on proof in the combinatorial domain, and researchers such 

as Lockwood et al. (in press) point out that studying student beliefs about and activity in 

combinatorial proof could provide new insights for the proof literature. 

I now proceed with a discussion of the existing literature relevant to combinatorial proof as 

situated in combinatorics education. Later, in Section 3, I expand on combinatorial proof as 

situated within discussions of proof literature 

2.1 Relevant Literature on Combinatorics Education 

In this section, I present an overview of the work researchers have done toward understanding 

student thinking about counting generally and combinatorial proof. First, I describe work that has 

documented difficulties students encounter solving counting problems, which will help to situate 

my subsequent presentation of results in this paper. Then, in Section 2.1.2 I expand on a useful 

model of students’ combinatorial thinking developed by Lockwood (2013). In Section 2.2 I then 
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discuss some of the work that has been done on combinatorial proof which will be relevant for 

subsequent discussions in the paper. 

2.1.1 Student difficulties solving counting problems. It has been said that the road to solving 

counting problems is strewn with pitfalls (Hadar & Hadass, 1981). Authors have described the 

difficulties associated with teaching students to count, because oftentimes there is no rigid formula 

or procedure that can be applied generally (Annin & Lai, 2010). Students can find it challenging 

to articulate a plan for approaching counting problems, or even articulate exactly what they are 

trying to count (Hadar & Hadass, 1981). It can be tricky to know how to encode outcomes in a 

useful way (Lockwood et al., 2015a; Spira, 2018), and even when solutions to counting problems 

are found they can be notoriously difficult to verify (Eizenberg & Zaslavsky, 2004). There are 

many subtle errors one can easily commit while solving counting problems even if at first glance 

the solution seems correct (Annin & Lai, 2010; Lockwood, 2014b). Finally, even when a student’s 

solution is correct, they can still lack sufficient ability to justify their solutions (Lockwood et al., 

2015b). I mention these documented difficulties not to paint a negative picture of students’ abilities 

in these areas, but to emphasize the need for more investigations into ways to help students be 

more successful in solving combinatorial problems. Researchers have taken a variety of 

approaches to helping address these challenges students face solving counting problems, including 

categorizing common counting errors (Batanero et al., 1997), advocating a set-oriented perspective 

(Lockwood, 2014a), and creating a model to describe students’ combinatorial thinking 

(Lockwood, 2013). In the next section, I expand on this model, as it is both an important piece of 

the combinatorics education literature and informs the way in which I characterize combinatorial 

proof in my study. 
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2.1.2 Lockwood’s (2013) model of students’ combinatorial thinking. One important 

contribution to the research on combinatorics education literature is Lockwood's (2013) model of 

students combinatorial thinking. See Figure 5.1 for a diagram illustrating the model. Lockwood 

(2013) developed her model using in Thompson’s (2008) theoretical notion of a mathematical 

conceptual analysis, as well as empirical observation of student activity solving counting 

problems. One component of Lockwood’s model is sets of outcomes, which are the collection(s) 

 
Figure 5.1. Lockwood’s (2013) model of students’ combinatorial thinking. 

 

of objects being counted. This component of the model includes the combinatorial activity of 

encoding, which Lockwood, Swinyard, and Caughman (2015) defined as determining the nature 

of what is being counted. Another component of Lockwood’s model is counting processes, which 

describes the processes by which a counter enumerates the set(s) of outcomes. Counting processes 

can be thought of as leveraging or imposing a particular organization of the set of outcomes. The 

third component of Lockwood's is formulas/expressions, which are mathematical expressions that 

are often thought of as the answer to a counting problem. Lockwood noted that the way a 

formula/expression is written may suggest an underlying counting process, a key realization for a 

student who is coming up with a combinatorial proof. For instance, a student may arrive at the 

expression (26
5

) × 5 as the solution for a counting problem, which suggests an underlying counting 
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process of first carrying out a task in which there are (26
5

) ways to complete the task, and then 

carrying out a second task in which there are 5 ways to complete the task, using the Multiplication 

Principle7. Another important point Lockwood (2013) made is that even if two expressions have 

the same numerical value, the different forms could suggest different underlying counting 

processes.  

Since Lockwood’s (2013) model was developed, it has been used as an analytical lens through 

which to examine data in many studies investigating students’ thinking and activity solving 

counting problems (e.g. Halani, 2013; Hidayati et al., 2019; Lockwood, 2014; Lockwood et al., 

2018; Lockwood & Erickson, 2017; Lockwood & Gibson, 2016; Lockwood & Purdy, 2019a). In 

the next section, I transition to discussing prior work done on student thinking about and 

engagement in combinatorial proof, including a prior study that used Lockwood’s model for the 

first time as a lens to study combinatorial proof (rather than just a lens to study students’ solving 

of counting problems). 

2.2 Relevant Literature on Combinatorial Proof 

There is agreement among much of the mathematics education community that proof is a 

critical mathematical topic for students to learn and should be introduced earlier and utilized more 

frequently in secondary and tertiary mathematics curriculum (Hanna, 2000; Harel & Sowder, 

1998; Mingus & Grassl, 1999; G. J. Stylianides et al., 2017). Since combinatorics is an accessible 

domain in mathematics (Kapur, 1970), combinatorial proof of binomial identities could provide 

 

 
7 Tucker (2002) offers my preferred statement of the Multiplication Principle: “Suppose a procedure can be broken 

down into m successive (ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the 

second stage, …, and rm different outcomes in the mth stage. If the number of outcomes at each stage is independent 

of the choices in the previous stages, and if the composite outcomes are all distinct, then the total procedure has 

𝑟1 × 𝑟2 × ⋯ × 𝑟𝑚 different composite outcomes” (p. 170). 
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an excellent setting for students to gain experience with proof and help address the myriad of 

difficulties students face when attempting to write or even comprehend mathematical proofs 

(Raman et al., 2009; A. Selden & Selden, 2008; J. Selden & Selden, 1995; Stylianou et al., 2015). 

Below, I review the limited existing literature related to combinatorial proof of binomial identities, 

and I will discuss proof more generally later in Section 3 of this paper. While there have been 

dozens of studies spanning several decades that have been conducted on proof in the mathematics 

education literature, I focus on proof literature that is specifically relevant to combinatorial proof. 

2.2.1 Research on secondary students’ justifications of binomial identities. Research 

conducted on grade-school children has provided evidence that even young children can 

demonstrate a combinatorial understanding of binomial identities (Maher, Powell, & Uptegrove, 

2015). For instance, Maher, Muter, and Kiczek (2007) described an episode where a 10th-grade 

student showed that there are 32 total pizzas that can have up to 5 different toppings by 

constructing a bijection between these pizzas and binary strings, and in Maher et al. (2015) 11th-

grade students found interesting connections between numbers in Pascal’s triangle and outcomes 

for counting problems involving pizzas and block towers of two colors. Another student used 

combinatorial reasoning and numerical patterning to justify Fermat’s formula,  

(
𝑛

𝑟 + 1
) = (

𝑛

𝑟
) ⋅

𝑛 − 𝑟

𝑟 + 1
 

in the context of block towers. Finally, Maher and Speiser (1997) also chronicled the progress of 

a 14-year-old participant investigating binomial coefficients and combinations. This student made 

meaningful mathematical connections to Pascal’s triangle and was able to justify combinatorially 

why Pascal’s addition identity, 

(
𝑛 + 1

𝑟
) = (

𝑛

𝑟
) + (

𝑛

𝑟 − 1
) 

holds. 
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While this work does not explicitly address combinatorial proof, the combinatorial insight that 

these secondary students demonstrated in justifying binomial identities is a promising sign that 

undergraduate students can engage in rigorous combinatorial proof activity. 

2.2.2 Studies on undergraduate students’ combinatorial proof activity and thinking. 

Although there have been few studies that address combinatorial proof at the undergraduate level, 

I now review what work has been done in this specific area. Engelke Infante and 

CadwalladerOlsker (2011) used student work on midterm and final exams in a class they were 

taking to study how successful these students were at combinatorial proof. Engelke Infante and 

CadwalladerOlsker rated the students’ proofs on a scale from 1 to 4 based on how successful the 

proofs were, and they found that students most often seemed to struggle with the following 

difficulties (these are definitions I articulated from p. 95-96): 

1. Language mimicking—attempting to copy the syntax of a combinatorial argument they 

had previously encountered, but not paying enough attention to potentially important 

details of the binomial identity at hand. 

2. Inflexibility of context—attempting to apply the same context (e.g. selecting jobs for 

people to perform) to all combinatorial proofs, even when not inappropriate. 

3. Misunderstanding of combinatorial functions—for example, not comprehending what the 

choose function (i.e. combinations or binomial coefficients) represents. 

4. Failure to count the same set—when the student argued that each side of a binomial identity 

counted different sets of outcomes. 

 

Engelke Infante and CadwalladerOlsker (2011) also noted that many student-written proofs in the 

study contained errors of logic as well, for instance claiming that, “Since the LHS=RHS, they 

count the same thing” (p. 96). While it is difficult to determine conclusively from artifact-based 

(rather than interview-based) data, Engelke Infante and CadwalladerOlsker also found that some 

students they studied seem to engage what they called, “pseudo-semantic proof production,” which 

is based on the semantic/syntactic proof production distinction introduced by Weber and Alcock 

(2004).  
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As far as I could determine, the only other empirical study existing in the mathematics 

education literature that specifically targeted combinatorial proof at the undergraduate level was 

conducted recently by Lockwood et al. (in press). They carried out a paired teaching experiment 

(Steffe & Thompson, 2000) with two undergraduate students who were taking vector calculus at 

the time of the study and who had little previous combinatorial experience. The researchers met 

with the students for a total of 15 hour-long sessions, and in the final three sessions the pair of 

students were able to articulate successfully combinatorial justifications of binomial identities with 

the knowledge and insights they had learned throughout the teaching experiment. Lockwood et 

al.’s work provided some evidence that having students build up to combinatorial proof by first 

solving counting problems two ways and generalizing from specific cases may help facilitate 

reasoning that lends itself nicely to productive combinatorial proof activity. However, since the 

students in the study had never taken upper-division mathematics courses, it is unclear whether 

the students themselves felt that they were engaging in proof.  

Finally, Lockwood, Caughman, and Weber (2020) provided a theoretical contribution to the 

proof literature by examining proofs that convince and proofs that explain using combinatorial 

proof as an example. Lockwood et al. argued that proof researchers should adopt the perspective 

of the reader when discussing constructs such as a proofs that explain and/or convince (Hersh, 

1993), and they argued that researchers should refer to the appropriate representation system when 

discussing the constructs of a convincing and explanatory proof. (For example, combinatorial 

proof as exemplified in the Introduction of this paper would be considered as situated within the 

enumerative representation system.) They also discussed that while the labels explanatory and 

convincing are reader-dependent, there is some regularity regarding what types of proofs readers 
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may find convincing or explanatory, and they stated that many would consider combinatorial 

proofs to be proofs that explain. 

In summary, while some work has been done that explores combinatorial proof within the 

mathematics education literature, there is a need for more investigations to help the field better 

understand how provers (including students and mathematicians) conceptualize combinatorial 

proof. In particular, there is great opportunity to study combinatorial proof among more 

experienced provers, which would shed light on their perceptions of combinatorial proof as 

convincing or explanatory. In the proceeding section, I describe the theoretical perspective I 

adopted for this paper as well as situate my characterization of combinatorial proof within relevant 

literature. 

3. Theoretical Perspectives and Characterizing Combinatorial Proof 

In this section, I discuss the theoretical framing for this paper. In Section 3.1, I discuss how I 

am conceptualizing proof for this study. Next, in Section 3.2, I expand on the theoretical lens I 

used to design and analyze the data for this paper: proofs that convince and proofs that explain 

(Hersh, 1993). Finally, in Section 3.3, I revisit Lockwood’s (2013) model to describe how I applied 

it to characterize combinatorial proof throughout my study. 

3.1 Characterizing Proof in This Study 

Since this study centers on combinatorial proof, I first specify what I take to constitute proof. 

Currently in the mathematics education community, there is a wide array of perspectives on what 

should be taken as a mathematical proof. There is even debate around issues as structurally basic 

as whether a proof without words, such as a proof consisting only of a picture, really constitutes 

mathematical proof (e.g. Gierdien, 2007). Some researchers have articulated a dichotomy of 

formal proofs and acceptable proofs. For instance, Hanna (1990) explained that formal proofs are 
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theoretical and exist as a string of sentences such that the first sentence is an axiom, and each 

consequent sentence either follows from those previous or is an axiom. However, Hanna (1990) 

also recognized that this is not how mathematics is usually done in the real world, and consequently 

Hanna (1990) said that acceptable proof can be thought of as what mathematicians actually do: 

produce proofs that are considered acceptable and valid within a qualified community. Other 

characterizations of proof by mathematics education researchers have distinguished between an 

argument that may be found personally convincing versus a proof that could persuade a broader 

community. Harel and Sowder (2007) used the terms ascertaining and persuading to describe 

these different types of proofs, respectively, and Raman (2003) discussed a similar distinction 

between private and public arguments.  

The above represents a small sample of the ways that proof and proof production have been 

characterized by mathematics education researchers. For the purposes of my study, I sought a 

definition of proof that is student-centered and that attends to the way students choose to represent 

particular mathematical objects (such as (𝑛
𝑘

)). Thus, I adapted the definition given below by 

Stylianides (2007, p. 291; emphasis in original): 

Proof is a mathematical argument, a connected sequence of assertions against a mathematical 

claim, with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted statements) 

that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 

community. 

 

Stylianides (2007) used observations from a third-grade classroom to elaborate on elements of this 

definition and to illustrate its applicability, hence his use of the term “classroom community.” In 

my investigation, I utilized a broader meaning of the term “community” to also encompass other 
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communities (such as a group of peers, the community in a prior class, or the larger mathematics 

community) that may be important to the perspective of a student.  

3.2 Proofs that Explain Versus Proofs that Convince 

As mentioned previously in the Literature Review, Lockwood et al. (2020) said that 

combinatorial proofs are considered by many to be proofs that explain why two quantities are 

equal, rather than merely convincing a reader that they are equal. To fully understand what they 

mean, in this section I discuss the ongoing conversation among mathematics education researchers 

regarding the distinction between proofs that explain and proofs that only convince (Hersh, 1993). 

Similarly to Hanna's (1990) distinction between formal and acceptable proof, Hersh (1993) 

observed that in real-world mathematical practice, proofs are not often presented in an absolute 

sense, as if they exist purely as a sequence of statements manipulated using formal rules of logic 

apart from human activity. Instead, the term “proof” often has less to do with formal logic and is 

used more broadly to mean, “convincing argument, as judged by qualified judges” (p. 389). Based 

on this, Hersh (1993) articulated that proof can be divided into two categories, depending on the 

context and purpose of the proof. He said that in mathematical research, the purpose of proof is to 

convince, and to do so it must reach some standard of rigor and honesty as defined by the 

mathematical community. In the classroom however, he said that the purpose of proof is to explain 

that is, proofs should be enlightening and stimulate students’ mathematical understanding. The 

value of proofs that explain is not limited to the classroom though. Hersh (1993) stated, “More 

than whether a conjecture is correct, mathematicians want to know why it is correct” (p. 390), and 

he used the historical example of Paul Halmos’ complaints regarding the Appel-Haken theorem, 

which used computation to aid in proving the Four-Color Theorem.  
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Other researchers have also expanded on the convincing/explanatory distinction in the research 

field of proof. Hanna (2000) stated similarly that the two fundamental functions of proof are 

verification and explanation, and Weber (2010) touched on this distinction in a study investigating 

the different ways that mathematicians view proof. Weber (2010) found that often mathematicians 

find great value in proofs that explain (not just proofs that convince). For example, he noted that 

proofs are read by mathematicians to help them gain new insights and proof techniques within 

their field, as well as provide new ways of thinking about mathematical objects. Weber (2010) also 

argued that explanatory proof should be thought of as an interaction between the proof and its 

reader, rather than considering “being explanatory” to be a factor inherent to a proof, separate from 

any human interaction. He stated, 

I conceptualize a proof that explains as a proof that enables the reader of the proof to 

reverse the connection—that is, this proof allows the reader to translate the formal 

argument that [they are] reading to a less formal argument in a separate semantic 

representation system (p. 34). 

 

As mentioned previously, Lockwood et al. (2020) have since adopted the similar term 

representation system, which they define as “consist[ing] of configurations that are used to 

represent mathematical objects and inferential schemes that can be used to deduce new facts about 

these objects” (p. 3). This reframing allows the discussion regarding proofs that convince and 

proofs that explain to be more reader-centered, opening the possibility that—depending on the 

semantic representation system used—a proof could be considered explanatory or not depending 

on the reader. With this more flexible and student-centered framing in mind, in my study I drew 

upon the definitions of proofs that convince and proofs that explain from Weber (2002): 

• “A proof that convinces begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity is unknown....The intent of this type 

of proof is to convince one's audience that the proposition in question is valid. By 
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inspecting the logical progression of the proof, the individual should be convinced 

that the proposition being proved is indeed true” (p. 14). 

• “A proof that explains also begins with an accepted set of definitions and axioms 

and concludes with a proposition whose validity is not intuitively obvious, although 

another proof of this theorem might already be known. In contrast to proofs that 

convince, proofs that explain need not be totally rigorous....The intent of this proof 

is to illustrate intuitively why a theorem is true. By focusing on its general structure, 

an individual can acquire an intuitive understanding of the proof by grasping its 

main ideas” (p. 14). 

 

From these definitions, proofs that are carried out solely by manipulating symbols or 

employing an “algebraic trick” are usually considered proofs that convince (and not proofs that 

explain). Additionally, other researchers have argued that proofs by induction or by contradiction 

are usually only proofs that convince (Hanna, 2000; Lange, 2009), though it certainly is not a 

settled issue (for instance, Stylianides, Sandefur, & Watson, 2016, outlined some criteria in which 

a proof by induction could be considered explanatory). Here, again, the use of representation 

systems can be useful, because an algebraic or induction proof could be considered explanatory to 

some readers if they are situated in an algebraic or inductive representation system (Lockwood et 

al., 2020). 

While I believe that the distinction between proofs that explain versus proofs that only 

convince can be useful, I also acknowledge the criticisms that some researchers have had of the 

distinction. For instance, Stylianides et al. (2017) expressed concern that the explanatory and 

convincing distinction in proof literature is inadequately defined, with the precise characterization 

of what constitutes a proof that explains remaining especially unclear. In addition, Mingus and 

Grassl (1999) interviewed preservice teachers and found that some proofs fell into neither category 

for some of the teachers, and Weber (2002) offered an expansion of the binary categorization and 

acknowledged that they are overlapping categories. Other researchers have argued the dichotomy 
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of proofs that convince versus proofs that explain is too restrictive and does not capture other ways 

that students or mathematicians may assess a proof (e.g., Inglis & Aberdein, 2016).  

I appreciate and acknowledge these criticisms, and I argue that one practice that can help 

address some of the issues raised above is to specify the reader of the proof that is being 

categorized, and the representation system in which they are situated. For instance, mathematicians 

might consider combinatorial proofs to be explanatory, but upper-division mathematics students 

may not find combinatorial proof to be explanatory or even convincing if they are not used to 

working in the enumerative representation system. It similarly may be the case that combinatorial 

proofs might be explanatory in the enumerative domain (depending on the reader), but not in the 

algebraic domain. This also means that if a reader wants to understand algebraically why a 

binomial identity might hold, a combinatorial proof would not explain this even if it could provide 

a combinatorial explanation. Lockwood et al. (2020) therefore emphasized the importance of a 

nuanced perspective when labeling a proof as convincing or explanatory, including considering 

the representation system in use and the perspective of the reader. This also means that it may be 

misleading to label all algebraic or inductive proofs as non-explanatory (see also Stylianides et al., 

2016), since students may be comfortable in the algebraic or inductive representation system and 

find these proofs to be more personally explanatory or convincing than a combinatorial proof. 

Unpacking and utilizing this nuance is a goal of the research conducted in this study. Finally, I 

point out that while I hold that a proof should be considered explanatory (or not) depending on the 

reader and representation system, I nevertheless acknowledge there may be some uniformity that 

exists about which proofs individuals consider explanatory, such as proofs that include some kind 

of visualization (Lockwood et al., 2020). 
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Additionally, while labeling a proof as “explanatory” requires nuance, so too does the label of 

“convincing.” Multiple proof researchers have distinguished among the differing level of 

conviction that a reader gets from reading or writing a proof. For instance, Harel and Sowder 

(2007) distinguish between a prover ascertaining or persuading in their proof activity, where 

ascertaining is defined as, “the process an individual (or a community) employs to remove [their] 

own doubts about the truth of an assertion,” (p. 6) and persuading is defined as, “the process an 

individual or a community employs to remove others’ doubts about the truth of an assertion” (p. 

6). This is similar to the distinction between a private argument and public argument articulated 

by Raman (2003), and she explained that, for example, a private argument might consist of 

informal reasoning that convinces an individual of the truth of a statement and that could, if the 

individual were pressed, become a public argument with the addition of sufficient rigor. It is 

additionally important to remember that while a proof should not be considered “explanatory” 

without reference to an individual and representation system, whether or not a proof is 

“convincing” also depends on the individual and the representation system. Stylianides et al. 

(2016) also suggested following a subjective perspective on proof that is more focused on the 

prover or reader rather than objective qualities inherent to the proof. 

In conclusion, while I drew from and utilize Weber’s (2002) definitions of proofs that explain 

and proofs that convince, I acknowledge there has been a rich discussion on this issue in the 

mathematics community and intended to take care when applying this as a theoretical framework. 

In particular, I followed Lockwood et al. (2020) by considering both the reader and their 

representation system when considering a student or mathematician’s proof as convincing and/or 

explanatory. Ultimately, despite some reservation in the community about the usefulness of this 

distinction, I still think it is valuable to better understand how combinatorial proof is viewed as 
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convincing and/or explanatory. I am motivated to learn more about combinatorial proof and its 

status among other types of proof (particularly among experienced provers), and so I view this 

distinction as a way to understand more about these ideas. In particular, one way to frame my goals 

in this paper is that I am empirically investigating Lockwood et al.’s (2020) theoretical assertions 

about combinatorial proof and its status as explanatory and/or convincing. 

3.3 Lockwood's (2013) Model as a Way to Characterize Combinatorial Proof 

 

 

Figure 5.2. Lockwood et al. (in press) argued that when engaging in combinatorial proof, 

provers must move counterclockwise around Lockwood’s (2013) model starting at 

formulas/expressions and ending up at sets of outcomes. 

 

Finally, in this study, I followed Lockwood et al. (in press) in using Lockwood’s (2013) model 

to characterize combinatorial proof. Lockwood et al. argued that when students engage in 

combinatorial proof, they are starting in the formulas/expressions component of Lockwood’s 

model, and then they must conceive of each of each side of the binomial identity as having an 

underlying counting process that enumerates a set of outcomes. (See Figure 5.2.) To illustrate my 

conceptualization of how students navigate through the components of Lockwood’s (2013) model 
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when proving a binomial identity, consider the combinatorial proof which was first given in the 

Introduction.  

Proposition. Let n and k be nonnegative integers. Then,  

(
𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

Proof. The left side of the equation counts the number of size-k committees that can be 

formed from a set of n people. 

To see how the right side counts the same set, suppose that one of the n people is named 

“Sofía.” With this in mind, (𝑛−1
𝑘

) counts the number of committees from the set of n people 

that don’t include Sofía, and the (𝑛−1
𝑘−1

) counts the number of committees that do include 

Sofía. This is because one spot in the committee is already occupied (by Sofía), and so we 

only need to choose k - 1 from the remaining n - 1 people. 

Since both the left and right sides of the identity enumerate the same set of outcomes 

(committees of size k from n people), they have the same numerical value8. 
 

To come up with this proof, a prover must recognize that the left side of the identity represents 

a counting process (namely making an unordered selection) that can enumerate a set of outcomes—

in this case, committees of size k from n people. Next, the prover must conceive of a way that the 

right side could enumerate the same set of outcomes. Specifically, they must recognize that the 

expression represents a counting process that makes two unordered selections and then groups 

these selections together. Finally, a prover would need to come up with a way that this process 

could also enumerate the set of committees of size k from n people, and in this situation one way 

to do that is to focus on one of the n people and consider committees that do and do not contain 

that person as a case breakdown.  

In this way, Lockwood’s (2013) model applies naturally when studying student thinking and 

engagement with combinatorial proof. I used her model to inform my choice of interview tasks 

 

 
8 This proof argues for the veracity of the binomial identity by arguing that both sides of the identity count the same 

set. This exemplifies an Approach 1 combinatorial proof (Lockwood et al., in press), and I acknowledge that there 

are other kinds of combinatorial proofs that exist (such as those that involve establishing a bijection). I do not 

discuss these other types of combinatorial proof in this paper. 
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and more broadly to characterize combinatorial proof. Whenever I refer to outcomes, counting 

processes, and formulas/expressions in this paper, the reader should understand that I apply these 

terms in alignment with Lockwood’s (2013) model.   

4. Methods 

I conducted individual, task-based, semi-structured clinical interviews (Hunting, 1997) with 

upper-division undergraduate mathematics students and mathematicians. In these interviews, I 

asked the participants to complete tasks aimed toward getting at their understanding of 

combinatorial proof, including to what extent they felt that combinatorial proofs are proofs that 

convince or proofs that explain (compared with other types of proof such as algebraic or induction). 

I describe the details in the following sections. 

4.1 Participants 

The participants in my study were from two populations of interest: students with prior 

experience with proof and combinatorics, and mathematicians with experience conducting 

mathematics research. Below I describe how I recruited participants. 

4.1.1 Student participants. Five students were recruited from upper-division mathematics 

courses at a large university in the western United States. I visited and recruited in Advanced 

Calculus II, Multivariable Advanced Calculus, Fundamental Concepts of Topology, Metric Spaces 

and Topology, and General Relativity courses. I chose these courses because they all require some 

proof-based course (e.g. Discrete Mathematics or Advanced Calculus I) as a prerequisite. I wanted 

the students in my study to have some understanding of what a rigorous mathematical proof entails, 

and so choosing students from these classes would ensure they had all completed at least one proof-

based mathematics course before. Table 5.1 lists all the courses that the student participants had 

taken (or were currently taking) at the time my interview with them took place. 
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Table 5.1. Classes taken by student participants. 

 Student Participants*:  
Sydney Riley Adrien Peyton Ash 

Calculus I ✓ ✓ ✓ 
 

✓ 

Calculus II ✓ ✓ ✓ 
 

✓ 

Infinite Series & Sequences ✓ 
 

✓ ✓ ✓ 

Vector Calculus I ✓ ✓ ✓ ✓ ✓ 

Vector Calculus II ✓ 
 

✓ ✓ ✓ 

Applied Differential Equations ✓ 
 

✓ ✓ ✓ 

Mathematics for Management, Life, and Social 

Sciences 

    
✓ 

Advanced Calculus ✓ 
 

✓ 
 

✓ 

Linear Algebra I ✓ ✓ ✓ ✓ ✓ 

Linear Algebra II ✓ 
 

✓ ✓ ✓ 

Introduction to Modern Algebra ✓ 
 

✓ 
 

✓ 

Metric Spaces and Topology 
 

✓** ✓** 
  

Discrete Mathematics ✓ ✓ 
 

✓** ✓ 

Applied Ordinary Differential Equations ✓ 
 

✓ 
  

Applied Partial Differential Equations ✓ 
    

Fundamental Concepts of Topology ✓** ✓** 
 

✓** 
 

Numerical Linear Algebra 
 

✓ 
   

Introduction to Numerical Analysis 
  

✓ 
  

Computational Number Theory 
 

✓ 
   

Mathematical Modeling 
  

✓ 
  

Actuarial Mathematics 
  

✓ 
  

Complex Variables 
    

✓ 

Non-Euclidean Geometry 
    

✓ 
* These are pseudonyms. 

** Indicates that the student was enrolled in this course at the time the interviews were conducted. 

 

I also wanted the students in my study to have some prior experience with solving counting 

problems. Following my use of Lockwood’s (2013) model as way of characterizing combinatorial 

proof, I believe that combinatorial proof requires students to be able to conceive of an expression 

as having an underlying counting process, so a counting process is a construct that should already 

have some meaning for my participants. I describe these selection interviews in Section 4.2. 
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4.1.2 Mathematician participants. A convenience sample of eight mathematicians were 

recruited via email from three universities in the western United States. Each mathematician was 

an acquaintance of either myself or my academic adviser, and they were chosen to have a range of 

experiences researching and teaching combinatorics. I recruited mathematicians who did and who 

did not conduct research in a combinatorial field, and I recruited mathematicians who did and who 

did not regularly teach combinatorics. The backgrounds of each of the mathematician participants 

are summarized in Table 5.2.  

Table 5.2. Mathematician participants’ research and teaching experience information. 

Name* Research Experience 
Regularly Teaches 

Combinatorics 

Ridley Algebraic combinatorics & bijective combinatorics 

(13 years) 

Yes 

Dominique Competitive coloring algorithms and parameters 

defined on graphs (20 years) 

Yes 

Jaiden Computability, computable analysis, & algorithmic 

information theory (3 years) 

Yes 

Skyler Dynamical systems and number theory (15 years) No 

Emery Modular forms and partition functions (17 years) Yes 

Lake Partial differential equations & related functional 

analysis (60 years) 

No 

Justice Representation theory of finite groups (6 years) Yes 

Robin Geometry, algebra, and mathematics education (40 

years) 

No 

* These are pseudonyms. 

 

4.2 Student Selection Interviews 

The student participants each took part in a round of individual, task-based selection 

interviews. Each interview was audio- and video-recorded. In these interviews, I began by asking 

the students to solve a sequence of counting problems. Some of these problems were aimed at 

seeing how attuned the students were to sets of outcomes, and some of the problems got at whether 

the students could use combinations. Next, I asked them to prove three theorems: the sum of two 
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even integers is even; ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
; and (𝑛

𝑘
)𝑘 = 𝑛(𝑛−1

𝑘−1
). The purpose of these tasks was to 

ensure I had participants who knew how to navigate a basic algebraic or induction proof. All of 

the students (except Peyton, in whose selection interview I ran out of time to reach this question) 

proved (𝑛
𝑘

)𝑘 = 𝑛(𝑛−1
𝑘−1

) algebraically using the (𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
 formula, which I had expected. I also 

asked if they could think of a way to argue that the identity was true by thinking about what each 

side of the identity could be counting. This was to see if they were already familiar with the idea 

of a combinatorial proof, and I intentionally used the word “argue” rather than “prove” in my 

questioning to avoid potentially influencing the students’ opinions regarding combinatorial proofs 

as proofs that explain and/or convince.  

In summary for a student to continue on and participate in the four (remaining) clinical 

interviews I intended to conduct with them, they needed to demonstrate that they could solve basic 

counting problems, were familiar with combinations, had experience with proof at the college 

level, and understood what a rigorous proof entails. 

4.3 Main Interviews 

After I recruited the mathematician participants and selected students suitable for my study, I 

scheduled individual clinical interviews (Hunting, 1997) with each participant. Each interview was 

audio- and video-recorded.  

4.3.1 Interviews with mathematicians. Each of the mathematicians participated in one 90-

minute interview at a time convenient to the participant. Each mathematician was first asked a 

series of introductory questions, including asking them about their research area, how they would 

define a proof and a combinatorial proof, and whether (and how frequently) they teach 

combinatorial proof of binomial identities. Next, I asked the mathematicians to provide a 
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combinatorial proof to a series of binomial identities, which are given in Table 5.3. I gave each 

mathematician as many identities as time permitted. I prioritized the identities (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

), (𝑛
𝑘

) ⋅

𝑘 = 𝑛 ⋅ (𝑛−1
𝑘−1

), and ∑ ( 𝑛
2𝑖

)𝑖≥0 = ∑ ( 𝑛
2𝑖+1

)𝑖≥0  when possible, because I wanted to see the 

mathematicians’ “go-to” strategies when proving simpler binomial identities like (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) and 

(𝑛
𝑘

) ⋅ 𝑘 = 𝑛 ⋅ (𝑛−1
𝑘−1

), and I wanted to see their problem-solving process when working on a harder 

identity like ∑ ( 𝑛
2𝑖

)𝑖≥0 = ∑ ( 𝑛
2𝑖+1

)𝑖≥0  (which typically involves a bijective combinatorial proof). 

However, I adjusted my sequence of tasks in the interviews as needed, such as giving more 

relatively simple binomial identities like 2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  to mathematicians who had not done these 

kinds of proofs of binomial identities for a while. 

Table 5.3. Binomial Identities in Mathematician Interviews. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) (

𝑛

𝑘
) ⋅ 𝑘 = 𝑛 ⋅ (

𝑛 − 1

𝑘 − 1
) 

∑ (
𝑛

𝑖
)

𝑛

𝑖=1

⋅ 𝑖 = 𝑛 ⋅ 2𝑛−1 (
2𝑛

𝑛
) = ∑ (

𝑛

𝑖
)

2
𝑛

𝑖=0

 

 

(
𝑛 + 1

𝑘 + 1
) = ∑ (

𝑖

𝑘
)

𝑛

𝑖=𝑘

 
∑ (

𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 

(
𝑛

𝑘
) =

𝑛

𝑘
⋅ (

𝑛 − 1

𝑘 − 1
) (

𝑛

𝑘
) =

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) 

 

After I asked the mathematicians to prove binomial identities combinatorially, I gave them 

three handouts to read, each containing a binomial identity (numbered Theorems 1-3) as well as a 

combinatorial and a non-combinatorial proof of the identity. The first handout had the identity 

2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  and gave a combinatorial and induction proof of the identity; the second had (𝑛
𝑘

) =

(𝑛−1
𝑘

) + (𝑛−1
𝑘−1

) and a combinatorial and algebraic proof; and finally the third had (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) and 
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a combinatorial proof and algebraic proof that utilized the binomial theorem. The details of these 

six proofs are given in Table 5.4.  

I asked the mathematicians to read each handout and first give me their initial impressions of 

the two proofs before moving on to the next handout. Once the mathematicians had finished giving 

me their initial impressions of all six proofs, I gave them the following definitions of proofs that 

convince and proofs that explain, adopted from Weber (2002): 

• “A proof that convinces begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity [was] unknown....The intent of this type of 

proof is to convince one’s audience that the proposition in question is valid. By inspecting 

the logical progression of the proof, the individual should be convinced that the proposition 

being proved is indeed true” (p. 14). 

• “A proof that explains also begins with an accepted set of definitions and axioms and 

concludes with a proposition whose validity [was] not intuitively obvious, although another 

proof of this theorem might already be known. In contrast to proofs that convince, proofs 

that explain need not be totally rigorous....The intent of this proof is to illustrate intuitively 

why a theorem is true. By focusing on its general structure, an individual can acquire an 

intuitive understanding of the proof by grasping its main ideas” (p. 14). 

 

Table 5.4. Six Proofs handout. 

Identity Combinatorial Proof Non-combinatorial proof 

Theorem 1. 

2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  

(Subsets Context) Consider 

a set S such that |S|=n. The 

LHS* of the equation 

counts the number of 

subsets of S, because every 

subset can be uniquely 

determined by the elements 

it contains, and each of the 

n elements could be either 

in or out of each subset. 

The RHS counts the 

number of i-subsets of S 

and adds up over all 

possible values of i. Since 

the LHS and RHS both 

enumerate the set of 

subsets of S, they are equal. 

(Induction RS*) Suppose n=0. It follows that 

the identity holds since 20 = 1 = (0
0
). Suppose 

that the identity holds for n=k, where k is a 

nonnegative integer. We then observe that 

∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

= ∑ ((
𝑘

𝑖
) + (

𝑘

𝑖 − 1
))

𝑘

𝑖=0

+ (
𝑘 + 1

𝑘 + 1
) 

= ∑ (
𝑘

𝑖
)

𝑘

𝑖=0

+ ∑ (
𝑘

𝑖 − 1
)

𝑘

𝑖=0

+ 1 

= 2𝑘 + ∑ (
𝑘

𝑖
)

𝑘−1

𝑖=0

+ 1 

= 2𝑘 + 2𝑘 − (
𝑘

𝑘
) + 1 

= 2 ⋅ 2𝑘 − 1 + 1 

= 2𝑘+1. 
*RS here refers to representation systems, in the sense of Lockwood, Caughman, and Weber (2020). 
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Table 5.4 (Continued) 

Theorem 2. 

(𝑛
𝑘

) = (𝑛−1
𝑘

) +

(𝑛−1
𝑘−1

) 

(Committees Context) 

Suppose a mathematics 

department has n faculty 

members, and Sofía is one of 

the faculty members. The 

LHS counts the total number 

of committees of size k that 

could be formed from the n 

faculty members. The RHS 

counts the number of 

committees of size k that 

exclude Sofía and the 

committees that include her. 

Note that this case 

breakdown encompasses all 

possible k-committees. Since 

the LHS and RHS both 

enumerate the same set of 

outcomes (k-committees 

formed from the n faculty 

members), they are equal. 

(Algebraic RS) We have that 

(
𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!

+
(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 1 − 𝑘 + 1)!
 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
 

=
(𝑛 − 1)! (𝑛 − 𝑘)

𝑘! (𝑛 − 𝑘)!
+

(𝑛 − 1)! 𝑘

𝑘! (𝑛 − 𝑘)!
 

=
𝑛(𝑛 − 1)! − 𝑘(𝑛 − 1)! + 𝑘(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

=
𝑛!

𝑘! (𝑛 − 𝑘)!
 

= (
𝑛

𝑘
). 

Theorem 3. 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

(Binary Strings Context) 

Consider the set of binary 

strings of length n containing 

exactly k 0s. The LHS 

enumerates this set, because 

(𝑛
𝑘

) is the number of ways 

we can select positions for 

the 0s to occupy, and the rest 

of the positions in the binary 

string will be 1s. The RHS 

also enumerates this set, 

because ( 𝑛
𝑛−𝑘

) is the number 

of ways we can select 

positions for the 1s to 

occupy, and the rest of the 

positions in the binary string 

will be 0s. 

(Binomial Theorem RS) Recall that the 

Binomial Theorem states that for n a natural 

number and a, b real numbers, 

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑎𝑛−𝑖𝑏𝑖 . 

Notice that for each k, the coefficient of 

𝑎𝑛−𝑘𝑏𝑘 is (𝑛
𝑘

). Additionally, we also have 

that by the Binomial Theorem, 

(𝑏 + 𝑎)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑏𝑛−𝑖𝑎𝑖 , 

and the coefficient of 𝑏𝑘𝑎𝑛−𝑘 is ( 𝑛
𝑛−𝑘

). We 

also have that 𝑎𝑛−𝑘𝑏𝑘 = 𝑏𝑘𝑎𝑛−𝑘 and 
(𝑎 + 𝑏)𝑛 = (𝑏 + 𝑎)𝑛, by the commutativity 

of multiplication and addition of real 

numbers, respectively. Thus, when the latter 

is expanded, the coefficients of each term on 

either side of the equation must be equal, so 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) for all k. 
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I wanted to give these definitions to the mathematicians to ensure that when I asked the them 

about their opinions regarding combinatorial proofs as convincing or explanatory, we would 

have a shared understanding of these terms. Similarly to the other handouts, I first asked each 

mathematician to give their initial impression of the definitions, including whether the 

mathematicians felt this was a useful distinction to describe proofs and if the definitions 

resonated with them at all. I then asked them a series of reflection questions aimed at probing 

their beliefs about combinatorial and non-combinatorial proofs (such as induction or algebraic 

proofs) as proofs that explain and proofs that convince. I also asked them to reflect on their own 

experience as research mathematicians, describing if they had ever used a combinatorial proof or 

read one in the literature and why a combinatorial proof was needed or desired. Overall, my goal 

with these tasks was to have the mathematicians engage in combinatorial proving activity and 

read combinatorial proofs so they would all have similar, recent experiences they could draw 

from during the interviews. To address my research questions, I asked the mathematicians 

reflection questions about combinatorial proofs as convincing and/or explanatory.  

4.3.2 Interviews with students. Each of the five students who passed the round of selection 

interviews participated in four follow-up hour-long individual clinical interviews. The interviews 

with the students were scheduled at times that were convenient for the students, typically with one- 

or two-week gaps between each interview. Four of the five students who were selected into the 

study stated that they had not previously encountered combinatorial proof in any class (as far as 

they knew). One student, Peyton, was taking a discretemathematics course at the time that the 

research interviews took place that covered combinatorial proof. 

During the four follow-up clinical interviews with each student, I asked them to complete a 

sequence of combinatorial tasks intended to build up to the idea of a combinatorial proof. See 
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Table 5.5 for a list of these tasks. Several of these tasks were intended to ensure the students had 

a robust, flexible understanding of combinations, that is, problems where the solution can be 

readily expressed using one or more binomial coefficients. Lockwood et al. (2018) found that 

students distinguish between two different types of problems that can be solved with binomial 

coefficients, so I felt it was important to ensure they could solve tasks involving either type of 

problem. Additionally, the fifth task I asked participants to solve, the Reverse Counting Problem, 

Table 5.5. Combinatorial tasks for students to scaffold combinatorial proof. 

Task Intended Purpose 

1. Spoonbill Problem. The scientific name of 

the roseate spoonbill (a species of large, 

wading bird) is Platalea ajaja. How many 

arrangements are there of the letters in the 

word AJAJA? Can you list all of the 

outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

ordered sequences of two indistinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) 

when counting. 

2. Subsets Problem. How many 3-element 

subsets are there of the set {1, 2, 3, 4, 5}? Can 

you list all of the outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

unordered selections of distinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) 

when counting. 

3. Find-a-Bijection Problem. Describe a 

bijection between the outcomes in the 

Spoonbill Problem and the Subsets Problem. 

Facilitate a robust, flexible understanding of 

combinations. Lay groundwork for students to 

solve bijective combinatorial-proof problems. 

4. Even- and Odd-Sized Sets Problem. Let 

S={1, 2, 3, 4, 5, 6}. (a) List all of the even-

sized subsets of S. How many should there 

be? (b) List all of the odd-sized subsets of S. 

How many should there be? (c) Find a 

bijection between the subsets in parts (a) and 

(b) by considering whether the subsets 

contain the item 1. 

Continue to facilitate a solid understanding of 

combinations. Provide scaffolding for 

students to eventually prove the identity  
∑ ( 𝑛

2𝑖
)𝑖≥0 = ∑ ( 𝑛

2𝑖+1
)𝑖≥0  using a bijective 

combinatorial proof. 

5. Reverse Counting Problem. (a) Write 

down a counting problem whose answer is 25. 

(b) Write down a counting problem whose 

answer is 15 × (14
3

). 

Provide scaffolding for the concept of a 

combinatorial proof by asking students to 

interpret expressions in a combinatorial 

context. 
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asked students to interpret an expression as the solution to a counting problem. The ways of 

thinking the students had to engage in to solve this task is very similar to that needed to prove a 

binomial identity combinatorially, so this task provided direct scaffolding for subsequent 

combinatorial proof tasks. 

Before continuing, I want to make two points about the combinatorial tasks I gave the students. 

First, during the interviews I felt I did not have to give them more than these five tasks, because in 

the selection interviews these students had already shown that they were familiar with and could 

solve counting problems, so I did not feel it was necessary to have them solve too many more 

counting problems before asking them to engage in combinatorial argumentation. Second, several 

of the tasks in this table were intended to lay the necessary groundwork for students to make 

bijective combinatorial proofs of binomial identities9. I included these tasks in this section for 

completeness, and because these tasks helped to ensure the students could work with binomial 

coefficients effectively. However, bijective combinatorial proofs are not a focus of this paper, and 

so I do not include details of their work on these types of proofs here. 

After the students completed these tasks, I gave them a sequence of binomial identities, and 

with these identities I gave the prompt: “Argue that the identity holds by arguing that each side 

counts something.” I was careful to avoid using the word “proof” to describe the tasks, because I 

planned to ask the students later in the interviews whether they felt their combinatorial arguments 

constituted proofs that explain or proofs that convince (or even whether combinatorial arguments 

could be proofs at all), and I did not want to influence the students’ opinions. Each student was 

given a subset of the identities in Table 5.6 (as time in the interviews permitted). Throughout the 

 

 
9 That is, proofs which involve arguing that each side of the binomial identity counts a different set, and then making 

a bijection between the sets to establish their cardinalities are the same—and therefore the identity holds. 
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interviews, I made sure the students understood that the variables involved in the binomial 

identities were nonnegative integers. 

Table 5.6. Identities given to the students to provide a combinatorial argument. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) (

𝑘

𝑟
) = (

𝑛

𝑟
) (

𝑛 − 𝑟

𝑘 − 𝑟
) (

𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

∑ (
𝑛

𝑖
)

𝑛

𝑖=1

𝑖 = 𝑛 ⋅ 2𝑛−1 
∑ (

𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 

∑ (
𝑛

𝑖
) (

𝑛

𝑛 − 𝑖
)

𝑛

𝑖=0

= (
2𝑛

𝑛
) ∑ (

𝑚

𝑖
) (

𝑛

𝑘 − 𝑖
)

𝑘

𝑖=0

= (
𝑚 + 𝑛

𝑘
) 

𝑛

𝑘
(

𝑛 − 1

𝑘 − 1
) = (

𝑛

𝑘
) 

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) = (

𝑛

𝑘
) 

∑ (
𝑖

𝑘
)

𝑛

𝑖=𝑘

= (
𝑛 + 1

𝑘 + 1
) 

 

 

Finally, in the last or second-to-last interview with each student (depending on how far they 

had progressed), I gave them the same six proofs (three combinatorial, and three non-

combinatorial) to read as the mathematicians, except that on the students’ handout each proof was 

labeled an “argument.” Again, this is because I didn’t want to influence their opinions regarding 

whether they thought combinatorial proofs constituted convincing or explanatory mathematical 

proofs or not. The details of these six proofs are given in Table 5.4. As with the mathematicians, I 

asked the students to read each handout and first give me their overall impression of the arguments 

they read. Once the students had finished giving me their impressions, I asked them what they 

thought it might mean for a proof to be convincing, and what they thought it might mean for a 

proof to be explanatory. Once they gave their answers, I then read them the same definitions of 

proofs that convince and proofs that explain from Weber (2002) that I had given the 

mathematicians. I next asked them a series of reflection questions aimed at probing their beliefs 
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about combinatorial arguments as proofs, as well as combinatorial and non-combinatorial 

arguments (e.g., induction or algebraic) as proofs that explain and proofs that convince.  

4.4 Data Analysis 

Each interview was transcribed, and then I re-watched and created enhanced transcripts (i.e., 

containing relevant screenshots from the video-recorded data capturing the participants’ work) for 

each interview. I made note of key episodes related to my research questions and followed the 

thematic analysis methodology (Braun & Clarke, 2006). Generally, thematic analysis entails the 

following five phases: familiarizing oneself with the data, generating initial codes, searching for 

themes, reviewing themes, defining and naming themes in ongoing analysis, and producing the 

report (Braun & Clarke, 2006, p. 87). To carry out the first four of these phases of analysis for my 

interviews with the mathematicians, I looked for instances in the data where they described their 

impressions of combinatorial proof (either a specific proof or combinatorial proof in general) and 

coded these impressions. Specifically, I coded to what extent the mathematicians felt that 

combinatorial proofs are proofs that explain or proofs that convince (or neither or both), how 

combinatorial proof compares to other types of proof (e.g., induction or algebraic), and other 

interesting themes as they emerged from the data analysis. I also recorded the mathematicians’ 

responses to Weber’s (2002) definitions of proofs that convince and explain. 

For my interviews with the students, I also looked for instances in the data where they 

described their impressions of combinatorial argumentation and coded these impressions. I coded 

to what extent the students felt that combinatorial arguments are proofs that explain or proofs that 

convince, how combinatorial argumentation compares to induction or algebraic arguments, and 

other interesting themes as they emerged from the data analysis. I also recorded each students’ 
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concept definition (Tall & Vinner, 1981) of a proof, as well as what they thought it might mean 

for a proof to be convincing and/or explanatory.  

Finally, to complete the final two phases of thematic analysis (Braun & Clarke, 2006), I 

discussed key episodes and findings that were emerging from the initial analysis with my academic 

adviser, and we reviewed parts of the interviews that warranted additional analysis. We discussed 

the themes that were being used to ensure that they faithfully represented the data, and any episodes 

that I found difficult to assign a theme were discussed thoroughly until we both were confident 

that the theme being applied was appropriate. Finally, in drafting the results and discussion 

sections of this manuscript I carried out the final step of thematic analysis.  

5. Results 

In sharing the results, I first briefly offer a broad overview of findings, and then throughout 

this section I elaborate two overarching themes that emerged in the data: combinatorial proof as 

explanatory and convincing (discussed in Section 5.1), and combinatorial proof as explanatory 

but less convincing (discussed in Section 5.2). In each subsection I further break down and 

elaborate the results, and I provide evidence from the data to illustrate my findings.  

Overall, I observed variety in my participants’ perspectives regarding combinatorial proof. 

While every participant (mathematicians and students) thought that combinatorial proofs were 

equally or more explanatory than other types of proofs, the extent to which combinatorial proofs 

were characterized as convincing varied considerably across participants. See Table 5.7 for a 

summary of participants’ opinions about combinatorial proofs as convincing and/or explanatory 

compared with other types of proof (specifically algebraic and induction proofs). While I generally 

expected to see some variety of perspectives represented, particularly among the students who 

have less mathematical experience than the mathematicians, I was surprised so see how much 
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variety there was among the mathematicians regarding their perspectives on whether combinatorial 

proofs are convincing. Since mathematicians have enough skill and experience to understand that 

correct combinatorial arguments are rigorous and logically valid (which all the mathematicians in 

my study did indeed recognize), I expected all eight of them to say that combinatorial proofs are 

at least as convincing as other types of proof (e.g., algebraic and induction proof). However, this 

was not the case, and, as I elaborate in Section 5.2.2, the reasons they gave were interesting and 

offer insight into the nature of combinatorial proof. 

Table 5.7. How participants characterized combinatorial proofs as explanatory/convincing. 

Which type of proof is more explanatory? Expert Student 

Combinatorial proofs are more explanatory 

than algebraic/induction proofs. 

Justice, Robin, Dominique, 

Jaiden, Ridley, Skyler, Lake 

Sydney, Riley, 

Adrien, Peyton 

Combinatorial proofs are less explanatory 

than algebraic/induction proofs. 
- - 

Combinatorial proofs are equally 

explanatory as algebraic/induction proofs. 
Emery Ash 

Which type of proof is more convincing? Expert Student 

Combinatorial proofs are more convincing 

than algebraic/induction proofs. 
Dominique, Ridley, Lake - 

Combinatorial proofs are less convincing 

than algebraic/induction proofs. 
Jaiden, Skyler 

Sydney, Riley, 

Adrien, Peyton 

Combinatorial proofs are equally convincing 

as algebraic/induction proofs. 
Justice, Robin, Emery Ash 

 

Before proceeding, I want to make the point that while I refer to students’ activity and 

utterances as related to combinatorial proof, not all of the students at every point in the study felt 

that combinatorial arguments should be considered rigorous mathematical proof. Whenever the 

students attempted to connect sequences of assertions using accepted statements (e.g., that (𝑛
𝑘

) 

counts the number of subsets of size k from a set of n objects), modes of argumentation (e.g., that 

an expression involving binomial coefficients has an underlying counting process), and modes of 

argument representation (e.g., complete sentences stepping through a particular logical 
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progression), I considered this activity to constitute combinatorial proof since it follows the 

definition of proof I am adopting given by Stylianides (2007). However, readers should keep in 

mind that the students themselves did not always classify their activity as proof; whenever student 

work is exemplified in this discussion, I will clarify whether the student at that moment thought 

their activity constituted rigorous mathematical proof. 

5.1 Combinatorial Proof as Explanatory and Convincing 

All thirteen student and mathematician participants said that they considered combinatorial 

proofs to be at least as explanatory as other types of proof, and the reasons that they gave 

predominately fell into two categories that I will elaborate in the following subsections: 

participants viewed combinatorial proof as accessible and participants viewed combinatorial 

proof as tangible. Additionally, seven of them (six mathematicians and one student) felt 

combinatorial proofs are equally or more convincing than other types of proof, and I found that 

the reasons they gave were similar to those they gave regarding why combinatorial proofs are 

explanatory. This is understandable, as features of a proof which make it a satisfying explanation 

could also help the reader to be more convinced of the veracity of the statement being proven. In 

this section, I provide examples from the data illustrating why all of participants found 

combinatorial proofs to be explanatory (and why the seven aforementioned participants felt 

combinatorial proofs were convincing).  

5.1.1 Participants viewed combinatorial proof as accessible. One reason that arose as to 

why the participants found combinatorial proofs to be explanatory and convincing is that they 

thought combinatorial proofs are accessible, in the sense that they are easy to understand and 

interpret even with relatively little technical mathematical background knowledge or terminology. 

This finding makes sense, as researchers have described one of the benefits of enumerative 
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combinatorics as a topic is that it does not require calculus or indeed much prerequisite 

mathematical knowledge at all, making counting an ideal for introducing students to problem 

solving (e.g., Kapur, 1970). In total, four of the mathematicians and two of the students in my 

study cited accessibility as a reason why combinatorial proofs were more convincing and 

explanatory to them than other types of proof.  

For instance, one of the students, Ash, said that they felt combinatorial proofs are generally 

more explanatory than induction or algebraic proofs. When explaining why, they said the 

following. 

Ash:  And I use the label elegant because it could be explanatory to the widest number 

of possible audiences. It would be very rare to find a group of people that could 

not understand the committee concept. 

Int.:  Sure. 

Ash:  And so, choosing your committee and choosing the leader of the committee is so 

universal using that language would explain it to many, many audiences. 

 

In this excerpt, Ash expressed that in their perspective combinatorial proofs are more 

explanatory than other types of proof, because they employ modes of argumentation that are more 

universally understood. There is certainly truth to this: it is likely that more people could easily 

understand the idea of forming a committee rather than an index shift in a summation or algebraic 

manipulations with factorials, so it seems likely that more readers would find a combinatorial 

argument explanatory than other types of arguments. (Ash initially did not believe that 

combinatorial proofs were rigorous mathematical proofs at the start of the interview sequence, but 

by the time I had the fourth and final interview with Ash, they had changed their mind. I discuss 

this further in Section 5.2.) 

Similarly, one of the combinatorialists who participated in the study, Ridley, said that they felt 

that the clarity of combinatorial arguments, as demonstrated by non-technical arguments, makes 
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them more convincing. They expanded on this when discussing the combinatorial proof and non-

combinatorial (algebraic) proof for Theorem 2, saying, “I would say that this algebraic argument 

is technical, and technical arguments have a pretty good chance of losing somebody, whereas this 

argument here [gestures to the combinatorial proof] is not technical.” 

Overall, participants who felt combinatorial proofs were more convincing and/or explanatory 

than other proof methods at times gave very similar reasons, suggesting that convincing and 

explanatory may not be entirely distinct categories for some students and mathematicians. These 

data also align with perspectives given by Lockwood et al. (2020) who argued that a mathematical 

argument can be considered convincing only if it is personally meaningful to the reader (p. 180), 

and similarly that a mathematical argument can be considered explanatory only if it is personally 

valuable to the reader (p. 181). Since many concepts that appear in combinatorial proof (such as 

forming a committee versus making an index shift in a summation) are accessible to a wide range 

of audiences, this suggests that readers will be more likely to consider combinatorial proofs as 

proofs that explain and proofs that convince. 

5.1.2 Participants viewed combinatorial proof as tangible. Another similar theme that 

emerged in these interviews was that combinatorial proofs give the reader something concrete to 

hold onto mentally, and so are in some sense tangible. This was given by two of the mathematicians 

and two of the students as a reason for why combinatorial proofs are both convincing and 

explanatory. 

For instance, Peyton (one of the student participants) felt that combinatorial proofs were more 

explanatory but less convincing than algebraic or induction proofs. Peyton was in fact skeptical 

throughout all four main interviews that combinatorial proofs were rigorous mathematical proofs 
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at all, but they explained in the following excerpt that they felt the combinatorial proofs gave 

readers a more tangible argument than other types of proofs: 

Peyton:  You know at the start of this, like 4 weeks ago, I didn't like these proofs 

[combinatorial proofs]. I would've much rather seen these [points to the 

non-combinatorial proofs] then. Now? Now that my intuition has grown, 

these kind of suck. 

Int.:  Which ones? 

Peyton:  The real math ones [points to the non-combinatorial proofs]. 

Int.:  The real math ones? 

Peyton:  Yeah. 

Int.:  Can you talk about in what ways they suck? 

Peyton: Well, they suck just because all it's doing in the end is saying this is true. 

That's what they're doing and I guess that's the point of math is to say this 

is a thing that holds because yes, it does hold. But these ones, the 

combinatoric ones, they're saying, okay it probably holds. It does hold, and 

here's why. Here is a logical reason that you can physically wrap your 

mind around, but this, it's saying, oh, B + A to the N, you can expand that. 

 

I offer a few observations about this excerpt. First, we see some of Peyton’s skepticism that 

combinatorial proofs are rigorous mathematical proofs by characterizing the noncombinatorial 

proofs as the “real math ones,” implying that combinatorial proofs are not “real math.” Despite 

this, though, we can also see that Peyton over time realized that combinatorial proofs had intuitive 

value for them that they felt other types of proofs did not. They specifically cited combinatorial 

proofs as using reasoning “you can physically wrap your mind around,” and such proofs were 

hence more explanatory in Peyton’s perspective. 

Similarly, Justice (one of the mathematicians) felt that combinatorial proofs are more 

explanatory and equally convincing as other types of proofs, and they also discussed combinatorial 

proofs as providing something tangible for the reader to think about. When discussing the two 

proofs of Theorem 1 on the Six Proofs handout, they said, “In the proof by induction, it’s great. 

It’s using a great technique of proof, but it doesn’t really give you anything to imagine, if you 

will…. The counting proofs are kind of nice because they give you things to concretely visualize.” 
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I interpret that Justice thought that the tangibility of combinatorial proofs was part of the reason 

that combinatorial proofs are (in Justice’s perspective) both proofs that explain and proofs that 

convince. Justice’s statements also harken back to prior studies that have discussed whether proofs 

by induction can ever be explanatory (e.g., Lange, 2009; Stylianides et al., 2016).  

In summary, while their individual responses to the reflection questions I posed to them were 

different, the students and mathematicians provided reasons that broadly fell into two categories 

regarding why they felt combinatorial proofs are both explanatory and convincing. These 

overarching reasons were that they considered combinatorial proofs to generally be both more 

accessible and more tangible than other types of proof (such as algebraic proofs or proofs by 

induction). What I also hope to illustrate in the above two subsections is that for both the students 

and mathematicians, some characteristics of a combinatorial proof could be viewed as making the 

proof both explanatory and convincing. This suggests that proofs that explain and proofs that 

convince should perhaps be considered not distinct, but rather overlapping, characteristics of proof. 

This is consistent with the views of other researchers who have argued for a nuanced understanding 

of these labels (e.g. Mingus & Grassl, 1999; G. J. Stylianides et al., 2017; Weber, 2010) rather 

than seeing them as a distinct, non-overlapping binary categorization. 

5.2 Combinatorial Proof as Explanatory but Less Convincing 

While many of the participants felt combinatorial proofs were equally or more explanatory and 

convincing than other types of proof (specifically algebraic proofs and proofs by induction), 

several of them—including most of the student participants—thought that combinatorial proofs 

were equally or more explanatory but less convincing than other types of proofs. Specifically, two 

of the mathematicians and four of the students held this latter perspective. The reasons that some 

of the participants gave for why they considered combinatorial proofs to be less convincing than 
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other types of proofs fell broadly into two categories: students doubted combinatorial proofs were 

rigorous mathematical proof, and participants saw potential for difficulties with language and/or 

counting arguments. In this section, I elaborate on the reasons they gave for this perspective as 

they emerged from my data. 

5.2.1 Students doubted combinatorial proofs were rigorous mathematical proofs. For the 

four students (but none of the mathematicians) who said combinatorial proofs are less convincing 

than other types of proof, their perspectives were tied to the opinions they held regarding whether 

combinatorial proofs constitute rigorous mathematical proofs at all. Since these four students 

doubted (to varying degrees) that combinatorial proofs were really mathematical proofs, they felt 

this made such proofs less convincing than algebraic or induction proofs, which they more readily 

accepted as constituting a rigorous proof. 

For example, as I mentioned in Section 5.1.2, Peyton did not think that combinatorial proofs 

were rigorous mathematical proofs. During my last interview with Peyton, they gave a nice 

combinatorial argument for the binomial identity ∑ (𝑛
𝑖
)( 𝑛

𝑛−𝑖
)𝑛

𝑖=0 = (2𝑛
𝑛

). Specifically, they 

articulated that each side of the identity could count the number of ways for n out of a set of 2n 

objects to be designated “special,” where the left side does this by dividing the set of 2n objects 

into two groups of equal size, and then all cases where a total of n objects are chosen from each 

group are considered. Despite Peyton’s success with this and with proving other binomial identities 

combinatorially throughout the course of their interviews, they maintained that combinatorial 

arguments do not constitute proof. In fact, after they successfully proved ∑ (𝑛
𝑖
)( 𝑛

𝑛−𝑖
)𝑛

𝑖=0 = (2𝑛
𝑛

) 

combinatorially, we had the following exchange: 

Int.: Nice job! So, I’m curious. Yeah, do you think the argument that you just gave, do 

you think that that is a proof? 
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Peyton:  No, because this is the base … If I did say it was a proof, I could hand this in with 

two sentences of speech and then get it published, and I don’t think it’s formal 

enough to be a proof. 

Int.:  Okay, and do you think the diagram is what makes it informal, or the fact that we’re 

counting makes it informal, or, yeah, why do you think it’s not formal enough? 

Peyton: I like to stick with my previous argument for counting proofs not being formal, 

and it’s basically, what if I’m wrong? There’s no math to back me up with it. 

There’s no algebra or induction to do that talks about it. 

 

From these statements, we see that Peyton believed that combinatorial arguments generally 

cannot be considered formal mathematical proofs, and the reasoning they gave aligns with a ritual 

proof scheme (Harel & Sowder, 1998) since they objected based on the proof’s lack of symbols or 

a recognizable logical structure (such as induction) rather than the correctness of the argument. 

Nevertheless, since Peyton believed combinatorial proofs do not constitute formal, rigorous 

mathematical proof, they said this was why they felt combinatorial proofs are less convincing than 

other types of proof. 

Another student who at times seemed uncomfortable with the idea of combinatorial proofs 

being formal mathematical proofs was Adrien. One identity I asked them to prove was ∑ ( 𝑖
𝑘

)𝑛
𝑖=𝑘 =

(𝑛+1
𝑘+1

), which they eventually proved by arguing that both sides count the number of ways to make 

a subset of size k + 1 from a set of n + 1 ordered objects (specifically, used the integers 1, 2, …, n, 

n + 1). They were able to successfully argue that the right side of the identity does this using a case 

breakdown by considering the largest element in the subset. When I asked them to reflect on their 

combinatorial activity—and particularly whether they felt their argument constituted proof—they 

said the following. 

Adrien:  I would prefer induction, because the main thing about this is it feels like you’re 

actually assigning like a distinct property to the objects, which not every group 

of objects that you’re going to pick k from is going to naturally have that kind 

of property. 

Int.:  Right, like if we were picking dots, for example. 

Adrien: Yeah. 
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Witness: Although, they are distinct objects, right? 

Adrien:  Yeah, they’re distinct objects, but that means you’d be putting a pretty arbitrary 

ranking system on them.  

Int.: Okay, and that makes it feel less like it’s a valid mathematical proof?  

Adrien: I mean, it feels really arbitrary and the fact that it is arbitrary means that no 

matter what objects you have, you can just assign this ranking to them, and 

that’ll work. 

 

Again, from this exchange I infer that Adrien struggled with the idea that a combinatorial proof 

using ordered objects could be a valid mathematical proof, and they said they would prefer a proof 

by induction. This is also reflected when I gave them the Six Proofs handout and asked them 

directly about the construct of a proof that convinces: 

Int.: Do you think the arguments that you used to prove binomial identities in the 

previous interviews are convincing proofs? 

Adrien:  You mean the ones where I wasn’t actually doing, like, a formal proof, I was 

making the combinatorial arguments? 

Int.:  Yeah, would you say that those arguments are convincing proofs? 

Adrien: Some of them were better than others. [There were some] where I understood that 

it worked, I understood why it worked, but as for what I’d written down, it wasn’t 

quite as rigorous, shall we say? 

Int.: What about, say, these three combinatorial arguments? [Gestures toward the Six 

Proofs handout.] Do you think those are convincing proofs? 

Adrien: Sort of, but I don’t know, I prefer the more formal proof in each case, especially 

for this one [gestures to the algebraic argument for Theorem 2], since it’s like, this 

one doesn’t even have an induction step in it. It’s literally just reducing the terms 

and showing that they have to be equal, and it’s like, there’s no way to argue with 

that really. 

Int.: Whereas the combinatorial argument might still leave some room for argument?  

Adrien: Yeah. 

We see from these quotes that Adrien generally found non-combinatorial arguments to be more 

convincing than combinatorial arguments—both when considering proofs in the Six Proofs 

handout and when reflecting on their own combinatorial proving activity. We also see that this 

was connected to their perspective that combinatorial proofs are less formal than algebraic or 

induction proofs. Again, this was a commonplace perspective among the students, as four out of 
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five of them to some extent expressed that they doubted combinatorial proofs actually constitute 

formal, rigorous mathematical proof. 

5.2.2 Participants saw potential for difficulties with language and/or counting arguments. 

Finally, both mathematicians and three of the four students who found combinatorial proofs to be 

less convincing cited the potential for subtle counting mistakes or language issues to arise when 

constructing a combinatorial argument. This makes sense, as counting problems are notoriously 

difficult to solve (e.g. Batanero et al., 1997), with one reason being that it is easy to find a solution 

that seems correct but is actually overcounting or has another subtle flaw (Lockwood, 2014b). 

While students and mathematicians may feel confident following along and verifying algebraic 

manipulations or induction arguments, some of the utterances made by some of the student and 

mathematicians participants indicated they felt less confident verifying counting arguments. 

For instance, when I asked Sydney, one of the student participants, a line of questioning aimed 

at ascertaining whether they felt combinatorial arguments are proofs that convince, they said that 

combinatorial arguments are “not formal proofs,” and that, “It doesn’t show the algebraic way 

through. So, if you had an error in your logic, it’s easier to have an unforeseen error in your logic 

or an unforeseen assumption.” I interpret these utterances to mean that they thought algebraic 

arguments were potentially more reliable than combinatorial arguments, because they thought it 

was easier to detect an algebraic error than a logical error in a combinatorial argument.  

Some of the mathematicians also expressed that they felt less confident verifying combinatorial 

arguments than other types of arguments, in part because it can be so easy to commit a counting 

error. Jaiden, for example, expressed this idea in the following interview excerpt: 

Int.:  Do you think for mathematicians, say, these combinatorial proofs are just 

as convincing as other types of proofs? 
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Jaiden:  No, I would say not. I remember I had a stats professor in undergraduate 

and he gave a few homework assignments where he had saved papers where 

people had made combinatorial reasoning errors, and our homework was to 

read and see if we could find them. 

Int.:  Oh, interesting. 

Jaiden:  And they were really subtle, and these were professional statisticians who 

were getting duped. But he was really good at spotting these. So, I would 

say that they’re a little bit less convincing. 

Int.:  Just because it’s so easy to fall into one of those pitfalls? 

Jaiden:       Yeah.  

Jaiden’s statements are understandable and make sense in the context of research which has 

shown counting problems to be notoriously difficult and subtle. It can be easy to come up with a 

solution to a counting problem that seems correct but that actually overcounts or contains some 

other slight error (Lockwood, 2014b). For this reason, it is understandable that some of the students 

and mathematicians in my study felt that this made combinatorial proof less convincing. 

Another similar issue that arose for participants was the idea that since combinatorial proofs 

are entirely comprised of words (instead of containing symbolic manipulation), that makes them 

potentially less reliable, and hence less convincing, than other types of proof. For example, while 

they were reading through the Six Proofs handout, one of the mathematicians, Skyler, remarked, 

“There’s more possibility of misinterpreting the English that’s written than with the non-

interpretive statements that are in the algebraic proof…interpreting words and statements is 

challenging and difficult, and that’s why lawyers make lots of money.” Later, I asked Skyler 

whether they believed combinatorial proofs are more or less convincing than other types of proof, 

clarifying that by “convincing” I meant “effective at establishing that the theorem is true.” They 

said, “I would say they’re less effective,” and then elaborated, 

Skyler:  I think it likely has to do with I feel far more comfortable knowing exactly 

what a mathematical algebraic statement says and means versus interpreting 

a written statement. 

Int.:  Mm-hmm. 
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Skyler:  That is probably what boils down to why I think combinatorial proof is less 

effective at convincing me of things, is I don’t trust my ability to interpret 

a sentence as well as I do to interpret a mathematical statement. 

Int.:  Yeah, yeah. Like you said earlier, interpreting the statements is hard. 

Skyler:       Right, right. 

From these utterances, I interpret that Skyler was expressing that combinatorial proofs are less 

convincing to them, because it may be easier to commit an error interpreting words and statements 

than reviewing mathematical statements involving symbolic manipulations. I think this is an astute 

observation, and it expresses a broader notion that not just combinatorial statements, but words 

and statements in general, can at times be tricky and less reliable than mathematical symbols. This 

may be due in part to the fact that mathematicians define mathematical symbols to have very 

precise definitions, while words can have potentially different meanings depending on who is 

interpreting them.  

In summary, all the students and mathematicians felt that combinatorial proofs of binomial 

identities are at least as explanatory as other types of proof (specifically algebraic and induction 

proofs). This finding is consistent with what Lockwood et al. (2020) hypothesized in their 

theoretical piece, but it is nevertheless encouraging to see this finding confirmed with interview 

data involving experienced provers. Further, it is instructive to see the common justifications they 

gave for why combinatorial proofs may be seen as more explanatory, namely that these proofs are 

often accessible and tangible. In terms of combinatorial proof as proof that convinces, however, 

the results were more varied. Some students and mathematicians felt that features of combinatorial 

proof (such as their accessibility and use of tangible contexts, such as committees) make them at 

least as convincing as other types of proofs, while other students and mathematicians felt other 

features of combinatorial proof (such as their use of language and enumerative arguments) make 

them less convincing than other types of proof. In the following discussion section, I additionally 
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elaborate on two other findings that emerged from my analysis of the data: that most of the 

mathematicians felt a proof that explains should be rigorous; and that for combinatorialists 

conducting research in combinatorics, combinatorial proofs may at times be less explanatory than 

algebraic or induction proofs. 

6. Discussion 

In the previous Results section, I expanded on the mathematicians’ and students’ perspectives 

about whether (and why) they considered combinatorial proofs to be proofs that explain and/or 

convince. In this section, I elaborate on two other findings from my interviews with the 

mathematicians, which I raise as interesting points of discussion from the data. In Section 6.1 I 

discuss comments that several of the mathematicians made about their understanding of a proof 

that explains (and specifically whether such proofs should be considered as rigorous), and in 

Section 6.2 I describe one mathematician who discussed the fact that at the level of current 

combinatorics research, they often find combinatorial proofs to be less explanatory than other 

types of proof. 

6.1 Mathematicians Thought Proofs that Explain Should Also Be Rigorous 

One phenomenon that arose in my interviews was that six of the mathematicians (but none of 

the students) stated that they disagreed with the idea that a proof that explains “need not be totally 

rigorous” (Weber, 2002, p. 14). This discussion came up as the participants responded to the 

definitions of proofs that explain and proofs that convince that I provided them from Weber (2002).  

For example, Robin was one mathematician who disagreed with that phrase in the definition 

of a proof that explains. When they finished reading Weber’s (2002) definitions, we had the 

following exchange. 
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Robin:  I’m unhappy about the wording in proof that explains. I think I understand 

the distinction that’s being made. I’m not happy with the use of rigor in that 

paragraph. 

Int.:  Okay. 

Robin:  I feel that wording is playing into this mythology that there’s only one 

definition of rigor in mathematics. And without knowing where the quote 

comes from, I can’t tell for sure, but I would be reluctant, assuming these 

come from the same source.  

Int.:  They do.  

Robin:  Which is what it looks like. From the side of rigorous mathematics, a proof 

that explains is being put in a second-class position using the yardstick 

of rigor, and I don’t accept that and don’t agree with it. 

Int.:  Okay. 

Robin:  I think the level of rigor is an independent measure that needs to be applied 

in both cases. But modulo that, I think I understand the point that’s being 

made here. What I think, what I was trying to say earlier, is that my 

standard is that I want a proof that both convinces and explains. 

 

From these quotes (particularly the parts emphasized in bold), we see that Robin felt the wording 

of Weber’s (2002) definition inappropriately put proofs that explain in a second-class position, 

and they also felt there was a potential for inconsistencies since “rigorous” is a term that may be 

applied differently depending on who is using it.  

In another example from the data, Skyler made similar statements criticizing Weber’s (2002) 

definition of a proof that explains that I had provided.  

Skyler:  So, to me, the idea that a proof would be labeled a proof but not be rigorous 

is a contradiction. 

Int.:  Okay. 

Skyler:  I would say it’s a well-thought-out explanation, but if it leaves any room 

for misinterpretation, it’s not a proof. 

Int.:  Okay.  

Skyler:  Which would then mean you could make a proof that explains, it just is 

probably far more verbose than anyone really wanted for then it to be a 

useful explanation of what’s happening. But that’s maybe my personal 

viewpoint on what I think is the value of a proof versus a conversation that 

explains something. So, proof should be unequivocally true and rigorous 

or, year, true I guess is the best statement. So, it needs to just be absolutely 

flaw-proof, or I mean flawless. 

Int.:  Okay. 

Skyler:  And if it’s not totally rigorous, then I would not use the word proof. 
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Int.:  Okay. You might use the word, like, argument, say.  

Skyler:  Exactly, yes. So, that’s the only issue I would have with a proof that explains 

is, just, don’t call it proof if it’s not rigorous. 

 

Again, we see from these utterances that Skyler believed firmly that a proof must be rigorous for 

it to be considered a “proof;” if it is not rigorous Skyler would prefer the term “argument” or 

“explanation.” 

The point of sharing these episodes is not to criticize Weber (2002), as the succinct, clear 

definitions he provided of proofs that convince and explain were effective in facilitating fruitful 

conversations about these constructs from the proof education literature with the mathematician 

and student participants in the study. Instead, what I mean to highlight is how these episodes 

illustrate important aspects of the mathematicians’ understanding of what it means for a proof to 

be explanatory. The mathematics education research community has long debated what the role of 

rigor in proof should be (e.g. Gierdien, 2007; Hanna, 1990; Maher & Martino, 1996), as well as 

precisely how a proof the explains should be defined (e.g. G. J. Stylianides et al., 2017; Weber, 

2010). The fact that the mathematicians expressed that they felt proofs that explain should be 

rigorous informs and furthers these conversations. Likewise, it is also noteworthy that while most 

of the mathematicians raised this point in the interviews, not a single student did. While this could 

simply be due to the small sample size of my study or the fact that students may generally be more 

hesitant than mathematicians to criticize a definition that the researcher interviewing them 

provides, it may also be related to the students’ hesitancy to consider combinatorial proofs as 

formal, rigorous proof. Since the students all agreed that combinatorial proofs are at least as 

explanatory as other types of proof, and since most of the students struggled to accept the idea that 

combinatorial proof could constitute rigorous mathematical proof, it is therefore not surprising that 
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the students did not seem to take issue with the definition of a proof that explains including the 

phrase “need not be totally rigorous” (Weber, 2002, p. 14). 

6.2 Combinatorial Proofs Can Be Less Explanatory for Research Mathematicians 

Finally, one more interesting point arose in my interviews with one of the mathematicians, 

Ridley, a combinatorialist who was actively conducting research in and teaching combinatorics at 

the time my interview with them took place. Ridley raised the issue that combinatorial proofs of 

binomial identities that appear in undergraduate discrete mathematics are usually more explanatory 

because instructors choose them to be. To elaborate, below is the exchange that ensued when I 

asked them about combinatorial proofs as proofs that explain. 

Int.:  Do you think both with these particular examples [in the Six Proofs 

handout], and then I guess more generally, do you think that combinatorial 

proofs are more or less explanatory than other proof types, like induction or 

algebraic? 

Ridley:  Explanatory? 

Int.:  Yeah. Again, using the definition that we talked about, of giving an intuitive 

idea of why the statement is true. 

Ridley:  Let me think about that. Well, that really depends. If, when you say 

“binomial coefficient identities,” do you mean the binomial coefficient 

identities that we prove in a first class in binomial coefficient identities? Or 

are we literally talking about, like, arbitrarily complicated stuff? Because 

there’s a pretty firm delineation in there. In the first class, we often choose 

to prove binomial coefficient identities for which the combinatorial 

proof is clear. 

Int.:  Okay. Yeah.  

Ridley:  And the computational proof is a mess. But those are the simplest identities. 

In general, giving the combinatorial proof is harder. It involves proving a 

strictly stronger statement. In mathematics, often when you prove a strictly 

stronger statement, it’s strictly harder, right? 

Int.:  Right. 

Ridley:  So, for the sorts of combinatorial proof you see in a first class, then 

absolutely this [explanatory] is a feature. But it’s, I think the direction of 

implication is backwards from what you said. We’re picking problems 

that are easy to see, and the thing that you see is combinatorial. But as 

soon as you get into proofs that are hard to see, you often have to work 

really, really hard to come up with that combinatorial proof, and even 

to read it once it’s come up with. 
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This was an intriguing insight I had not previously considered. I interpret that Ridley was 

essentially saying that for the binomial identities we tend to give to students in undergraduate 

discrete mathematics, the combinatorial proof is often more explanatory than other types of proof, 

but for more complicated binomial identities—such as those that a mathematician conducting 

combinatorics research may encounter—the reverse may be true. To try to get greater clarity on 

the issue, I asked Ridley if integration might be an accurate analogy, because in introductory 

calculus instructors also purposefully give students antiderivatives that can be computed using 

certain introductory techniques (substitution, integration by parts, etc.), but it is very easy to write 

down an antiderivative comprised of elementary functions that is very difficult or impossible to 

calculate by hand. Ridley answered, “It is an exactly analogous situation.” Ultimately though, for 

the types of binomial identities a student would see in an elementary discrete-mathematics or 

combinatorics undergraduate course, Ridley felt that combinatorial proofs of those identities are 

usually more explanatory than other types of proofs. However, it is interesting to get this insight 

about actual combinatorial research, and to learn that at that combinatorial proofs of more 

complicated binomial identities may in fact be less explanatory to research combinatorialists than 

algebraic or induction proofs, at least compared to combinatorial proofs we typically teach to 

students.  

7. Conclusion 

To my knowledge, this study is the first of its kind that investigates experienced provers’ 

thinking about combinatorial proof with clinical interviews. To summarize the results, all the 

mathematicians and upper-division mathematics students in the study viewed combinatorial proofs 

of binomial identities as equally or more explanatory than other types of proof, such as algebraic 
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or induction proofs. The mathematician and student participants broadly gave two main reasons 

why they felt this way, including the fact the combinatorial proofs use arguments that are 

accessible enough that even children could understand them and that they give one something 

concrete to visualize (such as creating committees). This finding was not necessarily unexpected 

and aligns with Lockwood and colleagues’ (2020) theoretical piece where they stated that 

combinatorial proofs are usually explanatory in the enumerative representation system. However, 

it is nevertheless useful to confirm these statements with interview data and to gain insight into 

some reasons for why combinatorial proof is considered to be explanatory. One interesting caveat 

did arise in the data though: one of the mathematician participants who was a combinatorialist 

discussed how in their research, combinatorial proofs of arbitrarily complicated binomial identities 

can actually be more convoluted and opaque, and therefore less explanatory, than algebraic proofs. 

Nevertheless, there was broad agreement that combinatorial proofs of binomial identities (at least, 

those that typically appear in introductory discrete-mathematics and combinatorics courses) are 

usually more explanatory than other types of proofs.  

Even as there was general agreement among the participants that combinatorial proofs of 

binomial identities are explanatory, however, there were varied opinions regarding the extent to 

which combinatorial proofs are convincing. Some participants believed that combinatorial proofs 

are equally or more convincing than other types of proofs, pointing to their correct underlying 

logical structure and citing similar rationales (i.e., these proofs can be visualized and are 

accessible) they gave for why they found combinatorial proof to be explanatory. Others—both 

some student and mathematician participants—felt that combinatorial proofs are less convincing 

than other types of proofs, and the students and mathematicians gave different but related reasons 

for this view. The students who felt this way generally doubted that combinatorial arguments 
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should be considered rigorous mathematical proofs at all, either because they lack certain features 

students expect to see in mathematical proofs (such as symbolic manipulations), or because the 

students felt that combinatorial arguments couched within a specific context (like counting an 

ordered set of objects) do not prove the identity with sufficient generality. Some of the 

mathematicians also felt that combinatorial proofs’ use of words and sentences make them 

potentially less reliable than proofs relying more on symbolic manipulations, and others pointed 

to the fact that it is easy to produce a counting argument that seems logically correct but that 

actually contains a subtle error. These results make sense, as it can be more difficult to evaluate 

written statements than algebraic manipulations, and extensive research has documented that 

counting problems can be notoriously tricky to solve (e.g., Annin & Lai, 2010; Batanero et al., 

1997; Eizenberg & Zaslavsky, 2004; Hadar & Hadass, 1981; Lockwood, 2014a, 2014b). 

These results contribute both to combinatorics education and proof education literature. For 

combinatorics education, they provide new insights into how experienced provers may perceive 

of combinatorial proof as different from other types of proof, particularly with respect to features 

such as perceived intuitive value, accessibility, tangibility, rigor, and reliability. These results also 

further ongoing discussions regarding proofs that explain and proofs that convince (Hersh, 1993). 

While Lockwood et al. (2020) articulated how combinatorial proofs may relate to these concepts 

in their theoretical piece, the findings in this paper are based on interview data that investigated 

how and why students and mathematicians conceive of combinatorial proofs as explanatory and 

convincing (or not). Applying this lens of explanatory/convincing proof to the new context of 

combinatorial proof informs ongoing debates about proofs that explain and proofs that convince, 

including the relationship between proofs that explain and mathematical rigor (e.g. Gierdien, 
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2007), and the idea that these labels should be applied with respect to a specific audience or 

representation system (Lockwood et al., 2020).   

There are multiple potential implications of this work for both mathematics education 

researchers and instructors teaching combinatorial proof. For researchers, these findings 

strengthen the idea that the labels of explanatory and convincing proofs can overlap (Mingus & 

Grassl, 1999; Weber, 2002) and should be individual-specific (Lockwood et al., 2020; Weber, 

2010). In addition, the point of discussion brought up by one of the combinatorialist participants 

shows the potential for a loss of nuance when these labels are applied to a broad class of proof 

rather than specific instances of proof. For instructors, these findings highlight some aspects of 

combinatorial proofs that might be considered when introducing combinatorial proofs to students, 

such as leveraging the fact that they are accessible and tangible to explain underlying ideas, but 

also being aware that students may not find such proofs to be ultimately convincing or to “count” 

as proofs. Perhaps instructors could have direct conversations with students about the nature of 

combinatorial proofs, explicitly addressing unusual features of these proofs such as their lack of 

symbolic manipulation and their leveraging of particular contexts.  

Regarding limitations as well as avenues for future research, this study did have a sample size 

of only 13 experienced provers, so I cannot make any generalizable claims about how 

mathematicians and upper-division students think about combinatorial proofs as proofs that 

explain and/or convince. However, this work does provide examples of how some provers may 

think about these concepts, and future studies with larger sample sizes or that look at other 

populations may find further insights. It also would be interesting to see future research look at 

bijective combinatorial proof, as this was not a focus of my work and no previous studies on 

combinatorial proof have focused on these types of proof either. 
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Chapter 6 (Paper 2) – Investigating Undergraduate Students’ Proof Schemes and 

Perspectives about Combinatorial Proof as Rigorous Mathematical Proof 

 

Abstract. Combinatorics is an area of mathematics with accessible, rich problems and 

applications in a variety of fields. Combinatorial proof is an important topic within combinatorics 

that has received little attention within the mathematics education community, and there is much 

to investigate about how students reason about and engage with combinatorial proof. Additionally, 

although Harel and Sowder’s (1998) proof schemes have been applied to dozens of studies over 

the past couple of decades, they have never been used as an analytical lens to examine 

combinatorial proof. In this paper, I investigate ways students may characterize combinatorial 

proofs as different from other types of proof using the lens of proof schemes. I gave five upper-

division mathematics students combinatorial-proof tasks and asked them to reflect on their activity 

and combinatorial proof more generally. I found that the students used several of Harel and 

Sowder’s proof schemes to characterize combinatorial proof, and I discuss whether and how other 

proof schemes may emerge for students engaging in combinatorial proof. I conclude with 

discussion about implications and avenues for future research.  

 

Keywords: Combinatorics, Combinatorial proof, Proof schemes 

 

 

1. Introduction 

Combinatorics is a branch of mathematics that is increasingly relevant in our society, with 

applications in computer science, electrical engineering, statistics, and other scientific fields. 

Combinatorics has other pedagogical benefits as well, such as its accessibility and opportunities 

for justification and generalization (Kapur, 1970; Lockwood, 2013; Lockwood & Reed, 2016; 

Maher et al., 2015). One important class of problems in combinatorics is combinatorial proof of 

binomial identities. These problems often come up in undergraduate discrete-mathematics courses 

and have applications in number theory, statistics, and other areas, and yet only a few researchers 

in the field of undergraduate mathematics education have studied them (Engelke & 

CadwalladerOlsker, 2010; Lockwood et al., in press). A binomial identity is an equation involving 

binomial coefficients, such as (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) or 𝑛2𝑛−1 = ∑ (𝑛
𝑖
)𝑛

𝑖=1 𝑖, and a combinatorial proof is 

one that argues for the veracity of an identity by arguing that each side enumerates a (finite) set of 
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outcomes. The validity of a combinatorial proof lies in the fact that a set can have only one 

cardinality.  

For example, consider the binomial identity (𝑛
𝑘

) = (𝑛−1
𝑘

) + (𝑛−1
𝑘−1

), also known as Pascal’s 

identity. One possible combinatorial proof of the identity would be to argue that both sides count 

the number of committees of size k that could be formed from a set of n people. First, the left side 

counts this set, because (𝑛
𝑘

) is the number of ways to make an unordered selection of size k from 

n distinct objects. The right side also counts this set, and we can see this by considering a case 

breakdown. To construct the cases needed, we will focus on one of the n people, and without loss 

of generality suppose that this person’s name is Nijah. For the first case, consider all committees 

of size k that exclude Nijah. There are then only n – 1 people left to choose from, so there are (𝑛−1
𝑘

) 

ways to construct all such committees. For the second case, consider all committees of size k that 

include Nijah. If she is already on the committee, there are then k – 1 positions left on the 

committee, and there are still n – 1 people left to choose to fill those remaining positions. Hence, 

there are (𝑛−1
𝑘−1

) ways to construct all these committees. Combining these two cases covers all 

possible committees, and hence we get that (𝑛
𝑘

) = (𝑛−1
𝑘

) + (𝑛−1
𝑘−1

) because both sides count the 

same set of committees (and this set can have only one cardinality). 

Correct combinatorial proofs, such as the one above, suggest an analytical proof scheme (Harel 

and Sowder, 1998) and are usually considered a proof that explains (in the sense of Hersh, 1993) 

with respect to an enumerative representation system (Lockwood et al., 2020). They therefore have 

many of the same pedagogical values as other analytical and explanatory proofs students will 

encounter in their mathematical careers. However, combinatorial proofs also differ from other 

types of proof, such as induction or algebraic proofs, in several important ways. One feature of 
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combinatorial proofs of binomial identities is that they are comprised exclusively of sentences and 

paragraphs, which verbally unpack symbols that appear in the identity without algebraically 

manipulating those symbols. This feature could have significant implications for students since it 

has been found that some students are less likely to accept an argument to be a rigorous 

mathematical proof if it does not contain symbolic manipulations (e.g., Martin & Harel, 1989). 

Combinatorial proofs are also oftentimes situated within a particular context, such as committees, 

block-walking, or binary strings. The combinatorial proof provided above is situated in an even 

more specific context, as it names one of the people being considered (Nijah) within a situation 

involving committees. While this can help the combinatorial argument to be more intuitive and 

explanatory, it could also make combinatorial proof seem less like a rigorous proof and more like 

an intuitive justification (similar to an illuminating example or an illustrative diagram) to a student. 

While studies have shown the value of examples in the proving process (e.g., Alcock & Inglis, 

2008; Alcock & Weber, 2016; Lockwood et al., 2016), it is also the case that intuition and the use 

of examples are not always nurtured in proof-based mathematics courses (Burton, 1999). The often 

context-specific nature of combinatorial proof and the lack of symbols raise questions about 

students’ views of the nature of combinatorial proof, such as whether or not students potentially 

view combinatorial proofs as less rigorous than other mathematical proofs.  

Both for those interested in combinatorics education and for those interested in studying 

students’ experiences with proof, it is important to answer questions such as these and to 

understand other ways that students may view combinatorial proof as different (and potentially 

less rigorous) from other types of proof. Such information would be valuable for instructors so 

they can provide adequate support for students in the classroom, and mathematics education 

researchers who study proof should also be aware of if and how students may think of 
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combinatorial proof as different from other types of proof. However, few studies have investigated 

combinatorial proof at all, and none have looked at these types of queries. In this paper, I report 

on interviews conducted with five undergraduate students who had experience with mathematical 

proof with the goal of investigating some of these gaps in the literature using a well-established 

theoretical perspective: Harel and Sowder’s (1998) proof schemes.  

In addition to learning more about students’ views of combinatorial proof, I additionally hope 

that my research can inform the field of proof education more broadly. Harel and Sowder’s (1998) 

proof schemes have been used by dozens of researchers (e.g., Blanton & Stylianou, 2014; Çontay 

& Duatepe Paksu, 2018; Ellis, 2007; Fonseca, 2018; Healy & Hoyles, 2000; Housman & Porter, 

2003; Jankvist & Niss, 2018; Kanellos, 2014; Koichu, 2010; Liu & Manouchehri, 2013; Gülcin 

Oflaz et al., 2016; Ören, 2007; Pence, 1999; Sen & Guler, 2015; Şengül, 2013), and yet the 

framework has never been applied to combinatorial proof. By applying this broadly recognized 

framework to a new mathematical setting, I hope to contribute to both combinatorics education 

and proof education literature by answering the following research questions:  

1. What proof schemes do undergraduate students use to discuss and characterize 

combinatorial proof (including how it may differ from other types of proof)? 

2. What insights about the nature of combinatorial proof do these proof schemes afford 

for the research community? 

 

In the following sections, I situate my investigation in the existing relevant proof and 

combinatorics education literature.  

2. Literature Review and Theoretical Perspectives about Proof Schemes 

2.1 Characterizing Proof in This Paper 

I intend the research presented in this paper to explore how combinatorial proof differs from 

other types of proof, and so it is necessary to discuss what I take to constitute proof. In their 
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introduction to the proof schemes framework, Harel and Sowder (1998) define proof as “a 

deductive process where hypotheses lead to conclusions” (p. 234). This broad definition (and 

others similar to it) may encompass many types of arguments. Indeed, there is debate in the 

mathematics education community surrounding how broad the definition of proof should be, such 

as whether a proof by picture should constitute mathematical proof (e.g., Gierdien, 2007). Because 

I intend to understand how undergraduate mathematics students may conceive of combinatorial 

proof as different from other types of proof, it is important for me to use a definition of proof that 

considers what a particular community (such as undergraduate mathematics students) accepts as a 

mathematical proof. Several researchers have incorporated this concept into their definition of 

proof (e.g. Hanna, 1990; Raman, 2003), rather than adopt a more objective definition of proof. In 

this study, I will use a definition of proof articulated by Stylianides (2007, p. 291, emphasis in 

original). 

Proof is a mathematical argument, a connected sequence of assertions against a 

mathematical claim, with the following characteristics: 

1. It uses statements accepted by the classroom community (set of accepted statements) 

that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 

community. 

In the setting of my study, I use the broader term “community” rather than “classroom community” 

to encompass other settings in which the undergraduate participants in my study may encounter 

proof.   

2.2 Proof Schemes 

There have been few studies that have investigated combinatorial proof at the undergraduate 

level (e.g., Engelke & CadwalladerOlsker, 2010; Lockwood et al., in press), and there are not 
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existing frameworks for characterizing and analyzing combinatorial proof. It is natural, therefore, 

to go beyond these few studies by examining student thinking about combinatorial proof through 

a well-recognized, robust proof framework that has effectively been used within the mathematics 

education literature more broadly. Harel and Sowder’s (1998) proof schemes framework has been 

used by many researchers to study proof comprehension and/or proof production in children, 

undergraduate students, and pre- and in-service teachers in several mathematical areas (e.g., 

Blanton & Stylianou, 2014; Çontay & Duatepe Paksu, 2018; Ellis, 2007; Fonseca, 2018; Healy & 

Hoyles, 2000; Housman & Porter, 2003; Jankvist & Niss, 2018; Kanellos, 2014; Koichu, 2010; 

Liu & Manouchehri, 2013; Gülcin Oflaz et al., 2016; Ören, 2007; Pence, 1999; Sen & Guler, 2015; 

Şengül, 2013). The fact that many researchers have used this framework in a variety of content 

areas and with different populations speaks to its broad applicability and utility in characterizing 

proof in mathematics education. However, perhaps in part because combinatorial proof has not 

been studied extensively to date, no researcher has previously applied Harel and Sowder’s 

framework to combinatorial proof. Given the demonstrated widespread use of this framework, I 

chose to use it to analyze my data on students’ thinking about combinatorial proof, believing that 

it would be productive to interpret combinatorial proof through the well-known lens of proof 

schemes. Further, because it is a widely used and accepted perspective, I suggest that it can help 

to better inform how combinatorial proof compares to other kinds of mathematical proof, which is 

related to my first research question. Finally, in addition, I posit that this research can contribute 

to the large existing body of work that uses proof schemes as a lens to understand proof in 

mathematics education. My examination of combinatorial proof can provide insight into how the 

proof schemes framework might be applied to a type of proof to which it has not previously been 

applied.  
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In what follows, I elaborate aspects of the proof schemes framework that are relevant in this 

paper. Harel and Sowder (1998) contended that generally there are three non-mutually exclusive 

proof schemes that a prover can hold (each of which have subcategories): external conviction, 

empirical, and analytical (see Figure 6.1). Harel and Sowder considered these proof schemes to 

represent hierarchical cognitive stages in a student’s mathematical development, with external 

conviction being the least sophisticated and analytical being the most sophisticated. I describe the 

main categories in the following subsections, highlighting particular categories that will come up 

in the Results section of this paper. My purpose in describing these is to provide context for the 

reader, as I will refer to these proof schemes as I discuss my analysis and frame my results. For 

each proof scheme, I also comment on whether or not I had expected the proof scheme to come up 

in relation to combinatorial proof. I present them in the order they are listed in Figure 6.1. 

2.2.1 External conviction proof schemes. Generally, Harel and Sowder (1998) characterized 

external conviction proof schemes as describing situations where students’ doubts are removed by 

the presence of certain ritualistic characteristics of an argument, the word of an authority, or the 

symbolic form of an argument. These three situations correspond respectively with the ritual, 

authoritarian, and symbolic proof schemes.  

Expanding on each of these a bit further, a student may exhibit a ritual proof scheme if they 

are convinced by the appearance of an argument rather than its actual correctness – perhaps saying 

something like, “it just looks like a proof” – because it aligns with what they think a proof should 

entail or it has components of a proof (such as symbols or a certain logical structure) that make it 

appear true. Conversely, Harel and Sowder (1998) also explained that a ritual proof scheme would 

describe situations in which students doubt the veracity of a proof if it does not include symbolic  
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Figure 6.1. Harel and Sowder’s (1998) proof schemes framework (p. 245). 

 

expressions or computations. Ultimately, the idea is that a student may view proof in terms of the 

extent to which it aligns with their view of what a proof should entail, which typically includes 

symbols and logic. Viewing proof in this way could certainly come up if a student is reading or 

producing a combinatorial proof, which usually consist only of words with no symbolic 

manipulations at all. Students with ritual proof schemes may thus be confronted with determining 
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how a combinatorial proof might or might not constitute a valid proof as it does not align with 

common examples of proofs students might have seen. 

A student may exhibit an authoritarian proof scheme if they believe a mathematical statement 

is true based solely on the word of an authority figure (for example, a textbook or teacher). While 

it is not unreasonable, or even necessarily always a bad thing, for students to trust their 

mathematics teachers or textbooks, issues can arise when students using this proof scheme more 

generally approach mathematics as a collection of facts handed down by an authority that do not 

require intrinsic justification. This could describe a scenario in which a student was given a 

combinatorial proof of a binomial identity and said something like, “This proof is valid, because I 

saw my teacher present it on the chalkboard,” rather than demonstrating an understanding of why 

the combinatorial proof is valid or invalid. 

Finally, a student who produces or conceives of proof as mere “symbol pushing” with no need 

to define the symbols that are used or understand the mathematical properties of the objects they 

represent can be described as utilizing a symbolic proof scheme. This proof scheme is similar to 

Weber and Alcock's (2004) concept of syntactic proof production, which describes students 

attempting to prove by manipulating symbols with no understanding of what these manipulations 

actually mean. As Weber and Alcock (2004) and Harel and Sowder (1998) pointed out, the 

symbolic proof scheme is not always unproductive, and can even sometimes be a powerful proving 

technique. However, too often students may use this proof scheme while, as Harel and Sowder 

(1998) put it, “[t]hinking of symbols as though they possess a life of their own without reference 

to their possible functional or quantitative reference” (p. 250). For my study, I did not expect this 

proof scheme to come up for students, since, as stated previously, combinatorial proof does not 

involve symbolic manipulation. 
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2.2.2 Empirical proof schemes. While empirical proof schemes may suggest perspectives that 

more closely reflect a mathematical proof than external conviction proof schemes, they still fall 

short of deductive reasoning. Harel and Sowder (1998) described two types of empirical proof 

schemes, inductive and perceptual proof schemes. 

When students are convinced of the veracity of a statement by quantitatively evaluating the 

statement for one or more specific cases, they are using an inductive proof scheme. This could 

occur, for example, if a student is convinced of the veracity of the binomial identity ∑ (𝑛
𝑖
)𝑛

𝑖=0 = 2𝑛 

by numerically checking that the equation holds when n = 3. In my study, I did not expect this 

proof scheme to appear, as my participants were either producing general enumerative arguments 

(and not plugging numerical values into the binomial identity) or evaluating complete algebraic, 

induction, and combinatorial proofs that were written generally (see the Methods section for more 

details on the proofs that the students in my study evaluated). 

The second type of empirical proof scheme that Harel and Sowder (1998) discussed is 

perceptual proof schemes, which they described as when students make perceptual observations 

about the statement they are proving “by means of rudimentary mental images—images that 

consist of perceptions and coordination of perceptions, but lack the ability to transform or to 

anticipate the results of a transformation” (p. 255). Harel and Sowder illustrated this proof scheme 

by describing a situation in which a student is convinced of the veracity of a geometry proposition 

about isosceles triangles by sketching several example triangles. The perceptual proof scheme may 

be used to describe situations in which a student is able to conceive intuitively why a theorem 

holds, but they do not demonstrate the ability to translate this intuition into a rigorous proof. This 

could also be related to Raman and colleagues’ (2009) idea of the context of discovery and the 

context of justification as two distinct phases in the proving process. For my study, it is trickier to 
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imagine how this proof scheme may apply to combinatorial proof of binomial identities, as 

“perceptual” often refers to something visual, and combinatorial proofs consist of written 

sentences. However, I hypothesize that perhaps the perceptual proof scheme could describe a 

situation where a student accepts a combinatorial proof as providing only an intuitive justification 

for a binomial identity, but one that falls short of an analytical proof. I discuss this idea in more 

depth in the Section 5.1.5. 

2.2.3 Analytical proof schemes. Harel and Sowder (1998) stated that analytical proof schemes 

validate conjectures by means of logical deductions (p. 258). These would include arguments that 

would generally be accepted as rigorous mathematical proofs. Harel and Sowder also break 

analytical proof schemes down into two classes of proof schemes, transformational and axiomatic, 

which I expand on below. 

A student can be considered to be applying a transformational proof scheme if they perform 

meaningful, goal-oriented operations on mathematical objects and anticipate those operations’ 

results. This proof scheme describes situations in which students understand and use meanings of 

and relationships among mathematical objects to unpack a statement to be proven, making 

deductions that conclude with the result to be proven. Harel and Sowder (1998) further broke this 

proof scheme down into two cognitive levels—internalized and interiorized proof schemes—to 

describe the varying level of awareness and reflection students may demonstrate in their proving 

activity (I do not detail distinctions between these here, as they did not emerge as meaningful 

distinctions in my data). In the case of evaluating combinatorial proof, a student may be using a 

transformational proof scheme if they recognize that a correct combinatorial proof can constitute 

a valid mathematical proof of a binomial identity. In combinatorial proof production, a student 

may be applying a transformational proof scheme if they interpret the expressions in a binomial 
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identity as counting sets of outcomes (meaningful, goal-oriented operations) in anticipation that 

both sides of the binomial identity count the same set of outcomes in different ways10. 

In their research, Harel and Sowder (1998) also found that some of the students they studied 

exhibited transformational proof schemes when there was some restriction on the statement being 

proven. For example, a student may be given a statement about vector spaces, and they may give 

a transformational proof that is restricted to the vector space 𝑹𝑛. This would be an example of a 

contextual restrictive transformational proof scheme. Similarly, in the case of students’ evaluation 

of combinatorial proof, I hypothesized that one way that this proof scheme may arise is if a student 

accepts a combinatorial proof which utilizes, say, committees, as only constituting a mathematical 

proof in the restrictive context of committees, and that the combinatorial proof is insufficient to 

prove the binomial identity more generally. As I discuss in Section 5.1.3, these combinatorial 

proofs can prove binomial identities that are stated generally (this is based on the fact that a set 

can have only one cardinality), but students who may hear in their classes that “examples aren’t 

proofs!” may incorrectly believe that a combinatorial proof proves only one restrictive case of a 

given binomial identity. 

Harel and Sowder (1998) also discussed two other types of restrictive transformational proof 

schemes that students may use. One is the generic proof scheme, which describes situations in 

which students interpret a statement generally but are only able to express their proof in a particular 

case. Harel and Sowder used the example of a student proving a general statement about whole 

numbers divisible by 9 by considering the number 867 and then indicating that their process could 

 

 
10 Researchers (e.g. Lockwood et al., in press) and discrete-mathematics textbook authors (e.g. Rosen, 2012) have 

also described combinatorial proofs which argue that each side of a binomial identity counts a different set of 

outcomes and then constructs a bijection between these sets. Such combinatorial proofs are sometimes called 

bijective proofs. I do not focus on these types of combinatorial proofs in this paper. 
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be applied to any whole number. While no instance of this occurred in my data, in Section 5.2 I 

address some ways in which a generic proof scheme may come up in the context of combinatorial 

proof. The other type of restrictive transformational proof scheme students may use is the 

constructive proof scheme. This applies to instances in which students believe that proofs of 

existence statements must be constructive (and, for example, that proofs by contradiction of 

existence statements are invalid). While it may be possible, it is unlikely that constructive 

transformational proof schemes would come up in the case of students producing or evaluating 

combinatorial proofs.  

Finally, Harel and Sowder (1998) also expanded on axiomatic proof schemes, which a student 

may be using when they understand “that at least in principle a mathematical justification must 

have started originally from undefined terms and axioms” (p. 273). This proof scheme can be used 

to describe situations where students acknowledge and understand axioms in their proof activity, 

from axioms as intuitive as the commutativity of addition of real numbers to the Axiom of Choice. 

I do not expand on axiomatic proof schemes in this paper, because none of the participants in my 

study referred to any axioms in their proof production or evaluation of proof. 

In conclusion, Harel and Sowder’s (1998) proof schemes comprise a detailed framework that 

attempts to categorize not only students’ proving efforts but also prevailing ways in which they 

think about proof. Their proof schemes include common reasoning mistakes students make (for 

instance, accepting a proof based on its ritualistic features rather than its correctness) as well as 

productive approaches that can lead to valid mathematical proofs. Even though it is a robust, 

detailed framework that researchers have used to analyze student thinking about proof for nearly 

the past three decades, it has never been used as a lens to study combinatorial proof. In my review 

above of all the main categories of proof schemes, I noted that I did not expect some to arise within 
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the context of combinatorial proof, but the reader should note that certain other proof schemes will 

be particularly important as they arise within my Results and Discussion and Conclusion: 

authoritarian, ritual, perceptive, transformational, and contextual restrictive. In the next section, I 

contextualize my work within other studies that have applied Harel and Sowder’s framework, and 

then in the Methods section I describe how I used the framework for this study. 

2.3 Relevant Literature: Studies That Have Applied the Proof Schemes Lens 

In this section, I elaborate some of the literature that have used the proof schemes framework. 

As noted, Harel and Sowder’s proof schemes framework has been adopted by researchers who 

have used the framework as a lens to study various aspects of provers’ activity and proof 

comprehension, examining populations ranging from school children (e.g., Ellis, 2007; Fonseca, 

2018; Jankvist & Niss, 2018; Kanellos, 2014; Ören, 2007) to undergraduates (e.g., Blanton & 

Stylianou, 2014; Koichu, 2010) to preservice or in-service teachers (e.g., Çontay & Duatepe Paksu, 

2018; Gülcin Oflaz et al., 2016; Gülçin Oflaz et al., 2019; Pence, 1999; Şengül, 2013). My purpose 

in this section is to demonstrate that proof schemes have in fact been used to study a variety of 

contexts and populations in math education, and it is a robust and well-tested framework that is 

appropriate to use in analyzing my data. I particularly want to highlight some of the different 

settings and purposes for which researchers have used proof schemes. My goal is to situate my 

work within existing literature, both because I want to clarify how I am using the proof schemes 

framework (and ways in which my use is similar to or different from ways other researchers have 

used it), and because I want to demonstrate that my contribution is novel but builds on a rich body 

of existing work.  

Some researchers have used proof schemes to categorize students’ proving activity. For 

example, Kanellos, Nardi, and Biza (2018) looked at the proof schemes employed by 85 high-
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school students in Greece who were asked to provide proofs of statements the context of algebra 

and geometry. They found that students may use different proof schemes depending on the 

proposition they are given to prove, and they also identified eight combinations of proof schemes 

that emerged in their data. The identification of combinations of proof schemes is not unheard of, 

since Harel and Sowder (1998) noted that,  

“A given person may exhibit various proof schemes during one short time span, perhaps 

reflecting her or his familiarity for, and relative expertise in, the contexts, along with her 

or his sense of what sort of justification is appropriate in the setting of the work" (p. 277).  

 

Kanellos et al. (2018) additionally proposed an extension of Harel and Sowder’s (1998) proof 

schemes framework to precisely classify combinations of proof schemes that students may exhibit 

while engaging in proof activity.   

Other researchers have used proof schemes to try to get a better understanding of how students 

broadly discuss and think about proof. For instance, Otten (2010) described classroom dialogues 

about proof in beginning algebra, a course that nearly every secondary student takes. Otten used 

Harel and Sowder’s (1998) proof schemes to analyze the classroom discussions about proof, and 

Otten contended that exposing analytical proofs to students earlier in their mathematical careers 

may help to undo the potentially harmful yet pervasive idea that mathematics is merely a collection 

of facts and procedures received from an authority figure. Others still have used proof schemes to 

better understand how proof is presented and framed for students. For instance, Stacey and Vincent 

(2009) utilized the framework to conduct a textbook analysis of nine 8th-grade textbooks from 

Australia covering algebra and geometry topics. 

Researchers have also used Harel and Sowder’s (1998) proof schemes framework to look at 

students’ reasoning about various aspects of proof and proving activity. For example, some studies 

used proof schemes to frame students’ justification activity. Sevimli (2018) used Harel and 



 111 

Sowder’s (1998) framework for studying undergraduate students’ justification capabilities in the 

contexts of continuity, differentiability, and integrability. Koichu (2010) also used proof schemes 

to describe a case study of a postsecondary student’s problem-solving activity in the domains of 

calculus, algebra, and geometry. In another study that used Harel and Sowder’s (1998) framework 

to study the proof schemes used by in-service teachers, Soto (2010) presented a case study of one 

in-service secondary mathematics teacher. Soto used the proof schemes framework to analyze this 

teacher’s reasoning and justification while solving story problems. Sen and Guler (2015) applied 

Harel and Sowder’s (1998) proof schemes in an even more fine-grained manner looking at the 

proving and justification skills of seventh-grade students. They asked these students to reflect on 

their proofs, specifically whether they felt their arguments would convince someone else. In this 

study, Sen and Guler coded not only the students’ proofs but also their utterances during the 

interviews using proof schemes. For example, the following exchange was coded:  

Interviewer:  Do side lengths have to increase for increase in perimeter? 

S (AO):  It is a must, because perimeter is found by adding side lengths. Then it 

is a must for side lengths to increase for the lengths of perimeter to 

increase. 

S (AR):  Increase in the perimeter depends on increase in the lengths of sides. 

According to the answer I provided, it is a must for side lengths to 

increase for perimeter to increase. In the solution I made, I think I 

increased side lengths. For example, here a=10 cm, there are aa=20 cm, 

it enlarged.” 

S (AS):  As I think increase in perimeter is related with the enlargement of the 

shape, side lengths are to increase absolutely. 

 

Here, the authors used the codes AO, AR, and AS to denote that the student was using reasoning 

that aligns with the authoritarian, ritual, and symbolic proof schemes, respectively.  

Other studies have used the framework to look at students’ proof comprehension by asking 

them reflective questions about existing proofs in addition to or instead of looking at students’ 

proof production. Sometimes this involves students explicitly reflecting on proofs they have 
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already produced, and sometimes this involves students evaluating and interpreting existing proofs 

that did not originate with them. As examples of the former, Housman and Porter (2003) 

investigated the proof schemes of above-average mathematics majors in topics that included 

discrete topics such as set theory. They had these mathematics students write proofs and then 

reflect on how convincing they felt their own proofs were. Housman and Porter (2003) stated that 

these questions were necessary to verify the students’ proof schemes because, “[A] proof scheme, 

by definition, consists of the arguments that a person uses to convince herself and others of the 

truth or falseness of a mathematical statement” (p. 143). Sears (2019) conducted a similar study in 

which they asked preservice middle- and high-school teachers to prove propositions in topics such 

as set theory and then evaluate their own proofs. While these studies considered what the 

participants found personally convincing, they both answered research questions primarily aimed 

at understanding proof schemes that participants adopt. Healy and Hoyles (2000) also used the 

lens of proof schemes to look at proof production and proof comprehension of high-achieving 14- 

and 15-year-old students in the context of algebra and geometry. The authors found that the 

students still predominantly used empirical proof schemes when writing their own proofs, even 

though the students were aware of the limitations of empirical arguments and acknowledged that 

they felt these arguments were not sufficiently rigorous to receive high marks from a teacher. 

Healy and Hoyles thus posited that students may simultaneously hold two different conceptions of 

proof: arguments they considered would receive the best score from an instructor (which were 

more likely to be algebraic), and those students would adopt for themselves. 

There have also been some studies in which researchers used Harel and Sowder’s (1998) proof 

schemes framework to look at how students evaluate arguments presented to them for a proposition 

to be proven. Harel and Sowder (1998) themselves described an example of this when 
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exemplifying the authoritarian proof scheme (p. 249-250), and other researchers have presented 

students with arguments falling under different proof schemes (e.g. external, empirical, and 

analytical) and asked if the students felt these arguments were convincing. For instance, Plaxco 

(2011) incorporated this methodology to investigate the proof schemes of undergraduate students 

in multiple mathematics topics including elementary number theory and geometry. Additionally, 

Liu and Manouchehri (2013) asked 41 middle-school children to justify propositions, and then 

they gave each child a set of arguments for those propositions asking which arguments the child 

preferred. Only 11 of the children gave analytical justifications, which aligns with other similar 

research (e.g. Blanton & Stylianou, 2014) finding that students with little training in proof tend to 

use external and empirical proof schemes. Liu and Manouchehri also found that when the children 

were evaluating the arguments given to them, they generally preferred those which followed an 

analytical proof scheme. As Liu and Manouchehri (2013) stated, “This hints at the notion that 

students did tend to recognize and endorse more general mathematical explanations, even if they 

could not produce them themselves” (p. 28), which is also consistent with previous findings (e.g. 

Healy & Hoyles, 2000). 

While I identified no studies in the literature that used Harel and Sowder’s (1998) proof 

schemes to look at combinatorial proof, there were a few that used the framework to look at 

undergraduate students’ proof activity in other areas of discrete mathematics. I elaborate some of 

these here to frame my contribution to the literature. In one instance, Blanton and Stylianou (2014) 

analyzed student assessments, in-class group-work activity, and full-class discussions for 30 

undergraduate students enrolled in an introductory proof course that covered elementary number 

theory and some abstract algebra. They found that students who had minimal proof training at the 

college level may tend to apply external and empirical proof schemes, but their findings showed 
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that with instruction students were able to shift to more sophisticated analytical proof schemes. In 

another study, Stylianou, Chae, and Blanton (2006) used proof schemes as a lens to study the 

relationship between undergraduate students’ proof-production and problem-solving strategies in 

a discrete context. Perhaps unsurprisingly, they found that there appeared to be a relationship 

between students’ proof schemes and problem-solving strategies, with analytical proof schemes 

correlating with more productive problem solving. Recio and Godino (2001) also looked at first-

year undergraduate students in Spain in elementary number theory and geometry contexts to 

investigate the relationship between a student’s proof schemes and institutional meanings of proof, 

that is, ways in which various institutions of which students were members (e.g. mathematics 

classes, daily life, etc.) may treat the concept of proof. Recio and Godino (2001) contended that 

there was a two-way relation of influence between personal proof schemes and institutional 

meanings of proof, proposing a more positive perspective on students who may initially rely more 

on empirical proof schemes. They stated, “Informal proof schemes should not be considered as 

simply incorrect, mistaken or deficient, but rather as facets of mathematical reasoning necessary 

to achieve and master mathematical argumentative practices” (p. 97). These are some examples of 

studies from the existing literature where researchers have applied Harel and Sowder’s (1998) 

proof schemes framework to categorize students’ proving activity in various contexts, including 

discrete mathematics. However, currently there are no studies which apply the framework to 

student thinking about combinatorial proof.  

The point of this summary is to highlight the myriad ways in which proof schemes have been 

used and applied in mathematics education literature. Researchers have applied Harel and 

Sowder’s (1998) proof schemes to look at students’ proving activity, and some have looked at 

students’ reasoning about proof or pursued other related avenues of research. While much work 
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has been done, especially in the areas of algebra, geometry, and some topics of discrete 

mathematics, no prior studies have looked at students’ reasoning about combinatorial proof using 

proof schemes as an analytical lens. Furthermore, while some work has been conducted discussing 

ways that combinatorial proof may differ from other types of proof (e.g. Lockwood et al., 2020; 

Lockwood & Reed, 2018), none have approached this research inquiry in a systematic fashion that 

utilizes a robust, well-known theoretical lens such as Harel and Sowder’s (1998) proof schemes. 

Thus, I attempt to contribute to the literature on proof and proving, particularly by applying proof 

schemes within a novel kind of proof activity and domain (combinatorial proof), and by adding a 

more rigorous analysis to the continuing investigation into how combinatorial proof differs from 

other types of proof. 

3. Literature Review & Theory about Combinatorics 

In this section, I transition from discussing the necessary proof literature for this research to 

delving into literature on combinatorics, and specifically combinatorial proof. While several 

mathematics education researchers have looked into various aspects of combinatorics as a 

mathematical topic—including students’ verification strategies as they solve counting problems 

(Eizenberg & Zaslavsky, 2004), types of errors students commit as they solve counting problems 

(Batanero et al., 1997), a set-oriented perspective and listing as potential avenues for students’ 

combinatorial success (Lockwood, 2014; Lockwood & Gibson, 2016), and investigations into 

fundamental counting principles (Lockwood et al., 2017; Lockwood & Purdy, 2019a; Lockwood 

& Purdy, 2019b)—the most relevant literature to my research are the (limited) studies that have 

looked at combinatorial proof, as well as Lockwood’s (2013) model of students’ combinatorial 

thinking. In the following subsections, I use Lockwood’s model to characterize how one produces 
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a combinatorial proof of a binomial identity, and I discuss the few other studies I identified in the 

literature which have also targeted combinatorial proof. 

3.1 Lockwood’s (2013) Model and Characterizing Combinatorial Proof 

Lockwood (2013) said there are three components that may be present in a student’s reasoning 

about a counting problem: sets of outcomes, counting processes, and formulas/expressions. See 

Figure 6.2. Sets of outcomes represent collections of objects that are enumerated, which also 

encompasses different ways those objects may be represented or “encoded” (Lockwood et al., 

2015a). Examples may include representing outcomes as binary strings or as sequences where 

order of the items does not matter. Counting processes describe the mental or physical operations 

a counter uses to generate or enumerate sets of outcomes. For instance, this could include use of 

the Multiplication Principle or constructing a case breakdown. Finally, formulas/expressions 

include mathematical expressions whose numerical value(s) are the cardinality of the set of 

outcomes being enumerated. These are often considered the “answer” to the counting problem.  

 
 

Figure 6.2. Lockwood’s (2013) model of students’ combinatorial thinking (p. 253). 
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Between each of these components there are also bidirectional relationships that Lockwood 

(2013) and Lockwood, Swinyard, and Caughman (2015b) described. For example, a counting 

process which involves picking a committee (i.e., an unordered selection) of four people from a 

set of fifteen people and then picking one of those four people to be the chairperson of the 

committee would yield the expression (15
4

) × (4
1
). Similarly, and critically for combinatorial proof, 

a given expression may suggest a particular underlying counting process. The expression 

(𝑛
1

) × (𝑛−1
𝑘−1

), for instance, may suggest a counting process in which 1 object is selected first from 

a group of n distinct objects, and then an unordered selection of k – 1 objects is made from the 

remaining n – 1 objects. Other mathematical operations can suggest different underlying counting 

processes; for example, addition may indicate a counting process involving a case breakdown. In 

this way, I use Lockwood’s (2013) model to characterize combinatorial proof, as the language of 

counting processes, sets of outcomes, and formulas/expressions are particularly well-suited to 

describing the steps involved in completing a combinatorial proof.  

Several researchers have applied Lockwood’s (2013) model to investigate various aspects of 

student thinking about counting problems (e.g. Halani, 2013; Hidayati et al., 2019; Lockwood, 

2014; Lockwood et al., 2018; Lockwood & Erickson, 2017; Lockwood & Gibson, 2016; 

Lockwood & Purdy, 2019a). Only one previous study has applied her model to examine student 

thinking about combinatorial proof specifically (Lockwood et al., in press), and in my study I 

broadly used Lockwood’s model in a similar manner. In the next subsection I review all pre-

existing literature targeting combinatorial proof, including the aforementioned study. 

3.2 Prior Literature on Combinatorial Proof 

There have been a handful of studies which have looked at students’ reasoning and 

combinatorial justification related to binomial identities. For instance, Maher and Speiser (1997) 
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provided a case study in which a 14-year-old student made meaningful mathematical connections 

between Pascal’s triangle and binomial coefficients to explain why Pascal’s addition identity, 

(𝑛
𝑘

) = (𝑛−1
𝑘

) + (𝑛−1
𝑘−1

), holds. Tarlow (2011) similarly described high-school students who could 

articulate combinatorial justifications for Pascal’s identity using the context of pizza toppings, and 

Speiser (2011) also provided an example of a high-school student justifying Fermat’s formula, 

( 𝑛
𝑟+1

) =
𝑛−𝑟

𝑟+1
× (𝑛

𝑟
), using red and yellow blocks. While these looked more generally at students’ 

justification activity rather than specifically student thinking and work on combinatorial proof 

tasks, they nevertheless demonstrate that students—even children—are capable of understanding 

binomial identities and successfully engaging in combinatorial justification. 

I identified only three prior studies in the literature that have looked at combinatorial proof of 

binomial identities specifically. The first of these was a study conducted by Engelke and 

CadwalladerOlsker (described both in Engelke and CadwalladerOlsker 2010, and Engelke Infante 

and CadwalladerOlsker, 2011), who looked at upper-division undergraduate and graduate 

students’ written solutions to combinatorial proof problems on exams. In their study, they rated 

the students’ proofs on a scale from 1-4 based on how successful the proofs were, and they 

categorized four difficulties that they observed students seemed to struggle with when coming up 

with a combinatorial proof: language mimicking, inflexibility of context, misunderstanding of 

combinatorial functions, and failure to count the same set (p. 95-96). They additionally found 

some evidence that having students ask a specific “How many…?” question may help students be 

more successful at completing a correct combinatorial proof, and they also posited that some 

students may engage in pseudo-semantic proof production. Engelke Infante and 

CadwalladerOlsker defined this term as “the attempt to engage in a semantic proof production 

process, but relying on the syntax of a previously encountered proof when faced with a term that 
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the student cannot explain” (2011, p. 96), which is based on the distinction between semantic and 

syntactic proof production articulated by Weber and Alcock (2004).  

More recently, Lockwood, Caughman, and Weber (2020) wrote a theoretical piece that focused 

on giving researchers tools and insights to more effectively understand and use the constructs of 

convincing and explanatory proofs (in the sense of Hersh, 1993), and they illustrated their theory 

by applying it to combinatorial proof. They defined an argument as explanatory to an individual 

within a particular representation system if it “begins with axioms, definitions, or statements the 

individual believes are true,” “employs inferential schemes that are natural,” and “is couched 

within, or can be mapped to, a representation system the individual finds personally valuable” (p. 

181). By representation system, Lockwood et al. (2020) meant, “a structure with permissible 

configurations and inferential schemes” (p. 178), where permissible configurations could 

encompass certain equations, graphs, and other types of mathematical objects. With this 

terminology, Lockwood et al. argued that depending on the reader, combinatorial proofs are 

generally considered explanatory proofs within the enumerative representation system, because 

they can explain why a binomial identity holds combinatorially (but they do not explain 

algebraically, for instance, why a binomial identity holds). 

Finally, the most recent study I identified in the literature targeting combinatorial proof—and 

the only prior study based on interview data—was conducted by Lockwood et al. (in press). They 

conducted a 15-session paired teaching experiment (Steffe & Thompson, 2000) with two vector-

calculus students with no prior experience with combinatorics at the college level. The last three 

of these sessions were devoted to combinatorial proof of binomial identities. The authors found 

that the students benefitted from two particular instantiations while trying to construct 

combinatorial proofs: contextual instantiation and numerical instantiation. By contextual 
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instantiation, the authors referred to having students focus on one particular context in which to 

situate their combinatorial thinking, such as committees, and they used numerical instantiation to 

mean having students substitute specific values in for the variables appearing in a binomial 

identity. The latter was particularly useful for the students looking at binomial identities involving 

a summation, because the students could then write out every term of the summation and more 

easily determine what the summation may be counting. Lockwood et al. additionally found that 

combinatorial proof required the students to reconsider previous concepts they had internalized 

about algebraic expressions being “different.” In the algebraic representation system (Lockwood 

et al., 2020), two expressions are often considered the same if they have the same numerical value 

(for example, a + b is the same as b + a when a and b are real numbers). However, in combinatorial 

proof it is important to be able to consider two expressions as being different if they “differ in 

form,” meaning that they physically appear different on the page (Lockwood, 2013, p. 253). When 

the numerical equivalence of two expressions was apparent to the students, they occasionally 

struggled to distinguish between each side of the identity as counting a set of outcomes in two 

different ways. 

Lockwood et al. (in press) used Lockwood’s (2013) model to frame their investigation into 

students’ thinking about combinatorial proof, which was a novel application of the model which 

was originally intended to frame student thinking about counting problems. I now review exactly 

how they applied Lockwood’s model, because I characterize combinatorial proof in a similar 

manner (this thus elaborates my own understanding of combinatorial proof as situated within 

existing literature). When a student is engaging in combinatorial proof activity, they can be 

considered as moving counterclockwise around Lockwood’s model. See Figure 6.3. First, when a 

student is given a binomial identity to prove combinatorially, they must begin by picking one side 
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of the identity to consider. That side of the identity is a formula/expression which, leveraging the 

bidirectional relationships between each component of the model, the student must interpret as 

having an underlying counting process. That counting process enumerates or generates a particular 

set of outcomes, which includes the context (say, committees) that the student chooses to use. Then 

the student must start back again in the formulas/expressions component with the other side of the 

binomial identity, and they must interpret it as having some other underlying counting process 

which enumerates the same set of outcomes11. This manner of applying Lockwood’s model to 

combinatorial proof worked effectively for Lockwood et al. (in press), and hence I also view 

combinatorial proof similarly for the purposes of my study. 

 

Figure 6.3. Lockwood’s (2013) model as a lens for combinatorial proof (Lockwood et al., in 

press). 

 

 

 
11 As mentioned previously, this process describes one type of combinatorial proof, specifically those that utilize 

“Approach 1” (Lockwood et al., in press). While this type of combinatorial proof is the focus of this paper, I again 

acknowledge that other types of combinatorial proof, such as bijective proofs, do also exist.  
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In conclusion, combinatorial proof is a topic which has received little attention in the 

mathematics education community, and in particular much remains unanswered about how 

students think about combinatorial proof as different or similar to other types of proof. The studies 

that do exist have relied entirely on artifact data (Engelke & CadwalladerOlsker, 2010) or are 

theoretical (Lockwood et al., 2020)—so answering research questions about student thinking is 

not possible—or they were conducted with student participants who were novice provers 

(Lockwood et al., in press)—so ascertaining beliefs that the students had about proof is 

challenging. It is not known, for instance, whether or to what extent students accept combinatorial 

proof as fully rigorous compared to other types of proof (such as algebraic proofs or proofs by 

induction), and why. While combinatorial proofs are often considered proofs that explain (in the 

sense of Hersh, 1993), it is unknown whether the simplicity and intuition that combinatorial proofs 

can provide may affect students’ acceptance of combinatorial proof as fully rigorous. Additionally, 

while some researchers (e.g. Harel & Sowder, 1998; Martin & Harel, 1989) have found that a 

student’s acceptance of a proof may depend more on its ritualistic features (like a familiar format 

or the presence of symbolic manipulations) than the correctness of the argument, it is unknown 

how this may apply to combinatorial proof. In the following section, I describe how I attempted 

systematically to answer some of these questions using Harel and Sowder’s (1998) proof schemes 

as my theoretical framing, all while interpreting students’ combinatorial proof activity using the 

components of Lockwood’s (2013) model.  

4. Methods 

For this study, I conducted video-recorded, task-based, individual clinical interviews (Hunting, 

1997) with five upper-division mathematics students attending a large university in the western 

United States. This research was part of a larger study aimed at understanding experienced provers’ 
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beliefs about combinatorial proof. In this section, I describe my methodologies of data collection 

and analysis. 

4.1 Data Collection 

I recruited students from upper-division mathematics courses to participate in hour-long, 

individual, task-based selection interviews. These upper-division courses were selected to ensure 

each student participating in the interviews would have previously completed at least one proof-

based course at the college level. In the selection interviews, I asked each student to solve counting 

problems—some of which involved combinations—and to prove theorems intended to be 

accessible for any student with some experience proving at the college level (for example, that the 

sum of two even integers is even). My goal with these selection interviews was to obtain 

participants for my study who had at least some familiarity with binomial coefficients and 

choosing, as well as students who could navigate a basic mathematical proof. After conducting the 

selection interviews, five students satisfied the criteria I was looking for: Sydney, Riley, Adrien, 

Peyton, and Ash (pseudonyms). Table 6.1 details the college-level mathematics courses that each 

of these five students had taken, showing that each had taken at least one proof-based mathematics 

course and that each had made some progress toward fulfilling the requirements of a mathematics 

major. 

Next, each of these five students participated in four hour-long, individual, task-based clinical 

interviews aimed at investigating their combinatorial proving activity and beliefs and reasoning 

about combinatorial proof compared with other types of proofs. All of the students in my study 

had either very limited or no prior experience with combinatorial proof, and so during the first 1-

2 interviews with each of them, I asked them to solve counting problems (see Table 6.2) that would 

provide scaffolding when I later asked them to solve combinatorial proof problems. 
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Table 6.1. Classes taken by student participants. 

 Sydney Riley Adrien Peyton Ash 

Calculus I ✓ ✓ ✓  ✓ 

Calculus II ✓ ✓ ✓  ✓ 

Infinite Series & Sequences ✓  ✓ ✓ ✓ 

Vector Calculus I ✓ ✓ ✓ ✓ ✓ 

Vector Calculus II ✓  ✓ ✓ ✓ 

Applied Differential Equations ✓  ✓ ✓ ✓ 

Mathematics for Management, 

Life, and Social Sciences 
    ✓ 

Linear Algebra I ✓ ✓ ✓ ✓ ✓ 

Linear Algebra II ✓  ✓ ✓ ✓ 

Advanced Calculus ✓  ✓  ✓ 

Introduction to Modern Algebra ✓  ✓  ✓ 

Metric Spaces and Topology  ✓* ✓*   

Discrete Mathematics ✓ ✓  ✓* ✓ 

Applied Ordinary Differential 

Equations 
✓  ✓   

Applied Partial Differential 

Equations 
✓     

Fundamental Concepts of 

Topology 
✓* ✓*  ✓*  

Numerical Linear Algebra  ✓    

Introduction to Numerical 

Analysis 
  ✓   

Computational Number Theory  ✓    

Mathematical Modeling   ✓   

Actuarial Mathematics   ✓   

Complex Variables     ✓ 

Non-Euclidean Geometry     ✓ 
* Indicates that the student was enrolled in this course at the time the interviews were conducted. 

 

During the final two interviews with each student, I asked them to give counting arguments for 

the veracity of various binomial identities, as well as answer reflection questions about how they 

perceived their combinatorial proving activity. These identities are laid out in Table 6.3, with each 

student having given a combinatorial argument for at least a fraction of these identities depending 

on how quickly they progressed through the tasks in the interviews. I was careful to ask the students  
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Table 6.2. Combinatorial tasks for students to scaffold combinatorial proof. 

Task Intended Purpose 

1. Spoonbill Problem. The scientific name of 

the roseate spoonbill (a species of large, 

wading bird) is Platalea ajaja. How many 

arrangements are there of the letters in the 

word AJAJA? Can you list all of the 

outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

ordered sequences of two indistinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014) when 

counting. 

2. Subsets Problem. How many 3-element 

subsets are there of the set {1, 2, 3, 4, 5}? Can 

you list all of the outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

unordered selections of distinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014) when 

counting. 

3. Find-a-Bijection Problem. Describe a 

bijection between the outcomes in the 

Spoonbill Problem and the Subsets Problem. 

Facilitate a robust, flexible understanding of 

combinations. Lay groundwork for students to 

solve bijective combinatorial-proof problems. 

4. Even- and Odd-Sized Sets Problem. Let 

S={1, 2, 3, 4, 5, 6}. (a) List all of the even-

sized subsets of S. How many should there 

be? (b) List all of the odd-sized subsets of S. 

How many should there be? (c) Find a 

bijection between the subsets in parts (a) and 

(b) by considering whether the subsets 

contain the item 1. 

Continue to facilitate a solid understanding of 

combinations. Provide scaffolding for 

students to eventually prove the identity  
∑ ( 𝑛

2𝑖
)𝑖≥0 = ∑ ( 𝑛

2𝑖+1
)𝑖≥0  using a bijective 

combinatorial proof. 

5. Reverse Counting Problem. (a) Write 

down a counting problem whose answer is 25. 

(b) Write down a counting problem whose 

answer is 15 × (14
3

). 

Provide scaffolding for the concept of a 

combinatorial proof by asking students to 

interpret expressions in a combinatorial 

context. 

 

for “arguments” rather than “proofs,” because I did not want to influence their opinions when I 

asked them reflection questions, particularly whether they felt their activity constituted proof. 

Toward the end of the interviews, I also gave each student the Six Proofs Handout (see Table 6.4), 

which gives a combinatorial and noncombinatorial proof of three binomial identities. I asked each 

student to read the handout, and then I proceeded to ask them further reflection questions about 

the arguments on the handout, including which arguments they personally liked best (and why) 

and which arguments they felt constituted rigorous mathematical proofs. These reflection 
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Table 6.3. Identities given to the students to provide a combinatorial argument. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) (

𝑘

𝑟
) = (

𝑛

𝑟
) (

𝑛 − 𝑟

𝑘 − 𝑟
) (

𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

∑ (
𝑛

𝑖
)

𝑛

𝑖=1

𝑖 = 𝑛 ⋅ 2𝑛−1 
∑ (

𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 

∑ (
𝑛

𝑖
) (

𝑛

𝑛 − 𝑖
)

𝑛

𝑖=0

= (
2𝑛

𝑛
) ∑ (

𝑚

𝑖
) (

𝑛

𝑘 − 𝑖
)

𝑘

𝑖=0

= (
𝑚 + 𝑛

𝑘
) 

𝑛

𝑘
(

𝑛 − 1

𝑘 − 1
) = (

𝑛

𝑘
) 

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) = (

𝑛

𝑘
) 

∑ (
𝑖

𝑘
)

𝑛

𝑖=𝑘

= (
𝑛 + 1

𝑘 + 1
) 

 

 

questions were aimed at understanding the extent to which the students accepted combinatorial 

proof as a valid, rigorous mathematical proof and how they reasoned about combinatorial proof in 

comparison with other types of proof the students were more familiar with (such as algebraic and  

Table 6.4. Six Proofs handout. 

Identity Combinatorial Argument Non-combinatorial Argument 

Theorem 1. 

2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  

(Subsets Context) Consider 

a set S such that |S|=n. The 

LHS* of the equation 

counts the number of 

subsets of S, because every 

subset can be uniquely 

determined by the elements 

it contains, and each of the n 

elements could be either in 

or out of each subset. The 

RHS counts the number of 

i-subsets of S and adds up 

over all possible values of i. 

Since the LHS and RHS 

both enumerate the set of 

subsets of S, they are equal. 

(Induction RS*) Suppose n=0. It follows that 

the identity holds since 20 = 1 = (0
0
). Suppose 

that the identity holds for n=k, where k is a 

nonnegative integer. We then observe that 

∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

= ∑ ((
𝑘

𝑖
) + (

𝑘

𝑖 − 1
))

𝑘

𝑖=0

+ (
𝑘 + 1

𝑘 + 1
) 

= ∑ (
𝑘

𝑖
)

𝑘

𝑖=0

+ ∑ (
𝑘

𝑖 − 1
)

𝑘

𝑖=0

+ 1 

= 2𝑘 + ∑ (
𝑘

𝑖
)

𝑘−1

𝑖=0

+ 1 

= 2𝑘 + 2𝑘 − (
𝑘

𝑘
) + 1 

= 2 ⋅ 2𝑘 − 1 + 1 

= 2𝑘+1. 
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Table 6.4. (Continued) 

Theorem 2. 

(𝑛
𝑘

) = (𝑛−1
𝑘

) +

(𝑛−1
𝑘−1

) 

(Committees Context) 

Suppose a mathematics 

department has n faculty 

members, and Sofía is one 

of the faculty members. The 

LHS counts the total 

number of committees of 

size k that could be formed 

from the n faculty members. 

The RHS counts the number 

of committees of size k that 

exclude Sofía and the 

committees that include her. 

Note that this case 

breakdown encompasses all 

possible k-committees. 

Since the LHS and RHS 

both enumerate the same set 

of outcomes (k-committees 

formed from the n faculty 

members), they are equal. 

(Algebraic RS) We have that 

(
𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 1 − 𝑘 + 1)!
 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
 

=
(𝑛 − 1)! (𝑛 − 𝑘)

𝑘! (𝑛 − 𝑘)!
+

(𝑛 − 1)! 𝑘

𝑘! (𝑛 − 𝑘)!
 

=
𝑛(𝑛 − 1)! − 𝑘(𝑛 − 1)! + 𝑘(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

=
𝑛!

𝑘! (𝑛 − 𝑘)!
 

= (
𝑛

𝑘
). 

Theorem 3. 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

(Binary Strings Context) 

Consider the set of binary 

strings of length n 

containing exactly k 0s. The 

LHS enumerates this set, 

because (𝑛
𝑘

) is the number 

of ways we can select 

positions for the 0s to 

occupy, and the rest of the 

positions in the binary string 

will be 1s. The RHS also 

enumerates this set, because 

( 𝑛
𝑛−𝑘

) is the number of ways 

we can select positions for 

the 1s to occupy, and the 

rest of the positions in the 

binary string will be 0s. 

(Binomial Theorem RS) Recall that the 

Binomial Theorem states that for n a natural 

number and a, b real numbers, 

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑎𝑛−𝑖𝑏𝑖. 

Notice that for each k, the coefficient of 𝑎𝑛−𝑘𝑏𝑘 

is (𝑛
𝑘

). Additionally, we also have that by the 

Binomial Theorem, 

(𝑏 + 𝑎)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑏𝑛−𝑖𝑎𝑖, 

and the coefficient of 𝑏𝑘𝑎𝑛−𝑘 is ( 𝑛
𝑛−𝑘

). We also 

have that 𝑎𝑛−𝑘𝑏𝑘 = 𝑏𝑘𝑎𝑛−𝑘 and (𝑎 + 𝑏)𝑛 =
(𝑏 + 𝑎)𝑛, by the commutativity of 

multiplication and addition of real numbers, 

respectively. Thus, when the latter is expanded, 

the coefficients of each term on either side of 

the equation must be equal, so (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) for 

all k. 
*RS here refers to representation systems, which Lockwood et al. (2020) define as “a structure with permissible 

configurations and inferential schemes” (p. 6). Here, we consider each of the combinatorial proofs to be situated in 

the enumerative RS. 



 128 

 

induction proofs). 

4.2 Data Analysis 

Because I was particularly interested in the students’ perceptions of combinatorial proof 

generally and of their own combinatorial proof activity, I focused my data analysis toward those 

episodes in the data where students answered my reflection questions or discussed their opinions 

about combinatorial proof. Each interview was transcribed, and then, following the thematic 

analysis methodology (Braun & Clarke, 2006), I re-watched every video familiarizing myself with 

the data and making note of key episodes related to my research questions. Each time a student 

described their opinions about combinatorial proof—particularly whether they felt combinatorial 

proof could constitute valid, rigorous mathematical proof in comparison to other types of proof—

I flagged it as an episode that warranted further analysis. Then, using the MAXQDA 2020 

qualitative data analysis software (VERBI Software, 2019), I coded these episodes using Harel 

and Sowder’s (1998) proof schemes (described in Section 2). My goal was to categorize 

systematically the prevailing manner in which the students were thinking about combinatorial 

proof in order to understand how and why they considered combinatorial proof to be rigorous 

mathematical proof in comparison to other types of proof. For instance, if a student made 

utterances about the correctness of the logical structure of a combinatorial argument, I took that as 

evidence that the student was using an analytical proof scheme. If the student alluded to an 

authority (e.g., claiming they did not think their instructor would accept a combinatorial proof) or 

appealed to ritualistic features of a combinatorial proof (e.g., claiming a combinatorial argument 

did not constitute proof because it did not involve symbolic manipulation), then I took that to 

signify that the student was using an authoritarian or ritual proof scheme, respectively. There were 

some episodes in which students seemed to use more than one proof scheme in their reasoning 
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about combinatorial proof, and in those instances, I coded the episodes with each proof scheme 

for which there seemed to be evidence. This aligns with Harel and Sowder’s (1998) use of proof 

schemes, as they stated a given person may exhibit more than one proof scheme within a short 

period of time (p. 277). Other researchers such as Kanellos et al. (2018) have also used multiple 

proof schemes to categorize students’ reasoning. After I coded the data using Harel and Sowder’s 

proof schemes, I checked the interview videos again to see if there were any other episodes that 

may warrant further analysis. To help ensure consistency, I re-coded every episode that was 

flagged. Throughout this process, I discussed questions I had about coding with another researcher 

to ensure they were applied appropriately, and any episodes in which it was difficult to determine 

which proof scheme(s) the student was using were discussed thoroughly until both the other 

researcher and myself were confident the code(s) being applied was/were correct.  

There is one further point that should be addressed before I transition to the Results, and that 

is to explain why I am not applying proof schemes to the ways that the students produced 

combinatorial proofs. While in the proof education literature applying Harel and Sowder’s (1998) 

proof schemes framework to students’ proof production is common (e.g. Blanton & Stylianou, 

2014; Healy & Hoyles, 2000; Kanellos et al., 2018; Stylianou et al., 2006), for my study it was not 

particularly insightful or interesting to categorize my participants’ combinatorial proof production 

using proof schemes. This is simply because the students I interviewed ended up being so 

successful solving the combinatorial proof problems I gave them that the vast majority of their 

proof production work would have been categorized as using transformational analytical proof 

schemes. However, in the data, while students were highly successful at producing correct 

combinatorial proofs consistent with an analytical proof scheme, the focus of my study (and the 

more interesting phenomena that occurred in my interviews) concerns how the students perceived 



 130 

their proving activity and combinatorial proof in general. The students frequently produced correct 

combinatorial proofs, but then made utterances that aligned with non-analytical proof schemes 

when reflecting back on their own work or combinatorial proof more generally. Since I am 

interested in investigating how students discuss and characterize combinatorial proof and what it 

reveals about students’ perceptions of the nature of combinatorial proof, using proof schemes to 

categorize their proof comprehension rather than proof production was more relevant and useful 

for my particular research interests in this study. Finally, I note in addition that there are multiple 

other researchers (e.g. Harel & Sowder, 1998; Liu & Manouchehri, 2013; Plaxco, 2011) who have 

used proof schemes as a lens to examine student thinking about proof rather than only their 

personal proof production, and so the manner in which I am applying the proof schemes framework 

is not inconsistent with existing proof literature.  

5. Results 

I first provide a broad overview of the proof schemes (Harel & Sowder, 1998) that the students 

utilized when reflecting on their combinatorial proving activity and combinatorial proof in general. 

Then, in subsequent sections I expand on this general overview by providing excerpts from the 

data exemplifying the proof schemes that the students used, as well as discussing why some proof 

schemes were not used by any of the five students in my study. 

Table 6.5 provides a breakdown of the proof schemes (Harel & Sowder, 1998) that the students 

used to describe their perspectives regarding combinatorial proof, including how they conceived 

of combinatorial proof as different from other types of proof.  

As mentioned in the Methods section, some episodes in the data involved a student using more 

than one proof scheme to describe their perspectives of combinatorial proof, and so those episodes 

were coded with multiple proof schemes. Overall, all five students drew upon the ritual proof 
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Table 6.5. Proof schemes used by students discussing combinatorial proof. 

 Sydney Riley Adrien Peyton Ash 

Authoritarian 0 ✓ 0 0 0 

Ritual ✓ ✓ ✓ ✓ ✓ 

Perceptual Empirical ✓ ✓ ✓ ✓ ✓ 

Transformational 0 ✓ ✓ 0 ✓ 

Contextual Restrictive ✓ 0 ✓ 0 0 

 

scheme, three students drew on the transformational proof scheme, and two students drew on the 

contextual restrictive proof scheme. Additionally, while the authoritarian and perceptual 

empirical emerged less explicitly in the data, I discuss some episodes in the data during which 

some of the students appeared to utilize them. 

In the following subsections, I provide illustrative examples from the data of each of the proof 

schemes that emerged in these data. I begin in Section 5.1 by exemplifying those proof schemes 

that were identified in the students’ reasoning. In Section 5.2 I discuss Harel and Sowder’s (1998) 

proof schemes that did not emerge (and potential reasons why). Ultimately, the goal of sharing 

these results is to emphasize ways in which the students perceived of combinatorial proof, 

particularly allowing me to contrast those perceptions with other types of proof and proving 

experiences they have encountered in their mathematical careers. Finally, in my conclusion and 

discussion section I will synthesize and discuss what the occurrence of these proof schemes 

indicates about students’ conceptions of combinatorial proof.  

5.1 Proof Schemes Used by Students in Their Reasoning About Combinatorial Proof  

During the interviews, there were five of Harel and Sowder’s (1998) proof schemes that 

seemed to emerge as the students discussed their reasoning about their own combinatorial proofs 

and combinatorial proof in general. I provide illustrative examples in the following sections. 
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5.1.1 Ritual external conviction proof scheme. The most frequent proof scheme coded in the 

data was Harel and Sowder’s (1998) ritual proof scheme. Harel and Sowder characterized this 

proof scheme as occurring when students primarily attend to the appearance in form of a 

mathematical proof rather than the correctness of the argument being presented (p. 246). Here, 

students appeal to what might be viewed as aspects of mathematics that they assume are relevant 

to the mathematical community – that appear formal or that seem to be based on commonly 

accepted mathematical rituals. There were several episodes in the data in which students appealed 

only to surface features of combinatorial arguments to explain their beliefs, and I coded these 

episodes as indicating the ritual proof scheme. In most of these episodes, the students seemed to 

believe that a particular combinatorial argument (or combinatorial arguments in general) did not 

constitute rigorous mathematical proof. 

As an example, when Ash was given the Six Proofs handout and asked about the two proofs 

given for Theorem 3 (one of which was based on the binomial theorem and one of which was 

combinatorial12), we had the following exchange. 

Int.: Do you think either or both of them are proof? 

Ash:  I couldn’t poke a hole in the combinatorial argument, but there’s something that 

doesn’t feel complete about it, but I couldn’t tell you what it is. 

Int.:  Okay. Can you say a little bit more about that—what do you mean it doesn’t feel 

complete? 

Ash: Maybe it’s just with the contrast for the complexity and depth of this one 

[points to the non-combinatorial proof of Theorem 3]. 

Int.: Sure. 

Ash:  I just inherently doubt that it could be that simple…. I mean, I can’t poke a hole 

in it, so….  

Int.: Okay. So, this one maybe feels a little more like a proof [points to the non-

combinatorial proof of Theorem 3], but, like you said, you can’t poke a hole in this 

 

 
12 I acknowledge that a proof that uses the binomial theorem could also be considered a “combinatorial proof,” as 

the binomial theorem is often considered in the context of combinatorics. However, throughout this paper I 

specifically use the term combinatorial proof to refer to one that is enumerative, that is, it directly involves some 

type of counting argument. 
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one [points to combinatorial proof of Theorem 3]. You don’t have a reason to think 

it’s not a proof. 

Ash: Couldn’t find an exception. 

 

Here, I interpret Ash’s utterances (particularly in bold) to mean that they believed the argument 

that uses the binomial theorem felt more like a proof than the combinatorial argument, because the 

former was more complex. As Ash said, “I just inherently doubt that it could be that simple.” This 

is perhaps an understandable reaction, as the argument that uses the binomial theorem is certainly 

longer and uses “heaver tools” and more symbols than the combinatorial argument, and it reflects 

a belief some students may have that correct, formal mathematics is necessarily complicated (e.g. 

Martin & Harel, 1989). Combinatorial arguments for binomial identities are often accessible 

enough that even K-12 children can understand them (Maher et al., 2007, 2015). This accessibility, 

however, may mean that some undergraduate mathematics students who are used to seeing more 

complicated algebraic or induction proofs may be more reluctant to accept that combinatorial 

proofs can indeed be rigorous mathematical proofs. Notably, Ash’s language suggests that they 

thought the proof needed to have certain characteristics that reflect what they would consider a 

complex proof. While they didn’t specify exactly what they meant by complex, these may include 

features such as length, a certain logical structure, formal mathematical symbols, etc. Thus, I 

consider this to be an episode in the data exemplifying Harel and Sowder’s (1998) ritual proof 

scheme. 

Another ritualistic feature of proof that came up a couple of times during students’ reasoning 

about combinatorial arguments was the use of symbols. For instance, in one of my interviews with 

Peyton, they gave a nice combinatorial argument of the identity ∑ (𝑛
𝑖
)( 𝑛

𝑛−𝑖
)𝑛

𝑖=0 = (2𝑛
𝑛

). They were 

able to articulate that each side of the identity counts the number of ways to designate n objects 

out of a set of 2n objects as “special.” The right side of the identity does this immediately, and 
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Peyton was able to conceive of the left side as splitting the 2n objects into two groups of size n 

and then counting the number of ways to designate a total of n objects as special when the objects 

are chosen from those two groups. Once they finished articulating their combinatorial argument 

successfully, I had the following exchange with them: 

Int.: Nice job! So, I’m curious. Yeah, do you think the argument that you just gave, do 

you think that that is a proof? 

Peyton:  No, because this is the bas-… If I did say it was a proof, I could hand this in with 

two sentences of speech and then get it published, and I don’t think it’s formal 

enough to be a proof. 

Int.:  Okay, and do you think the diagram is what makes it informal, or the fact that we’re 

counting makes it informal, or, yeah, why do you think it’s not formal enough? 

Peyton: I like to stick with my previous argument for counting proofs not being formal, and 

it’s basically, what if I’m wrong? There’s no math to back me up with it. There’s 

no algebra or induction to do that talks about it. 

Int.: Okay. 

Peyton:  It’s just me saying words.  

Int.: Okay.  

Peyton: I feel like it’s a good supplement for a proof, say if you did the math and then talked 

about this, or talked about this then did the math, then that would be a good proof. 

Int.: Okay. 

Peyton: But I don’t think this could stand alone. 

 

Here, we can see that Peyton did not seem to consider the correct enumerative argument they 

gave as explicitly involving mathematics, as evidenced by their statement, “There’s no math to 

back me up with it.” They also said, “There’s no algebra or induction to do that talks about it. It’s 

just me saying words.” I interpret these utterances to mean that Peyton expects mathematical proof 

to contain algebraic manipulations or a particular familiar structure like induction, and Peyton did 

not consider an argument to be a mathematical proof if it consists only of English words. This is 

an important finding, as it implies that some students may not believe combinatorial arguments (or 

other arguments that do not use mathematical symbols) could constitute rigorous mathematical 

proof. This finding also corroborates other research that has found that students may believe 

mathematical proofs should always use symbols or algebraic manipulations (Healy & Hoyles, 
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2000; Martin & Harel, 1989). I note here as well that Harel and Sowder (1998) do include a 

symbolic proof scheme in their framework. However, Harel and Sowder described this proof 

scheme as applying to situations in which students attempt to prove a proposition by seemingly 

haphazardly manipulating symbols appearing in the proposition while making no attempt to 

comprehend their meanings. Since Peyton did articulate an understanding of the symbols 

appearing in the binomial identity, I did not interpret their reasoning as an example of a symbolic 

proof scheme. 

5.1.2 Transformational proof scheme. In this section, I discuss two episodes from the data 

in which a student’s reasoning was coded as aligning with Harel and Sowder’s (1998) 

internalized/interiorized transformational proof schemes. Both of these proof schemes are 

characterized by the comprehension and use of a proof heuristic that renders conjectures into facts, 

with the difference concerned only with the extent to which the student reflects on the proof 

scheme (p. 262-264). Since this was not an important distinction in my analysis, I will hereafter 

simply refer to the transformational proof scheme. (I distinguish this from the contextual restrictive 

transformational proof scheme, which arose separately and which I discuss in Section 5.1.3.) 

Overall, this proof scheme emerged during episodes in the data in which the student articulated 

that they did consider a particular combinatorial proof (or combinatorial proof in general) to 

qualify as a rigorous mathematical proof. 

For the first example of this proof scheme we turn to Riley. In this episode, Riley had just 

articulated a combinatorial proof of the binomial identity (𝑛
𝑘

)(𝑘
𝑟
) = (𝑛

𝑟
)(𝑛−𝑟

𝑘−𝑟
); they argued verbally 

that both sides of the identity could count the number of ways to select k committee members, in 

which r of those committee members are qualified to have special veto power, out of a group of n 

congressional candidates.   
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Int.:  Does that feel like a proof, or does this just--? 

Riley:  Oh, no. 

Int.: Okay, and how come?  

Riley:  Well, part of it’s just that like, as I was saying earlier, this notion of pre-selecting 

qualified candidates, um, isn’t fully fleshed out. So, if I were to say specifically 

pre-select r qualified candidates and immediately assign them to the council, 

and then the exact same thing and the other set or whatever you want to call 

it, um, enumeration, that would work to me as a proof. But this wasn’t actually 

specific enough to say what I was wanting it to say, which I think also has to do 

with why I felt like this whole relation with r was nebulous, because I wasn’t 

actually defining it strictly correctly. It was more of just grasping for conceptual 

foothold. So, yeah, if I were to, like, submit a proof, then it would be, you know, 

committee times veto power essentially, and then equals, you know, specifically 

exactly r qualified candidates. So this would essentially more clearly eliminate the 

possibility that I was having where, oh, well, what if we mess up in deliberation 

and give too many, because this doesn’t actually prevent you from doing that as it 

stands.  

Int.:  Okay, but if you make sort of this refinement, it does feel like a proof? 

Riley:  Yeah.  

Int.:  So, when you say this is a proof, what are you taking to mean by proof? 

Riley:  What I would say is, here, given this problem, not only can you not come up 

with a counterexample, but you can’t conceive of the nature of a 

counterexample that would invalidate it, right? 

 

Although Riley initially answered “no” when I asked if they felt their argument qualified as a 

proof, I interpret their subsequent utterances to mean that their issue was related to the fact that 

they felt they had not defined the variables in their argument precisely enough. The issue to them 

was not inherently related to the fact that their argument was enumerative, and indeed when I asked 

if they would consider their argument a proof if they refined how they were defining the terms in 

their argument, they indicated that they would because any attempt to come up with a 

counterargument for their proof would fail. Thus, I interpret that Riley was aware of and accepted 

the proof heuristic of describing how each side of a binomial identity counts the same set of 

outcomes as a valid method of mathematical proof, and so it was coded as an instance of the 

transformational proof scheme. 



 137 

The next episode that exemplifies a student utilizing the transformational proof scheme 

involves Adrien. In this episode, Adrien was answering questions about the Six Proofs handout, in 

which they were asked to evaluate two proofs (combinatorial and non-combinatorial) each for 

three binomial identities (see Table 4.) When I asked Adrien if they thought the three combinatorial 

arguments constituted rigorous mathematical proofs, the following exchange occurred. 

Adrien:  I would say that’s a proof [points to the combinatorial proof of Theorem 1]. These 

two [points to the combinatorial proofs of Theorems 2 and 3], it’s debatable. 

Int.:  Okay, cool. So, it sounded like the premise of proving by arguing both sides count 

something, it sounds like that inherent quality wasn’t really what made these 

debatable for you. 

Adrien: No. 

Int.: It was more the particular language that was used? 

Adrien:  Well, it’s not just the language. It’s the fact that you’re leaving something up to the 

reader. I mean, when I’m reading a textbook and they give a proof, it’s like, I think 

one of the hated phrases by students is this—it’s like, “The remainder of this proof 

is left as an exercise to the reader.” And I’m like, “Oh, screw you too.” 

Int.: So you feel like these are kind of doing something like that? 

Adrien Yeah, I mean, not as much, because they actually do a complete proof of the original 

statement, but they are also leaving parts of them up to the reader as exercises, 

which is annoying. Right? 

 

From this and prior utterances by Adrien in the interview, I understood that Adrien viewed 

these combinatorial arguments as constituting mathematical proofs, but that the proofs were 

leaving details up to the reader. I would argue that this is a reasonable position; after all the 

combinatorial proof of Theorem 2 states only that, “The LHS of (2) counts the total number of 

committees of size k that could be formed from the n faculty members. The RHS of (2) counts the 

number of committees of size k that exclude Sofia and the committees that include her.” It is 

reasonable that students may desire more details in the proof justifying why the left and right sides 

of the identity count those committees, and figuring out how much justification in a proof is 

necessary can be a struggle for students (Harel & Sowder, 2007). However, we again see that 

Adrien was aware of the proof heuristic of enumerative argumentation and accepted it as a valid 
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method of mathematical proof. This episode therefore exemplified student reasoning aligning with 

Harel and Sowder’s (1998) transformational proof scheme. 

5.1.3 Contextual restrictive proof scheme. The third proof scheme that appeared in the data 

was Harel and Sowder’s (1998) contextual restrictive proof scheme. Harel and Sowder said that a 

student is using this proof scheme when, “conjectures are interpreted, and therefore proved, in 

terms of a specific context” (p. 268). Harel and Sowder then give the example of a student 

interpreting and proving a general statement about n-dimensional vector spaces in the specific 

context of Rn (p. 268). Similarly, in my data, when a student expressed that they felt a 

combinatorial argument constitutes proof, but only in a specific context, I coded those episodes as 

instances of the contextual restrictive proof scheme.  

As an example, when I gave Sydney the Six Proofs handout and asked them to comment on 

which arguments they felt were proofs, they expressed that they felt the combinatorial proof of 

Theorem 1 (which used abstract sets and subsets) was more rigorous than the combinatorial proof 

of Theorem 2 (which used committees and a particular named individual—Sofía). They stated that 

both arguments were “definitely still real proofs,” but that the combinatorial proof which used 

committees introduced “potential error for like red herring or a strawman or something like that.” 

When I asked them to say more about their thinking, they stated the following, referring to the 

combinatorial proof of Theorem 1.  

Sydney: This one is more rigorous in the sense that it does have a, um, more of just like what 

the definitions are and what exactly the notation represents as opposed to giving a 

definition to it or giving an example to those definitions. 

 

Here, Sydney characterized the combinatorial proof of Theorem 2 as “giving an example to 

those definitions,” which they felt made the proof less rigorous. While logically a combinatorial 

argument utilizing committees can be equally rigorous as one using sets and subsets, Sydney 
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seemed to indicate that they would disagree. This, combined with the fact that Sydney did still 

consider both arguments to constitute mathematical proofs, led me to code this as an instance of 

the contextual restrictive proof scheme. 

Another instance of this proof scheme occurred during my last interview with Adrien. In this 

interview, I asked Adrien to give a combinatorial proof of the identity ∑ ( 𝑖
𝑘

)𝑛
𝑖=𝑘 = (𝑛+1

𝑘+1
). One way 

that an individual could prove this identity combinatorially is to consider an ordered set containing 

n + 1 objects. Then, one can consider enumerating the number of ways to make an unordered 

selection of k + 1 of these objects. The right side of the identity does this, and the left side also 

does this by using a case breakdown and considering the largest element in a selection of k + 1 

objects. For instance, the first case considers such selections where the k + 1st item is the largest. 

There is only 1 = (𝑘
𝑘

) such selection. Next, we can consider selections where the k + 2nd item is 

the largest. Then, there are (𝑘+1
𝑘

) ways to pick the remaining k items to go into the selection, and 

so on. 

During Adrien’s interview, they struggled some with this problem, and then I suggested that 

they consider counting ways to select k + 1 numbers out of the set of natural numbers from 1 to n 

+ 1. (Since natural numbers are ordered, I hoped that this prompt would lead them to a solution 

similar to that given above.) They eventually did produce the combinatorial argument outlined 

above in the context of this particular set of natural numbers (see Figure 6.4), and then I asked 

Adrien whether they felt their combinatorial argument constitutes a proof. We had the following 

exchange: 

Adrien:  I would prefer induction, because the main thing about this is it feels like you’re 

actually assigning like a distinct property to the objects, which not every group 

of objects that you’re going to pick k from is going to naturally have that kind 

of property. 

Int.:  Right, like if we were picking dots, for example. 
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Adrien: Yeah. 

Witness: Although, they are distinct objects, right? 

Adrien:  Yeah, they’re distinct objects, but that means you’d be putting a pretty arbitrary 

ranking system on them.  

Int.: Okay, and that makes it feel less like it’s a valid mathematical proof?  

Adrien: I mean, it feels really arbitrary and the fact that it is arbitrary means that no matter 

what objects you have, you can just assign this ranking to them, and that’ll work. 

Int.: Okay. 

Witness: Interesting 

Int.: But you would say that you prefer induction? 

Adrien: Yeah, probably. 

 

 

 
 

Figure 6.4. Adrien proved the binomial identity ∑ ( 𝑖
𝑘

)𝑛
𝑖=𝑘 = (𝑛+1

𝑘+1
) by counting the number of 

ways to select k + 1 numbers out of the set {1, 2, 3, …, n, n+1}. 

 

Here, we can see that Adrien was struggling with the idea that a proof could be valid if an extra 

assumption was included without loss of generality (specifically the assignment of an ordering of 

the objects). Adrien felt that their combinatorial argument counting ordered objects was “arbitrary” 

and hence not as effective as induction would be in proving the general identity. I interpret that 

Adrien viewed the context they used for the proof (specifically, the numbers from 1 to n + 1) as 

being restrictive and “arbitrary,” and this was ultimately their main issue with the argument. 
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Because of this, I coded this episode as an instance of Adrien using the contextual restrictive 

transformational analytical proof scheme.  

5.1.4 Possible emergence of the authoritarian external conviction proof scheme. Besides 

Peyton, all of the students interviewed said that they had no prior experience with combinatorial 

proof. (Peyton happened to be taking a discrete-mathematics class which covered combinatorial 

proof during the timeframe in which the interviews took place.) For this reason, it is not surprising 

that the authoritarian proof scheme did not clearly emerge in the data. Harel and Sowder (1998) 

defined this proof scheme as occurring when for students, “their main source for conviction is a 

statement appearing in a textbook or uttered by a teacher” (p. 247). Thus, for the students in my 

study who lacked prior experiences with combinatorial proof from which to draw, I would not 

expect them to be able to make statements such as, “This combinatorial argument is valid because 

I saw my teacher present it as a proof in class.”  

Nevertheless, one of the students in the study, Riley, did at times appear to consider what an 

imagined authority might say about combinatorial proof. For instance, when I gave Riley the Six 

Proofs handout, I asked them whether they believed the combinatorial arguments constituted 

proof. We had the following exchange: 

Riley:  Yeah, I think this one [gestures to the combinatorial proof of Theorem 1], and I’ve 

had plenty of TAs that would mark down. 

Int.:  Oh, really? 

Riley: Yeah. Just in terms of, I don’t know, I feel like there’s this critical length of a 

proof, that you’re expected to meet, regardless of how simple the notion is. 

Where, even if this said all the words it needed to say, they would find something 

like, “Well, but was it by the commutativity of multiplication and addition of real 

numbers?” 

Int.: Okay, can you say—? 
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Riley:  I wouldn’t turn this in, even though it might be a very strong proof in the 

mathematical sense.13 

 

I infer here that Riley did believe that the combinatorial argument of Theorem 1 constituted 

proof, but they still said they would not turn it in because their teaching assistant (TA) would not 

think it was long enough. This episode exemplifies a tension that students sometimes feel when 

they are unsure about the level of detail that their instructors or TAs might expect when grading, 

which is part of the sociomathematical norms (Yackel & Cobb, 1996) of upper-division 

mathematics classrooms. It also harkens to the findings of (Healy & Hoyles, 2000) who found that 

students may simultaneously hold two different conceptions of proof: arguments they would adopt 

for themselves and arguments they considered would receive the best score from an instructor. The 

students recruited into my study had experience with proof at the college level, but they were more 

accustomed to the expectations of their instructors regarding proofs using algebraic manipulation 

or other techniques such as those learned in advanced calculus. Enumerative argumentation, where 

the expressions in the binomial identity are not manipulated at all, may be quite different than what 

the students were used to working with. This episode with Riley suggests that students in a new 

proving environment not only have to think about whether they themselves believe a combinatorial 

argument constitutes a valid mathematical proof, but they may also have to consider how that 

argument may be evaluated by a hypothetical authority. This perhaps suggests that Riley’s 

reasoning in this episode is—to some extent—following Harel and Sowder’s (1998) authoritarian 

external conviction proof scheme. However, Riley’s own opinion about whether the combinatorial 

 

 
13 I also coded this episode as an example of the ritual proof scheme, since Riley is attending to the length of the 

proof, which is a surface-level, ritualistic feature of the argument. Other researchers have also used multiple proof 

schemes simultaneously to describe student thinking or their proving activity (e.g. Housman & Porter, 2003; 

Kanellos et al., 2018; Sears, 2019). However, in this section I focus on this episode as a (potential) example of a 

student using an authoritarian proof scheme. 
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argument was a proof was separate from how they imagined a hypothetical TA may evaluate the 

argument (Riley felt that it was a proof), and so I coded this episode as only indicating a potential 

authoritarian proof scheme for Riley. Nevertheless, I offer the episode here as a point of discussion 

about the authoritarian proof scheme.  

Finally, I want to bring up one more interesting note about the authoritarian proof scheme and 

my data. Even though Peyton did have experience with combinatorial proof in the discrete 

mathematics class they were taking concurrently with my interviews with them, they did not feel 

that combinatorial arguments constituted rigorous mathematical proof (as I discussed in Section 

5.1.1). Since Peyton did have experience in an upper-division mathematics course with 

combinatorial proof, they were the only participant I would have expected to have reasoned along 

the lines of an authoritarian proof scheme, but that was not the case. It is unclear exactly why 

Peyton’s classroom experiences did not translate to an acceptance of combinatorial arguments as 

rigorous mathematical proof, but it might have to do with Peyton’s mathematical experience level 

compared with my four other study participants. Peyton had taken the fewest upper-division 

mathematics courses at the time the interviews took place, and so it is likely that their 

understanding of the concept of proof was earlier along in its development than that of the other 

four participants, and so this could have contributed to Peyton attending to more ritualistic features 

of combinatorial proof. It is possible (even likely) that had I interviewed students with more 

experience with combinatorial proof that I may have seen more instances of the authoritarian proof 

scheme. I mention this point again in the conclusion section where I discuss avenues for future 

research. 

5.1.5 Possible emergence of the perceptive empirical proof scheme. In addition, there were 

several instances in the data in which a student expressed that they felt a combinatorial argument 
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(or enumerative argumentation in general) did not constitute a proof but would help a person 

develop intuition regarding why an identity holds. This phenomenon was flagged often enough in 

the data (10 times, and across all five student participants) that I felt it may warrant a closer look 

even though it was initially not clear to me which (if any) of Harel and Sowder’s (1998) proof 

schemes the students were using in their reasoning. I illustrate this phenomenon with a couple of 

examples from the data. 

One of the first binomial identities that I gave to the students to prove combinatorially in the 

interviews was (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

). There are a number of possible combinatorial proofs of this identity, 

and Adrien nicely articulated the following correct argument:  

Adrien: So, you can either count n choose k spaces for, like, a number of objects. You can 

choose specifically non-distinct objects. So, order doesn’t matter at all—only thing 

that matters is location. You can either choose k spaces for k objects, or you can 

choose n – k spaces for where those objects aren’t going to be, so they fall into 

place, and that’s identical. So, these two are equal. That’s my intuition. 

 

We also see here that even though Adrien provided a correct and acceptable combinatorial 

proof of the identity, they immediately characterized their argument as their intuition. I asked 

Adrien if they would characterize their argument as a mathematical proof, and they said the 

following: 

Adrien:  Not really, I wouldn’t. I would characterize that as intuition. 

Int.:  Okay. 

Adrien: Because it’s not that formal. It’s something that I would do to explain to people, 

it’s like here’s some intuition for why these two are equal, but I don’t really 

consider it to be a formal proof. You could probably formalize it, but I don’t think 

what I just did was a proof. 

Int.: Okay, how would you formalize it to make it what you would call a mathematical 

proof? 

Adrien:  Good question. When I’ve seen these two be equivalent, I would get some 

explanation for the intuition, and then we’d just show with the factorials to 

prove that they’re equal. As for proving that they’re equal without using 

factorials, not entirely sure. 
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We see that Adrien thought one may have to use an entirely different proof method (i.e., “using 

factorials”) to show that the binomial identity holds, and it seems that this perspective could have 

something to do with their prior experience with binomial identities. I interpret Adrien’s utterances 

to mean that previously they may have seen an intuitive rationale for why this binomial identity 

holds, but that intuition was accompanied by a different kind of argument (e.g., one that uses 

factorials) to “prove” that it holds. This suggests that the way instructors choose to present and 

frame combinatorial proof may have an impact on students’ beliefs about combinatorial proof as 

a valid proof method. While combinatorial arguments can be helpful in building intuition about a 

binomial identity combinatorially (Lockwood et al., 2020), instructors could also emphasize that 

combinatorial arguments are not necessarily less rigorous than algebraic proofs or other types of 

proofs. 

To provide another example from the data in which a student expressed that they felt 

combinatorial arguments have intuitive value but are not rigorous mathematical proofs, I turn to 

Peyton’s comments about the combinatorial and induction arguments for Theorem 1 when I gave 

them the Six Proofs handout. When I asked Peyton for their initial impression of the two 

arguments, Peyton said that they “enjoy[ed]” the combinatorial one more, and when I asked them 

to explain why, they said:  

Peyton: Induction, it’s not really showing that something is…it’s not showing that these 

two sides are actually…you know, doing something. It’s just basically saying, 

here’s an identity that holds true, because it does…and [the combinatorial proof] is 

saying, this is why it is true. 

 

Here, Peyton was drawing a clear distinction between the induction argument which (in their 

perspective) shows that the identity holds, while the combinatorial argument explains why the 
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identity holds. However, when I asked Peyton if they felt the combinatorial argument was a proof, 

they said: 

Peyton:  Yeah, [the combinatorial argument], it doesn’t feel like it could be a proof. 

Int.:  Okay. 

Peyton: Because we don’t know if there is some special case where it doesn’t hold true. 

Int.: Okay. 

Peyton:  And this one is saying, okay, it does for one and it does for n + 1… 

Int.: Right. 

Peyton: So it is true, always. 

Int.: Okay. 

Peyton: So, this would be nice if a teacher was like, hey, here’s what’s happening 

[points to the induction argument], and then here’s why it’s happening [points 

to the combinatorial argument].  

 

I interpret these utterances to mean that even though Peyton thought that the combinatorial 

argument could help someone to understand intuitively why the binomial identity holds, they did 

not think that it constituted proof (while induction did).  

In terms of Harel and Sowder’s (1998) proof schemes, it might seem that these episodes are 

another manifestation of the ritual proof scheme, because the students may be attending to a 

ritualistic feature of proof—for instance, that they are supposed to be (or often are) unintuitive—

to claim that these combinatorial arguments are not proofs. However, intuitiveness is not part of 

the physical appearance of a proof (unlike the presence of symbols, length, use of a particular 

logical structure, etc.) and is more subjective, and so the ritual proof scheme did not seem 

appropriate. Instead, the proof scheme that seemed to fit best was the perceptual proof scheme, 

which Harel and Sowder (1998) described as occurring when,  

“[p]erceptual observations are made by means of rudimentary mental images—images that 

consist of perceptions and a coordination of perceptions, but lack the ability to transform 

or to anticipate the results of a transformation” (p. 255).  

 

This description does seem to fit the students’ characterizations of combinatorial proof in these 

episodes—that they can give one an intuitive understanding of why a binomial identity holds, but 



 147 

(in the students’ perspective) this understanding would have no connection to transformations of 

the binomial identity that would be needed to actually prove the identity. Their utterances indicated 

that they felt an actual proof would have to involve algebraic manipulations or induction.  

In any case, I contend that these episodes provide interesting insight into ways that students 

may perceive of combinatorial proof as fundamentally different from other types of proof. To 

students, combinatorial arguments may not feel rigorous enough to qualify as proof but offer 

intuition of why a binomial identity holds. This is closely related to the idea of a proof that explains 

(Hersh, 1993), and even seems to align with some definitions of a proof that explains that have 

been offered which specify that they need not be totally rigorous (e.g. Weber, 2002, pg. 14). Other 

researches have also argued that combinatorial proofs can generally be considered proofs that 

explain within the enumerative representation system (Lockwood et al., 2020), which means that 

they can help one understand combinatorially why a binomial identity (holds even if they may not 

provide an explanation in an algebraic or other representation system). 

5.2 Proof Schemes that Did Not Appear in the Data 

Finally, in this section I discuss Harel and Sowder’s (1998) remaining proof schemes for which 

I had no evidence of their emergence in my interviews with the students: symbolic, inductive, 

generic, constructive, and axiomatic. For some of these proof schemes—namely the generic and 

axiomatic proof schemes—it is likely that the main reason for their absence is simply the small 

sample size of my study. For instance, even though none of the students in my study ever explicitly 

referenced any mathematical axioms, I do think it is plausible that a student could reference an 

axiom while reasoning about combinatorial proof, and in that case the student would be using an 

axiomatic proof scheme. I also think that a student could potentially use a generic proof scheme 

when reasoning about combinatorial proof. Harel and Sowder (1998) describe this proof scheme 
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as occurring when “conjectures are interpreted in general terms, but [the student’s] proof is 

expressed in a particular context” (p. 271). In the case of combinatorial proof, this may apply to a 

situation in which a student is given a binomial identity that is stated generally with variables, but 

they may give a combinatorial proof that uses specific numerical values in place of those variables. 

This strategy of substituting specific values in for variables in binomial identities can be a useful 

heuristic for learning combinatorial proof (Lockwood et al., in press), but it was never used as a 

proof scheme for the students in my study, because I consistently and explicitly asked the students 

to give their final combinatorial proof in terms of the original variables appearing in the binomial 

identity.  

In addition to the small sample size causing some proof schemes not to emerge, I want to also 

make the point that three of these proof schemes—symbolic, inductive, and constructive—by their 

nature seem unlikely to come up in combinatorial proof contexts. According to Harel and Sowder 

(1998), the symbolic external conviction proof scheme, occurs when students manipulate symbols 

“without reference to their possible functional or quantitative reference” (p. 250). Since 

combinatorial proofs do not typically involve symbolic manipulation at all, this means a student 

reasoning about combinatorial proof is unlikely to use this proof scheme. I do not mean to say that 

students will never manipulate symbols when they are given a combinatorial proof task—

sometimes students have been observed verifying binomial identities algebraically before setting 

out to find a counting argument (e.g. Lockwood et al., in press). However, in these cases the 

students are working in the algebraic as opposed to enumerative representative system (in the sense 

of Lockwood et al., 2020), and so it would not be accurate to characterize the student’s 

combinatorial proof reasoning as falling under the symbolic proof scheme. Similarly, the inductive 

proof scheme is also unlikely to be used by a student reasoning about combinatorial proof. 
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According to Harel and Sowder (1998), this proof scheme is being used “[w]hen students ascertain 

for themselves and persuade others about the truth of a conjecture by quantitatively evaluating 

their conjecture in one or more special cases” (p. 252). Again, while students given a combinatorial 

proof task may sometimes quantitatively evaluate the binomial identity to verify that it holds, they 

are not in those instances operating within the enumerative representation system. Finally, Harel 

and Sowder’s constructive proof scheme is also unlikely to come up in combinatorial proof of 

binomial identities, because by definition this proof scheme can only be used by students who are 

proving an existence theorem.  

Overall, I have strong evidence that the students in my study used three of Harel and Sowder’s 

(1998) proof schemes (ritual, transformational, and contextual restrictive) to discuss and 

characterize combinatorial proof, and the students may additionally have used two more 

(authoritarian and perceptual). For the remaining five proof schemes (axiomatic, generic, 

symbolic, inductive, and constructive), I found no evidence of their emergence in my interviews 

with the students. I believe the ways in which these proof schemes did (and did not) emerge in the 

data reveal a number of insights about the nature of combinatorial proof as a mathematics topic, 

which I discuss in more detail in the following section.  

6. Discussion and Conclusion 

In this study, I used Harel and Sowder’s (1998) proof schemes as a lens to look at 

characteristics of combinatorial proof that make it seem different for students than some other 

types of proof. I also characterized combinatorial proof in terms of the components of Lockwood’s 

(2013) model, following Lockwood et al. (in press). I found that the students in my study used a 

variety of proof schemes to discuss and characterize combinatorial proof, including whether it 

constitutes a rigorous mathematical proof (and why). There were some students whose reasoning 
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aligned with a transformational proof scheme, and they concluded that since the argumentation in 

a correct combinatorial proof is valid, combinatorial proofs can be considered rigorous 

mathematical proofs. Other students used external conviction proof schemes to describe their 

reasoning, including the ritual proof scheme. These students expressed that because combinatorial 

proofs have certain ritualistic features (specifically that they are often more intuitive than other 

types of proof and do not involve symbolic manipulation) they do not qualify as rigorous 

mathematical proofs. In addition, there were other proof schemes that may have emerged from the 

data, specifically the authoritarian proof scheme and the perceptual proof scheme, which might 

describe situations where a student indicated that they did not think their TA would accept a 

combinatorial proof (even though the student thought combinatorial proofs are valid), or where 

students characterized combinatorial proofs as being merely intuitive arguments that make the 

identity “seem” true but that do not account for all possible cases of the binomial identity intended 

to be proven. In total, the students in my study used (or may have used) authoritarian, ritual, 

perceptual, transformational, and contextual restrictive proof schemes to discuss and characterize 

combinatorial proof.  

Because of the small sample size for my study, I anticipate that there are other proof schemes 

that students more broadly might use to discuss and characterize combinatorial proof. For instance, 

the students in my study did not refer to axioms when they were engaging in or discussing 

combinatorial proof, but it is possible if more students were interviewed that the axiomatic proof 

scheme may emerge. On the other hand, some of Harel and Sowder’s (1998) other proof schemes 

may be less unlikely to appear in future investigation of combinatorial proof. In particular, since 

combinatorial proof does not involve symbolic manipulation, the symbolic proof scheme is 

unlikely to emerge. Also, since the constructive restrictive proof scheme deals only with proofs of 
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existence theorems, it is unlikely to appear in a study investigating student thinking about 

combinatorial proof of binomial identities (though it might appear in studies looking at 

combinatorial proof of other types of theorems).  

Addressing my second research question, I contend that seeing which proof schemes students 

used to discuss and characterize combinatorial proof affords multiple useful insights about the 

nature of combinatorial proof. First, this study provides evidence confirming characteristics about 

the nature of combinatorial proof for students that had never actually been verified empirically by 

previous research. While it was not surprising to learn that some students view combinatorial proof 

as less valid than other types of proof (due to the lack of certain features they may be used to seeing 

in proofs, like symbols), it is nevertheless valuable to have concrete evidence confirming that this 

can happen. Second, the proof schemes lens also sheds light on other features of combinatorial 

proof that have not been discussed previously in the literature. For instance, while some previous 

studies have commented that combinatorial proofs can be easier and more accessible for some 

binomial identities than an algebraic or induction proof (e.g. Lockwood et al., 2020), I found that 

this feature itself made some students doubt that combinatorial proof could be a valid mathematical 

proof. Combinatorial proofs lack some ritualistic features that students may associate with a 

“complex” proof (like having a certain length, logical structure, mathematical symbols, etc.) and 

applying the lens of proof schemes helped me formally describe and situate this finding within a 

well-established framework. Similarly, the perceptual proof scheme is useful in helping to describe 

the role of intuition and how it shapes students’ understanding of the nature of combinatorial proof. 

In summary, the proof schemes framework and data from this study support the following 

insights about student thinking regarding the nature of combinatorial proof. I list them here as a 

concise way to frame an answer to the second research question that emerged in my data. 
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• Many combinatorial proofs are simple, and since some students may believe proofs are 

always complex, these students may not believe combinatorial proofs constitute 

rigorous mathematical proof. 

• Combinatorial proof does not involve symbolic manipulation, which may lead some 

students to think combinatorial proof is less rigorous than other types of proof. 

• Combinatorial proofs are often considered accessible and explanatory, which may 

influence some students to believe combinatorial proofs are merely intuitive arguments 

rather than fully rigorous mathematical proofs. 

• Combinatorial proofs are situated within particular contexts, which may cause some 

students to believe that combinatorial proofs qualify as a proof only restricted to those 

particular contexts (e.g., committees or ordered objects) rather than more generally. 

• Correct combinatorial proofs are mathematically rigorous and logically valid, and 

students using a transformational proof scheme can recognize this.  

• Correct combinatorial proofs may leave out details that some students may wish were 

present, but students can nevertheless accept combinatorial proof broadly as a valid 

proof method. 

 

Overall, my results suggest that students do seem to perceive of the nature of combinatorial as 

different from other types of proof. Whether or not these are productive views of combinatorial 

proof, instructors and researchers should be aware that students may have these conceptions about 

combinatorially proof as they teach and conduct proof-education research, respectively. In the 

classroom, instructors should understand that some students may believe combinatorial proof is 

less valid than algebraic, induction, or other types of proof for a variety of reasons, and so 

instructors should clarify for students why correct combinatorial proofs are indeed mathematically 

rigorous and logically valid. In terms of proof education studies, when researchers draw 

conclusions about student thinking about proof, they should be mindful that some of these 

conclusions may apply differently to student thinking about combinatorial proof. 

Regarding next steps, for a start, future research should continue to investigate proof schemes 

that students use to continue uncovering ways that students view the nature of combinatorial proof 

differently from other types of proof. My study is a first step in establishing that students do think 

about combinatorial proof differently, but future research with larger sample sizes or different 
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populations would continue to shed light on students’ use of proof schemes in combinatorial proof. 

For instance, perhaps other proof schemes (such as the axiomatic or generic proof scheme) may 

emerge, or we may see more widespread use of authoritarian or perceptual empirical proof 

schemes. In addition, future research could investigate not only the proof schemes students use to 

discuss and characterize combinatorial proof, but also proof schemes that students use to produce 

combinatorial proofs. Proof production was a not a focus of this study, primarily because all five 

participants of my study were so successful in producing combinatorial proof that it was more 

insightful to examine the ways they thought about combinatorial proof rather than the ways they 

produced combinatorial proof. However, future research with larger sample sizes or different 

populations may yield more variety in the quality and types of approaches students take, and hence 

categorizing students’ proof production in addition to their thinking about combinatorial proof 

could be useful.  
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CHAPTER 7 (Paper 3) – Investigating Combinatorial Provers’ Reasoning 

about Multiplication 

Abstract: Combinatorial proof is an important topic both for combinatorics education and proof 

education researchers, but relatively little has been studied about the teaching and learning of 

combinatorial proof. In this paper, I focus on one specific phenomenon that emerged during 

interviews with mathematicians and students who were experienced provers as they discussed and 

engaged in combinatorial proof. In particular, participants used a wide variety of cognitive models 

to interpret multiplication by a constant when reasoning about binomial identities, some of which 

seemed to be more (or less) effective in helping produce a combinatorial proof. I present these 

cognitive models and describe episodes that illustrate implications of these cognitive models for 

my participants’ work on proving binomial identities. My findings both inform research on 

combinatorial proof and highlight the importance of understanding subtleties of the familiar 

operation of multiplication. 

Keywords: Combinatorial proof, Multiplication, Counting problems 

 

1. Introduction 

 

Combinatorics is an increasingly important branch of mathematics with applications in 

computer science, engineering, statistics, as well as other areas of mathematics. In addition to its 

applicability, combinatorics has pedagogical value for mathematics instructors due to its 

accessibility and ability to provide opportunities for students to use creativity, search for patterns, 

and generalize (e.g., Lockwood & Gibson, 2016; Lockwood & Reed, 2018; Tillema, 2013). One 

class of combinatorics problems, combinatorial proof of binomial identities14, comes up in discrete 

mathematics, statistics, number theory, and a variety of other contexts. These problems can be 

tricky even for accomplished counters (e.g., Lockwood, Reed, & Erickson, in press), and yet this 

topic has received relatively little attention from the mathematics education research community.  

A binomial identity is an equation involving one or more binomial coefficients, such as the 

following: 

 

 
14 Combinatorial proof is a proof technique that can be applied to other types of theorems as well, but we focus on 

binomial identities in this paper. 
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                                (𝑛
𝑘

)𝑘 = 𝑛(𝑛−1
𝑘−1

).                                            (1) 

In this paper, I take combinatorial proof to mean any proof that establishes the veracity of a 

binomial identity by arguing that each side enumerates the same (finite) set. 15 The validity of these 

arguments is rooted in the fact that a set can have only one cardinality.  

For example, to prove the binomial identity (1) above, one could argue that each side counts 

the number of committees of size k with a chairperson that can be formed from a group of n people. 

In this case, the right side counts this set because there are n possible people who could be the 

chairperson, and then for every choice of one person to be the chairperson, there are (𝑛−1
𝑘−1

) ways 

of selecting the remaining k – 1 people for the committee. As a lead-in to the rest of this paper, I 

offer the following questions to the reader in order to provoke thinking about combinatorial proof 

(I present my research questions at the end of the section). First, why does (𝑛
𝑘

)𝑘 also count the 

number of committees of size k with a chairperson that can be formed from n people? Second, how 

are you thinking of the multiplication of the binomial coefficient by k?  

In this paper, I report on results from a study in which I interviewed five upper-division 

mathematics undergraduate students and eight mathematicians to investigate the ways that 

experienced provers think about and engage with combinatorial proof. I particularly focus on 

findings related to the ways that combinatorial provers conceived of and used multiplication. 

Students’ reasoning about multiplication is a topic that has been studied extensively in the K-12 

mathematics education literature (e.g., Greer, 1992, 1994; Mulligan & Mitchelmore, 1997; Steffe, 

 

 
15 We acknowledge that authors such as Lockwood et al. (in press) and Rosen (2012) have articulated two types of 

combinatorial proof – one type is that described above, and the second type involves arguing that each side of a 

binomial identity counts a different set and creates a bijection between the two sets. We do not focus on bijective 

proofs in this paper. 
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1994; Tillema, 2013), and, while some studies occur at the undergraduate level (e.g., Lockwood 

& Purdy, 2019a), it has not received as much attention at the postsecondary level, perhaps because 

educators and researchers might assume that undergraduate students understand the familiar 

operation of multiplication. However, as I will discuss, my data show that undergraduate students’ 

and mathematicians’ conceptions of multiplication are interesting and varied, and the cognitive 

models of multiplication they use can have implications for their combinatorial proving activity. I 

attempt to address the following research questions in this paper (I will elaborate particular 

terminology in these questions in the following sections):  

1. What cognitive models for multiplication do undergraduate students and mathematicians 

use when engaging in combinatorial proof of identities involving scalar multiplication? 

2. What are implications of these cognitive models for students’ engagement with 

combinatorial proof?  

 

Here I specify scalar multiplication to mean multiplication by a single positive integer constant 

k, such as (𝑛
𝑘

)𝑘. I narrow my results to scalar multiplication, as opposed to other expressions 

involving multiplication that may occur in a binomial identity, such as (𝑛
𝑘

)( 𝑘
𝑚

), to focus my 

arguments and due to space limitations, but I consider additional kinds of multiplication as an 

avenue for future research. 

2. Relevant Literature and Theoretical Perspectives on Combinatorial Thinking and 

Combinatorial Proof 

To situate my findings within the broader literature, I first discuss Lockwood’s (2013) model 

of students’ combinatorial thinking, which is one of two theoretical perspectives that I utilize in 

this study. I then continue this section with a look at previous work that has been conducted on 

combinatorial proof in the mathematics education literature, including how Lockwood’s (2013) 

model has been used to frame a previous study on combinatorial proof.  

2.1 Lockwood’s (2013) Model of Students’ Combinatorial Thinking  
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I begin with an overview of Lockwood’s (2013) model of students’ combinatorial thinking, 

which I view both as an aspect of relevant literature and as a theoretical framing for how I am 

taking combinatorial thinking in this paper. While this model was originally conceived as a 

framework to study student thinking about solving counting problems (i.e., problems of the form, 

“How many…?”), I found that in this study and in previous work (Lockwood et al., in press) the 

framework was also useful as a tool to study students’ and mathematicians’ work on combinatorial 

proof. 

Lockwood (2013) said that there are three components that can appear in a student’s 

combinatorial reasoning when solving a counting problem: formulas/expressions, counting 

processes, and sets of outcomes.  

 

Figure 7.1. Lockwood’s (2013) model of students’ combinatorial thinking. 

I will consider these components for a hypothetical student solving the Committees Problem, “A 

university department has 15 faculty members. How many ways could a 5-member hiring 

committee be formed if one of the faculty members must be the chairperson?” In this example, 
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sets of outcomes refers to the objects being counted as well as written or mental representations of 

these outcomes. A counter may, for instance, represent the outcomes of the Committees Problem 

using strings of letters with a subscript, such as “AchairBCDE” to indicate the committee of faculty 

members A, B, C, D, and E where faculty member A is the chairperson. Counting processes refers 

to the mental or physical processes that one carries out to enumerate the outcomes. A counter may 

for instance use the Multiplication Principle (which I discuss in Section 3.1), and break the problem 

down into a sequence of two tasks: choosing one of the 15 faculty members to be a chairperson, 

then choosing 4 out of the remaining 14 faculty members to fill out the rest of the committee. 

Finally, formulas/expressions describe the mathematical formulas and/or expressions that a 

counter may write down as their answer to the counting problem. For instance, the aforementioned 

two-stage counting process would yield the expression  15 × (14
4

). As Lockwood (2013) noted, I 

could alternatively go from the formulas/expressions component of the model to counting 

processes by conceiving of the expression 15 × (14
4

) as having an underlying counting process. 

This kind of realization is critical to the writing of a combinatorial proof. For instance, it may be 

useful for a combinatorial prover to analogously conceive of the expression 𝑛 × (𝑛−1
𝑘−1

) as 

suggesting a counting process involving a sequence of two tasks, for which there are n and (𝑛−1
𝑘−1

) 

ways each task could be completed (in that order). However, this is not the only way that the 

expression could be interpreted. Multiplication is used for a variety of mathematics problems, and 

a student could alternatively conceive of 𝑛 × (𝑛−1
𝑘−1

) as underlying a counting process involving a 

task that can be completed (𝑛−1
𝑘−1

) different ways, and then scaling the outcomes of that task by a 

factor of n. These differences in the way that an expression (and particularly multiplication) can 

be interpreted will be important as I discuss the results of my study later in this paper. 
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2.2 Previous Work on Combinatorial Proof 

I identified only two prior studies that focused on undergraduate students’ thinking about and 

engagement in combinatorial proof. First, Engelke Infante and CadwalladerOlsker (2010, 2011) 

conducted a study in which they looked at students’ solutions to exam questions asking for a 

combinatorial proof of two binomial identities. They examined the solutions to see what 

difficulties arose for the students and found that the students appeared to struggle with (a) language 

mimicking, (b) inflexibility of context, (c) misunderstanding of combinatorial functions, and (d) 

failure to count the same set (p. 95-96). Linked to these difficulties, Engelke Infante and 

CadwalladerOlsker (2011) observed that the students may have engaged in pseudo-semantic proof 

production, which is based on the distinction between semantic and syntactic proof production. 

This distinction, articulated by Weber and Alcock (2004), describes qualitatively different 

approaches students can take to proof, depending on whether they use internally meaningful 

instantiations of the mathematical objects they are working with. Weber and Alcock (2004) 

defined semantic proof production as, “[when the] prover uses instantiation(s) of the mathematical 

object(s) to which the statement applies to suggest and guide the formal inferences that he or she 

draws” (p. 210), and they defined syntactic proof production as when a proof is, “written solely by 

manipulating correctly stated definitions and other relevant facts in a logically permissible way” 

(p. 210).  

While this distinction may seem straightforward to apply to proofs in domains such an analysis 

or algebra, it can be difficult to see how these ideas might carry over to combinatorial proof, since 

it is a proof strategy where the prover does not (typically) manipulate the expressions in the 

binomial identity. Engelke Infante and CadwalladerOlsker (2011) contended that students may 

still write combinatorial proofs in a way that is not guided by useful instantiations of the 
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expressions in the identity though. To describe how this may happen, they defined pseudo-

semantic proof production as “the attempt to engage in a semantic proof production process, but 

relying on the syntax of a previously encountered proof when faced with a term that the student 

cannot explain” (p. 96). In writing about the same study, Engelke and CadwalladerOlsker (2010) 

also found that having students write a specific “How many?” question when engaging in 

combinatorial proof may help them be more successful. While it is difficult to know for certain by 

looking only at student exam solutions, Engelke Infante and CadwalladerOlsker’s (2010, 2011) 

work provides evidence that combinatorial proof can be difficult for students and that students 

may try to imitate enumerative arguments they previously encountered if they get stuck.  

The only other study I found in the literature addressing combinatorial proof was one that 

colleagues and I conducted more recently. We carried out a 15-session teaching experiment (Steffe 

& Thompson, 2000) that covered a variety of combinatorics topics with two vector-calculus 

students (Lockwood et al., in press). The last three sessions of the teaching experiment were 

centered around combinatorial proof of binomial identities, and we could study the students’ 

reasoning on combinatorial proof based on their trajectory along the prior 12 teaching experiment 

sessions. In this study, we found that the students seemed to benefit from two particular 

instantiations: (a) focusing on a particular context (e.g., counting passwords or committees), and 

(b) considering specific values of n or other variables appearing in the identity to be proven. For 

instance, when the two students tried to prove (2𝑛
𝑛

) = ∑ (𝑛
𝑘

)( 𝑛
𝑛−𝑘

)
𝑛

𝑘=0
, it was very useful for them 

to consider the case where n = 5. This enabled them to expand the summation, and then they could 

imagine the terms counting ways to select 5 people from a set of 10 people split across two groups 

of 5. After this realization they were able to generalize back to the original binomial identity and 
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provide a correct combinatorial proof. Finally, we also found that a potentially useful way to 

prepare students for combinatorial proof is to give them opportunities to generalize while solving 

counting problems and ask them to solve counting problems two different ways.  

In that study, my colleagues and I used Lockwood’s (2013) model of students’ combinatorial 

thinking to frame our findings, explaining that student thinking about combinatorial proof could 

be thought of as moving counterclockwise around the model starting at formulas/expressions (see 

Figure 7.2). We argued that a student who is given a binomial identity to prove will first have to 

interpret the expression on one side of the identity as having an underlying counting process which 

enumerates a set of outcomes (in the sense of Lockwood, 2013). The student must then imagine 

how the expression on the other side of the identity could enumerate the same set of outcomes. 

 

Figure 7.2. Lockwood et al.’s (in press) description of students’ typical trajectory through the 

model when engaging in combinatorial proof.  
 

In particular, a student who is given a binomial identity to prove starts by considering one side of 

the binomial identity as an expression with an underlying counting process. The student has to 

conceive of what that counting process may be by interpreting the quantities and operations 

involved. For instance, the presence of addition in the expression may correspond to a counting 
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process involving a case breakdown, or multiplication may correspond to an application of the 

Multiplication Principle. Finally, the counter must conceptualize the set of outcomes that are being 

organized or generated by this counting process, and then try to think of how the other side of the 

binomial identity can count the same set of outcomes. This is how we used Lockwood’s (2013) 

model to frame out investigations of student thinking about combinatorial proof in Lockwood et 

al. (in press), and I will use the model as a theoretical lens in the same manner for this study. 

This prior work on combinatorial proof is valuable and may help give instructors more 

pedagogical ideas when covering combinatorial proof. However, questions regarding student 

thinking about combinatorial proof still remain unanswered, and addressing these gaps in the 

literature is one goal of the research discussed in this paper. In particular, while my colleagues and 

I previously looked at other aspects of student thinking about combinatorial proof (Lockwood et 

al., in press), we did not focus on how they thought about the mathematical operations involved in 

the binomial identities. While it may be easy to assume that undergraduate mathematics students 

understand what operations such as multiplication do, we argue that interpreting these operations 

combinatorially in the context of a binomial identity can introduce subtleties that are important yet 

not always appreciated in college-level classrooms. Before presenting the results for my study, I 

first discuss previous findings from the literature related to multiplication within combinatorics.  

3. Relevant Literature and Theoretical Perspectives on Multiplication within Counting 

In Section 3.1, I describe some work that has been conducted on students’ reasoning about 

multiplication within counting to help me frame my results. There have been few such studies that 

have been conducted at the undergraduate level, and so in Section 3.2 I discuss the larger body of 

work aimed at understanding student thinking about multiplication at the K-12 level. This informs 
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my theoretical framework for how I am taking cognitive models of multiplication in this paper, 

which I elaborate at the end of Section 3.2.  

3.1 Multiplication within Counting 

As I have pointed out, interpreting mathematical operations as part of a counting process 

(Lockwood, 2013) is a key aspect of combinatorial proof. Binomial identities may contain many 

different mathematical operations, but, in this paper, I focus on multiplication. Multiplication is a 

familiar operation to undergraduate students, yet in my experience teaching combinatorics, I have 

found that students do not always know when to multiply while solving counting problems. This 

has also been found in some studies of undergraduate students; for example, researchers have 

found that undergraduate students may confuse situations requiring multiplication versus addition 

(see also Kavousian, 2008; Sowder et al., 1998). 

In combinatorics, multiplication arises as such a fundamental aspect of counting that there is a 

guiding principle describing when to multiply when solving counting problems – this is called the 

Multiplication Principle. Tucker (2002) offered my preferred statement of the Multiplication 

Principle: “Suppose a procedure can be broken down into m successive (ordered) stages, with r1 

different outcomes in the first stage, r2 different outcomes in the second stage, …, and rm different 

outcomes in the mth stage. If the number of outcomes at each stage is independent of the choices 

in the previous stages, and if the composite outcomes are all distinct, then the total procedure has 

𝑟1 × 𝑟2 × ⋯ × 𝑟𝑚 different composite outcomes” (p. 170). Despite how fundamental the 

Multiplication Principle is for counting, Lockwood, Reed, and Caughman (2017) found that 

textbook statements of the Multiplication Principle vary significantly more than the statements of 

key definitions and theorems in other domains (such as limit, derivative, and the Fundamental 

Theorem of Algebra). Lockwood et al. (2017) found that textbook statements of the Multiplication 
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Principle could be classified into three types—structural, operational, and bridge—depending on 

whether the statement characterized the multiplication as counting certain types of outcomes (like 

n-tuples) or ways of completing a staged procedure. Tucker’s (2002) statement of the 

Multiplication Principle, for instance, is considered a bridge statement. It is possible that different 

statement types could affect students’ perspectives on counting in general; for instance, operational 

statements could influence students to think about counting ways to complete a process, whereas 

structural and bridge statements might help encourage students to approach counting problems 

with a more set-oriented perspective (Lockwood, 2014). With the variety that exists among 

textbook statements of the Multiplication Principle and the implications that different types of 

statements may have on students’ combinatorial activity, Lockwood et al. (2017) argued, “[T]he 

Multiplication Principle is much more nuanced than instructors and students perhaps give it credit 

for” (p. 31). 

Building off this textbook analysis, Lockwood and Purdy (2019a) worked to study how 

students come to understand and make sense of the Multiplication Principle. They used the 

teaching experiment methodology (Steffe & Thompson, 2000) with two undergraduate students 

and followed the guided reinvention heuristic (Freudenthal, 1991). Lockwood and Purdy stated 

that there are two necessary conditions (potentially among others) for multiplication to be an 

appropriate operation in a counting problem: independence and distinct composite outcomes. By 

independence, Lockwood and Purdy meant independence of the stages in a counting process, 

specifically that the choice of an option in a given stage does not affect the number of options in 

any subsequent stage of the process. For example, to count the number of 2-digit PINs where 

repetition is not allowed, we could multiply 10 × 9, because regardless of which of the 10 possible 

digits we choose for the first position in a PIN, there are 9 options for which digit could fill the 
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second position. By distinct composite outcomes, Lockwood and Purdy meant that the generation 

of each outcome by exhaustion of every possible way to carry out the stages of the counting process 

must not produce any duplicates. Lockwood and Purdy demonstrated an example where this 

condition breaks down by showing a common incorrect student solution the problem, “How many 

3-letter sequences made of the letters a, b, c, d, e, f contain the letter e, where repetition of letters 

is allowed?” The process of first selecting a position in the 3-letter sequence for an ‘e’ and then 

multiplying by 62 (the number of ways to fill the remaining positions with any of the six letters) 

overcounts because it generates outcomes like “eea” more than once. In Lockwood and Purdy’s 

guided reinvention, through carefully selecting tasks for the student participants, they were able to 

help the students become attuned to the importance of independence and distinct composite 

outcomes. They also demonstrated that even students who can successfully solve counting 

problems involving multiplication may find it challenging to characterize precisely when to 

multiply in counting. They additionally identified subtleties regarding the Multiplication Principle 

that textbooks do not always explicitly address and yet are critical to multiplication in counting, 

particularly related to handling issues of order in counting (Lockwood & Purdy, 2019b). 

Throughout Lockwood and Purdy’s (2019a) study, the students they interviewed consistently 

indicated that they interpreted multiplication in a combinatorial context as joining selections at 

different stages of a counting process to produce an outcome. That is, they thought about 

generating an outcome by considering a multi-stage process for forming an outcome and 

multiplying together the number of options for each stage in the process. Indeed, this is a fairly 

typical way of conceiving of multiplication in counting. One idea that did not come up in 

Lockwood and Purdy (2019a), however, is that there might be other interpretations or mental 

models that counters may have for multiplication. It is not surprising that alternative models of 
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multiplication did not come up in Lockwood and Purdy (2019a)—it is likely in part due to the 

sample size (two students) and because the students in their study were given contextualized 

problems to solve (problems where the element selection model of multiplication is readily 

applicable) rather than decontextualized mathematical expressions to interpret. However, students’ 

mental models of mathematical operations, including multiplication, are highly relevant in 

combinatorial proof, since interpreting de-contextualized expressions as having an underlying 

counting process (as I argued in Section 2.2) lies at the heart of these types of problems. I did not 

identify any studies at the undergraduate level that examined students’ mental models of 

multiplication, which suggests that much remains unknown about what other mental models of 

multiplication (besides element selection) counters may have and what implications these models 

may have for their combinatorial proof activity. 

To examine in the literature how certain ideas about multiplication might play into peoples’ 

engagement with proving combinatorial identities, I turned to K-12 mathematics education 

literature where there has been more work in this area. I elaborate such literature in the next section, 

and I additionally introduce the construct of cognitive models of multiplication, which I will use, 

together with Lockwood’s (2013) model, as my second theoretical lens to frame my study. 

3.2 Relevant Literature on Multiplicative Reasoning and Cognitive Models 

3.2.1 Literature on multiplicative reasoning. To my knowledge, there has been no research 

done on the mental models of multiplication that undergraduate students use when they engage in 

combinatorial proof activity. As I noted previously, one reason for this could be that since 

multiplication is a familiar operation for college students, it is easy to assume that students 

understand it. Understandably, there has been much more work conducted in this area in 

mathematics education at the K-12 level. The Common Core State Standards identified several 
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situations (e.g. equal groups, arrays/area, and comparison) involving multiplication that K-12 

students should be exposed to (Common Core State Standards Initiative, 2010), and numerous 

researchers spanning several decades have studied how young children think about multiplication 

of positive whole numbers (e.g., Greer, 1992; Mulligan & Mitchelmore, 1997; Tillema, 2013). 

This is a natural research inquiry, since primary school is typically where a student learns how to 

multiply. While I do not provide a comprehensive review of literature on multiplication among 

young students, here I highlight some studies and ideas that I use in this paper. In particular, I will 

highlight work that has established that there are different ways in which students think about and 

approach problems involving multiplication.  

Researchers such as Sowder et al. (1998) have found that multiplicative reasoning does not 

develop as naturally for children as additive reasoning. Multiplicative reasoning develops slowly, 

with less than 50% of fifth graders being proficient multiplicative thinkers (Clark & Kamii, 1996; 

Sowder et al., 1998). Difficulties that arises when children first learn multiplication include 

grappling with a “many-to-one correspondence” (Clark & Kamii, 1996, p. 43) and moving away 

from singleton units and to a composition of units—for example, 4 baskets, each containing 3 

kittens (Behr et al., 1994; Sowder et al., 1998). Sowder et al. (1998) stated that, “[t]oo often, 

problems can be solved by applying rules learned long ago, without any attempt to make sense of 

the relationships inherent in the problem” (p. 132), and that it is important to give students 

problems that require sense-making to strengthen multiplicative reasoning.  

Multiplication is often introduced to children in the second grade and is typically presented as 

an efficient calculation of repeated addition (Clark & Kamii, 1996). Similarly, Confrey (1994) has 

advocated that teachers should use a splitting conception of multiplication, where a split is defined 

as, “an action of creating simultaneously multiple versions of an original,” (Confrey, 1994, p. 292). 
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However, the interpretation of multiplication as repeated addition is frequently inadequate in 

helping students navigate some multiplicative situations (Sowder et al., 1998), such as those 

involving a Cartesian-product context (Mulligan & Mitchelmore, 1997). Specifically in 

combinatorics, Batanero et al. (1997) also found that 14- and 15-year-old students may find it 

difficult to distinguish combinatorial situations requiring addition from those requiring 

multiplication. Notably, Kavousian (2008) reported similar difficulties among undergraduate 

students. 

One of the ways that researchers have tried to understand children’s thinking about 

multiplication is by studying the intuitive models they employ to solve problems. In the K-12 

literature, some researchers have used intuitive multiplication models to mean an internalization 

of multiplication as corresponding to a particular problem situation (e.g., Fischbein, Deri, Nello, 

& Marino, 1985). Some researchers such as Tillema (2013) have similarly looked at linear and 

nonlinear meanings of multiplication that students develop as they progress through K-8 curricula. 

Other researchers, however, have found it preferable to study and define children’s intuitive 

models of multiplication in terms of the calculation strategies that they use (e.g., Anghileri, 1989, 

and Mulligan & Mitchelmore, 1997). Anghileri (1989) was one of the earliest researchers to use 

intuitive multiplication models to study children, and Anghileri’s (1989) results suggested that 

children use three models for whole-number multiplication: unitary counting, repeated addition, 

and multiplicative calculation. Others, such as Steffe (1994) also observed children’s multiplying 

schemes and found they employed part-to-whole units-coordinating schemes (e.g., finding how 

many smaller triangles are inside larger triangles) and iterative multiplying schemes (e.g., counting 

by threes).   
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Mulligan and Mitchelmore (1997) interpreted intuitive models as calculation strategies that 

young children use to solve multiplication problems, and they extended earlier results with their 

longitudinal study aimed at understanding such intuitive models, how these intuitive models relate 

to the structure of the problem being solved, and how these intuitive models develop over time. 

They followed Nesher (1988) in referring to the structure of the problem being solved as its 

semantic structure. They used 5 of the 10 multiplicative semantic structures identified by Greer 

(1992): equivalent groups, rate, comparison, array, and Cartesian product. The other 5 semantic 

structures were excluded because they involved measurement (a context that the 2nd- and 3rd-grade 

students being studied would not have been familiar with) or were more applicable to 

multiplication by rational numbers (instead of integers). Examples from Mulligan and 

Mitchelmore’s (1997) study of these semantic structures are given in Table 7.1.  

Table 7.1. Mulligan and Mitchelmore’s (1997) multiplicative semantic structures (p. 314). 

Semantic Structure Example Problem 

Equivalent groups 
Peter had 2 drinks at lunchtime every day for 3 days. How 

many drinks did he have altogether? 

Rate 
If you need 5 cents to buy 1 sticker, how much money do 

you need to buy 2 stickers? 

Comparison 
John has 3 books, and Sue has 4 times as many. How many 

books does Sue have? 

Array 
There are 4 lines of children with 3 children in each line. 

How many children are there altogether? 

Cartesian product 

You can buy chicken chips or plain chips in small, 

medium, or large packets. How many different choices can 

you make? 

 

After they gave the children problems from each of these semantic structures, Mulligan and 

Mitchelmore (1997) identified three intuitive models that the children used (p. 316): 

1. Direct counting (where the children simply counted all of the items being enumerated 

without identifying or leveraging any multiplicative structure in the problem), 

2. Repeated addition (where the children employed a calculation strategy such as rhythmic 

counting forward, skip counting forward, repeated adding, or additive doubling), 

3. Multiplicative operation (where the children used a known or derived multiplicative fact). 
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Mulligan and Mitchelmore (1997) found that the repeated addition model was the most 

frequently correctly applied model for all semantic structures except comparison (for which the 

multiplicative operation model was most frequently correct). There was consistent progression in 

the intuitive models used by the students from direct counting to repeated addition, but even after 

instruction there was a strong preference for the repeated addition model among the children. 

Furthermore, although there was steady improvement in the performance among the children, 

comparison and especially Cartesian product problems remained difficult for the children to solve, 

possibly because it is more difficult to see the equal-groups structure that allows the use of their 

preferred intuitive multiplication model of repeated addition.  

3.2.2 Cognitive models. The above discussion represents a sample of the literature available 

on the ways that K-12 children think about and use multiplication to solve problems. While much 

work has been done to this end, little research has been conducted on how undergraduate students 

use and think about multiplication when counting. In particular, I could not identify any studies 

that looked at the different models of multiplication (such as an array, as equivalent groups, etc.) 

that undergraduate students might use to solve problems, including combinatorial proof problems 

that involve interpreting expressions involving multiplication. Also, it is not clear which of these 

models for multiplication are the most productive for students engaging in combinatorial proof, or 

what other implications these models may have on their combinatorial activity.  

To help me investigate these questions, in my study I used the construct of cognitive models to 

mean someone’s personal representation of what a given instance of the operation of multiplication 

entails. This construct is similar to Mulligan and Mitchelmore’s (1997) semantic structures; 

however, my use of cognitive models was intended to go beyond a classification of pre-existing 
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problem types – I also attempt to capture students’ and mathematicians’ mental representations of 

what multiplication is doing in a binomial identity. In addition, I do not consider cognitive models 

to be the same as the intuitive models construct used by Mulligan and Mitchelmore (1997) and 

others, since this was used to refer to children’s calculation strategies for multiplication. I do not 

consider this construct to be relevant to my work, since my participants were not carrying out 

calculations but instead interpreting generalized identities involving multiplication. This construct 

of cognitive models is the second theoretical lens I use to analyze and present the results of my 

study.  

4. Methods 

I conducted video-recorded, semi-structured, task-based interviews (Hunting, 1997) with five 

undergraduate students and eight mathematicians. These interviews were part of a larger study 

aimed at understanding mathematicians’ and upper-division undergraduate students’ reasoning 

and beliefs about combinatorial proof. I describe the data collection for both the students and the 

mathematicians, and then I discuss the data analysis I conducted for writing this paper. 

4.1 Data Collection 

4.1.1 Student data collection. I recruited students from upper-division mathematics courses 

at a large university in the western United States to participate in an hour-long individual task-

based selection interview. In these selection interviews, I asked each student to solve 

straightforward combinatorics problems to see if the students were attuned to sets of outcomes and 

whether they were familiar with combinations and binomial coefficient notation. I also asked them 

to prove basic theorems (such as the fact that the sum of two even integers is an even integer) to 

see if the student had experience with and could navigate a mathematical proof. From the round 

of selection interviews, I selected five students who satisfied these criteria. Table 7.2 shows the  
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Table 7.2. Classes taken by student participants. 

 Sydney* Riley Adrien Peyton Ash 

Calculus I ✓ ✓ ✓  ✓ 

Calculus II ✓ ✓ ✓  ✓ 

Infinite Series & Sequences ✓  ✓ ✓ ✓ 

Vector Calculus I ✓ ✓ ✓ ✓ ✓ 

Vector Calculus II ✓  ✓ ✓ ✓ 

Applied Differential Equations ✓  ✓ ✓ ✓ 

Mathematics for Management, Life, and Social 

Sciences 
    

✓ 

Linear Algebra I ✓ ✓ ✓ ✓ ✓ 

Linear Algebra II ✓  ✓ ✓ ✓ 

Advanced Calculus ✓  ✓  ✓ 

Introduction to Modern Algebra ✓  ✓  ✓ 

Metric Spaces and Topology  ✓** ✓**   

Discrete Mathematics ✓ ✓  ✓** ✓ 

Applied Ordinary Differential Equations ✓  ✓   

Applied Partial Differential Equations ✓     

Fundamental Concepts of Topology ✓** ✓**  ✓**  

Numerical Linear Algebra  ✓    

Introduction to Numerical Analysis   ✓   

Computational Number Theory  ✓    

Mathematical Modeling   ✓   

Actuarial Mathematics   ✓   

Complex Variables     ✓ 

Non-Euclidean Geometry     ✓ 
* These are pseudonyms. 

** Indicates that the student was enrolled in this course at the time the interviews were conducted. 
 

classes each of the students had taken. Overall, the students had each taken at least one proof-

based mathematics class and had each made some progress toward fulfilling the required courses 

for a mathematics major. 

Next, these five students each participated in four hour-long individual interviews, which 

occurred approximately 4-14 days apart as the students’ schedules permitted. During these 

interviews, the students were asked to solve combinatorics problems, give counting arguments for 
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the veracity of binomial identities, and answer reflection questions about their approach to and 

reasoning about combinatorial proof.  

4.1.2 Mathematician data collection. I recruited mathematicians from three different 

universities in the western United States. These mathematicians were a convenience sample 

recruited via email for my study. I included both mathematicians who did and did not conduct 

research in combinatorics. Table 7.3 shows the research background and experience of the 

mathematicians.  

Table 7.3. Mathematician participants’ research and teaching experience information. 

Name* Research Experience 
Regularly Taught 

Combinatorics 

Ridley 
Algebraic combinatorics & bijective combinatorics (13 

years) 
Yes 

Dominique 
Competitive coloring algorithms and parameters defined on 

graphs (20 years) 
Yes 

Jaiden 
Computability, computable analysis, & algorithmic 

information theory (3 years) 
Yes 

Skyler Dynamical systems and number theory (15 years) No 

Emery Modular forms and partition functions (17 years) Yes 

Lake 
Partial differential equations & related functional analysis 

(60 years) 
No 

Justice Representation theory of finite groups (6 years) Yes 

Robin Geometry, algebra, and mathematics education (40 years) No 
*These are pseudonyms. 

Each mathematician participated in a single, 90-minute individual interview. During these 

interviews, I asked the mathematicians to give combinatorial proofs of various binomial identities 

and answer reflection questions about their approach to, reasoning about, and pedagogical opinions 

of combinatorial proof.  

4.2 Data Analysis 

To analyze these data, all of the videos were transcribed, and then I re-watched all of the 

interview videos, making note of key episodes related to my research questions and following the 
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thematic analysis methodology (Braun & Clarke, 2006). I flagged every instance in the data where 

a participant (student or mathematician) interpreted an expression involving multiplication, and 

then I exhaustively coded each of these instances according to which cognitive model the 

participant used. My initial list of codes was based off Mulligan and Mitchelmore’s (1997) 

semantic structures (these can be found in Table 1), and I added new cognitive models to my list 

as they arose in the data. To decide which code to apply for a given episode in the interviews, I 

examined the participants’ utterances about how they were conceiving of an instance of 

multiplication and any additional representations they gave of their thought process if they wrote 

anything down. For instance, if a participant alluded to “copies” or “duplicates,” this could indicate 

they were using an equivalent groups cognitive model of multiplication; likewise, a mention of 

“Cartesian products” might correspond to the Cartesian product cognitive model. I continued in 

this manner to code all episodes where a participant interpreted an instance of multiplication until 

the data reached saturation. I also discussed key episodes and findings that were emerging from 

the initial analysis with another researcher, and together we reviewed parts of the interviews that 

warranted additional analysis. We discussed the codes that were being used to ensure that they 

faithfully represented the data, and any episodes in which it was difficult to determine the 

participant’s cognitive model for multiplication were discussed thoroughly until both my research 

colleague and I were confident that the code being applied was appropriate. I also followed 

Lockwood et al. (2019) in considering participants’ combinatorial proving activity as their 

interpreting an expression with an underlying counting process that enumerates/generates some 

set of outcomes (Lockwood, 2013). 

5. Results 
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In this section, I discuss the results of my investigation into how the students and 

mathematicians conceived of multiplication when engaging in combinatorial proof. Ultimately, 

the big points I want to emphasize are 1) there was variety in terms of the cognitive models the 

mathematicians and students demonstrated in the interviews, and 2) those different cognitive 

models were not all equally effective in helping the participants correctly solve combinatorial 

proofs. In fact, while six cognitive models arose in the interviews, only two of the cognitive models 

were used productively by participants in any of the interviews. For the purposes of this paper, 

when I characterize a student or mathematician’s work as productive, I mean that their attempts 

resulted in a logically and mathematically correct combinatorial argument for the identity. By this 

I do not intend to imply that a participant’s work was not valuable or enriching if their attempts 

did not result in a correct proof; I simply use the term in this section to distinguish between 

cognitive models that did (and did not) result in correct proofs. 

I frame these results in the following way. First, in Section 5.1, I present the cognitive models 

for multiplication that the mathematicians and students used in their interviews, which addresses 

my first research question. Some of the student and mathematician participants used a cognitive 

model aligned with one of the five semantic structures given by Mulligan and Mitchelmore (1997), 

but some of them used cognitive models that I had not expected. Second, in Section 5.2, I highlight 

participant work that demonstrates the two cognitive models that were used on combinatorial 

proofs that were correctly proven. In particular, in Section 5.2.1 I show a student’s use of the 

element selection model, which was by far the most productively used cognitive model, and in 

Section 5.2.2 I present a mathematician’s use of the equivalent groups model, which was the only 

instance of a correct proof utilizing this model. Then, to better understand why other models were 

perhaps not productively used, in Section 5.3 I show two episodes in which the participants were 
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not successful in leveraging cognitive models for the purpose of combinatorial proof. In Section 

5.3.1 I show how a student used a weight cognitive model but could not find a way to connect that 

model to both sides of an identity. Finally, in Section 5.3.2 I discuss an interpretation of 

multiplication that arose in the data but actually represents a model of exponentiation rather than 

multiplication.  

5.1 Combinatorial Provers Used a Variety of Cognitive Models for Multiplication 

In this section, I present the cognitive models for multiplication by a constant k in the context 

of binomial identities that emerged during the interviews. I first summarize these cognitive models 

in Table 7.4. My purpose in this section is to demonstrate instances of the various ways of 

reasoning about and using multiplication that emerged for these participants. In this paper, I use 

the term k-committee to refer to a committee of size k formed from a group of n (distinct) people. 

Table 7.4. Cognitive models for scalar multiplication used by students and mathematicians. 

Cognitive 

Models 

Brief description 

(applied to (𝒏
𝒌

) ×

𝒌) 

Example from the Data 

Equivalent 

groups 

k copies of each k-

committee 

Emery (considering (𝒏
𝒌

) × 𝒌): I will get repeats exactly k—

each choice will be repeated exactly k times, and so that’s 

why I’m getting n choose k times k. 

Cartesian 

product 

Coordinate pairs 

with (𝑛
𝑘

) and k ways 

to fill the positions 

Emery (considering (𝒏
𝒌

) × 𝒌): I could specify, okay so I 

guess I can think of it as counting pairs of the smallest 

element and the rest? Wait I'm choosing k. I can think of it 

as counting pairs where the first element in the pair is the 

smallest element and the second is a set of k-elements. 

Int.: And you think of picking that special element first, and 

then making the group of k? Or, what order is that being 

done in? 

Emery: What I was thinking a Cartesian product. It wouldn't 

necessarily be in order. 
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Table 7.4. (Continued) 

Scaling 

factor 

Each k-committee 

is scaled by a factor 

of k 

Adrien (considering 15 × (14
3

)): When I was reading it like 

this, the way I was reading it was like as was taking the 

combination. Its you're taking, you have 14, you choose 

three. I was thinking of scaling that number somehow.  

Inverse of 

a 

probability 

The multiplicative 

inverse of the 

solution to, “If 

there is a 1-in-k 

chance that a 

committee will 

form at all, what is 

the probability that 

a certain committee 

will form?” 

Riley (considering 15 × (14
3

)): There is a 1 over 15 chance 

that a congressional committee will be formed. Given that 

probability and the fact that there are 14 candidates for the 

council and three positions, what is the multiplicative 

inverse of the probability that a given council will be 

selected? Because you have to overcome the probability that 

it won’t happen at all. 

Weight 

(𝑛
𝑘

) counts the 

number of bit 

strings of length n 

with k 1s, and these 

bit strings are 

assigned a weight k. 

Riley (considering (5
𝑘

) × 𝑘):  So the thing that's occurring to 

me is some kind of idea of like a weighted bit string. 

Int.: What do you mean by weighted bit string? 

Riley: Oh, something weird where like you say, “Okay, I 

have a bunch of five-bit integers. Something like, pick me 

ones with an associate like k 1s, and then multiply the result 

of picking that by the number of 1s,” which is kind of 

weird. I'm trying to think of a more or like a less abstract 

example, because that's almost just kind of like a 

definitional like, “Well, you can choose ones.” 

Element 

selection 

Interpreting k as 

(𝑘
1
), that is, 

selecting one from 

k people after 

forming a k-

committee 

Adrien (considering (𝑛
𝑖
) × 𝑖): So, you have a group of n 

people, and you’re trying to select one of them in two stages 

specifically. So, you have your first stage, where you just 

select some group of people—it doesn’t matter how large it 

is—and then out of those candidates you then select the 

final one.  

 

I make just a couple of comments now about these cognitive models, and I elaborate some 

examples of participants’ work that demonstrates these models in the following sections. Overall, 

there was a notable amount of variety of cognitive models for multiplication that the 

mathematicians and students leveraged while engaged in combinatorial proof. As can be seen from 

Table 7.4, the participants’ multiplicative cognitive models were varied and differed from those 

used by Mulligan and Mitchelmore (1997). This aligns with previous findings (e.g., Lockwood et 
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al., 2017; Lockwood & Purdy, 2019a; Lockwood & Purdy, 2019b) showing that while 

multiplication is a familiar operation for undergraduates, its representations can vary when used 

in counting and it can involve subtleties not always appreciated by students and instructors. 

Additionally, while some of the multiplication models that students and mathematicians used 

overlapped with those previously identified as important to K-12 education and research (e.g. 

Common Core State Standards Initiative, 2010; Mulligan & Mitchelmore, 1997), several others 

did not. Perhaps this is not surprising since postsecondary students and mathematicians often use 

multiplication in more complicated and sophisticated situations than K-12 students, but I 

nevertheless did not expect the variety that emerged in the data.  

5.2 Cognitive Models that Were Productively Used for Combinatorial Proof 

Only two of the previously described cognitive models were used productively. In this section, 

I provide examples of these two cognitive models to demonstrate work that successfully 

implemented these ideas.  

5.2.1. Element selection as a productive cognitive model. The element selection cognitive 

model of multiplication lends itself nicely to combinatorial proof of binomial identities, as it can 

be related to the Multiplication Principle, a fundamental concept in combinatorics. To clarify, 

when I say the element selection cognitive model of multiplication, I mean that a counter interprets 

an instance of scalar multiplication, such as “× 𝑘,” as a stage in the Multiplication Principle with 

k options. While the cognitive model was highly useful for my participants and often applies nicely 

to solutions of combinatorial-proof problems, it often wasn’t my participants’ go-to cognitive 

model as one might expect. Each of the five student participants at some point during the 

interviews got stuck on a binomial identity involving multiplication because they were trying to 

use another cognitive model of multiplication that wasn’t working for them. In these occurrences, 
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a particular instantiation helped them to see that they could use the element selection cognitive 

model, which was to remind the students that they could represent k as (𝑘
1
) in binomial identities 

involving multiplication by k. To illustrate how this instantiation seemed productive for students 

engaging in combinatorial proof, I turn to Adrien’s work. Adrien was one of my five student 

participants. 

Adrien was trying to solve the Reverse Counting Problem, which asks, “Write down a counting 

problem whose answer is 15 × (14
3

).” I consider Adrien’s work on the Reverse Counting problem 

to be relevant to my research questions, because interpreting expressions in a combinatorial 

context lies at the heart of combinatorial proof. After Adrien entertained some ideas that were not 

productive, I suggested that they recall that 15 = (15
1

). The moment I drew their attention to this 

fact, they immediately articulated that 15 × (14
3

) could count the number of ways to elect a club 

president and then a 3-person committee from a set of 15 club members. I was impressed that they 

could articulate a correct counting problem so quickly, and I asked them if writing 15 as  (15
1

) was 

helpful. They responded as follows.  

Adrien:  So when I was reading it like this, the way I was reading it was as taking 

the combination—you have 14 you choose 3. I was thinking of, like, 

scaling that number somehow. So, I was still thinking of it in terms of 

that number. But then, when you write it like this, it’s like, oh, so you 

started with 15, took 1 specifically, so now it seems like a 2-step 

process—like, two separate parts of the problem, rather than one part of 

the problem and, like, oh, how do I scale that? 

 

Note that in the quote, Adrien said that they initially were using a scaling factor cognitive model 

of multiplication, which was not productive for them. However, once they thought of the 

multiplication as element selection, prompted by representing 15 as (15
1

), Adrien could quickly 

and easily interpret the factors in 15 × (14
3

) as representing two stages in the Multiplication 
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Principle, and hence corresponding to a particular counting process. This is a critical step in 

constructing a combinatorial proof as argued by Lockwood et al. (in press).  

Progressing through subsequent problems in the interviews, Adrien proved multiple binomial 

identities with the aid of the 𝑘 = (𝑘
1
) instantiation. These include one of the more challenging 

identities I gave students in the interviews, ∑ (𝑛
𝑖
)𝑖𝑛

𝑖=1 = 𝑛2𝑛−1. When I first gave Adrien this 

identity, they began by writing down the identity with the substitution n = 5. Once Adrien did this, 

they then re-wrote the summation replacing i with (𝑖
1
) and were able to recognize the terms in the 

summation as choosing i from a set of n distinct things, and then selecting one of those i chosen 

things (see Figure 7.3.) Adrien then gave a nice combinatorial proof of the identity in the context 

of selecting a finalist from n people after two selection rounds: 

Int.:   What would you say both sides are counting?  

Adrien:  So, you have a group of n people, and you’re trying to select one of them in 

two stages specifically. So, you have your first stage, where you just select 

some group of people—it doesn’t matter how large it is—and then out of 

those candidates you then select the final one. And this [left-hand side] sort 

of does that in the opposite direction. It’s, like, it counts, okay, who was the 

final one? And then who made it to the second round? 

 

We see here again that using the element selection cognitive model was productive in Adrien’s 

combinatorial proof activity. These excerpts illustrate that 1) the element selection cognitive model 

of multiplication was productive for students solving combinatorial-proof problems, and 2) 

reminding students that 𝑘 = (𝑘
1
) is a useful instantiation that may help students to see that they can 

use this model. Though I only discussed Adrien’s work in detail, again, this instantiation was 

helpful for all five of my student participants. 
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Figure 7.3. Adrien’s work proving 𝑛2𝑛−1 = ∑ (𝑛
𝑖
)𝑛

𝑖=1 𝑖. 

 

5.2.2. A combinatorial proof utilizing repeated addition and equivalent groups. The only 

other cognitive model (besides element selection) that the participants used successfully was 

equivalent groups. One of the eight expert mathematicians interviewed, Emery, successfully 

proved (n
k
) × k = n × (n−1

k−1
) using equivalent groups. I describe parts of their work here, although 

I do not have space to include all of the details.  

When I first gave Emery the prompt to provide a combinatorial proof of the identity, they 

quickly saw that n × (n−1
k−1

) could be thought of as counting all the way to select one of n objects, 

and then choosing k – 1 of the remaining n – 1 objects, ultimately resulting in a subset of size k. 

Here Emery was utilizing the element selection cognitive model of multiplication, because to them 

the multiplication of the binomial coefficient by n represents a choice of one object out of n. Notice 

that this counting process (Lockwood, 2013) does not create distinct outcomes, that is, distinct 

subsets of size k from n distinct objects. If the objects are numbered 1 to n, consider for example 
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the outcome {1, 2, …, k}. This subset could be generated by first selecting the item ‘1’ and then 

choosing {2, 3, …, k}, or this subset could also be generated by first selecting the item ‘2’ and 

then choosing {1, 3, …, k}. For each outcome, there are in fact exactly k ways that outcome is 

generated by the process Emery articulated. I did not point this out in the moment during my 

interview with Emery, as I wanted to see how they would resolve this on their own. As Emery 

tried to continue the problem, they were unsure why (n
k
) × k would count the same thing. When 

they reached this point and were stuck, I asked: 

Int.: What might multiplying by k be doing? 

Emery: Well, I know what it’s doing in terms of the factorials.  

Int.: Uh huh [affirmative], right.  

Emery: But in terms of the counting it’s just doing it k times, right?  

Int.: Mm-hmm. So you’re thinking of this as like k copies of n choose k? 

Emery: Yeah. 

From this exchange, I infer that Emery conceived of the multiplication by k as generating k copies 

of whatever (n
k
) is counting, rather than thinking of the multiplication as picking one of the k 

objects chosen in the (n
k
) step. Because I felt that making a combinatorial proof involving a multiset 

(rather than a set where all the outcomes are distinct) would be challenging, I decided to try to 

direct Emery back to the element selection cognitive model. To do this, I asked if they could 

conceive of the multiplication by k as picking one of the k objects (chosen from n) to be special in 

some way. I thought that then Emery might see that on the right side of the identity, they could 

think of first designating one of the n items to be special and then apply the Multiplication Principle 

to form the rest of the group of size k around the special element. (Hence, both sides count the 

number of groups of size k with a specially designated element.) However, while Emery said they 

could conceive of the multiplication by k in that manner, they continued to struggle with the 

problem. Even after suggesting that they try using committees (a more concrete context than sets 
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and subsets) to solve the problem, Emery still did not make progress on counting subsets of size k 

(or k-committees) with a specially designated element. 

Finally, I encouraged Emery to revisit their conception of n × (n−1
k−1

) as counting the number 

of ways to make a subset of size k from n things by picking a first object and then k – 1 objects to 

round out the rest of the subset. As mentioned previously, the set of outcomes generated by this 

process (Lockwood, 2013) contains duplicates. I asked Emery if they could write down anything 

that would represent this idea, and then I asked why this process (picking one, then k – 1  objects) 

would generate k copies of every size-k subset. After a little more thought, they realized that, for 

instance, the subset {1, 2, …, k} would be generated exactly k times by this process—once for 

each of the 1, 2, …, k objects chosen first. (See Figure 7.4.) Highlighting the fact that counting a 

set with duplicates may have been easier for Emery from the start, they said the following: 

Emery:  I didn’t count how many ways I was double-counting. That’s the problem. If I had 

done that I probably would have been done. If I had actually figured out exactly 

how much I’m double-counting, then I’d be done. Because if I knew I was doing 

that k times I’d have the k. 

 

 

Figure 7.4. Emery’s work proving (𝑛
𝑘

) × 𝑘 = 𝑛 × (𝑛−1
𝑘−1

) using repeated addition and equivalent 

groups. 

 

Emery summarized their final combinatorial proof in the following exchange: 

Int.:  So maybe, would you mind just summarizing for me what then is your 

combinatorial argument for why the identity holds? 
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Emery:  Okay. So my combinatorial argument for why the identity holds is—now I 

have to think all the way back—to interpret the right-hand side as a choice 

of k objects from n objects where the way I’m getting that choice is by 

taking k – 1 from n – 1 and plugging one of n that wasn’t there.  

Int.:   Uh huh. 

Emery:   Well, I know what it’s doing in terms of the factorials.  

Int.:   Uh huh, right.  

Emery:  I guess what I’m really doing is I’m starting with n objects. I am taking one 

out, and then choosing k – 1 of what’s left.  

Int.:   Uh huh. 

Emery:  And then I will get exactly—I will get repeats exactly k—each choice will 

be repeated exactly k times, and so that’s why I’m getting n choose k times 

k. 

 

To summarize their work, while Emery initially used the element selection cognitive model 

when interpreting the multiplication by n on the right side of the equation, they used the equivalent 

groups cognitive model to successfully complete the combinatorial proof. For the left side, rather 

than conceiving of the multiplication by k as selecting one out of k objects (that is, using element 

selection) they interpreted the multiplication by k on the left side of the identity as making k copies 

each of all possible subsets of size k, and then they argued why the process they articulated on the 

right side (choosing 1 out of n objects and then k – 1 out of the remaining n – 1 objects) generates 

the same (multi)set of outcomes. 

While this combinatorial proof is correct, I hypothesize that constructing an argument that 

enumerates a multiset with duplicate objects may be challenging for students. It is not trivial to see 

that n × (n−1
k−1

) counts a collection of size-k subsets each with k copies, and generally combination 

problems that allow for repetition are more difficult for students than those that do not allow 

repetition. Indeed, in my interviews with the upper-division mathematics students, none of their 

combinatorial proof attempts using an equivalent groups cognitive model of multiplication were 

successful, and ultimately the student participants (and every mathematician participant except 
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Emery) only used the element selection cognitive model of multiplication to successfully prove 

binomial identities combinatorially.  

To summarize, only two of the multiplicative cognitive models I encountered in the data 

actually led to successful combinatorial proof attempts: equivalent groups and element selection. 

However, my findings also suggest that these two cognitive models may not be equally useful for 

students. Only one participant—one of the mathematicians—was able to use the equivalent groups 

cognitive model successfully, while all five of the undergraduate student participants eventually 

used the element selection cognitive model productively.  

5.3 Instances of Cognitive Models Not Being Used Productively  

Four other cognitive models emerged during the interviews with students and mathematicians, 

and none of them were used productively in helping the participants correctly prove combinatorial 

identities. In this section, I briefly describe an episode in which a certain cognitive model arose 

but was not ultimately productive for the successful completion of a combinatorial proof. My goal 

in this section is not to criticize the participants, but rather to illustrate that cognitive models are 

important, and to underscore the idea that some cognitive models may in fact be more productive 

than others when thinking about proving combinatorial identities.  

5.3.1. Weight as a cognitive model that was not productive. Another cognitive model of 

multiplication that occurred in my data was multiplication as a weight. Here, I define the weight 

cognitive model as when a counter conceives of the multiplication as assigning a weight to some 

object being counted. To illustrate the weight cognitive model in my data, I show Riley’s work on 

proving ∑ (𝑛
𝑖
)𝑛

𝑖=1 × 𝑖 = 𝑛 × 2𝑛−1 combinatorially. Riley was one of my five student participants. 

Initially, Riley struggled with this problem, and so I encouraged them to consider the case n = 

5. This intervention of encouraging students to consider a particular case of n was found to be 
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helpful in (Lockwood et al., 2019), and so I thought it could help Riley to make some progress on 

the problem. One benefit of considering a specific case when proving a binomial identity involving 

a summation is that it allowed Riley to write out all the terms of the summation. Riley did this (see 

Figure 7.5), and then expressed that the sum could be counting weighted bit strings. This bit strings 

context was one that Riley used to prove several binomial identities throughout the interviews, but 

the idea of weights was unique to this problem.  

 
 

Figure 7.5. Riley’s work considering ∑ (𝑛
𝑖
)𝑛

𝑖=1 × 𝑖 = 𝑛 × 2𝑛−1 in the case where n = 5. 

 

 

Riley:  So the thing that's occurring to me is some kind of idea of like a weighted bit string. 

Int.:  What do you mean by weighted bit string? 

Riley:  Oh, something weird where like you say, “Okay, I have a bunch of five bit integers. 

Something like, pick me ones with an associate like k 1s, and then multiply the 

result of picking that by the number of 1s,” which is kind of weird. I'm trying to 

think of a more or like a less abstract example, because that's almost just kind of 

like a definitional like, “Well, you can choose ones.” 

 

After spending some more time thinking about this context, and Riley did not come up with a way 

that the right-hand side 𝑛 × 2𝑛−1 could count the same weighted bit strings. This is important, 

because it suggests that the issue was not that the weight cognitive model multiplication within 

∑ (𝑛
𝑖
)𝑛

𝑖=1 × 𝑖 is necessarily incorrect, but rather that Riley could then not connect it to the other side 

of the binomial identity. A bit later, Riley articulated thinking about multiplication as representing 
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weights again, this time in the context of money. Again, they could think of the left side as a 

weighted sum, but they struggled to make sense of the right side in terms of these weights. 

Riley:  Because like I’m thinking of this five is like some abstract weight and this three is 

like a weight. 

Int.:  So what made you think of averaging? Was it because you’re like summing the 

numbers from one to five? 

Riley:  Kind of. It was mostly because I'm thinking now in terms of like the weight of these 

different sets, and this five to me is a matter of the weight of this set. Oh, okay. So 

now I'm feeling like I'm starting to maybe get somewhere, because you can say, 

“Okay, well what if … what if we gave the maximum number of dollars this $5 out, 

in some different distribution?” So, like what if, essentially instead of … Yeah, 

what if instead of giving all these people this whole combination of dollars, we 

instead eliminate one person from the group, and do every other combination of 

them, such that somebody gets $2 and everyone else gets one. So this is, one, $2 … 

Or I guess, yeah, two, $2 since we've eliminated someone from the group. And then 

two, or wait, no, sorry. That's right, $2 for $1. No, no. Oh, sorry, yeah, three. Three, 

$1. 

Int.:  So what does the five represent in terms of like the $1 and the $2? 

Riley:  The weight of the set, in other words the number of dollars being distributed. So 

over here we're thinking of just like a bit string, but like over here we're saying, 

“Okay, well I have four people and you're allowed to give one of them more than 

$1,” although now that I'm thinking more about it, there's two to the four that I've 

been playing around with is pretty dependent on the idea of a bit string. So I 

might've done something wrong in translating that idea. 

 

Here, Riley was still considering the case where n = 5. Note that this context of distributing 

money could lend itself to a correct combinatorial proof (indeed, both sides could count the number 

of ways to distribute money to a group of n people where exactly one person receives two dollars 

and everyone else receives either one or no dollars). However, I interpreted Riley’s utterances to 

mean that they conceived of the × 𝑖 in the identity as a weight, where the value of the weight is 

equal to the number of dollars distributed. Ultimately, Riley’s attempts to prove the identity 

combinatorially using a weight cognitive model of multiplication were unsuccessful. 

This episode illustrates a couple of ways that Riley tried to prove ∑ (𝑛
𝑖
)𝑛

𝑖=1 × 𝑖 = 𝑛 × 2𝑛−1 

using a weight cognitive model for multiplication. By showing these excerpts, my intention is not 
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to criticize Riley’s thinking and work. It is understandable that they tried to use this cognitive 

model, since weighted sums are often useful when solving problems in other domains of 

mathematics (such as probability), but in this instance the weight cognitive model of multiplication 

did not end up being very productive for Riley. To me, this highlights the fact that counters at the 

college level have seen and used multiplication in a wide variety of situations, and so when they 

are faced with a combinatorial task, they bring with them a variety of multiplicative cognitive 

models that may affect their combinatorial reasoning.  

5.3.2 Conflating models of multiplication and exponentiation. Finally, I turn my attention 

to an interpretation of multiplication that occurred a few times in interviews both with students 

and with mathematicians. I did not classify these interpretations as cognitive models of 

multiplication, because as will be shown, these instead exemplify models of exponentiation. 

I first consider Riley’s work on the Reverse Counting problem interpreting 15 × (14
3

). When I 

first gave this problem to Riley, they said, “there are, let's say 15 congressional committees, each 

should be sized of three. Um, and there are 14 candidates. For each county council and a 

membership in one council doesn't preclude membership in another council.” See Figures 7.6 and 

7.7. After I asked Riley to talk more about the outcomes of their counting problem, we had the 

following exchange. 

Riley:  So, um, yeah, so these are committees, um, where like, you know, J uh, Jean, Tim 

and Bob are, uh, and the fact that they're on two different committees in the exact 

same combination isn't significant to us in this question….  

Int.:  And what do the one and two represent? They represent different committees, 

different committees they could be one? 

Riley:  Yeah, so this would be dot, dot, dot 15. 

Int.:  Okay. 

Riley:  Um, and maybe these congresspeople are super popular, so they’re on every single 

one, but, okay. 

Int.:  So what exactly…do the outcomes look like for this counting problem? Like, could 

you give a couple of example outcomes. 
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Riley:  Um, in terms of like just individual councils or like--? 

Int.:  Yeah, or if you—like is this an example outcome or do you also have to like tack 

on people from other committees? 

Riley:  I see what you’re saying. I think, uh, yeah, so this entire thing is one set. 

Int.:  Okay. That whole thing is an outcome?  

Riley:  Yeah. 

  

 
 

Figure 7.6. Riley’s solution to the Reverse Counting Problem: “There are 15 congressional 

committees each size of 3 and there are 14 candidates for council.” 

 
 

 
 

Figure 7.7. Riley represents their outcomes for the Reverse Counting Problem. 
 

I interpret Riley’s utterances and work on the paper (in Figures 7.6 and 7.7) to mean that they 

thought of carrying out a counting process where a committee of size three is chosen from a set of 

fourteen people 15 times (without a person’s position on one committee precluding their position 

on another committee). Indeed, Riley articulated correctly in the quotes I provided that this process 

would create outcomes that are ordered 15-tuples where each element is a committee of people. 
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Interpreting multiplication as repeating a process several times came up not only in interviews 

with students, but with mathematicians as well, so it is an easy error to make. I note, however, that 

this process and the resulting outcomes are not a model of multiplication, but of exponentiation, 

and the solution to Riley’s counting problem would be (14
3

)
15

. 

Another participant who tried to represent multiplication with an exponentiation model was 

Skyler, one of the mathematician participants. In particular, when I gave Skyler the combinatorial 

identity (n
k
) × k = n × (n−1

k−1
), they said the following and represented their thought process in the 

case where n = 7 and k = 3 (see Figure 7.8):  

Skyler: I have like a matrix of boxes. So, the N choose K times K, there's now N columns and 

K rows. And so, each row is now N boxes I want to put K things into. And now, it's how 

many ways can I fill up that entire grid with making sure there's K things in each row. So, 

the more I think about this, it makes me think like Sudoku kind of matrix. 

 

This interpretation of multiplication is interesting and may be related to Mulligan and 

Mitchelmore’s (1997) array semantic structure. However, a key difference here is that in order for 

multiplication to be faithfully represented as an array, each column (or row) must be identical. The 

interpretation that Skyler articulated where each row may have k things placed in different 

locations (like in a Sudoku puzzle) would not be a model for multiplication but for exponentiation. 

Indeed, the number of ways to fill an 𝑛 × 𝑘 array with k things in each row would be (𝑛
𝑘

)
𝑘
. 

The purpose of discussing these episodes is not to point out that Riley and Skyler’s work was 
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Figure 7.8. Riley represents their thought process for proving (𝑛
𝑘

) × 𝑘 = 𝑛 × (𝑛−1
𝑘−1

) in the 

case where n = 7 and k = 3. 

 

wrong (and both overall were very successful at tackling the combinatorial-proof tasks I gave them 

throughout the interviews). It is noteworthy, however, to see why their errors occurred, and in 

particular I want to point out how easy it can be for counters—even experts who conduct 

mathematics research—to conflate situations that involve multiplicative or exponential structures. 

This corroborates findings from previous research (such as Batanero et al., 1997; Kavousian, 2008; 

and Sowder et al., 1998) which show that counters can struggle to correctly use multiplication 

when doing combinatorial tasks. The subtle differences between combinatorial situations 

involving multiplication and exponentiation is a topic that should be discussed in combinatorics 

classrooms, since, as I have shown, even experts can conflate the two. 

6. Discussion and Conclusions 

Here I provide a summary of the results of my study, framed by my research questions. I also 

discuss implications of this work for teaching practice and future research. 
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The first research question I asked was, What cognitive models do undergraduate students and 

mathematicians use when engaging in combinatorial proof of identities involving scalar 

multiplication? I coded students’ and mathematicians’ cognitive models for multiplication using 

Mulligan and Mitchelmore’s (1997) multiplicative semantic structures and Lockwood’s (2013) 

model of students’ combinatorial thinking as a theoretical lens for my analysis. I found that my 

participants used two (equivalent groups and Cartesian product) of Mulligan and Mitchelmore’s 

(1997) five semantic structures as cognitive models when interpreting binomial identities 

involving scalar multiplication. In addition, scaling factor, weight, inverse of a probability, and 

element selection also emerged from the data as cognitive models for multiplication that my 

participants used. Equivalent groups and, mainly, element selection were the only multiplicative 

cognitive models that were used in successful combinatorial proofs by participants. This makes 

sense, since element selection involves a person interpreting scalar multiplication as a stage in the 

Multiplication Principle, a fundamental counting concept that is taught in nearly all college-level 

courses that cover counting. Only one of the mathematicians successfully articulated a 

combinatorial proof using the equivalent groups cognitive model for multiplication, though a 

couple of the mathematicians and students also made unsuccessful attempts to do this. The 

multiplicative cognitive models used by our participants were more varied than I had expected, 

supporting the finding from previous studies that multiplication is a nuanced and can be 

challenging to apply in combinatorics (e.g., Batanero et al., 1997, Kavousian, 2008, Lockwood & 

Purdy, 2019a, and Sowder et al., 1998). This suggests that upper-division students and 

mathematicians have a more varied and nuanced understanding of multiplication in combinatorial 

contexts than previously thought, and the variety in my data suggests that this could be an 

interesting avenue for further research. 
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The second research question I asked was What are the implications of these cognitive models 

for students’ engagement with combinatorial proof? Because not a single student and only one 

mathematician successfully used the equivalent groups cognitive model in their combinatorial 

argument, this suggests that some students may find this path more challenging when trying to 

come up with a combinatorial proof. The element selection cognitive model for multiplication was 

used in all the students’ and nearly all the mathematicians’ successful combinatorial proof 

attempts, which is understandable given its connection to the Multiplication Principle. However, I 

also saw that not all the participants immediately thought to use this multiplicative cognitive 

model. Indeed, many of them only saw that they could use element selection as a cognitive model 

for multiplication after they reconceived of multiplication by k as multiplication by (𝑘
1
). I 

hypothesize that this reformulation is helpful for students because it enables them to more easily 

recognize the multiplication by a scalar as a stage in a two-step counting process, and indeed I 

have some data (such as Adrien’s work on the Reverse Counting Problem and the identity 

∑ (
𝑛
𝑖

) 𝑖
𝑛

𝑖=1
= 𝑛2𝑛−1) that seem to support this hypothesis.  

The fact that the upper-division mathematics students in this study (who had all taken discrete 

mathematics) frequently did not think to apply the Multiplication Principle was curious, and it 

corroborate previous work (e.g., by Lockwood & Purdy, 2019a) that suggests undergraduate 

students—even upper-division mathematics students—do not always recognize situations where 

multiplication is used while counting. Upper-division mathematics does frequently use 

multiplication in a variety of contexts. For example, students that are writing proofs in advanced 

calculus often involve having to “scale” epsilon to find delta in order to prove something is 

continuous, a limit, etc. Upper-division mathematics students and mathematicians are also familiar 
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with weighted averages in probability. However, none of the cognitive models for multiplication 

involved in these contexts (scaling factor, inverse of probability, and weight) were helpful when 

my participants were attempting to engage in combinatorial proof. This suggests that 

combinatorics instructors, rather than assuming that undergraduate students know when to 

multiply and what multiplication does when counting, should have discussions with their students 

about multiplication and highlight that it can be used to count the number of ways to complete a 

two-stage process using the Multiplication Principle. 

In conclusion, multiplication is a familiar operation for undergraduate students, and yet I have 

shown that there may be implications for the particular ways in which they reason about it. 

Combinatorial proof and similar types of problems are a context where the subtleties of 

multiplication emerge, and we see that it is not a trivial topic, even for upper-division mathematics 

students. While much work has been done examining the ways that K-12 students reason about 

multiplication (e.g., Greer, 1992; Mulligan & Mitchelmore, 1997; Tillema, 2013), my study 

indicates that examining undergraduate students’ conceptions of multiplication in combinatorial 

contexts may be fruitful, as these conceptions are varied and have implications for their 

combinatorial proof activity. While some work has begun to investigate this topic (Lockwood et 

al., 2017; Lockwood & Purdy, 2019a), how undergraduate students think about and handle the 

subtleties and variety of multiplicative cognitive models in combinatorial contexts remains largely 

unknown. 

Future avenues of research include continuing to explore the cognitive models of 

multiplication students and mathematicians may use in combinatorial contexts, and a natural 

extension of my research would be to investigate cognitive models of other mathematical 

operations as well (or other instances of multiplication besides scalar multiplication). Furthermore, 
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my results also suggest that when researchers consider multiplication in combinatorial settings in 

the future, they should attend to different cognitive models that participants might be using as they 

multiply. It is perhaps best not to assume that participants are adopting any particular cognitive 

model, but rather explicit attention should be paid to how people might be reasoning about 

multiplication as they engage with combinatorial tasks. 

Finally, this work suggests that from a pedagogical perspective, some cognitive models of 

multiplication seem to be more productive for students engaging in combinatorial proof activity 

than others. Encouraging students to think of multiplication by k as (𝑘
1
) if they are stuck may help 

them more easily see the binomial identity they are working with as corresponding to an underlying 

counting process (Lockwood, 2013) that uses the Multiplication Principle. 
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CHAPTER 8 – Conclusion 

 

The goals of this dissertation study were to examine how experienced provers engaged with 

combinatorial proof of binomial identities and whether (and, if so, how) they perceived 

combinatorial proof as different from than other types of proof. My research questions, restated 

from Section 1.1 of the Introduction, were: 

1. To what extent do experienced provers (including students and mathematicians) 

believe that combinatorial proofs of binomial identities are convincing and/or 

explanatory, and why? 

2. What proof schemes do undergraduate students who are experienced provers use to 

discuss and characterize combinatorial proof? 

3. What do the answers to these questions say about the nature of combinatorial proof 

(including how it may differ from other types of proof)? 

4. What are some other insights about combinatorial proof that can be gained from 

interviewing experienced provers? 

 

After providing descriptions of literature, theoretical perspectives, and methods, I presented 

the findings of my dissertation in three manuscripts, which were presented in Chapters 5-7 of this 

dissertation. The first manuscript (Chapter 5) addressed Research Questions 1 and 3 by presenting 

results and implications of my investigation into students’ and mathematicians’ perceptions of 

combinatorial proof as convincing or explanatory (in the sense of Hersh, 1993). The second 

manuscript (Chapter 6) answered Research Questions 2 and 3 by describing the proof schemes 

(Harel & Sowder, 1998) that students brought to their reasoning about combinatorial proof as 

rigorous mathematical proof. Finally, cognitive models for multiplication emerged as a salient 

feature of students’ and mathematicians’ combinatorial proving activity, and I described these in 

detail along with the broader insights they provided regarding combinatorial proof in the third 

manuscript (Chapter 7), addressing Research Question 4.  

In the following section, I summarize the main findings from each of the three manuscripts of 

my dissertation, how they answer my overarching research questions, and what general 
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conclusions can be drawn from my dissertation study as a whole. Then in Section 8.2 I discuss 

limitations of my study as well as avenues for future research. 

8.1 Main Findings & Conclusions 

I begin this section by first summarizing the key findings from each of the three manuscripts 

of my dissertation, and then I discuss overarching conclusions and what I feel the significance of 

my dissertation study may be in the combinatorics- and proof-education literature.  

8.1.1 Summary of results from the three manuscripts. In my first manuscript (Chapter 5) I 

addressed Research Questions 1 and 3 by looking at the extent to which upper-division 

mathematics students and mathematicians viewed combinatorial proof as convincing or 

explanatory compared with other types of proof. I found that all of the participants in the study 

viewed combinatorial proofs of binomial identities as equally or more explanatory than other types 

of proof, which they felt was related to their perceptions of combinatorial proof as accessible and 

tangible. This finding is not necessarily unexpected and aligns with Lockwood and colleagues’ 

(2020) theoretical piece where they stated that combinatorial proofs are usually explanatory in the 

enumerative representation system. However, it is nevertheless useful to confirm these statements 

with interview data and to gain insight into some reasons why many may consider combinatorial 

proof to be explanatory. Additionally, there were varied opinions regarding the extent to which 

combinatorial proofs are convincing. Some participants believed that combinatorial proofs are 

equally or more convincing than other types of proofs, while others—both some student and 

mathematician participants—felt that combinatorial proofs are less convincing than other types of 

proofs. The students who felt this way generally doubted that combinatorial arguments can be 

rigorous mathematical proofs at all, a phenomenon that is explored more in the second manuscript 

(Chapter 6) of this dissertation. Some of the mathematicians also felt that combinatorial proofs’ 
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use of words and sentences make them potentially less reliable than proofs relying more on 

symbolic manipulations, and others pointed to the fact that it is easy to produce a counting 

argument that seems logically correct but that actually contains a subtle error. These results make 

sense, as it can be more difficult to evaluate written statements than algebraic manipulations, and 

extensive research has documented that counting problems can be notoriously tricky to solve (e.g., 

Annin & Lai, 2010; Batanero et al., 1997; Eizenberg & Zaslavsky, 2004; Hadar & Hadass, 1981; 

Lockwood, 2014a, 2014b). 

In my second manuscript (Chapter 6), I used Harel and Sowder’s (1998) proof schemes as a 

lens to take a closer look at characteristics of combinatorial proof that make it seem different for 

students than some other types of proof. This allowed me to address Research Questions 2 and 3. 

I found that the students in my study used a variety of proof schemes to discuss and characterize 

combinatorial proof, including whether they felt such proofs constitute rigorous mathematical 

proof (and why). There were some students whose reasoning aligned with a transformational proof 

scheme, and they concluded that since the argumentation in a correct combinatorial proof is valid, 

combinatorial proofs can be considered rigorous mathematical proofs. Other students used external 

conviction proof schemes to describe their reasoning, including the ritual proof scheme. These 

students expressed that because combinatorial proofs have certain ritualistic features (specifically 

that they are often more intuitive than other types of proof and do not involve symbolic 

manipulation) they do not qualify as rigorous mathematical proofs. In addition, there were other 

proof schemes that may have emerged from the data, specifically the authoritarian proof scheme 

and the perceptual proof scheme, which might describe situations where a student indicated that 

they did not think their teaching assistant would accept a combinatorial proof (even though the 

student thought combinatorial proofs are valid), or where students characterized combinatorial 
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proofs as being merely intuitive arguments that make the identity “seem” true but that do not 

account for all possible cases of the binomial identity intended to be proven. In total, the students 

in my study may have used authoritarian, ritual, perceptual, transformational, and contextual 

restrictive proof schemes to discuss and characterize combinatorial proof.  

Finally, in my third manuscript (Chapter 7), I addressed Research Question 4 by describing an 

interesting phenomenon that emerged from analyzing the data. In particular, I present the variety 

of cognitive models for multiplication that the students and mathematicians used to try to produce 

combinatorial proofs. In total, six different cognitive models were identified in the data, and only 

two of those cognitive models—equivalent groups and, mainly, element selection—were used in 

successful combinatorial proof attempts by participants. This makes sense, since element selection 

involves a person interpreting scalar multiplication as a stage in the Multiplication Principle, a 

fundamental counting concept that is taught in nearly all college-level courses that cover counting. 

Only one of the mathematicians successfully articulated a combinatorial proof using the equivalent 

groups cognitive model for multiplication, though a couple of the mathematicians and students 

also made unsuccessful attempts to do this. 

8.1.2 Overall conclusions and significance. In addition to the specific results and findings 

presented in each of the papers, there are some overall findings from this dissertation as a whole. 

Considering the three manuscripts together, I see four main takeaways from this dissertation study: 

1) students can successfully produce combinatorial proofs and recognize that their activity 

constitutes proof; 2) combinatorial proof may be viewed by some students as intuitive arguments 

but not formal proofs; 3) the contexts used in combinatorial proofs are important; 4) difficulties 

in solving counting problems can carry over to difficulties in combinatorial proof production.   
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First, the students in my study overall were very successful at producing combinatorial proofs, 

showing that upper-division students can engage meaningfully in combinatorial proof tasks. In 

manuscript 3 (Chapter 7), I found that the students were most successful when they used the 

element selection cognitive model for multiplication, and in manuscripts 1 and 2 (Chapters 5 and 

6) I discussed how some of the students did think their activity (and combinatorial proof more 

generally) constituted rigorous mathematical proof. These are promising and useful findings for 

instructors wanting to support their students’ success in learning combinatorial proof and for 

researchers who want to better understand students’ work with and understanding of combinatorial 

proof. 

Another important conclusion from this dissertation study is the potential for students to view 

combinatorial proof as consisting only of intuitive arguments, but not constituting formal 

mathematical proof. In manuscript 1 (Chapter 5), I discussed how the students and mathematicians 

universally saw combinatorial proof as at least as explanatory as other types of proof, and this was 

often related to the perceived accessibility of these proofs. This is certainly understandable, and 

this idea was also closely tied to ideas discussed in manuscript 2 (Chapter 6). In that manuscript, I 

described how the students observed combinatorial proofs of binomial identities lack symbolic 

manipulation, are often short, and use concepts (like forming a group of people) that even children 

can understand. However, as I also discussed in manuscripts 1 and 2 (Chapters 5 and 6, 

respectively), the very fact that combinatorial proofs were intuitive and accessible made some 

students doubt whether they could really constitute rigorous mathematical proof. This is a useful 

finding for researchers and instructors who want to be knowledgeable about various perceptions 

students may have about combinatorial proof.  
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Third, all three manuscripts touched on the importance of contexts as a feature of combinatorial 

proof. In manuscript 1 (Chapter 5), I described some participants who felt combinatorial proofs’ 

use of tangible contexts was one reason these proofs can be more explanatory than other types of 

proof, but I described also in manuscript 2 (Chapter 6) how some contexts made students 

concerned that some combinatorial proofs may be insufficient to prove binomial identities that are 

stated more generally. I also discussed in manuscript 3 (Chapter 7) how the choice of certain 

contexts used with some cognitive models of multiplication (such as selecting elements in a set or 

people in a committee) can help students be more productive engaging in combinatorial proof than 

other contexts and models of multiplication. 

Finally, manuscripts 1 and 3 (Chapters 5 and 7, respectively) shed light on the ways that 

difficulties students (or mathematicians) may encounter solving counting problems can lead to 

difficulties producing combinatorial proofs as well. In manuscript 1 (Chapter 5), I described how 

some students and mathematicians said that they felt combinatorial proofs were potentially less 

reliable (and therefore less convincing) than other types of proof because of how easy it can be to 

make a subtle counting mistake. This response is understandable, as the difficulties associated with 

solving counting problems are well documented in the literature (see, for example, Batanero et al., 

1997, and Lockwood, 2014b). In manuscript 3 (Chapter 7) as well, I discussed how some student 

and mathematician participants struggled with conflating models of multiplication and 

exponentiation. These findings seem to provide evidence that in order for students to be successful 

at producing combinatorial proof, they first need to have a robust foundation in enumerative 

combinatorics. 

In conclusion, this dissertation study contributes both to combinatorics- and proof-education 

literature. In combinatorics education, this study provide new insights into how experienced 
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provers may perceive of combinatorial proof as different from other types of proof, as well as 

highlights that while multiplication may be a familiar operation for students, the way they reason 

about it can have implications for their success at combinatorial proof tasks. In proof education, 

this dissertation study furthers ongoing discussions regarding proofs that explain and proofs that 

convince (Hersh, 1993). While Lockwood et al. (2020) articulated how combinatorial proofs may 

relate to these concepts in their theoretical piece, my dissertation study investigated empirically 

how and why students and mathematicians conceive of combinatorial proofs as explanatory and 

convincing (or not). Finally, documenting which proof schemes (Harel & Sowder, 1998) students 

used to discuss and characterize combinatorial proof affords multiple useful insights about the 

nature of combinatorial proof and represents a novel application of this well-established 

framework.  

Finally, in terms of implications for practitioners and researchers, both groups should be aware 

that students may have a variety of conceptions about combinatorially proof as they teach and 

conduct proof-education research, respectively. In the classroom, instructors should understand 

that some students may believe combinatorial proof is less valid than algebraic, induction, or other 

types of proof for a variety of reasons, and so instructors should clarify for students why correct 

combinatorial proofs are indeed mathematically rigorous and logically valid. Instructors should 

also have discussions with their students about the element selection cognitive model of 

multiplication and highlight its relationship with the Multiplication Principle. Lastly, when 

researchers draw conclusions about student thinking about proof, they should be mindful that some 

of these conclusions may apply differently to student thinking about combinatorial proof.  
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8.2 Limitations and Considerations for Future Research  

Regarding limitations, while I had intended to interview up to nine students for my study, only 

seven responded when I recruited in upper-division mathematics courses, and only five of those 

seven were suitable for further interviews after the round of selection interviews. Secondly, 

because this study had a sample size of only 13 experienced provers, I cannot make any 

generalizable claims about how mathematicians and upper-division students think about or engage 

with combinatorial proofs. I also used a convenience sample of mathematicians from only three 

universities, and I may have gotten a more diverse set of perspectives had I instead taken a random 

sample of mathematicians from more universities. Similarly, it is also possible that by focusing 

only on students from one university with certain experiences, I inadvertently limited perspectives 

and insights that a broader swath of students might have afforded. These limitations offer 

opportunities for avenues for future research, though, which I elaborate below.  

In terms of proofs that explain and/or convince (Hersh, 1993), this work provides some 

examples of how some provers may think about these concepts, and future studies with larger 

sample sizes or that look at other populations would likely yield further insights. I also think that 

future research should continue to investigate proof schemes that students use to continue 

uncovering ways that the nature of combinatorial proof may differ from other types of proof. My 

study is a first step, but future research with a larger sample size or different populations would 

continue to shed light on students’ use of proof schemes in combinatorial proof. For instance, 

perhaps other proof schemes (such as the axiomatic or generic proof scheme) may emerge, or we 

may see more widespread use of authoritarian or perceptual empirical proof schemes. In addition, 

future research could investigate not only the proof schemes students use to discuss and 

characterize combinatorial proof, but also proof schemes students use to produce combinatorial 
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proofs. In addition, future avenues of research could continue to explore the cognitive models of 

multiplication students and mathematicians may use in combinatorial contexts, and a natural 

extension of my research would be to investigate cognitive models of other mathematical 

operations as well (or other instances of multiplication besides multiplication by a positive integer 

scalar). Finally, it would be interesting to see future research look at bijective combinatorial proof, 

as this was not a focus of my work and no previous studies on combinatorial proof have focused 

on these types of proof either. 
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APPENDICES 

 

Appendix A. Mathematician Interview Protocol 

 

1. Prior experience with combinatorial proof 

 

First ask the following questions: 

• What is your research area? How long have you been conducting mathematics 

research? 

• How would you define a mathematical proof? 

• How would you define a combinatorial proof? 

• Do you ever use combinatorial proof in your research? How important is 

combinatorial proof in your field? 

• Do you ever teach classes that cover combinatorial proof of binomial identities? 

How frequently? When did you teach combinatorial proof most recently? 

 

2. Combinatorial proof 

 

Next, give the expert a subset of the following binomial identities (one at a time) and ask 

them to provide a combinatorial proof. 

 

Table A.1. Identities given to the mathematicians to provide a combinatorial argument. 

(
𝑛

𝑘
) = (

𝑛

𝑛 − 𝑘
) 

2𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

 

(
𝑛

𝑘
) × 𝑘 = 𝑛 × (

𝑛 − 1

𝑘 − 1
) (

𝑛

𝑘
) = (

𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 
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𝑖
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𝑘
(
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3. Reflecting on combinatorial proof 

 

Begin this section of the interview by showing the expert mathematician the following 

two binomial identities and proofs. Give them time to read through. 
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Table A.2. Six Proofs handout. 

Identity Combinatorial Proof Non-combinatorial proof 

Theorem 1. 

2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  

(Subsets Context) Consider 

a set S such that |S|=n. The 

LHS* of the equation 

counts the number of 

subsets of S, because every 

subset can be uniquely 

determined by the elements 

it contains, and each of the 

n elements could be either 

in or out of each subset. 

The RHS counts the 

number of i-subsets of S 

and adds up over all 

possible values of i. Since 

the LHS and RHS both 

enumerate the set of 

subsets of S, they are equal. 

(Induction RS*) Suppose n=0. It follows that 

the identity holds since 20 = 1 = (0
0
). Suppose 

that the identity holds for n=k, where k is a 

nonnegative integer. We then observe that 

∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

= ∑ ((
𝑘

𝑖
) + (

𝑘

𝑖 − 1
))

𝑘

𝑖=0

+ (
𝑘 + 1

𝑘 + 1
) 

= ∑ (
𝑘

𝑖
)

𝑘

𝑖=0

+ ∑ (
𝑘

𝑖 − 1
)

𝑘

𝑖=0

+ 1 

= 2𝑘 + ∑ (
𝑘

𝑖
)

𝑘−1

𝑖=0

+ 1 

= 2𝑘 + 2𝑘 − (
𝑘

𝑘
) + 1 

= 2 ⋅ 2𝑘 − 1 + 1 

= 2𝑘+1. 

Theorem 2. 

(𝑛
𝑘

) = (𝑛−1
𝑘

) +

(𝑛−1
𝑘−1

) 

(Committees Context) 

Suppose a mathematics 

department has n faculty 

members, and Sofía is one 

of the faculty members. 

The LHS counts the total 

number of committees of 

size k that could be formed 

from the n faculty 

members. The RHS counts 

the number of committees 

of size k that exclude Sofía 

and the committees that 

include her. Note that this 

case breakdown 

encompasses all possible k-

committees. Since the LHS 

and RHS both enumerate 

the same set of outcomes 

(k-committees formed from 

the n faculty members), 

they are equal. 

(Algebraic RS) We have that 

(
𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 1 − 𝑘 + 1)!
 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
 

=
(𝑛 − 1)! (𝑛 − 𝑘)

𝑘! (𝑛 − 𝑘)!
+

(𝑛 − 1)! 𝑘

𝑘! (𝑛 − 𝑘)!
 

=
𝑛(𝑛 − 1)! − 𝑘(𝑛 − 1)! + 𝑘(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

=
𝑛!

𝑘! (𝑛 − 𝑘)!
 

= (
𝑛

𝑘
). 

*RS here refers to representation systems, in the sense of Lockwood, Caughman, and Weber (2020). 
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A.2. (Continued) 

Theorem 3. 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

(Binary Strings Context) 

Consider the set of binary 

strings of length n containing 

exactly k 0s. The LHS 

enumerates this set, because 

(𝑛
𝑘

) is the number of ways 

we can select positions for 

the 0s to occupy, and the rest 

of the positions in the binary 

string will be 1s. The RHS 

also enumerates this set, 

because ( 𝑛
𝑛−𝑘

) is the number 

of ways we can select 

positions for the 1s to 

occupy, and the rest of the 

positions in the binary string 

will be 0s. 

(Binomial Theorem RS) Recall that the 

Binomial Theorem states that for n a natural 

number and a, b real numbers, 

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑎𝑛−𝑖𝑏𝑖 . 

Notice that for each k, the coefficient of 

𝑎𝑛−𝑘𝑏𝑘 is (𝑛
𝑘

). Additionally, we also have 

that by the Binomial Theorem, 

(𝑏 + 𝑎)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑏𝑛−𝑖𝑎𝑖 , 

and the coefficient of 𝑏𝑘𝑎𝑛−𝑘 is ( 𝑛
𝑛−𝑘

). We 

also have that 𝑎𝑛−𝑘𝑏𝑘 = 𝑏𝑘𝑎𝑛−𝑘 and 
(𝑎 + 𝑏)𝑛 = (𝑏 + 𝑎)𝑛, by the commutativity 

of multiplication and addition of real 

numbers, respectively. Thus, when the latter 

is expanded, the coefficients of each term on 

either side of the equation must be equal, so 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) for all k. 
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After the expert has finished reading these proofs, ask them what they think it means for 

a mathematical proof to be convincing and what it means for a mathematical proof to be 

explanatory. Next, give them the following definitions to read from Weber (2002): 

 

• “A proof that convinces begins with an accepted set of definitions and axioms 

and concludes with a proposition whose validity [was] unknown…. The intent of 

this type of proof is to convince one’s audience that the proposition in question is 

valid. By inspecting the logical progression of the proof, the individual should be 

convinced that the proposition being proved is indeed true” (p. 14). 

• “A proof that explains also begins with an accepted set of definitions and axioms 

and concludes with a proposition whose validity [was] not intuitively obvious, 

although another proof of this theorem might already be known. In contrast to 

proofs that convince, proofs that explain need not be totally rigorous…. The intent 

of this proof is to illustrate intuitively why a theorem is true. By focusing on its 

general structure, an individual can acquire an intuitive understanding of the proof 

by grasping its main ideas” (p. 14). 

 

Next, proceed to ask some or all of the following reflection questions: 

• For you personally, do you find combinatorial proofs of binomial identities to be 

convincing (compared to, say, algebraic proofs, proofs by induction, or proofs 

that use the Binomial Theorem)? Why or why not? 

• Do you think the combinatorial you wrote of, say, (𝒏
𝒌

) ⋅ 𝒌 = 𝒏 ⋅ (𝒏−𝟏
𝒌−𝟏

), is 

convincing? Who do you think would find it convincing? How come? 

• For you personally, do you find combinatorial proofs of binomial identities to be 

explanatory (compared to, say, algebraic proofs, proofs by induction, or proofs 

that use the Binomial Theorem)? Why or why not? 

• Do you think the combinatorial you wrote of, say, (𝒏
𝒌

) ⋅ 𝒌 = 𝒏 ⋅ (𝒏−𝟏
𝒌−𝟏

), is 

explanatory? What do you think it explains? Who do you think would find it 

explanatory? How come? 

• Do combinatorial proofs provide a structural explanation for why a binomial 

identity holds that algebraic or induction proofs cannot provide, or vice-versa? 

Why or why not? 

• Can you think of a time in your research when you used a combinatorial proof, or 

when you read one in the literature? Why was a combinatorial proof 

needed/desired? 

• What do you think students need to know–both in terms of procedural and 

conceptual knowledge–in order to be successful at combinatorial proof? What 

disposition(s) do they need to have toward combinatorics, proof, and/or 

mathematics in general? 

• Broadly, what is your approach to teaching combinatorial proof? How do you 

prepare students to be successful at it? 

• Does teaching combinatorial proof feel very different than teaching proof in other 

domains (e.g. algebra or analysis)? 
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• Are there any particular techniques/strategies/tricks you think students should be 

exposed to when learning combinatorial proof? 

• Are there any techniques/strategies/tricks you want your students to use when 

proving binomial identities combinatorially? 

• Do you find that students tend to struggle with combinatorial proof? Why do (or 

why don’t) you think that could be? 

• Do you think students attempt to copy a “recipe" for how combinatorial proofs are 

written without attending to what they are really counting (in the sense of pseudo-

semantic proof production as described by Engelke Infante & CadwalladerOlsker, 

2011). 

• Do you think students (e.g. students in classes you’ve taught) find combinatorial 

proof to be a convincing argument for why a binomial identity is true, compared 

to an algebraic and/or induction proof? Why/why not? 

• Do you think students (e.g. students in classes you’ve taught) find combinatorial 

proof to be an explanatory argument for why a binomial identity is true, compared 

to an algebraic and/or induction proof? Why/why not? 

• Do you think the combinatorial proof given for Theorem 2, (𝒏
𝒌

) = (𝒏−𝟏
𝒌

) + (𝒏−𝟏
𝒌−𝟏

), 

would be more convincing to students if it used a more abstract context (such as 

counting subsets)? 

• Do you think the combinatorial proof given for Theorem 1, 𝟐𝒏 = ∑ (𝒏
𝒊
)𝒏

𝒊=𝟎 , would 

be more explanatory for students if it used a more concrete context, such as 

counting committees or binary strings? 

• For students in classes you’ve taught, do you think combinatorial proofs provide a 

more useful and/or meaningful explanation for why a binomial identity is true, 

compared to algebraic and/or induction proofs? Why/why not? 

• Are there any particular examples you like to use in class and/or problems that 

you have them solve in their homework? Why? 

• Do you think students (math and/or non-math majors) should learn combinatorial 

proof? Why/why not? 

• What mathematical practices (e.g. conjecturing, justifying, pattern noticing, etc.) 

do you hope your students will engage in when they prove binomial identities 

combinatorially? 

• Are there any particular contexts (e.g. committees, passwords, block-walking) 

that you think students should be exposed to when learning combinatorial proof? 

• Are there any particular contexts (e.g. committees, passwords, block-walking) 

you want your students to use when proving binomial identities combinatorially? 

• Do you have any (other) thoughts about how curriculum covering combinatorial 

proof could be improved? 

 

4. Demographic information 

 

Finally, give the expert the following demographic questions to answer on a paper form 

(if they are willing to provide this information): 
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• (Optional) Describe your race/ethnicity. Select all that apply. 

▪ Asian 

▪ Black/African American 

▪ White/Caucasian 

▪ Hispanic/Latinx 

▪ Native American/Alaska Native 

▪ Pacific Islander 

▪ Other: ________________________________ 

▪ Would prefer not to say 

 

• (Optional) Which of the following best describes your gender? Select all that 

apply. 

▪ Woman 

▪ Man 

▪ Nonbinary 

▪ Agender 

▪ Genderqueer 

▪ Other: ________________________________ 

▪ Would prefer not to say 

 

• (Optional) Please provide your pronouns. Select all that apply. 
(This question is included for purposes related to writing and presenting results of this research. If 

you choose not to provide a pronoun, we will only refer to you using a pseudonym, i.e. without 

using any pronouns for you.) 

▪ She/her 

▪ He/him 

▪ They/them 

▪ Other: ________________________________ 
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Appendix B. Student Selection Interview Protocol 

 

1. Solving counting problems. 

 

Give the student the following counting problems, one at a time. 

 

Domino Problem. A domino is a small, thin rectangular tile that has dots on one of its 

broad faces. That face is split into two halves, and there can be zero through six dots 

on each of those halves. Suppose you want to make a set of dominos (i.e., include every 

possible domino). How many distinguishable dominos would you make for a complete 

set?16 

 

Committees Problem. A university department has 30 faculty members. 

d) How many ways could a 5-member hiring committee be formed? 

e) How many ways could a 5-member hiring committee be formed if one of the 

committee members must be the chairperson? 

f) In the university department, 17 faculty members are professors and 13 are 

instructors. How many ways could a 5-member hiring committee be formed if 

the committee must consist of 3 professors and 2 instructors? (The committee 

won’t have a chairperson.) 

 

Power Set Problem. Let 𝑆 be a set containing 5 (distinct) elements. How many subsets 

are there of the set 𝑆? (That is, what is the cardinality of 𝑃(𝑆), the power set of 𝑆?) 

 

Binary Strings Problem. A binary string is a finite sequence containing only 1s and 

0s. 

c) How many binary strings of length 8 contain exactly 5 0’s? 

d) How many binary strings of length 𝑛 contain exactly 𝑘 0’s? 

 

2. Writing basic proofs. 

Next, ask the students to prove some or all of the following theorems. 

Theorem 1. The sum of two even integers is an even integer. 

Theorem 2. Let n be a nonnegative integer. Then, 

∑ 𝑖

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2
 

 

Theorem 3. Let 𝑛 and 𝑘 be nonnegative integers such that 𝑛 ≥ 𝑘. Then, 

 

 
16 This problem is used with permission from (Lockwood, Swinyard, Caughman, 2015). 
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(
𝑛

𝑘
) × 𝑘 = 𝑛 × (

𝑛 − 1

𝑘 − 1
) 

 

3. Reflection questions 

 

Ask the student some or all of the following reflection questions: 

• What would you say if one of your professors asked you to explain what a 

mathematical proof is? 

• What would you say if one of your friends or family members (not a peer 

studying your major) asked you to explain what a mathematical proof is? 

• What do you think is the purpose of proof for mathematicians? 

• What do you think is the purpose of proof in mathematics classrooms? 

• What can or should a proof contain for it to convince you (personally) that a given 

theorem is true? (e.g. Does a proof have to contain algebraic manipulation of 

symbols? Should proofs contain pictures? Is a proof by induction convincing for 

you? Why/why not?) 

• What can or should a proof contain to help you (personally) understand why a 

theorem is true? (e.g. do you feel a proof involving symbolic manipulation 

adequately explains why a theorem is true? What about a proof by induction? 

What about proofs that contain pictures?) 

• What are the things that come to mind for you when you see (n choose k) (e.g. do 

you think only about its formula? Does it make you think of a class of or specific 

counting problem(s)? Do you think of Pascal’s Triangle?) 

 

4. Demographic Information 

 

Finally, give the student the following demographic questions to answer on a paper form 

(if they are willing to provide this information): 

• What is your major, and what year are you (freshman, sophomore, junior, senior)? 

• What math classes are you currently taking? What other math classes have you 

taken in college? 
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Appendix C. Student Interview Protocol 

 

1. Solving more counting problems and finding bijections. 

 

I will ask students to solve counting problems involving combinations and the four 

operations (addition, subtraction, multiplication, and division). As they solve these, I will 

ask the students to articulate what each of these things mean regarding sets of outcomes, 

and I will ask how they know when to use addition versus multiplication, or subtraction 

versus division. I will ask them to solve all of the following counting problems. I will 

also ask them to list outcomes and to create explicit bijections between outcomes. 

 

Table C.1. Combinatorial tasks for students to scaffold combinatorial proof. 

Task Intended Purpose 

1. Spoonbill Problem. The scientific name of 

the roseate spoonbill (a species of large, 

wading bird) is Platalea ajaja. How many 

arrangements are there of the letters in the 

word AJAJA? Can you list all of the 

outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

ordered sequences of two indistinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) when 

counting. 

2. Subsets Problem. How many 3-element 

subsets are there of the set {1, 2, 3, 4, 5}? Can 

you list all of the outcomes? 

Ensure students are familiar (or to familiarize 

them) with combination problems involving 

unordered selections of distinguishable 

objects. Encourage students to use a set-

oriented perspective (Lockwood, 2014a) when 

counting. 

3. Find-a-Bijection Problem. Describe a 

bijection between the outcomes in the 

Spoonbill Problem and the Subsets Problem. 

Facilitate a robust, flexible understanding of 

combinations. Lay groundwork for students to 

solve bijective combinatorial-proof problems. 

4. Even- and Odd-Sized Sets Problem. Let 

S={1, 2, 3, 4, 5, 6}. (a) List all of the even-

sized subsets of S. How many should there be? 

(b) List all of the odd-sized subsets of S. How 

many should there be? (c) Find a bijection 

between the subsets in parts (a) and (b) by 

considering whether the subsets contain the 

item 1. 

Continue to facilitate a solid understanding of 

combinations. Provide scaffolding for students 

to eventually prove the identity  
∑ ( 𝑛

2𝑖
)𝑖≥0 = ∑ ( 𝑛

2𝑖+1
)𝑖≥0  using a bijective 

combinatorial proof. 

5. Reverse Counting Problem. (a) Write 

down a counting problem whose answer is 25. 

(b) Write down a counting problem whose 

answer is 15 × (14
3

). 

Provide scaffolding for the concept of a 

combinatorial proof by asking students to 

interpret expressions in a combinatorial 

context. 
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2. Write combinatorial proof 

 

In this section, I will ask the students to justify why some or all of the following binomial 

identities hold by coming up with a counting problem that each side of the identity 

enumerates: 

 

(
𝒏

𝒌
) ⋅ (

𝒌

𝒓
) = (

𝒏

𝒓
) ⋅ (

𝒏 − 𝒓

𝒌 − 𝒓
) 

(
𝒏

𝒌
) = (

𝒏 − 𝟏

𝒌
) + (

𝒏 − 𝟏

𝒌 − 𝟏
) 

∑ (
𝒏

𝒊
)

𝒏

𝒊=𝟏

⋅ 𝒊 = 𝒏 ⋅ 𝟐𝒏−𝟏 

 

During this section, I may ask students some or all of the following questions about the 

identities and their reasoning about them: 

• What could this be counting? 

• What if you tried plugging in specific numbers for n, k, or r? 

In this section, I will be careful not to call the students’ justifications “proofs.” This way, 

I will minimize my impact on their answers to the reflection questions in the next section. 

 

3. Evaluate combinatorial versus noncombinatorial proofs of binomial identities 

 

In this section, I will give them the following proofs to evaluate and reflect on (along 

with reflecting on their prior activity) as they answer questions about their mathematical 

thinking. 
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Table C.2. Six Proofs handout. 

Identity Combinatorial Proof Non-combinatorial proof 

Theorem 1. 

2𝑛 = ∑ (𝑛
𝑖
)𝑛

𝑖=0  

(Subsets Context) Consider 

a set S such that |S|=n. The 

LHS* of the equation 

counts the number of 

subsets of S, because every 

subset can be uniquely 

determined by the elements 

it contains, and each of the 

n elements could be either 

in or out of each subset. 

The RHS counts the 

number of i-subsets of S 

and adds up over all 

possible values of i. Since 

the LHS and RHS both 

enumerate the set of 

subsets of S, they are equal. 

(Induction RS*) Suppose n=0. It follows that 

the identity holds since 20 = 1 = (0
0
). Suppose 

that the identity holds for n=k, where k is a 

nonnegative integer. We then observe that 

∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

= ∑ ((
𝑘

𝑖
) + (

𝑘

𝑖 − 1
))

𝑘

𝑖=0

+ (
𝑘 + 1

𝑘 + 1
) 

= ∑ (
𝑘

𝑖
)

𝑘

𝑖=0

+ ∑ (
𝑘

𝑖 − 1
)

𝑘

𝑖=0

+ 1 

= 2𝑘 + ∑ (
𝑘

𝑖
)

𝑘−1

𝑖=0

+ 1 

= 2𝑘 + 2𝑘 − (
𝑘

𝑘
) + 1 

= 2 ⋅ 2𝑘 − 1 + 1 

= 2𝑘+1. 

Theorem 2. 

(𝑛
𝑘

) = (𝑛−1
𝑘

) +

(𝑛−1
𝑘−1

) 

(Committees Context) 

Suppose a mathematics 

department has n faculty 

members, and Sofía is one 

of the faculty members. 

The LHS counts the total 

number of committees of 

size k that could be formed 

from the n faculty 

members. The RHS counts 

the number of committees 

of size k that exclude Sofía 

and the committees that 

include her. Note that this 

case breakdown 

encompasses all possible k-

committees. Since the LHS 

and RHS both enumerate 

the same set of outcomes 

(k-committees formed from 

the n faculty members), 

they are equal. 

(Algebraic RS) We have that 

(
𝑛 − 1

𝑘
) + (

𝑛 − 1

𝑘 − 1
) 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 1 − 𝑘 + 1)!
 

=
(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
+

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
 

=
(𝑛 − 1)! (𝑛 − 𝑘)

𝑘! (𝑛 − 𝑘)!
+

(𝑛 − 1)! 𝑘

𝑘! (𝑛 − 𝑘)!
 

=
𝑛(𝑛 − 1)! − 𝑘(𝑛 − 1)! + 𝑘(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

=
𝑛!

𝑘! (𝑛 − 𝑘)!
 

= (
𝑛

𝑘
). 

*RS here refers to representation systems, in the sense of Lockwood, Caughman, and Weber (2020). 
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C.2. (Continued) 

Theorem 3. 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

(Binary Strings Context) 

Consider the set of binary 

strings of length n containing 

exactly k 0s. The LHS 

enumerates this set, because 

(𝑛
𝑘

) is the number of ways 

we can select positions for 

the 0s to occupy, and the rest 

of the positions in the binary 

string will be 1s. The RHS 

also enumerates this set, 

because ( 𝑛
𝑛−𝑘

) is the number 

of ways we can select 

positions for the 1s to 

occupy, and the rest of the 

positions in the binary string 

will be 0s. 

(Binomial Theorem RS) Recall that the 

Binomial Theorem states that for n a natural 

number and a, b real numbers, 

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑎𝑛−𝑖𝑏𝑖 . 

Notice that for each k, the coefficient of 

𝑎𝑛−𝑘𝑏𝑘 is (𝑛
𝑘

). Additionally, we also have 

that by the Binomial Theorem, 

(𝑏 + 𝑎)𝑛 = ∑ (
𝑛

𝑖
)

𝑛

𝑖=0

𝑏𝑛−𝑖𝑎𝑖 , 

and the coefficient of 𝑏𝑘𝑎𝑛−𝑘 is ( 𝑛
𝑛−𝑘

). We 

also have that 𝑎𝑛−𝑘𝑏𝑘 = 𝑏𝑘𝑎𝑛−𝑘 and 
(𝑎 + 𝑏)𝑛 = (𝑏 + 𝑎)𝑛, by the commutativity 

of multiplication and addition of real 

numbers, respectively. Thus, when the latter 

is expanded, the coefficients of each term on 

either side of the equation must be equal, so 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) for all k. 
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 Here are some examples I may ask them about their mathematical thinking: 

• What would you say it means for a proof to be convincing? What does it mean for 

a proof to be convincing for an individual? For a mathematical community? 

• Some researchers say that a convincing proof begins with an accepted set of 

definitions and axioms and utilizes correct, formalized logical progression to 

conclude with the proposition intended to be proven. The purpose of a convincing 

proof is to convince a reader that the proposition is true.17 Do you think that the 

arguments you used to prove binomial identities in the previous section are 

convincing proofs? Why or why not? 

• What would you say it means for a proof to be explanatory? What does it mean 

for a proof to be explanatory for an individual? For a mathematical community? 

• Some researchers say that an explanatory proof also begins with an accepted set 

of definitions and axioms and concludes with the proposition intended to be 

proven. But, explanatory proofs need not be totally rigorous and function to 

illustrate intuitively (and often structurally) why the proposition is true.18 Do you 

think the arguments you used to prove binomial identities in the previous section 

are explanatory proofs? Why or why not? 

• Take a look at these proofs of some binomial identities from the previous section. 

Do you think the induction/algebraic proof is more convincing than the 

combinatorial proof? Why or why not? Do you think the induction/algebraic 

proof is more explanatory than the combinatorial proof? Why or why not? 

• Do you think the combinatorial proofs in this section that use abstract subsets are 

more like a “real proof" than the arguments you used in the previous sections with 

committees or binary strings? Why or why not? What are you taking to be a “real 

proof"? 

 

4. Write more combinatorial proofs 

 

In this section, give them some or all of the following more challenging binomial 

identities to prove and observe their activity. Again, encourage the utilization of specific 

numbers and explicitly asking what an expression might be counting if they get stuck, 

following Lockwood et al. (in press). 

 

  

 

 
17 This is modified from the definition of a proof that convinces given by Weber (2002, p. 14). 
18 This is modified from the definition of a proof that explains given by Weber (2002, p. 14). 
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Table C.3. Additional identities given to the students to provide a combinatorial argument. 

∑ (
𝑛

𝑖
) (

𝑛

𝑛 − 𝑖
)

𝑛

𝑖=0

= (
2𝑛

𝑛
) 

∑ (
𝑛

2𝑖
)

𝑖≥0

= ∑ (
𝑛

2𝑖 + 1
)

𝑖≥0

 

∑ (
𝑛

𝑖
)

2
𝑛

𝑖=0

= (
2𝑛

𝑛
) 

 

∑ (
𝑚

𝑖
) (

𝑛

𝑘 − 𝑖
)

𝑘

𝑖=0

= (
𝑚 + 𝑛

𝑘
) 

𝑛

𝑘
(

𝑛 − 1

𝑘 − 1
) = (

𝑛

𝑘
) 

𝑛 + 1 − 𝑘

𝑘
(

𝑛

𝑘 − 1
) = (

𝑛

𝑘
) 

∑ (
𝑖

𝑘
)

𝑛

𝑖=𝑘

= (
𝑛 + 1

𝑘 + 1
) ∑ (

𝑛

𝑖
)

𝑛

𝑖=0

⋅ 2𝑖 = 3𝑛 
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5. Reflection questions 

 

At the end of the interview, I will ask some questions that ask students to reflect on their 

experience in the interviews. The following are representative of the kinds of questions I 

may ask: 

• Now that you’ve written more of these combinatorial arguments, have you 

changed your mind at all about whether or not you believe a combinatorial proof 

is a “real proof"? Do you think in order for it to be a real proof it has to use 

abstract language such as subsets, or can a combinatorial proof still be a real proof 

if it uses committees or binary strings? 

• Did your idea of what constitutes a real proof change at all since the previous line 

of questioning? 

• What would you say if one of your professors asked you to explain what a 

mathematical proof is? 

• What would you say if one of your friends or family members (not a peer 

studying your major) asked you to explain what a mathematical proof is? 

• Do you think presenting a counting argument to someone (say, a classmate in one 

of your proof-based mathematics classes) would help them better understand 

conceptually why a binomial identity holds? 

• If you were given proof by induction and a combinatorial proof of a binomial 

identity, would you think the induction proof or combinatorial proof is more 

convincing? Why? 

• If you were given an algebraic proof and a combinatorial proof of a binomial 

identity, would you think the algebraic proof or combinatorial proof is more 

convincing? Why? 

• If you were given proof by induction and a combinatorial proof of a binomial 

identity, would you think the induction proof or combinatorial proof does a better 

job explaining why the identity holds? How come? 

• If you were given an algebraic proof and a combinatorial proof of a binomial 

identity, would you think the algebraic proof or combinatorial proof does a better 

job explaining why the identity holds? How come? 

• What do you think is the purpose of proof for mathematicians? 

• What do you think is the purpose of proof in mathematics classrooms? 

• What can or should a proof contain for it to convince you (personally) that a given 

theorem is true? Is this different from what a proof should contain if you want to 

convince someone else (e.g. a friend, a peer in your major, your mathematics 

professor)? 

• What can or should a proof contain to help you (personally) understand why a 

theorem is true? 

 

6. Demographic information 

 

Finally, give the student the following demographic questions to answer on a paper form 

(if they are willing to provide this information): 
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• (Optional) Describe your race/ethnicity. Select all that apply. 

▪ Asian 

▪ Black/African American 

▪ White/Caucasian 

▪ Hispanic/Latinx 

▪ Native American/Alaska Native 

▪ Pacific Islander 

▪ Other: ________________________________ 

▪ Would prefer not to say 

 

• (Optional) Which of the following best describes your gender? Select all that 

apply. 

▪ Woman 

▪ Man 

▪ Nonbinary 

▪ Agender 

▪ Genderqueer 

▪ Other: ________________________________ 

▪ Would prefer not to say 

 

• (Optional) Please provide your pronouns. Select all that apply. 
(This question is included for purposes related to writing and presenting results of this research. If 

you choose not to provide a pronoun, we will only refer to you using a pseudonym, i.e. without 

using any pronouns for you.) 

▪ She/her 

▪ He/him 

▪ They/them 

▪ Other: ________________________________ 

 


