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Abstract   

I was honored to be the Keynote Speaker at the 30
th

 Annual STP Symposium “Toxicologic 

Pathology and the Immune System”. I had the opportunity to reminisce about events in the 

1970’s that set the stage for the birth and subsequent growth of the field of immunotoxicology, 

and to summarize my research career that has spanned the past forty years as well. An initial 

focus on the immunotoxicity of pentachlorophenol (PCP) led my laboratory into the aryl 

hydrocarbon receptor (AHR) field, and the study of its most potent ligand, 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD).    My research career has been devoted to trying to 

elucidate the immunological basis of TCDD’s profound immunosuppressive activity that is 

mediated by activation of AHR. In recent years my laboratory has focused on the role of CD4
+ 

T 

cells as targets of TCDD, and we were the first to describe the induction of AHR-dependent 

regulatory T cells (Tregs).  The ability to induce Tregs using an exogenous AHR ligand to 

activate the AHR-Treg pathway represents a novel approach to the prevention and/or treatment 

of autoimmune disease. We are currently searching for such ligands.  
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Historical Perspectives on the Birth of Immunotoxicology 

 

 The 30
th

 anniversary of the STP Symposium was an opportunity to reminisce about 

events in the 1970’s that set the stage for the birth and subsequent growth of the field of 

immunotoxicology.  This was a special time for me personally as I began my graduate studies at 

Oregon State University in the fall of 1970.   In 1971, funding for biomedical research achieved 

a new peak when President Richard Nixon declared his ‘War on Cancer’.  This ‘War’ effort 

benefited many fields of study beyond cancer research and invigorated the basic research 

community.   At the same time, the field of immunology was burgeoning with new discoveries, 

such as distinct subsets of T and B lymphocytes and their communication via interleukins (aka 

cytokines).  By coincidence, the realization of the adverse effects of cancer chemotherapeutic 

agents on bone marrow and immune function paved the way for toxicologists to enter the field of 

immunology as well.   

The 1970’s also witnessed the emergence of the environmental movement. Growth of 

‘environmentalism’ was fueled by growing public concerns about the potential effects of 

pollution on human health and by the empowerment of several new government agencies to 

regulate the use of industrial chemicals and study their toxicity [e.g., the National Institute of 

Environmental Health Science (NIEHS) -1968; the Environmental Protection Agency (EPA) -

1970; the Toxic Substances Control Act (TSCA)-1976; and the National Toxicology Program 

(NTP)-1978].  In retrospect, it is not surprising that the field of immunotoxicology emerged 

during this era, bringing together the fields of immunology and toxicology to address the premise 



that environmental pollutants could impact human health by adversely affecting the immune 

system.  

One of the first publications in the nascent field of immunotoxicology was published in 

1973 by J.G. Vos and colleagues (Vos et al., 1973) in a new NIEHS-sponsored journal, 

Environmental Health Perspectives. The paper, entitled “Effect of 2,3,7,8-Tetrachlorodibenzo-p-

dioxin on the Immune System of Laboratory Animals”, described the immunosuppressive effects 

of  4-8 weekly doses of TCDD on humoral and cell-mediated immunity in guinea pigs, mice and 

rats. The results of these studies revealed an unprecedented potency of TCDD to suppress the 

immune response.  The cell-mediated immune response in guinea pigs was most sensitive, with 

suppression of the tuberculin reaction occurring at a total dose of only 0.32 µg/kg. In mice, a 

graft-versus host response was suppressed after 4 weekly TCDD doses of 5 µg/kg.   In contrast, 

rats were more resistant to the immunosuppressive effects of TCDD but showed increased liver 

toxicity. The basis for the interspecies differences in immunotoxicity has still not been resolved. 

The Vos paper was followed by numerous publications over the next decade describing 

the immunotoxic effects of TCDD and structurally-related chemicals such as polychlorinated 

biphenyls in laboratory animals. Several studies showed that exposure to TCDD decreased host 

resistance to infection, resulting in increased severity of symptoms and/or increased incidence of 

disease-induced mortality following challenge with a variety of pathogens. At the time, such 

changes in host resistance represented the most definitive evidence for biologically significant 

immunotoxicity.  Furthermore, the immunosuppressive effects of TCDD were dose-dependent 

and occurred at doses that were not overtly toxic to the animal.   

The overarching goal of many of these studies was to simulate human environmental 

exposure conditions and determine the lowest dose of TCDD that would cause effects on 



different types of immune responses and/or alter resistance to disease. Such studies were aimed 

at providing data for human health risk assessments and regulatory decisions.  However, the 

mechanism(s) underlying the remarkable potency of TCDD to suppress immune responses 

remained elusive.   

 

Immunotoxicity of Pentachlorophenol  

 

My laboratory’s contributions during the early years of immunotoxicology emanated 

from studies on the immunotoxicity of pentachlorophenol (PCP).  PCP is a general biocide that 

acts by inhibiting oxidative phosphorylation. It was widely marketed as a wood preservative that 

was heavily used in Oregon in the wood products industry in the 1970’s.  PCP was sold as a 

technical product (T-PCP) of approximately 85% purity with ~15% dimeric impurities that 

formed as condensation products during production.  These dimeric impurities were primarily 

hexa- , hepta- and octa-chlorinated dioxins, -furans and -diphenyl ethers. In 1982, we published 

our first papers that described the ability of T-PCP to suppress humoral and cell-mediated 

immune responses in mice and to increase the tumor burden of mice injected with Moloney 

sarcoma virus (Kerkvliet et al., 1982a; Kerkvliet et al., 1982b).  Analytical grade (A-PCP) (>99
 

% pure) did not produce immunosuppressive effects at comparable doses.  Subsequently we 

showed that the dioxin/furan fraction, but not the diphenyl ether fraction, of T-PCP was 

responsible for the immunosuppressive activity (Kerkvliet et al., 1985). The rank order of 

immunosuppressive potency for the individual dioxin and furan congeners in T-PCP was 

consistent with the emerging theory of dioxin toxicity as a function of activation of the AHR.  

 



The AHR and Dioxin Toxicity 

 

In 1973, Poland and Glover described a structure-activity relationship between different 

chlorinated dioxin and furan congeners and their ability to induce the activity of a xenobiotic 

metabolizing enzyme known as aryl hydrocarbon hydroxylase (AHH) (Poland and Glover, 

1973).  TCDD was the most potent enzyme inducer while the activity of other congeners varied 

with the position and degree of chlorination.  In 1976 Poland’s laboratory reported the discovery 

of a hepatic protein that bound TCDD with very high affinity (Poland and Glover, 1976) .  

Twenty-three other chlorinated dioxin and furan congeners showed varying binding affinities for 

this hepatic cytosol-binding species that closely correlated with their potencies as inducers of 

hepatic AHH activity. The binding protein was named the ‘aryl hydrocarbon receptor’.   

After many years of study, we now know that the AHR is the ligand-binding member of a 

heterodimeric transcription factor that regulates gene expression.  It is present in most cells of the 

body.  Upon binding a fat-soluble, membrane-diffusible ligand such as TCDD, the cytoplasmic 

AHR translocates to the nucleus where it binds to another protein known as AHR Nuclear 

Translocator (ARNT; aka HIF1β). The ligand-activated AHR-ARNT complex is capable of 

binding to specific sequences of DNA (-TNGCGTG-) known for many years as “dioxin response 

elements” (DREs), but now often referred to as XREs or AHR-REs. Once bound, the complex 

recruits appropriate transcriptional machinery to increase or decrease gene transcription.  The 

resulting alterations in the proteome of the cell are thought to underlie the toxicity of TCDD.   

The broad spectrum of effects that are produced following exposure to TCDD may reflect the 

relatively common occurrence of DRE sequences throughout the genome.  

TCDD is the most potent AhR ligand.  Its potency relates to its high binding affinity as 



well as its resistance to metabolism which confers a long biological half-life. Resistance to 

metabolism is a relatively unique feature of TCDD, making it an ideal ligand for studying the 

functionality of AHR in the absence of potentially confounding effects of active metabolites.  

Whether or not the biological effects of TCDD reflect the inherent role of the AHR remains to be 

proven.  Likewise endogenous AHR ligands of functional significance remain to be confirmed.  

The promiscuous nature of the AHR ligand binding site has led to the identification of numerous 

endogenous compounds that bind and activate AHR transcription in vitro (e.g., prostaglandins, 

lipoxin A4, bilirubin, tryptophan metabolites) (Denison and Nagy, 2003). However, the AHR-

dependent effects of such compounds in the intact animal are just beginning to be described.  

AHR knockout (KO) mice are relatively healthy as adults and mount normal immune responses 

to antigenic stimulation (Vorderstrasse et al., 2001). However, several recent studies report that 

AHR KO mice have hyper-inflammatory tendencies (Furumatsu et al., 2011; Sekine et al., 2009; 

Thatcher et al., 2007), consistent with the existence of endogenous AHR ligands that function to 

down-regulate inflammation and immune function.  

 

Immunological Basis of TCDD’s Immunotoxicity 

 

AHR KO mice are completely resistant to the immunosuppressive effects of TCDD, 

confirming the essential role of AHR activation in TCDD’s immunotoxicity (Vorderstrasse et al., 

2001). However, the cells that express AHR and the functions of those cells that are 

compromised by its activation during an adaptive immune response have intrigued many 

investigators for the past 20 years. 

My laboratory joined the search for answers in 1990 with a publication demonstrating a role for 

the AHR in suppression of the cytotoxic T lymphocyte (CTL) response to allogeneic P815 tumor cells in 



C57Bl/6 (B6) mice by TCDD and PCBs (Kerkvliet et al., 1990).  This P815 tumor model became our 

model of choice for mechanistic studies because of the robustness of the alloimmune response that 

develops over a 10-12 day period.  Using flow cytometry, an emerging technology at the time, we could 

track the differentiation of the allospecific CD8
+
 CTL over time, and we could measure autocrine 

production of cytokines ex vivo.  It was also important that the CTL response was dose-dependently 

suppressed by TCDD (2-20 µg/kg) given orally one day before P8l5 tumor injection (Kerkvliet et al., 

1996).   The flow cytometric approach allowed us to show that suppression of the CTL response by 

TCDD was due to a dose-dependent reduction in the number of CTL that developed as opposed to a 

reduction in the lytic activity of the CTL per se. Furthermore, the reduced number of CTL was preceded 

by a dose-dependent reduction in the number of CD8
+
 T cells expressing an activated CTL precursor 

(CTLp) phenotype on day 7 (Oughton and Kerkvliet, 1999), suggesting that the activation of the CTLp 

was compromised by TCDD early in the response.  An early effect was supported by data showing that 

TCDD was no longer suppressive if it was given after the first 3 days of the CTL response (Kerkvliet et 

al., 1996).  These results further imply that, once activated, the allospecific CTLp are no longer sensitive 

to TCDD and are fully competent to terminally differentiate and clonally expand in the presence of 

TCDD. 

Since the CD8
+
 CTL response to P815 tumor cells is dependent on CD4

+
 T cells  

(Kerkvliet et al., 1996), it was of interest to know when the CD4
+ 

T cells were required.  Using 

an anti-CD4 antibody to deplete the cells, we found that the CTL response was suppressed only 

if the CD4+ cells were depleted during the first 3 days of the response (Kerkvliet et al., 1996).  

Thus, the window in which CD4
+
 T cells were required to help activate the CTLp was the same 

as the window of sensitivity to suppression by TCDD (Kerkvliet et al., 1996).   

These results led us to hypothesize that TCDD was suppressing the activation of CD4
+
 T 

helper cells to indirectly suppress the development of the CD8+ CTL.  Unfortunately, the 

population of allospecific CD4
+
 T cells was too small to track in the P815 tumor model due to 



lack of expression of Class II antigens on the P815 tumor cells.  Thus, in order to directly study 

the response of allospecific CD4
+
 T cells to TCDD, we switched model systems to a parent-into-

F1 hybrid acute graft-versus-host (GVH) model in which donor T cells from B6 mice (the graft) 

are injected i.v. into B6 x DBA/2 F1 host mice.  The F1 host mice do not recognize the B6 T 

cells as foreign but the B6 T cells become activated in response to DBA/2 antigens on F1 host 

cells and generate an anti-host CTL response similar to the CTL response to P815 tumor cells.  

However, because F1 host cells express both allo-Class I and allo-Class II antigens, a robust 

allospecific response occurs in both CD4
+
 and CD8

+
 donor T cell subsets which can be tracked 

by flow cytometry.  This GVH model has the additional advantage of being very versatile via the 

choice of donor T cells that are injected, allowing different attributes of the donor T cells to be 

tested.  

After validating that the CTL response generated in the GVH model was sensitive to 

suppression by TCDD, the first question that we wanted to answer was “Are CD4
+
 and/or CD8

+
 

T cells direct AHR-dependent targets for TCDD?”  While we knew that TCDD's suppression of 

the alloCTL response to P815 tumor was dependent on AHR expression (Vorderstrasse et al., 

2001), we did not know if T cells were direct targets.  Using donor T cells from AHR KO mice 

and different combinations of donor CD4
+
 and CD8

+
 T cells from AHR-WT and AHR KO mice, 

the results of these studies clearly demonstrated the requirement for AHR expression in the 

donor T cells (Kerkvliet et al., 2002).  When donor T cells were obtained from AHR KO mice, 

TCDD was unable to suppress the CTL response, while the response of WT cells was 90% 

suppressed.  Furthermore, expression of AHR in CD4
+
 T cells appeared to be more important 

than AHR expression in CD8
+
 T cells, although AHR responsiveness of both subsets contributed 

to maximal suppression of the CTL response.  



 With the knowledge that CD4
+
 T cells may represent the most critical target for TCDD in 

suppression of the CTL response, we set out to describe the changes in the activation of the 

donor CD4
+
 T cells that were induced by TCDD during the early stages of the GVH response. 

First, we used carboxyfluorescein succinimidyl ester (CFSE)-labeled donor T cells to track donor 

cell division and found that the number of donor CD4
+
 T cells increased in the spleen of the F1 

host from day 1 to day 3 and that this expansion was due to cell proliferation. TCDD did not 

affect the number of donor CD4
+
 T cells or their proliferation (Funatake et al., 2005).  However, 

while numbers of donor CD4
+
 T cells in the spleen were maintained on day 4 and 5 in vehicle-

treated mice, they significantly declined in TCDD-treated mice. This pattern of normal 

expansion followed by premature decline in CD4
+
 T cells in TCDD-treated mice has been 

reported in other models (Mitchell and Lawrence, 2003; Shepherd et al., 2000), and is 

reminiscent of the response of antigen-specific CD4
+
 T cells to antigen in the absence of 

sufficient costimulation.   These results suggested that TCDD might be compromising the ability 

of the CD4
+
 T cells to respond to costimulatory signals from antigen presenting cells. 

 However, instead of suppressed activation of CD4
+
 T cells, we were quite surprised to 

find that CD4
+
 T cells in TCDD-treated mice express a super-activated phenotype.  On day 2 in 

particular, a subpopulation of the dividing allospecific donor CD4
+
 T cells in TCDD-treated mice 

expressed very high levels of CD25 and significantly greater down regulation of CD62L as 

compared to dividing allospecific cells from vehicle-treated mice (Funatake et al., 2005).  The 

high level of expression of CD25 appeared to represent a functional high affinity IL-2 receptor, 

as incubation of the cells ex vivo with IL-2 resulted in a highly correlated increase in 

phosphorylated STAT5 expression (Funatake, 2006).  This TCDD-induced change in activation 

phenotype was dependent on the AHR and was not induced by TCDD in AHR KO donor CD4
+
 



cells (Funatake et al., 2005).  

 Fortuitously, these studies were ongoing at the same time that the discovery of CD4
+
 T 

Tregs was beginning to dominate the immunology literature. CD4
+
 Tregs were described as 

uniquely immunosuppressive cells that expressed high levels of CD25, along with other markers 

such as increased GITR and CTLA-4 (Sakaguchi et al., 2009).  Later, the transcription factor, 

Foxp3, was identified as a lineage specific marker for some types of Tregs.  When we examined 

markers of Tregs on donor CD4
+
 T cells, we found that 60% of the CD25

+
 cells in TCDD-treated 

mice also expressed GITR and CTLA-4 compared to only 30% of the CD25
+
 cells in the vehicle-

treated mice. The CD4
+
 CD25

+
 T cells from TCDD-treated mice also potently inhibited the 

proliferation of naïve, anti-CD3 activated T cells in vitro, a generally accepted assay of Treg 

function.  Additional studies showed that these putative TCDD-induced Tregs did not express 

Foxp3 but produced elevated amounts of IL-10, an immunosuppressive cytokine associated with 

type 1 T regulatory (TR1) cells (Grazia Roncarolo et al., 2006).  Interestingly, a recent study has 

shown that mouse and human T cells respond to TCDD in vitro by differentiation into TR1 cells 

as well (Apetoh et al., 2010; Gandhi et al., 2010).  

 

TCDD Suppresses Development of Type-1 Diabetes  

 

We were intrigued by the concept that the uniquely potent, non-cytotoxic 

immunosuppressive effect of TCDD might be explained by the induction of Tregs, opening up 

the possibility that TCDD might prevent the development of autoimmune diseases known to be 

influenced by Tregs.   In order to test this hypothesis, we chose to study the effects of TCDD in 

non-obese diabetic (NOD) mice that spontaneously develop Type-1 diabetes. The onset of 

diabetes has been linked to disruption of the balance between Tregs and pathogenic anti-beta 



cell-specific CTL, with a decline in the number and function of Tregs preceding the onset of 

overt diabetes (Gregori et al., 2003; Pop et al., 2005).   

 The influence of TCDD on the development of diabetes was profound.  At 22 weeks of 

age,  when 72% of the control vehicle-treated NOD mice had developed diabetes, none of the 

mice treated  with TCDD showed elevated blood sugar (Kerkvliet et al., 2009).  Therefore, to 

maximize the study’s value, we decided to stop treating half of the mice in the TCDD-treatment 

group. Within 8 weeks, 50% of the mice in this group developed diabetes while no diabetes was 

seen in the mice that continued to be treated with TCDD.   Chronic TCDD treatment did not 

produce any overt toxicity and the mice appeared healthy at 31 weeks of age at study 

termination.  Pancreatic histology revealed greatly attenuated inflammatory infiltrates in the 

TCDD-treated mice.  At the same time, the percentage of CD4
+
CD25

+
 T cells in the pancreatic 

lymph nodes of TCDD-treated mice were significantly increased compared to surviving vehicle-

treated mice, or mice that had been taken off of TCDD treatment.  Interestingly, all of the CD25
+
 

T cells in the pancreatic lymph nodes also expressed Foxp3.  Increased numbers of Foxp3
+
 CD4

+ 

T cells have also been found following TCDD treatment in mouse models of multiple sclerosis 

(EAE) (Quintana et al., 2008),  autoimmune uveitis (EAU) (Zhang et al., 2010) and autoimmune 

colitis (Furumatsu et al., 2011; Takamura et al., 2010). These results contrast with the absence of 

Foxp3 expression in donor CD4
+
 T cell-derived Tregs induced by TCDD during the GVH 

response. A Treg pathway that relies on activated AHR rather than Foxp3 is intriguing and 

deserving of further investigation.   

  

Gene Expression in AHR-Tregs:  Revelation of Mechanisms and Screening Fingerprint 

  



Current research efforts in my laboratory are focused on discovering the genes that are 

directly regulated by AHR activation in CD4
+
 T cells that lead to the induction and function of 

Tregs. Understanding the pattern of gene expression and the signaling pathways that are altered 

by AHR activation are critical for understanding the mechanisms of TCDD-induced Treg 

development and function. Changes in gene expression induced by TCDD are also being used 

for screening alternative AHR ligands that have the potential to induce AHR-dependent Tregs.  

A gene fingerprint for AHR-dependent Tregs could also be useful for identifying endogenous 

AHR ligands as well as exogenous dietary chemicals that influence immune function.  Our 

current NIEHS-funded grant  made possible by the American Recovery and Reinvestment Act 

(ARRA), has afforded us the opportunity to demonstrate proof-of-principal of our screening 

approach.  We have validated and extended the number of genes previously reported to be 

upregulated by AHR signaling in T cells (Marshall et al., 2008), including Il12rb2, Gzmb,  Il10 

and Tgfb3, and we have documented higher expression levels in sort-purified, alloantigen-

specific CD4
+
 donor T cells.  We are also very excited about our recent discovery of a novel 

AHR ligand that is immunosuppressive and induces a robust AHR-dependent TCDD-like Treg 

phenotype on day 2 of the GVH response.  We look forward to continuing these studies with our 

ultimate goal of understanding the role of AHR in T cell biology and the development of new 

treatments for immune-mediated diseases. 
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