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Abstract approved:

The central mathematical problem of this thesis is to find an

effective method for solving a nonlinear Fredholm integral equation of

the first kind. The primary objective in this problem is to obtain the

kinetic temperature T(h), as a function of altitude of the Earth's

atmosphere, given that we have a discrete set of radiant energy meas-

urements, the oxygen absorption-emission law, and the radiative

transfer equation.

From basic physical principles, the differential equation of

radiative transfer is derived. By inverting this differential equation

and making some simplifying assumptions about our atmosphere, we

arrive at the nonlinear Fredholm integral equation. By leaving the

integrand in its nonlinear form, we are not able, by known analytic

or numerical methods, to solve for the unknown temperature in the

integrand. One method of overcoming this difficulty is to make two



simplifying assumptionsone concerning our atmosphere, and the

other concerning the oxygen absorption coefficient ay. By assuming

an exponential form for a
v

(h) that satisfies boundary layer condi-

tions, and by dividing the atmosphere up into small stratified layers

subject to the condition of constant lapse rate, we linearize the inte-

grand With the integrand thus linearized, we apply the method of

least squares which helps to circumvent instability problems. A poly-

nomial representation, with coefficients to be determined, is chosen

for the temperature T(h). These coefficients {t
n

} are solved from

a set of matrix equations that are a result of certain known boundary

conditions and the least squares method. With the values of the {tn}

coefficients, we set up an iteration scheme by using an equation that

relates pressure and temperature for any adjacent pair of atmospheric

layers. New corrections are then made to the set of matrix equations

and absorption coefficient values. We continue this process of solving

and recorrecting the {tn} values until we converge on the solution,

T(h).

A summary statement appraising the whole iteration scheme

cannot be made at this point since a computer is necessary in the final

calculations and has not been available.

We have ignored statistical deviations in T
b(v)

(brightness

temperature) and T(h). Thus, unwanted oscillations in T(h) might

result since the Fredholm integral, being nonlinear, is usually quite



unstable and sensitive to errors. If statistical errors should exceed

a given threshold, depending on the kernel, then we must "extract" or

"smooth" out these statistical errors; otherwise, in using the iteration

scheme, we could not converge on the solution T(h). At this point,

it is not known if statistical errors are significant or not.

From the chain of simplifying assumptions leading to our

Fredholm integral, a price is paid on accuracy desired. With a

computer, an error analysis on the iteration scheme might yield some

useful information on cumulative error effect and error limits. All

error sources contribute a residual of error. These need investigat-

ing in order to establish error threshold limits, otherwise, unwanted

oscillations could dominate the solution.
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A NONLINEAR FREDHOLM INTEGRAL EQUATION AS
ENCOUNTERED IN RADIATION THROUGH AN ATMOSPHERE

I. MAIN PROBLEM AND OBJECTIVE

The central mathematical problem is to find an effective method

in solving a nonlinear Fredholm integral equation of the first kind.

The primary objective in this problem is to obtain the unknown

quantity, T(h) kinetic temperature, as a function of altitude, of the

earth's atmosphere, given that we have a discrete set of radiant

energy measurements, the oxygen absorption-emission law, and the

radiative transfer equation. Thus, we are dealing with the equation,

H

T b(v) = T(h)K(v, h, T(h))dh,
0

(1. 1)

where

K(v, h, T(h)) = av(h, T(h))exp av(111, T(11'))dhl, (1. 2)
0

is the kernel expressed as a product of the oxygen absorption coeffi-
h

cient andand the atmospheric attenuation factor, exp - avdh
0

a function of frequency v, is aBrightness temperature Tb (v),

known measured quantity which we define as intensity of radiant
2

energy divided by 2k --2-
c

That is,



v2T (v) = I /2k
2 '

2

(1.3)

where k is Boltzmann's constant, the speed of light c, and

frequency v.

T(h), occupying two places in the integrand, is our unknown.

The functional form of the kernel is known. We say this since the

absorption coefficient av is known and derivable from quantum

mechanics. If the integrand of Equation (1. 1) is linear, we may solve

for the unknown T(h), but this is not so with the integrand in its

present form. Under appropriate assumptions, we may linearize

the integrand which means T(h) may be extracted from K, thus

permitting Equation (1. 1) to be solvable by known numerical methods.

We also consider what experimental conditions are necessary

in order to simplify our atmospheric model which will permit a

simplifying mathematical model that is not too unwieldly and will at

least permit a "numerical methods" solution, and stay within the

frame work of existing laboratory equipment.
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II. A PHYSICAL DESCRIPTION OF THE EXPERIMENT

Measurements will be taken on "brightness" temperature and

kinetic temperature both on the ground and at the outer atmospheric

limits. This will require an airplane or satellite as well as the

antenna and various electronic equipment. The ground observer will

have his antenna pointing vertically upward while the airplane's

antenna will be pointing vertically downward as measurements are

being taken at the same geographic point and time. The reason for

antenna orientation being vertical (either down or up), is that this will

eliminate the added complication of the cosine factor in the differen-

tial equation of radiative transfer. No generality in theory is lost by
2

doing this. By dividing radiant intensity Iv by 2k v., , the instru-
c`

ments may be calibrated to read intensity in terms of "brightness"

temperature in degrees Kelvin. A brightness temperature measure-

ment is observed and stored for twelve to thirteen different frequen-

cies. By taking the Tb (v) measurements in the frequency interval

of 50 to 56 GHz (Gigahertz), we are able to construct a non-degenerate

system of equations from the nonlinear integral Equation (1.1). Then,

by using the method of least squares, we may solve for T(h).

The antenna, being a parabolic disc, is a highly directionalized

passive receiver of radiant energy from its surroundings. The

antenna is highly directionalized in the sense that the radiometer
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attached to it will respond only to energy being funneled into a very

narrow cylindrical beam whose axis concides with the antenna's axis.

Since no antenna can be ideally designed, there will exist low energy

side lobes which means the radiometer will register a reading on all

in-coming off-axis energy. This un-wanted feature is minimized

greatly by choosing the parabolic shape for the disc. An additional

design feature is incorporated into the antenna by providing a shield-

ing for the small energy side lobes so that we may ignore the in-

coming off-axis energy with negligible error.
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III. INTRODUCTION AND HISTORICAL BACKGROUND

Before coming to grips with the central problem, an introduction

and historical background will be given. Also, the subsidiary prob-

lems that arise when dealing with nonlinear integral equations have to

be discussed, and fundamental definitions and relationships clearly

stated.

The problem of specifying the radiation field in an atmosphere

which scatters light in accordance with well-defined physical laws

originated in Lord. Rayleigh's investigations in 1871 on the illumina-

tion and polarization of the sunlit sky. But the fundamental equations

governing Rayleigh's particular problem had to wait 75 years for their

formulation and solution. However, the subject was given a fresh

start under more tractable conditions, when Arthur Schuster formu-

lated in 1905 a problem in Radiative Transfer in an attempt to explain

the appearance of absorption and emission lines in stellar spectra,

and. Karl Schwarzs child introduced in 1906 the concept of radiative

equilibrium in stellar atmospheres. Since that time the subject of

Radiative Transfer has been investigated principally by astrophysists,

though in recent years the subject has attracted the attention of

nuclear physists also, since essentially the same problems arise in

the theory of the diffusion of neutrons [1, 2].

Meteorologists and physicists at The Boeing Airplane Company
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for the last seven years have expressed a marked interest in 'Transfer

Theory' problems in the field of Atmospheric Sciences under the

division of Applied Physics, Nuclear Weapons Environment. Research

and environmental testing is still being carried on both at the Boeing

Scientific Research Laboratories, and at the Environmental Sciences

Laboratories, National Bureau of Standards, Boulder, Colorado.

Because of its role as a supplier of aerospace and aircraft systems,

Boeing is interested in encouraging such atmospheric research stud-

ies. Successful demonstration of the radiometer method with eventual

application to weather satellites for obtaining global pressure topog-

graphy would have far-reaching civil and military significance.

Accurate determination of pressure topography and surface pressure

particularly applies to military problems of reentry vehicle inertial

fusing and burst height and yield determination. Also, by having

accurate and instantaneous atmospheric information, an important

step preceding nuclear testings would be realized. The laboratories

at Boulder, Colorado express their interests as being purely theoretic

and oriented toward basic research. Their contributions exceed those

of Boeing, especially on new mathematical methods of solving a non-

linear Fredholrn integral equation. They have carried the analysis to

the point where statistical errors are considered in the variables on

brightness temperature and kinetic temperature. One of the main by-

products derived from Boulder's activities is that they are able to

establish general atmospheric temperature profiles, and from these,

predict weather trends.



IV. RADIATION THROUGH AN ATMOSPHERE

Fundamental Concepts, Definitions, and. Relationships

1. Specific Radiant Intensity, Iv

Let P be a fixed point and let

L be a fixed line through P (see

Figure 1). Let dcr be a small

element of area containing P and

let 8 be the angle between L and

the normal N to do-. Through

each point P' of do- draw a

line parallel to L and, with this

Figure 1.
Ra di }i on Through da-
For Arbitrary e

line as axis and. P' as vertex, construct an elementary cone of

solid angle d . The aggregate of all such cones defines a semi-

infinite truncated cone with dcr as the finite end [1, 2].

Radiation is being transmitted through do-. Let the amount of

energy in the frequency interval (v, v +dv), which is transmitted

through do- in time dt in directions lying within the truncated

cone, be dEv . Then it is found that, for radiation fields occurring

in nature, the ratio

dEv

cos 8 do-d.wd.vdt
(4. 1)



tends to a definite limit as dt, dw, da-, dv 0 in any manner. This

limit is essentially positive and it is a function of P and. L. It is

independent of the angle 0. We denote it by Iv and call it the

specific intensity of radiation at P in the direction L or, more

briefly, the intensity at P along L. With this definition, if Iv

is given, the amount of energy flowing through an element da, in a

specified frequency interval (v, v + dv), in a direction making an

angle 0 with the normal to do-, within an elementary solid angle

dc,), in time dt, is

dE = I cos 0 do-dwdvdt.
v v

8

(4. 2)

The appearance of cos 0 in the definition of Iv deserves a word

of explanation. It is clear that the amount of energy flowing through

the truncated cone, defined by da and dw at P, will grow

smaller in the same field as the normal N moves towards the posi-

tion of the perpendicular to L through P, i. e. , as do rotates

towards the position parallel to L. What is really fundamental is not

the surface element dcr but its projection, do-' = d.a cos 0, on the

plane through P normal to L. It follows that the intensity Iv

can also be defined as the energy flowing at the point P in the direc-

tion L, per unit time, of frequency interval, of solid angle, and of

surface area normal to L.
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2. The Absorption Coefficient, K

The interaction between radiation and matter is usually

expressed in terms of an absorption coefficient and an emission coef-

ficient [1, 2].

Definitions of these fundamental quantities can be somewhat

clarified by borrowing from hydrodynamics the distinction between

'the Lagrangian point of view' and 'the Eulerian point of view'. In the

Lagrangian point of view, the movement of individual particles is

followed. Here such particles are the photons of the radiation field.

In the Eulerian point of view, local variations in the field itself are

considered, without any reference to the individual history of each

particle.

The 'transfer theory', as described in terms of absorption and

emission coefficients, makes exclusive use of the Eulerian point of

view, in as much as we never follow the evolution of single photons

(as one does, more or less, in the study of the interaction between

radiation and matter in quantum mechanics). Nevertheless, it is

extremely convenient, in transfer problems, to use the concept of

'Lagrangian particles' with a more loose and general meaning than in

hydrodynamics, namely that of a group of particles, the movement and

history of which are followed as a whole. This is in opposition to the

Eulerian point of view, in which no distinction is made between
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different groups of particles in the description of the field.

Let us consider an element of matter, of volume dV and mass

dm, in the radiation field. Then two kinds of photons, 'incident' and

'emergent', can be distinguished. The incident photons are those

which enter into the volume dV, and the emergent ones are those

which come out of dV. This distinction is essentially Eulerian

since, if several groups of photons enter dV, we do not (unless the

contrary is explicitly specified) distinguish between the different

groups emerging from dV.

The situation becomes a little more complicated as soon as we

try to distinguish, not only between

incident and emergent photons as

described by the scheme of Figure 2,

but, more precisely, between those

e

photons which are incident and

mergent in a given direction.

Indeed, if we neglect for a moment

complications arising from the fact

Figure 2.
Incident- Emergent

Photons in dV

that most of our photons refer to a given frequency interval dv, a

given time interval dt, and so on, it is obvious that photons emer-

gent along the path (Figure 3) are not necessarily those which are

incident along (in the same direction as 1'), even in the loose

Lagrangian sense defined above.
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ta9ran9ian Residue s_h _pecific

Figure 3.

For not only may some of the f photons be truly absorbed,

i. e., annihilated as photons of frequency v by interaction with the

matter of dV, or scattered in directions other than ', but,

reciprocally, the 1' photons may contain photons truly emitted,

i. e., created as photons of frequency v by the matter of dV, or

they may contain photons coming from directions other than I

which have been scattered into the direction ' .

It is, however, obvious that the I ' photons will usually con-

tain a large number of I photons, made up of those which dm

(i. e., those winch have 'passed through the mesh of the net'), and of

those photons which, after different kinds of interaction, are

nevertheless re-emitted as ' photons. We shall call all of these

the Lagrangian residue of photons, and the difference between

the number of the incident photons and the residue of these in the

emergent I' photons can then be called the Lagrangian loss of I

photons.

It is important to stress that the absorption coefficient, which

we are about to define, does not refer in any way to a relation
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111.

between all the 1' photons and all the f photons (Figure 3), but

only to the Lagrangian loss of t photons.

We imagine a (rather difficult) physical experiment in which the

energy of dEv, in the frequency interval (v, v +dv), is incident

normally on a slab of surface area do- and thickness d s in a

solid angle do.) and in the time dt. The element of matter does

not receive any other incident radiation and it is isolated, so that it

does not receive back any of the radiation truly emitted or scattered

outside the solid angle dw' (equal numerically to dw) around

1' (Figure 4). Usually only a certain fraction of dEv will be

received in the solid angle dw', in the frequency interval dv and

during the time interval dt.

1

Lagra ia r
on

LOSS oc °tons
the elern en1 , rolcr.as

Figure 4.

We can avoid second order differentials and simplify our nota-

tion, if we describe this experiment in terms of the intensity defined

by Equation (4. 2). The intensity Iv in the direction I becomes

I
v

+ 5Iv along by interaction between the radiation and the mat-

ter dm contained in the volume dads. Physical experiment and
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theory show that 5Iv is proportional to the density p of the mat-

ter, to the thickness ds of the slab and to the incident intensity Iv.

We put

5Iv = -K pI ds (4. 3)
V V

and we call the quantity Kv thus introduced the mass absorption

coefficient for radiation of frequency v. This quantity allows us to

specify, in a real radiation field, the Lagrangian loss of a given inci-

dent pencil of radiation. It is generally assumed that K

11.

is

independent of the direction I of the incident beam.

3. The Emission Coefficient, jv

Let us return to the scheme of Figure 3. Besides the Lagrangian

residue of I photons, the 1' photons contain some which are

truly emitted, i. e. , created as photons of frequency v by the matter

in dV, and some which have come from directions other than I

and which have been scattered into the solid angle dw' around I'.

It is usual to designate as photons emitted by the element dV, all
1111.

the photons in the I' pencil other than the Lagrangian residue of

I photons. Thus both the photons created in dm and the photons

scattered by dm are considered as emitted photons. These are

specified by an emission coefficient jv .

The emission coefficient jv represents the energy emitted, in



the sense explained above, per unit frequency interval near the fre-

quency v per unit solid angle, per unit interval of time and per

14

unit mass, in a given direction ' [ 1, 2].

In other words, an element of mass dm sends in directions

confined to an elementary solid angle d()1, in the frequency interval

(v, v+dv) and in time dt, an amount of radiant energy equal to

jv dmdvdtdwl

and composed of that truly emitted by (created. in) dm and that

scattered into dco' (from all directions) by dm.

4. The Source Function, F

The ratio of the emission coefficient to the absorption coeffi-

cient at a given point of the radiation field is an important quantity

defined as the source function. Thus, by definition, (from [1]),

Fv = j
v

/K
v

= source function. (4. 4)

5. Isotropy and Homogeneity

A radiation field is said to be isotropic at a point if the intensity

is independent of direction at that point. If the intensity is the same

at all points and in all directions, the radiation field is said to be

homogeneous and isotropic [1].
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6. Local Thermodynamic Equilibrium

Consider an evacuated enclosure whose walls are maintained at

a uniform temperature T, and suppose that the walls are capable

of absorbing and emitting radiation of all frequencies. When the

radiation within the enclosure has reached a steady state, it is of the

kind known as black body radiation of temperature T. The intensity

of black radiation of frequency v and temperature T will be

denoted by Bv(T).

7. Radiative Equilibrium

The atmosphere is supposed to be in strict radiative equilibrium,

i. e. , it is assumed that the heat interchanged by convection and con-

duction is negligible compared with that interchanged by radiation.

Moreover, no nuclear energy is being liberated. Then the total

radiant energy incident on an element of volume is equal to the total

energy emergent from the same element of volume.

8. Kirchoff's Laws

Now consider an enclosure containing different media in which

discrete particles of matter may be embedded. Suppose that the

walls are again maintained at the temperature T and that the radia-

tion within the enclosure is in a steady state. Then the following



laws, established, by Kirchoff, hold for radiation of frequency v

such an enclosure:

(a) The radiation is everywhere isotropic and the intensity is

the same throughout any one medium, where we have our

atmosphere stratified into layers.

(b) If Iv is the intensity at any point of a medium whose

16

in

refractive index is
2

'Iv, then I
v

/p. v
is constant through-

out the enclosure.

(c) If K
v

and jv are the coefficients of absorption and

emission at a point where the intensity is Iv, then

j /K = I .
v V V

(d) The value of jv/(P,12,Kv), which is constant throughout the

enclosure, is the same for any two enclosures at the same

temperature. It is equal to the intensity Bv(T) of black

body radiation of frequency v and temperature T.

By the last law, (d), we see that the coefficient of emission jv of

any matter in the enclosure is connected with its coefficient of

absorption K
v

by the relation

2
j = p. K B

v v v v T (4. 6)

It is the content of the above equation which is called Kirchoff's Law,

Usually it can be-assumed. that 'Iv = 1, though recent work in
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radio-astronomy has been dealing with media for which, in radio fre-

quencies p.v varies between 0 and 1. In our case, for the

atmospheric media and for the narrow microwave frequency interval

of 50 to 56 GHz (1 Gigahertz = 109 cycles per sec. ) , 1.1.v = 1.

The explicit form for the Planck function B v(T) is derived

in quantum statistics, and this theory predicts the expression,

Bv(T) = 2
1

2 hvikT
c e -1

where h is Planck's constant, k is Boltzmann's constant,

the frequency,

[12, 13].

c the speed of light and. T the temperature

(4. 7)
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V. PHYSICAL PROPERTIES OF EARTH'S ATMOSPHERE

Absorption, scattering, and emission takes place as the Earth's

atmosphere is subjected to radiant energy of all frequencies. The

radiant energy is equivalent to a photon field emanating from some

primary energy source such as the sun. The primary atmospheric

constituents causing absorption, scattering, and emission are the

oxygen molecules, solid particles, rain drops snow, nitrogen, etc.

We will simplify this phenomena if we conduct the experiment under

the conditions of a sunny, cloudless day in a geographic region that

has a predominantly dry atmosphere, and we keep our Tb (v) read-

ings within the 50 to 56 GHz interval. Our analysis is simplified

since our differential equation of radiative transfer is simplified.

This is done by reducing Radiative Transfer Theory (for this experi-

ment) down to two separate processes of oxygen molecular absorption

and emission--the other atmospheric constituents, we may ignore [6].

Scattering may be ignored by imposing several restrictions, namely,

the frequency interval that is chosen, and no snow, rain, water vapor,

or smog. We need not be bothered with polarization effects because of

the frequency interval chosen [7]. No polarization effects will mean

an isotropic medium. Also, local thermodynamic equilibrium will

permit us to equate the source function, j
v

1K
v

to the Planck function,

Bv(T). The ionosphere is highly polarized by the Earth's magnetic
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field, but this effect may be ignored since energy in the 50 to 56 GHz

range passes through unpolarized.

In the frequency range (10-100 GHz), the primary atmospheric

gaseous absorbers and, hence emitters of radiation, are oxygen and

uncondensed water vapor [9]. Water vapor absorption is due to a pure

rotational transition at 22.2 GHz and non-resonant contributions of

other rotational lines starting around 180 GHz and extending well into

infra-red. Oxygen absorption is due to a band of rotational transi-

tions starting at about 53 GHz and extending to about 66 GHz. Figure

5 shows the calculated wet, dry, and total absorption as a function of

frequency. It is evident from this figure that oxygen absorption

dominates over that of water, except in the immediate region of the

water vapor line [9].

For frequencies in the vicinity of the oxygen complex, and for

low antenna elevation angles, the total integrated absorption (optical

depth) is so large that the atmosphere is essentially a black body

radiating at a temperature nearly equal to that at the Earth's surface.

For frequencies near the center of the oxygen band, the atmosphere

is again a black body radiating at nearly the surface temperature for

all elevation angles. In the frequency region from 50-56 GHz and for

a vertical antenna, however, a large change in brightness tempera-

ture with frequency occurs, as seen in Figure 6. Over this small

frequency interval, a brightness temperature change of about 150°K
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takes place and in the steepest portion of the curve, the slope is about

60°K per GHz.

It is also observed for the same 50-56 frequency interval that if

the height above which the brightness temperature contribution may be

neglected (99% level) is plotted against the surface absorption coeffi-

cient, as presented in Figure 7, the layers of the atmosphere which

contribute most strongly to the brightness temperature at a given

frequency can be determined [6]. In this figure it is evident that the

relative contribution from various altitudes is strongly frequency

dependent between 52.5 and 55 GHz. For frequencies below 52 GHz,

the radiation contribution is averaged over a fairly large height inter-

val (approximately 17 km); above 55 GHz through the center of the

oxygen band, the contributions to the brightness temperature are

from a narrow height interval close to the ground.

The large slope of the Tb(v) versus v curve and the

pronounced changes of the radiation cutoff height, as pointed out

above, arise because of the large variations in both the absorption

coefficient and the optical depth.

It should also be pointed out that both the radiation cutoff

height and, the brightness temperature, depend on the manner in

which the line width parameter v varies with temperature and

pressure [6,7,8,9,10].
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VI. A NONLINEAR INTEGRAL EQUATION OF FREDHOLM
TYPE AND FIRST KIND

From the previous chapter, Radiative Transfer Theory was

simplified to two separate processes of oxygen molecular absorption

and emission as we consider energy passing through a long narrow

vertical cone into our antenna (see Figure 8). With the basic con-

cepts and definitions laid down, we may show the derivation of the

Radiative Transfer equation.

Let us consider the long vertical beam slicing through an

infinitesimal slab of atmosphere of thickness dh. As energy enters

at face A and leaves at face B, a difference in intensity per

unit change in path length is observed (see Figure 9). This difference

in energy comes from an excess of emission over absorption. As

photons enter face A, a small fraction of the incident bundle is

absorbed. The amount absorbed is proportional to the incident inten-

sity on face A, and is

K pI .
v v

Those photons that do interact, raise the molecular energy

levels of oxygen. The cylinder of molecules in their "excited" state

will emit energy at the same frequency v that the incident photons

coming in have, assuming local thermodynamic equilibrium. Also,
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photons from other directions are scattered into our cylindrical beam

and exit in the dh direction. Thus, these two processes are

lumped together as that portion emitted by dm, and is equal to

jvP'

Then the gain over the loss is equal to the difference in energy trans-

ferred across the incremental cylinder in the dh direction. That

is,

dIv

dh -KVPIV iVP
(6. 1)

where the minus sign denotes that amount absorbed or taken away.

We define the linear absorption av, in the dh direction, as

Also,

a = K p .

j = K B (T),
V V V

(6. 2)

(6. 3)

from Kirchoff's law. Therefore, Equation (6. 1) can be written as,

or

dIv ay
=-a I + (K B (T))

dh V V V V KV

dIv
=

dh
-a

v
I

v
+ a

v
B

v
(T). (6. 4)



28

Equation (6. 4) is a simple linear first order differential equation that

may be readily transformed into an equivalent integral equation by

finding the appropriate integration factor which may be found in any

differential equations text. Thus, the integral form of Equation (6. 4)

evaluated at the ground is

Iv = Iv0 e

a
v

(13.1)dh'

0

av(h')dh'
oo

+ Bv(h)av(h) e
0 dh,

0

(6. 5)

where Iv0
is the unattenuated intensity of discrete sources lying

outside the Earth's atmosphere. The first term represents contribu-

tions to the received energy from external noise sources attenuated

by the intervening medium. The second term in (6. 5) is interpreted

physically by considering an incremental element along the antenna

path emitting energy toward earth at a rate equaling B
v
a

v
dh, and

this emitted energy is, in turn, attenuated by the intervening medium

[
h

by the factor exp - a v(h' )dh' The total contribution is then
0

obtained by integrating (or summing) all contributions along the ray

path. The absorption coefficient a
v

is an explicit function of tem-

perature and pressure while temperature and pressure are, in turn,

functions of position along the ray path, thus making the absorption an

implicit function of position. It is this dependence only which had been

indicated in Equation (6. 5). Similarly, the Planck function By ,



which is an explicit function of temperature alone, can be written as

a function of position. The intensity Iv, received at ground level,

thus depends on the meteorological profile at every point on the ray

path.

Two conditions, along with one experimental fact, permit a

simplification of Equation (6. 5) into "Fredholm" form. We also use

the definition,

v2
Iv = 2k T. Tb(v),

c
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(6. 6)

thus allowing all terms in (6. 5) to be expressed in degrees Kelvin upon
2

dividing through by 2k v2 . Those conditions necessary for simpli-

fication are:

(1) By selecting the microwave frequency interval,

v
50

< v < v56' we have by kT.

(2) The selection of a set {Hy} of finite upper limits or cut-

off heights from a standard model atmosphere such that any

energy contributions above Hv
are negligible and beyond

the sensitivity of measurement. That is,

T (v)
1

- Tb(v) <25,
h=00 h=H

where 8 is the instrument sensitivity.
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The experimental observation is that the first term in (6. 5) may be

dropped since its measured value is beyond instrument sensitivity.

That is,

00

I
v 0

eXP[ - S6 av(ht)dhl < 6.
0

From condition (1), if hv << kT, we may expand. Bv(T) in a

MacLaurin series, and drop terms of second order or higher. Thus,

we can say,

2hv
3

1 v
T(h)

2

Bv(T) = cZ ehv/kT
Ft 2k

-1

Using (6. 7) and (6. 6), Equation (6. 5) then becomes,

(6. 7)

oo

a.v(ht)dh' a v(h', T(h'))dhl

Tb
(v) = Tb0(v)e

0 +SI T(h)a
v
(h, T(h)) e 0

0

The first term in (6. 8) may be dropped since

oo
1

Tb0(v)exp [- SI a v(hI)dhl < 2 6.
0

Thus, we may write,

dh

(6. 8)

h
av(hr, T(h1))dh'

oo

T (v)
0

T(h)av(h, T(h)) e dh, (6. 9)
b

0



where 0 < h' < h < co. The second condition allows us to replace

the infinite upper limits on the integral with finite limits, and there

will be a discrete set of these cut-off heights {Hv} - -one H
v

for

each frequency v . Thus we can say,

H
v

-51 a v( T ( h ) d h

Tb (v) - S4 T(h)av(h, T(h)) e 0 d.h <
1

b.
0
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(6. 10)

Consequently, keeping in mind the approximations and assumptions

made, we may write,
H

Tb
(v) = T(h)K(v, h, T(h))dh,

0

where the kernel is

(6. 11)

K(v,h, T(h)) = a(v,h, T(h)).exp[ , hr, T(h1))dh] . (6.12)
0

Again, we say Tb(v) is the known measurable parameter,

T(h) is unknown, and the kernel K will be known if we can legiti-

mately extract from it the unknown T(h). Also, T(h), Tb(v), and

K are well behaved-smooth continuous functions and bounded within

the interval [0, Hv] for /145 < < v60.

With the above derivation leading to our nonlinear Fredholm

integral equation, we come to the central mathematical problem stated

at the beginning, namely, presenting an effective method of solution

to Equation (6. 11). The central physical objective, again is to obtain

the kinetic temperature T(h). The following two chapters discuss

the approach and the ensuing difficulties.
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VII. LINEARIZATION OF THE INTEGRAL EQUATION

Before any inversion technique can be applied to Equation (6. 11),

the nonlinear property must be solved. We must extract the unknown

T(h) from the kernel, and yet leave it comparatively unmolested.

The newly linearized kernel must not have unreasonable errors, and

still present a realistic model for the entire atmospheric profile.

Indeed, this can be done by dividing the atmosphere into small

stratified layers where any layer at a given height above ground is

governed by the condition of constant lapse rate, where

T -(h.) T(h. ) A .T(degrees°K)
3 j-1 j

1.( apse rate) = = = constant./- 1, h.-h. A .h(km)
3 j-1 j (7.1)

By means independent of our experiment and measurements, we ob-

tain the set of numbers, {./j-1, j; j = 1,2, ... , NB} for all layers of

the atmosphere. We do this by gathering all data on the atmosphere's

temperature profile at different geographical locations for the past

five or ten years. From the gatherings, we can establish a "mean"

or "model" temperature profile with statistical and error limits

drawn on either side of the profile curve. See Figure 10. From the

"mean" profile curve, measure off a set of lapse rate numbers sub-

ject to the condition,
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< 0.01.
j-1,j
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(7. 2)

Then for the conditions of stratified layers--constant lapse rates, we

can assume an exponential variation with height for the absorption

coefficient, and be quite accurate. Thus, holding v temporarily

constant, we assume,

av(h) = a
v

(h. )e1-1

h-h .

H.
1

, (h. < h < hi),

i = 0, 1, 2, .. . , NB,

and h
0

= 0, hN = H
v

; where, now the absorption, av(h) is
B

(7. 3)

strictly a function of height. The constant, H. is determined for

each adjacent pair of boundary layers,

a. v(hi)
ln(a

(h.
)

1 v

H. h -h.
1 i 1-1

(7. 4)

where the coefficient, a
v 1
(h. -1 ) in (7.3), also a constant, must be

evaluated at each boundary interface. From basic quantum mechanical

principles, Van Vleck derived an explicit expression for a
v 1

(h. -1 ) in

terms of temperature T, pressure F, frequency v, and line

width Av [10]. We can, therefore, write a
v

(h. ) as an implicit
1-1



function of height hi -1 since ats v is a function of P and. T,

which are, in turn, functions of height. Thus,

and

where

with

and

a
v

(h.
1
) = a(v, P, T, v),1

c1Pv2 EN/kT
a(v,P,T,Av) =

3
SN e

2 2 2
SN = FN+ N+

+ F
N- 11N-

+ F
0

,

0
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(7. 5)

(7.6)

(7. 7)

AV AV
FN± = (7.8)

(v -v)2+(isv2) (v +v2) +(Av2)
N± N±

v
F

0
=

2 2v +(Av)
(7. 9)

2 N(2N+3) (7.10)
11N+ N+ 1

2 (N+1)(2N-1)
N-=

(7.11)

2 2(N
2

+N+1)(2N-F1)
11. NO N(N+1)

The exponent in the Boltzmann factor of Equation (7. 6) is,

E NikT = (2.06844)N(N+1)/T.

(7. 12)

(7. 13)



And for the normal concentration of 02 in air, the constant C
1

is defined as

C
1

= 2.6742, (for a
v 1

(h. ) in decibels per kilometer, or
I.-

C
1

= 0.61576, (for a
v

(h. ) in nepers per kilometer).
1

Finally, the empirical formula for the line width parameter,

36

pv is,

Av(P,T) = aP[0.21 + O. 7813](300/T)0.85, (7.14)

where a and 3 are constants which take on certain values for

different height intervals in the atmosphere. Thus,

a = 1.95 Mc /s (mm of Hg) 1, and

p = 0.25 for h < 8 km, and P > 267 mm of Hg.

(h-H )
1p = 0.25 + (0.5) for H1 < h < H

(H
2

-H1) 1
H2,

where H
1

8 km' H2 = 25 km

13 = 0.75 for h >H2 = 25 km, and P < 19 mm of Hg.

Now, a few more words need to be said about the remaining terms in

Equation (7. 6) and (7. 7). EN is the energy of the N-th state, k

is Boltzmann's constant, p.
N

is the magnetic dipole moment of the

N-th state, vN± is the resonant frequency of the N-th state,

and N is a generic label for a particular type of rotational transition
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of the oxygen molecule. In evaluating Equation (7. 6), we have to sum

over all permissible rotational transition energy states. Thus, N

can assume only odd values (from 1 to 45) because of the Pauli

exclusion principle. We can now evaluate the coefficient, a (h. )
v 1

in Equation (7. 3) by the use of (7. 6) with all of its terms defined.

Thus, we have linearized the Fredholm integral, (6. 11) by extracting

the unknown, T(h) from the kernel, K(v, h, T(h)). The absorption

coefficient curve, represented by (7.3) for the entire stratified

atmosphere, is a sequence of broken, connected line segments. The

entire curve is piecewise smooth, continuous, and bounded for

(0 < h < H ), although the slope, dav(h)/dh is discontinuous at
NB

the boundary layers. See Figure 11.

After linearizing Equation (6. 11), the use of an inversion tech-

nique leads to a treatment of a linear Fredholm integral. We state the

problem by writing,

K(x, y)f(y)dy = g(x) + E ( x ) , a < x < b,
a

(7. 15)

where g(x), and. K(x, y) are known, f(y) unknown. K, g, and

f are smooth, continuous, and bounded for a < x < b. E(x) is an

arbitrary function, representing the measurement error in g(x),

with the restriction.

I E(x) I < M, a < x <b,
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where M, depending on the shape characteristics of the kernel K,

is an upper bound on the maximum allowable error. If IE(x)1 > M,

oscillations will plague the solution, f(y), [3, 4,5,11].

The error function, E(x) brings up the next difficulty- -

instability in the solution, f(y). This is best illustrated by the fol-

lowing elegant argument given by Phillips [4]. Let f(y) be the solu-

tion to

r b
K(x, y)f(y)dy = g(x),

a

and add to it the function fm(y) = sin(my). Thus,

a

where

(7. 16)

b
K(x, y)[f(y) +sin(my)]dy = g(x) + E(x), (7. 17)

E(x) = K(x, y)sin(my)dy.
a

(7. 18)

Now, for any integrable kernel K(x, y), it is a well known theorem

(Dirichlet's integral theorem) that,

(bgm
K(x, y)sin(my)dy 0 as m 00. (7.19)

Hence, only an infinitesimal change, gm in g causes a large,
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finite change, f in f. Such oscillatory behavior can destroy all

physical meaning of the solution, f if the threshold error in g is

exceeded. Also, one would expect that g 0 as m --" oc

faster for flat smooth kernels than for sharply peaked kernels. In-

deed if K(x, y) were the Dirac-delta function, K(x, y) = 5(x-y),

then gm = fm would not approach zero. Hence, we conclude that

the success in solving Equation (7. 15) depends to a large extent on the

accuracy of g(x) and the shape of K(x,y).

Instability (or pronounced oscillations) in the solution, f(y)

still faces us if we resort to solving the integral Equation (7. 15) by

substituting a system of equations generated by the method of numeri-

cal quadratures and solved by matrix inversion since the original

integral, (6. 11) is very sensitive to measurement errors. Thus,

numerical quadratures with matrix inversion is abandoned since

I E(x) I >M.
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VIII. THE SOLUTION BY NUMERICAL METHODS

By turning to the method of least squares, instability can be

overcome [3, 8]. It is this method that allows convergence to the solu-

tion f(y), (or T(h) in (6.11)) by the setting up of an iteration

scheme. We now develop and bring together the equations and bits of

information that go into the chain of the iteration scheme [9]

Upon getting the absorption coefficient in the form of Equation

(7.3), we can write (6. 11) in the form,

fo

Hy

T (h) h)dh, (8.1)

since T(h) is extractable from the original kernel. The tempera-

ture T(h) can now be determined by inverting (8. 1).

A polynomial expansion is chosen for T(h), i. e. ,

T(h) = tnUn(h),

n=0

(8. 2)

where {tn} is a set of coefficients to be determined and {Un(h)}

is some given set of basis functions. Substituting (8. 2) into (8. 1), we

get,

tnK(v,n),

n=0

(8.3)



where
- av(h')dhi

K(v,n) = VUU(h)a(h)(h) e 0

n v
0
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dh. (8. 4)

We delay the development of (8.4) to present, first the iteration

scheme. Our first step is to determine {t
n

} and the Lagrangian

multipliers {Nk} by minimizing,

Q

j=1

N
N 2

+N
b N

[Tb(vj)- / tnK(vi, n)1 + 22 y
k
/ t

n
U

n
(h

k
)-T(hk

)) ,

n=0 k=N+1 n=0
(8. 5)

or in the matrix notation,

*
Q(t, N) = [Tb(v)-K t] [Tb(v)-K t] + 2y [U t-T] ,

where means transpose.

(8. 6)

K, U, Tb(v), t, y, T are matrices, the last four being column

matrices. K(v.,n) is the element of K in the n-th row and j-th
J

column, where n = 0, 1, . , N; j = 1, 2, .. , NV . U
n

(h
k

) is the ele-

ment of U in the n-th row and k-th column, where

n = 0, 1, , N; k = N+1, , N +Nb. The column matrices are,

*Tb(v) = [Tb(v1), Tb
(v

2
), , Tb(v

N
)],

t = [t0,
t

1,
...



Y EYN+1' YN+N
b

T = ET(hN+1), T(hN+N ) 1

We minimize Q by differentiating with respect to tn and

k
The conditions,

and.

ac) =0, n = 0, 1, ,N,at

aQ = 0, k = N+1, ,N+Nb'by
k

can be used to show that the following respective matrix equations

hold:

and

KK t + Uy = KT
b

(v),

U t - T = 0.

Then, in terms of partitioned matrices, we may write,

_
KK

*
0

Upon solving for t and y, we have,

KT
b (v)

T
ONO
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(8. 7)
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(8.8)

With {t
n}

and {YN+1' N/N+2 } determined, the computed tem-

perature T(h) is determined. We select,

{Un(h) = n= 0,1, ... , N, (8. 9)

as our set of basis functions. Then we use Equation (8. 2) in the

iteration scheme in the following manner. From the newly derived

temperature curve,

N

t hn ,T(h) = n
n=0

measure off a new set of lapse rate numbers,

with

i = 1,2, , NB} subject to the conditions,

= constant, i = 1,2, , N,i-1, i

6(.R.1-1, .)
< 0.01

i-1, i

(8. 10)

(8.11)

(8. 12)

Then we may determine the corresponding pressures for all layers

from the relation (Hewson and Longley, 1944),
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P2 T2 RI

12()
1
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(8. 13)

where M is the molecular weight of air, g the acceleration of

gravity, R the universal gas constant, and /12 the lapse rate

between layers 1 and 2. Thus, from (8. 10), (8. 13) and the set,

=1, i
we establish a set of {P., T.; j = 0,1,2, ... , NB} which,

3 3

in turn, are used to determine a new corrected set of coefficients,

{a
v

1) }.)}. With this corrected set, the exponential model (7.3) is

corrected for all layers and boundaries of the model atmosphere.

Thus, a new K matrix is calculated where we take into account

the P and. T dependence and corrections of the absorption coef-

ficients and line widths A v . Equation (8. 8) is again used to deter-

mine t by utilizing the new K. The iteration process is then con-

tinued until a self-consistent set of temperature coefficients is

obtained. By self-consistency, we mean that neither K nor

change from the N-th to the (N+1)-th iteration.

We return to finish the development of Equation (8.4). The

quantity of interest, K(v, n) may be expressed as a linear combina-

tion of functions of the form,

K(v, n) =
v

hnav(h) e
0

0

a v(ht)dh'
dh, (8. 14)



46

where K(v, n) is a typical element of the K matrix. The linear

combination, expressing K(v, n), is a result of dividing the atmos-

phere into layers. Now, we wish to evaluate (8. 14) under the assump-

tion that a v(h) has the exponential form of (7. 3). Also, we choose

(8. 9) for our set of basis functions. Then we can write an equivalent

expression for (8. 14),

where

K(v, n) =

h.

hna (h. ) e
v j-1

=1
h

j- 1

h-h .-1
H. -A v(i, h)

3 dh,e

h'-h.
1-1

H.
Av(i,h) = a

v 1
(h. -1

) e 1 dh'.
0

(8. 15)

ShNow the exponent, a v(hI)dhi of the attenuation factor in (8. 15)
0

is easily evaluated. Thus, we may write,

or

1
h2

a v(hr)dhr = a v(hr)dil + a
v
(h')dh' +

0 h
0 1

h'-h.
hj-i h

+ av(hi)dhl + a (h. ,)e
H.

dh',
v

Jh.
J-2 113.-1



a v(h')dh' =
0

-
)H.(1 -e

1

+ a (h. )H.(1- e
v J-1 J

h.-h.
1-1

Hi

h-h. -1

where the integration for the i-th layer is the following,

or

h. h.

SI av(h')dh' = a
v 1
(h. _1,)

h. -1
h

1 i-1

h' -hi-1
H.

e
1 dh' ,
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(8.16)

hi-1
h

h'
H. H.

tc
i

av(h')dh' =
v
(h. i

)
1 (-H.) e

1 (Hi1 )dh' ,

hi-1 hi-1

h i-1 h' h.
H. H

1

= av(hi_i) e 1 (-Hi)

h.1 -h.1-1
H.

= a.
v

(h. )H (1-e

Therefore, (8. 16) has the form,

h-h*-1

H.
a (h )dh = T. + a (h. )H.(1-e

0
J-1 I/ J-1 J

h.
1-1

(8. 17)

) (8.18)
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h.-h.
1 1-1

j -1 Hi
T. =-1

a
v

(h. )H
i
(1-e (8. 19)

i=1

Coming back to Equation (8.15), we see that K(v, n) has the form,

K(v, n) =

where

J=

.r 3 hnav(h.

1
hj-

1

And after regrouping,

where

and.

h -h.
1

H. -[T. (j,

-1) e J e
J -1 v

dh,

(8.20)

h-h '-1
H.

(j,h) = a (h. )H (1-e 3 ) . (8.21)
v J-1 j

NB -Pr. +a (h.
3_1 v 3-

K(v , n) =

j=1

h.

H.
3 G(n, j),

n
Hi ev (j, h)

G(n, j) = ha (h ) e dh ,
h.

vj- 1
3-1

Ov ( j , h ) = a (h. )H. e
v J-1 J

h-h.
1

H.

(8.22)

(8. 23)

(8. 24)



Now the G(n, j) functions cannot be expressed in closed form, but

we can express them as an infinite sum of integrals, each of which

can be evaluated in closed form. We can define G(n, j) more

succinctly by writing,

where

G(n, j) = A ,c h
n

e
ah eb eah

dh,
a

-1A = a (h. ,),
v j_i a Hi

H.
b = a(h. )H. e

V J-1 3

a = h ,j-1 = h..

By using a MacLaurin expansion for the second exponential

b eahterm, a in (8. 25), we have the following:

i ahi
G(n, j) = A S hn eah(

oo

a
dh,

i=0

= A

where

i=0

h
n

00

i=0

b B.
1, n

(0!

1.( +i)ah
e dh,
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(8.25)

(8. 26)



hn e(l+i)andh.
1, n a

B. can be integrated, thus,
1, n

where

B.
1, n

d(s)hn

dh(s)

d(s)hn

dh(s)
e

(1+i)ah
+i)als+11

has the following meaning:

d
(0)

h
n

= hn, s = 0
(0)

dh

dhn
= nhn-1

dh
s = 1

d2 hn
2 n(n-l)hri-2

dh

h=p

h=a

s = 2, etc.

Thus, in evaluating the K(v,n) elements of K,

50

(8. 27)

(8. 28)

we are led to the

G(n, j) functions, which, in turn, have to be evaluated by a Mac Laurin

expansion technique. Enough terms must be carried in the series in

evaluating G(n, j) such that upon truncating at some point, the error

will be less than instrument sensitivity.
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IX. CONCLUSIONS

A summary statement appraising the whole iteration scheme

cannot be made at this point since the computer is necessary in the

final calculations, and has not been available. We have ignored sta-

tistical deviations in T (v) and T(h). Thus, unwanted oscillations

in T(h) might result since the Fredholm integral Equation (6.11),

being nonlinear, is usually quite unstable and sensitive to errors. If

statistical errors should exceed a given threshold, depending on the

kernel, then we must "extract" or "smooth" out these statistical

errors; otherwise, in using the iteration scheme, we could not con-

verge on the solution T(h). At this point, it is not known if statisti-

cal errors are significant or not.

From the simplifying assumptions leading to Equation (6.11),

a price is paid on accuracy desired. With a computer, an error

analysis on the iteration scheme might yield some useful information

on cumulative error effect and error limits. Briefly reviewing, we

begin with Equation (6. 5). (6. 5) was simplified by assuming the
2

Reiley-Jeans approximation B v(T) I 2k v
2

T(h). Then the first
c

term in (6. 8) was dropped, and finite upper limits set on (6. 9). The

absorption coefficient was simplified to fit an exponential approxima-

tion. Measurement error is made in Tb(v). T(h) and T
b

(v) have

statistical errors. 0 y, being empirical, is subject to error.



Acceleration, g and lapse rate 1-1, i

52

are subject to error. The

kernel is subject to error after T(h) is extracted. The G(n, j)

functions are subject to error when truncated. And lastly, numerical

integration is to be used in the final calculations. All of the above

error sources contribute a residual of error. We say all this since

all cumulative error effects must be kept below a certain threshold,

otherwise, unwanted oscillations could dominate the solution.
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