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Liquid cooled, laminar microchannel heat sinks were
earlier proposed by Tuckerman for cooling high heat
generating integrated circuits and high power microwave
generation systems using photoconductive switches. A
method of computationally analyzing the heat sinks is
presented which produces the desired temperature and
velocity distributions within the heat sinks. The
problem was solved in two different ways. First,
computational techniques were developed to investigate
the problem assuming fully developed temperature and
velocity profiles. Second, the hydro-thermal code
TEMPEST was used to solve the developing problem. A
comparison was made between the results of this study and
Landrum's integral analysis. Other analytical
comparisons were made.

A parametric study was performed which considers
the effect of geometric parameters on the solution. From
this parametric study, trends were observed which allowed
optimization of the geometric parameters of the design.
The optimization involved a specified pressure drop
across the heat sink. The optimized design was one which
had the lowest peak silicon temperature with a given

pressure drop across the heat sink. For every given



pressure drop across the heat sink, there was an optimal
design. Optimized heat transfer performance
characterized by nondimensional peak silicon temperature
may be related to the pressure drop across the heat sink
so the cooling effect can be compared to its cost in
terms of pumping power.

An evaluation of the fully developed momentum and
energy assumptions was presented. The developing
solution was solved for cases both near the optimized
design and for cases which deviated substantially from
the optimized design. The fully developed momentum
assumption provided accurate velocity profiles in all
cases considered. The hydrodynamic entry length can be
neglected in most cases. The accuracy of the fully
developed energy assumption varied considerably with
geometric parameters. The fully developed energy
solution did not accurately represent the developing
solution for microchannels with small fin width to
channel width ratios and large channel aspect ratios.
For microchannels with large fin width to channel width
ratios and small channel aspect ratios, the fully
developed solution accurately represeﬁted the developing
solution. The fully developed assumption provided
accurate temperature profiles in cases at or near the
optimum design as determined by the methods in this
report.

The effects of variable fluid specific heat and
thermal conductivity were considered by comparing the
temperature and velocity profiles to constant property
cases. The assumption of constant fluid properties
provided a conservative estimate of the peak silicon
temperature. This suggested using the constant property
assumption in order to provide a margin of safety and to

simplify the computation.
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PREFACE

This work was initiated as a project at the
University of California's Lawrence Livermore National
Laboratory. Dr. D. Tuckerman of LINL initially
introduced the concept of liquid flowing in microchannels
to cool integrated circuits in a PhD thesis [1] and
performed some interesting experimental and analytical
evaluations. Lawrence Livermore National Laboratory
desired further numerical evaluation of the laminar
microchannel cooling process which resulted in this work.
Dr. C. Landrum initially presented an integral analysis
of the fully developed laminar microchannel cooling
process [private communication] which provided a first
order approximation of the solution. The present work
contains a more exact numerical method of solution whose
results were compared to the results of Landrum's
integral analysis.

A solution algorithm and a finite difference
computer code have been developed to solve the laminar,
fully developed, constant properties microchannel cooling
problem. The theory and the basic framework for the
computer code were attributed to Dr. D. Trent of Battelle
Pacific North West Laboratories.

The solution to the laminar microchannel cooling
problem and the investigations surrounding it were
considered to be an important preliminary step to the
solution of the subcooled boiling microchannel cooling
problem. Dr. C. Landrum of LLNL and Dr. M. Hoffman of UC
Davis have interest in solving the subcooled boiling
microchannel problem.



LAMINAR MICROCHANNEL COOLING OF INTEGRATED CIRCUITS
INTRODUCTION

Recent predictions in the electronics industry have
suggested that thermal effects will limit future

transistor speed improvements [2]1. Also, high power

microwave generation systems using photoconductive
switches will require high heat removal rates [3]. Many
different designs have been proposed in an attempt to
remove the large heat flux produced by these electronic
devices. . See for instance Tuckerman [1] or Incropera
[6]. Tuckerman originally proposed the laminar
microchannels as capable of removing large values of heat
flux (1000 W/cm?) and performed interesting analytical
and experimental investigations of the devices [1].

The subject of the present thesis was the
specific issue of removing the bulk heat effect from
densely packed arrays of integrated circuits by the use
of a laminar microchannel heat sink. The fluid mechanics
and heat transfer within the microchannels were
numerically simulated and investigated for optimum
performance.

Two distinct broad primary objectives for this
work formed the basis for the breakdown into the first
two chapters. The final chapter was then a summary of
the important findings of this work. The first objective
was to solve the problem assuming fully developed

momentum and energy profiles. The second objective was

1 The references will be given in blocks [#], where
# indicates the reference number from the Bibliography.



to evaluate the feasibility of the fully developed
assumptions. This was done by numerically solving the
problem without the fully developed assumptions and
comparing the results to the results predicted by the
solution obtained using the fully developed assumptions.

The desired effect of any of the cooling devices
is to provide the best heat removal rate away from the
microelectronics and provide for the lowest operating
temperature of the microelectronics. Also, the pumping
power required to cool the heat sink should be minimized.
The pumping power is proportional to the flow rate times
the pressﬁre drop through the heat sink. In the
microchannel heat sinks, the liquid flow rates are not
normally considered an important design issue.
Therefore, the major concern is the pressure drop across
the heat sink which is an input design variable.

The primary objective of this work was to perform
a parametric study of the geometric properties of the
solution to identify an optimization procedure for the
design. The optimization procedure provided the geometry
with the lowest peak silicon temperature for a given heat
flux and pressure drop through the heat sink. The peak
temperature relationship was nondimensionalized so that
the heat flux was not a design issue. The optimization
procedure can be repeated at different pressure drop
values across the heat sink. A relation between
optimized peak temperature and pressure drop across the
heat sink can be observed. This will allow the designer
to choose the best possible design based upon an input

pressure drop specification.
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The optimization procedure is presented in chapter
1 along with the work using the fully developed
assumptions. There were two reasons for this. First of
all, the optimization procedure was originally derived
from trends observed while running constant property,
laminar, fully developed cases. Secondly, the optimized
cases were the ones for which it was most important to
evaluate the fully developed assumption in chapter two.
For this reason, the optimization procedure preceded the
evaluation of the fully developed assumption. The fully
developed assumption was better for some of the
parametric cases than for others. In general it was
found that the fully developed assumption was good for
cases with small channel aspect ratios and large fin
width to channel width ratios. The fully developed
assumption was poor for cases with large channel aspect
ratios and small fin width to channel width ratios.

The important topic of this work was the
optimization procedure itself and for this reason it was
summarized in the third chapter. The optimization
procedure can be used with a solution method that
considers either the developing or the fully developed
cases. In fact, the optimization procedure can even be
used for cases solved computationally which consider
variable properties or even for cases run experimentally.
In general, the fewer assumptions made in the solution,
the more the optimized design will reflect the actual
optimized microchannel heat sinks as they are applied in
practice.

It was intended to make assumptions which allowed

simplification of interpretation but that also produced a



predictable deviation from the actual solution. It was
imperative that any assumptions would produce a
conservative effect, (i.e. over-estimating the peak
temperature as opposed to under-estimating it.) All the
assumptions made in the solution were discussed and their
corresponding result was predicted.

Laminar microchannel heat sinks are just one of
many different methods of approaching the general problem
which is to remove the large heat flux generated by the
electronic devices predicted in references [2] and [3].
Incropera has prepared a summary of some alternative
approaches [6].

Because an optimization procedure for the
microchannel heat sinks has been established in this
thesis, the best performance of the laminar microchannel
heat sinks can be predicted. The performance of other
alternative approaches of cooling the integrated circuits
can be compared to the optimized laminar microchannel
performance. It was not the intent of this work to
compare the laminar heat sinks to alternative designs.

This work was performed with the idea that the
laminar microchannel cooling problem must be solved
before the problem of subcooled boiling in the
microchannels could be investigated. It is therefore
evident that this work is the first step in the solution

to a larger problem.



PROBLEM GEOMETRY

Consider the schematic of the compact heat sink of
Figure 1 with fluid flowing in the microchannels. The
substrate contained a planar heat source (the circuits)
which supplied a spatially uniform flux g"=q/ILW. The
back surface contained deep rectangular channels which
carried the coolant. The coolant was assumed to be an
incompressible Newtonian fluid of constant density and
viscosity. The use of many separate ducts, rather than
a single coolant flow over the entire back of the
substrate, allowed an increase in the heat transfer

surface area by a factor o=np/W.

Cover piate

iC substrate
(e.q. silicon)

Mlcr:SCOPIIC ""'"{ - Front (circuit) side l X
channels of {C substrate
for cooiant

|
W —

Figure 1 Schematic of the compact heat sink incorporated
into an IC chip. (reprinted from Tuckerman [1])



NOMENCLATURE

Asub
C

Dhydr

f(z)

g(z)

hp(x,2)

he(x,z)

1 [ (pm)? )

Specific heat of the fluid [kJ/kgK]

Substrate area

= Hydraulic diameter = 4 (Area/Perimeter)
= 2(W, W.)/ (W, + W) [um]

Total height of heat sink = s + H [um]

Nondimensional temperature distribution
for comparison to the integral analysis,
see equation (1.8)

Volumetric flowrate [cm3/s]

Nondimensional heat flux for comparison
to the integral analysis, see equation
(1.9)

Heat transfer coefficient calculated
using the bulk fluid temperature
[W/ (m?K) ]
-k (dT/dy|wall)
= Tpuix (¥)

Twa11 (¥:2)

Heat transfer coefficient calculated

using the local average fluid temperature
8, at height z [W/(m*K)]

-k (2T/9y|wall)
- 6c(xlz)

Tya1l (¥/2)

Height of the flow channel [um]
Optimal channel height [um]

Heat flux into the coolant from fin (in
y direction) [W/m?]

1

section.

Units will be placed in brackets []

in this
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jz = heat flux up fins (in z direction) [W/m?]
k = Fluid conductivity [W/(mK) ]
ke, = S0lid conductivity [W/ (mK) ]
L = Length of the heat sink [um]
n = Number of microchannels in the heat sink
= W/ (W W)
NuT D(x,z) = Nusselt number evaluated at the fin face
using the bulk fluid temperature Ty 1)
= hT(xlz)(Dhydr)/k
Nua D(x,z) = Nusselt number evaluated at the fin face
using the local average temperature 6,
= he(xlz) (Dhydr)/k
p = Total perimeter of microchannel=2(W_+H)
(pm]
Pr = Prandtl number of the fluid
a" = Heat flux through the base [W/cm? ]
q = Total heat flow into the heat sink [W]
An = Total heat flow into one microchannel (W]
Re = Reynolds number based upon hydraulic
diameter
s = Substrate thickness [um]
tg = Thickness of the energy generation
region [um]
tey = Thickness of the heat sink [um]
t1c = Integrated circuit substrate thickness

[um]
T(x,¥,2) = Temperature of point x,y,z [°C]



Thuix (%)

T, (x,2)

u(x,y,z)

Ie

v(X,Y,2)

W(XIYIZ)

1
W

Bulk Temperature as a function of x [°C]

H Wc¢
[ [ u(y,z) T(y,z) dy dz
0YO0

H Wc
j j u(y,z) dy dz
oY o

Wall Temperature [°C] {Not constant

across the fin but is assumed constant
across the fin in some discussions)

x component of the spacial velocity fluid
at point x,y,z [m/s] {For fully developed
assumption use u(y,2))}

Average fluid Velocity in x direction
[m/s].
Wc
j u(y)dy
c O
Peak fluid velocity [m/s]
~L, % L
U(~L, % (W W), Egts+iH)

z component of the spacial fluid velocity

(m/s]

y component of the spacial fluid velocity
[(m/s]

Width of the heat sink [um]
Width of the flow channel [um]

Width of the fin [um]

Optimized Fin width to channel width
Ratio

Distance in the flow (axial) direction
[4m]



X (hydrodynamic)

X (thermal)

AX

y

4

Yc

AZ

GREEK SYMBOLS

= The hydrodynamic entry length [cm]
The thermal entry length [cm]

Computational cell width in the x [um]
direction (For developing solution only)

Horizontal distance across the channel
and fin. [um]

Computational cell width in the y
direction [um]

Nondimensional Fin Base Temperature

based on the bulk fluid temperature (This
is defined to compare to Landrums
results)

“K (T k=T (L, 5W,,S) )/ (QH(1+W_/W ) )

Fraction of distance across microchannel
(Y=%W,,) /%W,

Vertical distance up the substrate,
channel and fin [um]

Computational cell height in the z
direction [um]

Reference height up the fin where the

local average temperature in z is
evaluated [um]

See section 1b of the REVIEW OF
LITERATURE section of this thesis for a
more precise definition of this
parameter.

Aspect ratio of the channel = H/W,
Fluid thermal diffusivity [cm?/s]

Optimal channel aspect ratio = H /W,



o(x,Y,2)

®(xX,Y,2)

)

10

Geometric parameter for solution

(W, /W) (K, /K) (1/a?)

See Figure 1.10b for an illustration of
this parameter.

Characteristic heat penetration length
up a fin [gm) (Bp2=Wch(kw/kNu8,X))

Partial derivative symbol (i.e.2 T/oXx)
Change in a quantity. (i.e. 42z)

Nondimensional Peak solid temperature
(based upon the inlet temperature, used
to relate the different peak temperatures
from different cases)

-(flux across bottom in flow direction)
(incoming flux perpendicular to flow)

—k ((T;

qll

Nondimensional fluid temperature using
the local average temperature in z (i.e.

0. (%,2,))

Twall(x'z) - T(XIYIZ)

Twall(xlz) - 9c(){IYIZ)

Nondimensional Temperature defined using
Tbulk(x’z)'

Twall(x’z) - T(xX,Y,2)

Twa11 (%:2) = Tpuix(¥)

Pi = 3.141593
Fluid Density [kg/m3]

Heat Transfer Surface Area Multiplication
Factor for the heat sink

np/w



Spulk

cal

conv

spread

int

o, (x,z,)

11

Summation symbol
Overall Resistance [°C/W]

Bulk thermal resistance due to conduction

in through the semiconductor [°C/W]
tIC/kAsub‘

"Caloric" thermal resistance due to

heating of the fluid as it absorbs energy
passing through the heat sink [°C/W]

140CF
Convective thermal resistance between the

heat sink and the coolant fluid [°C/W]
Dhydr/(LWKNuL)

Spreading resistance from the individual

heat generating devices in
the semiconductor substrate [°C/W]

Resistance associated with the IC/heat
sink interface {if any} [°C/W]

Local average temperature which is

similar to the bulk temperature but is a

function of z  (zg is the local value of

z}).

Wc
J u(y,zg) T(v,zo) dy |z=z,

0

Wc :
J u(y,z,) dy lz=zg

0

fluid kinematic viscosity (assumed
constant) [kg/(m*s)]



REVIEW OF LITERATURE

This section was intended to review only
information which pertained to the topic of microchannel
cooling of integrated circuits. Reference for specific

technical issues was made throughout the thesis.

1) Dr. David B. Tuckerman PhD Thesis "Heat Transfer
Microstructures for Integrated Circuits". February 1984
[1]

This document inspired the investigation which
resulted in this thesis. It contained the original idea

of laminar microchannel cooling.

la) Components of thermal resistance

Tuckerman [1] identified five components of
thermal resistance associated with the laminar
microchannel heat sinks. These were: 1) The spreading

resistance of the heat from the "point" source (espread);

2) the bulk resistance through the chip itself (€,,yx)7

3) the interfacial resistance between the integrated

circuit and the heat sink (© 4) the convective

interface)

resistance between the heat sink and the fluid (econv)7

and 5) the bulk "caloric" resistance due to heating the
fluid as it absorbs energy passing through the heat sink

(e Figure 2 was reprinted from Tuckerman for

cal)'

explanation of these five components.
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] B R I N AR |
~IC
‘ ‘ | P
Zbulk ; i ‘ ; 7
L
& interface § ; | ; % ! | ) .~ Heat sink
\ ! | | ! i i
<9conv /L M (_//)L//)_ - /)- _
L e p— —
ST oo = ] Fiu
( > —-
- ¢ l

Figure 2 )
Components of thermal resistance in convectively cooled
integrated circuits. (Reprinted from Tuckerman [1])

R. C. Joy and E. S. Schlig discussed the spreading
resistance in reference [2] and Tuckerman discussed the
bulk, interfacial, convective and "caloric" resistance in
reference [1].

This thesis dealt with only the effects within the
heat sink, namely, the convective and the bulk "caloric"

resistances.

1b) General investigation
Tuckerman formulated an argument for the laminar
microchannels with high aspect ratios (~10). This was

important because it was consistent with the finding of
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this thesis that the optimal laminar design has a high
aspect ratio.

For a preliminary investigation, Tuckerman assumed
that the solid was all at one temperature. (i.e. The
solid had infinite thermal conductivity) This was done
to provide an order of magnitude estimate of the
solution. The local convective heat transfer coefficient

hX was then defined as

Energy conservation yields;

q P CFL oLWK Nu,,

The first term on the right of equation (1) was
called the bulk "caloric" effect by Tuckerman and the
second term was the convective effect. The maximum wall
temperature occured at the exit of the heat sink and can
be found by setting x=L in equation (1). Writing (1) in
terms of resistance and setting x=L yields

6=(Ty, (L) ~Tp;1 (0)) /G=1/PCF + Dp_q,/ (OLWKNup) = O, +

econv'

In order to minimize © the quantity Dy q,/Nup

conv’
must be minimized. Traditionally this has been achieved
by using high aspect ratio ducts to increase surface area
(making o large) and by designing to achieve turbulent

flow (making Nu; large).

Tuckerman proposed to achieve low convective

thermal resistance primarily by minimizing D rather

hydr,
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than maximizing Nu,. Thus, the designs involved laminar

flow. The only important lower limit on duct size was
set by the coolant viscosity. For a given pumping
pressure or pumping power, the mass flow rate decreased

rapidly as Dhydr was reduced. This increased 8,541 BY

assuming a practical limit on the available pressure or

power, Tuckerman calculated an optimum duct size, Dhydr'

which minimized the overall resistance, 6. As was shown
in Tuckerman's thesis, the optimized geometry had a
thermal resistance which, for the short channel length of
interest (®1 cm), was comparable to that which was
achieved with turbulent flow.

Tuckerman's laminar designs are much more compact
(typically by a factor of 20) than conventional turbulent
flow heat sinks [9], for a given operating pressure or
pumping power. Since volume is at a premium in high
speed computer systems, the microscopic laminar flow heat
exchangers are necessarily the preferred approach for

cooling dense arrays of integrated circuits.

lc) Tuckerman's main assumption

Tuckerman derived an analytical solution to the
energy conservation equation for the microchannel
geometry. _The_solution used heat flux as its argument.

The heat flux at the base of the fin is defined by
the gradient of the wall temperature;
(2) Jg(x%,2) = kK oT o1, (%,2)/02.

Tuckerman neglected the heat transferred from the
"prime surface" at the bottoms of the channels. This

assumption was not made in the present thesis. Also,
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Tuckerman didn't consider the conduction in the substrate
below the channels.

The heat flux jy from the fin surface into the

coolant was determined from energy conservation in the

fin
The flux, jy' was driven by the temperature gradient

dT/2Jy between the wall and the coolant. For the high
aspect-ratio channels with a¢ on the order of ten, the
heat transfer at a point on the wall was sensitive only
to the fluid temperature in the vicinity of that point.
Tuckerman defined the local average coolant temperature

ec at a certain value of height by averaging across the

channel width as

(4) ec(x,zo) = Local average temperature which is

similar to the bulk temperature but
is a function of z (z, is the local

value of z.)

Wc
[(ulyizg) T(y,25) dy lz=2z

Tuckerman used this definition in order to express
the heat flux in terms of a local heat transfer

coefficient h, (assumed to be uniform along the height of

the fin and in the axial direction),
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(5) ]y(x,z)=he[Tw(x,z)—Gc(x,z)]_
Tuckerman's analytical temperature solution was

(6)  T,a171(%,2) = q" (W, +W,) Bycosh((H-2) /B,)  + Tpypy (%)

kW, Sinh (H/B,)

where Bp2=Wch(kw/kNue,X) and

Toulk (X) = L(W +W_)g"/ CuW_H = g/PCF.

The important point is that Tuckerman has assumed
a uniform heat transfer coefficient in equation (5) in
order to obtain the solution. This corresponded to a
constant Nusselt number. The validity of the uniform
heat transfer coefficient assumption was evaluated in

subsection 1.8.3.2 of the present thesis.

1d) Tuckerman's Nusselt number.

The precise value of Nup depends upon the channel

geometry and how fully developed the thermal boundary
layer is at the channel exit. Tuckerman assumed that,
owing to the very narrow channel size, the flow will be
laminar (Re<2100); then the following general asymptotic
forms for Nue,L result [1]:

Nu, , ~ (L*)71/3 for L*<<0.02

e,L

Nu a constant, for L*>>0.02

e,L ~ Nuelw ’

In the former case, the thermal boundary layer is
developing; in the latter case it is fully developed.

Figure 3 shows a plot of Nu L*=L/(DhydrRePr) for

e,L VvsSs.
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the case of uniform heat flux into parallel planes
(calculated from the published eigenvalues of Cess and
Shaffer [14]).

Tuckerman used the asymptotic value of Nue L = 8.235.

14

8.235 = Nu,,

! ! | |
0
0 0.005 0.010 0.015 0.020 0.025

L* = L/(D:RePr)

Figure 3. Local Nusselt number for laminar flow between
parallel plates with unjform heat flux, as a function of
nondimensional length L =L/(DhydrRePr)'

le) One of Tuckerman's Experimental findings.

It was desired to use values for the parameters
which have actually been obtained by Tuckerman in
experiment. One of Tuckerman's designs (81F9 End fed
Etched on page 81 Table 3-5) was chosen for this purpose.

The critical dimensions were L=1.4 cm, W=2.0 cm, W_=50
um, Ww+Wc=1OO um, H=302 um, tsi=458 um, aP=31 psi, F=8.6

cm® /sec, g"=790 W/cm?, R=.09 °Ccm?/W=1/6.

1f) Tuckerman's fully developed statement.
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Tuckerman made the argument that the best designs
for thermal performance operated in the thermally fully
developed regime. For this reason, the work of chapter 2
was presented to verify this hypothesis.

Tuckerman also stated, "The result that the boundary
layer becomes fully developed is not an accident, but is
in fact a direct consequence of the optimization of the

sum 6=6 The optimum design occurs when ©_,, 1is

conv+ecal'

beginning to be comparable to © at the downstream

conv
end. That is, the temperature rise associated with
coolant heating is comparable to the temperature drop
across the channel cross section. It is clear that this
condition implies a fully developed temperature profile.
More mathematically, one can calculate the ratio

®ca1l/®conv=4Nul/ (DyyqRePr) for high aspect ratio

structures. Thus having 8ca1 comparable to &,,.. implies

that L*=(L/D RePr) ~ Nu/4, which for laminar flow
hydr ,

implies nearly fully developed temperature profiles since
Nu 1."

2) S. C. Lau, L. E. Ong, and J. C. Han, "Conjugate heat
transfer in channels with internal Longitudinal Fins"
[5].

An interesting study has been conducted at Texas A
and M University dealing with a similar microchannel
cooling problem. The main difference between their work
and this work is that their work dealt mainly with low
aspect ratio designs (a<4). Their study also dealt with
fins that did not reach to the top of the channel and
treated fins that do reach to the top of the channel as a
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special case. A specific optimization procedure was not
discussed.

One .important topic in their work is the definition
of a nondimensional overall heat transfer per unit

pumping powengpswhich is used to evaluate the

performance of all of the designs.

3) Dr. C. S. Landrum's integral analysis of the laminar
microchannel heat sinks. [private communication]

Dr. Landrum assumed no heat transfer through the
prime surface at the base of the channels and didn't
consider conduction in the substrate below the
microchannels. He considered the axial velocity to be
uniform along the height of the channel.

The integral analysis assumed that the
nondimensional fin temperature distribution f(z) and the
nondimensional heat flux off the face of the fin g(z)

were both unity at all points along the fin. These are
defined as;
(7) f£(z) = T(x,0,0) - T(%,0,2)

(q"H/K,) (1+W /W) (2/H) (1-z/2H)

(8) g(z) Xy (31/23%) | oy /2

(% (W +W_) /H) "

where z is measured from the fin base.

This assumption was evaluated in Figure 1.10 of
section 1.8.3.3.

Equation (9) was predicted for the difference
between exit fin base temperature and inlet fluid

temperature.
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(9) Tfin,base-Tinlet =

2 (k,/K) (Q"L/k,) (1+x) + (g"eW,) (1+ 51k, 1x) (1+X)

Re(1l+a)Pr 3kw 140k a? X

Where x is equal to W,/W-

Equation (9) was used in appendix D to derive
equations (1.12) and (1.13) which yield the optimal fin
width to channel width ratio and the optimal aspect ratio
respectively.

-Landrum predicted the nondimensional fin base

temperature, y_, as a function of the geometric parameter

B with the equation
(10) y, = (1/3)[1+.38].

This prediction was displayed in Figure 1.10c and

Figure 1.10d of section 1.8.3.3.
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CHAPTER 1 FULLY DEVELOPED LAMINAR MICROCHANNEL COOLING

1.1 INTRODUCTION

This work numerically simulated the microchannel
heat sinks with the assumption of fully developed
momentum and energy solutions. This meant that the
velocity profiles did not change in the axial direction
and the temperature profiles were linear in the axial
direction. A computer code was written which calculates
temperature and velocity information within the heat
sink.

The assumption of fully developed momentum and
energy solutions has been made by Tuckerman (1], Sparrow
4], Lau [5] and Landrum [private communication]. It was
felt that the fully developed momentum assumption was
very good; while the fully developed energy assumption
needed computational verification. This verification was
& subject of chapter 2 of this thesis.

In any numerical work it is important to insure
that the discretization is fine enough that a
representative solution is obtained. For this reason,
much effort was applied to this end. First of all, the
computational momentum solution was compared to an
analytical separation of variables solution. Secondly,
the analytical solution to the heat transfer and fluid
mechanics in an infinite parallel plate channel was
compared to its' numerical formulation for gridding
information across the channel. Finally, a comparison of

the computational solution using very fine, fine and



23

coarse discretizations of the same problem was presented.
This served to evaluate the discretization.

The results of this chapter were nondimensionalized
for generality. Certain results were left dimensional
for specific purposes. For example, the pressure drop
across a given length of heat sink was specified as an
input design variable and was left dimensional for
determination. Also, Figure 1.10a was left dimensional
to show the relatively low coolant temperatures obtained
with the extremely high heat flux of 1000 W/cm?.

One purpose of this work was to provide a
procedure which can be used to optimize the design for a
given pressure drop across the heat sink. For this
reason, an array of pressure drops forming a complete
matrix of optimized solutions was not pursued. It was
not within the resources available at the time to do this
and would only need to be done if an actual design were
contemplated. This work provides the basic "roadmap" for
performing a complete design analysis if it needs to be
done. 1In addition, the computational techniques were
developed in the form of a computer code which is

available to perform the analysis.

1.2 MOTIVATION

The motivation for using the fully developed
assumption is that it simplified the momentum and energy
equations so they became a coupled set of elliptic
partial differential equations. This reduced the problem
from a three dimensional problem to a two dimensional one
which resulted in large computational and algorithmic

savings.
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1.3 PROBLEM DESCRIPTION

Figure 1 on page 6 shows the general geometry of
the silicon microchannel heat sinks. For computational
purposes, it was decided to model the smallest repeating
unit of this geometry and take advantage of symmetry.
The computational domain of the two dimensional
microchannel problem is presented in Figure 1.1 which
corresponds to the way the problem was simulated
numerically. '

Comparing the computational domain of Figure 1.1 and
the actual geometry of Figure 1 it can be seen that in
the actual case there is a silicon cover plate which can
transfer heat from the top of the fin into the top of the
fluid region. It was chosen not to simulate this effect.
The heat transfer from the cover plate to the fluid was
small compared to the heat transfer from the face of the
fin due to the greater fin surface area (large aspect
ratio channels) and the larger temperature difference
between the fin and the fluid. Finally, neglecting the
heat transfer from the cover plate into the fluid
provided a conservative assumption because a source of

convective energy transfer has been neglected.

1.4 GOVERNING EQUATIONS

The governing equations for the fluid mechanics and
convective and conductive heat transfer in the three
respective regions identified in Figure 1.1 are given
below. These equations result from scale analysis and
from the assumption of fully developed momentum and
energy conditions. The derivation of these simplified

equations from the more generalized equations is given in
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Computational domain for fully developed microchannel
problem.

appendix E entitled "Derivation of equations®.

1.4.1 Fluid Flow Region. Viscous dominated
Momentum Equation.

(1.1) g?u + 2*u = 1dP (fully developed momentum
dY? oz*? pdx assumption)
Boundary Conditions: (No slip)

u(kW_,z) = u(y,s) = u(y,£) = 0 (4W_<y<h (W +W_))

Y

§SZ<E) (symmetry)

1.4.2 Energy Generation Region. Energy Equation.

(1.2) 22T + &T = g"!
2y? 32?2 e
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Boundary Conditions:

2T(0,2) = aT(%(W,tW,),2) = &I(y,0) =0
2Y Y oz

(Von Neumann boundary conditions resulting from adiabatic
and symmetry conditions)
1.4.3 Solid Conduction Region. Energy Equation

(1.3) 22T + 22T = 0
2y? 3z?

Boundary Conditions:

3T(0,2) = BT (% (W,+W,),2z) = 3T(y,£) = 0
ey aY d2

(0<y’s (W+W,)), (ty<z<f)
(Von Neumann boundary conditions resulting from adiabatic
and symmetry conditions)
1.4.4 Fluid Flow Region. Energy Equation

(1.4) 22T 4+ 22T = uaT = udly 1k (fully developed
2Y? 22 ardX  apdX energy assumption)

Boundary Conditions:

2T (% (W +W_),2) = 2T(y,f) = 0
oy oz

(%Ww<y<%(ww+wc)), (s+tg<z<f)

(Von Neumann boundary conditions resulting from symmetry
and adiabatic conditions)
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1.5 COMPUTATIONAL TECHNIQUES
1.5.1 Separation of Variables solution code.

A solution to the momentum equation (equation 1.1),
was found in Carslaw and Jaegar [8]. A computer code was
written which summed terms of a series and computed the
solution at all the points of a given discretization.

The solution was compared to the finite difference
solution for grid discretization verification in 1.6.
Appendix B provides the separation of variables solution,
the logic and the solution algorithm for the computer

code.

1.5.2 Finite Difference Heat Transfer Code

In order to solve the above system of elliptic
partial differential equations (equations 1.1-1.4) in
their respective domains, a finite difference, steady
state heat transfer computer code was written in FORTRAN.
The discretization of the region in Figure 1.1 was taken
as input to the computer code. First the momentum
equation (equation 1.1) was solved in the fluid flow
region, then the energy equations (equations 1.2-1.4)
were solved in all regions. The code used the optimized
point successive over-relaxation (PSOR) algorithm for
both the momentum and energy solutions.

The general and specific logic of the computer
code is given in appendix A along with a flowchart and
source code listing. Appendix A also contains the bulk
energy balance analysis to find the change in bulk

temperature in the flow direction.
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1.6 GRID DISCRETIZATION

Proper discretizations must be determined for both
the momentum and energy equations and the finer
discretization must be used. The discretizations for the
momentum and energy equations were discussed separately
in sections 1.5.1 and 1.5.2 respectively.

In order to simplify the analysis and provide
greater ease in the interpretation of results, it was
decided to use constant cell width in both the height and
width directions. The discretization must be fine enough
to represent the largest gradients. Constant cell width
implies that the discretization will be uniformly fine
everywhere; so some areas will be discretized finer than
necessary. It was felt that the extra effort required to
interpret the results with the variable cell spacing
warranted using the constant cell spacing and fine
discretization. It was found after running a few cases

that this was a reasonable a priori assumption.

1.6.1 Comparison of numerical results with the
separation of variables solution of the momentum
equation.

The separation of variables method was used to
solve the viscous momentum equation analytically using
the code of 1.5.1. The analytical and numerical
solutions were compared to determine proper grid
discretization in both the height and width directions
for the flow channel.

The channel considered had a fifty micrometer width

with an aspect ratio of eight. The first discretization
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Microchannel for velocity distribution.

involved ten cells for the half width and ten cells for
the half height (twenty cells in the height direction).
Referring to the geometry of Figure 1.2, the analytical
and numerical velocity values differed by 2.56% at point
A, .25% at point B and 12.84% at point C. The second
discretization involved twenty cells for the half width
and 20 cells for the half height (forty cells in the
height direction). The analytical and numerical velocity
values differed by .71% at point-'A, .49% at point B and
9.5% at point C.

The largest discrepancies occured near the no slip
surfaces as expected. The most important value for the

problem solution was the value at point A in Figure 1.2
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because most of the convective heat transfer occured off
the face of the fin. The discrepancy at point C was not
very important because the aspect ratio of the channels
was generally quite high (always over five). The
convective heat transfer through the base of the channel
was usually a small proportion of the total. Because the
analytical and numerical velocities compared well with a
discretization of twenty cells in the width (y)
direction, it was decided to use this for the momentum
equation solutions. Also, a value of thirty to forty
cells in the height direction was chosen for the momentum
solution in the fluid region in the height direction.

In order to show graphically the deviation of the
analytical and numerical velocities, graphs of the
velocity were plotted for both horizontal and vertical
centerline profiles for the channel of Figure 1.2.

Figure 1.3 displays the velocity as a function of the
distance from the fin face obtained by analytical and
numerical methods for a 10 celled discretization. All
values agree within 3%. Figure 1.4 shows the velocity as
a function of the distance from the base material by both
techniques. The discrepancy in the value nearest the
wall was approximately 13% deviation. These plots were
made for the distribution with 10 cells in each
direction. These were plotted because it was difficult
to see any discrepancy on the graphs of the solutions
with 20 cells in each direction.” The curves for a 20
celled discretization were much closer than that shown
for the 10 celled case.
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Analytical and numerical velocity distributions
plotted horizontally at channel horizontal centerline
for a 10 celled discretization.

1.6.2 Comparison of numerical results with the
solution of the energy and momentum equations for grid
discretization information.

Because an analytical solution was not available
for the energy equation, two other discretization
evaluations were presented. First, the comparisons
using the analytical solution for the flow and heat
transfer within an infinite parallel plate channel are
discussed in 1.6.2.1. This problem was chosen because it
had very strong similarity to the high aspect ratio

microchannel problem. Finally, the comparisons using
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different discretizations of the same microchannel

problem are presented in 1.6.2.2..

1.6.2.1 Comparisons using the Solution for the flow
and heat transfer within an infinite parallel plate

channel.

[ ISR IURDUUSU DR "

[ ISR VUG S R I

U/ (Uavg) Nondimensional

[0 U

0.0 0.2 0.4 0.6 0.8 1.0
Z/(H/2) Nondimensiona |

Figure 1.4 :

Analytical and numerical velocity distributions
plotted vertically at the channel horizontal
centerline' for a 10 celled discretization.
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This section references the important findings
from the analytical and numerical comparisons of the
solution for the flow and heat transfer within an
infinite parallel plate channel. Appendix C contains
more detailed information.

Figure 1.5 depicts the heated parallel plate
channel. The flow is into the plane and the channel
extends infinitely in the vertical direction. The code
described in section 1.5.2 was used to solve numerically
the problem in Figure 1.5 and also gave results from the
analyticél calculation. The geometry in Figure 1.5
resembles the geometry in the microchannel heat sinks if
all the heat is assumed to conduct up the fin and if the
heat flux is assumed uniform off the face of the fin.
These assumptions are simplistic but are not altogether
unreasonable.

The discretization across the half channel and the
effect of the discretization on the centerline
temperature were studied. Figure 1.6 is a graph of the
percent difference between the analytical and numerically
derived solutions to the problem in Figure 1.5. The
problem was solved for various discretizations across the
channel (5, 10, 20 and 40 cells).

The percent difference was calculated by
(1.5) $difference= (Tanaly Tnun’ X(100).

(Twall-Tanaly)

From the figure, a value of discretization across the
channel of 20 cells results in favorable comparison
(within .1%) between the analytical and numerical values.

If a value less than 20 is chosen, inaccuracies may
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Infinite channel for analytical and numerical
discretization comparisons.

result and if a value greater than 20 is chosen, the
computational costs are not justified by the gain in

solution accuracy.

1.6.2.2 Comparisons between fine and coarse
discretizations of one microchannel geometry.

The preceding grid verification studies suggested
that the value of 20 cells across the half fluid channel
and 20 cells in the height direction provide adequate
discretizations of the problem. 1In order to further
verify this, the same microchannel geometry was run with
considerably fewer and considerably more than twenty
cells and a comparison of the solutions was made. The
variable used for comparison was the nondimensional peak
silicon temperature, 2, defined in the nomenclature

section. For the horizontal discretization across the
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Percent difference between analytical and numerical
solutions of centerline temperature for the infinite

channel.

channel, a microchannel with a 60 um channel width, 600
um channel height, 60 um fin width and a 100 um substrate

was considered. The value of Q was found using

discretizations of 7, 21 and 63 cells across the fluid

flow region (i.e. half the channel width).

are summarized in table 1.1 below.

The results

Discretization across the flow channel 0

7 .10758

21 .10765

63 .10346
Table 1.1 Nondimensional temperature for horizontal

discretization verification.
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These results suggest that the nondimensional
peak solid temperature is quite insensitive to
discretization in the y direction. 1In fact changing from
21 to 63 cells across the channel only changed the
nondimensional peak temperature by 4%. This was not
enough discrepancy to warrant using more than 21 cells.
The entire temperature field was not changed much by the
horizontal discretization when more than 20 cells were
used across the channel. This suggests that 20 cells
across the channel width provides a good discretization
for this problem in general.

For the discretization in the vertical direction
up the channel centerline, a microchannel with a 60 um
width, 600 um channel height, 60 um fin width and a 120
pm substrate was considered. The value of Q was found
using 10, 30 and 90 cells in the vertical direction up
the fluid channel centerline. The results are summarized

in Table 1.2 below.

Discretization up the channel centerline Q
10 .10326
30 .10616
90 .10805

Table 1.2 Nondimensional peak temperature for
vertical discretization verification.

e

These results indicate that a discretization of 30
cells in the vertical direction up the channel centerline
provided a good discretization for the problem. In fact,
changing from 30 to 90 cells only changed the
nondimensional temperature by 2% which was insignificant.
In fact 30 cells was probably a finer discretization than

was needed but since the computational resources were
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available, this was chosen to be the discretization in

the vertical direction.

1.6.3 Summary of Grid discretization section.

Using the separation of variables solution for the
momentum equation, it was determined that 20 cells
horizontally across the flow channel and 20 cells
vertically up the channel centerline provided an adequate
discretization. Using the analytical and numerical
comparisons for the 1 dimensional solution to the
temperature in an infinite parallel plate channel, 20
cells horizontally across the flow channel and 20 cells
vertically up the channel centerline were found to
provided an adequate discretization. Finally, running
the same microchannel geometry with fine and coarse
discretization, it was determined that 20 cells
horizontally across the flow channel and 30 cells
vertically up the channel centerline provided an adequate
discretization. This discretization was used for nearly

all of the parametric cases considered.

1.7 IMPORTANT PRELIMINARY CONSIDERATIONS
before running the parametric study

Before commencing on the work, a few preliminary
considerations were important. They will be outlined in
this section. B

Since constant properties were used in the
solution, it was necessary to determine an average value
for the kinematic viscosity of water between 30°C and
90°C. The value calculated was .55(10—6) m? /s which was

used exclusively throughout the computations. The

T
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details behind the determination of this value are
contained in appendix F.

The Reynolds number is accepted as being
representative of the flow conditions for incompressible
fluids. It was necessary to ensure that all cases run
were in the laminar range. The algorithm of the solution
was designed so that the Reynolds number could be
specified. The optimization procedure developed in this
chapter involved optimization of the geometric variables
at one Reynolds number, then the optimization was
repeated at different Reynolds numbers and the overall
optimum is then found. 1In order to begin the
optimization, an initial Reynolds number was needed.

This was chosen from Tuckerman's experimental conditions.
It was found that one of Tuckerman's samples had an

average velocity of 2.85 m/s and a corresponding Reynolds
number of approximately 500. These values are calculated

in appendix F.

1.8 TYPICAL SOLUTION INFORMATION

Typical output data were the velocity field within
the microchannel and the temperature distribution in the
liquid and in the solid. The most important temperature
was the temperature at the base of the heat sink which
was adjacent to the microelectronics.

The code described in section 1.5.1 produced an
output file with the complete velocity and temperature
arrays at the exit to the heat sink of Figure 1. An
output file is included in appendix G along with an
explanation of all information contained. The results

were presented graphically in this text.
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Velocity profiles in the optimized microchannel with
W =60 um, W /W_=30 um and o=14.5 Yc=(y—%Ww)/%Wc.

1.8.1 Velocity Solution
Velocity profiles are plotted in Figure 1.7 versus

z/h with Yc=(y-%W_)/%W_ as a parameter. Yc is the

fractional distance across the channel. The velocity
gradient in the horizontal direction is zero at the
channel centerline because of the symmetry boundary
condition. Also, the velocity on all the no-slip
surfaces is zero. The velocity distribution displays the
general form of a parabolic distribution across the

channel as expected.
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1.8.2 Temperature Solution

Temperature profiles are plotted in Figure 1.8
versus z/f with Yc as a parameter. There are drastic
differences between the temperature gradient in solid and
fluid regions. This is expected due to the large ratio
of silicon to water thermal conductivity. Silicon has
approximately two hundred and twenty four times the

thermal conductivity of water.
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A temperature gradient appears to exist in the z
direction near the top center of the channel.
Numerically the very top of the channel is an adiabatic
surface and the temperature gradient is forced to zero.
However in the cells next to the top, a temperature
gradient exists. The minimum in fluid temperature with
height occurs near the top of the channel and not at the
very top of the channel. The velocity at the very top of
the channel is low because of the no slip boundary. The
velocity further down the microchannel is higher which
pushes cold fluid into the plane faster and lowers the
temperature. This causes the minimum to occur near the
top of the channel and not at the very top of the
channel.

A positive temperature gradient exists across the
channel in the direction parallel to the top adiabatic
boundary which can be seen by observing the spacing of
the contours. This is necessary to satisfy energy

conservation.

1.8.3.1 Evaluation of the Nusselt number assumed
by Tuckerman
Tuckerman assumed a constant value for the Nusselt
number which corresponds to a uniform heat transfer
coefficient on the face of the fin. Figure 1.9 presents

the Nusselt number plotted versus the height up the fin

(Z/H) . The Nusselt number is calculated using equation
1.6 below.
(1.6)  Nug(z) -Dhydr(aT/aylwall)

Twall(x'z) - ec(x,z)
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Comparison of numerically derived Nusselt number with
Tuckerman's constant. [a=5, Wc=60 um, Ww/wc=.5]

In this equation, the local bulk temperature Gc,

which is a function of height, z, is used. Note that the
numerical results predict a Nusselt number which is on
average slightly less than Tuckerman's constant Nusselt
number. The value near the base of the fin is gquite a
bit less than the constant value.

The Nusselt number may also be calculated with
the bulk temperature, Tbﬁlk, instead of the local average
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temperature 6, in equation (1.6). This yields the more
conventional Nusselt number Nun, which is defined in the

nomenclature section of this thesis. This Nusselt number
was not compared to the results predicted by Tuckerman
because he didn't calculate it. Figure 1.9a shows the
Nusselt number calculated numerically using the bulk
temperature for the same geometry as in Figure 1.9. The
Nusselt number has a maximum at about 80% of the way up
the fin. |
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Figure 1.9a
Nusselt number calculated wusing the bulk fluid
temperature vs. Z/H. [Wc=60 gum, a=5, WW/WC=.5]
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Figure 1.9b Shows the Nusselt number calculated

numerically for a problem with W _/W_=.5, =10 and a 60 um
channel width. This problem is very interesting because
it displays a singularity approximately 80% up the
channel. The singularity is not due to the heat flux
going infinite but is due to the Wall temperature T,

being equal to the Bulk Temperature Ty, jy- This causes

the denominator to approach zero. A physical
interpretation of this behavior is that for problems with
small fin width to channel width ratios, Ww/Wcz.S, the

fins don't have enough cross sectional fin area to



45

conduct the large heat flux. Thus, the top of the fin
remains cooler. 1In fact, the top of the fin can be at a
lower temperature than the bulk temperature as is
exhibited in Figure 1.9b. This suggests the use of
larger fin widths in order to improve the convective heat
transfer near the top of the fin.

The variation of the Nusselt number with z/H in -
Figures 1.9a and 1.9b suggest that the Nusselt number
defined in terms of the bulk temperature is not helpful
in the solution of the high aspect ratio microchannel

problem. Tuckerman's definition of 6, results in an

improvement as is shown in Figure 1.9a. The assumption

of a constant Nug still produces erroneous results as is

shown in Figure 1.9.

1.8.3.3 Comparison to the results of the integral
analysis.

The integral analysis of Dr. C. S. Landrum
[private communication] predicted that f(z) and g(z)
given by equations (7) and (8) were both unity at all
points along the fin.

Figure 1.10 presents numerically derived profiles
of f(2) and g(z) for a 60 micrometer channel with a fin
width to channel width ratio of one half and a ten to one
aspect ratio. Figure 1.10 reveals that for most of the
fin length, the integral analysis and numerical values
agree within 10%. The major deviation occurs at the
bottom of the fin (to the left in Figure 1.10) and at the
top of the fin (to the right in Figure 1.10). The bottom
of the fin is where the integral analysis is expected to

have the greatest error. It should be noted that the
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Integral analysis comparison to -numerical solution
for a 60 micrometer channel with a 30 micrometer fin.

integral analysis is a good first order estimation of the

solution.

1.9 THE PARAMETRIC STUDY

A parametric study was performed on the various
geometric cases. The results are presented graphically
in the text and numerically in the spreadsheet of
appendix H titled "Spreadsheet for the parametric study
at RE = 500.". The important results of the parametric
study are presented in 1.10 as they are employed to
derive the optimization procedure. The results presented

in this section will therefore be limited. The first
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topic of this section was to present some of the results
of the parametric study. The second topic was to present
comparisons of the numerical results to the results of
the integral analysis of Landrum. The geometric
parameters of interest were: 1) The channel aspect ratio,
2) the fin width to channel width ratio and 3) the width
of the channel. These parameters were varied
independently to observe their effect on the

nondimensional peak solid temperature.

1.9.1 Presentation of one parametric result

One important parametric result is the
relationship of peak fin temperature to aspect ratio as
in Figure 1.10a The peak fin temperature is the
temperature at the base of the fin and is denoted by

T with the inlet temperature being held

wall Tinlet
constant at 25°C. The value of heat flux of 1000 W/cm®
represents a 20 fold increase over the conventional
cooling techniques and the water temperature is just
approaching the subcooled boiling regime. This is indeed
an outstanding result.

Another striking result of Figure 1.10a is that the
graph of peak fin temperature reaches a minimum with
aspect ratio. This suggests an optimization as performed
in 1.10. Finally, Figure 1.10a is presented in such a
way that the "caloric" and convective resistances can be

compared by considering the two curves (Tbulk-Tinlet) and
(Twa1ll~Toulk) respectively. It can be seen that the
first curve (Ty,1x"Tinlet) continually decreases and the

second curve (Twall-Tbulk) reaches a minimum at about
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Figure 1.10a
Temperature vs. aspect ratio o for WC=60 pm, W =30

\
um, Re=500 and g"=1000 W/cm?.

@=5. When these two curves are added, the resulting

curve (Tp,1x~T ¢) reaches a minimum at an aspect ratio

inle

of approximately 11.

1.9.2 Comparison of the solutions with Landrums
solution

The integral analysis of Dr. C. Landrum provided a
natural comparison to use in the parametric study. The
comparison is the nondimensional fin base temperature

denoted by y, plotted versus the correlating parameter

beta (B=(k,/k) (W /W) (1/e?)). B was first used by
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Scale illustration of computational geometry to show
how B varies with a and W, /W,-

Landrum to portray with one variable all of the geometric
parameters of the problem. Figure 1.10b presents a scale
illustration of the computational geometry to show how 8
varies for different aspect ratios and different fin
width to channel width ratios.

Figure 1.10c shows the nondimensional temperature

Y, versus B for varying wall widths. Figure 1.10d shows

this correlation for varying aspect ratios. Note that
the integral analysis and the numerical cases compare
better with smaller B which corresponds to larger aspect

ratios and lower Ww/Wc values. This is reasonable

because the integral analysis assumes no vertical
variation of velocity which is better with higher aspect
ratios. Also, it is interesting to note that both the

integral analysis and numerical results predict the
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Nondimensional fin base temperature y, vs. B for

a=10, Wc=60 um and Ww varies.

correspondence of y_ and B to be linear. The slopes are

just slightly different due to the "crudeness" of the

integral analysis.

1.10 THE OPTIMIZATION PROCEDURE

The optimization procedure for the microchannel
heat sinks was derived from trends observed in the
parametric study. For clarity, the trends are presented
along with the optimization procedure. The intent of the
optimization is to produce a design which has the minimum
possible nondimensional peak substrate temperature 0

defined by equation (1.9) for a given pressure drop
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across the heat sink.

(1.9) = Nondimensional Peak solid temperature
(used to relate the different peak
temperatures from different
geometric cases)

= ~(flux across bottom in flow direction)
(incoming flux perpendicular to flow)

Ky ((Tin1ep(0,0,8y) = Tgyiy (L,0,t)) /L)

qll
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1 is actually a nondimensional axial heat flux.
However, since all quantities are constant in equation
(1.9) except for the exit temperature, it can also be

considered a nondimensional exit temperature.

1.10.1 Preliminary Reynolds number Consideration
(Fluid Mechanics Consideration)

The original investigation was performed at a
constant Reynolds number of five hundred, which simulated
the experimental conditions imposed by Tuckerman in
section 1c) of the REVIEW OF LITERATURE section. See
Appendix F, calculation 2, for the determination of the
Reynolds number of five hundred for Tuckerman's sample.

The Reynolds number was held constant to produce
a design which was optimized with respect to heat

transfer for the one Reynolds number? . Then, the

Reynolds number was varied and the same optimization was
repeated at the various Reynolds numbers. Thus, the
design with the minimal nondimensional peak solid
temperature could be identified. This is discussed in
1.10. In this manner, optimization could be performed at
each fluid mechanics situation separately, then the
results from the different fluid mechanics situations
could be compared to see which one was truly optimal.

The end result is the overall optimized laminar

microchannel geometry.

1 1f the Reynolds number (velocity) was increased

with a fixed microchannel geometry, the temperature would
decrease and the pressure drop would increase.
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1.10.2 Pressure Drop Analysis
(Channel wWidth Determination)

The first trend from the parametric study was
suggested by scale analysis and verified computatiocnally.
consider the fully Developed Momentum egquation:

(1.10) &2u + 22u = 1dP (fully developed assumption)
2y’ ez? pdx

Assuming that ¢y scales as W, and oz scales as H and

dP/dx scales as aP/L and that the aspect ratio (e) 1is
high (H >> Wc) yields the following scale analysis

equation
(1.11) API\/ugL/Wczryzl/Wcz.

Scale analysis predicts that the pressure drop will
scale in inverse proportion to the square of the channel
width. Therefore, it should be expected that the
pressure drop is a strong function of channel width and a
weak function of channel height. This is what the
numerical results attest.

Figure 1.11 shows the relationship between
pressure drop across a 1.4 centimeter long heat sink and
channel width. Figure 1.11 is for constant Reynolds
number which is consistent with the rest of the
optimization procedure. The constant Reynolds number
restriction tends to complicate interpretation since the
average velocity and mass flowrate F are also changing
with channel width. The general trend which is to be
observed is the relationship between pressure drop
through the heat sink and channel width. An easier
result to interpret is if the total mass flowrate through

a given width of heat sink (say for instance 1 cm) was
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Figure 1.11
Pressure drop across a 1.4 cm heat sink versus
channel width W,, for «=10, W,/W=-5 and Re=500

(constant). The mass flowrate is varied.

held constant and the channel width was varied. This is
done in Figure 1.12. Energy conservation suggests that
the bulk fluid temperature at the exit of the heat sink
is fixed. From either Figure 1.11 for constant Reynolds
number or Figure 1.12 for constant mass flowrate through
a given width of heat sink it can be observed that the
pressure drop across a given length of heat sink
increases greatly with decreasing channel width.
Scale analysis of equation 1.11 predicts the

pressure drop across the heat sink to be a weak function

of channel height (or aspect ratio ). This is displayed
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Pressure drop across a 1.4 cm long channel vs. WcC for
a constant mass flowrate of .005 kg/s (constant), W=l
cm, H=600 micrometers.

in Figure 1.13 which indicates that the value of pressure
drop invoked across the channel changes by only 17% when
the aspect ratio is varied from 5 to 15. 1In comparison,
Figure 1.11 indicates that the pressure drop changes by
about a factor of 20 by changing the channel width from
30 um to 90 um. For this reason, the aspect ratio of the
channels may be neglected for the purpose of obtaining

the initial channel width.
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1.10.3 OPTIMIZATION STEP 1 Obtain Channel Width WC

The above trends suggest that the first

optimization step is to obtain the channel width, W,.

This will be for a fixed design Reynolds number and for a
design pressure drop which is the primary design
variable. This can be obtained by plotting a graph
similar to Figure 1.11 and simply choosing the channel
width which corresponds to the design pressure drop. An
alternative method which is less accurate is to simply
use the scale analysis of equation (1.11) to obtain an

order of magnitude estimate of W,. At this point, the
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variation in pressure drop caused by different aspect
ratio's, a, can be neglected since both scale analysis
and Figure 1.13 indicate that pressure drop is a weak
function of channel height.

Because the pressure drop increases SO
dramatically with decreasing channel width, it may be
advantageous to plot a graph similar to Figure 1.11
before deciding on the design pressure drop and then
determining the channel width. For example, it can be
seen from Figure 1.11 that the pressure drop curve levels

off at about W_=60 um which corresponds to about 15 psi

drop across a 1.4 cm heat sink. If these conditions were
acceptable from a design standpoint, this design would be
recommended.

The final consideration in choosing the channel
width is that from a heat transfer standpoint, it is
advantageous to choose the smallest allowable channel
width because there is a linear correspondence between
channel width and nondimensional peak temperature.

Figure 1.14 shows this relationship derived from the
numerical methods. This is also predicted by the
integral analysis.

To summarize the method of finding the channel
width the steps will be listed: 1) Derive a
relationship between pressure drop and channel width
similar to Figure 1.11; 2) Decide on an acceptable
pressure drop across the heat sink; 3) Choose the
channel width which corresponds with this pressure drop.
(Remember, it is desirable to choose the smallest channel

width possible)
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Nondimensional temperature 1 versus channel width for

=10, B=1 and WW/WC=.5.

1.10.4 OPTIMIZATION STEP 2

It was found that the non

temperature 1 reached a minimum

channel width found in step 1,
determine the optimal fin width
(Ww/wc)o. The ratio Ww/wc with

nondimensional peak temperature

optimized fin width to channel width ratio (WW/W

Similarly, the aspect ratio a w

Find optimum (WW/WC)o

dimensional peak
with Ww/wc' For the

it is desired to
to channel width ratio

+he minimum
will be called the
c)o‘

ith the minimum
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nondimensional peak temperature will be called the

optimized aspect ratio ag.

A physical argument will be presented to support
the statement that the nondimensional peak temperature i

reaches a minimum with W_/W.. Consider a fixed channel
width W, with a given heat flux across the bottom of the

heat sink and varying fin widths. For very thin fin
-widths, it can be expected that the peak silicon
temperature is high because the fin efficiency will be
low. For very wide fins, there is more energy flow per
microchannel. This is caused by a uniform base heat flux
and essentially more base area for each microchannel

caused by a larger value of %(WW+WC). These

microchannels have essentially the same heat transfer as
the microchannels with slightly thinner fins because the
solid conductivity is so high. (i.e. there is more than
enough cross sectional conduction area) Thus, the peak
silicon temperature would be expected to be high with
very wide fins. It is expected that with a fin width
between these two extremes better heat transfer
performance can be found which yields a lower peak
silicon temperature. Therefore an optimal fin width
should exist.

Equation (1.12), which predicts the optimum

(WW/WC)o value as a function of the other fundamental

design variables, was derived from the integral analysis
of Dr. C. Landrum. [private communication]. The

derivation is given in appendix D.
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(1.12) (WW/WC)O = [(361/63) + 62]
Where
€1 = 2(ky/K) (Q"I/ky) i €y =51 Kyl
Re(1l + ao) Pr 140 k ao2
€5 = q"Ho/kw‘

The numerical results predicted the relationship
between nondimensional peak temperature and fin width to
channel width ratio given in Figure 1.15. It can be seen
from the curve that indeed a minimum does exist.

The numerical results agreed with Landrum's
integral analysis. For a 60 um channel width and =10,
the numerical results predicted the minimum peak

temperature to occur at W_/W_=.7. Similarly, equation

(1.12) from the integral analysis predicted the minimum

peak temperature to occur at W /W_=.7. This was very

good correspondence and suggested that the approximations
involved in the integral analysis "balanced out" for this
parameter.

The value of a=10 is not the optimal aspect ratio

so the value of Ww/wc=‘7 is not optimal. It is, however,

the value which yields minimum peak temperature for a=10.
Equation (1.12) states that (W_/W,)g depends on a. Thus,

the optimal aspect ratio and optimal fin to channel width
ratio are coupled and must be found concurrently by a

trial and error procedure as outlined in section 1.10.6.
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(find optimum aspect
ratio ag, and H_)

1.10.5 OPTIMIZATION STEP 3

It was found that the nondimensional peak
a,
For the channel width found in step 1,
This was

temperature, reaches a minimum with channel aspect

ratio, «a. it was
desired to determine the optimal aspect ratio.
for a given Reynolds number and design pressure drop.
Figure 1.10a suggests that this optimal aspect ratio is
approximately 11.

A physical argument will be presented to support
the statement that the nondimensional peak temperature,
a,

reaches a minimum with a. Consider a given fin width,
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channel width and heat flux. If very short fins are
used, the cooling effect is poor because there is
inadequate fin face area. Increasing the fin height
would increase the heat transfer and lower the peak
silicon temperature. If very tall fins are used, the
cooling effect is also poor because near the top, the
temperature gradient between the fin and the coolant is
small due to the fact that the fins don't conduct much
heat to the top. Most of the energy would leave the fin
near the bottom and middle. Therefore at an intermediate
aspect ratio, better heat transfer performance is
expected, which results in a lower peak silicon
temperature. Hence an optimal aspect ratio should exist.

Equation (1.13), which predicts optimal aspect
ratio as a function of the other nondimensional
parameters of the solution, was derived from the integral
analysis of Dr. C. Landrum [private communication].
(1.13)
ao3 + 2a - ao(Ww/Wc)o(kw/k)F - (51/70)(kw/k)(Ww/Wc)o=o
Where I = (51/140) + 6(L/W.)

Re Pr
The numerically derived results predicted the

relationship between nondimensional peak solid
temperature, 2, and aspect ratio shown in Figure 1.16.
It is important to realize that the curve of Figure 1.16
is plotted for one value of W_/W, and that in general the

fin width to channel width ratio affects the optimal
aspect ratio. In this manner the optimal aspect ratio
and the optimal fin width to channel width ratio are
coupled and must be found concurrently by the trial and

error procedure presented in section 1.10.6. This is a
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consequence of the fact that both the aspect ratio and
the fin width to channel width ratio are primary design

variables.

1.10.6 TRIAL AND ERROR METHOD TO FIND a, and
(Wy/Weo

Examining equations 1.8 and 1.9 it is evident that
each equation contains, as an argument, the result of the

other equation. It is clearly stated that the aspect
ratio, o, affects the curve of 0 vs. W /W, in Figure 1.15

and W /W, affects the curve of Q vs. « in Figure 1.16.
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This suggests that a trial and error procedure must be

employed to obtain the optimized solution for a_  and

The effort to perform this trial and error

procedure can be minimized by using the observation of
this author that the optimized value of (Ww/Wc)o is

nearly unity for all cases of concern.
The procedure then is to first choose a value of

(W,/W.), = 1 and use equation 1.9 to calculate the first

approximation of ag - Then use this value of ag to

calculate the second approximation of (W_/W.),- Then use
this value to calculate the second approximation of a,.

Continue this process until a satisfactory solution is
obtained (i. e. The variables change very little from
iteration to iteration). The result will be an optimized

value of e, and (Ww/wc)o for the chosen Reynolds number

and pressure drop. The Reynolds number restriction will
later be removed by optimization with respect to the
Reynolds number.

It is recommended to use equations (1.12) and (1.13)
to obtain the optimized parameters. In order to verify
that the geometry is optimal, plot curves similar to
Figure 1.15 and Figure 1.16 by solving the problem
numerically and determine the minima. This can be done
with either the code by J. Lienau which assumes fully
developed momentum and energy solutions, or by a code
which considers the developing solution and even possibly

variable properties. The key idea is that the fewer
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assumptions the model has, the more accurate the solution
will be.

1.10.7 OPTIMIZATION STEP 4 (Substrate Thickness)

The substrate thickness, s, in Figure 1 has not
been mentioned in the above optimization procedure
because it should cause linear variation in temperature.
That is, the temperature drop across the substrate is

approximately equal to aT =-q"s/K, which is

substrate
linear with s. This is not exactly linear with s because
slight differences in temperature occur between the
substrate material under the fins and under the channels.
This is due to about 3% of the heat being convected
through the base of the channel. The criteria for the
substrate thickness is determined by how uniform the base
heat flux must be. Uniform heat flux causes uniform
temperature along the base which is near the
microelectronics. If extremely uniform temperature is
desired, then it is recommended to use large substrate
thicknesses. If uniformity is not important, then
thinner substrates may be used. In this work substrate
thicknesses of approximately 100 um were used for all of
the computational investigations. The numerical cases
suggest that if a substrate thickness of at least 50 um
is used, the temperature variation will be less than
0.01°C. Substrates as small as 20 um may be used and
still provide nearly uniform heaf flux because of the
extremely high conductivity of the silicon.

It is recommended to run the optimization procedure
with a large value of substrate thickness (100 um or

greater), and examine the temperature profiles along the
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width direction. Then decide which value of substrate
thickness provides adequately uniform temperature across

the base. This will be the substrate thickness to use.

1.11 REYNOLDS NUMBER OPTIMIZATION

The preceding optimization procedure has assumed a
constant Reynolds number which in essence assumes a
similar fluid mechanics situation between the different
parametric cases. An optimization procedure has been
developed in 1.10 which will produce the geometry for the
minimum nondimensional peak solid temperature 1 for a
given Reynolds number. The objective now is to vary the
Reynolds number and perform the preceding optimization at
each Reynolds number and the same pressure drop across
the heat sink. 1In this manner the effects of different
fluid mechanics and heat transfer are separated. The
final design is optimized with respect to both heat
transfer and fluid mechanics.

It was originally speculated that the
optimization would be reasonably insensitive to the
Reynolds number over a moderate range. It was however, a
matter which called for computational verification. The
optimization procedure of 1.10 was performed for Reynolds
numbers of 165, 500, 773, 1135 and 1820. A plot of
optimized nondimensional peak solid temperature 1 vs.
Reynolds number was produced for . a pressure drop across
the heat sink of 9.4 psi. Figure 1.17 shows that a
minimum 2 is obtained with Reynolds number. It further
shows the desirable feature that this minimum is quite
insensitive to Reynolds number over the range from about

500 to 1000. 1In actual practice, Figure 1.17 may be
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Figure 1.17
Optimized nondimensional temperature Q vs. Reynolds
number for a heat sink pressure drop of 9.4 psi.

affected slightly by different values of pressure drop
across the heat sink. Due to the breadth of the Reynolds
nunber "plateau" of Figure 1.17, it is recommended that
Reynolds numbers between 500 and 1000 be considered

optimal in the design of laminar microchannel heat sinks.

1.12 CONCLUDING COMMENTS REGARDING THE STUDY

It was not the intent of this study to perform the
optimization over a wide array of pressure drops.
Rather, the approach has been to identify the general

trends and provide the computational tools by which the
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optimal geometry can be chosen given a certain set of
constraints. The equations derived from Landrums
integral analysis adequately predict the optimal geometry
over the entire range of pressure drops of interest. If
further verification of the optimization is desired, the
numerical simulation may be consulted. For a very
precise measure of the temperature distribution, it is
recommended to use the numerical simulation. It is
comforting that the integral analysis and numerical

methods give similar results.
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CHAPTER 2 DEVELOPING LAMINAR MICROCHANNEL COOLING

2.1 INTRODUCTION

The initial work with "Heat Transfer
Microstructures for Integrated Circuits" presented by Dr.
D. Tuckerman [1] suggested that the optimal design may be
modelled with the fully developed assumptions.

The validity of the assumptions of fully developed
velocity and temperature profiles in laminar microchannel
heat sinks were evaluated in this chapter. One approach
involved using equations presented in the literature to
predict thermal and hydrodynamic entry lengths. 1In a
second approach the results of the two dimensional fully
developed analysis were compared to computational
analysis of the 3 dimensional developing profiles from

the TEMPEST1 computer code.

It is plausible that the velocity profiles within
the microchannels of Figure 2 become fully developed near
the beginning of the flow distance which means a small
hydrodynamic entrance length. The temperature profiles
do not lend themselves to such simple interpretation.
From a knowledge of the Prandtl number of the fluid, it
is expected that the thermal entry length is greater than
the hydrodynamic entry length. These statements were
investigated computationally.

The intent of this work is to obtain results
concerning the microchannels which are applicable to the
real life microchannel cooling problem. The simulation

which is closest to the real life process involves the

1 Developed by D. S. Trent and L. L. Eyler of Battelle

Pacific Northwest Laboratories. For the Numerical Methods and
Input instructions for this computer code see Reference [6].
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developing problem considering variable fluid and solid
properties. The assumption of constant fluid properties
was investigated by considering variable fluid specific
heat and thermal conductivity and comparing to the
constant property case. The variable solid properties
case was not investigated because the temperature
variation of solid properties was considerably less than
the temperature variation of the fluid properties..
Finally, neglecting the temperature variation of solid
properties was shown to produce a conservative estimate

of the heat transfer in section 2.8.2 of this thesis.

2.2 MOTIVATION

The goal of this work was to determine whether the
fully developed assumptions can be used to adequately
determine the temperature and velocity distribution
within the microchannels. The most important issue was
to evaluate whether the peak solid temperature was being
properly modelled by these assumptions over the range of
geometric parameters of interest. If the fully developed
assumption proved reliable over the range of parameters
of interest in the optimization procedure, it may be
suggested to use the fully developed solution for the
optimization procedure. If not, the developing solution
must be used for the optimization procedure.

Another source of motivation for this work was to
gain insight into the behavior of the developing solution

for investigation of the subcooled boiling problem.

2.3 PROBLEM DESCRIPTION
The three dimensional developing microchannel
problem considered the entrance effects in the geometry

of Figure 1. The 3 dimensional Navier-Stokes equations
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and the energy equation as given in Appendix E were
solved computationally with no simplifying assumptions.

The problem discretization for the three
dimensional developing problem is essentially the same as
the discretization described in 1.3 for the fully
developed problem except that it had discretization in
the third (axial) direction also. Figure 1.1 shows the
two dimensional discretization which is essentially one
tier of cells in the three dimensional description. All
of the modelling assumptions and the ideas regarding
symmetry in 1.3 apply to this problem also.

A discretization of 10 cells in the x direction
was originally chosen. This was evaluated by running a
simulation with 20 cells in the x direction and comparing
the temperatures. The temperatures didn't change by more
than 3% between the two simulations. The 10 celled
discretization was used because it saved computational

resources.

2.4 ESTIMATES OF ENTRY LENGTHS
The estimates presented in this section are by

nature "crude" because they are derived from problems
which are similar to the microchannel problem but which
are not identical to the microchannel problem. This
should be kept in mind when considering the results of
this section.

2.4.1 Thermal Entry Length.

Following the analysis presented by Kays [16] for
the thermal entry length solution for noncircular cross
sections, Kays states that the temperature profile can be

considered fully developed when x+=.1, where
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(2.3) x" = 2(x/Dy) .

ReDhPr

These are the conditions of Tuckerman's experimental
sample 81F9, pade 81 of reference [1]. Dhydr=4A/P(wetted)

~ 100 pm, u = 2.85 m/s, Pr=4.3 at 60°C and Re=500. The
thermal entry length was calculated as

2.3.a Xthermal = ,01075 m = 1.08 cm.

The thermal entrance effects are much more
significant than the hydrodynamic entrance effects.
Because the entry length may be the same order of
magnitude as the length of the heat sink it is necessary
to consider the developing solution. This was the
initial observation which prompted the investigation

presented in this chapter.

2.4.2 Hydraulic Entrance Length.

Using the assumption of parallel plates and (as a
first order approximation) the point when the boundary
layers meet to define the entrance length, the similarity
solution presented by Bejan [15] yields:

The boundary layer thickness § is

L

(2.1) §/x = 4.92 Rex'2°

Using a boundary layer thickness of W_/2 yields

(2.2) Xentry = -0103 ReycW..
Using W_=60 um, U_=2.85 m/s, =.663x10"° m?/s
yields
2.2.a X entry = .016 cm.

Using the core acceleration effects {see Bejan
[15] pp. 69} yields
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2.2.b Xentry = .010 cm.

Using Schlichting's matched series solution {see
Bejan [15] pp. 70} yields

2.2.C xentry = .3 cm.

All of the above methods of calculating the
hydrodynamic entrance length (though they do not agree
very well) suggested that it is small in relation to the
1-2 cm length of the heat sink. This suggested using the
assumption of fully developed hydrodynamics as was done

in chapter 1.
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Energy Generation
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Figure 2.1

y-z plane for 3 dimensional computational solution.
The x direction runs perpendicular to the plane.
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2.5 GOVERNING EQUATIONS

The governing equations are given for the fluid
mechanics and for the convective and conductive heat
transfer for the three regions identified in Figure 2.1.
These equations are given in full form as they are found
in Bejan [15].

2.5.1 Fluid Flow Region. Momentum Equations. -

2.5.1.1 X Momentum

(2.4a) o(ugu + vgu + wgu) = =3P + u(22u + 22u + 22u)
7 o X ey 2z X ox? 2Yy? dz?

Boundary Conditions:

u(w,/2,z) = u(y,s) = u(y,f) =0 (no slip)
?ig(%(WW+WC),Z) =0 (symmetry)
Y
(W Sy<h (W yc)) , (st+tg<z<f)
2.5.1.2 Y Momentum
(2.4b) 0 (uav + vgv + wav) = -2P + p(2Vv + 22V + 22V)
eX % Jz ey ax’ ey? zz?

Boundary Conditions:

v(w%/g,z) = v(y,s) = v(y,f) = 0 (no slip)

oV (% (W +W,),z) = 0 (symmetry)
2y
(5W,Sy<h (W +W.)), (s+tggzgf)
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2.5.1.3 Z Momentum

(2.4c) 2(u2wW + VIW + wew) = -P 4+ u(%zw + ?zw + Jlw)+.og
oX Y &2 &z & Fy? szt
Boundary Conditions:
w(W /2,z) = w(y,s) =vw(y,f) =0 (no slip)
QE(%(WW+WC),Z) =0 (symmetry)

ey

CsW <Y<k (W+Wo) ), (st+tg<z<f)

2.5.2.1 Energy Equation. Energy Generation Region.

(2.5) af(ézT + 22T + &22T7) = g"!
aXZ ayz &zz

Boundary Conditions: Von Neumann

JT(0,2) = ZT(% (W, +W.),2) = gT(y,0) =0
Ay Ay &z
(0<y<’ (W +W.)), (0<z<ty)

2.5.2.2 Energy Equation. Conduction Region.

(2.6) ap (22T + J2T + 22T) = 0
& x? ay? C 22

Boundary Conditions: Von Neumann
2T(0,2) = QT(% (W +W.),2) = QE(Y:f+tg) =0
QY oY 2z

(0<y<h (W +W.)), (for y=0, tg<z<f+ty)

(for y=%(WW+WC), t gzgs+tg)

g
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2.5.2.3 Energy Equation. Fluid Flow Region.

(2.7) S(uT + v2T + WlT) = ac(¢iT + <:T + 227T)
cx ey ez ¢ x? cy: o z?

Boundary Conditions: Von Neumann

ey &z
(W, <y<% (W, W) ), (s+tg5zgf+tg)

2.6 VERIFICATION OF THE COMPUTER CODE

Dr. D. Trent suggested using TEMPEST for this
problem. The code verification results for TEMPEST in
reference [20] contain three examples similar to the
microchannel problem. These problems are: a) flow within
a square channel, b) channel flow with variable viscosity
and c) combined free and forced convection pipe flow
(Morton's Problem). The problem with flow in a square
channel investigates developing velocity profiles and
compares the computational results to experimental
results. The channel flow problem investigates the
velocity profiles considering temperature dependent fluid
viscosity with a linear temperature profile. The results
are compared to an analytical solution. The forced
convection problem investigates the velocity profiles in
a pipe with constant wall heat flux. The results are
compared to an analytical solution. TEMPEST was observed
to perform extremely well for these three problems which
have similarities to the microchannel problem.

Another source of verification was derived from
comparing the results from the two dimensional fully
developed problem run by 2DREYN and the results from the
three dimensional developing problem run by TEMPEST. In
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general the temperature distributions at exit and the
velocity distributions agree which lends verification to
2DREYN. The degree to which these distributions agree
for varying geometry of the heat sink is the subject of
this chapter and is a question of the physics of the

problem.

2.7 RAMIFICATIONS OF THE FULLY DEVELOPED ASSUMPTION
2.7.1 Energy Equation.
The fully developed thermal assumption implies
that the axial temperature gradient in equation (2.7),
+T/2x%, is equal to the bulk fluid temperature gradient

dTy,1x/8%- In order to evaluate this assumption, it is

necessary to calculate 3T/2x at different locations in
the fluid channel for the developing solution and compare
this value to the bulk temperature gradient which is
found by an energy balance.

Scale analysis and the fully developed assumptions
are the only assumptions made to simplify the equation
set of 2.4 to the equation set of 1.5. For the scale

analysis developments see appendix F.

2.7.2 Momentum equation.

The fully developed momentum assumption implies
that the velocity profile does not change in the axial
direction. This means that all of the x derivatives in
equation 2.4 vanish. The distance that fluid moves into
the channel before reaching its' fully developed velocity
is a measure of the verity of this assumption. The
closer to the beginning that this occurs, the better the

fully developed momentum assumption is.



2.8 FINDINGS REGARDING THE DEVELOPING SOLUTION

2.8.1 Temperature Comparisons for Constant
Property Developing-Fully developed solutions.

The primary concern is whether the temperature
distribution at the exit of the heat sink predicted by
the fully developed solution adequately represents the
temperature distribution predicted by the developing
solution. '

Figure 2.2 shows the fully developed and

developing solutions for a microchannel with W_/W_=.7,

=10 and W_ =60 um for ¢,"=1000 W/cm? and Re=500. The
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results are left dimensional to show the temperatures
which are reached for an optimized case. The important
result is that the two temperature distributions are
nearly identical in the substrate and base of the fin and
deviate by only 3°C near the top of the fin. This
suggests that the fully developed assumption provides a
good estimate of the peak temperature. The first value
plotted is the peak solid temperature which is the value

of the exit fin temperature at the smallest value of z/f.

2.8.2 Temperature comparisons for variable

properties, developing solutions.

Perhaps the most important result is whether the
Fully Developed Assumption provides an adequate estimate
of the actual fin and substrate temperature profile. The
location which is most important is the base of the
substrate because this is where the microelectronic
elements are. The simulation most representative of the
actual conditions is the developing, variable properties
solution which considers variable fluid kinematic
viscosity and thermal conductivity. The only assumption
for this case is that the properties of the solid are
constant. This assumption will be discussed briefly
here. From reference [17], the thermal conductivity of
intrinsic silicon is seen to increase with decreasing
temperature below 100°C. Thus at the inlet of the heat
sink where the silicon is cooler, the thermal
conductivity would be higher which would cause better
conduction and essentially decrease the entry length.
Thus, assuming constant solid conductivity evaluated at
an average temperature tends to provide a conservative

estimate and is therefore desirable.
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comparison.

Figure 2.3 compares the fully developed, constant

properties fin temperature solution to the developing,

The effect

properties is to decrease the temperature

variable properties solution.

substrate region and near the base of the

desirable because it indicates that using

properties provides a conservative estimate.

of variable

in the silicon
fin. This is
constant fluid

This is

favorable because it builds in an automatic margin of

safety in the substrate near the microelectronics where

the temperature is most critical.
reveals that near the top of the fin, the

assumption underestimates the temperature

Figure 2.3 also

fully developed
by 3°. The
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temperatures at the top of the fin are of less concern
since they are farthest away from the microelectronics.
Another interesting comparison is the temperature
distribution up the centerline of the channel which is
given in Figure 2.4. The constant properties case is
again conservative with higher substrate temperature than
the variable properties case. A slight increase in
temperature at the top of the channel can be clearly seen

because of the effect discussed in section 1.8.2.

135 - ‘ 5
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105 A
85 4
85 4
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45 4

Exit Fin Temperature [ C]

33

g.

Figure 2.4

Exit channel temperature profiles comparing fully
developed and developing, constant and variable
properties solutions. Geometry -same as Figure 2.2.
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2.8.3 Variable-Constant Property Velocity
Comparison.

In general variable fluid properties cause the
velocity to depart considerably from the constant
property case. This is because the fluid viscosity is
such a strong function of temperature. Figure 2.5 shows

the x component of the nondimensional velocity profiles
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Figure 2.5

Nondimensional velocity Profile u/u plotted vertically
for variable and constant properties.
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plotted as a function of vertical distance up the channel
centerline for both constant and variable viscosity at
the exit to the microchannel. The behavior in Figure 2.5
is expected from the temperature distribution. At the
bottom of the microchannel the fluid is at a higher
temperature which means the viscosity is lower and the
velocity is expected to be higher with the same pressure
gradient. Similarly, at the top of the microchannel the
fluid is cooler, has a higher viscosity and the velocity
is expected to be lower.

Variable properties cause the velocity profile to
develop more slowly. Figure 2.6 shows the nondimensional

velocity profiles in the flow direction for cases with
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Figure 2.6

Nondimensional velocity profiles in the flow direction.
This plot is for a cell near the bottom centerline at
Z_/H=.1.

o



84

constant and variable properties for a cell near the
bottom of the channel at z/H=0.1. The value of these
axial profiles at exit was indicated by the second point
(z/H=.1) in the vertically plotted exit nondimensional
velocity profile of Figure 2.5. Also contained on the
graph is the velocity predicted by assuming constant
properties fully developed behavior and developing
behavior. The constant properties developing and fully
developed velocities agree within 97% in the first
computational cell in the flow direction so the curves
essentially lay right on top of each other. From this
observation and from similar observations in every
microchannel geometry considered, it can be stated that
for constant properties solutions the fully developed
momentum assumption is Jjustified.

The variable properties solution takes nearly 80%
of the flow distance to reach its' fully developed value.
This is also justified physically. Near the entrance of
the microchannel, the fluid is cool and at nearly uniform
temperature. As it progresses along, the temperature
increases and the viscosity decreases which allows it to
move faster.

The result of variable fluid properties is that
the base temperature is lowered as shown in Figure 2.3
and Figure 2.4. Because differences are not large and
because using the constant properties solution provides
an automatic margin of safety by overpredicting the peak
temperature, the use of constant .properties seems

desireable.

2.8.4 Wall-Bulk Fluid Temperature Gradient
Comparisons.

As discussed in 2.7, the temperature solution
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becomes fully developed when the axial temperature
gradient becomes equal to the bulk temperature gradient.
The bulk temperature gradient is constant along the flow
distance and is found by a simple energy balance. To
solve the fully developed problem, the bulk temperature
gradient is substituted everywhere throughout the region
for the partial derivative of temperature (<T/¢x) as in
equation (1.4).

In order to evaluate the accuracy of using the
fully developed assumption, 2T/¢x is compared throughout
the region to dTy,1x/9%- The thermal behavior is

considered fully developed when 2T/%x and dTbulk/dX agree

within 20%. Determining fully developed behavior is more
involved than at first appears because at every point
within the fin, substrate and channel this comparison
could be made. Also, the behavior is very dependent upon
the geometric parameters of the solution. Therefore many
different comparisons were made for different points
within the cross section and for different géometric
parameters. For reasons of brevity, the information will
be presented in condensed form. Two different examples
of the graphical temperature gradient comparisons will be
presented. The rest of the information will be
summarized.

Figure 2.7 is a graph of fin base temperature
gradient and bulk fluid temperature gradient in the axial
direction for a microchannel with a small aspect ratio

(e=5), a large fin to channel width ratio (W _/W_ =1,

B=8.5), g"=1000 W/cm* and Re=500. The bulk temperature
gradient and 120% of the bulk temperature gradient are
plotted to help show where fully developed behavior

begins. Four other plots similar to Figure 2.7 for
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Nondimensional fin base temperature gradient, bulk
temperature gradient and 120% of the bulk temperature
gradient in the flow direction for =5, WW/WC=1, B=8.5.

different points up the fin and four plots up the channel
centerline were prepared and show very similar behavior.
These are included in the summary of Figure 2.9. The
plots near the middle of the fin show better agreement to
fully developed behavior than those at the extremes.
Because of agreement between the axial and bulk
temperature gradients, the fully developed energy
assumption is justified for this .microchannel geometry
which involves a small aspect ratio and a large fin to
channel width ratio.

Figure 2.8 is a plot of the fin base temperature
gradient and the bulk fluid temperature gradient for a

microchannel with a large aspect ratio e=15 and a very
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Nondimensional fin base temperature gradient in the
axial direction for a=1S5, W,/W.=.25 and B=.19.

small fin width to channel width ratio (Ww/Wc=.25,

B=.19). It can immediately be seen from this plot that
the fin base temperature gradient is much steeper than
the bulk temperature gradient throughout the entire flow
length. Therefore the fully developed energy assumption
does not apply in this case and would lead to erroneous
results.

The two cases which have been chosen are extreme
cases (B=.19 and B=8.5) to exempiify the trend.
Figure 2.7 shows that the temperature gradient reaches
the fully developed value at about 40% of the flow
distance. The temperature gradient of Figure 2.8 does

not reach fully developed behavior in the flow distance.
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The percentage of the total flow distance where fully
developed behavior begins is what is most interesting
from all of the plots. A graphical summary of this
percentage has been prepared which uses the natural
logarithm of B to represent the geometric aspect of the
solution. Along the abscissa is the percentage of the
flow distance required for the axial temperature gradient
and bulk temperature to agree within 20%. This is
labeled 100*(x(thermal)/L) where x(thermal) is the
thermal entry length. Plots are presented for four
different values of height up the fin. The summary of
Figure 2.9 is for the temperature profiles plotted down
the centerline of the fin. The method used to obtain the
percentages is quite crude as is shown by Figure 2.7.
Exponential functions are fit to the data to show the
general trend. It is expected that the uncertainty is
approximately 10% for these values.

Figure 2.9 reveals that the fully developed
assumption is in general better for larger values of Beta
than for smaller values of Beta. The smaller values of
Beta correspond to large aspect ratio channels (~15) and
very small fin to channel width ratios (~.25). Thus, in
general it can be stated that the fully developed
assumption is better for small aspect ratio, large fin
width to channel width ratio microchannels than for large
aspect ratio, small fin width to channel width ratio
microchannels.

A similar plot has been prepared for different
points up the channel centerline in Figure 2.10. The
fully developed assumption is much better at zo/H=.33

than at the top or bottom because at this value of
height, the fluid temperature is nearly equal to the bulk
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Figure 2.9

Summary of the comparison between the wall and bulk
fluid temperature gradient showing x(thermal) as % of
flow distance (L).

fluid temperature. The important result is that the fully
developed assumption is again better for larger values of

beta than for smaller wvalues.

2.8.5 Comparison of Heat Flux values between Fully
Developed and Developing solutions.

The heat flux into the fluid does not compare well
when considering the results from the fully developed and
developing solutions. Figure 2.11 is a graph of the
ratio of heat flux off the face of the fin to heat flux
through the base of the heat sink for an optimized 60 um
channel width. {«=11.8, W, /W.=1 and B=1.6}. The heat



flux was calculated by considering the negative of the
temperature gradient in the fluid times the fluid
conductivity. The fully developed heat flux is nearly
uniform along the height of the fin and the developing
heat flux is higher near the bottom and lower

near the top. The important result is that the fully
developed solution does not adequately determine the
actual heat flux off the fin at the exit plane.

90

The small value of the ratio of heat flux off the

face of the fin to heat flux through the base in Figure

2.11 is due to the large surface area amplification

factor o of the heat sinks.
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Figure 2.10

Graphical summary of the comparison between fluid and
bulk fluid temperature gradients similar to Figure 2.9.
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Figure 2.11

Heat flux off the face of the fin versus z for the
fully developed, constant and variable properties
developing solutions. ({o=11.8, WW/WC=1, W,=60 [pgm],

Bf=1.6, Re=500}

This is why the microchannels are such effective cooling
devices.

The heat flux profile slowly approaches the fully
developed value in the axial direction but does not come
close to reaching it in the length of microchannels.
Figure 2.12 is a profile of the constant property heat
flux in the axial direction at the base of the fin for
the geometry of Figure 2.11. The important result is
that the heat flux does not approach the fully developed
value in the channel lengths which are representative.

From the above findings, it is not recommended to

assume fully developed behavior for obtaining heat flux
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Nondimensional heat flux near the base of the vin vs.
axial distance. Also shown is the fully developed
value. {e=11.8, WW/WC=1, Wc=60 pym, B=1.6 and Re=600}

values in the microchannels. The heat flux is important
when considering subcooled boiling within the
microchannels. For this reason, it is recommended to
consider variable properties developing solutions when

solving the subcooled boiling problem.

2.8.6 Nondimensional Fluia Temperature Profiles.
Nondimensional fluid temperature profiles have been
used by Kays [16] to analyze developing-fully developed
behavior. Kays considered fluid flowing in a pipe with

a heated wall (either uniform heat flux or isothermal).
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Kays stated that the energy solution is fully developed
when the nondimensional fluid temperature does not change
in the flow direction. A similar analysis has been
prepared for the microchannels. The main difference
between the microchannel problem and Kays pipe problem is
that when fully developed conditions are met, Kays pipe
problem is one dimensional (a function of radial distance
only) whereas the microchannel problem is truly two
dimensional (a function of y and z). Kays uses the bulk
fluid temperature to calculate his nondimensional fluid
temperature &. Because of the two dimensionality of the
microchannel problem, a special local average temperature

ec(x,zo) is defined which is a velocity averaged
temperature at a certain value of height zy- This is

used in place of the bulk temperature to calculate the
nondimensional fluid temperature ¢. In the fully

developed regime, this causes every value of z  to have

only horizontal (y) nondimensional fluid temperature
variation. This allows an argument similar to Kays fully
developed argument.

Figure 2.13 is a plot of nondimensional

1

fluid temperature ¢ in the axial direction™ near the

bottom of the channel next to the wall, at the centerline
of the channel and half way between the wall and channel

centerline. (i.e. y=4%W (W, +W_) and 5 (W +5W)

w’
corresponding to y.=.05, .5 and 1 respectively) The

thermal entry lengths at the three different locations

1 The geometry of this microchannel is @=10, B=1.5, W =60 [um]
and W_/W_=0.7. The plot is for z/H=0.1.
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Figure 2.13
Nondimensional temperature ¢ vs. x/L for z_/H=0.1 at

the centerline, wall and half way between wall‘and.%.
across the channel can be clearly seen. As expected, the
entry length is longest near the channel centerline
because it is furthest away from the heating of the fin.
The centerline profile takes approximately 40% of the
flow distance to develop. This is very similar to the
result found by considering the dimensional temperature
gradient. The nondimensional fluid temperature profiles
more readily show the thermal entry length than the
dimensional temperature profiles.

Figure 2.14 represents the'argument presented by

Kays concerning only radial variation of nondimensional
fluid temperature in fully developed conditions. ¢ is
plotted near the bottom centerline and at four different

axial positions. The curve at the first axial position,
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x/1=.125, is different from the other three. All other
axial positions have nearly the same profiles. Thus,

fully developed behavior is exhibited beyond x/L=.375.
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Figure 2.14
Nondimensional temperature ¢ vs. y at z/H=.1 for four
different axial positions.

Nondimensional fluid temperature profiles are an
expedient way to analyze fully developed behavior for
the laminar microchannels. Many other nondimensional
fluid temperature profiles were prepared and are
presented in reference [18].

2.8.7 Exit Fin Temperature Comparisons for
Different Geometries.

The fully developed assumption provides the exit
fin temperature profiles closest to those of the
developing solution for cases with wide fins and small

aspect ratio channels. The fully developed solution is
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best for B greater than about 1 and WW/Wc greater than

.7. Figure 2.15 provides the exit fin temperature
profiles calculated from both the developing and fully
developed solutions for a small aspect ratio of 5, wide

fin (W,/W_=1) microchannel. It can be seen that the

temperature distributions are within 1% for the entire
distribution.

The fully developed assumption provides the worst
approximation of the developing solution for very thin
The fully

developed assumption is bad for B less than .5 and W /W,

fins with high aspect ratio channels.

less than .35. Figure 2.16 provides the exit fin

180 , ; — .
rﬂ l ! I I
S 2 R N e qemmmmmm o M- S
L t i : I»

. Constant, Propertiges Developing

© |
NI <1c R PN - NV N AR RS
3
4
< [ P DU L E L
©
=
I S N e B e e e
},_
1S3 I P L S N S
L i } |
+ : i |
= 146 4--------- T T T TS 9T TS T T 9T T T T qT T oETT
X | I ; !
W I i 1 I

140 : 1 } i .

0.0 0.2 0.4 . 0.b 0.8 1.0
/T Nondimensiona |

Figure 2.15
Exit fin temperature distribution for fully developed
and developing solutions for o=5, W /W_=1 and B8=8.5.
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temperature profiles for the developing and fully
developed solutions for a high aspect ratio of 15, thin

fin width (W,/W.=-25) microchannel. The temperature

distributions deviate substantially. The largest
deviation occurs at the base. Fortunately, the fully
developed solution overestimates the solution. The
usefulness of a fully developed numerical simulation with
this much discrepancy is questionable because the base
temperature could be guessed within 25°C for all
practical purposes. For thin fin large aspect ratio
channels, simulations should use the developing solution.

With the small aspect ratio, large fin width
problems the fins have more conduction area and less
distance to conduct which causes nearly uniform
convection into the fluid. Thus, the thermal boundary
layer grows essentially across the microchannel and
causes a small thermal entry length and justifies the
fully developed assumption. This is because the channel
width is small compared to its height. For the large
aspect ratio, small fin width problems the fins have very
little conduction area and must carry the heat far up the
fin. In turn the heat transfer is large at the bottom of
the fin and small at the top. The thermal boundary layer
grows essentially in the height direction and causes a
very large thermal entry length for the large aspect
ratio problems. This is vastly different from the
prediction of the fully developed assumption. In turn,
when the assumption is made that everywhere the
temperature gradient in the flow direction is equal to
the bulk temperature gradient, the result is meaningless
and yields solutions which vary quite a bit from the

actual developing solution.
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Figure 2.16
Exit fin temperature distributions for fully developed
and developing solutions for o=15, W /W_=.25 and B=.19.

Figure 2.17 shows the percentage difference
between the fully developed and developing solution
estimates of the peak silicon temperature plotted versus
beta. From the graph the fully developed assumption is
better for large 8 than for small 8.

By example, it has been shown that the fully
developed assumption is good for some parametric cases
and poor for others. The important design issue is
whether or not the fully developed assumption is valid
for the optimized microchannels. The optimization was
performed for four different pressure drops resulting in
30, 45, 60 and 90 um channel widths. The fin exit

temperature graphs are presented for the two extreme
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Figure 2.17
Percentage difference between fully developed and
developing estimates of the peak silicon temperature.

cases to show the trend. (30 and 90 um channels in
Figure 2.18 and Figure 2.19 respectively).

For the optimal geometry of Figure 2.18 it can be
seen that the fully developed assumption provides an
extremely good representation of the developing solution
temperature profile. The best correspondence is at the
base and the worst is near the top of the fin where they
differ by 3°. Note the very low value of base
temperature which is due to the high velocity fluid and
large pressure drop for this very thin microchannel.

For the optimal geometry of Figure 2.19 it can be
seen that the fully developed solution provides a good

representation of the developing solution temperature
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Figure 2.18
Exit fin temperature profile for the optimized 30 um
microchannel. [B=.667, W,/W_ =1 and a=18.3]

profile. The difference is approximately the same at
the top and bottom and is not more than about 5°C in
either case. Note the high temperature values for this
microchannel which are due to relatively slow moving
fluid and a small pressure drop.

The other pressure drops corresponding to Wc=45

and 60 um show similar behavior. In each case, the fully
developed solution provides a very good estimate of the
developing solution exit fin temperature profile.

It has been shown that for the optimal geometry
over a large range of pressure drops, the fully developed
solution provides a very good estimate of the exit fin

temperature distribution. A physical justification is
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Figure 2.19
Exit fin temperature profile for the optimized 90 um
microchannel. [B=1.4, W./W_=1 and a=12.9]

given for this. First of all, the optimization procedure

of chapter 1 gives quite consistently a Ww/Wc value of

about 1.
conductivity of the solid is much higher than that of the
fluid.
good conduction all the way to the top of the fin.

This is quite a high value because the

It provides enough cross-sectional fin area for
Thus,
the temperature profiles develop quite rapidly as they
are essentially developing across the microchannel.

Thus, for optimized geometry at ﬁearly any pressure drop,

the fully developed assumption is justified.
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2.9 CONCLUDING COMMENTS

The fully developed energy and momentum
assumptions have been analyzed for various microchannel
parametric cases. The method was to first use equations
from the literature to predict entry lengths then analyze
the assumption numerically. It was found that the
momentum entry length agreed very well with the equations
prediction. It was found to be about 0.01 cm for the 60

micrometer channel with o=10 and W /W.=.7 which is less

than 1% of the flow distance. The fully developed
momentum assumption was very good for all microchannel
cases.

The thermal entry length was found to vary
drastically with geometric parameters. The equations
predicted 1 cm for the thermal entry length for the above
microchannel which is similar to the numerical
prediction. The feasibility of using the fully developed
assumption also varies at different locations in the
channel cross section.

The significant finding of this chapter was that
for cases at or near the optimized geometry, the fully
developed assumption adequately simulated the actual

behavior.
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CHAPTER 3 SUMMARY AND FUTURE WORK

3.1 SUMMARY OF CHAPTER 1 Fully Developed Laminar
Microchannel Cooling

3.1.1 General Considerations.

The laminar microchannels presented by Tuckerman
have been computationally analyzed. A computer code was
developed to solve for the velocity and temperature
profiles within the microchannels using the fully

developed assumption. The fully developed assumptions
| permit large computational savings and reduce the three
dimensional microchannel problem to a two dimensional
planar problem. This problem is a cross-section of the
flow geometry as in Figure 1.1 of chapter 1.

In order to assure that a proper numerical
solution was obtained, analysis of the discretization was
performed. First of all, the numerical momentum solution
was compared to an analytical separation of variables
solution. Secondly, the analytical solution to the heat
transfer and fluid mechanics in an infinite parallel
plate channel was compared to it's numerical formulation
for gridding information across the channel. Finally, a
comparison of the solution run with very fine, fine and
coarse discretizations of the same problem was presented
which served to evaluate the discretization.

It may be stated that the desired effect of any of
the cooling devices is to provide the best heat removal
rate away from the microelectronics and provide for the
lowest operating temperature of the microelectronics.
Also, for mechanical consideration, the power required to
cool the heat sinks should be as low as possible. These
considerations were the impetus for the development of

the optimization procedure for the microchannel heat
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linearly with channel width. (Figure 1.14) The channel
width can be chosen based solely on the pressure drop and
without regard for the channel height since the pressure
drop is a very weak function of the channel height.
(Figure 1.13)

From the channel width obtained, an aspect ratio
can be chosen which yields a minimum peak silicon
temperature. (Figure 1.15) Equation 1.8 derived from
Landrum's integral analysis gives a good estimate of this
optimal aspect ratio. Then, numerical solutions may be
run and the results plotted to find the minimum
temperature and thereby obtain the optimal aspect ratio.
From the channel width and aspect ratio obtained, the
optimal value of fin to channel width ratio may be found.

(W,/We) - (Figure 1.16) Equation 1.9 gives a good

estimate of this optimal fin to channel width ratio.
Equations 1.8 and 1.9 must be solved iteratively to
obtain the optimal solution and the numerical solution
may be run to verify that indeed a true optimal design
has been found. A substrate thickness of 50 microns or
less can be chosen according to the guidelines of 1.11.7.
The optimization procedure completely specifies the
microchannel geometry.

The intent of this study was to identify the
general trends (the "roadmap") and provide the
computational tools by which the optimal geometry can be
found for a given pressure gradient and wall flux. 1In
actual application, it is a small matter to follow these
computafional prescriptions to determine the optimal
solution. Then the optimal laminar microchannel solution
can be compared to other possible strategies of cooling

the electronic components and the best possible choice
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may be made.

3.2 SUMMARY OF CHAPTER 2 Developing Microchannel
Cooling

An investigation of the fully developed momentum
and energy assumptions was presented for the laminar
microchannel heat sinks. Equations were used which
predict thermal and hydrodynamic entry lengths. Then the
solutions were investigated numerically. The TEMPEST
computer code developed at Battelle Pacific Northwest
Laboratories was used to solve the developing
microchannel cooling problem. Also, a comparison
between constant properties and variable properties
solutions was presented.

The fully developed constant properties momentum
assumption was found to be extremely good. The velocity
profiles became fully developed within about 10% of the
flow distance. For the variable properties comparisons,
the velocity profiles differ considerably from the
constant property profiles. Considering velocity in the
flow direction plotted with respect to height up the
channel, the constant property velocity profile is quite
flat whereas the variable property profile is high near
the bottom and low near the top as in Figure 2.4. The
temperature comparisons reveal that for variable property
solutions, the variable properties temperature profile is
lower in the solid and slightly higher in the fluid near
the top of the channel but the profiles don't differ by
much. (Figure 2.3) It is comforting to see that the
constant properties assumption slightly overestimates the
peak silicon temperature and therefore provides a built-
in margin of safety for this temperature, which is really

the variable of interest.
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For the optimal cases, the graph of wall
temperature in the flow direction obtains nearly the same
slope as the bulk temperature which suggests fully
developed behavior. This behavior is not constant along
the fin height and in most cases is the best near the top
of the fin and the worst at the bottom. (i.e. fully
developed behavior is observed in the smallest axial
distance at the top of the fin). The fully developed
assumption is the best in cases with large fin width to
channel width ratios and small channel aspect ratios
(large B). The fully developed assumption is the worst in
cases with small fin to channel width ratios and large
channel aspect ratio$ (small B). (Figure 2.8) It must
be understood that the fully developed thermal assumption
is only approximately correct and that one should
understand it's implications before using it.

It should be noted that the fully developed
assumption should not be used to obtain the proper heat
flux from the fin. This may be important in an analysis
where the microchannel performance is extended into the
subcooled boiling region. Also, if it is desired to
obtain very precise values of temperature within the
channels, the fully developed assumption may not be good.

The normal definition of nondimensional fluid
temperature doesn't seem to apply to this problem since
the fully developed problem is truly two dimensional.

For this reason, a special bulk temperature which is a
function of height up the fin is-defined. Using this new
definition, results are presented which suggest that the
fully developed assumption is good for cases near the
optimal geometry. The temperature behavior in the solid
at the exit conditions for the developing solution is

very similar to the results from the fully developed
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assumptions for cases near the optimal geometry. This is
an important fact because it implies that the fully
developed optimization procedure of chapter 1 may be used

to design actual laminar microchannels.

3.3 RECOMMENDATIONS FOR FUTURE WORK
The following are recommendations for .future work
to enhance the mechanical engineering aspect of

integrated circuit cooling technology.

1) Perform the optimization described in chapter 1 of
this thesis for a range of different pressure drops and

present the results in a nondimensionalized manner.

2) Solve the problem encountered when the heat flux is
raised high enough such that subcooled boiling results

within the microchannels.

3) Solve the problem encountered when different
materials are considered for the solid and the fluid.
Consider the thermal conductivities of the solid and
fluid to be the same order of magnitude as would occur

when considering the flow of a liquid metal.

4) Numerically solve the turbulent macrochannel
described in Tuckerman's thesis. Compare the results to

those for the laminar microchannels.

5) The limiting factor for the heat transfer in the
microchannels in this thesis appears to be the area of
heat transfer at the base of the fins. Consider tapered
fins which are wider at the base and thinner at the top.

Numerically solve this problem and compare the results to
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the rectangular microchannels.

6) Numerically solve the rectangular pin fin problem in
3 dimensions presented in Tuckerman's thesis. Compare

the results to those for the laminar microchannels.
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APPENDIX A
General and Specific Logic of the Computer Code
1 GENERAL LOGIC:

The general logic of the finite difference
computer code' for solving the system of elliptic partial
differential equations presented in section 1.5 will be
presented in this section. General logic implies the
method by which the microchannel problem was analyzed and
does not include the specific logic of the computer code
(source code or flow chart listing). This specific logic

will be covered in 2 of this appendix.

1.1 Modeling Information.

Figure Al presents the computational regions of
the microchannel problem along with the boundary
conditions. The computer code is designed to first
solve the fully developed momentum equation (eguation
1.1) in the fluid flow region using the method of point
successive over relaxation. Then,»it solves the energy
equation (equations 1.2, 1.3 and 1.4) in each of their
respective domains. Solving for the temperature involves
using the velocity solution in the convective term in
equation 1.4 which represents the fluid flow region.

The computer code treats the different materials
using material types which can have specified property
values. The materials properties for the water and
silicon were entered into a special material property
library subroutine. (Subroutine PROPLIB) The computer

code also deals with the Von Neumann (no flux) boundary

' The computer code was written in FORTRAN and was named

2DREYN. FOR.
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Figure Al
Microchannel Modeling showing the different
computational regions and the Von Neumann boundary
condition.

conditions with material types in the materials property
library. A special material called a Neumann material is
defined which has a very small conductivity'.

The computer code uses the heat generation term in
order to work with the different forms of the energy
equation presented in equations 1.2, 1.3 and 1.4. It
simply places an energy generation value for the region
of equation 1.2 which represents the energy generation
region. It uses zero for the heat generation of equation
1.3 which represents conduction and uses the appropriate

convective term as a heat generation term in eqguation 1.4

1 . . .
Neumann materials in this computer code have a value of

thermal conductivity of ten to the minus thirtieth power. This
number is sufficiently small and prevents "divide by zero" errors.
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which represents the fluid flow region. The heat
generation array is then built properly and the
temperature solution is found using the method of point

successive relaxation described in 2 of this appendix.

1.2 Bulk Energy Balance for Numerical Solution.

Since the entire thermal region is surrounded by
Von Neumann Boundary Conditions and no temperature at any
point is fixed (i.e. Dirichlet condition), the numerical
solution has the unique feature of being indeterminant.
That is, that only differences in temperature between two
points calculated will be meaningful. Therefore a bulk
energy balance must be applied across the heat sink to
determine the change in bulk temperature and use this as
the constraint to set the temperature field. That is, we
know what the bulk temperature at the exit should be by
the energy balance and we can also calculate what the
bulk fluid temperature of the numerical solution is'.

The difference between these two temperatures will be the
proper temperature to add to the entire numerical
solution so that it represents the actual temperature
field at the exit of the heat sink.

In order to illustrate the bulk energy balance,
see Figure 2 in the nomenclature section of this thesis.
The heat flux value is g" and is applied to an area of
(W, + W)L per microchannel. The average fluid velocity
is U, and is flowing in a channel of area (H) (3W_) . The
specific heat of the fluid is C, and fluid density
Thus the energy balance yields:

' The bulk temperature calculated by the numerical solution
will be incorrect and the value which is predicted really has no
significance.
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(1) %PHW?UOCP(Tka@Mt = Toutk,intet) = 5 (W, W) Lg"
Solving equation (1) for the bulk fluid

temperature at exit yields:

(2) Touikexit = Toutk,inter T L FWIGh
f HWcUon

This is the equation the computer code uses to
calculate the actual bulk temperature at the exit to the
heat sink. It uses the temperature field calculated
numerically to calculate the fields bulk fluid

temperature using equation (3) below.

H. W
[ J‘u(y,Z) T(y,z) dy dz

:

(3) T =

bulk,exit,numerical

H W<E, u(
JJ y,z) dy dz

Thus, the temperature which must be added to every
point (cell) in the numerically calculated temperature
field so it will represent the temperature field at the

exit of the heat sink is T aag defined as:

(4) Tadd = bulk,exit - Tbulk,exit,numerical'

The computer code calculates this T_,, and adds it
to the temperature at every cell then prints out the

temperature array.
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2 SPECIFIC LOGIC:

The specific logic of the computer code involves
first of all a discussion of the technique of Point
Successive Over Relaxation (PSOR) which is the algorithm
used to solve the momentum and energy eguations.
Secondly, a flowchart of the computer code is presented
and finally a source code listing of the computer code is
presented. The discussion of the technique of PSOR was
taken from the lecture notes of Dr. D. S. Trent for ME
573 in February of 1989. The flowchart was developed by
J. J. Lienau and the computer code was written in part by
Dr. D. S. Trent and in part by J. J. Lienau. Dr. Trent
provided the "shell" of the computer code to the class
which didn't contain any of the solution logic or any of
the logic in subroutine SSTATE which is the subroutine
which solves the microchannel problem. All of the other

logic was supplied by J. J. Lienau.
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Point Successive Over Relaxation: P.S.0.R.

All of the’ algorithm was taken from the ME 573 lecture notes by Donaid S. Trent
of Oregon State University. [February 1989.]

The finite volume connectors Ci,j define how the total flux of a scalar variable
Phi (¢) across each cell boundary is related to the corresponding gradient of phi that
exist for each cell in the computational grid system. In this diffusion process, the
connectors relate the flux between adjacent computational celis. Figure a1 beiow
illustrates these connections for a 2d rectangular gnd system.

— AL«—H

Figureal Five point connector stencil.

Now, to apply the energy (conservation) equation to the finite volume
computational cell i,j for steady state transport of heat, it is written in flux form as:

(JM,I °J¢1,i-1) + (Joz.i - J¢2.;-1) = ~af Bijj Sai.i 1)
Séij is the heat generation or source term, J¢ is the heat flux.
The symbol Vg i,j in Eq. 1) is the Jacobian or cell volume at cell i,j.

Now, defining the overall transport coefficient H and the flux (J) in terms of this yields:
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Jori = HopriA1i(0i1y— ¢;)
and (2)

Je2) = HyzjAz) (ijur = ¢ip .
where
where
2
H =
o {ﬁ_é___z_}
Foi Tour  hyy
and (3)

2
H.,.
62, {Axi L+ DX +_2_}
Toi Topt  hy;

where I'¢ is the diffusion coefficients.

The connections are then written as:

Cii = Heri Arj
~and (4)
Caj = HejAy) .

The conservation law can then be applied to 1) and like terms can be collected to
yield:

Coi b1+ Cr g @y + Co by + Cop1 941 = [Cqi+ Co g + Coj + Co il 0y

=~ 9i; S ®

Where S is the source term (heat generation or removal in the velocity region) and phi
is the scalar variable (temperature in this case) and J is the heat flux from one cell to
the other.



Now to implement the method of Point Successive over relaxation to %h];agabove
differencing scheme we introduce the concept of the over relaxation factor omega (w).
o = weit! + {1-wlef (6)
where n is the iteration level.
Now defining Dp as the sum of the connectors:

Dp=Cy+Cqj1+Coy+C2j1 (7)

and rewriting the above equation in terms of omega and the current iteration level for
every temperature yieids:

o @[ C1 41 + Crs 65 +C; 001 + Copr O + 4/ S¢;]
= Dp

8
+(1-w) cjr,?

Now, the actual solution progresses in terms of delta phi (incremental) quantities
defined by:

307 = 6 -6 -4 ©)

Now implementing the incremental logic into the above equation yields the following
difference equation for delta phi which is actually what we solve for.

-~ W[Cu 01+ Co g 80Ty + Cy 84 +Ca g 54)}':1 '*'a/g_ﬁ S¢r,]
&y = oo (10)

After we obtain the delta phi solution, we increment to the new value of temperature
using:

o =]+ 3" o
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This is how the code actually calculates the temperature and velocity fields using the
Point Successive Over Relaxation method. The nice thing about P.S.O.R. is that we
have a numerical algorithm which will find the optimum S.0O.R factor (w) which can
speed up computation dramatically. The algorithm will not be discussed here but if it is
desired, | will write it up on request.



Flowchart for Computer Code: 2DREYN.FOR

HEATRAN

Inciude files
PARTHES.INC
HEATTHES.INC

PRESET

INPUT

START

Open output files

Dimension all arrays
and define commons

Present ajl arrays and
global variabies

Obtain all problem geometry
and discretization information

Set cell material identification
numbers to solve mom. eqn.

Set the heat generation in the fluid region to an

orbitrary value (-1 x 10'7) . This will later be

dp.

usedto find 4, with an input Reynolds number.

®

121
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Obtain the position arrays for

output files which show ydz position

the

SETUP l
Obtain the thermal conductivity from the materials
library, calculate the heat transfer connectors and CONNECTR
obtain g= .1 array
pcp
Obtain controls for solution of the
SSTATE momentum equation and initial rel. info.

Call optomeg to obtain
t the optimum S.0.R.

factor omega ()

C User enters Omega)

lmx

supplemental flowchart A)

Call the velocity (P.S.C.R.) solver
to obtain the velocity fieid. (See

Compare
Au < AUstop




More
iterations?

Obtain new A U stop
and w

Store the velocity in
the proper varable (u)

Y

Calculate the Reynoids Number
of the calcuiated field

Y
Obtain the desired Reynolds
Number from the User

Yy

Scale the velocity field to
obtain the proper (input) Re

\

Caiculate the actual pressure
Momentum gradient using the velocity
Equation scale and the -1 x 10 7.
A dx

y

Caiculate the pressure drop
for the chip

Y

Settle material types to the proper
values to obi .in the temperature field

Y
Energy

Equation l

Y

®
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®

( Obtain the heat flux rate in w/sqcm)

Y

Divide the heat generation throughout
the bottom 3 rows

Y
Use the momentum equation solution to set the
source term in the fluid flow region. The total heat
generation shouid sum to 0.

|

Y

Obtain from the user the controis for the
temperature soiution.

Call
Optomey

/
Call optomey to

find optimum w

P




Call the PSOR solver to
obtain the temp field. {See the Supplemental
flowchart‘on PSOR}

L

N
Yy
See if the user wants ggtain new
to continue iterations y stop and W
Y
Calculate the bulk
temperature

|

Use a bulk energy balance on the
chip to determine actual Ty

Y

Scale the entire field by the difference
between (Tyy (numerical)) and (Toyik
(actual)) to obtain the actuai exit temperature

distr.

Q



user want
to make a

Compute the heat transfer
coefficient and Nu up fin.

\

Caiculate yo anaiytical
and from the T dist.

¥
Caiculate f and g and write them
out to graphing file.

Y
Caicuiate the ratio of heat
flow up fin to total heat fiow.

Y
Write out peak temperatures to
graphing fiie.

l

CVrite out temperature distr. up fin to)

graphing file along with all other info.

(srer)

-
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Supplemental Flowchart A. (P.S.0.R.)

START FDr velocity PSOR
Replace J=2 and [=2

‘ yd with J=NWBNd2 and

I=NWBNd2
J=2 J > NMX2-1
J=J+1
=2 1 y‘
1> NMX1 -1
=t +1

3 N

.

i

rSUMQ = SUMQ + |QERROR]|
A

AT,

max= Max (AT, ATpay)

A

QGEN = Q (lJ)

Y

DP = CX1 (1,J) + CX1 (1 -1,J) + CX2 (L,J) + CX2 (LJ-1)

I
y

QERROR = CX1 (LJ) * T (1 +1,T) + CX1 (11, ) T(Z, 7Y
+BX2 (L) * T (Ld+1) + CX2 (L,J-1) * T(LJ-1)

DP*T(l,J)
-Q GEN

Y
[AT = QERROR/DP |

Y
- AT{,J) = T(LJ) + AT




Chk

C**

CH*

Ck*

C**

Source Code listing: 2DREYN.FOR 128

ME 573 NUMERICAL METHODS FOR ENGINEERING ANALYSIS DST/3/6/89

PROGRAM HEATRAN

THIS IS THE MAIN DRIVER PROGRAM
INCLUDE PARTHES.INC

INCLUDE HEATTHES.INC

OPEN A LOGICAL UNIT FOR AN INPUT FILE (INP IS A PARAMETER)
OPEN (UNIT=INP, FILE='INPUT’,STATUS='0LD’, FORM='FORMATTED")

OPEN A LOGICAL UNIT FOR THE PRINTER (LOUT IS A PARAMETER)
OPEN (UNIT=LOUT, FILE='2DOUT’, STATUS='NEW’ , FORM='/FORMATTED’)

C** OPEN A LOGICAL UNIT FOR PLOTTING (NPOUT IS A PARAMETER)

OPEN (UNIT=NPOUT, FILE='2DPLOT’,STATUS='NEW’, FORM='FORMATTED')

C** OPEN A LOGICAL UNIT FOR GRAPHICS (NGRAPH IS A PARAMETER)

OPEN (UNIT=NGRAPH, FILE='2DGRAPH’ ,STATUS='NEW’, FORM='FORMATTED')

WRITE (*,1000)
WRITE (*,1001)
WRITE (LOUT,1000)
WRITE (LOUT,1001)

CALL PRESET
CALL INPUT

CALL SETUP

IF(CONTROL(1)) CALL SSTATE

IF (CONTROL(2)) CALL TRANSIENT
STOP

1000 FORMAT(///10X,

1’ME 573 NUMERICAL METHODS FOR ENGINEERING ANALYSIS 2/10/897)

1001 FORMAT(//18X,’TRANSPORT EQUATION SOLUTION ALGORITHM TESTER'//)

END

Chhkkdkkkkkdkhkhkdkkhkhkdkkkkkhkhhhhhhhkkdokkkkhkkdokkdkkkdohhhkhhdkhkhdkdkhkhdkdhhkhdkkdkrkdhrkx

CH*

SUBROUTINE PRESET

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
PRESET ARRAYS ( LETS DEFINE A COMPLETE SET FOR FLEXIBILTY)

DO 10 J = 1,MAX2

DO 10 I = 1,MAX1
T(I,J) = 0. ! CURRENT TEMPERATURE
ETA (I,J) = O. ! DELTA SOLUTION
BETA(I,J) = 0. ! TRANSIENT COEFFICIENT
DPHI(I,J) = 0. ! UTILITY ARRAY
CX1(I,J) = SMALL ! CONNECTORS - X1 DIRECTION
CX2(I,J) = SMALL ! CONNECTORS - X2 DIRECTION
HC1(I,J) = BIG ! FILM/CONTACT COEFF - X1 DIR
HC2(I,J) = BIG ! FILM/CONTACT COeFF - X2 DIR
DX1(I,J) = O. ! CELL WIDTH - X1 DIRECTION
DX2(I,J) = O. ! CELL WIDTH - X2 DIRECTION
AR1(I,J) = SMALL ! CELL INTERFACE AREA - X1 DIR
AR2(I,J) = SMALL ! CELL INTERFACE AREA - X2 DIR
CAY(I,J) = SMALL ! THERMAL CONDUCTIVITY

1

Q(I,J) = SMALL This is the Dp/Dx driving force



129
!SHOULD BE 1.827E7 PA/M

cv(I,J) = o. ! VOLUME
U(I,J) = 0. ! VELOCITY
MAT(I,J) = 1003 ! CELL MATERIAL ID NUMBER
10 CONTINUE
PREF = 1.01E+5 ! REFERENCE PRESS, PASCALS (GAS)
DT = 0. ! TIME STEP, SECONDS
TYME = 0. ! SIMULATION TIME, SECONDS
DO 20 I=1,10
CONTROL(I) = .FALSE. ! PROGRAM CONTROL: LOGICAL

20 CONTINUE

Cx* MATERIAL BOUNDARY CONDITION ID NUMBERS
Cx* LISTED BELOW ARE THE FICTICIOUS BOUNDARY MATERIAL ID NUMBERS:
1000 : cay

Cx* ID = =1 - MODEL MATERIAL

Cax ID = 1001 : CAY = SMALL - THE VON NEUMANN CONDITION

C** ID = 1002 : CAY = BIG = THE DIRICHLET CONDITION

Ch* ID = 1003 : CAY = SMALL - NULL CELL

Ch* INITIALIZE CONSTANTS
PI = 4.0*DATAN(1.0D0) ! CONVENIENT AND ACCURATE WAY TO SET PI
LEVEL = 1000000
ITMAX = 1000 ! MAXIMUM NUMBER OF TEMP ITERATIONS
ITMAXT = 100 ! MAXIMUM NUMBER OF ITERATIONS (TRANS)
TCRIT = 0.001 ! ITERATION CONVERGENCE CRITERION
OMEGA = 1.700 ! OVER-RELAXATION FACTOR
TINIT = 0. ! INITIAL TEMPERATURE
QMAX = .1 ! HEAT BALANCE ERROR
F = .5 ! IMPLICIT FACTOR
NWBND1 = 21 ! WATER BOUNDARY RIGHT LOCATION
NWBND2 = 17 ! WATER BOUNDARY LEFT LOCATION
RETURN
END

C***********************************************************************

SUBROUTINE INPUT

INCLUDE PARTHES.INC

INCLUDE HEATTHES.INC

CHARACTER * 1 ANS
CH* SET DATA

ANS - Iyl
WRITE (*,*) ‘PROGRAM CONTROLS’
WRITE(*,*) ’ STEADY STATE SOLUTION (YES OR NO )’
c READ (*,*) ANS
CONTROL(1) = .FALSE.
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) CONTROL(1) = .TRUE.
c ANS =
c WRITE (*,*) TRANSIENT SOLUTION (YES OR NO )’
c READ (*,*) ANS
c CONTROL(2) = .FALSE.
c IF(ANS.EQ.’Y’.OR.ANS.EQ.’y‘) CONTROL(2) = .TRUE.
NMAX1 = 42 ! NUMBER OF CELLS IN X1 DIRECTION
NMAX2 = 58 ! NUMBER OF CELLS IN X2 DIRECTION
17 = NMAX1*NMAX2 ! TOTAL ARRAY SIZE
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MONIT(1) = 12 ! MONITOR POINT 1:I INDEX
MONIT(2) = 10 ! MONITOR POINT 1:J INDEX
MONIT(3) = 21 ! MONITOR POINT 2:I INDEX
MONIT (4) = 22 ! MONITOR POINT 2:J INDEX
MONIT(5) = 11 ! MONITOR POINT 3:I INDEX
MONIT (6) = 5 ! MONITOR POINT 3:J INDEX
MONIT(7) = 5 ! MONITOR POINT 4:I INDEX
MONIT(8) = 12 ! MONITOR POINT 4:J INDEX

c TB1S = 0. ! SSTATE BOUNDARY CONDITION

c TB1F = 0. ! SSTATE BOUNDARY CONDITION

c TB2S = 0. ! SSTATE BOUNDARY CONDITION

c TB2F = 0. ! SSTATE BOUNDARY CONDITION

c ASPECT = 1. ! ASPECT RATIO

€ 10 WRITE(*,*)’ NEW APSECT RATIO (YES OR NO): CURRENT VALUE =’, ASPECT

c READ(*,*) ANS

c IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

c WRITE(*,*) ’ TYPE IN ASPECT RATIO’

c READ (*,*)  ASPECT

c ENDIF

C** ENTER THE NUMBER OF CELLS IN EACH COORDINATE DIRECTION

ANS = s s

WRITE(*,*) /THE NUMBER OF CELLS IN THE 1 (Y) DIR. IS:’,NMAX1
WRITE(*,*) ‘THE NUMBER OF CELLS IN THE 2 (Z) DIR. IS:’,NMAX2
WRITE(*,*) ‘DO YOU WANT TO CHANGE EITHER OF THESE? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) /ENTER NMAX1 (MAX IN Y DIRECTION) [LESS THAN 42]°
READ(*,*) NMAX1

WRITE(*,*) ‘ENTER NMAX2 (MAX IN % DIRECTION) [LESS THAN 72]°
READ(*,*) NMAX2 - ,

ENDIF

Ck* SET THE DX1 AND DX2 ARRAYS ( OTHOGONAL METRIC:SQRT OF Gij)

ADX1 = 1.25D-6
ANS =1
WRITE(*,*) /DXl =: ’,ADX1,’ METERS’

WRITE(*,*) ’'DC YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) READ(*,*) ADX1l

ADX2 = 1.D-5
ANS =
WRITE(*,*) ‘DX2 =: ’,ADX2,’ METERS’

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS
IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) READ(*,*) ADX2

DX3
ANS
WRITE(*,*) ’DX3 =: ‘,DX3,’ METERS’

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) READ(*,*) DX3

.014D0

14 4

DO 110 J = 1,NMAX2
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Ch*

120

Ck#*

130

131

DO 110 I = 1,NMAX1
DX1(I,J) = ADXl I|WIDTH OF COMPUTATIONAL CELL m
DX2(I,J) = ADX2 {HEIGHT OF COMPUTATIONAL CELL m
CONTINUE

SET THE AREA ARRAYS: ARL AND AR2
DO 120 J 1,NMAX2
DO 120 I 1,NMAX1

o n

AR1(I,J) DX2(I,J)*DX3
AR2(I,J) DX1(I,J)*DX3
CONTINUE

SET THE CELL VOLUMES ( THE ORTHOGONAL JACOBIAN)
DO 130 J = 1,NMAX2
DO 130 I = 1,NMAX1
cvV(I,dJ) DX1(I,J)*DX2(I,J)*DX3
CONTINUE

C** OBTAIN THE INFORMATION OF WHICH REGION IS SOLID AND WHICH IS FLUID
= ’

Ch®

Ck*
Ck#*

O000

CH*
Ck*

’

ANS
WRITE(*,*) ‘THE WATER BOUNDARY IN THE 1 DIRECTION IS AT:’, NWBND1l
WRITE(*,*) ’'THE WATER BOUNDARY IN THE 2 DIRECTION IS AT:’,NWBND2
WRITE (*, *)
WRITE(*,*) ’DO YOU WANT TO CHANGE THESE?'

READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.'y’) THEN

WRITE(*,*) ‘ENTER NWBND1 :’

READ(*,*) NWBND1l

WRITE (*,*) ‘ENTER NWBND2 :’

READ(*,*) NWBND2

ENDIF

SET THE CELL MATERIAL IDENTIFICATION NUMBERS ( FOR THE LIBRARY)

DO 140 J = 1,NMAX2
DO 140 I = 1,NMAX1
MAT(I,J) =2 | Silicon identification number

ALL BOUNDARY CONDITIONS ARE SET TO VON NEUMANN ON THE OUTSIDE OF THE
FOR THE HEAT TRANSFER COMPUTATION.

IF(I.EQ.1) MAT(I,J) = 1001
IF(I.EQ.NMAX1) MAT(I,J) = 1001
IF(J.EQ.1) MAT(I,J) = 1001
IF(J.EQ.NMAX2) MAT(I,J) = 1001

THE BOUNDARY CONDITIONS ARE SET TO THE FOLLOWING FOR THE FLUID MECHAN
COMPUTATION

IF(I.EQ.NWBND1) MAT(I,J) = 1002 ' DIRICHLET B.C.(NO SLIP) L.H.S
IF(I.EQ.NMAX1) MAT(I,J) = 1001 IVON NEUMANN B.C. (SYMMETRY) S
IF(J.EQ.NWBND2) MAT(I,J) = 1002 | DIRICHLET B.C. (NO SLIP) BOTT
IF(J.EQ.NMAX2) MAT(I,J) = 1002 !DIRICHLET B.C. (NO SLIP) TOP

IF(I.GT.NWBND1.AND.I.LT.NMAX1.AND.J.GT.NWBND2.AND.J.LT .NMAX2)
1 MAT(I,J) = 8 IWATER FOR MOMENTUM SOLN.

140 CONTINUE

C** LET’S SET THE HEAT GENERATION IN THE FLUID REGION FOR THE MOM. SOLN.
C** FOR THIS CODE WE USE A VALUE OF -1.D7 AS A CONSTANT AND THEN SCALE BY
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Cc** THIS TO OBTAIN A REYNOLDS NUMBER OF 2000

c WRITE(*,*) ’ENTER dP/dx MOMENTUM DRIVING FORCE (SHOULD BE -)'
C READ(*,*) QGEN
QGEN = -1.D7

DO 150 I=NWBND1+1,NMAX1-1
DO 150 J=NWBND2+1,NMAX2-1
Q(I,J) = QGEN*CV(I,J)
150 CONTINUE

1025 FORMAT (A1)
RETURN
END

C***********************************************************************
SUBROUTINE SETUP
INCLUDE PARTHES.INC

INCLUDE HEATTHES.INC
C*x* ARRAYS FOR OUTPUT FORMATS

NIX(1) =1
X1(1) = -.5%*DX1(1,1)
DO 110 I = 2,NMAX1
X1(I) = X1(I-1) +.5%(DX1(I-1,1) + DX1(I,1))
NIX(I) =1
110 CONTINUE
X2 (1) = -.5%*DX2(1,1)
DO 120 J = 2,NMAX2
X2 (J) = X2(J-1) +.5%(DX2(1,J-1) + DX2(1,J))

120 CONTINUE

CALL CONNECTOR(1) | CALCULATE THE THERMAL CONDUCTIVITY
CALL CONNECTOR(2) | CALCULATE THE CONNECTORS

CALL CONNECTOR(3) ! CALCULATE BETA

RETURN

END

C***********************************************************************

SUBROUTINE SSTATE

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

CHARACTER *1 ANS
CHARACTER *10 METHOD

C** DIMENSIONING FOR THE GRID FILE
PARAMETER (NWATZ = 50)
DIMENSION HWAT(NWATZ),FN(NWATZ),G(NWATZ),ANU(NWATZ)

YZERO 0.D0O
BBETA 0.DO
HTRAT= 0.DO

WRITE (NGRAPH, 4000) NWBNDI,NWBNDZ,NMAXl,NMAXZ,DXl(NWBNDl,NWBNDz),



Ck*

50
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1DX2 (NWBND1, NWBND2)
WRITE (*,4000) NWBND1,NWBND2,NMAX1,NMAX2,DX1(NWBND1,6NWBND2),
1DX2 (NWBND1,NWBND2)

s % Kk % d Kk Kk g Kk Kk Kk Kk gk ok Kk Kk ok kg %k %k ok ok %k k ok ok ok

LSKIPp =1 ! PRINT ONLY LSKIP ITER STEPS
ITERS =0 ! ITERATION COUNTER

CONTINUE

METHOD = ’'PSOR’

Cx* INTERACTIVE SESSION FOR VELOCITY SOLUTION*#**%%

105

ANS =

WRITE (*,*) ’ ARE YOU A "SMART" USER ? (CR = YEP !)’
READ(*,1025) ANS

IF (ANS.EQ.’N’.OR.ANS.EQ.’n’) GO TO 105

WRITE (*,*) ' '/

ANS - ’ ’

WRITE(*,*) ‘THE CURRENT SETTING OF LSKIP IS: ’,LSKIP

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS (Y/CR)’

READ (*,1025) ANS

IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE (*,*) ‘' TYPE LSKIP: CURRENT SETTING IS ‘, LSKIP,’ TIME STEPS’
READ (*,*) LSKIP

ENDIF

ANS = ! ’

WRITE (*,*) ’THE U-CRITERION IS: /,TCRIT

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ’/ TYPE U-CRITERION: CURRENT SETTING ‘, TCRIT
READ (*,*) TCRIT

ENDIF

ANS - ’ ’

WRITE (*,*) ’THE Q-CRITERION IS: ’/,QMAX

WRITE (*,*) ‘DO YOU WANT TO CHANGE THIS (Y/CR)’

READ (*,1025) ANS

IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE (*,*) ’ TYPE Q-CRITERION: CURRENT SETTING /, QMAX, ’ WATTS’
READ (*,*) QMAX

ENDIF

GO TO 108

CONTINUE

WRITE(*,*) ’ IF YOU WANT TO PRINT ONLY EVERY LSKIP LINES THEN,’

WRITE(*,*) ’ TYPE IN THE VALUE OF LSKIP (LIKE 5, 10, 22, ETC)’

WRITE (*,*) ‘' OTHERWISE, DEFAULT (HIT CARRAIGE RETURN) '

WRITE (*,*) * ¢

WRITE(*,*) ’ CURRENT SETTING IS PRINT EVERY /, LSKIP,’ TIME STEPS’
!

READ (*,*) LSKIP

WRITE(*,*) ’ TYPE IN DELTA-U CONVERGENCE CRITERIA: CURRENT ‘,TCRIT



READ (*,*) TCRIT 134

WRITE(*,*)’ TYPE Q-ERROR CRITERION: CURRENT SET = ',QMAX, ' WATTS'
READ (*,*) QMAX

108 CONTINUE

ANS = 7 7
WRITE(*,*) ‘DO YOU WANT TO CALL OPTOMEG (Y) OR ENTER OMEGA?’
READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
CALL OPTOMEG (LSKIP)
GO TO 115
ENDIF

OMEGA = 1.75DO0
ANS = 7 1
WRITE(*,*) ‘THE CURRENT SETTING FOR OMEGA IS: ‘,CMEGA
WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
WRITE(*,*) ' TYPE IN SOR FACTOR (OMEGA): CURRENT VALUE ‘', OMEGA
110 READ(*,*) OMEGA
IF(OMEGA.LE.O..OR.OMEGA.GT.2.)THEN
WRITE(*,*) / OMEGA = /,OMEGA,’ OUT OF RANGE - TRY AGAIN’

GOC TO 110
ENDIF
ENDIF
115 ANS = !/

WRITE(*,*) ‘THE INITIAL VELOCITY IS:’,TINIT

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.'y’) THEN

WRITE(*,*) ’/ TYPE IN INITIAL VELOCITY: CURRENT ’/ ,TINIT
READ (*,*) TINIT

ENDIF

ANS = 7 '

WRITE(*,*) / REVIEW ? - CR MEANS NO’ ! LOOK AT THE STUFF
ANS =

READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
WRITE(*,*)’ CONVERGENCE CRITERION, UCRIT
WRITE(*,*)’ CONVERGENCE CRITERION, QMAaX

! TCRIT,’ M/S’
/', QMAX,’ WATTS’

1

1
WRITE(*,*)’ INITIAL VELOCITY , UINIT = /,TINIT,’ M/S’
WRITE(*,*)’ SOR FACTOR, OMEGA = /, OMEGA
WRITE(*,*)’ LINE SKIPPING, LSKIP = /, LSKIP
ENDIF
ANS = /¢
WRITE(*,*) ' START OVER ? - CR MEANS NO’
ANS =

READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) GO TO 50

120 CONTINUE

Cxx* LETS WRITE OUT SOME STUFF HERE !
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WRITE (LOUT,1003) METHOD,NMAX1,NMAX2,DX1(1,1),DX2(1,1),0MEGA,ITMAX,
1 TCRIT,QMAX, TINIT
WRITE(*,1001) MONIT
WRITE (LOUT,1001) MONIT

130 CONTINUE
C**  SET INITIAL VELOCITIES IN COMPUTATIONAL REGION
DO 150 J = 2,NMAX2-1
DO 150 I = 2,NMAX1-1
IF(MAT(I,J).LE.1000) T(I,J) = TINIT
TOLD(I,J)= T(I,J)
150 CONTINUE

200 CONTINUE ! OR MORE ITERATIONS
IF (OMEGA.LT.SMALL) THEN
WRITE(*,*) ' OMEGA NOT SET CORRECTLY - - TRY AGAIN !’
WRITE(*,*) ’ THE VALUE IS: OMEGA = ’, OMEGA
GO TO 50
ENDIF
DO 600 M = 1,ITMAX
ITERS = ITERS +1

C** LET’S OBTAIN THE VELOCITY SOLUTION USING THE VPSOR SOLVER

CALL VPSOR(QERROR, SUMR, OMEGA , TUMAX)

IF(MOD(ITERS,LSKIP).EQ.0) THEN
C** PRINT INTERIM (MONITOR) RESULTS TO HARD COPY DEVICE AND SCREEN

WRITE(LOUT,1002) ITERS,TUMAX,T(MONIT(1),MONIT(2)),

1 T (MONIT(3),MONIT(3)),T(MONIT(5),MONIT(6)),T (MONIT(7),MONIT(8))
WRITE(*,1002) ITERS,TUMAX,T(MONIT(1),MONIT(2)),

1 T(MONIT(3),MONIT(3)),T(MONIT(5),MONIT(6)),T(MONIT(7),MONIT(8))
ENDIF

C**  CHECK CHANGE IN TEMP FOR THIS ITERATION
IF (TUMAX.LE.TCRIT) THEN
CALL QELAST {QERROR)
GO TO 650 ! IF TEMP CHANGE CRITERA AND QERROR OK, BAIL OUT
ENDIF

600 CONTINUE

650 CONTINUE
ANS =
WRITE(*,*) ’ TYPE CR FOR HT TX.- Y TO CONTINUE WITH ITERATIONS’
READ(*,1025) ANS

IF(ANS.EQ.’'Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ’NEW UCRIT 2’ ! CHANGE DELTA-T CONVERGENCE
READ(*,*) TCRIT

WRITE(*,*) 'NEW OMEGA 2’ ! CHANGE OMEGA

READ(*,*) OMEGA

GO TO 200 ! ITMAX MORE ITERATIONS

ENDIF
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C** STORE THE VELOCITY FIELD IN THE PROPER U VARIABLE

DO 700 I=NWBND1+1,NMAX1
DO 700 J=NWBND2+1,NMAX2-1
U(I,J3) = T(I,J)
T(I,J) = 0.DO
700 CONTINUE

[}

Cx* FIND MAX AND MIN ALONG WITH I,J LOCATIONS

of CALL ASMAX(NMAX1,NMAX2,6MAT,U,IMAX,JMAX,TMAX)

c CALL ASMIN (NMAX1,NMAX2,MAT,U, IMIN,JMIN, TMIN)

c WRITE(*,1004) ITERS,OMEGA, TUMAX, QERROR, 0.DO, IMAX,JMAX, 0.D0,
c 1 IMIN,JMIN

of WRITE (LOUT, 1004) ITERS,OMEGA,TUMAX,QERROR, 0.D0,IMAX,JMAX,0.DO,
of 1 IMIN,JMIN

Ch* WRITE OUT MATERIALS MAP
c CALL IWRITER ( MAT, '"MATERIALS MAP FOR MOMENTUM SOLN ")
CH** COULD WRITE OUT ANY OTHER INTEGER ARRAY WITH "IWRITER"

ANS = s
WRITE(*,*) / TYPE Q TO QUIT - CR TO CONTINUE WITH HEAT TRANS SOLN’
READ(*,1025) ANS

IF(ANS.EQ.’Q’.OR.ANS.EQ.’g’) GO TO 10000

CALL AVGVEL(UAVG) !CALL THE avg vel. sub.

C** CALCULATE THE REYNOLDS NUMBER BASED UPON THE HYDRAULIC DIAMETER
C** WE FIRST NEED TO FIND THE CHANNEL DIMENSIONS

Cx* FIND THE HEIGHT OF THE FLOW CHANNEL
HEIGHT = 0.DO
I=NMAX1
DO 800 J=NWBND2+1,NMAX2-~-1
HEIGHT = HEIGHT + DX2(I,J)
800 CONTINUE

C** FIND THE WIDTH OF THE FLOW CHANNEL
WIDTH = 0.DO

J=NMAX2
DO 900 I=NWBND1+1,NMAX1-~1
WIDTH = WIDTH + DX1(I,J)

900 CONTINUE

C** MULTIPLY WIDTH BY TWO TO ACCOUNT FOR SYMMETRY
WIDTH = WIDTH*2.DO

WRITE(*,901) HEIGHT
WRITE (LOUT,901) HEIGHT
WRITE (NGRAPH, 901) HEIGHT

901 FORMAT(1X,‘THE FLOW CHANNEL HEIGHT IS: ’/,6P,F8.3,’ MICROMETERS')
WRITE(*,902) WIDTH
WRITE (LOUT,902) WIDTH
WRITE (NGRAPH,902) WIDTH

902 FORMAT(1X,’THE FLOW CHANNEL WIDTH (complete) IS:’,6P,F8.3,

A’ MICROMETERS’)



C** CALCULATE THE HYDRAULIC DIAMETER 137
DHYDR = 4.DO* (HEIGHT*WIDTH)/(2.D0* (HEIGHT + WIDTH))

WRITE(*,203) DHYDR
WRITE(LOUT,903) DHYDR
WRITE (NGRAPH,903) DHYDR
903 FORMAT (1X, 'THE HYDRAULIC DIAMETER IS: ’,6P,F8.3,’ MICROMETERS')

C** HARDWIRE THE KINEMAT VISCOSITY FOR THIS CALCULATION (VALUE AT 60'C)
AKNVIS = .55D-6
C** CALCULATE THE DESIRED VELOCITY USING A REYNOLDS NUMBER INPUT

ANS ! ’

REYN 500.D0

WRITE(*,*) ’THE REYNOLDS NUMBER IS: ’,REYN
WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’ .OR.ANS.EQ.’y’) THEN

WRITE(*,*) ‘ENTER THE REYNOLDS NUMBER: '
READ(*,*) REYN

ENDIF

VELDES = (REYN*AKNVIS)/DHYDR
C** CALCULATE THE RATIO TO MULTIPLY THE AVERAGE VELOCITY BY
VELRAT = VELDES/UAVG

C** MULTIPLY THE ENTIRE VELOCITY FIELD AND PRESSURE GRAD. BY THIS RATIO
DO 950 I=1,NMAX1
DO 950 J=1,NMAX2
U(I,J) = U(I,J)*VELRAT
950 CONTINUE

Cxx WRITE OUT VELOCITY ARRAY
CALL AWRITER (1,ITERS,U,’STEADY STATE VELOCITY )
Ck* COULD WRITE OUT ANY OTHER REAL ARRAY WITH "AWRITER"

C** MULTIPLY THE PRESSURE GRADIENT BY THIS RATIO TO GET IT
PGRAD = -1.D7*VELRAT
WRITE(*,*) / THE PRESSURE GRADIENT IS: ’,PGRAD,’ PA/M’
WRITE (LOUT, *) ’ THE PRESSURE GRADIENT IS: ‘,PGRAD,’ PA/M’
WRITE (NGRAPH, *) ' THE PRESSURE GRADIENT IS: ‘,PGRAD,’ PA/M’
C** CALCULATE THE PRESSURE DROP ACROSS THE CHIP IN PSI
PDROP = DX3*PGRAD*.000145038D0
WRITE (*,1030) DX3, PDROP
WRITE (LOUT, 1030) DX3,PDROP
WRITE (NGRAPH,1030) DX3,PDROP

1030 FORMAT (1X,’PRESSURE DROP ACROSS A ‘,2P,F6.3,'CM CHIP IS:’
A,0P,F12.3,'PSI’)



WRITE(*,%) ' ' 132
WRITE (LOUT,*) ’ * S

WRITE(*,1031) REYN
WRITE (LOUT,1031) REYN
WRITE (NGRAPH,1031) REYN
1031 FORMAT (1X,’THE REYNOLDS NUMBER IS: /,F10.2,’ [UNITLESS]}’)

CALL AVGVEL(UAVG) ICALL THE avg vel. sub.
WRITE (*,1032) UAVG
WRITE (LOUT,1032) UAVG
WRITE (NGRAPH,1032) UAVG
1032 FORMAT (1X, 'THE AVERAGE VELOCITY IS: ‘,F8.4,’ [METERS/SEC]’)

C**  WRITE OUT TEMPERATURE (velocity) ARRAY ( FOR PLOTTING )
Cx*
CALL PREPLOT
ANS = 7’
WRITE(*,*) ‘DUMP TEMPERATURE (velocity) ARRAY INTO PLOT FILE 2’
WRITE(*,*) ’ ( Y=YES, OTHER = NO ) '
READ(*,1025) ANS
IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
WRITE(*,*) ’ENTER PLOT FILE SPECIFICATIONS ?’
READ ’(A)’,LABEL
CALL APLOT(U,LABEL,’STEADY STATE velocity ")
ENDIF :

C** NOW FOR THE STEADY STATE HEAT TRANSFER SOLUTION ****kkkkkkdkkkkkkkdns
Chkkkkkkkdkkkhkkhkkhkrkhkkdkhkhkhrrkkkhkhhkhkrhddhdkkdkrhrohkkdkhdhdrrhrdrs

C** WE MUST SET THE CONNECTORS PROPERLY TO HANDLE HEAT TRANSFER NOW
C** ALL BOUNDARIES ARE SET TO THE VON NEUMANN BOUNDARY CONDITION

DO 2100 I=1,NMAX1
DO 2100 J=1,NMAX2

C** FOR SILICON

MAT(I,J) =2

C** FOR THE BOUNDARIES
IF(I.EQ.1) MAT(I,J) = 1001
IF(I.EQ.NMAX1) MAT(I,J) = 1001
IF(J.EQ.1) MAT(I,J) = 1001
IF (J.EQ.NMAX2) MAT(I,J) = 1001

C** SET THE WATER MATERIAL NUMBER OF 1 FOR THE FLUID REGION
IF(I.GT.NWBND1.AND.I.LT.NMAX1.AND.J.GT.NWBND2.AND.J.LT.NMAX2)
1 MAT(I,J) = 1

2100 CONTINUE
C** NOW TO OBTAIN THE PROPER CONNECTORS *****%x
CALL CONNECTOR(1)

CALL CONNECTOR(2)
CALL CONNECTOR(3)
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C** NOW WE MUST BUILD THE HEAT GENERATION ARRAY FOR THE SOLUTION
C** WE MUST OBTAIN FROM THE USER THE HEAT GENERATION RATE

QWALL = 1000
WRITE (*,*) ’THE ENERGY GENERATION WALL FLUX IS [W/CM~2]’,QWALL
WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS (Y/N)’
READ(*,1025) ANS
IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
WRITE(*,*) ’‘ENTER THE HEAT GENERATION RATE FOR THE ENERGY EQN.’
WRITE(*,*) ’ENTER THIS IN W/CM~2’
READ(*,*) QWALL
ENDIF

WRITE(LOUT,2101) QWALL
WRITE (NGRAPH,2101) QWALL
2101 FORMAT(1X,’THE ENERGY GENERATION WALL FLUX IS: ’,F10.3,
A’ [W/CM~217)

C** CONVERT FROM W/CM~2 TO W/M~2
QWALL = QWALL#*10000.DO

C** NOW TO FIND THE FLUX AT THE WALL USING THE FIRST 3 ROWS AS HEAT GEN.
SUMVOL = 0.DO
DO 2025 I=2,NMAX1-1
DO 2025 J=2,4
SUMVOL = SUMVOL+CV(I,J)
2025 CONTINUE

c** TFIND THE ARFA OF HEAT TRANSFER FOR Q AT THE WALL
SUMAR = 0.DO
=4
DO 2030 I=2,NMAX1l-1
SUMAR = SUMAR + AR2(I,J)
2030 CONTINUE

Cc** FIND THE TOTAL HEAT GENERATION WITHIN THE SOLID REGION
QUTOT = QWALL*SUMAR

C** FIND THE VOLUMETRIC HEAT GENERATION WITHIN THE SOLID REGION
QGEN = QUTOT/SUMVOL

c** FIND THE FACIAL AREA OF FLOW
SUMFAR = 0.DO
DO 2040 I=NWBND1+1,NMAX1-1
DO 2040 J=NWBND2+1,NMAX2-1
SUMFAR = SUMFAR + DX1(I,J)*DX2(I,J)
2040  CONTINUE

C** CLEAR THE HEAT GENERATION ARRAY
DO 2045 I=1,NMAX1
DO 2045 J=1,NMAX2
Q(I,J) = 0.DO
2045 CONTINUE

C** DX3 IS THE DELTA X IN THE 3 DIRECTION (same as in subroutine input)
C** TFVOL IS THE TOTAL VOLUME OF THE FLOW CELLS
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C** this simply divides the heat volumetrically throughout the flow region
C** it also uses the solution for the momentum equation to divide the heat
C** flow up within the flow field.

DO 2000 I=2,NMAX1l~1
DO 2000 J=2,NMAX2~1

C** FOR THE ENERGY GENERATION REGION
IF(I.GT.1.AND.I.LT.NMAX1.AND.J.GT.1.AND.J.LT.5)
1 Q(I,J) = -QGEN*CV(I,J)

C** FOR THE FLUID FLOW REGION
IF(I.GT.NWBND1.AND.I.LT.NMAX1.AND.J.GT.NWBND2.AND.J.LT.NMAX2)
1 Q(I,J3) = (U(I,J)/UAVG)=*((DX1(I,J)*DX2(I,J))/SUMFAR)*QUTOT

2000 CONTINUE

C** SEE IF THE HEAT GENERATION IS ZERO.

SUMHT = 0.DO
DO 2047 I=2,NMAX1-1
DO 2047 J=2,NMAX2-1
SUMHT = SUMHT + Q(I,J)
2047 CONTINUE

WRITE (*,2048) SUMHT
WRITE (LOUT,2048) SUMHT
WRITE (NGRAPH,2048) SUMHT
2048 FORMAT (1X,‘THE SUM OF THE HEAT GENERATION IS: ‘,E12.3,’ [WATTS]')

C** SEE IF THE USER WANTS TO DUMP THE UTILITY ARRAYS

ANS = ' !
WRITE(*,*) ‘DO YOU WANT TO DUMP THE HEAT GEN. ARRAY? (Y/CR)’
READ(*,1025) ANS
IF (ANS.EQ. 'Y’ .OR.ANS.EQ. 'y’)

1 CALL AWRITER(1,1,Q, ’HEAT GENERATION ARRAY [WATTS] ’)

ANS = / ¢
WRITE(*,*) ‘DO YOU WANT TO DUMP THE CONNECTOR ARRAYS? (Y/CR)’
READ(*,1025) ANS

IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

CALL AWRITER(1,1,CX1,’Y DIRECTION CONNECTOR ARRAY '
CALL AWRITER(1,1,CX2,’Z DIRECTION CONNECTOR ARRAY ¢
ENDIF

—

C** NOW TC BEGIN THE SOLUTION FOR THE TEMPERATURE PROFILE

1 ! PRINT ONLY LSKIP ITER STEPS
¢] { ITERATION COQUNTER

LSKIP
ITERS
2050 CONTINUE

METHOD . = ’'PSOR’
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C** INTERACTIVE SESSION FOR TEMPERATURE SOLUTION#*X%x

ANS = ' ¢
WRITE(*,*) ' ARE YOU A "SMART" USER ? (CR = VEP !)’
READ(*,1025) ANS

IF(ANS.EQ.'N’.OR.ANS.EQ.’n’) GO TO 2105

ANS = / !
WRITE (*,*) * /

LSKIP =5

WRITE (*,*) ’‘LSKIP = :’/,LSKIP

WRITE(*,*) ’DO YOU WANT TO CHANGE THIS? (Y/CR)’

READ(*,1025) ANS

IF(ANS.EQ.'Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ’ TYPE LSKIP: CURRENT SETTING IS ‘, LSKIP,’ TIME STEPS’
READ (*,*) LSKIP

ENDIF

ANS =/ !
TCRIT = .01D0

WRITE(*,*) 'THE T-CRITERION IS: ’/,TCRIT

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ' TYPE T-CRITERION: CURRENT SETTING ’, TCRIT
READ (*,*) TCRIT

ENDIF

ANS = ’ ’

WRITE(*,*) ’THE Q-CRITERION IS: ’,QMAX

WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’

READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ’ TYPE Q-CRITERION: CURRENT SETTING ’, QMAX, / WATTS'
READ (*,*) QMAX

ENDIF

GO TO 2108

2105 CONTINUE

v

WRITE(*,*) ’/ IF YOU WANT TO PRINT ONLY EVERY LSKIP LINES THEN, '’

WRITE(*,*) ’ TYPE IN THE VALUE OF LSKIP (LIKE 5, 10, 22, ETC)’

WRITE(*,*) ’/ OTHERWISE, DEFAULT (HIT CARRAIGE RETURN) '

WRITE(*,*) ’ /

WRITE(*,*) ’ CURRENT SETTING IS PRINT EVERY ’, LSKIP,’ TIME STEPS’
7

READ (*,*) LSKIP

WRITE(*,*) ' TYPE IN DELTA~T CONVERGENCE CRITERIA: CURRENT ’,TCRIT
READ (#*,*) TCRIT

WRITE(*,*)’ TYPE Q-ERROR CRITERION: CURRENT SET = /,QMAX, ' WATTS’
READ (*,*) QMAX

2108 CONTINUE

ANS =
WRITE(*,*) ‘DO YOU WANT TO CALL OPTOMEG (Y) OR ENTER OMEGA?’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

CALL OPTOMEG (LSKIP)
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2115

GO TO 2115
ENDIF 142

ANS = 1 1
WRITE(*,*) 'OMEGA IS: ’,OMEGA
WRITE(*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS
IF(ANS.EQ.’Y’ .OR.ANS.EQ.’y’) THEN
WRITE(*,*) ' TYPE IN SOR FACTOR (OMEGA): CURRENT VALUE ‘, OMEGA
READ(*,*) OMEGA

IF(OMEGA.LE.O..OR.OMEGA.GT.2.)THEN

WRITE(*,*) ’ OMEGA = ’,OMEGA,’ OUT OF RANGE - TRY AGAIN'

GO TO 2110
ENDIF
ENDIF
ANS =t .
TINIT = 25.0

WRITE(*,*) ‘THE INITIAL TEMPERATURE IS: /,TINIT
WRITE (*,*) ‘DO YOU WANT TO CHANGE THIS? (Y/CR)’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE(*,*) ’ TYPE IN INITIAL TEMPERATURE: CURRENT ’ ,TINIT
READ (*,*) TINIT

ENDIF

WRITE(*,*) ’ REVIEW ? - CR MEANS NO’ ! LOOK AT THE STUFF
ANS 1 ’

READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.'y’) THEN
WRITE(*,*)’ CONVERGENCE CRITERION, TCRIT
WRITE (*,*)’ CONVERGENCE CRITERION, OQMAX

, ,TCRIT, ' DEGREES C’
WRITE (*,*)’ INITIAL TEMPERATURE,  TINIT

, OMAX,’ WATTS’
,TINIT,’ DEGREES C’

L ST

WRITE(*,*)’ SOR FACTOR, OMEGA , OMEGA
WRITE(*,*)’ LINE SKIPPING, LSKIP , LSKIP
ENDIF

WRITE(*,*) ’ START OVER ? - NO MEANS NO‘
ANS =1t

READ(*,1025) ANS

IF (ANS.EQ.’Y’.OR.ANS.EQ.’y’) GO TO 2050

2120 CONTINUE

Cx*

2130
Cx*

1

LE

TS WRITE OUT SOME STUFF HERE !

WRITE (LOUT,3003) METHOD,NMAX1,NMAX2,DX1(1,1),DX2(1,1),0MEGA, ITMAX,

TCRIT,QMAX, TINIT

WRITE(*,3001) MONIT
WRITE (LOUT,3001) MONIT

cCo
SE
DO
DO

NTINUE
T INITIAL TEMPERATURES IN COMPUTATIONAL REGION
2150 J = 2,NMAX2-1
2150 I = 2,NMAX1-1
IF(MAT(I,J).LE.1000) T(I,J) = TINIT
TOLD(I,J)= T(I,J)

2150 CONTINUE

2200 CONTINUE ! OR MORE ITERATIONS
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WRITE (*,*) ’ OMEGA NOT SET CORRECTLY - - TRY AGAIN !’
WRITE(*,*) ' THE VALUE IS: OMEGA = ’, OMEGA

GO TO 2050

ENDIF

DO 2600 M = 1,ITMAX
ITERS = ITERS +1

C** LET’S OBTAIN THE TEMPERATURE SOLUTION USING THE PSOR SOLVER

CALL PSOR(QERROR, SUMR,OMEGA, TUMAX)

IF (MOD(ITERS,LSKIP).EQ.0) THEN
C* PRINT INTERIM (MONITOR) RESULTS TO HARD COPY DEVICE AND SCREEN

WRITE(LOUT,3002) ITERS,TUMAX,T(MONIT(1),MONIT(2)),

1 T (MONIT(3) ,MONIT(3)),T(MONIT(5),MONIT(6)),T(MONIT(7),MONIT(8))
WRITE (*,3002) ITERS,TUMAX,T(MONIT(1),MONIT(2)),

1 T(MONIT(3),MONIT(3)),T(MONIT(5),MONIT(6)),T(MONIT(7),MONIT(8))
ENDIF

Cx* CHECK CHANGE IN TEMP FOR THIS ITERATION
IF(TUMAX.LE.TCRIT) THEN
CALL QELAST (QERROR)
GO TO 2650 ! IF TEMP CHANGE CRITERA AND QERROR OK, BAIL OUT

ENDIF
2600 CONTINUE
2650 CONTINUE
ANS =
WRITE(*,*) ' TYPE CR TO QUIT~ Y TO CONTINUE WITH ITERATIONS’
READ(*,1025) ANS

IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN

WRITE (*,*) ’NEW TCRIT ?’ ! CHANGE DELTA-T CONVERGENCE
READ(*,*) TCRIT

WRITE(*,*) ’NEW OMEGA 7’/ ! CHANGE OMEGA

READ(*,*) OMEGA

GO TO 2200 { ITMAX MORE ITERATIONS
ENDIF

C** SET THE TEMPERATURES ON THE BOUNDARIES FOR PLOTTING PURPOSES
DO 2700 I=1,NMAX1
DO 2700 J=1,NMAX2

IF(I.EQ.1) T(I,J) = T(I+1,J)
IF(I.EQ.NMAX1) T(I,J) = T(I-1,J)
IF(J.EQ.1) T(I,J) = T(I,J+1)

= T(I,J-1)

IF(J.E%.NMAXZ) T™I,J)
2700 CONTINUE

Cx* FIND MAX AND MIN ALONG WITH I,J LOCATIONS
c CALL ASMAX(NMAX1,NMAX2,MAT,T,IMAX,JMAX, TMAX)
c CALL ASMIN(NMAX1,NMAX2,MAT,T,IMIN,JMIN, TMIN)



144

c WRITE (*,3004) ITERS, OMEGA, TUMAX , QERROR, 0.D0, IMAX, JMAX, 0.D0,
c 1 IMIN,JMIN

c WRITE (LOUT,3004) ITERS,OMEGA,TUMAX,QERROR,0.D0,IMAX,JMAX,0.DO0,
c 1 IMIN, JMIN .

Cx* WRITE OUT MATERIALS MAP
CALL IWRITER ¢ MAT, 'MATERIALS MAP FOR TEMPERATURE SOLN ")
Cx* COULD WRITE OUT ANY OTHER INTEGER ARRAY WITH "IWRITER"

Cx* LET’S FIND THE AVERAGE (mean) BULK TEMPERATURE IN THE FLUID REGION

SuM = 0.0
DO 2750 J=NWBND2+1,NMAX2-1
DO 2750 I=NWBND1+1,NMAX1-1
SUM = SUM + (T(I,J))*(U(I,J)/UAVG)
2750 CONTINUE
TWAVG = SUM/((NMAX1-1-NWBND1)* (NMAX2-1-NWBND2))
c WRITE (NGRAPH, *) ’'THE BULK FLUID TEMPERATURE IS: ’,TWAVG

Cx* NOW USE THE BULK ENERGY BALANCE TO FIND THE BULK FLUID TEMP. CHANGE
CP = 4181 {J/KG*K
AMDOT = 1000*SUMFAR*UAVG

TBDIFF = QUTOT/(AMDOT*CP)

Cx* SCALE THE TEMPERATURE TO OBTAIN THE CORRECT DISTRIBUTION
C** THIS USES THE BULK ENERGY BALANCE AND ADDS THEE TEMPERATURE
C** DIFFERENCE TO IT.

TDIFF = TBDIFF + TINIT - TWAVG
DO 2800 I=1,NMAX1
DO 2800 J=1,NMAX2
T(I,J) = T(I,J) + TDIFF
2800 CONTINUE

CH** LET’S FIND THE AVERAGE BULK TEMPERATURE IN THE FLUID REGION

SUM = 0.0
DO 2805 J=NWBND2+1,NMAX2-1
DO 2805 I=NWBND1+1,NMAX1-1
SUM = SUM + (T(I,J))*(U(I,J)/UAVG)
2805 CONTINUE
TWAVG = SUM/ ( (NMAX1-1-NWBND1)* (NMAX2-1-NWBND2))
WRITE (*,2806) TWAVG
WRITE (NGRAPH, 2806) TWAVG
WRITE (LOUT,2806) TWAVG
2806 FORMAT(1X,’THE BULK FLUID TEMPERATURE IS: ’,F10.3,’ [DEGREES C]’)

Ch* WRITE OUT TEMPERATURE ARRAY
CALL AWRITER (1,ITERS,T,’ 'STEADY STATE TEMPERATURE ")
Cx* COULD WRITE OUT ANY OTHER REAL ARRAY WITH "AWRITER"

C**  WRITE OUT TEMPERATURE ARRAY ( FOR PLOTTING )
c**
ANS - 7 7
WRITE (*,*) 'DUMP TEMPERATURE ARRAY INTO PLOT FILE ?'
WRITE(*,*) / ( Y=YES, OTHER = NO ) ’
READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ. ’y’) THEN



WRITE(*,*) 'ENTER PLOT FILE SPECIFICATIONS ?'

READ ' (A)’,LABEL

CALL APLOT(T,LABEL, ’'STEADY STATE TEMPERATURE ")
ENDIF

C** WRITE OUT IMPORTANT INFORMATION TO THE GRAPHING FILE
C** THIS FILE CAN BE USED IN A QUATTRO SPREADSHEET.

ANS = 7 ¢
WRITE(*,*) ' WANT TO DUMP INFO TO A GRAPH FILE? (NO/CR)’
READ(*,1025) ANS

IF(ANS.NE.’'N’.OR.ANS.NE. ‘n’) THEN

C** FOR THE HEAT TRANSFER COEFFICIENT

COND = .66D0
INCR = 1
I=NWBEND1l+1

DO 2810 J=NWBND2+1,NMAX2-1
DER = (T(I+1,J)~-T(I,J))/((DX1(I,J)+DX1(I+1,J))/2.D0)
HWAT (INCR) = -COND*DER/ (T (I-1,J)~-TWAVG)
ZEE = 0.DO
DO 2807 JC=NWBND2+1,J
ZEE = ZEE + DX2(I,J)
2807 CONTINUE
ZEE = ZEE - DX2(I,J)/2.DO
c WRITE (NGRAPH, 4010) INCR,ZEE,HWAT (INCR)
c WRITE(*,4010) INCR,ZEE,HWAT (INCR)
INCR = INCR + 1
2810 CONTINUE

C** CALCULATE THE ANALYTICAL (constant) HEAT TRANSFER COEFFICIENT
HANALY = (140.D0/17.DO0)* (COND/DHYDR)
WRITE(*,2811) HANALY
WRITE (LOUT,2811) HANALY
WRITE (NGRAPH,2811) HANALY
2811 FORMAT(1X, 'TUCKERMANS (constant) H IS: /,F12.2,’ [W/M*2K]’)
C** COMPUTE YZERO (THE NONDIMENSIONAL HOT SPOT TEMPERATURE) AND BETA

WRITE (NGRAPH, *) * !

CONDSI = 148
CONRAT = CONDSI/COND
WRITE(*,*) ‘THE CONDUCTIVITY RATIO IS: ’,CONRAT

WRITE(*,*) 'DO YOU WANT TO CHANGE THIS?
READ(*,1025) ANS
IF(ANS.EQ.’Y’.OR.ANS.EQ.’y’) THEN
READ(*,*) CONRAT

ENDIF

COND = CONDSI/CONRAT

WRITE(*,2815) CONRAT
WRITE (LOUT, 2815) CONRAT
WRITE (NGRAPH, 2815) CONRAT
2815 FORMAT (1X,’THE CONDUCTIVITY RATIO IS: ’,F10.3)
WRITE(*,2816) COND
WRITE (LOUT,2816) COND



2816

2820

WRITE (NGRAPH, 2816) COND 146

FORMAT (1X, /THE CONDUCTIVITY OF WATER Is: ’,F7.4,’ [W/MK]")}
TYDIFF = T(NWBND1,NWBND2) - TWAVG
J=2

WWALL = 0.DO

DO 2820 I=2,NWBND1-1
WWALL = WWALL + DX1(I,J)
CONTINUE

WWALL = 2.DO*WWALL

WRATIO = WIDTH/WWALL

YZERO = TYDIFF/((QWALL/CONDSI)*HEIGHT*(l.DO+WRATIO))
BBETA = (l.DO/WRATIO)*CONRAT*((WIDTH/HEIGHT)**2)

C** ANALYTICAL YZERO

2821

2822

2823

YZERAN = (1.D0/3.D0)*(1.D0+(.3DO*BBETA))

WRITE(*,2821) YZERO

WRITE (LOUT,2821) YZERO

WRITE (NGRAPH, 2821) YZERO .
FORMAT (1X, /THE VALUE OF Yo IS: r,F10.5,' {UNITLESS]')

WRITE (*,2822) YZERAN

WRITE (LOUT,2822) YZERAN

WRITE (NGRAPH,2822) YZERAN

FORMAT (1X, ‘THE INTEGRAL ANALYSIS Yo Is: ’,Fl10.5,’ [UNITLESS]')

WRITE (*,2823) BBETA

WRITE (LOUT,2823) BBETA

WRITE (NGRAPH,2823) BBETA

FORMAT (1X, THE VALUE OF BETA IS: ', F12.4,’ [UNITLESS]')

WRITE(*, *)
WRITE (NGRAPE, *)

C** FOR THE FUNCTION F (THE NONDIMENSIONAL TEMPERATURE DIST. UP THE FIN)

c
C

2825

c
ot

2830

WRITE (*,4015)
WRITE (NGRAPH, 4015)
I=NWBND1
INCR = 1
DO 2830 J=NWBND2+1,NMAX2-1
TYDIFF = T (NWBND1,NWBND2) - T(I,J)
ZEE = 0.DO
DO 2825 JC=NWBND2+1,J
2EE = ZEE + DX2(I,J)
CONTINUE
ZEE = ZEE - DX2(I,J)/2.DO
FN (INCR) = TYDIFF/((QWALL/CONDSI)*HEIGHT* (1.DO+WRATIO)
* (2EE/HEIGHT) * (1.D0- (ZEE/ (2. DO*HEIGHT))))
WRITE(*,4020) INCR,ZEE/HEIGHT,FN(INCR)
WRITE (NGRAPH,4020) INCR,ZEE/HEIGHT,FN(INCR)
INCR = INCR + 1
CONTINUE

C** FOR THE FUNCTION G (THE NONDIMENSIONAL HEAT TRANSFER COEFFICIENT



c WRITE(*,4025) 147
c WRITE(NGRAPH, 4025)
WRITE (NGRAPH,4005)
WRITE(*,4005)
I=NWBND1
INCR = 1
DO 2840 J=NWBND2+1,NMAX2-1
DER = (T(I+2,J} - T(I+1,J))/((DXl(I+l,J)+DX1(I+2,J))/2.DO)
ZEE = 0.DO
DO 2835 JC = NWBND2+1,J
ZEE = ZEE + DX2(I,J)
2835 CONTINUE
ZEE = ZEE - DX2(I,J)/2.DO
G(INCR) = -COND*DER/(((WWALL+WIDTH)/(2.DO*HEIGHT))*QWALL)
WRITE(*,4010) INCR,ZEE,ZEE/HEIGHT,HWAT(INCR),FN(INCR),G(INCR)
WRITE (NGRAPH, 4010) INCR,ZEE,ZEE/HEIGHT,HWAT(INCR),FN(INCR)
A ,G{INCR)
INCR = INCR + 1
2840 CONTINUE

C** FOR THE NUSSELT NUMBER
WRITE(*,4035)
WRITE (NGRAPH, 4035)

I=NWBND1

INCR = 1

DO 2850 J=NWBND2+1,NMAX2-1
2EE = 0.DO
DO 2845 JC = NWBND2+1,J

ZEE = ZEE + DX2(I,J)

2845 CONTINUE
ZEE = ZEE - (DX2(I,J)/2.D0)
ANU(INCR) = HWAT (INCR) *DHYDR/COND
ANU (INCR) = BBETA*G (INCR)/ (YZERO- (ZEE/HEIGHT)*
1 (1.DO-(Z/(2.DO*HEIGHT))*FN(INCR)))
WRITE (*,4040) INCR,ZEE/HEIGHT,ANU(INCR)
WRITE (NGRAPH,4040) INCR,ZEE/HEIGHT,ANU(INCR)
INCR = INCR + 1
2850 CONTINUE

an

Cc** CALCULATE THE RATIO OF HEAT FLOW UP THE FIN TO THE TOTAL (AVERAGE)
J=NWBND2
SUMHT = 0.DO
DO 2860 I=2,NWBND1l
DER = (T(I,J+1)-T(I,J))/((sz(I,J+1)+DX2(I,J))/2.D0)
SUMHT = SUMHT - CONDSI*DER
2860 CONTINUE

SUMAR = 0.D0
J=NWBND2
DO 2866 I=2,NMAX1l-1l
SUMAR = SUMAR + AR2(I,J)
2866 CONTINUE

J=NWBND2
ARR = 0.DO
DO 2867 I=2,NWBND1
ARR = ARR + AR2(I,J)
2867 CONTINUE
ARRAT = ARR/SUMAR



HTRAT = (SUMHT/ (QWALL* (NWBND1-1))) *ARRAT 148
WRITE(*,2:61) HTRAT
WRITE (LOUT,2861) HTRAT
WRITE (NGRAPH,2861) HTRAT
2861 FORMAT(1X,’THE RATIO OF FLUX UP THE FIN TO TOTAL FLUX IS: -,
AF7.5,’ [UNITLESS]')

C** WRITE OUT THE PEAK WATER AND SILICON TEMPERATURES
WRITE (*,2862) T (NWBNDl+1l,NWBND2+1)
WRITE (LOUT,2862) T (NWBND1+1l,NWBND2+1)
WRITE (NGRAPH, 2862) T(NWBND1+1,NWBND2+1)
2862 FORMAT (1X,’THE PEAK WATER TEMPERATURE IS: ',F9.3,' [DEGREES C}’)

WRITE (*,2863) T (NMAX1-1,5)
WRITE (LOUT, 2863) T (NMAX1-1,5)
WRITE (NGRAPH, 2863) T(NMAX1-1,5)
2863 FORMAT(1X,’THE PEAK SILICON TEMP. IS: ’,F9.3,’ [DEGREES C]’)

C** WRITE OUT THE DIMENSIONAL TEMPERATURE DISTRIBUTION UP THE FIN

WRITE (*,*)
WRITE (NGRAPH, *)

WRITE (*, 4045)
WRITE (NGRAPH, 4045)

INCR =1

I=2

DO 2870 J=2,NMAX2-1
ZEE = 0.DO

DO 2865 JC=2,J

: ZEE = ZEE + DX2(I,J)

2865 CONTINUE
WRITE (*,4050) INCR,ZEE,T(I,J)
WRITE (NGRAPH,4050) INCR,ZEE,T(I,J)
INCR = INCR + 1

2870 CONTINUE

ENDIF !ENDIF FOR THE GRAPHING CASE

10000 RETURN

C**  QUTPUT FORMATS
1001 FORMAT(//30X,’ITERATION DETAILS’/9X,
1’/ITER NO. DELTA-U MONITOR VELOCITY’/
1 31X,4(’U(’,13,’,’,I3,7)’,2X)/)
1002 FORMAT (8X,I6,F12.4,5F12.2)
1003 FORMAT(//

+ 5X,’/SOLUTION METHOD ’,A10 /
1/5X,’NUMBER OF CELLS IN X1-DIRECTION, NMAXI - - - =’,I5
2/5X,’NUMBER OF CELLS IN X2-DIRECTION, NMAX2 - - - =',I5
3/5X,’WIDTH OF CELLS IN X1-DIRECTION, DX1 - - - - - ’,E10.5
4/5X,’WIDTH OF CELLS IN X2-DIRECTION, DX2 = = = = - ’,E10.5
5/5X, 'OVER-RELAXATION FACTOR , OMEGA - - - =/ ,F8.3
6/5X, "MAXIMUM NUMBER ITERATIONS , ITMAX = - - =/,I4
7/5X,’DELTA-PHI ERROR CRITERION , TCRIT - - - -/,1P,E12.3
8/5X, ’HEAT BALANCE ERROR CRITERION , OMAX - - - -/,0P,F8.3
, TINIT - - - -/,1P,E11l.4

9/5X, ' INITIAL VELOCITY
B) :



1004 FORMAT (//
+25X, 'STEADY-STATE SOLUTION SUMMARY ’//

1/15X,’TOTAL NUMBER OF ITERATIONS , ITERS - - - -
+/15X, 'OVER-RELAXATION FACTOR , OMEGA - - - -
2/15X, 'MAXIMUM VEL. CHANGE, LAST , DTMAX - - - -
4/15X,’SYSTEM HEAT BALANCE ERROR , QERROR - - -
5/15X, 'MAXIMUM SYSTEM VELOCITY , UMAX = - = -
6/15X, * LOCATION , U(I,J) - - -
7I3,7)"

8/15X, MINIMUM SYSTEM VELOCITY , UMIN - - - -
9/15X, ’ LOCATION , T(I,J) - - -
A I3,’)

B/)

1025 FORMAT (Al)

C** FORMATS FOR HEAT TRANSFER CALCULATION
3001 FORMAT(//30X,’ITERATION DETAILS’/9X,
1/ITER NO. DELTA-T MONITOR
1 31X,4('T(’,I3,’,7,13,%)",2X)/)
3002 FORMAT (8X,I16,F12.4,5F12.2)
3003 FORMAT(//
+ 5X,’SOLUTION METHOD *,A10 /
1/5X,’NUMBER OF CELLS IN X1-DIRECTION, NMAX1 - - -
2/5X, 'NUMBER OF CELLS IN X2-DIRECTION, NMAX2
3/5X,'"WIDTH OF CELLS IN X1-DIRECTION, DXl - - - -
4/5X,’WIDTH OF CELLS IN X2-DIRECTION, DX2 - - =- -
5/5X, 'OVER-RELAXATION FACTOR , OMEGA - - -

6/5X, "MAXIMUM NUMBER ITERATIONS , ITMAX - - -
7/5X, 'DELTA-PHI ERROR CRITERION , TCRIT - - -
8/5X, 'HEAT BALANCE EZRROR CRITERION , QMAX - - -
9/5X, ' INITIAL TEMPERATURE , TINIT - -
B)

3004 FORMAT(//
+25X, 'STEADY-STATE SOLUTION SUMMARY '/
1/15X,’ TOTAL NUMBER OF ITERATIONS ITERS - - - -
+/15X,’ OVER-RELAXATION FACTOR OMEGA - - - -
2/15X, 'MAXIMUM TEMP CHANGE, LAST DTMAX - - - -

7
7
7
4/15X,’SYSTEM HEAT BALANCE ERROR , QERROR
7
7

5/15X, '"MAXIMUM SYSTEM TEMPERATURE T™MAX - - - -
6/15¥%,’ LOCATION T(I,J) - - -
7I3,7)’

8/15X, "MINIMUM SYSTEM TEMPERATURE ;, TMIN - - - -
S/15X,’ LOCATION , T(I,J) - - -
A I3,7)

B/)

C** FORMATS FOR THE GRAPH FILE
4000 FORMAT(1X,//’ GRAPH FILE FOR TEMPERATURE RESULTS

A,’ The left water boundary is at: ’,15,/
B,’ The bottom water boundary is at: ’,15,/
C,’The maximum horizontal cells is: *,I5,/
D,’The maximum vertical cells is: ’,15,/
E,’Delta x horizontal is: ’,E12.5,/
F,’Delta x vertical is: ’,E12.5,
G/)

C 4005 FORMAT(1X,/’ Cell % Z{meters] z/h

c A g(z) )

4005 FORMAT(1X,’ Cell # z z/h

7,15
,F10.5

’
', F10.5
’
’
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,1P,E12.3

,F10.5

T(,’IBI”,’

’,F10.5

T(",I3,7,7,

TEMPERATURE’ /

,I5
,F10.5

,1P,E12.3

7
’
’,F10.5
’
’

,F10.2

T(’,I3

*,F10.5

T(',I3

h(z)

h(z)

’ ’
7

’ ’
! 7 !

"/

£(2z)

£(2)
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A g(zy’,/,’ [meters] (1] [(W/m=*k]

4010 FORMAT(lX,3X,I3,3X,E10.5,Fl2.5,2X,Fl2.3,F12.5,F12.5)

C 4015 FORMAT(1X,/’ # of cell in z dir. z/h £(z)’)
C 4020 FORMAT(1X,11X,I3,8X,E12.5,F12.3)

C 4025 FORMAT(1X,/’ # of cell in z dir. z/h g(z)’)
C 4030 FORMAT(1X,11X,I3,8X,E12.5,F12.3)

4035 FORMAT(1X,/’ # of cell in z dir. z/h NU(z)',/

________________ - [RRpSpEp—— )

r
4040 FORMAT (1X,11X,I3,8X,E12.5,F12.3)

4045 FORMAT(1X,/’' Cell # z[meters] T(z) [C1’,/
Ao’ - - _’)
4050 FORMAT(1X,3X,I3,3X,E12.5,F13.3)

END
CFkkddd kR khd ke kX E X H K I A Hkk kbR dokdk sk kR kR KR Kbk
SUBROUTINE TRANSIENT

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

RETURN
END

C***********************************************************************
SUBROUTINE CONNECTOR (MODE)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

Cx* MODE = 1 CALCULATE THE THERMAL CONDUCTIVITY ARRAY
C** MODE = 2 CALCULATE THE CONNECTOR ARRAYS
C** MODE = 3 CALCULATE THE BETA ARRAY

GO TO (100,200,300) ,MODE

100 CONTINUE
CALL PROPLIB ! SET THERMAL CONDUCTIVITY ARRAY, CAY(I,J)
GO TO 800

200 CONTINUE
Cx* COMPUTE CONNECTORS, CX1(I,J) AND CX2(I,J)

HX1 = BIG
HX2 = BIG
DO 250 J = 1,NMAX2-1
DO 250 I = 1,NMAX1-1
o HX1 = HC1(I,J)
c HX2 = HC2(I,J)



250

300

350

800
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CX1(I,J) = DX1(I,J)/CAY(I,J)+DX1(I+1,J)/CAY(I+1,J) + 2./HX1
CX1(I,J) = 2.DO*AR1(I,J)/CX1(I,J)
CX2(I,J) = DX2(I,J)/CAY(I,J)+DX2(I,J+1)/CAY(I,J+1) + 2./HX2
CX2(I,J) = 2.D0*AR2(I,J)/CX2(I,J)
CONTINUE
GO TO 800
CONTINUE ! COMPUTE BETA ARRAY
DO 350 J = 1,NMAX2-1
DO 350 I = 1,NMAX1l-1
BETA(I,J) = BETA(I,J)/CV(I,J)
CONTINUE
CONTINUE
RETURN
END

Chhkkkdkhdkhdkhdkhhhkkdkhkhkhdkhdkhhkdkhhkkhhkhkhhkhkdhhhhdhhkhdkhhdkdkhdkhhdhkkhkhdkhdkk

SUBROUTINE JACOBI (SUMQ, TEMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
RETURN

END

SR AR Ly T T E r EE E R L Ty L P T T X X

Cx*
Cx*

SUBROUTINE OPTOMEG (LSKIP)

LSKTP IS THE OUTPUT LINE SKIPPING PARAMETER
OMEGR IS THE OPTIMUM SOR FACTOR COMPUTED IN THIS ROUTINE

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

Craxkxxxxx**Writing By Jeffrey Lienaurssskxkksxskkkskdkrhhhkhhkhkrrkrdhs

REAL ALNEW,ALTEST,ALOLD

OMEGA=1.0 !SETS OMEGA EQUAL TO 1 FOR COMPUTATION.
QERROR = 0. !RESET THE TOTAL ERROR FOR HEAT TRANS.
SUMOLD = 100000. I{SETS THE INITIAL VALUE OF THE sg. SUM.
SUMEPN = 0. {SQUARE SUMMING VARIABLE

ALOLD = 1. !{OLD VALUE OF LAMBDA

IT =1 {ITERATIONS COUNTER

WRITE(*,*) ‘TYPE IN ASPECT RATIO’
READ(*,*) ASPECT

Cx*x**x%x*x**WRITE THE OUTPUT TO THE LOGICAL UNITHkkskkskskkskokksokskohshsokhhhskhhsn

WRITE(*, *) ’OUTPUT FOR OPTIMUM OMEGA SEARCHING ROUTINE’
WRITE (LOUT, *) ’OUTPUT FOR OPTIMUM OMEGA SEARCHING ROUTINE’

WRITE(*,*) ‘FOR THE CASE WHERE THE ASPECT RATIO IS: ’,ASPECT
WRITE (LOUT,*) ‘FOR THE CASE WHERE THE ASPECT RATIO IS: ’,ASPECT
WRITE (*,*) ’ /

WRITE (LOUT,*) ’ /

WRITE (*,11)

WRITE (LOUT, 11)

C****x**x**NOW TO SWEEP CALCULATE THE NEW TEMPS SWEEPING BY ROWS**** %%k



10

100
200
Ck*

C**

11
20
30
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DO 200 J=2,NMAX2-1 {For the J Sweep

DO 100 I = 2,NMAX1-1 {For The I Sweep

DP = CX1(I,J) + CX1(I-1,J) + CX2(I,J) + CX2(I,J-1)

Pl = (CX1(I,J))*(T(I+1,J))

P2 = (CX1(I-1,J))*(T(I-1,J)) !New value Of Temp.

P3 = (CX2(I,J))*(T(I,J+1))

P4 = (CX2(I,J-1))*(T(I,J-1)) !New Value of Temp.
EPN = Q(I,J) + Pl + P2 + P3 + P4 - DP*T(I,J)

QERROR = QERROR + ABS (EPN) {SUMMING OVER ALL ERROR
SUMEPN=SUMEPN + ABS (EPN**2)

T(I,J) = (Q(I,J)+(P1+P2+P3+P4))/DP iSets New Temp.
T(I,J) = OMEGA*(T(I,J)) + (1.-OMEGA)*(TOLD(I,J))
CONTINUE

CONTINUE
CALCULATE LAMBDA n+l

ALNEW = SQRT (SUMEPN/SUMOLD)

ALTEST = (ABS(ALNEW - ALOLD))/ALNEW
DUM1= 2./ (1.+SQRT (ABS(1.-ALNEW)))

IF(MOD(IT,LSKIP).EQ.O) THEN
WRITE (*,20) IT,ALTEST,DUM1
WRITE (LOUT,20) IT,ALTEST,DUMl1

ENDIF

IF(ALTEST.GE.1.E-5) THEN
IT = IT +1

ALOLD = ALNEW

SUMOLD = SUMEPN
SUMEPN = 0.0

GO TO 10
ENDIF

NOW TO CALCULATE THE OPTIMUM OMEGA **kkkkkkkkhkdkdkkkhkdkhhkkdkdkkksk
DUM = 2./(1.+SQRT(ABS(1.-ALNEW)))

OMEGA = DUM

WRITE (*,30) DUM
WRITE (LOUT,30) DUM

FORMAT (1X, 'ITERATIONS’, 10X, 'LAMBDA’, 12X, 'OMEGA’)

FORMAT (1X,I3,15X,F9.6,11X ,F5.3)
FORMAT (1X, 'TEE OPTIMUM OMEGA IS: ’,F5.3)

End of writing by Jeffrey Lienaur®kxkkkkdkkkkkkrkrkhrkrhrkhhrrhhrs

RETURN
END

ok ok ok e o e ok ok ok ok ok o ok ok ok o ok o ok o v o ok 5 o ok ok ok ok ok ok ok ok ok ok 9k ok % 9k 3 % v ok ok v v b ok ok v ok 9k % % v ok 9k o ok ok ok o ok ok ok ok Sk

SUBROUTINE AVGVEL (UDUM)
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
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C** SUBROUTINE FOR CALCULATING THE AVERAGE VELOCITY { TEMPERATURE)
C** THIS SUBROUTINE USES TRAPEZOIDAL INTEGRATION OF THE FLOW FIELD

c DO 200 J=2,NMAX2-1
c DO 100 I=2,NMAX1-1
C** TRAPEZOIDAL INTEGRATION TECHNIQUE
c IF(I.EQ.2.0R.I.EQ.NMAX1-1) SUMY(J) = SUMY(J) + T(I,J)
c IF(I.NE.2.AND.I.NE.NMAX1-1) SUMY(J) = SUMY(J) + 2.DO*T(I,J)
€100 CONTINUE
c SUMY(J) = (DX1(NMAX1/2,NMAX2/2)/2.)*SUMY(J)
c IF(J.EQ.2.0R.J.EQ.NMAX2-1) SUMZ = SUMZ + SUMY(J)
c IF(J.NE.2.AND.J.NE.NMAX2-1) SUMZ = SUMZ  + 2.DO*SUMY(J)
C200  CONTINUE
c SUMZ = (DX2 (NMAX1/2,NMAX2/2)/2.) *SUMZ
c
c AREA = ((NMAX2-2)*DX2(NMAX1/2,NMAX2/2)*(NMAX1-2)*DX1 (NMAX1,2
c 1 ,NMAX2/2))
c UDUM = SUMZ/AREA
SUM = 0.0
SUMAR = 0.0

C** NUMERICAL INTEGRATION TECHNIQUE
DO 250 J=NWBND2+1,NMAX2-1
DO 250 I=NWBND1+1,NMAX1-1
SUMAR = SUMAR + DX2(I,J)*DX1(I,J)
250 CONTINUE

DO 300 J=NWBND2+1,NMAX2-1
DO 300 I=NWBNDi+1,NMAX1-1
SUM = SUM + U(I,J)
300 CONTINUE
UDUM = SUM/((NMAXl-l-NWBNDl)*(NMAXZ—l-NWBNDZ))

RETURN
END

C***********************************************************************

SUBROUTINE PSOR (SUMQ, SUMR, OMEG, TEMAX)
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

SUMQ
SUMR
TEMAX
SUMDP
OMEGR
QGEN .
DO 100 J = 2,NMAX2-1

DO 100 I = 2,NMAX1-1

IF(MAT(I,J).LE.1000) THEN

QGEN = Q(I,J)

DP = CX1(I,J)+CX2(I,J) + CX1(I-1,J)+CX2(I,J-1)

(LI I I T}

og%%(3c>o
O
-



100

154

QERR = CX1(I,J)*T(I+1,J) + CX1(I-1,J)*T(I-1,J) +
CX2(I,J)*T(I,J+1) + CX2(I,J-1)*T(I,J-1) - DP*T(I,J)~-
QGEN
DELT = QERR/DP
TEMAX = MAX(ABS (DELT) , TEMAX)
ABSQE = ABS (QERR)
SUMDP = SUMDP + DP
SUMQ = SUMQ + ABSQE
SUMR = SUMR + QERR
T(I,J) = OMEGA*DELT + T(I,J)
ENDIF
CONTINUE
END

C***********************************************************************

100

1
2

SUBROUTINE VPSOR (SUMQ, SUMR, OMEG , TEMAX)
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

SUMQ = 0.
SUMR = 0.
TEMAX = 0.
SUMDP = SMALL
OMEGR = OMEG
QGEN =0

DO 100 J = NWBND2+1,NMAX2-1
DO 100 I = NWBND1+1,NMAX1-1
IF(MAT(I,J).LE.1000) THEN

QGEN = Q(IIJ)
DP = CXl(I,J)+CX2(I,J) + CX1(I-1,J)+CX2(I,J-1)
QERR = CXI(I,J)*T(I+1,J) + CX1(I-1,J)*T(I-1,J) +
CX2(I,J)*T(I,J+1) + CX2(I,J=-1)*T(I,J-1) - DP*T(I,J)-
QGEN
DELT = QERR/DP
TEMAX = MAX(ABS(DELT),TEMAX)
ABSQE = ABS (QERR)
SUMDP = SUMDP + DP
SUMQ = SUMQ + ABSQE
SUMR = SUMR + QERR
T(I,J) = OMEGA*DELT + T(I,J)
ENDIF
CONTINUE
END

C***********************************************************************

SUBROUTINE LSOR (SUMQ, TEMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
RETURN

END

C***********************************************************************

SUBROUTINE QELAST (SUMQ)
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
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SUMQ
QGEN

([}
oo

DO 100 J = 2,NMAX2-1
DO 100 I = 2,NMAX1-1
IF(MAT(I,J).LE.1000) THEN

QGEN = Q(I,J)
DP = CX1(I,J)+CX2(I,J) + CX1(I-1,J)+CX2(I,J-1)
QERR = CX1(I,J)*T(I+1,J) + CX1(I-1,J)*T(I-1,J) +
1 CX2(I,J)*T(I,J+1) + CX2(I,J-1)*T(I,J-1) - DP*T(I,J)-
2 QGEN
SUMQ = SUMQ + ABS(QERR)
END IF
100 CONTINUE
RETURN
END

€ e e e e e ok ke ke e K S e o e ok e e e e e ok e e ok e e vk ok vk v v ok vk % Tk vk ok o ok ok e o % T v ok ok e % % v v o v v v ok ok ek

SUBROUTINE EXPLICIT (SUMEXP, TUMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

RETURN
END

C % e e e e e e ok o e e e ke e e e e e ke e e e e e e ok e e e e e e vk e Tk e e o e Tk ok e ok e ok 3k o Tk e 9 %k e ok e ok v e vk ok ok ok ok ek

SUBROUTINE TPSOR({FIMP, TUMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

RETURN
END

% e e e e e e o e e e e e o e e e e e e e e e e 5k k56 e v ke vk e v 5k 5k o e e 7 e v vk v ok ok 5k v vk v ok Yo vk ok o vk ok ok o ok K ek ek ek

SUBROUTINE TLSOR(FIMP,TUMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

RETURN
END

C***********************************************************************

SUBROUTINE ADI (FIMP,TUMAX)

INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC

RETURN
END
Chedkek dkkkkkkdkkdhdkdhkdhkdkkdddkhdkddhkkkdkkrkkkkkh ok dkkkk ok dkkkk kR kT Rk Kk dekdekde ko

SUBROUTINE SAULEV (TUMAX)



Coex

INCLUDE PARTHES.INC 156
INCLUDE HEATTHES.INC

SORRY!! NO ONE IS HOME !!

RETURN
END

C***********************************************************************

CH*

SUBROUTINE LARKIN (TUMAX)
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
SORRY!! NO ONE IS HOME !!

RETURN
END

C***********************************************************************

Cxx
Coex

100
Ck*

200

SUBROUTINE TRIDIAG(M,AM,AP,AC,B)
INCLUDE PARTHES.INC
DIMENSION AM(MAXLINE),AC(MAXLINE),AP(MAXLINE),B(MAXLINE)

THIS SOLVER NORMALIZES THE DIAGONAL TO 1.0
ELIMINATES NEED FOR DIVISION ON BACK~SUBSTITUTION.

AP(1l)
B(1l)

AP(1)/AC(1)
B (1)/AC(l)

DO 100 K = 2,M

BET = 1./(AC(K)-AM(K) *AP(K-1))
AP (K) = AP(K) *BET

B (K) = (B(K)+AM(K) *B(K-1) ) *BET
CONTINUE

DO 200 K = M-1,1,-1

B(K) = B(K) + AP(K)*B(K+1)
CONTINUE

RETURN

END

C***********************************************************************

Cx*x
C**x
Cx*
C**%

SUBROUTINE PROPLIB

INCLUDE PARTHES.INC

INCLUDE HEATTHES.INC

REAL *8 KAY,KELVIN

SUBROUTINE COMPUTES SI THERMAL CONDUCTIVITY

TC - - DEGREES CENTIGRADE

CAY - WATTS/M-DEGREE C ( OR K) ALSO - KAY)

cay is used here for viscosity 658e—6 Pa S

RP = PREF/8314. ! PREF IS REFERENCE PRESSURE
DO 700 J = 1,NMAX2
DO 700 I = 1,NMAX2
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TC = T(I,J)
KELVIN = TC + 273.15
PFACT = RP/KELVIN
MATNO = MAT(I,J)

IF(MATNO.GT.15) GO TO 500 ! THE FOLLOWING COMPUTED GO TO SET 15 MAT'L

GO TO (110,120,130,140,150,160,170,180,190,200,210,220,230, 240,
1 250), MATNO

110 CONTINUE ! WATER
C* note~ I have used the correct specific heat here and the value of the
C* viscosity must be hardwired for the momentum calculation.

KAY = .64
RHON = 1000.
SPHT = 4184.
AMU = .047
GO TO 600
120 CONTINUE ! Silicon
KAY = 148.d0
RHON = 2333.
SPHT = 703.
AMU = 1.
GO TO 600
130 CONTINUE ! LITHIUM
KAY = 40.15 +0.0190*TC
RHON = 515. -0.101*(TC=-200.)
SPHT = 4186.8
AMU = KELVIN**(~.7368)*10.%*(.4936+109.95/KELVIN) *.01

IF(TC.GT.800.) THEN

AMU = 10.%**(726.07/KELVIN -1.3380)+*.001
ENDIF
GO TO 600
140 CONTINUE ! YOUR CHOICE
GO TO 600
150 CONTINUE | YOUR CHOICE
GO TO 600 )
160 CONTINUE | HELIUM
KAY = 0.00337*(KELVIN)**0.668
RHON = 4.003*PFACT
SPHT = 1.24%4168.6
AMU = 4.7744E-7+KELVIN**.6567
GO TO 600
170 CONTINUE ! ARGON
KAY = 0.015673 + 4.8226E-5*TC-1,7226E~8*TC*TC+4.0703E~12*TC**3
RHON = 39.948*DPFACT
SPHT = .12428%4186.8
AMU = (2.0377+.006254*TC=2.69584E-6*TC**2+6.30257E~10*TC**3)
1 *1.E-5
GO TO 600

180 CONTINUE. ! water for
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550E-6 ! momentum soln.
1. ! value in Pa*S

Kay
RHON
SPHT
AMU

Wownu
-

GO TO 600
190 CONTINUE ! YOUR CHOICE

GO TO 600
200 CONTINUE ! YOUR CHOICE

GO TO 600
210 CONTINUE ! YOUR CHOICE

GO TO 600
220 CONTINUE ! YOUR CHOICE

GO TO 600
230 CONTINUE ! YOUR CHOICE

GO TO 600
240 CONTINUE ! YOUR CHOICE

GO TO 600
250 CONTINUE ! YOUR CHOICE

GO TO 600
500 CONTINUE ! SPECIAL MATERIALS

IF(MAT(I,J) .EQ.1000) THEN
KAY 1.
RHON
SPHT
AMU

1.
1.
1

ELSEIF (MAT(I,J) .EQ.1001) THEN
KAY = 1.E-30 ! VON NEUMANN
RHON
SPHT
AMU

1.
1.
1

ELSEIF (MAT(I,J).EQ.1002) THEN
KAY = 1.E+30 ! DIRICHLET
RHON
SPHT
AMU

[
PP

ELSEIF(MAT(I,J).EQ.1003) THEN
KAY = 1.E-30 ! NULL
RHON =
SPHT = 1.
AMU =
ENDIF

600 CAY(I,J) = KAY
BETA(I,J) = 1./ (RHON*SPHT)
AMU AMU | TRYING TO GET RID OF THE COMPILER COMPLAINTS

700 CONTINUE
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RETURN
END
Cohkkddededkdekdkdkkkdedddhdkdkdehdkhddkdkdkdkddddkddkdhskskdskdekskdhdekskdhkdkdkkskdeskdkekkhkdkkkkkhkkkkh

SUBROUTINE ASMIN (NMAX1,NMAX2,MAT,A,II,JJ,AMIN)
Ch* FIND INDICES LOCATION AND MINIMUM OF A
INCLUDE PARTHES.INC

c REAL *8 A(MAX1,MAX2) ,AMIN
c DIMENSION MAT (MAX1,MAX2)
C*x*
c Iz =2
c 37 =2
c AMIN = A(2,2)
c DO 100 J = 2,NMAX2-1
c DO 100 I = 2,NMAX1-1
c IF(MAT(I,J).LE.1000) THEN
c IF(A(I,J).LT.AMIN) THEN
c AMIN = A(I,J)
c 37 =J
c II =1
c ENDIF
c ENDIF
C 100 CONTINUE
RETURN
END

C 9 e e s e o e Je de K e Je e e ke e ke K vk e ke ke ke ok o e ke vk ke e ok ok o ok e sk ok ok ok ok vk Ik ok e ok e ke ok ok o ok o ok ok ok o ke ok ok e e ok ok ok ok ok ok ok ok ek

SUBROUTINE ASMAX (NMAX1l,NMAX2,6MAT,A,II,JJ,AMAX)
Ch* FIND INDICES LOCATION AND MAXIMUM OF A
INCLUDE PARTHES.INC

c REAL *8 A(MAX1,MAX2) ,AMAX
c DIMENSION MAT(MAX1,MAX2)
C**
c II =2
c I3 =2
c AMAX = A(2,2)
c DO 100 J = 2,NMAX2-1
c DO 100 I = 2,NMAX1-1
c IF(MAT(I,J).LE.1000) THEN
c IF(A(I,J).GT.AMAX) THEN
c AMAX = A(I,J)
c R =7
c I =1
c ENDIF
c ENDIF
C 100 CONTINUE
RETURN

END
Ce e e de e ok e e e e e e e Sk Sk e 3k e e e e ke e e ke e e e ke e e K e ok o K ok Kk e o e ok k3 g ok g K ok ok g K g o g K ok ok o e ok ok ok ok e ok ke ek &

SUBROUTINE AWRITER (MODE,NSTEP,ARRAY,LABEL)
CH* GENERAL REAL ARRAY WRITER

INCLUDE PARTHES.INC

INCLUDE HEATTHES.INC

REAL *8 ARRAY (MAX1l,MAX2)

CHARACTER *32 LABEL

Cx* TRIM THE TRAILING BLANKS FROM LABEL



10
20

100

200

1000
1001
1002
1003
1005
1

160

DO 10 I = 32,1,-1
IF(LABEL(I:I).GT.’ ') GO TO 20
CONTINUE

CONTINUE

IF(MODE.EQ.1) WRITE(LOUT,1000) LABEL(1l:I),NSTEP
IF(MODE.EQ.2) WRITE(LOUT,1005) LABEL(1:I),NSTEP,TYME

N2 =0
CONTINUE
N1 = N2 + 1
N2 = N1l + 9

IF(N2.GT.NMAX1) N2 = NMAX1

WRITE (LOUT,1001) (NIX(I),I=N1,N2)

WRITE (LOUT,1002) (X1(I) ,I=N1,N2)
DO 200 J = 1,NMAX2

JN = NMAX2+1~J

WRITE (LOUT,1003) JN,X2(JN), (ARRAY(I,JN),I=N1,N2)
CONTINUE

IF(N2.NE.NMAX1) GO TO 100

RETURN
FORMAT (//30X,A32,’ ARRAY OUTPUT FOR ITERATION NUMBER:’,IS//)
FORMAT (/14X,’I = ’,10(I8,3X))

FORMAT( 9X,’ X1 = /,10(E10.4,1X)/)

FORMAT( ’/ J=',I3,’ X2=',E8.3,1P,10E11l.3)

FORMAT (//20X,A32,’ ARRAY OUTPUT FOR TIME STEP NUMBER:’,I5,’
= /,F15.4, ’ SECONDS’//)

END

TIME

C % % e 3 e de e d e F % e K % o F v F F % F Fe e e e e e v v % e e F v T F vk v % F e % F vk % d vk % e e %k e % v v e v e ke kb kv ek

Ch*

SUBROUTINE IWRITER (NARRAY,LABEL)
GENERAL INTEGER ARRAY WRITER
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
INTEGER *4 NARRAY (MAX1,MAX2)
CHARACTER *32 LABEL
CHARACTER *4 DUMMY (MAX1l), CARRAY (MAX1)

TRIM THE TRAILING BLANKS FROM LABEL
Do 10 I = 32,1,~-1
IF(LABEL(I:I).GT.’ ') GO TO 20
CONTINUE

CONTINUE

N2
CONTINUE
N1 N2+1

N2 N1+39

IF(N2.GT.NMAX1l) N2 = NMAX1

WRITE (LOUT,1000) LABEL(1:I)

WRITE (LOUT, 1001) (NIX(N),N=N1,N2)

0

DO 200 J = 1,NMAX2
JN = NMAX2+1-J
WRITE (DUMMY,’ (I4)’) (NARRAY(I,JN),I
READ (DUMMY,’(A4)’) (CARRAY(I) ,I

1,NMaXl)
1,NMAX1)



16l
DO 300 I = N1,N2
IF(CARRAY(I).EQ.’1000/) CARRAY(I) = ' M’
IF(CARRAY(I) -EQ.’1001’) CARRAY(I) = ' V’
IF (CARRAY (I).EQ.’1002’) CARRAY(I) = * D’
IF(CARRAY(I).EQ.’1003’) CARRAY(I) =’ N’

300 CONTINUE

WRITE (LOUT,1002) JN, (CARRAY (I) (2:4),I=N1,N2)
200 CONTINUE
IF(N2.NE.NMAX1) GO TO 100
RETURN

OO0OO0O0O0O0O0O0O0000

1000 FORMAT(/A32//

115X,’M = MODEL MATERIAL’/
215X%,’D = DIRICHLET BOUNDARY’/
315X,’V = VON NEUMANN BOUNDARY’/
415X,’N = NULL CELL ‘)

1001 FORMAT(/’ I = ’,5X,40I3/)
1002 FORMAT( ’ J = /,I3,2X,40A3)
END

OO0O0O0O0O00

Crdede sk ddede el Rk kA dk ok kR k ok ok ok kAR AR KAk kkkkkkkdkdkkkkkkhhkhkkkkhhhrx
Cx*

SUBROUTINE PREPLOT

Cx*
C**  PREPARE PLOT FILE
Cx*
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
C*x%*
WRITE (NPOUT,200) NMAX1,NMAX2
WRITE(NPOUT,100) ( X1(I), I = 1,NMAX1 )
WRITE(NPOUT,100) ( X2(J), J = 1,NMAX2 )
C*x%*

RETURN
100 FORMAT (1X,5F15.10)
200 FORMAT (1X,2I10)
END

C******************************************************************

SUBROUTINE APLOT (ARRAY,PFS,LABEL)

C*x*

C**  SET UP PLOT FILE

Cx*
INCLUDE PARTHES.INC
INCLUDE HEATTHES.INC
REAL*8 ARRAY (MAX1,MAX2)
CHARACTER*32 LABEL
CHARACTER*80 PFS

Cx*

WRITE (NPOUT,1000) LABEL

WRITE(NPOUT,1010) PFS

DO 100 J = 1,NMAX2

WRITE(NPOUT,1020) (- ARRAY(I,J), I = 1,NMAX1 )
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100 CONTINUE
Cx*

1000 FORMAT (A32)

1010 FORMAT (A80)

1020 FORMAT(1X,3E20.10)

C**x
RETURN
END

c*****************************************************************
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APPENDIX B
Separation of variables Comparison
1 SEPARATION OF VARIABLES SOLUTION:

An analytical solution was derived for the
momentum equation (equation 1.1) which gave the velocity
distribution in the laminar microchannels. The solution
technique involved the separation of variables method
which is discussed in [7]. The solution obtained agreed
with Carslaw and Jaeger [8]. The Carslaw and Jaeger
solution is for the temperature distribution in a heated
rectangular plate but the partial differential equation
of energy transfer is exactly the same as the fully
developed momentum eqguation 1.1. Consider the schematic
of the fluid flow region given in Figure Bl which the
repeating symmetric momentum solution area and all of the

geometric constants of the problem.
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Figure Bl

Fluid Flow region showing the symmetric computation area
and the geometric constants used 1in the analytical
solution.
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The analytical solution for the velocity
distribution is:
(1) u(x,y,2) =

1dP (A*-v: - 16A°%((-1)"cos((2n+1)my/2A)cosh((2n+1)m2/22)
dx 2 ™ "™ (2n+1)° cosh((2n+1)7B/2A)

A computer code was written in FORTRAN whic solves
the above eguation terms and prints out a velocity
distribution for a given grid discretization. The computer
code is called EXTHES.FOR and the source code is included at
the end of this appendix. The computer code uses the first
seven terms of the infinite series. A previous calculation
revealed that the seventh term was contributing less than

.1% to the solution so the eighth term was neglected.

2 RESULTS

The velocity distribution was found for a
microchannel with an aspect ratio a of 8, a channel width W,
of 25 um , a pressure gradient dP/dx of 50 MPa/m using
fluid of viscosity u of 550 uPaS . The problem was solved
using 10 and 20 cells in the y and z directions. The finite
difference results using the method of point successive
relaxation were compared to the analytical solution (1).
The output from the analytical solution code and from the
finite difference code are presented in this appendix on 14"
wide computer paper. In order to help interpret the output,
the channel locations (y and z) are printed above and to the
left of the arrays. The zero's in the finite difference
output correspond to solid cells where there is zero
velocity.

The major results will now be summarized using the
percent deviation of the numerical and analytical results at
various points within the distribution. The points chosen

are &4, B and C of Figure 1.2 and also the corner which will
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be referred to here as point D. Point A corresponds to the
first cell next to the the horizontal fin. Point B
corresponds to the center point. Point C corresponds to the
first cell next to the centerline of the vertical base

Table Bl contains the summarized results. The percent

deviation is calculated by:

5 iation= -
(2) s deviation=100abs (U e ical uanalytical)/uanaLyticaL

10 cell discretization 20 cell discretization
Point

A 2.56% .71%

B .25% .49%

C 12.84% . 9.50%

D 15.70% 12.14%

Table Bl Percent Difference between analytical and numerical
solutions to the momentum eguation.

The most important point to have accurate velocities
is at point A next to the vertical fin. This is where most
of the convection is occuring. This was the point
considered in the determination of the discretization.
Twenty cells were chosen across the half channel width
because the percentage departure between the analytical and
numerical solutions was less than 1% for this

discretization.
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C***************************************************************xr***

C* *
C* Jeffrey Jay Lienau *
C* *
C* ME 503 THESIS APRIL 16,1989 *
C* *
C* This is a program to calculate the exact solution of the *
C* velocity in the microchannel using an analytical solution *
Cc* found in Carslaw and Jaegar’s "Conduction of heat in Solids"*
C* Second edition. Oxford University Press 1959. ppl71l egn. 6 *
C* This equation assumes zero temperature (no slip) on all *
C* boundaries and must then be solved for the half width *
C* *
C* The purpose of this program is to provide a means of *
C* checking the velocity distribution in the microchannel *
C* with the analytical solution using the fully developed *
C* flow assumption. *
C* *

C********************************************************************
PROGRAM EXTHES EXACT SOLUTION TO THE MOMENTUM EQN.
Cx* Lets open a logical unit for the printer

OPEN (UNIT=1,FILE='OUTTHES’, STATUS='NEW’)

C** Dimension the array for the solution::::ss:ssss:sscssssss:
NMAX1 = 25
NMAX2 = 50

DIMENSION V(0:25,0:50),VISCOS(0:25,0:50)
DOUBLE PRECISION Y,DY,Z,DZ,A,3B,VISC,PI,SUM,COSHTN, COSHTD
1, SUMTERM,TD, TERM1,COTERM2,COSTN,V,VISCOS

CH*x Interactive Session for the input data:s:::ssssssszsszes:

1 WRITE(*,*) ‘Enter the value of the y half width (MICROMETERS)’
READ(*,*) A
IF(A.LE.O) GO TO 1
A = A*1E-6

2 WRITE (*,*) ’‘Enter the value of the z half width (MICROMETERS) '’
READ(*,*) B
IF(B.LE.O) GO TO 2
B = B*1E-6

3 WRITE(*,*) ’'Enter the value of the pressure Drop (PSI)
READ(*,*) PDROP
WRITE(*,*) ‘Enter the length of the heat sink (cm)’
READ(*,*) HLENG
PGRAD= (PDROP/HLENG) *6 .89476D5%
IF(PGRAD.LE.O) GO TO 3

4 WRITE(*,*) ’'Enter the value of the Viscosity (PA*S)’
READ(*,*) visc
IF(VISC.LE.O) GO TO 4
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5 WRITE(*,*) ‘Enter the value of delta y (MICROMETERS)'
READ(*,*) DY
IF(DY.LE.Q) GO TO S
DY = DY*1E-6

6 WRITE(*,*) ’‘Enter the value of delta z (MICROMETERS)’
READ(*,*) D2
IF(DZ.LE.0) GO TO 6
DZ = DZ*1E~6

C*x* Lets set up the viscosity as an array so we can vary it.

DO 10 YC=0,NMAX1
DO 10 2ZC=0,NMAX2

VISCOS (Y¥C,ZC) = vVIsSC
10 CONTINUE
Cx* CONSTANTS FOR THE PROBLEM::s:::sszssizoszosrsocosssssss
PI = 4 .DO*DATAN(1.DO)
NUM1 = A/DY INUMBER OF Y CELLS
NUM2 = B/DZ INUMBER OF Z CELLS
K = 1.0 I CONSTANT RELATES Y AND Z VIS
SUMVEL = 0.0 ISUM FOR AVERAGE VELOCITY
SUM = 0.0 |INITIALIZE SUM
NSUM = 0 ISUM FOR AVERAGE VELOCITY %
C** BEGIN CALCULATION::::::ssseossessssssssossssociase
DO 200 Y = 0.,A,DY ICOUNTER FOR Y DIR.
NY = NINT(Y/DY)
DO 100 Z = 0.,B,D2 !COUNTER FOR Z DIR.
NZ = NINT(Z/DZ)
TERM1 =(A**2 = ((Y+DY/2.)**2))/(2.*VISCOS(NY,NZ))
-.COTERM2 =16.% (A**x2) / ((VISCOS (NY,NZ) )* (PI**3))
Ch* SUM FOR THE SECOND TERM
SUM = 0.0

DO 50 N=0,7

COSTN  =DCOS((2.DO*N+1.D0) *PI* (Y+DY/2.)/(2.D0O*A))
COSHTN =DCOSH( (2.DO*N+1.D0)*PI*K* (Z+DZ/2.)/(2.D0*A))
IF(COSHTN.LE.1.E-30) GO TO 60

TD = (2.DO*N +1.D0) **3
COSHTD = DCOSH( (2.DO*N +1.D0) *PI*K*B/ (2.D0*A))
IF (COSHTD.LE.1.E-30) GO TO 60

SUMTERM = (COSTN*COSHTN) / (TD*COSHTD)

IF(MOD(N,2) .NE.0) SUMTERM = -SUMTERM
SUM = SUM + SUMTERM

50 CONTINUE



Cx*

60

100
200

Cx*

350

Cx*

Cx*

CALCULATE THE VELOCITY AT THIS POINT

V(NY,NZ)

CONTINUE
CONTINUE

168
PGRAD* (TERM1 - COTERM2*SUM)

ICONTINUE FOR THE Z BOUND
!CONTINUE FOR THE Y BOUND

CALCULATE THE AVERAGE VELOCITY OVER THE FIELD

DO 350 Y = 0., (A-DY),DY ICOUNTER FOR Y DIR.
NY = NINT (Y/DY)
DO 350 Z = 0., (B-DZ),DZ ICOUNTER FOR Z DIR.
NZ = NINT(Z/D3Z)
SUMVEL = SUMVEL + V(NY,NZ)
NSUM = NSUM + 1
CONTINUE
AVGVEL = SUMVEL/NSUM

Let’s Calculate
4.d0*A*B/ (A+B)
1000.

RHO*AVGVEL*DHYDR/VISC

DHYDR
RHO
REYN =

The Reynold’s Number

ILET’S PRINT OUT THE VELOCITY DISTRIBUTION **¥*kkkskskdkkskshssks

WRITE (*, *)
WRITE(1,*)

WRITE (*,*)
WRITE(1,*)

WRITE (*,*)
WRITE (1,*)

WRITE (*,*)
WRITE (1, *)

WRITE (*,*)
WRITE (1, *)

WRITE (*,*)
WRITE (1, *)

WRITE (*,*)
WRITE(1,*)

WRITE (*,*)
WRITE(1,*)

WRITE (*, *)
WRITE(1,*)

WRITE (*,*)
WRITE (1, *)

WRITE (*, *)
WRITE(1,*)

WRITE (*,*)
WRITE(1,*)

'VELOCITY DISTRIBUTION FOR MICROCHANNEL--=——=—==-=—- !
VELOCITY DISTRIBUTION FOR MICROCHANNEL-=—=——————- !
'Pressure gradient is: [Pa/m] /, pgrad
‘Pressure gradient is: [Pa/m} ’, pgrad

’Pressure Drop is: [psi]’,PDROP

’'Pressure Drop is: {psi]’,PDROP

‘The Length of the Heat sink is: [cm]’, HLENG
'The Length of the Heat sink is: [cm]’, HLENG
'The Reynolds Number is: [1]’, REYN

'The Reynolds Number is: [1]’, REYN

'Viscosity is:
'Viscosity is:

’ One
’ One

! The
! The

’ Distance is
r Distance is

‘This program
‘This program

(Pa*S] /, VISC
[Pa*s] ’, VISC

runs rows and the z dir.

in micrometers and Veloc
in micrometers and veloc

assumes no slip boundari
assumes no slip boundari

quarter is calculated because of symmetry’
quarter is calculated because of symmetry’

y dir. runs rows and the z dir. runs columns.’
y dir.

runs columns.”’

ity is in M/S.’
ity is in M/S.’

es.’
es.’
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CH*

1000
1010

169

WRITE (%, *)
WRITE (1, *)

WRITE(*,*) ‘The average velocity is: ’ ,AVGVEL
WRITE(1,*) ‘The average velocity is: * ,AVGVEL

WRITE (*, *)
WRITE(1, *)

WRITE(*,1000) (Y, ¥Y=(A-DY)*1E6,0,-DY¥*leé6)
WRITE(1,1000) (Y, Y=(A-DY)*1lE6,0,-DY*1E6)

WRITE(*,*)
WRITE(1, *)

DO 500 Nz=0,NUM2-1

WRITE(*,1010) NINT(NZ*DZ*1E6), (V(NY,NZ), NY=NUM1-1,0,-1)
WRITE(1,1010) NINT(NZ*DZ*1E6), (V(NY,NZ), NY=NUM1-1,0,-1)

CONTINUE
WRITE (*, *)

WRITE (1, *)

WRITE(*,%) /=-—==—=—= FINISHED
WRITE(1,%) /===—=———e FINISHED

OUTPUT FORMATS

NUM1=10 !FOR THIS SETUP
FORMAT (1X,3X,10(2X,F5.0))
FORMAT({1X,I3,10(2X,F5.2))

STOP
END



C:\FTTL>TYPE OUTTHES
VELOCITY DISTRIBUTION FOR MICROCHANNEL~-—-=-—w~=-«-

Prasssure grsdisnt is: [Ps/m]
Viscosity is: (Ps*S§]

0.500000E+08
0.5500000000000000-003

One gqusrtar is cslculated pecause of symmetry

The y dir. runs rows and the z dir. runs columns,
Distance i{s in micromstars and velocity is {in M/s.
This program sssumas no #2lip boundaries.

The average velocity is: 17.5659
22. 20. 17. 18. 12. 10.
.17 7.88 12.4) 16.41 19.82 22.66 24.

.17 7.88 12.4) 16.41 19.81 22.66 24.
.17 7.88 12.4) 16.41 19.81 22.65 24.

2

2

2
60 2.1 7.88 12.43 16.40 19.81 22.65%5 24.
80 2.17 7.88 12.42 16.)9 19.80 22.6) 24.
100 2.76 7.86 12.39 16.3% 19.75 22.58 24,
120 2.74 7.80 12,29 16.22 19.58 22.38 24
140 2.67 7.59 11.94 15.74 18.99 21.69 213
160 2.42 6.84 10.72 14.08 16.92 19.27 21.
180 1.50 .11 6.28 8.07 9.52 10.69 11.

and3ng xs3ndwo)d

0LT



J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
J=
Js
J=
J=
J=
J=
Ja
J=
J=
J=
FE
J=
J=

ME 573 NUMERICAL METHODS FOR ENGINEERING ANALYSIS

TRANSPORT EQUATION SOLUTIOHN

SOLUTION METHOD

NUMBER OF CELLS
NUMBER OF CELLS
WIDTH OF CELLS
WIDTH oOF CELLS
OVER-RELAXATION
HAXTIHUM NUMBER

DELTA-PHI ERROR
HEAT BALANCE ER
INITIAL VELOCIT

1= 1 2 3 4 5
X1 = -_.1250E-05 0.1250E~05 0.)750E~0% 0.6250E-05 0.8750E-05 0.1125E-04 3.13175E-04 O.

30 X2=.570E-03 O0.000E+00 O0.000E+00 O.
29 X2=.550B-0) 0.000E+00 0.000E+00 O.
28 X2=.530E~-0) 0.000E+00 O0.000E+00 O
27 X2=.510E-03 0.000E+00 O0.000E+00 O
26 X2=.490E-0) O0.000E+00 O0.000E+00 0
25 X2=.470E-0) 0.000E+00 0.000E+00 O
24 X2=.450E-03 O0.000E+00 O0.000E+00 O
23 X2=.430E-03 O0.000E+00 O.000E+00 O
22 X2=_410E-03 O0.000E+00 O0.000E¢00 0
21 X2=.3)90E-0) O0.000E+00 O0.000E+00 O
20 X2=_.)70E-0)} O0.000E+00 0.000E+00 O
19 X2=.350E-0) 0.000E+00 O0.000E+00 O
18 X2=.330E-0) O0.000E+00 O0.000E+00 O
17 X2=.310E-0) 0.000E+00 0.000E+00 O
16 X2=.290E~0) O0.000E+00 ©0.000E+00 O
15 X2=.270E-0) O0.000E+00 0.000E+00 O
14 X2=.250E-0) O0.000E+00 O0.000E+00 O
1) X2=.230E~0) O0.000E+00 O0.000E+00 O
12 X2=.210E-0) 0.000E+00 0.000E+00 O
11 X2=.190E-0) 0.000B+00 O0.000E+00 0
10 X2=.170E-03 O0.000E+00 0.000E+00 O
9 X2=.150E-03 0.000E+00 O0.J00E+00
§ X2=.1)0E-03 0.000E+00 O0.J00E+00 O
7 X2-.110E-03 0.000E+00 0.000E+00 O
é X2=.900E~04 O0.000E+00 O0.000E+00 0
5 X2=.700E-04 O0.000E+00 O0.000E+00 0
4 X2=.500E-04 O0.000E+00 0.000E+00 O
3 X2=.300E-04 0.000E+00 O0.000E+00 9
2 X2~.100E-04 O0.000E+00 O0.000E+00 O
1 X2mnann 0.000E+00 0.000E+00 0
I = 11 2
X1 = 0.

IN X1-DIRECTION,
IN X2-DIRECTION,
IN X1-DIRECTION,
IN X2-DIRECTION,
FACTOR .
ITERATIONS ‘
CRITERION ‘
ROR CRITERION .
Y .

13 14 15
2)7SE-04 0.262SE-04 0.I37SE-04 0.J125E-04 0.1)7SE-04 0.3625E-04 O.

PSOR

NMAX1
NHAX2
DXx1 -
DX2 -
OMEGA
ITHAX
TCRIT
QMAX
TINIT

STEADY

0O00E+00
00O0E+00

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
-000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
-000E+00
.000E+00
.000E+00
.00GE+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

ALGORITHHM TESTER

22

3o
.35000E-05
-20000E-04

1.750
1000

2/10/89

1.000E-~0)

0.100
0.0000E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00
d.000E+00
0.000E+00
0.000E+00
0.000E+00
0.J00E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
J.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
©0.000E+00
0.000E+00
0.000E+00

STATE VELOCITY ARRAY OUTPUT FOR

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
J.Q000E00
0.000E+00
0.000E+00
0.J00E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.J00E+00
0.000E+00
0.000E+00
0.000EB+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
9.000E+00
0.000E+00
0.000E+00
0.J000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

8

.000E+00
.000E+00
.000E+00
.000E+00
.J00E+00
.000E+Q0
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
000E+00
000E+0N0
000E:+00
000E+00
000E+00
.000E+00
000E+00
.000E+00
000E+00
.000E+00
000E+00
000E+00
000E+00
.000E+00
.000E+00
.J00E+00

Y- N-N-N-N - NN NN Y- N-N-N-N-N-N-N-N-N-N-N-N-N-N- NN

16

ITERATION HUMBER:

1

0.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
0.000E+00

- N-N-N-N-N-N-N-F-N-N-N-N-N-N-N-N-N-N-N-Ny-N- NN

17

34

8
1625E-04 0.

0.000E+00
0.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E00
.000E 00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

CO0O0O0ODOOOOOOOOODOOOOOOOOLOO0

13

9 10
1875E~04 0.2125E-04
0.000E+00 O0.000E+00
0.000E+00 0.000E+00
0.000E+00 0.000E+00
3.000E+00 0.0008+00
0.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 O0.00OCE+00
0.000E+00 0.000E+00
0.000E+00 0.000£+00
0.000E+00 0.000E+00
0.000E+00 O0.000E+00
0.000E+00 0.000B+00
J.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 O0.000E+00
J.000E+00 O0.000E+00
0.000E+00 0.000E+00
0.J00E+00 O0.000E+00
0.000E+00 O0.000E+00
0.000E+00 0.000E+00
0.000E+00 O0.000E+00
0.000E+00 0.00OCE+00
0.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 O0.000E+00
0.000E+00 O0.0O0Q0E+00
0.000E+00 O.000E+00
0.000E+00 0.J00E+00
0.000E+00 O0.J00E+00

L9 20

J875E-04 0.4125E-04 0.34375E-04 0.4625E-04

LT
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283E+01  2.375E+01

Je it Rim.200E~0s  G.O00E+Q0 3.508E400 ©.965E400 1.088E+01 1.427E+01 1.714E+01 1.952E+0 2.141E¢01 2.
Je 37 X2e 510E-03 0.000E+0C 3.740E+00 7.653E+00 1.201E+01 1.580E+01 1,908E+0) 2.175£+01 2.390E+01 2.551E+01 2.6598+01
Je 26 X3+.190E-C3 0.000E+00 3.810E+400 7.862E+00 1.2358401 1.627E+01 1.96)E+01 2.24JE+01 2. 4E6E«01 2.834E¢01 2.746E+01
Je 35 X3e.470E-01 0. 000E+00 5.832E+00 7.92TE+00 1.245E+01 1.641E+01 1.981E+01 2.26JE+01 2.490E+01 2.653E«01 2.7728+01
Je 24 X2=. 450E-0) O0.000E+00 2.839E+00 7.947E+00 1.249E+01 1.646E+01 1.986E+01 2.270E+01 2.497E+01 2.667E¢01 2.780E+01
Je 33 X2e.430E-03 O0.000E+00 2.B41E+00 7.954E+00 1,250E+01 1.647E+01 1,988E+01 2.272E+01 2.499E+01 2.670E+01 2.783E401
Jw 22 X2+.410E-03 O.000E+00 3,841E+00 7.9%8E+00 1.2350E+01 1.640E401 1.989E+01 3.273E+01 2.500E+01 3.670E+01 2.784E+01
Je 21 X2e.)90E-03 O0.000E+00 23.841E+00 7.9S6E+00 1.2S0E+01 1.648E+01 1.9898+01 2.27)E4+01 3.500E+01 2.671E+01 2.784K+01
Je 20 X3=.370E-03 0.000E+00 2.841E+00 7.956E+00 1.250E+01 1.648E+01 1.9898+01 2.273E+01 2.300E+01 2.671E+01 3.784E+01
J= 19 X2-.350E-0) 0.000E+00 2.841E+00 7.956B+00- 1.250E+01 1:648E401771.989L+01T 272738401 2.5008401--3-6718401—2.7048+01+
J= 18 X2+.330E-0) 0.000E+00 2.841E+00 7.955E+00 1.250E+01 1.64BE+01 1,989E+01 2.27)E+01 2.500E+01 2.670E+01 2.784E+01
Je 17 X2=.310E-0) 0.000E+00 2.841E+00 7.955E¢00 1.250E+401 1.648E+01 1.989E+01 2.273E+01 2.500E+01 2.670E+01 2.704E+01
3= 16 %2x.390E-0) 0.000E+00 2.840E+00 7.95JE+00 1.250E+01 1.647E+01 1.988E+01 2.272E+01 2.499E+01 2.669E+01 2.783E401
J= 15 X2+ 370E-0) 0.000E+00 2.B838E+00 7.947E+00 1.249E+01 1.646E+01 1.986E+01 2.270E+01 2.497E+01 2.667E+01 2.781E+01
J= 14 X2- 250E-03 0.000E+00 2.832E+00 7.927E+00 1.245E+01 1.642E+01 1.981E+01 2.264E+01 2.490E+01 2.6595+01 2.772E+01
3= 13 X2= 230E-0) 0.000E+00 2.810E+00 7.863E+00 1.235E+01 1.627B+401 1.9638+01 2.243E+01 2.466E¢01 2.6342+01 2.T46E+01
J= 12 R2=.210E-0) 0.000E400 2.T40E+00 7.654E+00 1.201E+01 1.580E+01 1.9038+01 2.175E£+01 2.390E+01 2.551E+01 2.659E+01
J= 11 X2=.190E-0) 0.000E+00 2.50BE+00 6.366E+00 1.088E+01 1.427E401 1.714E401 1.952E401 3.141E+01 2.282E+01 3.375B+01
J= 10 X2=.170E-03 0.000E+00 1.723E+00 4.638E+00 7.095E400 9.146E+00 1.083E+01 1.230E+01 1.325E+01 1.403E+01 1.454E+01
J= 9 X2e.150E-0) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000B+00 0.000E+00
3= 8 X2=.1J0E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000B+00 0.000E¢00 0.000E+00 0.000B+00 0.000B+00
J= 7 X2=.110E-0) 0.000E+00 O0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+400 0.000E+00 0.000E+00 0.000E+00 0.000E+00
J= & X3=.900E-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.0008+00 0.0008+00 0.0008+00 0.000B+00 0.000B+00
3= 5 X2e.7005-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.0008+00 0.0008¢00
J= 4 X2=.S00E-04 0.000E+00 0.000E+00 ©0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
J= 3 X2=.300E-04 0.000E+00 0.0008+00 0.000E+00 0.000E+00 O0.000E+00 0.000E+00 0.000E+00 0.0008+00 0.000E+00 0.000E+00
3= 32 X2=.100E-04 0.000E+00 0.000E+00 0.0008+00 0.000B+00 0.000E+00 0.000£+00 0.000E+00 0.000E+00 0.0008+00 0.000E+00
J= ] X2mesesssas 0.000E4+00 O.000E+00 0.000E+00 O0.000E+00 0.000E+00 0.000E+00 0.000E400 0.000E+00 0.000B+00 0.000E+00
1= 21 22
X1 = 0.4375E-04 0.5125E-04

3= 30 X2=,570E-03 O.000E+00 ©0.000E+00

J= 29 X2=.580E-03 1.480E+01 0.000E+00

J= 28 X2=.530EZ-03 2.422E+01 ©0.000E+00
J= 27 X2=.510E-03 2.712E+01 0.000E+00

J= 26 X2=.490E-03 2.802E+01 0.000E+00

3= 25 X2=_470E-03 2.829E+01 0.000B+00
J= 24 X2= 2.437E401 0.000E+00

J= 2) Xi=, 2.840E+01 0.000E+00

J= 22 X2=.410E-03 2.841£401 0.000E+00

J= 21 X2=,390E-03 2.841E+01 0.000E+00
J= 20 X2=.370E~03 2.l§il001 0.000E+00

J= 19 X2=.350E-03 2. +01 0.000E+00
J= 14 X2«.330E-03 2.8%1E+01 0.000E+00
J= 17 X2=.310E-03 2.841B+01 0.000E+00

J= 16 X2=.290E-03 2.840E+01 0.000E+00
J= 15 X2=.270E-03 2.:2%:»01 0.000E+00

J= 14 X2-.2%0E-03 2.829E+01 0.0002+00

J= 13 X3=,230E-03 2.0:;5001 0.000B+00

J= 12 X2=.210E-03 2.733E+01 0.000E+00

J= 11 X2=.190E-03 2.422E+01 O0.000E+00

J= 10 X2=,170E~03 1.480E+01 0.000E+00
J= 9 X2=.150E-03 O0.000E+00 0.000E+00
J» 8 X2=.130E-03 0.000E+00 0.000E+00
J= 7 X2=.110E-03 0.000E+00 0.000E+00
J= 6 X2=.900E~04 0.000E+00 0.000E+00
J= 8 X2=.700E-04 0.000E+00 0.0008B+00
J= 4 X2=.S00E-04 O0.000E+00 ©.000E+00
J= 3 X2».300E-04 0.000E+00 0.000E+00
J= 2 X2=.100E-08 0.000E+00 0.000E+00
J= 1 Xdsecoseseoes 0 _Q00E+00 0.000E+00

AVERAGE VELOCITY IS: 20.7799129848849

THE FLOW CHANNEL HEIGHT 1S3 0.4000000000000000-003

THE FLOW CHANNEL WIDTH (complete) 1S3 0.500000000000000D~004

THE HYDRAULIC DIAMETER IS: 0.886808888688889D-004

THE AVERAGE REYNOLDS NUMBER IS: 3848.13203423794

THE ENERGY GEN. WALL PLUX TS: W/CH72) 1000 nananannann

L
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Fressure gradient is: {bPa/m{ 0.500000E +04
Viscoslty Us: {Pa's| 0.£300000000000001~00Y

One quarter is calculated because of symmerry
The ¥ dir. runs rows and the z dir. ruhs columns.
Distance is in micrometers and velochty 1s in M/S.
This program sssumues no silp boundaries.

The avarage velocity is: 17.478)

24. 22. 2. 20. 19 [ 16.

0 1.40 4.10 8.68 9.07 11.05 13.48 16.47
10 1.40 4.10 6.68 9.07 11.95 12.48 15.47
20 1.40 4.0 68.66 907 11.08 1248 1646
J0 140 4.10 8.86 9.07 11.06 13.48 15486
v [ 1] 4.0 6.66 407 1105 1348 1538
30 i.40 +.10 6.6¢ 3.00 1ias i548 1548
(18 .40 400 6.66 w07 thus 1837 13.4¢
0 1.40 4.10 466 9.07 1194 1837 13.4F
80 1.40 4.10 6.66 .05 1194 1937 1548
90 1.40 1.10 8.86 9.06 1137 1hd4s 1A3R
100 1.40 4.08 8.64 9.06 11.92 13,43 15343
110 L.40 4.09 6.80 904 11.30 12.42 16.40
120 1.9 4.07 8.8 $.00 13.25 1297 16.04
130 1.08 4.04 8.566 8.94 1117 13.27 15.22
140 1.7 3.99 6.48 8.82 11.00 13.09 1i5.0!
150 1.22 3.0 6.2 8.60 10.76 12.75 (4.62
160 1.27 272 6.02 8.19 1022 1211 12.87
170 116 3.08 3.46 7.4l 9.24 10.92 12.48
180 0.96 2.74 4.2% 5.92 7.3 8.82 9.82
1sa  0.80 1.40 2.19 289 3.8 4.00 4.68

19.02
19.02
19.02
19.02
19.02
19.0]
19.01
ig.01
19.00
1894
18.97
18.92
18.86
18.7%
18.44
17.94
17.00
16.29
11.89

6.09

e FINISHED = e s e e e

202
22
23.22
2017
23.07
22.89
22.86
21.92
20.72
18.49
14.28
8.22

8.67

6.77

26.26
26.26
28.28
28.26
26.26
26.26
26.26
26.25
se.o8
o820
2619
26.13
28.02
2581
25.42
23.69
20,01
20.72
15.90
6.96

5.
26.97
26.97
28.97
28.97
26.97
28.97
26.97
26.96
26.9¢
2643
26.90
26 84
26.72
26.5!
26.10
25,94
23.92
21.28
18.28
7.09

7.20

7.29

2828
28.25
28.25
28.28
28.26
28.25
28.24
28.23
24.23
28.21
2847
28.11
27 .99
27.78
27.09
28.53
25.02
22.2%
16.98
7.04

ELT
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J=
J=
J=
J=
J=
J=
J=

J=
J=
J=
J=
J=
J=
J=
J=
Ja
JIm
J=
J=
J=
J=
J=
Jm
J=
J=
J=
=
J=

HE 573

NUMERICAL METHODS EOR ENGINEERING ANALYSIS

TRANSPORT EQUATION SOLUTION ALGORITHM TESTER

SOLUTION METHOD

NUMBER OF CELLS
NUMBER OF CELLS
WIDTH OF CELLS
WIDTH OF CBLLS

OVER~RELAXATION FACTOR

MAXIMUM NUMBER ITERATIONS
DELTA-PHI ERROR CRITERION
HEAT BALANCE ERROR CRITERION

INITIAL VELOCITY

58
57
56
55
54
53
52

50
49

47
46
45
[}
4
42

{0
39
38

Itf X1-DIRECTION.

IN X1-DIRECTION,
IN X2-DIRECTION,

PSOR .
MMAXL ~ - - - 42
IN X2-DIRECTION, NMAX2 - - - - 58
DX1 - - - - -.12500E-05
DX2 - - - - -.10000E-04
, OMEGA - - - - 1.750
, ITHAX - - - -1000
, TCRIT - - - -~ 2.000E-02
. QMAX - -~ - - 0,100
" TINIT - - - ~ 0.0000E+00
STEADY

I~ by 2 3 L[]
X1 = -.6250E~06 0.6250E-06 0.1875E-0% 0.3125E-05 O.

%2=.565E-03 0.000E+00 O0.000E+00 0.000E+00
%2=.555E-0) O.000E+00 ©0,.000E+00 0.000E+00
X2=.545E-0) 0.000E+00 O.000E+00 0.000E+00
X2».535E-0) 0.000E+00 0.000E+00 0.000E+00
X2=.525E-03 0.000E+00 0.000E+00 0.000E+00
X2=.515E-0) 0.000E+00 0.000E+00 0.000E+00
X2=.505E-03 O.000E+00 O0.000E+00 0.000E+00
X2=.495E-0) 0.000£+00 0.000E3:00 0.000E+00
I= 21 22 23
X1 = 0.2437E-04 0.2562E-04 0.2687E-04 O.
X2=.565E-03 O0.000E+00 O0.000E+00 0.000E+00
X2=.555E-03 0.000£+00 5.609E-01 1.552E+00
X2=.545£-0) 0.000E+00 9.7S4E-01 I.78BE+00
X2=.53)58-03 0,.000£+00 1.181E+00 3.404E+00
%2~.525E-03 0.000E+00 1.289E+00 }.728E+00
X2=.515E~03 0.000E+00 1.)47E+00 31.899E+00
X2=.505E~0) 0.000E+00 1.377E+00 ).990E+00
X2=.495E~03 0.000E+00 1.39)E+00 d4.038E+00
X2=.485E~03 0.000E+00 1.402E+400 4.063E+00
X2=.47SE-0) O0.000E+00 1.406E+00 4.076E+00
X2=.46%5E-03 0.000E+00 1,J08E+00 4.083E+QO
%2=.455E-0) O0.000E+00 1.309E+00 1.086E+00
X2=.445E-03 0.000E+00 1.410E+400 {.08BE+00
X2=.435E-03 0.000E+00 1.410E+00 3.088E+00
X2=.425E-03 O0.000E+00 1.410E+00 1.089E+00
X2x.415E-03 0.000E+00 1.J10E+00 1.089E+00
X2=.405E-03 O0.000E+00 1.110E+00 4.089E+00
X2=.395E-0) O0.000E+00 1.J10E+00 4.089E+00
%2=.395E-0) 0.000E+00 1.J10E+00 {.J89E+00
X22.3)75E-03 0.000E+00 1.110E+00 {1.089E+00
{2=.)65E-0) O0.000E+00 1. J10E+J0

1.089E+00

0.000E+00
2.000E+00
0.000E+00
0,000E+00
0.000E+00
0.000E+00
0.000K+00
0.000E+00
24
28012E-04 O.

0.000E+00
2.4)0E+00
4.168E+00
5.490E+00
6.027E+00
6.311E+00
6.463E+00
6.542E¢00
6.584E+00
6.506E+00
6.61TE+00
6.622E+00
§.625E+00
6.626E+400
5.8526E+00
6.627E+00
6.627E+00
6.327E400
.527E+00
.827E+00
.627E+00

@r ue @

2/10/89

STATE VELOCITY ARRAY OUTPUT FOR ITERATION HUMBER:

108

10

5 8 7 L] 9
4375E~0S 0.5625E-05 0.68752-05 0.8135E-05 0.9375E~05 0.1063E-04

0.000E+00
9.300E+00
0.000E+00
0,000E4+00
0.000E+00
0.000E*00
0.000E+00
0.000E+00

28 26 27 28 29
2937E-04 0.3062E-04 0.3138E-04 0.3313E-04 0.J4IBE-04 O.

0.000E+00
3.210E+00
6.022E+00
7.441E+00
9.188E+00
8.584E+00
8.795E+00
8.906E+00
8.964E+00
§.994E+00
9.010E+00
9.017E+00
9.021E+00
9.023E+00
9.023E+00
9.024E+00
9.024E+00
2.024E+00
9.J24E+00
9.921E+00
9.024E+00

.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

-X-N-X-]

0.0008+00
3.905E+00
7.456E400
9.262E+00
1.021E+01
1.072E+01
1.099E+01
1.113E+01
1.120E+01
1.124E+01
1.126EB+01
1.127E+01
1.128E+01
1.128E+01
1.128E+01
1.128E+01
1.1283E+01
1.128E+01
1.128E+01
1.129€E401
1.128E+01

0.000E+00
0.J300E+00
0,.J00E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.000E+00
4.524E¢00
8.776E+00
1.095E+01
1.210E+01
1.272E+401
1.304E+01
1.321E+01
1.330E+01
1.335E+01
1.337E+01
1.339E+01
1.319E+01
1.J39E+01
1.340E+01
1.3J40E+01
1.340E+01
1.)40E+01
1.40E+01
1.3)40E+0L
1.340E+01

0.000E+00
3.000E+00
0.000E+00
0.000E+00
0.0008+00
0.000E+00
0.000E+00
0.000E+00

0.000E+00
5.076E+00
9.986E+00
1.252E¢+01
1.386E+01
1.458E+01
1.196E+01
1.516E+01
1.526E+01
1.532E+01
1.5)4E+01
1.53)6E+81
1.5)7E+01
1.537€E+01
1.337z2+01
1.537E+01
1.537E+01
1.53784+01

.337g+01
1.837E+01
1.537E+01

0.000E+00
3.000E+00
J.000E+00
3.000E+00
0.0008+00
0.0008+00
0.000E+00
0.¢

0.000E+00
5.568K+00
1.1098+01
1.396E+01
1.5498+01
1.630E+01
1.573E+01
1.696E+01
1.708E+01
1.714E+01
1.718E+01
1.7198+01
1.720E+01
1.720E+01
1.720E+01
1.721E+01
1.721E+01
1.721E+0L
1.721E+0L
1.721E+01
1.721€+01

0.000E+00
0.V00E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

3o
3563E-04

0.000E+00
6.006E+00
1.210E+01
1.529E+01
1.698E+01
1.789E+01
1.8)7E+01
1.863E+01
1.876E+01
1.8813E+01
1.897E+01
1.388E+01
1.399E+01
1.390E+01
1.390E+01
1.390E+01
1.390E+01
1.390E+01
1.390E+01
1.390E+01
1.390E+01
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Jn
J=
=
J=
I
Ja
J=
=
J=
J=
PEY
I
I
I
Je
Je
Je
J=
J=
Je
Ja
Je
Je
J=

CIXYR Ty )

X2=.355E-03)
¥2=.345E-02
X2=.338E-0)
#2=.325E-02
X2=.315E-0)
X2=.305E-0)
X2=.295E-0)
X2=.285E-01)
X2=.275E-03
X2=.265E-0)
X2=.255E-01
X2=.245E-021
X2=.235E-03
X2=.225E-0)
X2=.215E-0)
X2=.205E-01)
X2=.195E-0)
X2=.185E-0)
X2=.175E-0)
X2=.165E-03
X2=.155E-01)
X2=.145E-03
X2=.135E-03
X2=.125E-01
X2=.115E-01)
X2=.105E-013
X2=.980E-04
X2=.850E-04
X2=.750E-04
X2=.650E-04
¥2~.550E-04
X2« .450E-04
X2= . 3508-04
X3=.2%0E-04
X3=.150E-04
5

X2=.565E-03
X2=.555E-03
X2=.545E-0)
X2=.835E-03
X2=.525E-01)
X2=.515E-03
X2=.505E-01)
X2=.495E-03
X2=.495E-0)
X2=.475E-03
X2=_.465E-03
X2=.45SE-03
X2=.445E-0)
X2=.435E-0]
X2=.425E-0)
X2=_.415E-0)
X2=.405E-03
X2=.395E-03
X2=.385E£-03
X2=.375E-03
X2=.365E-03
X2=_.355E-01
X2=_345E-0)
X2=.335E-03

B )

0.000E+00
2.000E+00
C.000E+00
€.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

31

.3688E-04 O.

0.000E+00
6.395E+00
1.301E+01
1.649E+01
1.835E+01
1.934E+01
1.987E+01
2.015E+01
2.030E+01
2.038E+01
2.042E+01
2.043€+01
2.044E+01
2.045E+01
2.045E+01
2,045E+01
2.045E+01
2.045E+01
2.045E+01
2.045E+01
2.045E+01
2.045E+01
2.045E+01
2.048E+01

1.410E+00
1.410E+00
1.410E+00
1.410E+20
1.410E+00
1.410E+00
1.410E+00
1.410E+00
1.409E+00
1.409E+00
1.408E+00
1.405E+00
1.401E+00
1.392E+00
1.376E+00
1.346E+00
1.289E+00
1.181E+00
9.748E-01
5.607E-01
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000K+00
0.000E+00
0.000E+00

32
3813E-04 O.

0.000E+00
6.7318E+00
1.3)82E+01
1.758E+01
1.959E+01
2.066E+01
2.124E+01
2.154E+01
2.170E+01
2.178E+01
2.182E+01
2.185£+01
2.186E+01
2.186E+01
2.186E+01
2.186E+01
2.186E+01
2.187E+01
2.187E+01
2.187E+01
2.187E+01
2.187E+01
2.187E+01
2.187E+01

.089E~00
.089E+00
.089E+00
L089E+0(
.08%E+00
.089E+00
.0BB8E+00
.0B8E+00
.087E+00
.085E+00
.0B82E+00
.075E+00
.062E+00
.036E+00
.988E+00
.897E+00
125E+00
.402E+00
786E+00
.S51E+00
.000E+0C
.000E+00
DO00E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

CO0CC0C0CO0O000O0ONWLLWLAGHL -GGG adiétadind

ER]
39)BE-04 O.

0.000E+00
7.039E+00
1.455E+01
1.856E+01
2.070E+01
2.185E+01
2.246E+01
2.279E+01
2.296E+01
2.305E+01
2.309£+01
2.312E+01
2.313E+01
2.313E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01
2.314E+01

.927E+00
L827E~00
.627E+00
.627E+00
.627E+00
.627E+00
.626E+00
.625E+00
.624E+00
.621E+00
.615E+00
.604E+00
.582E+00
.539E+00
.459E+00
.307E+00
022E+00
.486E+00
.465E+00
.429E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

COQO0CO0C0O00COANaAaNNABANNAARNNRNRND G O

34
4063E-04 O.

0.000E+00
7.300E+00
1.519E+01
1.942E+01
.169E+01
.291E+01
.355E+01
.390E+01
.40BE+01
.417E+01
.422E+01
.425E+01
.426E+01
.426E+01
_427E+01
.427E+01
.427E+01
2.427E401
2.427E401
2.427E+01
2.427E401
2.427E+01
2.427E+01
2.427E+01

INBRRNBDNRBDNDN N

.024E+00
24E+00
.024E+00
.024E+00
.024E+00
.024E+00
.023E+00
.022E+00
.020E+00
.016E+00
.008E+00
.992E+00
.961E+00
.902E+00
.790E+0C
.579E+00
.182E+00
.436E+00
.018E+00
.209E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
0.000E+00
0.000K+00
0.000E+00
0.000E+00
0.000E+00

COCOO0OC OO0 OO OWO ~JCO O 00 WWLWWWWWHWY W

as
4188E-04 O.

0.000E+00
7.525E+00
1.574E+01
2.017E+01
2.255E+01
2.383E4+01
2.451E+01
2.487E+01
2.506E+01
2.516E+01
2.521E+01
2.524E+01
2.525E+01
£.525E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
2.526E+01
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36
4313E-04 O.

[+]
7
1
2
2

PDNNRNLONORNDNLIRDONGLDN

2
2
2

L128E+Q)
.138E+01
.128E+0L
LL28E+01
.128E+01
.128E+01
.128E+01
.128E+01
.128E+01
.127E+01
.126E+01
.124E+01
.120E+01
.112E+01

.098E+01

.071E+01
.021E+01
.256E+00

.451E+00

.903JE+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

.000E+00

.000E+00
.000E+00
.000E+00

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

.000E+00
.714E+00
.621E+01

.081E+01
.329E+01

.462E+01
.£33E+O1
.570E+01
.530E+01
.600E+01
.606E+01
.608E+01
.610E+01
.610E+01
.611E+01
.611E+01
.611E+01
.611E+01
.611E+01
.611E+01
.611E+01
.611E+0}
.611E+01
.611E+01

.340E+01
.340E+01
. J40E+01}
. J40E+ 01
.340E+01
.J40E+01
.339E+01
.339E+01
.339E+01
.338E+0l
.337E+01
.335E+01
. JI0E+01
.321E+01
.303E+0)
.271E+01
.210E+01
.095E+01
.170E+00
.S22E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
0.000E+00
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27
4438E-04 O.

0.000E+00
7.870E+00
1.660E+01
2.135g+01
2.390E+01
2,527E+01
2.601E+01
2.640E+01
2.660E+01
2.671E+01
2.876E+01
2.679E+01
2.681E+01
2.681E+01
2.682E+01
2.882E+01
2.682E+01
2.682E+01
2.682E+01
2.682E+01
2.682E+01
2.682E+01
2.682E+01
2.682E+01

-
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o
0o
o
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o
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o

k]
4561E

]
7
1
2
2
2
2
2
2

TNNWRODNRNRD R DD VRN

.537E+01
LE2TE40L
.527E+01
.337E+01
.537E+01
.537E+01
.537E+01
.537E+01
.536E+01
.536E+01
.534E+01
.531E+01
.526E+01
.515E+01
.d95E+01
.457E+01
.)85E+01
.251E+01
.979E+00
.074E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E&+00
.000E+00
.000E+00
.000E+00

.000E+00
.993E+00
.691E+01
.177E+01
.439E+01
.580E+01
.655E+¢01
.695E+01
.716E+01
.727E+01
.733E+01
.736E+01
«737E+01
.738E+01
.738E+01
.739E+01
.739E+01
.739E+01
.739E+01
.739E+01
.TI9E+01
.739E+01
.739E+01
.739E+01
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1
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i
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1
1
1
1
1
1
1
1
1
1
1
5
¢
o
o
0o
o
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o
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o
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o
0o
o

33
4688E-04 O.

0
8
1
2
2
2
z
2
2
2
2

2

TN

z
2
2
2
2
2
2

S1£+01
S1E+01
21E+0?
721E+01
.721E+01
720E+01
720E+01
.720E+01
.720E+01
.719E+0}
.717E+01
.714E+01
.707E+01
.695E+01
.672E+01
.629E+01
.548E+01
.396E+01
.108E+01
.565E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

.1
.7
1

.000E+00

.000E+00
.000E+00

.000£+00
.000E+00
.000E+00
.000E+00

.000E+00
.085E+00
.714E+01

.209E+01
.476E+01
.620E+01

.696E+01

.137E+01

.159E+01
.170E+01

.776E+01

.779E+901
.780E+01
.781E+01
.781E+01
.781E+01
.781E+01
.781E+01
.781E+01
.781E+01
.781E+01
.7181E+01
.J81E+01
.1781E+01

1.890E~01
.990E~01
1.890E+01
1.890E+0}
1.8%0E+01
1.890E+01
1.890E+01
1.889E+01
1.889E+01
1.888E+01
1.886E+01
1.882E+01
1.875E+01
1.862E+01
1.836E+01
1.788E+01
1.697E+01
1.528E+01
1.209E+01
6.003E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000Z+00
0.000E+00
0.000E+00
0.000E+00

40
1813E-04

0.000E+00
8.146E+00
1.730£+01
2.230E+01
2.501E+01
2.646E+01
2.724E+01
2.765E+01
2.787E+01
2.798E+01
2.804E+01
.807E+01
.809E+01
.809E+01
.810E+01
.810E+01
.810E+01
2.810E+01
2.810E+01
2.810E+01
2.810E+01
2.810E+01
2.810E+01
2.810E+01
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X2=,
X2=.
A2=.
X2m.

X2=

K2=.
X2m,

X2=
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{2=

X2=,
X2=.
A2m.
A2=,
£3=.
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X2=,
X2a.
X2=.
X3=.
X2w.
X1=.
X2=.
X3qm.
A2+,
X2a=.
X3=,
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XK1=
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X2=
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X2=
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X2=
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X2=
X2=
X3=
X2=
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X2=
X2
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X2=
X2=
X2=
X2=
X2=
Xi=
X2=
12=
X2=
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X2=
eaa

L3058-9)

295£-2)
2385e-0)
1715€-0)3
265E-0)
.255E-02
245E-01)
235e-0)
.225E-0)
.215E-03
.205E-03
195e-0)
185€-03
175E-01
165E-01)
155E-03
145E-0)
1358-03
125E~03
115€-03
105E-0)
9S0E-04
850Z-04
750E-04
550E-04
S50E-04
4150E-04
J50E-04
250E-04
.150E-04
.500E-05

snsamann

I =
X1 = 0.
.565E-0)
.555€~0)
.S45£-01
.53SE~03
.5258~0)
.515£~03
.5058-03
.495E-0)
.4858-03
.4758-03
.465E-01
.455E-03
.4452-0)
.4)5E-03
.4258-03
.415£-03
.405E-03
.3958-01
.3J8SE-0]
-)758-03
-3658-03
.3558-03
.J4SE-0)
.335€-013
.J258-03
.J15E-03
.Jo5€E-03
.295%-03
285€~93
LITEE-G)

~eET_aa

w.U4ICTVL
2.343E+Q1
2.045E+01
2.045E+01
2.345E+01
2.044E401
2.043E+01
2.041E+01
2.037E+01
2.029E+01
2.014E+01
1.906E401
1.933E+01
1.334E%01
1.648E+01
1.300E+01
6.391E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000£+400
0.000E+00
0.000E+00
0.000E+00
0.000E+00
J.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

41
4938E-04 O.
0.000E+00
8.177E+00
1.738E+01
2.241E+01
2.5138+01
2.659£+01
2.738E+01
2.779E+01
2.801E+01
2.813E+01
2.319g+01
2.322E+01
2.823E+01
2.8242+01
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APPENDIX C

Infinite Channel Comparisons for Discretization Information

1 THE INFINITE CHANNEL

Dr. C. Landrum provided the analytical solution to
the temperature and velocity distributions for flow
within an infinite parallel plate channel. This solution
was also used by Tuckerman in reference [1]. Since it
has such similarity to the microchannel it can be used to
obtain discretization information. If the microchannels
are considered very tall and the heat flux is constant
along the face of the fin the microchannel problem
essentially reduces to the infinite channel problem which

is one dimensional.

The analytical solution for the temperature and

velocity within the infinite channel are as follows:

(1) u/ug = 3y'(1 - sy')
where: y' o= y/(%wc)
(2) T-T, = g UW (ay  (15yY) - v
k
where: q,'= (W W )q"
2H
T . = Wall Temperature [°C]

All other parameters are as defined in the

nomenclature section of the thesis.

The finite difference computer code was set up to
solve for the temperature and velocity distribution in
the channel of Figure Cl. The computer code calculated
the velocity and temperature solutions numerically and

printed out both the analytical and numerical results at
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Figure C1 ‘
Infinite channel geometry for analytical and numerical
discretization comparisons.

each cell center.

2 RESULTS
The infinite channel problem was solved for a

value of %W _ of 25 um, It was solved for

discretizations of 5, 10, 20, 30 and 40 cells across the
channel. The computer outputs follow and are on 14" wide
computer paper. The results are analyzed using the
percent deviation between analytical and numerical
centerline velocity as defined in equation (2) of

appendix b. Table Cl below presents the summary.



18¢C

% Deviation Temperature Velocity
Discretization
5 .80% 3.21%
10 .29% 2.06%
20 .10% 1.21%
30 .07% .76%
40 .05% .62%

Table Cl Percent Difference between analytical apd
numerical solutions of the temperature and velocity
within an infinite parallel plate heated channel.

The temperature percent difference is calculated
by:

(3) % difference = 100abs(T - T

analy numerical’/ (Twal1~

Tcenter)

The temperature percent difference for velocity
decreases very rapidly with discretization. The value of
20 cells across the half channel provides an acceptable
result of approximately 1% deviation. This agrees with
the value chosen in appendix b.

It can be seen that the values of percent
difference for temperature are very low. The
discretization of 20 cells across the channel width was
used for nearly all the microchannel problems considered

in this work.



181

APPENDIX D
Integral Analysis Manipulations
The integral analysis of Dr. C. Landrum suggested
equations which could be used to find important relations
for the optimization procedure. These are the equation
for the optimal fin to channel width ratio and the
equation for the optimal aspect ratio. They will be

derived here out of the results presented by Landrum.

1 MINIMUM IN FIN BASE TEMPERATURE VS. Ww/wc

Landrum's Integral analysis gave the following:
(1) Tpuik ~ Tinlet = T1(3%X)

Where:

r, = 2(k,/k) (Q"L/k)

Re (1+H/W_) Pr

and:
X = ww/wc

(2) Tfin,base - Tpaix =13 (140,%) (1+x)

3 X
Where:
F2 = 51 kw 1 F3 = q"H
140 X al X
Adding equations (1) and (2) yields:

: - T. = + +
(3) Tfln,base T1nlet rl(l+x) + FB (1 FZX)(l X)

3 X
Differentiating and holding all other parameters

constant except x yields:
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(4) dein,base =1 +7T

a§ 3— x?
Taking the second derivative to test for concavity
yields:

(5) d

"Tfin,pase 1 > 0 - Minimum.

= 2I’3

dx? 3 x?

Setting the first derivative to zero to find the

minimum yields:

5]

[hlad

(6) Xy = [30/T5 + T

This is the equation which will yield the value of

x=ww/WC for minimum temperature at the base of the fin

with a given pressure drop and a given heat flux. The

subscript indicates that it is for the optimal

o]

gecmetry.
2 MINIMUM IN FIN BASE TEMPERATURE WITH ASPECT RATIO

Starting with the fin temperature equation above:

(3)

Tfin,base—Tinlet =

2(kw/k)(q"L/kw)(l+x) + (q"awc)(l+ 51kw 1x) (1+%)

Re (1+a) Pr 3kw 140k «* X

Taking the derivative with respect to a yields:

(7) ngin,base =
dx
'2(kw/k)(Q"L/kw)(1+X) + Wo gq"(1+x) [a(- 51 K., 2x) + (1+ 51 Kk, 1x)]

Re (1+a® ) Pr 3k, x [ 140 k ay 140 Xk a? )
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If this derivative is zero it will yield an
extreme point. We know that the extreme point will be a
minimum because of the upwards (positive) concavity of
Figure 1.16. Setting the above derivative to zero and

simplifying yields:

(8)  6(k,/K) (L/W,)X (1+a)? [1 - k. 1x]

w

| @

Re Pr 14 E— ar

o

For large alpha a>5, 2¢>>1 so the 1 in the
quadratic (l+a)® can be disregarded. Thus, we are making
the approximation:

(1+a)? = a* + 2a for large a (a>5)

Making this substitution and simplifying yields:

(9)

ay " 2a° F xoaokw{ 51 + 6(L/W.) 1 -~ 51 K, ¥g = 0

"k [140 Re Pr] 70 k

This is the equation for the optimal aspect ratio

a, where the subscript indicates that this is the

optimal value.
Observing equations (6) and (9) reveals the

parameters X, and o are coupled. Thus these two

o}

equations must be solved iteratively for x_ and ag

respectively. The methodology for this is outlined in
section 1.11.6.
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APPENDIX E

Derivation of Eguations

4

o WS E

s ; | Ernergy Generatian
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Vo Neumanm

Boundary Condition

“ gt
Q

Figure E1

Computational Domain for derivation of the fully
developed momentum and energy equations.

The governing equations are given for the fluid
mechanics, convective and conductive heat transfer for
the three respective regions identified in Figure El.
These equations are given in complete form as they are
found in Bejan [2]. The scale analysis and fully
developed assumptions will be applied to these equations
to produce the equations presented in 1.5.

1 Fluid Flow Region. Momentum Equations.

1.1 ¥ Momentum

(1a) /f(uau + V2u + wau) = -RP + p(R’u + 9*u + 22u)
Y 32z X %’ Y? 2z*
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1.2 Y Momentum

(1b) puBv + V2V + wiv) = S o+ p(RV o+ BV 4+ Pv)
9% Y% 2z Y ox? r e ozt
1.3 Z Momentum
(1c) pluRw + vaw + wew) = -@P + u(¥w + 2w + 22 w) +gp
°x W 9z 2z ) A Y 5

The scaling relations which will be applied for the
distances are:

dX~L 'ay‘ch » 2z~H
X ~L7 Y ~W S 8z~ H?

The scaling relations which will be applied for
the velocities are:

st The time for a fluid molecule to pass
through the heat sink. [s]

W L/ st VW /st W~ H/at

Using the above and the fact that a typical
microchannel has L°1 [cm], W_ 50 [um] and H 500 [um]

vields:
BX>>Y BX>>Z
TX?>>ey? X2 >>¢2?
u>>v u>>w
Using these scaling relationships in the above
equations (la), (1b) and (lc) and cancelling all terms of

inferior order of magnitude (i.e. terms with order of

magnitude smaller than other terms) yilelds:
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(2a) 0 = 2P + p(d*u + 22u)
x 2y° a9z*°
(2b) 0 = =3P
Y
(2¢) 0 = -2P +fg
4z

Using the fact that g is a constant which scales
as order 1 yields: P,=g 2" 0

Thus, the pressure drop is a function of x only.
This allows the partial derivative in (2a) to be replaced

with an ordinary derivative with pressure. The final
result is:

(3) 1P = Tfu + 22u
LA X Py’ @z’

This is the fully developed momentum eguation
(equation 1.1) as it is solved in chapter 1 of this

thesis.

2 ENERGY EQUATIONS.

2.1 Energy Eguation. Energy Generation Region.

(4) (2T + 92T + 82T) = g"!

o%? oY? sz’

2.2 Energy Equation. Conduction Region.

(5) @p(22T + BT + ¢2T) =0

X -oy: X

2.3 Energy Equation. Fluid Flow Region.

(6) (UAT + VeI + wal) = o (T + 21T + 22T)
% )% 2z 2 %2 Y2 Szt
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Applying the above scaling rules to equations (4),
(5) and (6) and cancelling all terms of inferior
magnitude yields equations (7), (8) and (9) respectively:
Energy Generation Region.

(7) @p (82T + 3:T) = g"'
Ryt ez

Conduction Region.

(8) ap(QLT + 21T) =0
dy*? 22°
Fluid Flow Region.
(9) (U2T + V3T + wal) = o (@T + 3°7T)
IX )% ?Z Y’ 02?

Making the further assumption that v'0 and w' 0
transforms equation (9) into:

(10) WdT = DT + 27T
anx Y ez

Using the fully developed assumption which states
that the axial temperature gradient is equal to the bulk
fluid temperature gradient yields:

(11) w dT) 1k = 22T + 22T
@ dx 2y 9z

For reference, all three energy equations will be

listed.
Energy Generation Region.

(12) @ (2T + T) = g"!
Jy: 9z
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Conduction Region.

(13) af(?zT + 2:T) =0
Y’ 2z’

Fluid Flow Region.

(14) u dTbulk=?2T+32T
afg\X y? o2’

o)

3 APPLICATION OF BULK ENERGY BALANCE
The bulk energy balance will be applied to the

fully developed energy equation in the fluid flow region
above in the manner which it was used in the computer
code. Recalling the bulk energy balance of appendix A
vields an expression for the bulk fluid temperature at
the axial distance x:
'(15> Tbulk,x = Tbulk,inlet + X(Wwﬂqc)q"

PHR U C
Taking the derivative of this expression with

respect to x yields:

(16) dTp 1y = (W, W.)q"

dx /OHWCUOCp

Thus substituting this into equation (11) yields:

(17) T+ FT = (uly,2)) (W) g

Y 22f U, agpHW C
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Preliminary Calculations

1 AVERAGE KINEMATIC VISCOSITY:

It was necessary to determine
kinematic viscosity of water between
that the kinematic viscosity behaves

and 90° as in Figure Fl. The linear

an average value of
30° and 90°.

linearly between 30°

Assume

segment yields the

following:
O
S
o
i 1O
Zo ,

0. ; :
O 10 23 30 40 s os0 70 &0 8L 100
Temperaturs [ C]
Figure F1

Kinematic viscosity

linearizing approximation.

[157) -

for water versus temperature and
{Data taken from Bejan
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6

(30°) = .8(10 ) [m*/s]

(90°) = .3(107%) [m®/s)]

If the segment is assumed linear, the average is thus:
1?==%( (30°) + (90°))
V= .550(10"%) [m®/s]

2 AVERAGE VELOCITY AND REYNOLDS NUMBER

For sample 81F9 of Dr. D. Tuckerman's thesis
[1]{page 81}, the average velocity and Reynolds number
will be calculated.

The width of each microchannel and fin repeating
unit was 100 pm, = W _+W . Thus, the number of

microchannels in a 2 em wide heat sink is:

¥ microchannels = 2 {cm] = 200 microchannels.
100 {um]

The flow area for each microchannel is:

Flow area/microchannel = HW_ = (50 [um]) (302 [um])

15,100 [ (pm)* ]

The volumetric flowrate for a 2 cemtimeter wide

It

heat sink was 8.6 [cm3/s]. Thus the average velocity can

now be calculated.

u = F/A = (8.6 [cm®/s]) (1[m1/100(cm])>
(15,100(10712) (m* /channel]) (200[channels])

u = 2.85 [m/s]
The Hydraulic Diameter is calculated as:

Dpyar = 4B = 4(50 [um]) (300 [um]) = 85.7 [pnm]
2(50 + 300) [um]

Puetted
Now calculating the Reynolds Number yields:

Re = Dhydr u = (85.7 [um]) (2.85 [m/s]) = 444

.550(10" °) [m?/s]
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Since a round number was desired for the
calculations, it was decided to use the value of 500 for

the Reynolds Number calculations.
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APPENDIX G
Output from 2DREYN.FOR

The computer code which was developed for this
problem produces two output files. The first file
contains the velocity and temperature array and is named
2DOUT. The second file contains Nusselt number
calculations, integral analysis comparisons and the fin
temperature distribution and is called 2DGRAPH. These
two output files will be highlighted here and are '
included in this appendix in 1 and 2 respectively.

The example presented in this appendix is the
optimized ninety micrometer wide channel. The height of
this channel is eleven hundred and sixty micrometers and
the fin width is ninety micrometers. The pressure drop
across a 1.4 centimeter length heat sink is 2.8 pounds

per square inch.

1 VELOCITY AND TEMPERATURE OUTPUT

The title of this file indicates that the shell of
this computer program was written originally for ME573
which was taught at Oregon State University by Dr. D.
Trent in the winter of 1989.

1.1 Soluticon Method.

The solution information contained is the number
of computational cells used in each coordinate direction,
the cell geometry in each direction, the microchannel
geometry and the hydraulic Diameter. Also contained 1is
the solution method which was Point Successive Over
Relaxation, the overrelaxation factor omega, the maximum

number of iterations, the convergence criteria for delta-
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phii, the heat balance error criterion and the initial
velocity.

1.2 Iteration Details for the velocity solution.

For the Point Successive Over Relaxation
iteration, the velocity solution is printed out at four
monitor cells for every twentieth iteration along with
the delta~u criteria. Iteration stops when the delta-u
criteria is less than the delta-phi criteria. The
monitor points were all chosen in the solid region
because the temperature at these points was of interest.
Thus the velocity at these four points is zero.

1.3 Steady State Velocity Solution.

The entire steady state velocity array is printed
out in groups of ten rows by ten columns each. All of
the zero's indicate the solid region in Figure El. Above
each column is the y cell number and the y distance. To
the left of each column is the z cell number. The column
corresponding to I=1 is for the centerline of the fin
(u=0) and the column corresponding to I=41 is for the
centerline of the channel where the velocity profile can
be observed.

1.4 Information Calculated From Velocity Array.

The axial pressure gradient in [Pa/m] for the heat
sink and the pressure drop across a 1.4 cm heat sink are
presented. The average velocity, the base heat flux g
and the total sum of the heat generation for the entire
compntational area are presented. The way the problem is
modelled is to put positive heat generation in the energy
generation area and use negative heat generation to

represent the convective term in the energy equation.

' See the discussion appendix A of the Point Successive Over

Relaxation algorithm.
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These two computational hcat effects exactly balance each
other out so the heat generation is effectively zero.

1.5 Temperature Solution Information.

The optimum over relaxation factor is calculated
and the same solution information for the velocity
solution of 1.1 is presented for the temperature
solution. The iteration details correspond to the
temperatures at the four monhitor points of interest along
with the delta-T criteria printed at every fiftieth
iteration. The four monitor points are; a) the base of
the fin at the corner of the microchannel, b) The center
of the fluid channel, c) A point directly above the
generation region and d) a point near the base and
centerline of the fin. Remember that these monitor
temperatures are the computational temperatures which
must be "shifted" according to the method of the bulk
energy balance of appenaix A.

1.6 Temperature Array.

The entire temperature array is printed out in
columns of ten. Above each column is the y cell number
and y distance. To the left of every row is the z cell
number.

1.7 Information Calculated from the Temperature
Solution.

Tuckerman's constant Heat transfer coefficient is
presented for this geometry along with the conductivity
ratio (k,/k) and the conductivity of the fluid. The
numerically calculated value of y_  and the integral
analysis prediction along with the value of beta B are
presented. The ratio of heat flux up the fin to the total
heat flux (i.e. also through the base of the
microchannel) is calculated. This is expected to be

almost unity for all cases. It is .974 for this case.
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Finally, the peak water temperature and silicon

temperature at the base of the fin are presented.

2 CALCULATED INFORMATION

The information pertaining to the discretization
of Figure E1 is presented which involves the cell number
of the left and bottom boundaries (which are solid cells)
and the number and geometry of the computational cells in
each direction. The flow channel height, width and
hydraulic diameter are precsented. The pressure gradient
and pressure drop across a given length of heat sink are
presented. The Reynolds number, average velocity ,
energy generation wall flux, heat generation sum, bulk
fluid temperature, Tuckerman's constant H, the
conductivity ratio (k/k) and fluid conductivity ratio
are all presented for this microchannel geometry. The
numerical and integral analveis values of y  are
presented for this value of beta 5.

In tabular form for the different values of z up
the fin is presented the heat transfer coefficient
calculated using the bulk temperature, the nusselt number
the temperature distribution and the integral analysis f
and g functions which are the nondimensional fin
temperature distribution and nondimensional hot spot
functions respectively. Finally, the ratio of flux up the
fin to the total flux is presented along with the peak

fluid temperature and fin base temperature.
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APPENDIX H
Spreadsheet for Parametric Study

The spreadsheet containing the important
information from the cases in the parametric study is
presented. The important parameters presented are: a)
case identification b) aspect ratio « c¢) fin to channel
width ratio Ww/WC d) conductivity ratio kw/k e)
microchannel width W, f) beta 8§ g) maximum water
temperature h) fin base temperature i) percentage of the
distance up the fin where the fin temperature drops below
the bulk fluid temperature (if applicable) j) ratio of

fin flux to total flux k) pressure drop across the heat

sink 1) y, calculated numerically m) Y, calculated from

the prediction of the integral analysis n) bulk fluid
temperature Ty .1} ©) hydraulic Diameter Dhydr p) bulk

minus inlet fluid temperature Tbulk—Tinlet gq) fin base
temperature minus the bulk fluid temperature Twall-Tbulk
r) fin base temperature minus inlet fluid temperature

TwatlTinlet-



General analysis of 24 microchannels Laminar Fully Developed

{11 (2]
Case alpha Yw/We Jaw/k  Wchannel Beta Twat. max Tsi. max Tran pt gfin/qtot deltaP Yzero Yzero  Tmean D(hydr) Tb-Ti Tw-Th {1]+12)
[micrometers) {'c] {'cl lpsi) {I.A) {'cl {*cl ('cl f'cl
la} 5 0.5 224.24 60 4.186 140.305 148.752 - 0.94501 11.7 0.883 0.75192 85.881 100 60.881 54.424 115.305
1d) 1.5 0.5 224.24 60 1.861 120.605 129.498 - 0.95498 10.6 0.575 0.5194 67.795 105.882 42.795 52.81 95.605
1b}) 10 0.5 224.24 60 1.047 114.516 124.329 80 0.96157 9.91 0.468 0.4381 58.208 109.091 33.208 56.308 89.516
le) 12.5 0.5 224.24 60 0.6697 114.681 124.452 63 0.96171 9.66 0.414 0.4003 52.058 111.111 27.058 62.623 89.681
1c) 15 0.5 224.24 60 0.4651 118.144 127.921 55 0.96483 9.51 0.385 0.3798 47.831 112.5 22.831 70.313 93.144
2b) 10 0.5 224.24 30 1.0465 85.309 93.019 88.9 0.9221 80.1 0.4504 0.438 58.208 54.545 33.208 27.101 60.309
1b) 10 0.5 224.24 60 1.047 114.516 124.329 80 0.96157 9.91 0.468 0.4381 - 58.208 109.091 33.208 56.308 89.516
3b) 10 0.5 224.24 90 1.047 143.124 153.994 83 0.9607 3.1 0.466 0.438 58.208 163.636 33.208 34.916 118.124
1b) 10 0.5 224.24 60 1.047 114.516 124.329 80 0.96157 9.91 0.468 0.4381 58.208 109.091 33.208 56.208 89.516
4b) 10 1 224.24 60 2.13 118.824 126.75 - 0.9712) 9.91 0.621 0.546 69.277 109.091 44.277 49.547 93.824
Sb) 10 1.5 224.24 60 3.25 130.863 139.229 - 0.97136 9.91 0.773 © 0.6585 $0.347 109.091 - 55.347 50.516 105.863
1b) 10 0.5 224.24 60 1.047 114.516 124.329 80 0.96157 9.91 0.468 0.4381 58.208 109.091 33.208 56.308 89.515
6b) 10 0.5 448.48 60 2.0929 129.739 139.582 - 0.95235 9.91 0.588 0.543 58.208 109.091 33.208 71.531 104.739
Miscellaneous
testl 8 1 224.24 50 3.3286 120.503 130.463 - 0.961 17.9 0.778 0.666 79.117 38.889 54.117 41.386 95.503
2a) 5 0.5 224.24 30 4.1859 112.858 120.684 - 0.94285 93 0.884 0.752 85.881 50  60.881 26.977 87.858

L0Z



