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ONE AND TWO DIMENSIONAL SPACE-ENERGY FLUX
SYNTHESIS WITH SPATIALLY DISCONTINUOUS TRIAL FUNCTIONS

I. INTRODUCTION AND LITERATURE

1.1 Introduction

In a time of increasing technology and a decreasing re-

servoir of fossil fuel, the development of nuclear power

seems destined to play an important part in supplying the

world's energy needs. In the development of this resource,

safety aspects and the magnitude of the investment to be

made require accurate predictive methods. The complexity of

the problems involved requires that approximations be made

and that large computers be used.

The investment in nuclear power and in the calculat4pns

necessary for its development is substantial. Thus -there

has been and is a continuing interest in optimizing the

approximations and calculational methods employed. This

thesis is a portion of that investigation and optimization.

1.1.1 The Modal Approximation

Specifically, this thesis concerns itself with the

approximation known variously as the spectral synthesis

method, space-energy synthesis method, modal method and

overlapping group method. The basic approximation is the

assumption that the energy dependence of the neutron flux

can be expressed as a superposition of a few energy shapes
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(spectra), called modes or trial functions. This approxima-

tion to the flux is represented by

N

(r,E) = a. (r) f (E)

i=1

Thefi(E)arethetrialfunctionsandthe.
al

(r) are often

called combining coefficients or mixing functions.

1.1.2 The Diffusion E3uation

This thesis is restricted to the use of this approxima-

tion within the context of diffusion theory. The-energy de.-

pendent diffusion equation for a homogeneous medium is

-D(E)V2,E) + It(E)(1)(-r%E) = x(E)f v2 (E')
o f

Co

(1)(r E'-)dE1 + f 1,(
0 -

'±E)(P(r,Ef)dEt

(1-2)

(P(t E) is the flux or number of neutrons per unit vol-

ume at r and unit energy at E times the velocity correspond-

ing to E. D(E) is the diffusion coefficient and It(E) the

macroscopic total cross section. x(E) is the fission spec-

trum, that is, the fraction of fission neutrons per unit en-

ergy at E. v2f(E) is the-macroscopic cross section for the

production of neutrons, a product of the cross section for

fission, times v, the neutrons per fission. Both are

functions of incident neutron energy. Is(EL+E) is the cross

section for scattering from E' to E. X is the eigenvalue of

the equation. The largest eigenvalue is the effective multi-

plication factor.
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The terms in the above equation from left to right rep-

resent neutron leakage, neutron interaction with nuclei, neu-

trons supplied by fission and neutrons supplied by scatter-

ing, all at energy E and position r, Each of the terms are

per unit energy, volume, and time. This is perhaps more

easily understood if we note that a macroscopic cross sec-

tion is a probability per unit path length, and flux, being

the product of number density (per-unit energy and volume)

and velocity,.is the total path length. per unit time, volume,

and energy.

1.1.3 The Weighted Residuals Approach

The energy dependent diffusion equation is generally

not soluble due to its complexity, requiring some approxima-

tions. The spectral synthesis approach is to substitute an

expansion of the form (1-1) into equation (1-2), giving

(-D(E)f. 1(E)02a0(1) + t
(E)f.(E)a.()]

i=1
N co

1
7 X(E) f v4(V)fi(E')dE1 ai(P) + (1-3)

i=1 0
N 00

11X5 (EL4T)f.(V)dVa. )

i=1 0

This relation is some approximation to (1-2) and is

again not generally soluble. For the present study the

f.(E) are known functions of E and the a.(r) are the de-

sired information.
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To produce a set of soluble equations this development

uses the method of weighted residuals (23). Applying this

to (1-3), one multiplies through by a weight function gi(E)

and integrates over all energies and requires equality. This

yields an equation in position alone.

where

[-D,.V2
1 1

a.() + (It)jiai()) = / (

i=1 J i=1
(1-4)

a. + ) ..a. (r)]
ji

CO

121..ji =-E) D(E) f. (E) dE

(1t) = f gj(E)I (E)fi.(E)dE

co

X = f'gAE) x(E) dE
3 0 j

co

N/di = f v1 f ( ')fi(E')dE1

00

s s
f.dE g. (E) f'dE'l (E'÷E)f(E').

ji
3 o

Using N, lstch weight funttions provide the N equations

corresponding to the N unknowns ai(r).

This has been a brief introduction to provide some

background for discussion of the literature and philosophy

involved in the method. A more thorough treatment follows

in Chapter II.

1.1.4 The Multigroup Method

It is helpful to compare the development of the modal

method with that for the multigroup method, the multigroup
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method being the primary approximation in present usage. In

the multigroup formulation, the energy dependent diffusion

equation is integrated over an energy increment or group.

Using N such increments to cover the total energy range, the

energy dependent diffusion equation is reduced to N coupled

equations which are a function of position only.

Of course, if the functional dependence was known so

that the integrations could be performed, there would be no

reason for solving the equations, hence an approximation.

Consider the integral of one of the terms of the diffusion

equation as an example:

I
AE

2 t(E)(1)(r E)dE

g

(1-10)

To obtain a tractable form, a group average cross sec-

tion (flux averaged) is defined by use of an appropriate

averaging spectrum, 0(E). This spectrum is often obtained

from a zero dimensional calculation. The group average

cross section for the sample term is defined as

r =
f
AEg t

(E)(1)(E)dE

tg f
AE-

0(E)dE
g

Replacing the energy dependent cross section in (1-10) with

this average cross section yields

f It(E)r,)clE It f cp(r,E)dE =
AE

o
g AEg

/t (i) g (r)

g

(1-12)
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where 0 (r), the group flux, is defined by the right hand

equation of (1-12)

If the process of (1-10) is repeated to provide average

cross sections for each of the terms of the-diffusion equa-

tion and the integration over each term is carried.out one

obtains the multigroup diffusion equation.

Xof N
-D \720 (r) + / (r) = = (vIc) h0h (r) +

g
gg tg 7

h=1

N

h 1
Is (hag)

"
(r)

=

(1-13)

The above description is obviously incomplete; refer-

ence is made to standard texts (5, 10, 37) and to an article

on collapsing schemes (28) for further description. However,

this introduction is sufficient to provide an insight. into

some of the difficulties inherent in the multigroup. method.

The approximation in the method is in replacing the energy

dependent cross section by an averaged value. The choice of

the averaging flux, (1,(E), is obviously a critical factor in

the accuracy of the method. Also, since a single 4(E) is

typically used over a given material region while the actual

spectral shape will vary across the region, the degree of

fit will be a function of position.

In Chapter II the formalism of the, modal method is ex-

tended. We will see ':that the'. multigroup method is a spe-

cial,case within that formalism. With that insight we can

examine the multigroup formulation further.



1.2 Early History of Synthesis Methods

The use of an expansion of the form of equation (1 -1)

rests upon the assumed separability of a function of several

variables into a product: .of fUnctions of single variables

and also upon a notion of superposition. Both of these are

a time honored part of mathematidal physids.

However, while separability is a part of reactor theory

(25), it is strictly applicable only to certain very.simple

geometries, boundary conditions and material homogeneities.

The use of functions of fOrml-(1-141 to synthesize three

(1)g(x,y,z)
Zg(z),H7(x,y) (1-14)

dimensional spatial dependence from a splicing of two dimen-

sional solutions appears to have originated at Bettis Labora-

tory in 1957 (14, 38, 49). This form was applied whether

the flux was theoretically separable or not. For example,

consider a system composed of two axial regions as shown in

Figure 1.1. The idea is to make an x,y calculation for each

axial zone (for example, zone 1 might have

and zone 2 have control rods in).

These are used for the Hg (x,y) in

control rods out

Zone 1

equation (1-20), where i denotes

axial zone and g denotes group.
Zone 2

Thus, the x,y dependence is fixed

in each axial zone. This method Figure 11
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has the advantage of not requiring a three dimensional cal-

culation, but suffers discontinuities at interfaces between

axial zones. For example, one may require that the integral

of flux over the x,y plane be conserved across an interface,

but the flux at a typical x,y point will not be conserved at

the interface.

Of these three papers, the one by J. E. Meyer (38) is

the most explicit and useful.

In 1958f three more papers from Bettis using and ex-

panding on the above method were written. These expanded

the method to more complex control rod patterns (32), ex-

tended it to R-Z geometry (19), and combined the method with

use of a depletion code (1).

Also in 1958, a paper by Selengut (48) established new

insight and a sounder theoretical basis to the method by a

development from a variational principle. This established

the use of weighting functions and the use of adjoints as a

theoretically preferred weighting method. This will be dis-

cussed further in section 1.3.3.

In 1961, Calame and Federighi (9) made the first use of

overlapping groups of the form of equation (1-1). Their de-

velopment was from a variational principle and was applied

to synthesis of the thermal flux. They also point out the

applicability of the expansion to higher order transport

theory.



A paper.by S. Kaplan (22) in 1962 contained the.first

superposition in space-space synthesis, i.e.,

N
(Pg(x,y,z) Z7(z)1-17(x$Y)

i=1
1 1

(1-15)

This allows the spectrum near an interface to be a combina-

tion of the spectra of adjacent media, eliminating the inter-

face discontinuity of equation (1-14).

Both of these superposition papers, which Kaplan labels

the "new synthesis" exhibit a marked improvement, especially

in their treatment near material interfaces.

Kaplan's paper .(22) is also noteworthy for other innova

tions. His development is from a variational principle, but

having done this he notes that the results are identical in

form to those, which are obtained from the weighted residuals

approach. He then explores the use of other weighting func-

tions, namely Galerkin (20), region balance and multispot

balance, in addition to adjoint weighting. These weightings

will be discussed further in the section 1.3.3. Briefly,

Galerkin weighting uses the trial function [in this case

H.(x,y)] as weight functions and region balance weighting

uses unity over a certain region of x,y space and zero out-

side. These are used to define "digested" cross sections

such as

(1)
i t

= f 0(x,y) It H7(x-,y4- dx,dy (1-16)
t j area

where W.
D
is the weight function,
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These are equivalent to equations (1-5) through (1-9).

for space-energy synthesis and are used in a one-dimensional

(z) calculation. For spot balancing one has

/ )..31 = IZ(xj Yj)-HDxj,Yj) (1-17)

Thisisequivalellttousinglq.(x,y) =-6(x-x ,y-y.), that is,

a Dirac delta function, in equation (1-16). Hy(xj,yj) is

the ith trial function at the jth space point. For an N

mode expansion one uses N such points,

An article by Kaplan in 1966 (23) is an excellent re-

view of methods and developments to that time.

At that point, the use of space-energy synthesis for

fast reactors Was just beginning. To properly diScuss the

work done in that area, we will first expand upon the philo-

sophy and theoretical basis for the various choices of trial

and weight functions.

1.3 Discussion of the Synthesis Method

1.3.1 The Modal Expansion

The modal expansion and trial and weight functions haVe

been formally introduced in sections 1.1.1 and 1,1.3. The

purpose of this section is to give some meaning to the frame-

work developed there. Thus, it includes a number of physi-

cal arguments for particular choices-of trial and weight

functions as well as a survey of the usage and relative suc,-

cess these methods have enjoyed.
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One simple way of viewing the expansion of flux in

modes, and one which suggests many applications, is to con-

sider it as an interpolation procedure. Thus, if the energy

dependent flux at point A has one spectral shape and that at

a nearby point B has a different shape, it seems reasonable

that the flux at points between A and B should be expressable

as a linear combination of these two shapes. This idea is

not restricted to a space-energy expansion. For example,

for a system using two axial regions such as is illustrated

in Figure 1.1, an expansion of the form of equation (1-15)

can be used, where there is an Hg(x
'

y) to represent each

axial region.

Another method which suggests interpolation is the

superposition of spectra which are characteristic of material

compositions Which bracket the actual composition (44). Two

core spectra, with and without sodium present, have been

used in sodium voiding calculations (24).

From a mathematical point of view, the expansion of

equation (1-1) can be considered as a statement that the

vector qo(r,E) is the linear sum of vectors f (E), with com-

bining coefficients ai(r). The symmetry of the expansion

obviously allows one to exchange the positions of the fi

and a., but the form expressed will be useful here. In

principle, the (1)(r,E) are vectors in an infinite dimensional

vector space. In practice, since 26-group cross sections

and fluxes are used in this study, this has been reduced to
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a 26-dimensional energy space. In equation (1-1), if N

26 and the f.(E) are any 26 linearly independent vectors,

the equation can_be satisfied exactly. The statement of

equality with N 2, as in the paragraph above, is a statement,

that q5(r,E ) is coplaner with the two f(E) in the 26 dimen-

sional space. In general, any expansion in N independent

vectors in a J-dimensional space, where N < J, restricts the

(P(r,E) to an N-dimensional subspace. This mathematical

approach is useful in suggesting techniques and other areas

of application, but the choice of the number of modes to use

and what to use as modes is made chiefly on the basis of ex-

perience and on physical grounds. As the number of indepen-

dent modes increases, the accuracy of the expansion increases

but the calculational costs also increase. Some compromise

must be reached on the basis of acceptable accuracy and cost.

1.3.2 Trial Functions

In general, the most important choice is that of trial

functions or modes. If the expansion is exact, the choice

of weight functions is irrelevant, as long as they are

linearly independent. A number of methods have been pro-

posed to supply trial functions.

One choice is to use fundamental mode or infinite

medium fluxes for the material regions (43, 54). Here a

zero-dimensional multigroup calculations gives the infinite

medium flux.characteristic of the material. Then the expan

sion (1-1) will be in terms of the infinite medium fluxes
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of the region and of neighboring regions and perhaps other

spectra. Infinite medium fluxes are obviously best where

regions are large. An improvement on this which helps for

small systems' is to add to the absorption term to account

for leakage from the system. Specifically, one adds DiB2 to

the ith group absorption where Di is the diffusion coeffi-

cient and B2 is the buckling or curvature of-the flux (43,

28).

In the above, zero dimensional calculations provided

trial functions for one dimensional calculations. An ob-

vious extension of this is to use one dimensional calcula-

tions to provide fluxes which can be used as modes for a

two dimensional calculation. This study uses that technique.

A physically meaningful method is to use the neutron

current from a fueled to a non-fueled region as a source

term in the non-fueled region (42, 43). Then a solution of

the multigroup equations with this source produces a spec-

trum to represent the non-fueled region.

For thermal calculations, a Maxwellian plus an in-

finite medium spectrum for the fueled region has proved use-

ful (7, 40) .

The fission spectrum has been used as one of the trial

functions in fast reactor synthesis (33). Other functions

that have been used are scattering spectra, namely, the in-

elastic scattering spectrum (39) and spectra produced by i

elastic plus elastic'scattering (33).
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A calculation for a mixture of two adjacent material

regions has been used (11) to produce a spectrum characteris-

tic of their interface.

Finally, number of schemes have been presented for

producing improved modes by iterative processes (54, 27).

This iteration is to alternatively solve for ai(r) and then

for new fi(E), etc. Suppose one makes a modal calculation

for the al .(r) for a system, using an initial set of f.(E).

Then one assumes a new (unknown) energy dependence, fi'(E),
N

and substitutes the expansion (1)(r,E) = 1E1 ai(r)fi'(E) into

the diffusion equation. Multiplying this by a spatial

weightingfunction.w3 (r) and integrating over space and re-

quiring equality, one has an equation. Again, one needs N

such equations and thus N weighting functions. Solving

these equations produces the improved set of trial functions

[f.'(E)].

Lancefield (27) uses this type of scheme in transport

theory. The paper by Cockayne and Ott (11) uses a similar

procedure for producing a trial function to represent the

interface between two regions. A modal calculation produces

the .(r) using two trial functions which represent the two

regions. Reconstructing the group fluxes, Mgr), one calcu-

latesfilerer.is the interface position.g ri.
Substituting g(r) = Vg(ri)f(r,ri) into the diffusion equa-

tion and integrating over space, using the group diffusion

kernel as a weighting function, gives an equation in V
g
(r.),
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an element in the desired trial function for the interface.

This calculation appears to be quite successful.

In this paper, the modes will be fluxes from one dimen-

sional multigroup calculations. These should be good since

they fit the problem. Thus, this paper examines the ques-

tion of what accuracy can be achieved with a variety of

methods, given good modes.

There are a number of reasons for making this choice.

First, there have been a number of successes in producing

trial functions for material regions and the last paper

above (11) appears to be successful in producing interface

trial functions. Thus the emphasis on other areas of

investigation.

Second, the competing method is the few group calcula-

tion. The development of the multigroup method as a special

case of the weighted residuals approach in Chapter II [equa-

tions (2-11) to (2-16)] points out that the use, of fluxes

from a many group calculation to average (collapse) cross

sections for a few group calculation is exactly parallel to

using these fluxes as trial functions in a modal calculation.

Another comparison might use zero dimensional calculations

to produce fluxes for both uses.

Finally, this paper will present two dimensional calcu-

lations. The use of a one dimensional multigroup calcula-

tion to produce trial functions for the two dimensional cal-

culations is a reasonable extension of the method.
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1.3.3 Weighting Functions

The choice of weighting functions appears to be some-

thing of an art, the choice resting upon experience, areas

of emphasis in the problem being studied, and availability.

Developments from variational principles have used ad-

joint weighting. The adjoint flux is also called the ad-

joint function or importance function (25). If the multi-

group diffusion equations are written in the form :M 0,

the adjoint equations are written RI-1- = 0, where r is the

adjoint flux, r is the adjoint operator defined by

f141,4V dV =. fT771.7 dV

where u and v are vectors which have the same boundary con-

ditions as (P and cP-1-. Further development establishes that

M is just the transpose of the M matrix. Thus, one can ob-

tain 4)4' from a standard multigroup diffusion code by inter-

changing cross sections. For example, E (14-2) becomes

etc., where the num-Es(2+1) and X3(vEi)4 becomes )(4(vEf3

bers signify groups. The adjoint flux is called the impor-

tance function because the group adjoint flux at a point is

proportional to the reactivity change per neutron per second

introduced at that point, that is, it is the importance of

these neutrons to reactivity.

The developments using variational principles have the

strongest theoretical basis. Briefly, this basis is as
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follows. If R and S are continuous functions which have

the same boundary conditions as the flux and its adjoint, a

functional, F(R,S), is written which is stationary only if R

and S are the flux and its adjoint. That is, a functional

is written which has the diffusion equation and its adjoint

equation, or alternatively the P-1 equations and their ad-

joints, as its Euler-Lagrange equations.

Then, this functional is applied to the class of func-

tions of the modal expansion form and stationary conditions

for this class are obtained. The resulting equations are of

the same form as obtained by the weighted residuals approach

used in this paper, with the weight functions being the func

tions in which the adjoint was expanded. This is by no

means a total endorsement of adjoint weighting for at least

a couple of reasons. First, in going to the approximate ex-

pansion one obtains a best method of using this set of ex-

pansion functions but no insight on how to choose the energy

functions in which to expand fluxes and adjoints. Second,

the notion of an adjoint or importance function fora parti-

cular flux has meaning only if the whole system is specified.

Thus, an adjoint from one system may not fit another system.

For these reasons, and also because of the extra calculation

involved, other choices of weighting functions have been

made.

Another choice which is often made is to use the modes

or trial functions as weighting functions. This is called



18

Galerkin weighting (20). This is convenient since no extra

calculations are required. For many purposes Galerkin

weighting has been found to give accuracy comparable to that

from adjoint weighting so that the, extra calculational effort

was not worthwhile. Whether the choice is reasonable depends

upon the accuracy obtained.

A recent addition to weighting methods is reaction rate

weighting (43). Here the trial function times some appro-

priate cross section is used as the weight function. The

notion behind this use is that reaction rates such as absorp-

tion, or fission, or power are usually the meaningful quanti-

ties one wishes to obtain from a calculation. Thus, weight-

ing heavily where these reaction rates are large should

optimize the accuracy in these quantities.

Some other methods have been suggested and used. One

is to use weight functions which are not continuous in ener-

gy (13, 55, 42). For example, for an N trial function pro-

blem, one might break the energy range into N intervals and

let the weight function Wi be one over the'ith,interval =and

zero outside it. For that matter, the Wi could have a shape

within the interval, perhaps that for the region average

flux, and be zero without. These are the so-called group or

group balance and weighted group (balance) weightings,

respectively.

One could also require equality at a single energy

point (a fine energy group, in practice) which is called

spot balancing.
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Suggested references for weighting methods are Kaplan

(22, 23) and Neuhold (42, 43), the latter in space-energy

synthesis. The paper by Neuhold and Ott (43) also contains

comparative studies in space-energy synthesis.

1.4 Survey of Fast Reactor Synthesis Method

The first application of space-energy synthesis to fast

reactors appears to be that of Storrer and Chaumont (52) in

1966. Another early usage was by Stacy (51) in 1967.

Ombrellero and Federighi had earlier treated the fast neu-

tron spectrum in a thermal reactor (12, 45).

The choice of weight functions has followed previous

development, with adjoint and Galerkin weighting having the

greatest usage. Neuhold and Ott (43) introduced the use of

reaction rate weighting. This has been further investigated

by Neuhold (42) and used by Cockayne and Ott (11). Group

(balance) weighting, which corresponds to region balance

weighting in space-space synthesis, has seen limited usage

(13, 55) .

The paper by Neuhold (42) examines the choice of inter-

face weighting functions using two continuous trial func-

tions and a variety of weight functions. This includes us-

ing different weighting at the interface than in the regions.

His results are rather inconclusive. One suspects this is

at least partially due to the lack of spectral variation in

his system.
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The application of the synthesis expansion to transport

theory was suggested much earlier (9), but first applied by

Lancefield (27) in 1969. A recent papr (40) also examines

this usage for thermal calculations. Lancefield also iter-

ates between solving for space and energy functions, follow-

ing Toivanen (54).

The use of spatially discontinuous trial functions is

limited (24 A4 27). Lancefield (27) has made a limited

introduction to transport theory. A paper by Kiguchi et al.

(24) achieves reasonable results. They expand the current

at interfaces in terms of trial functions and equate the

currents on each side to this expansion, following Buslik

(8). Their results appear good but their reactor model has

a small spectral variation and is probably not a sufficient'

test. There is some question regarding the interface treat

ment. It is difficult to see how introducing an inter-

mediary, for which one must provide trial functions, can in-

crease accuracy.

Ombrellaro (44) makes use of discontinuous trial func

tions, including use in his method which divides the energy

range into a few intervals and then uses two overlapping

groups in each interval. His usage is restricted to spatial-

ly continuous weight functions.

There is a rather extensive body of literature concern-

ing synthesis methods with discontinuous trial functions. A

major portion of it concerns the development of variational
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methods which can handle the discontinuities. This is sum-

marized in a review article by Stacy (50). The original

paper by Wachspress and Becker (58) includes the interface

conditions as part of the functional. Their choice of treat-

ment led them to believe that a functional which produces

second order diffusion equations as its Euler-Lagrange equa-

tions could not be used and that the functional must be

written to produce the first order P-1 equations. This has

since been shown, to be unnecessary (26). Buslik (8) has in-

cluded the interface conditions by use of Lagrange multi-

pliers. Kiguchi, et al. (24) use this general method and

present some numerical results, their improvement in Buslik's

method is their admitting of different sets of current ex-

pansion functions at different interfaces.

There is also a group of theoretical papers discussing

the proper treatment at trial function interfaces (2, 34,

57, 50). These address themselves to the question, given

different weight functions on opposite sides of an inter-

face, what are the proper weight functions to be used at

the interface? A number of investigators (44, 55) have

avoided the issue by using spatially continuous weight

functions. Staggering of discontinuities has been suggested

(16). This will be discussed further in section 5.3.3.

Becker (3, 4) has discussed the choice of weight functions

at the interface in terms of information flow. His conten-

tion is that the transmitted information should be weighted
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by its importance in the region in which the information is

to be, used. This appears to, be verified in section 5.2.5.

Multi-dimensional space-energy synthesis has been in-

troduced by Lorenzini and Robinson (34) and their method has

been further evaluated by Greenspan (13).

1.5 Objectives of This Study

The basic motivation of the present study is to develop

and evaluate space-energy synthesis for multi-dimensional

calculations. As noted in the previous section, multi-

dimensional calculations have seen examination in two papers

(34, 13). Both of these are based on the development by

Lorenzini and Robinson, which adapts the synthesis equations

(1.4) to solution by standard multigroup codes. The examina-

tion has been limited to spatially continuous trial functions

using Galerkin and group weighting. Interface conditions

have been limited to a single functional form.

The above method has given very encouraging results.

However, further work was considered necessary for a number

of reasons. First, the solution of synthesis equations by

standard multigroup codes has proven less than satisfactory,

primarily due to convergence problems arising from the large

upscatter terms inherent to overlapping groups. Second, the

class of problems that has been treated is very limited. In

particular, only two weighting methods have been used, only

a single functional form of interface condition has been
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investigated and the above method is limited to spatially

continuous trial functions.

It should also be noted that there is a scarcity of

papers which compare various weighting methods (42, 43). A

second observation is that the typical reactor model chosen

is very simple, very often a two region slab, and exhibits

little spectral variation.

Thus, the present paper has as its objectives:

1. The development of very general one and two dimen-

sional codes which are highly convergent.

2. To make a comparative study of various weighting

methods and to develop and evaluate various inter-

face conditions using these codes, including

spatially discontinuous modes.
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II. DEVELOPING THE METHOD

2.1 Development-in a Homogeneous Medium.

A brief development of the modal method from a weighted

residuals approach has been made in Chapter I. This was

done there to allow a meaningful discussion of the litera-

ture. For the sake of ease in using this chapter, the equa-

tions will be repeated here.

This development is restricted to diffusion theory.

Since the material interfaces are to be treated separately,

this section will concern itself with the diffusion theory

for a homogeneous medium (5),

-D(E)'V20(r,E) It(E)0(r,E) = 7 x(E)

0(r,E1)dE1 +-I
s
(E'÷E)0(r,E')dE

0

(E')

(2-1)

This is an approximation to the Boltzmann Transport. Equation

(5, 10) when the directional flux is isotropic.

In this equation and in the rest of the chapter the

vector notation r has been dropped. The symbol r will re-

present any linear dimension in rectangular, cylindrical or

spherical coordinates. The position vector notation will be

applied later in the chapter° on two-dimensional results.

The basic premise of space-energy synthesis is that one

can represent the energy dependent flux by superposition of

a few energy functions
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(1) (r,E) a. (r) f. (E)

i=1
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2-2)

where these functions, fi(E), are obtained from physical

considerations and are not members of the usual orthogonal

sets used in expansions.

Substituting (2-2) into (2-1) gives an approximation

which is generally not soluble in that form.

[-D(E)fi(E)72ai(r) + (E)fi(E)ai(r)] =
i=1

2 p- rvIf(E')f(E')dEtai(r) + (2-3)
i1

s

+(E'E)f(E')dE'ai(r)]

The development of this paper follows the method of

weighted residuals (23). Using this method, one multiplies

equation (2,3) by a weight function, gj(E), integrates over

E, and requires equality. One notes that, in common with

the multigroup development, this removes the energy depen-

dence from the equation. This process results in the equa-

tion:

where

N

i=1
E

..V2a.(r) + ai(r)]
31

Ji

D.
Ji

,m
= g.(E)D(E)f.(E)dE

3

N Xi

/ [1÷ N/f
i=1

(2-4)

(2-5)



/ =-rg4(E)1t(E)fi(E)dE
o

X. = rg.(E)X(E)dE
o

f' r(v/f)4 = J v2,(E1)fi(E1)dE1
.

/s "-"fmclEg(E)rd.E/s(V
1tE)f.

( E' )

3i 1 o
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(2r6)

(2-7)

(2-8)

(2-9)

Using N weight functions leads to N coupled equations'

which can be expressed in matrix form

-15-02a TFT + /t TiTTT = g a(r) + Is a(r) (2-10)

where Ski = vIri and otherwise the symbols are as defined

above. griT is a column vector of the ai(r).

2.1.1 The Multigroup Method as a Special Case

Digressing at this point, the complete generality of

the method is noted. The fi(E) and g.(E) are completely ar-

bitrary at, this point in the discussion. For example, the

multigroup formulation results if one makes a proper choice

of fi(E) and gi(E). in this case the f1 (E) are an approp-

riate normalized spectrum over which to average cross .secf,

tions within the energy interval and zero outside the inter-

val. Defining these,

r. (E)

fi (E) = riFi (E) (E) dE (2-11)

AEi

where r. is one over the ith interval and zero outside and

'I'(E) is the non-normalized averaging spectrum. The weight



function is g.J (E) E r.J . Thus,

Gt.. =
f'r.r.1 t (E)Fi(E)dE =

J1 0 3

6
ja
.f
AE1

F.(E)1 (E)dE
.

where 6 is the Kronecker delta function. Similarly,

D31 .. = 6 f D(E)F.(E)dE,
31

AE.
1

X(E)dE,X3
AE

NIf)i = f vlf(E')Fi(E')dE',

Gc = f dE f dEtI (E14-E)F.(E1)
OF AE.

1

and equation (2-4) becomes

Xi V r

j j

-D .V2a.(r) + 2 a.(r) = L (v1
jJ J tJ A i=1

N

i1
1 a (r)
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(2-12)

(2-13)

(2-14)

(2-15)

(2-16)

.a. (r)

(2-17)

which, with the above definitions, is precisly the multi-

group formulation. Furthermore, multiplying through equatior,

(2-2) with the multigroup gi(E) and integrating over E yields

a- (r) = f (I)(r,E)dE (2-18)
AE

J

or just the usual definition for the multigroup flux.
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2.1.2 Further Development

Returning to the main development in equations. (2-4) to

(2-10), one notes that the D and It matrices are full,

rather than being diagonal as in the multigroup formulation

(equation (1 -17)]. Equations of this form have been de-

veloped using this general method (43, 51), and by varia-

tional principles (9, 24). Beyond this point treatments

vary. Equation (2-10) has been solved analytically for sim-

ple cases (43), solved numerically in the above form (24),

and manipulated into a form suitable for standard diffusion

theory codes (34).

Multiplying through (2-10) by the inverse of the D mat-

rix, yields a form in, which the identity matrix replaces the

D matrix.

-Ty2 TriT It a(r) = 7 S' a r +
Ls

(2 -19)

Combining the scattering and total cross-section matrices,

one obtains a form which is used extensively in this paper,

namely

-1V2TTET +

1 -
S' a(r)

= (2-20)

The primary motivation in going to this formulation is to

reduce storage space and increase calculational efficiency.

This will be expanded in the sections on numerical methods
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(Chapter III). Obviously, the same information is contained

in (2-20) as in (2-10)
.

Another formulation which has been used is to multiply

(2-19) or (2-20) by a diagonal matrix DI with elements

(2-21)

This form was first used by Lorenzini and Robinson (34)

in the context of spatially continuous modes. They adapted

the form (2-19) for solution by standard multigroup codes by

transfering the off diagonal terms of the It matrix to the

scatter matrix, leaving the necessary diagonal form. The

multiplication by (2-21) was necessary to satisfy the multi-

group interface conditions. This will be discussed in, sec-

tion 2.2.2.

The form obtained by multiplying (2-19) by DI is

0
.1,10.1.11,M1 ==
Di02aTFT aTFT = ff7 5.77T + 1; a(r) , (2-22)

where 5f and t are diagonal matrices and Tu. and S have the

digested form explained above. This form has essentially

the same storage and calculational requirements as (2-20)

since it has a diagonal D matrix.

2.2 Trial Function and Material Interface, Conditions

Most of the papers in space-energy synthesis have used

spatially continuous trial and weight functions, that is, a

single set of energy trial functions is used throughout the
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problem. This is quite satisfactory for the simple two or

three region problems typically used for sample calculations.

However, as the complexity of the problem and the number of

material regions increases, the number of trial functions

which are necessary to accurately represent the flux must

necessarily increase.

One dimensional multigroup codes use relatively little

computer time. For two and three dimensional codes this

certainly is not true. Thus, it would appear that synthesis

methods will most likely find their greatest use there,

where the savings can be appreciable. Spatially discontinu-

ous modes should be especially useful in treating the addi-

tional complexity of multidimensional systems.

In either case, one wishes to keep the number of modes

small to minimize calculational time and storage space.

Thus, if one can expand the flux in terms of modes relevant

to a particular region without having to carry those which

apply to other regions the savings in time and space will

be appreciable.

The interface conditions are continuity of flux and

current:

flr-,E) = flr4-,E)

D-(E)Vflr,E) = 64-(E)V4)(r+ E)

Expanding these in terms of the modes one obtains

(2-23)

(2-24)



a4 (r-)f
3.

(E) : I a. (r
+
)f. (E)

i=1

D-(E) fi(E)Vai(r-) I D +(

i=1 i=1

31

(2 -25)

)fi(E)Vai(t+) (2-26)

Consistent with the treatment within a region, the method of

weighted residuals is applied here. Thus, one multiplies

through each of the equations by a weight function gj(E) and

integrates over E and requires equality. If N different

weight functions are used, these N equations of each type

can be summaried in, matrix form as

and

where

and

G a(r-) = a(r )

va(r-) = L vT(1),

G.. = rg.(E)f7(E)dE,
31 o 3

34-

= r3 eg.(E)(E)dE,

K31 .. rg'(E)D(E)f7(E)4E,
o

= f g(E)e(E)ft(E)dE.
o 3

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)

The generality of the method is noted. For example, one

can use a different set of functions to weight the current

equations from that used to weight the flux equations. In

principle, the choice of weight functions is completely open.
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Forms (2-27) and (2-26) are the forms used in the pre-

sent paper except that one generally multiplies through by

the inverse of one of the matrices so that single matrices

can express the interface conditions. Thus,

and

WiTti = R a(r-) = H-1 G a (r) (2-33)

=Fir 'al
Va(r1.) N Va(r-) = L-1 K 7a(r) (2-34)

Each a
i
(r ) or Va (r

+
) is thus expressed as a weighted

sum of all of the 4/(r-) or Vai(r-).

2.2.1 The Mu1tigroup Method as a Special Case

Again, the multigroup relations will be developed as a

special case. The f(E) and g(E) will be the same as defined

above (Section 2.1.1), with the group structure the same in

all regions but the averaging spectrum and thus the fi(E),

region dependent.

Then,

f F(E)dE =G = ji
dji

following (2-11), and similarly Hji = dii. Also,

-11

4. = 64
J

f. D-(E)F(E)dE-=
i

ji

(2-35)

(2-36)

where DI,
-

is just the averaged group diffusion coefficient of

(2-13) and (2-17). The treatment of I,31 is identical. Thus

one has t4e relations for the multigroup method
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- -
a
i
(r ) = a

i
(r
+

) and D.
-

1
Va.(r ) =

i i
Va(r+ ) (2-37)

2.2.2 Method of Lorenzini and Robinson

The development by Lorenzini and Robinson multiplies

through the full matrix formulation (2-10) by the inverse of

the D matrix to obtain a form where the identity matrix

occupies the position of the D matrix. To fit a standard

multigroup code, the 2t matrix must also be diagonal, so the

off diagonal elements of this matrix are transferred to the

matrix.

The material interface conditions are continuity of flux

and current. Expanding these in terms of the modal expan-

siOns one has

and

N
a. (r- ) f . (E) / a- (r +) (E) (2-25)

i=1 1 1
i=1 1

2 D(E,r .(E)Va. r ) = D(E r°) (E)Va.(r ) (2-26)
i=1 1

i=1 1 1

The first is met with spatially continuous modes by ai(r) =

al.(r
+

) or all i, which is the multigroup relation. Inte-

grating (2-26) over energy, one has

where

2, DI.. Va.1 (r ) 1 DI 1. Va.(r )
11 i1 1 1

poo
DT.. =

J
D(E,r-)f.1 (E)dE

(2-38)

(2-39)
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Requiring that (2 -38) be satisfied term by term provides a

diagonal D matrix to fit multigroup codes. Thus, to complete

this form [equation (2 -22)], one multiplies the matrix form

discussed in the first paragraph by DI appropriate to the

material region.

In this paper, the modes were orthogonalized. Then the

term by term equality requirement proved to be a satisfac-

tory boundary condition.

2.3 Numerical Form; The Difference Equations

For a given point in space, equations (2-20) and (2-22)

can be written in the form

2
'7(173- / st a = XV/ a(r) (2-40)

with the matrices defined in that section. Thus D may be

the identity matrix or have diagonal elements DI =

fD(E)fi(E)dE, depending upon the formulation. The a(r) vec-

tor is made up of the N combining coefficients at that space

point.

Considering a one dimensional problem with geometry fac-

tor p (p=0 for slab, p=1 for cylindrical, p=2 for spherical

geometry), the Laplacian term can be written as

dda.(r)P dr
V2ai(r) = (rP 1

r
) (2 -41)

r

Further, consider a one dimensional space divided into

a finite number of intervals. In this discussion, the space



35

points will be on the mesh lines between intervals. The kth

space point will have intervals of length Ark to its right

and Ar
k-1 to its left. Substituting (2-41) into (2.-40),

Arls-1
multiplying by rP and integrating from rk

2 to
Ark

rk +
2 '

one has the following for, a single algebraic equa-

tion of the matrix equation.

Ark
rk+

d a. (r)
d 1

-Dii f Ark-1 dr '

f

r
p

dr
)dr +

r
k 2

rN k
+

2

(/st ) .3 f Ar
k-1

rPa.(r)dr =
J1 .

j=1
rk

2
Ark

N
rk+

1
.1 (xvIE) f A

a.(r)rPdr.
3=1 .13 ."r k-1 3

rk 2

(2-42)

In'the above, it has been assumed that the medium is homo.-

geneous.

For the integrals in the last two terms, a,(r) is

treated as a constant over the interval and denoted as a
kj

in the numerical approximation giving

A
rkr

k
+

2
a.(r)rPdr = akjArk...13

rk
2

Ork
(rk+ )P+1

P+1

Ark-1 p+i
(rk 2 )

p+1
= a Vk3 k

(2-43)

V is the volume associated with the kth space point. The

first term in (2-42) becomes



d a. (r)
-D. rP 1

dr

Arkr +
2 Ar

= -D.. [(r +
Ar 11 k

2k )P

rk
2

a a
k+1,i k,i

Ar
k

a .-a .

k 1 1( k-1 I )]

Ark -1

Ark-1\
P

2
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(2-44)

This is the usual three point difference approximation for

the. Laplacian. It should be noted that Di{ is the diagonal

element. If one had used a full D matrix formulation, one

would have had a summation here.

Substituting (2-43) and (2-44) into (2-42) one obtains

Defining

and

-Di
Ar

p Dl
Ar
k-1. )

i
(r
k
+

2

k
)

i
(r
k 2

Ark
a
k+1, Ar

a
k-1,i

+
k-1

Ark
Dii

Ar
P

D. (r )k 2

Ar
k Aq-1

(Is )i,iV]aI + ji, stA.
,j1.70k,3

1
7 L,

7
(XvIf

J =1
13 Jc 43

=

(2-45)

(2-46)

ii
rk- Ark_1/2)P/Ark_1 = gk_i i(2-47)

one can rewrite (2-45)aas



gk,i ak+1,i iak_i,i - CgkF + hk,i

1st)i iVk3ak (

1 v v

3=1 ij J

37

(2-48)

Finally, if one wishes, the N equations (i=1,.....N)

for the kth space point can be combined into a single matrix

equation.

Gk -a-k+i 2k 2k -a-k-= a (2-49)

where G
k

and H
k are diagonal matrices with elements defined

above in equations (2-46) and (2-47), except that as diagonal

matrix elements they should be written as (gk)ii and (hk)ii.

and

(S k)
= V (Xv/)

°k i,j k f ij

)i j (/st) ij Vk. 6ji ( k,i

(2-50)

(2-51)

This is the same form as standard multigroup codes with up-

scatter except for the full It matrix and the combining of

the total and scatter cross section matrices.

2.4 Producing the Input

Earlier in this chapter the various cross section

matrices (Ist, xv2
f'

B) were defined in terms of integrals

over energy. In practice, one doesn't have analytical
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expressions and thus uses multigroup cross, sectional data.

Since the cross section matrices are produced outside the

diffusion program, it is possible to use very fine group

structure in generating the input. This is a major strength,

of the method.

The input to the diffusion code is prepared by modified

versions of GENERATE, which was written by Paul Lorenzini

(33). The development of this section follows his develop-

ment closely.

The calculations are performed in units of lethargy

rather than energy, where lethargy (u) is defined as:

u
E

E
(2 -52)

where E
o

is some arbitrary reference energy.

For a given material region, equations, (2-5) to (2-9)

and (2-37) become

(2-53)

(2-54)

M
Di = g(u )D f(u (um)

m=1 j
(um) mm

(Ist)ii (1t)ji (Is)ii

where

(2 )ji =

and

Similarly,

g(u
m

) fo(um)Aumm=1 tm
(2 -55)

) = . 2-56j
s 1 [19. ) u 2 (m÷u )f..(11 )Au

n=1 3
n m=1 s nim m

(Xv/ f) ) = X
j
(v/ ). (2-57)



where

and

M

' m=1
= I, g4(um)x(um)Aum

. J

M
)i

n=1
If fi (un)Aun

(DI) = D f. (u )Au
i

m 1 m m

M is the number of fine groups.
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(2-58)

(2-59)

(2-60)

There is a distinction to make at this point between

point functions, such as most cross sections, defined to

have a particular value for each energy or lethargy, in con-

trast to distribution functions, such as fluxes, which are

defined as per unit energy or lethargy. Related to this,

multigroup codes hav9_a number of distribution functions in

tegrated over lethargy or energy.

As an example of this, consider the usage of multigroup

fluxes as modes. If one examines the expansion

N
4)(r,u) z ai(r)fi(u)

1=1
(2-61)

or its equivalent in energy units, cO(r,u) and thus f(u) are

per unit lethargy or energy. However, multigroup fluxes are

defined as integrals over the group, i.e.,

CP4 = f (u) du (2 -62)

Au
J

Thus, if multigroup fluxes are to be used as trial functions,

they must be divided by the appropriate lethargy interval.
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Proper usage of qh, as an element of the ith trial functions

is

f, (u3 ) (1)./Au. (2-63)

Except for the scattering cross section and the fission

fraction, the cross sections are point functions, and the

multigroup values can be used in the equations above. For

scattering, the multigroup cross section, Is(m÷n), deals with

the probability of a neutron in group m being scattered into

group n. Thus, it implies an integral over Aun. In the

above equations, a distribution function,'namely a probabi7

lity per unit lethargy at un, is required. This is calcu-

lated as

m.41.1 )
s n s

(2-64)

Similarly, the multigroup xi is the fraction of the

fission neutrons that go into interval Aui. What is desired

here is the fraction per unit lethargy,or

X(ui) = (2-65)

2.4.1 Input for Interface Conditions.

A program, MATXER, has been written to calculate the

matrices M and N of equations (2-33) and (2-34). First the

matrix elements of-, 171 R and L of equations (2 -27) to (2-

32) are calculated with fine group input replacing the inte-

grals.



G.. = g(u )f(u (um)
m=1 3 m 1 m m

M
H
ji

=
j

g.(u
m i
)f(u

m)Aumm=1

K. = 2 g. ( m)D-I
(u m)fi (um)AumD m=1 3

Lpi .. =
M

og4(u
m
)D

+
uidfi(um)Aum

m=1 J
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(2-66)

(2-67)

(2-68)

(2-69)

Matrix inversion of H and L followed by matrix multipli

cation produces the matrices A and R of equations (2-33) and

(2-34).
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III. SOLUTION OF- MULTI DIAGONAL MATRIX PROBLEMS

3.1 Introduction

In the earlier work by Lorenzini and Robinson (33, 34),

numerical instabilities arose due to the large upscattering

terms inherent in the modal method, when a group by group

solution method was used. The addition of discontinuous

trial functions in this work has added the further complica.-

tion of a complete coupling between modes at trial function

interfaces. For these reasons, the simultaneous solution for

all modal combining coefficients is highly desirable.

In this chapter an investigation of an equation of the

form ER = g is made, where g is a multidiagonal matrix and i

an unknown and g a known vector. An attempt is also made to

systemize and optimize this for the case where a constant B

matrix acts on a succession of s vectors to produce x vec-

tors.

3.2 General Form and Solution Methods

Equation (2-49) is a proper starting point for the

development.

G + + =k k 1 k k. k -1 X kak
(2-49)

It is in numerical form, with the matrix elements a combina-

tion of cross sectional and geometrical information and the

ak vector a column vector with elements a
k,j

the combining
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coefficient for mode j at the kth space point. For an

iterative solution of a set of equations of this type, the

terms to the left of the equal sign will be assigned to the

nth iteration and those to the right to the (n-1)th itera-

tion. This will be implied but not denoted in the following

discussion. Multiplying out the right hand side of (2-49)

and denoting the resultant vector by Fk (for fission source),

one has

= FGkak+l + E
k
a
k

+ 11
k
a
k-1 k

(3-1)

If equations of this type are stacked in a larger mat-

rix in order of increasing k, one obtains a new matrix equa-

tion,tridiagonal in form, in which the matrix elements are

themselves N by N matrices. The elements of the column vec-

tors are column vectors with N elements each.

E

H2

G1

G2

ag

a2

Fl

F2

0 H3 E3 G3 a3 F3
(3-2)

0 0 Hy E4 G4 T4

In the iteration process, one has a fission source on the

right, calculated from the combining coefficients (ai) of

the previous iteration, and wishes to calculate an improved

set of combining coefficients namely the column vector of

ai at the left of the equal sign.
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Block tridiagonal matrix problems such as (3-2) can be

solved by Gaussian reduction - backward substitution using

matrix algebra. Multiplying through the first row with E1

one has

Ei 1G1 0

=
H2 E2 t2 0

al

a2
(3-3)

Subtracting H2 times the first line equation from the second

line equation, one puts a zero to the left of the diagonal

in the second line. This process can be repeated until there

are only zero elements below the diagonal and identity ele-

ments on the diagonal. Backward solution follows.

This process will not be_ followed here since the off-

diagonal matrices in (3-2) are diagonal and it is desirdble

to take advantage of this. Expanding (3-2) in terms of

the component matrix elements for the case of two modes

yields

11 12 11e1 g1

21 22 22e 0
1 1

g1

h2" 0
11 12 11e
2

e
2

g
2

h22 e 21 e22 0 f.22 2

2 2 2 J

11
11
3

12 11h3 0 e e, g3

1,22 e 21
e 22 0

33 g32

a

3

where the matrix elements are defined in equations (2-46)

(2-47) and (2-51) except that the matrix indices have been
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moved to the superscript position for clarity. The two mode

formulation above gives a 5-diagonal matrix. In general, an

M-modal problem gives a 2M+1 diagonal matrix.

Denoting the matrix above as B, one has

b 1 1 bit b 1 3

b21 b22 b23 b24

b31 b 3 2 b33 b34 b35

0 b42 b43 b44 1)45 b46

bk,k -2 bk,k -1
b
k,k bk,k+1 bk,k +2

a2

a3 F3

a41 IF4
(3-5)

where the vector and matrix elements have been relabeled but

the symbols and function are retained,'.for example, a3

the combining coefficient of the first, mode at the second

space point.

It is tempting to call the a vector the flux vector. It

occupies the same position as the flux vector in a multigroup

calculation. In neither case it is properly a flux, the en-

ergy dependence having been integrated out. However 'this

is standard usage. With this terminology, the solution of a

problem proceeds as follows. First a flux (a-vector) guess

is made and a fission source vector (F) calculated. Then

equation (3-5) is solved for anew set of fluxes (a-vector).

This is used to calculate a new fission source vector. The
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ratio of the new total fission source (sum of elements in

the F-vector) to the old is X. The new source is normalized

to the same magnitude as the old by dividing by X. Then the

new source is used to calculate the next generation of

fluxes. This source-flux iteration is continued until the

fluxes are stationary and the effective multiplication fac-

tor A attains a constant value. (More precisely, until the

values of each change less than predetermined fractional

amounts per iteration.)

Finding the inverse of the matrix in (3-5) by the usual

direct methods is a lengthy and expensive procedure. A more

expeditious procedure, in view of the large number of zero

elements and the large size of the typical matrix involved,

is to use a Gaussian elimination-backward substitution

method or some similar method.

It is noted that the B matrix does not change for suc-

cessive iterations. Thus, in following the Gaussian elimina-

tion procedure, many of the same calculations would be re-

peated for each iteration. A procedure has been devised, the

Crout method, which saves the proper numbers such that only

calculations involving the right hand side are performed

after the first iteration. The method has been developed

for a full matrix (17) and has also been developed for a

tridiagonal matrix by a matrix factorization scheme (10).

the following section a method will be developed for multi

diagonal matrices using an intuitive approach.
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Readers not interested in this somewhat detailed de-

velopment can proceed directly to section 3.2.2. That sec-

tion includes the developed equations as well as the general

algorithms for the Crout method, which can be specialized to

the multidiagonal case.

3.2.1 Intuitive Development of Crout Method

Consider the matrix equation (3-5). Using Gaussian

elimination and dividing the first algebraic equation by

b11 yields

al + b12/b11 a2 + 1013/b11 a3 = F1 /b11 (3-6)

However, b11 will be needed in later iterations to divide a

new Fl, and 1, bit = b12/b11, and b13 = 3013/1011 are the ele

ments which will be used in the backward elimination. Thus

we store b11 rather than the implied 1 in the b11 position

and bit and bI3 in the b12 and b13 positions.

Proceeding to the second line, subtracting b21

times the first line from it yields

'0 al + (b22-b21D12)a2 + (b23- b21b13)a3 + b2 a4
(3-7)

(F2 -b2 1F1)

where F: = F1 /b11. Similarly, removing the first element

from the third line gives

0 al + (b32-b31b12)a2 + (b33-b31b13)a3 + b34a4 +
(3-8)

b35a5 = (113-b3IP:)



48

Going back to the equation for line two (3-7), one notes

that b21 is needed to treat a new right hand side. It is

stored in place of the zero in the b21 position. Also, one

divides (3-7)-by

1022 = (b2 -1)20012) (3-9)

to give an equation with 1 in the b22 position. This equa-

tion is then used to eliminate non-zero elements below it in

the second column. This equation is

where

a 2 + b' a + b' a = 1

23 3 24 4 2/

b' = (b -b b )/b123 23 32 13 22

b14 =-1D- /b;2,

Fl = (112-b2IF1)/b2

(3-10)

Again, the stored elements are b22, b13, b24 in positions

b22, b23, and b 24-, since they are needed in treating a new

right hand side [equation (3-13)] and in the equation for

the back solution (3-10).

Proceeding to the equation for line three (3-8), b13

is stored in its original position, since it is used in

treating the right hand side. Rewriting (3-8) as

b
2
a

2 3
+ b'

3
a + b'

4
a

4
+ b 35 a 5

-=F'
3 3 3

(3-14)

the definition of the symbols is apparent by comparison.



Subtracting b32 times equation (3-10) from this, one has

0 a + (b' -b' b' )a + (b -b' b' )a +
2 33 32 23 3 34 32 24 4

b35a5 = (F1-1)32Fp

Dividing (3-15) by-

yields

where

and

b" = b' -b' b' = b -b b' - b'33 33 32 2 3 33 31 13 32

a
3
+ b34' a

4
+ b' a = F"

35 5 3

b' = (b -b' b' )/b" ,
34 34 32 24 33

b' = b /b" ,
35 35 33
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(3-15)

(3-16)

(-3-17)

(3-18)

(3-19)

=- (F(3-b;2F;)/b1;3 = (F3-b31F1-b;2F;)/b1;3 (3-20)

Equation (3-17) is used in the back substitution and (3-20)

gives the prescription for treating a right hand side. Pro-

ceeding from position b31 to b35, the elements stored in

successive positions are b31, b32, b35, b;,,, and b35.

It is now noted that the treatment of the third line

is general, that is, with a five diagonal matrix, just the

coefficients of the two previous lines are used in treating

a given line.

Also, on examination of the prescriptions for the

stored forms and treatment of the right hand side of line
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three, one notes that by proceeding a line at a time and

from the left in a line, the necessary elements are in

stored positions. Thus, b31 is stored and b32 = b -b31b12

where b12 is also a stored form. Similarly, b33 = b
33

-

b311013-b12b13 involves only b33 and stored forms. Proceed-

ing through (3-18), (3-19), and (3-20), this is also true.

Since the stored form and the element itself are all

that are used in treating an element or right hand side,

the primes will be dropped from further discussion and the

term "Crouted matrix" or "Crouted element" will be used

when reference is made to this stored form.

3.2.2 Algorithms of the Crout Method

The prescriptions to produce the stored (Crout) forms

of a general (kth) line of a 5-diagonal matrix are summa-

rized in the equations below. All elements on lines above,

the element being modified and to its left on the same line

are of stored form. Thus, all elements in the equations be-

low except the one being modified are of the stored form.

A superscript "0" denotes that this has its original value.

= b
0

b
k,k-2 k,k-2

= b°bk,k-1 k,k-1
- bk,k-2 k 2,k-1

(3-21)

(3-22)

b = b0 - bk,k k,k k,k-2
b
k-2,k

- bk,k-1
bk-1,k (3-23)

bk,k+1 (bk,k+1 bk,k-lbk-1,k+l)bk,k
(3-24)

0b
k,k+2

= bkk+2 /bk,k
(3-25)
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The Gaussian elimination of a new right hand side with

this stored form of matrix proceeds as follows, with all ele-

ments except the one being modified (denoted by the super-

script 0) being the stored (Crout) form.

0
F1 /b11=

F2 = (Fo-b F )/b
2 2 21 1 22

F
3
= (F(3-b F -b F )/b

3 31 1 32 2 33

(F
0
-b
k,k-2Fk-2

-bk, -1Fk-1 ) / bkk
(3-26)

Following this the backward substitution proceeds from

the bottom line (index L) upward, using the implied one on

the diagonal and the stored elements to the right of the

diagonal.

a
L L

a
L-1

+ b
L-1,LaL = F

L-1

aL-2 bL-2,L-laL-1* -214aTo -2

ak + bk,k+1 ak+1 + k+2ak+2 7 Fk (3 -27)

The prescriptions for producing this Crouted matrix are

just the standard Crout procedure truncated to the special

multidiagonal case. The standard Crout algorithms, are



and

j-1
bi . = b.. - b ikb

13 k=1

j 1j
0bi. = (b..

J
for j

2 bikbkj) /bii for
k=1

j>i.
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(3-28)

(3-29)

This same equation applies to the flux elements, as if they

occupy a column in the b matrix. Thus,

0 iT.1 1

1 kL
F. = (F. - b. F

k
)/b..

=
(3-30)

If equations (3-28) to (3 -30) are applied to the special

multidiagonal case, the equations developed there follow.

3.3 Comparisons of Calculational Effort.

It is useful to consider the calculational efforts made

in using the Crout method for the case of repeated calcula-

tions. Looking at the calculations of equations (3-21) to

(3-25) for Crouting a general line of a 5-diagonal matrix,

one has 6 multiplications plus divisions. and 4 additions plus

subtractions, or 10 non - repeated calculations per line.

Examining the Gaussian elimination of a right hand element

(3-26) and a typical back solution [equation (3-27)], one

finds 5 multiplications plus divisions and 4 additions plus

subtractions or -9 repeated calculations per line. A similar

analysis for other multidiagonal matrices is summarized in

Table 3-1.



Table 3-1. Calculations for a Multidiagonal Matrix.

M
(Modes)

Calculations for Each Line of Matrix

J-
Diagonal
J=2M+1

Non-Repeated
(Crouting Matrix)

Repeated - (Treat
Right nand Side
and Back Soln.)

Total - (or Total
Calculations in

Standard Gauss-Elim.
Back Soln.

+ x 7. Total + - x Total +,- x 4. Total

1 3 1 2 3 2 3 5 3 5 8

2 5 4 6 10 4 5 9 8 11 19

3 7 9 12 21 6 7 13 15 19 34

4 9 16 20 36 8 9 .17 24 29. 53

5 11 25 30 55- 10 11 21 35 41 76

M J=2M+1 M2 M2 +M 2M2+M 2M 2M+1 4M+1 M2+2M M +3M+1 2M +5M+1
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Thus, a complete (including R.H.S.) first solution of

a J-diagonal matrix (J=2M+1) by Crouting or Gaussian elir

mination plus back substitution requires 2M2+5M+1 calcula-

tions per line. Each further solution using the Crouted mat-

rix requires only 4M+1 calculations. This becomes increas--

ingly important ,as the:number of modes increases.

Although the present problem heavily favors a multidia-

gonal solution of this type, a comparison of this methOd

with the usual group by group solution is in order to deter-

mine the relative efficiency of the two methods. For a sys

tem with down scatter only, whiCh is not the case here, the

two methods will give the same result after each iteration.

Upscatter will make the group by group method converge less

rapidly than the simultaneous solution method.

In the comparison, both methods will be assumed to have

Crouted matrices. Only the repeated calculations will be

considered, since, in the usual iterative context, the ori=

ginal Crouting is a minor portion of the calculation. ,

Consider a one space dimensional problem with N space

points. In a group by group (or mode by mode) solution, one

has a tri-diagonal matrix problem of N lines to solve for

each group. Thus, one has 5NM repeated calculations each

iteration (Calculations per line)x(no. of lines per matrix)x

(no. of matrices). To this one must add the-calculations

for scatter terms, since these are outside the matrix calcu-

lations here but nut for the .simultaneous solution method.
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For a full scattering matrix, the source term for each group

(i) at each space point (k) is

(Source)
k,i = (Fission Source)

k,i
+

j=1
V

s
)

ji k

(3-31)

Neglecting the multiplication by Vk, since this can be fac-

tored out and performed only once, this gives 2M calculla-

tions for each line of each matrix, divided equally between

addition and multiplication.. The added calculations from

scattering are thus (2M calculations per group-spacepoint)x

(M groups)x(N spacepoints).

'Thus, the total repeated calculations per iteration are

5NM+2M2N or (2M2+5M)N for a group by group solution.

The number of repeated calculations per line for a

multidiagonal solution is given in Table 3-1. This must be

multiplied by NM, to compare to the above, since there is

one line in the matrix for each mode at each space point and

so NM lines in the matrix.

Table 3-2 is a comparison of the two methods. Again,

both methods assume Crouted matrices. Examination of this

table shows that for more than two modes the multidiagonal

method requires more calculations than the group by group

treatment. However for the present type of problem, with

full scattering matrices, numerical instability in group by

group solution will substantially increase the number of



Table 3-2. Comparison of Multidiagonal and Group by Group Solution.

Diagonal
(Modes)

Repeated Calculations in Treating a Problem of
N Space Points

Multidiagonal Solution Group by Group Solution

+ Total + - x Total

1

2

3

4

5

3 2N 3N 5N 2N* 3N* 5N*

5 8N 10N 18N 8N lON 18N

7 18N 21N 39N 15N 18N 33N

9 32N 36N 68N 24N 28N 52N

11 50N 55N 105N 35N 40N 75N

M 2M+1 2M 2N (2M 2 +M) N (4M 2 +M) N (M 2 +2M.) N M 2+3M) N (2M 2 +5M) N

* No self scatter in 1-group calculation.
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iterations for convergence and in many cases the problem will

fail to converge. Here the multidiagonal solution is a judi-

cious choice.

A discussion of the alternate group by group solution

method is in order. Lorenzini and Robinson (33, 34) have had

considerable problems due to upscatter, Greenspan (13) has

also noted difficulties with group by group solution and

suggests and uses what is basically an iteration on groups

(cycling inner iterations so that each group flux is calcu-

lated successively rather than cycling to improve the spatial

flux shape in group one before proceeding to group two, etc.).

Another suggestion for the upscatter problem is to adopt a

neutron balance scheme (33, 47, 53). Lorenzini (33) examines

this for the overlapping group method.

In all these approaches there are extra calculations

and convergence problems which tend to override the small.

calculational advantage per iteration of Table 3-2.

Computer space requirements are not a major concern for

a few mode (group) problem in one dimension. Storing only

the non-zero elements of the matrices, the M tridiagonal

matrices require 3NM storage spaces while the multidiagonal

matrix requires (2M+1)14N spaces.

3.4 Form for the Computer Code

To provide a framework on which to base the discussion

of the computer code, we will use the simple system of
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Figure 3-1. This has two regions, the first having two

space intervals and a reflected left boundary. The second

region is assumed to have a different material and a dif-

ferent trial function set, but the treatment is general so

that either may change independently.

-2

Region 1

Ar6

6 ' 8

Region 2

Figure 3-1. Reactor Model for Discussion of the Code.

For the general interior space point, such as 2, or 6,

or 7, we use the equation obtained by integrating from one-

half interval to the left of the point to a half interval to

the right, namely equation (2-49) or in slightly different

form (3-1) .

where

Gkak +l
+ Ekak +

Rkak-1 k

or
gk -Dii (rk + fk ) p/Ark

Ar
hii = -D. (r

k 2

-1 p
) /Ark-1

k

= - 6(gi1

st 13 k 13 k
i+h

k

Fki = x . 1 (v1
f 3
) .a

k
/X

j=1

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)
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These are the matrix element8 defined in (2-46), (2-47), and

(2-51) and the notation is that used in equation (3-4),

where the matrix indices have been moved to superscript

position for clarity.

Note that points 3 and 5 in the figure are the same

interface point. The index 3 will be used to refer to ex-

pansion in trial functions applicable to the region to the

left of the interface and the index 5 applies to the set on

the right. Index number 4 is reserved for other use in the

code.

The treatment of points 1, 3, and 5 are essentially the

same as that in the development of (2-49), except that the

integration is over half a space interval.

Considering points 1 and 5 together,

r,_+
2 dpd

Dii dr [r a.(r)] dr +
dr 1

Ar
k

Ar
N r +

k

j=1
I
st

)

10fl3 3
ao(r)rlpd (3-36)

Ark
N r +

r k 2
. I Xi (v1 ) oa-(r)rPdr

j=1 rk 1 f

For the last two terms the cross sections are constant and

the common integral is treated as in the developmentof (2

49) except that now Vk-is only a half interval.



Ar
k rk%p+1 p

r + r -
f k 2 k 2- rk ]

rk
(r)rPdr = a3 [

_

3
p+1

akVk
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(3 -37)

Moving Dii from inside the integral sign in the, first

term of (3-36),
Ar

k
r k+ 2 d dai(r)

rDii j
(1"-n dr )dr = -DirP

r
k

da.1 (r)

dr

da.(r)
Ark + Dre 1

r
k
+

11 dr
2

rk

Ar a
i

-al
k% k+1 k

da.(r)
r
k

+
2

[ ] + Diirp dr

da. (r)

gk ak+1 gk ak Diir dr rk

(3-38)

For point 1, at a reflected boundary, the derivative

and the last term in (3-38) are zero. Thus, the matrix H

does not appear and the h term in the E matrix is absent.

For point 5, V5 involves a half interval and again

da(r)
there is no h term in the E matrix. Writing 1dr r5

Va
i
(r
+), we write the equation for the integral over the

half interval as

- -

GS a6 + E5 a-, 1.15' Va(r+) = F5 (3-39)
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The corresponding equation for point 3, where the in-

tegration is over a half interval to the left of the point,

is

Va(r) + E3 a8 + g a2 F3 (3-40)

The interface conditions in matrix form [equations (2-

33) and (2-34)] are

as = M a3 (3-41)

Va(r71- ) N Va(r-) 0-42)

Equation (3-41) will be used directly in the multidiagonal

matrix solution. Equation (3-42) could also appear expli-

citly and did in the original code. However, for numerical.

efficiency equation (3-42) is substituted into (3-39) to

eliminate Va(r ).

Gs a6 + E
5
a

5
+ 171+ r

5
P N Va(r (3 -43)

= _

Since Va(r) appears explicitly in the code, it is indexed

as point 4, namely

Va(r) = Va,, (3-44)

The multidiagonal matrix for a two mode expression is

shown in Figure 3-2. For simplicty of representation the

following substitutions are made:

n
X

3
= -D-

3
(3-45)



with elements X3i =
ii 3

rP (diagonal matrix), and

62

5
= rP D+ R (3-46)

5

with elements Yli = DtrP N
5 ij°

In the figure, all superscripts are indices relative to

mode number or matrix position and subscripts refer to space

points.

The large matrix on the left is 5-diagonal for the two

mode expansion and 2M+1 diagonal for the M mode expansion.

However, in the interface conditions, the elements M21 and

Y21 lie
5

outside this band. To save space, the large matrix

is stored as a 5 by NM (where M = number of modes and N =

pumber of space points) array. The two elements which lie

outside this band are stored separately. The Gaussian for-

ward elimination has a "DO LOOP" on regions so that the bulge

at the interfaces can be treated correctly (outside the stan-

dard 5-diagonal treatment). Since there are only two ele-

ments to the right of the diagonal, standard 5-diagonal

backward substitution is followed throughout. It was to ob-

taintain this form that Va(r ) was eliminated.

In the M mode problem, one has full M and Y matrices in

the 2M+1 diagonal matrix. The elements of these to the left

of the diagonals in R and 7 will lie outside the 2M+1 band.

Thus, for a three mode formulation, there will be three ele-

ments from each or a. total of six outside the band. Similar-

ly, for a four mode problem, twelve elements lie outside and

are stored separately.
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Thus, the matrix of the figure is stored in the 5 by NM

array plus the extra storage for elements that don't fit.

This is then "CroutedH and the resulting form stored in the

same positions. Then this "Crouted" matrix is used to treat

successive sources and produce fluxes (4) in the usual

source-flux iteration scheme.
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IV. FAST REACTORS AND FAST REACTOR PARAMETERS

4.1 The Place of Breeder Reactors in the Nation's
Energy Picture

At this time, it appears that breeder reactors are des-

tined to play an important part in this nation's energy sup-

ply starting in about 1985. This follows from the presently

evolving technology of reactor systems and the available

sources of energy. A recent report ::(41 ) lists the reasonably

available supplies of gas and oil in the United States as

sufficient for a few tens of years. Coal supplies are

larger, sufficient for perhaps two hundred years, but the

use of coal is under considerable pressure due to airborne

pollutants and to the destructiveness of strip mining.

Uranium deposits, using the present light water reactor

systems and cost criteria comparable to those used for fos-

sil fuels above, are also sufficient for only a few tens of

years.

Natural uranium has two :important:natural-isotopes,

U235 with 0.711% abundance and U235 essentially %the.re-

mainder. Only the former has cross sections which permit a

chain reaction. Isotopes having this property are called

fissile materials. U238 will also undergo fission, but only

at energies -.above 1 MeV, and, more importantly, not with

sufficient probability and efficiency at any energy to sus-

tain a chain reaction. However, U 238 does capture neutrons
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and through radioactive decay the product of this reaction

produces PU239, a fissile material. One calls U238 a fer-

tile material. The production of fissile material from fer-

tile material is called conversion, or in cases where the

production of fissile material is larger than the amount of

fissile material burned, breeding.

Thorium is also a fertile material, with a Th232(n y)

reaction followed by decays producing the fissile isotope

U233

The breeder reactor makes it possible to utilize a

major portion of the U238 isotope as fuel. Since U238 is 140

times as abundant as U235, breeding not only multiples the

energy available from the uranium recoverable at a given

price, but also makes the recovery of much more dilute

sources of uranium economically feasible.

4.2 Fast Reactors General

In a fast reactor most fissions are caused by fast -neu-

trons, with typical spectra having maxima at 100 to 500 keV.

This is in contrast to thermal reactors, in which most fis-

sions are caused by neutrons which are in thermal equili-

brium with the system.

Fast reactors are important because, with the exception

of the U233 thorium system, thermal reactors will not breed.

This is because, although all of the cross sections decrease

to a large extent with increasing energy, capture croPs
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sections decrease more rapidly than fission cross sections

Thus, the capture to fission ratio decreases with increasing

energy. Also, the neutron yield per fission (V) increases

slightly with energy. Thus 11, the number of neutrons

emitted per neutron capture in fuel, increases with energy.

In general, n must be substantially greater than two for

breeding, one neutron to continue the fission chain and one

or more for capture in fertile material above those lost by

leakage and capture in structural material, fission product

poisons, coolant, etc. For Pu239 this increase in rl is from

2,10 for thermal neutrons to 2.4at 100 KeV and 2.7 at 500

KeV (25).

Neglecting resonances, the cross sections for-a typical

fuel decrease with increasing neutron energy. For example,

Pu239 has a fission cross section of 746 barns at 0.0253 eV

(thermal), while the same cross section is 1.5 barns at 500

keV. There is typically a region of sharp discrete reso-

nances in the energy range from a. few eV to a few keV. Above.

this is a region of broad peaks (unresolved resonances).

Neutrons produced by nuclear fission are born with a

spectrum of energies, with roughly half of them born above

1.5 MeV. In a typical fast reactor there is a moderating

influence due to cladding and structural materials (often

stainless steel), oxygen or carbon if the fuel is in oxide

or carbide form,coolant (probably sodium),as well as inelas-

tic scatter in the fuel itself. The position and shape of
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the spectrum will be a strong function of the amounts of

these "moderators". This will be illustrated by the reactor

models used in this study.

The typical cross section discussed above and the con-

sequent complex shape of the flux in a system of this plus

several other materials requires a considerable effort to

specify in numerical, form. This motivates the method under

consideration. The contention is that these complex spect-

ral shapes can be better represented by overlapping modes

than by an equal number of nonoverlapping groups.

4.3 Reactor Parameters

4.3.1 Temperature Coefficient

One of the major concerns of a reactor designer is

safety. Two parameters which will concern us here are the

effects of a sodium void and the temperature coefficient of

reactivity, primarily a Doppler broadening effect.

The temperature coefficient of reactivity is the frac-

tional change in Keff per degree temperature change. It is

desirable that this number be negative, such that a power

excursion is self-limiting:, A major portion of this co-

efficient is due to Doppler broadening. Basically, as tem-

perature increases, the motion of the nuclei increases. Since

the relative velocity between the nucleus and the neutron de-

termines the energy available for the reaction, this in-

creased motion of the nucleus effectively broadens the
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energy range of neutrons which can interact with the reso-

nance. The area under this Doppler broadened curve (cross

section vs. energy) does not change, but the probability of

interaction increases because the neutron population is

affected over a broader range rather than being severely de-

pleted over a narrow range (essentially self-shielding in an

energy sense).

The Doppler coefficient may be positive or negative de-

pending upon whether the resonance affected is a fission or

a radiative capture resonance. Resonances of primary inter-

est here are the fission resonances of PU239 and the capture

resonances of U238 and sodium. Reactors are con-

structed to have a negative coefficient.

4.3.2 Sodium Void

A sodium void may be created by leakage or by local,

boiling. It affects the reactivity of the system through a

number of mechanisms. These are loss of moderation, in-

creased neutron leakage and reduced neutron absorption by

the sodium. The increased leakage has a negative effect on

reactivity while the reduced absorption has a positive ef-

fect. The geometry of the pancake design used as a model in

this paper was proposed to provide a high leakage and high

negative coefficient thereby,

The loss of moderation will result in a harder spectrum

which decreases the ratio of capture to fission and causes a
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positive coefficient. Also, since the typical resonances

are in the range of a few eV to a few keV, loss of moderatiOn

will deplete the neutron population in the resonances. Thus

the usual net Doppler coefficient, which is negative, will

be partially lost with sodium voiding.

In general, Na void coefficients will be positive, i.e.,

loss of sodium will increase k
eff°

There is no fully satis-

factory alternative to living with this. Increased modera-

tion to lower the effect of sodium loss and high leakage

cores both lower neutron economy and give poorer breeding.

Use of a coolant other than sodium is-not attractive since

sodium is otherwise an excellent coolant.

4.3.3 Reaction Rates

Reaction rates such as fission, absorption,cap-,

ture, etc., as a function of position are of interest since

they are related to quantities such as power, potential

radiation damage, breeding, etc., as functions of position.

All of these quantities depend upon an accurate representa-

tion of flux as a function of energy and position. This is

the basic output which is desired. If the fluxes can be

accurately predicted, the other quantities follow.

4.4 26-Group Calculation

A 26-group calculation is used as the exact solution to

which all calculations are compared. A paper by Little et
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al. (31) establishes the validity of this structure by com-

parison with calculations using much finer group structures

(MC
2

and GAFGAR). The 26-group comparison calculations, for

the two reactor models considered, are part of the thesis

work by Paul Lorenzini (33, 34).

The group structure for these calculations is shown in

Table 4-1. The cross sections data is from a Russian data

set (6). The 26-group cross section set for the G.E. reac-

tor was generated using FCC-IV (29). For the EBR-II model

this set was generated by 1DX (15). For both reactor models

the 26-group one dimensional calculations were made using

1DX while the two dimensional calculations were made using

2DB (30) .

4.5 The General Electric Pancake Design

The fast power reactor proposed by General Electric (36)

is a cylinder with a core diameter of 250 centimeters and a

core height of 80 centimeters. It is designed to operate at

1000 MWe. The "pancake" design has been chosen to increase

neutron leakage. Thus, when sodium is lost from the core,

the increased neutron leakage will decrease the reactivity

of the core. This compensates for the increase in reacti-

vity caused by the hardened spectrum.

Figure 4-1 is a quartergeometry sketch of the reactor

and Table 4-2 lists the compositions of the different
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Table 4-1. 26-group Structure

Group Energy Range Lethargy Width

1

2

3

4

6.5 - 10 MeV

4.0 - 6,5 MeV

2.5 - 4.0 MeV

1.4 - 2.5 MeV

.48

.48

.48

.57

5 800 key - 1.4 MeV .57

6 400 - 800 keV .69

7 200 - 400 keV .68

8 100 - 200 keV .69

9 46.5 - 100 key .77

10 21.5 - 46.5 keV .77

11 10 - 21.5 keV .77

12 4.65 - 10 keV .77

13 2.15 - 4.65 keV .77

14 1.0 - 2.15 keV .77

15 .465 - 1.0 keV .77

16 215 - 465 eV .77

17 100 - 215 eV .77

18 46.5 - 100 eV .77

19 21.5 - 46.5 eV .77

20 10.0 - 21.5 eV .77

21 4,65 10 eV .77

22 2.15 - 4.65 eV .77

23 1.0 - 2,15 eV .77

24 .465 - 1.0 eV .77

25 .215 - .465 eV .77

26 .0252 - .215 eV- 1.00
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material regions. Also included are the number of intervals

used in each region for the one dimensional calculations.

Table 4-2. Composition of G.E. Reactor (atoms/barn-cm)

Isotope Core Blanket Reflector

U236 7.1303 x 10-3 1.10 x 10-2

Pu239

pu240

1.12 x 103

5.00 x 104

2.315 x 104

7.00 x 106

Oxygen 1.85 x 102 2.2 x 10-2

Chromium 2.26 x 10-3 3.00 x 103 1.05 x 10-2

Iron 8.90 x 10-3 1.00 x 102 4.25 x 102

Nickel 1.38 x 10-3 1.6 x 103 6.6 x 10-3

Sodium 8.01 x 10-3 7.00 x 10-3 6.00 x 103

Tantalum 1.87 x 10-4 3.50 x 10-6

The spectral variation as a function of position is, of

interest when one wishes to approximate the energy dependent

flux by a modal expansion. Where the variation is large,

one will need more modes to properly represent the flux.

plot of the energy dependent flux for several radial posi

tions is displayed in Figure 4-2. The radial points are

listed in Figure 4-1. 1DX has the flux points at the center

of the space interval. For example, space point 40 is at

the center of the last interval in the core. Since the in-

terval length is 125 cm/40 or 3.125 cm, point 40 is half of

this or 1.5625 cm from the core-blanket interface.
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Examination of the spectral shapes in Figure 4-2 shows

that there is little variation over the core. Points:1 and

40, from the center and outer edge, of the core, are essen-

tially identical over the first fifteen energy groups and

not too different beyond. Approaching and entering the re-

flector there are appreciable changes due to its moderating

influence. A plot of the variation of the spectral shape

with axial position is not included since the regional com-

positions are identical and thus the pattern is very similar

to that for the radial case. As will be demonstrated, this

will allow the use of radial fluxes for axial trial func-

tions and vice versa.

The fluxes plotted in Figure 4-2 are true fluxes,

namely flux per unit lethargy interval. Reference to the

energy scale of Table 4-1 helps explain the spectral struc-

ture. The flux dip in group 13 corresponds to the 3 key ab-

sorption resonance of sod.ium.. The flux peak in the core is

rather flat over groups seven through nine or from 46.5 to

400 keV.

4-6. The EBR-II Reactor

The EBR-II (Experimental Breeder. Reactor-II) is a

small, fast sodium cooled research reactor (33). It has

played a major role in material testing and technology de-

velopment for fast reactors. It has a core diameter of 60

cm and height of 36 cm. The simplified model considered has
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a radial nickel reflector next to the core and a stainless

steel axial reflector, with a radial blanket of depleted

uranium beyond the reflector.

Figure 4-3 is a quarter geometry sketch of the reactor

and Table 4-3 lists its compositions.

Table 4-3. Composition of EBR-II Model (atoms/barn-cm)

Isotope Core Blanket
Nickel
Reflector

Axial
Reflector

U2" .006727 .000089

U238 .007576 .040026

U234 .000069

Aluminum .019019 .001359

Iron .007712 .004539 .004305 .031800

Chromium .001918 .001129 .001134 .009116

Nickel .000839 .000494 .073557 .004030

Sodium .003302 .010400

This reactor model presents a much more stringent test

of a calculational method than the G.E. reactor. First, the

sodium has been voided from the core and blanket so that one

doesn't have this common moderating influence in all regions.

A second influence is the reflectors next to the core which

moderate and cause a large soft component in the core near

these interfaces when compared with the Na voided core.

Finally, the spatial dimensions are smaller. This results

in a greater fractional error from the edge effects. In
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contrast, for the G.E. radial case the dimension of the core

is so large that over a major fraction of the core there is

little spectral variation. It is much easier to fit this

pseudo infinite core region than the regions of spectral

change near material interfaces. It follows that keff'

which represents an integral over the core (more exactly,

over the fueled region), will show a smaller fractional

error since the interface contribution is a smaller fraction

of the total for this case.

Figure 4-4 displays the flux shapes for several radial

points. There is considerable variation over the core due

to the reflector influence. The flux shows very little

change in shape over the nickel reflector, with the fast

flux being slightly reduced in magnitude, and the flux hav-

ing essentially a constant shape. The region acts as some

thing of a flux trap for lower energies due to the absence

of uranium. In the blanket the low energies are again de-

pleted with the U238 resonances becoming more prominent.

Fluxes for the EBR axial case are presented in Figure

4-5. Again, one has appreciable changes over the core due

to the reflector, and large changes near the interface due

to the major change in materials. For example, note group

13, which is the sodium absorption resonance at 3 keV. This

is present in the reflector, but not in the core. Over the

outer portions of the reflector, the changes are fairly

gradual.



80

10
Group

15 20 25

Figure 4-4. EBR Fluxes for Various Radial Positions.



3

0
00

9

8

7

6

5

3 Space Point

1

9

13

23

3 5 10

'\

81

Group

15 20

Figure 4-5. Fluxes for EBR Axial Positions.

25



82

One should finally compare the EBR-II fluxes with those

for the G.E. pancake and note that the variations are much

larger for the EBR-II. This is a consequence of the greater

variance in moderating properties for different regions in

the EBR-II.
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V. ONE DIMENSIONAL CALCULATIONS AND RESULTS

5.1 Introduction

There are many parameters and functional dependencies

which are of interest to the designer of a fast reactor.

Among the former, the effective multiplication constant,

Doppler coefficient and sodium void coefficient will be cal-

culated here. Included in the latter are the energy depen-

dent flux and various reaction rates as functions of posi-

tion.

In this chapter, the accuracy of the modal method in

calculating these quantities is investigated. Also, within

the framework of the method, comparisons of the accuracies

of several choices of trial and weighting functions are

made. Since the principle competitive method is the few

group approximation, comparisons with few group calculations

are also included.

The accuracy of all methods will be assessed by com-

parison with a multigroup (26 group) diffusion theory cal-

culation which will be treated as exact.

There is some, question as to how to best organize the

various results to produce a cohesive picture. That is, a

large number of output quantities are desired and calcula-

ted. These are a function of the many choices made in pro-

ducing input, namely, number of modes, choice of modes, type
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of weighting function in homogeneous regions, weighting

functions at interfaces, etc.

The choice has been made to divide the chapter into a

series of demonstrations, with considerable cross-referenc-

ing. This is an attempt at showing cause and effect which

parallels the actual investigation in many ways.

What emerges from the study is a collection of "do's"

and "don'ts "' to guide further use of the method. Also, it

is felt that the physical understanding behind many of the

mathematical concepts has been advanced. Application of the

"do's" and "don'ts" is very dependent upon the physical

world, namely the material changes and the consequent spec-

tral changes for the reactor models.

5.2 Galerkin Weighting

5.2.1: Two. Bracketing Modes Per Region

This investigation begins with Galerkin weighting (using

the modes as weight functions). The two trial functions

used in each region are fluxes from each edge of the region.

The weight functions at an interface are the weight func-

tions used in the region to the right of that interface

(where the core is at the left). This original choice has

proved to be an excellent one. Section 5.3.4 will examine

this choice in detail.

Table 5-1 is a summary of some results obtained with

these restrictions. Also included are the results from few
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Table 5-1. Galerkin Weighting with Bracketing Functions.

Case

Geometry
and

Reactor Modes

% Error in K
eff

Modal 3-Group 4-Group

1 GE-R 1,40;41,50;51,60 -.035 .034 .011

2 GE -A 1,20;21,40;41,50 .65 .439 .168

3 EBR-R 1,15;16,20;21,40 -.026 .23

4 EBR-A 1 9;10,25 .48 .31 .07(5grp)

5 EBR-A 1,9;10,B;B,25* -.018 .31

6 EBR-A 1,9;10,B;B,23* -.024 .31

7 EBR-A 1,6,9;10,14,23 -096 .31

8 GE -A 1,15,20;21,27,40;
41,44,50 .27 .439 .168

9 EBR-R 1,11,15;15,18,21;
20,25,35 1.05 .23

10 GE-R 1,33,40;41,44,50;
51,55,60 .54 .034 .011

*B is the interpolated flux at the boundary, between points
13 and 14,

group calculations for comparison, mostly from Lorenzini's

thesis. These few group calculations were made using 26

group zone average fluxes for cross section collapsing.

The notation in the modes column of Figure 5-1 follows.

The modes are fluxes chosen from the 26-group calculation.

The numbers listed refer to the flux intervals for the 1DX

calculations. These are shown in Figures 4-1 and 4-2. Semi-

colons separate the trial function sets for the different

regions, with the set for the core on the left, next the set

for the region adjacent to the core, etc.

The first four cases are the results obtained for the

different reactor geometries when two modes are used in each
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material region. These modes are chosen to just bracket each

region, that is, they are fluxes chosen from the outside

space points in each region from the 26 group calculation.

The results are generally encouraging, with the G.E. radial

and EBR radial cases showing errors in keff which are about

equal to the three group error in the first case and con-

siderably below the four group error in the second case.

The G.E. axial case presents a more difficult problem,

having a much smaller core dimension. Here the error for

two modes per region is about 1.5 times the error obtained

with a three group calculation. The EBR axial problem is

similar, presenting an error in keff of .48% vs. .31% for

the three group calculation.

5.2.2 Comments on Comparisons

The logical question at this point is, "Why aren't the

modal answers exact?" Is it a question of poor weighting or

of insufficient modes to properly express the fluxes? One

way to answer this question is to reconstruct the fluxes

from the ubiquitous expansion equation,

N
flr,E) = ai(r)fi(E)

i=1
(5-1)

and compare these fluxes to those from the 26 group calcula-

tion. This can be done, but viewing a two dimensional (space

and energy) comparison such as this is a bit overpowering.

One still has the question of how good is a "good fit". A
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method which has been found to be extremely useful is to

plot reaction rates as functions of position. This is done

by multiplying the reconstructed 26 group fluxes by the

appropriate cross sections and summing over energy. This

reduces the output to one dimension (space), which is con-

siderably more tractable. A number of reaction rates have

been calculated, but the absorption rate as a function of

position will be shown since it is applicable to all regions.

One might be tempted to go a step further and integrate

over space as well, giving the total reaction rate for the

system or reaction rates for each material region. These

latter numbers are useful and will be used, but they can be

good, even with a rather poor fit in the region, if positive

and negative errors cancel. The one-dimensional reaction

rates add the extra information of where the fit is poor.

5.2.3 Improving the Fit

Consider the EBR axial case. The error in absorption

reaction rate for case 4 as a function of position is

plotted in figure 5-1. There obviously is some, difficulty

in properly representing the flux in the rather thick re-

flector with two modes (case 4). As evidence, this reflec-

tor has been split into two trial function regions with two

bracketing functions in each of these regions (case 5). This

reduces the error in keff from .48% to .018% or under the 5

group error. A marked improvement in the error curve as a
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function of position also results, with the error in the re-

flector adjacent to the core reduced by almost a factor of

three. The percent error near the outer boundary is still

large, but this isn't usually of as much consequence, since

the flux is small in that region. This can be reduced by

choosing the outmost mode away from the edge slightly (case

6).

As an alternative to splitting the reflector, one can

add a third mode in each of the two regions (case 7), reduc-

ing the error in k
eff

to the 5 group value and the reaction

rate errors by about an order of magnitude.

Also included in Figure 5-1 is the absorption error for

a three group calculation. This also gives a poor fit over

the outer reflector.

Table 5-2 lists errors in keff and regional absorption

errors for the EBR axial cases. One notes the keff error for

Table 5-2. Regional Absorption Errors for EBR Axial Calcu-
lations

Case Modes

Error in Keff

(%)

Absorption Error
(%)

Core Refl.

4 1,1;10,25 .48 .11 5.1

5 1,9;10,B;1325* -.018 .11 1.8

6 1,9;10,B;B,23* -.024 .11 3.5

7 1,6,9;10,14,23 -.0,96- .071 -.23

.3 group 3-group .31 .081 -4,0

* B is the interpolated flux at the boundry, between points
13 and 14.
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two bracketing modes is 50% higher than the three group

error, while the two mode split reflector (cases) and the

three mode cases are much more accurate than the three group

result. The absorption errors are similar in the core, being

somewhat better for 3 group and 3 mode calculations. In the

reflector, the three mode calculation has about an order of

magnitude less'error than the other calculations.

5.2.4 Problems

For the EBR axial case, the addition of a third trial

function in each region increased the accuracy of the calcu-

lation considerably. Addition of a third mode for the G.E.

axial problem (case 8 of Table 5-1) also reduces the error

in k
eff' by about'a factor of two, to between the three and

four group results.

At this point it would be nice to conclude that one can

proceed blithely along, adding another mode from each region

and automatically achieve a marked increase in accuracy.

This is not the case. Calculations for the EBR radial and

G.E. radial cases which include a third mode chosen from

each region give results which are inferior-to those which.

were obtained using two modes per region (cases 9 and 10 of

Table 5-1). This problem will be examined and alleviated in

section 5-3.
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5.2.5 Relation Between Regional and Interface Weighting

In this preliminary section on Galerkin weighting, we

have used the same weight functions at the interface as are

used in the region to the right of the interface, where the

reactor core is at the left. In this section we present

some evidence that this is the proper choice when using two

bracketing modes per region. Section 5-3 is an extensive

investigation of the interface conditions and weighting.

Table 5-3 presents the results of a number of calcula-

tions using two bracketing modes per region. The first re,

sults are for the EBR axial model using two bracketing modes

Table 5-3. Two Bracketing Modes with Various Weighting at
Interfaces

W.F. W.F.
In Region At Interface

Keff
Error (%)

EBR Axial-Galerkin
Weighting 1,9;10,25 10,25 0.48

1,9;10,25 1, 9 1.05
1,9;10,25 6,15 0.92

GE Radial 1,40;41,40;51,60
Interface W.F.=W.F. from Region to Right

Gal. Gal. -.035
Gala Gal.+1 6.
Gal. Adj. .151
Gal. Group .181
Adj. Adj. .050
Adj. Gal. -.165

per region. The use of the weight functions in the reflector

region to weight the interface is clearly indicated.
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The remaining cases use the G.E. radial model and

bracketing modes. Weight functions at the interfaces are

all chosen from the region to the right of the interface un-

less otherwise noted. The first four of these calculations

use Galerkin weighting in the regions. Galerkin weighting

at the interface, or using the weighting as used in the re-

gion to the right, is clearly superior. In this table, Gal.+

1 weighting replaces the weight function furthest from the

interface by unity to force conservation of total flux and

current across the interface. This will be further dis,-

cussed in later sections.

The last two cases are adjoint weighting in the regions.

Again, using the same weighting at the interface as in the

region to the right is superior.

5.2.6 Sodium Void and Doppler. Coefficients

Table 5-4 summarizes a series of calculations to eval-

uate the suitability of the synthesis method for calculating

sodium void and Doppler coefficients. The modal calcula-

tions were made for the G.E. radial model using two bracket-

ing trial functions per region and Galerkin weighting. The

Ak's are obtained by differencing two separate calculations.

The Ak for sodium voiding is in error by -.53 %, treat-

ing the value from a 26 group calculation as exact. This is

one-third the error which was obtained with a four group

calculation.
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Table 5-4. Sodium Void and Doppler Changes in Keff.

Sodium Void Doppler

Ak Error Ak Error

26 group 0.017845 -0.008036 ONO 1

2-mode-Gal. 0.017750 -0.53 -0.008106 0.88

4 groups 0.017550 -1.65 -0.00784 -2.49

The result for the change in keff in going from 300°C

to 900°C are similar. Here the modal calculation produces

an error of .88% while the four group calculation is in

error by 2.49%, again about a factor of three.

It appears that these calculations, which depend appre-

ciably on spectral shape, are more accurately made using

synthesis methods.

5.3 Interface Conditions.

5.3.1 Discussion

Before proceeding to look at different weight functions

and their relative merits, it is useful to consider the in-

terface crossing conditions for spatially discontinuous

modes. First consider the modal expansion

N
(r,E) = a. (r) f (E) (5-1)

i
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For a given number of modes, this expansion should be more

nearly an equality for spatially discontinuous modes than

for continuous modes, which must be chosen to represent all

regions. In the region near an interface,- discontinuous

modes should more accurately meet the equality than the same

number of groups, whose shapes must represent region

averages.

Substituting the modal, expansions into the equation for

continuity of-energy dependent flux, one has

+
ai(r )fi(E) a.1 (r

+
fo(g)

i=1 i=1
(5-2)

The approximation here is different from that above, with

the degree of approxiMation depending upon how the ei relate

to the fi. If the fi areare spatially continuous (f. f.)

then one has an equality when ai = ai for all i. If the fi

and f
i

span the same energy space, an equality is also pos-,

sible. As one proceeds from this to the case where the f;

span the spectral variation in one material region and the

f
i
span the spectral variation in a very different material

region, statement (5-2) becomes less and less an equality.

Continuing- a step further, one multiplies (5-2) by a

weight function g,(E) and integrates over E and requires

equality.

2 a.(r )fdE g.(E)ft(E) = I a, r+)fdE g.(E)s.f.1 (E) (5 -3)

i=1 i=1 1

This provides equality in a weighted sense.
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Looking at these statements, there is a conflict. One

can make (5-2) more nearly an equality, and be less depen-

dent upon the choice of weighting functions, by providing

some overlap of trial function sets at the interfaces.. How-,

ever, providing this overlap into another region implies a

poorer fit within the region for a given number of modes, or

the use of more modes to maintain a given degree of fit.

The arguments-for the current continuity conditions are

similar. The exact condition,

D(r,E)Vflr ) = r
+
,E)Vflr

+
,E)

on substitution of the modal expansion becomes

N N
D(r ,E)f.(E)Vao(r ) I D(r',E)e(E)Va. r+)

i=1 i=1 1

(5-4)

(5 -5)

With spatially continuous modes, the flux conditions of (5-

2) are satisfied with al = aI.for all i. The current rela-

tions (5-5) cannot be met by Vai(r) = Vai(r
+

) because of

the differing diffusion coefficients. However, if the dif-

fusion coefficients on opposite sides of the interface are

similar, this condition can nearly be met with continuous

modes.

Again, as with the flux continuity relation, if the en-

ergy functions on the left span the same space as the energy

functions on the right, relation (5-5) can be an equality.

In this case the energy functions are D times f.
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The remainder of-the section on interface conditions is

devoted toward investigation of two ideas. The first-of'

these is the value of some spectral overlap of trial function

sets in achieving acceptable results. That is, should the

set chosen to represent a trial function region include

modes representative of adjacent:regions as an aid to intex7-

face coupling? The second area of investigation is the

choice of weight functions to optimize the interface coupl-

ing conditions.

5.3.2 Overlap of Trial Function Sets

To examine the value of some sharing of spectral shapes

between trial function sets for adjacent regions it is neces-

sary to consider at least three trial functions per

set, one from the region of interest and one to provide

overlap with the set on each side.

Table 5-5 provides some evidence for the usefulness of

the approach. For the G.E. radial problem, a slight overlap

at the interfaces (case 11) to 1,38,41;40,45,51;50,55,60

halves the error in keff to .26% from case 10. Expanding

this overlap to 1 35,45;34 45 55;45 52 60 reduces the error

to -.014% (case 12). Similarly, for the EBR axial problem,

we have obtained -.096% error for case 7. Overlapping at the

interface to go to sets 1,8,10;9,13,23 from 1,6,9;10,13,23

reduces the error in k
eff to -.0031.
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Table 5-5. Various Degrees of Trial Function Set Overlap
with Galerkin Wts.

Case Reactor Error in Keff

10 GE-R 1,33,40;41,45,50;51,54,60 .54

11 GE-R 1,38,41;40,44,51;50,54,60 .26

12 GE-R 1,35,45;35,45,55;45,52,60 -.014

7 EBR-A 1,6,9;10,14,23 -.096

13 EBR-A 1 8 10;9,13,23 -.0031

A similar demonstration can be presented for the EBR

radial case. It appears that for this problem the spectral

variation at interfaces from sodium voided core to sodium

nickel reflector and then to sodium voided blanket is so

great as to require overlap.

However, before proceeding further with choices of

trial functions and overlap, we will look at weighting of

the interface conditions. This has proved to be an extre-

mely fruitful area of investigation and gives insight into

the cause of the problems of section 5-2.

5.3.3 Weight Functions at Trial Function Interfaces:
Discussion.

With spatially continuous modes, one has the advantage

of exact continuity of flux across interfaces, i.e., state-

ment 5-2 is a point by point equality in energy. Thus, flux

in a group sense (integrated) and total flux are conserved.

Similarly, for the multigroup formulation, the:'integral of
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flux over each energy group is conserved. Thus, for both

these cases, the total flux (integrated over all energies)

is conserved across interfaces.

This is not true, in general, for the use of spatially

discontinuous modes. Here flux is conserved only in certain

weighted senses.

Examining the current interface conditions, of equations

(2-28) and (2-37) we see that integrals of current over ener-

gy are preserved across interfaces for the multigroup formu-

lation, but are preserved only in a weighted sense for modal

formulations.

Fortunately, one, of the strengths of the modal method

is its generality. One can obtain continuity of integrated

flux and current with spatially discontinuous trial func-

tions by using group weighting at interfaces. This is done

by dividing the energy range into as many segments as one

has modes and requiring the integrals over each energy seg-

ment (group) to be continuous.

N N
1 ai (r ) f f.(E)dE = 1 a.1 (r+) f

i
(E) dE,

1
i=1 AE, i=1 AE,

J 1

j=1,2,....,N

Vai(r-) f D-(E)f".-(E)dE = 1 Va.1 (r+) f 61-( )

i=1 AE,
1 i=1 AE.

f.(E)dE, j = 1,2....,N

(5-6)

(5-7)
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These are just the modal flux continuity equations (5-3) and

the equivalent statement for the current (2 -28), using weight,

functions which are one over group j and zero outside.

Group weighting at interfaces can be used with other

weighting within the regions. Consider the Galerkin weighted

EBR axial calculation which is included as case 7 in Tables

5-1 and 5-2. The error in keff for this 3 mode calculation

is -.096% vs .31% for 3 groups. Replacing the Galerkin

weighting at the interfaces with group weighting, the error

in k
eff

becomes -0.25%, still a credible error, being under

the three group error, but poorer than the excellent result

using Galerkin weighting throughout. An example for-two

modes is included in:Table 5-3.

It is also possible to combine conservation of total

flux and current across an interface without going to a full

group weighting at the interfaces. Extending the range of.

integration in equations (5-6) and (5-7) to include all en-

ergies assures continuity of total flux and current. These

equations are insufficient by themselves, since there must

be N relations each for the flux and current interface con-,

ditions. However, a combination of this weighting with

other weightings has been found extremely valuable when

using more than two modes in an expansion. This will be

discussed in the next section.
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5.3.4 Forcing the Conservation of Flux and Current Across
Interfaces

The use of unity as one of two weight functions at an

interface has not-proved successful, as was demonstrated in

Table 5-3. This is not-an isolated case, the use of unity

as one of two weight functions at an interface appears to be

generally unacceptable.

It has been proposed by Becker (2) for space-energy

synthesis and Wachspress (57) for space-space problems that

for a system which has regions I, J, K, L, etc. in succes7

sion, it seems reasonable to use a mode representing region

J from the center of region I to the center of region K.

Similarly, the mode representing region K would be used be-

tween the centers of-regions J and L, etc. 51.14qestedAmter7,,

face conditions for the center of region J are either (1)

coMbining coefficients for modes representing regions ,I and

K equal zero or (2) they equal each otherH

In the early work on this thesis, this method was

examined for a two mode problem with disastrous results.

This crude an approximation apparently isn't successful.

Perhaps it will be more successful when using more trial

functions. Note, however, that method (2) in the previous.

paragraph is similar to using unity as one of two weight

functions at an interface with bracketing trial functions.

This follows since the two functions chosen from near the

interface are similar, if not idential, so that conservation
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of total flux forces the other member in each set:to be

equated.

Getting back to the mainstream of this section the use

of unity as one of three weight functions at an interface

has proven very useful and indeed almost necessary if there

is little spectral overlap between the-trial function sets

being coupled.

n section 5.3.4, problems developed when the number of

modes per region was increased from two to three for the G.E.

and EBR radial problems. This section sheds some light on

these problems.

Table 5-6 is a summary of some results, mostly using

the G.E. radial model. Cases 3 and 10 are the two and three

mode Galerkin weighted results given in Table 5-1. Case 14

uses the same modes as case 10 and, the same weight functions

in the material regions. The only difference is at the in

terfaces, where the third mode at each interface has been

replaced by unity, forcing the conservation of flux and cur

rent. The results are greatly improved, with the error in

k
eff reduced from 0.54% to .018% by this change.

Attributing the difficulty in case:10 to the use of too

many weight functions chosen from a narrow spectral range,

another calculation was made. Case 15 again uses the same .

trial functions but the weight functions are fluxes chosen

to give a broader variation of spectral shapes than those

used in case 10. This improves keff to a .050% error and
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also improves the regional and pointwise reaction rates con-

siderably, but not to the extent which was obtained in case

14 where conservation of flux and current was forced.

As an indication of the uncertainty in using Galerkin

weighting at interfaces, the fluxes have been reconstructed

and integrated over energy on opposing sides of each inter-

face for case 15. There is a flux inequality at the core-

blanket interface of 0.18% while at the blanket-reflector

interface this discontinuity in total flux is 10%.

Other non-group,forms of weighting are not immune to

this problem. Cases 16 and 17 are an example of an absorp

tion reaction rate weighted problem. Considerable overlap

already aids the flux conservation, since the Modes used are

points 10,35,45 in the core and 35,45,55 in the reflector

and blanket. Again the addition of unity aids considerably,

reducing the error in keff by a factor of four.

One can argue that if a set of modes and trial func-

tions produces a poor result, almost any change in the set

will improve it. An equally valid question is, given a set

of trial and weight functions which produces accurate results,

will adding unity as a weight function at interfaces destroy

these results?

A problem for which accurate results have already been

obtained is the EBR axial problem using three trial func-

tions. Cases 13 and 18 examine this problem with and with-

out unity as the third weight function at the interface.



Table 5-6. Use of Unity as the Third Weight Function at Interfaces.

Case Weighting Error in Keff(%)
Absorption Error (%)

Core Blanket Reflector
Fission Error (%)
Core Blanket

3 gal. (2 mode) -.035 -.31 10 1.3 -.35 15.5

10 gal. .54 -

14 gal. + 1 .018 -.017 1.2 -1.8 -.035 1.5

15 gal. (broad*) .050 .18 5.9 5.5 -.23 10.2

16
1a(I)

.026 .29 4.2 .2 -0.93 5.2

17 E
a
0-1 .006 .069 1.0 .15 -.012 .76

EBR Axial

13 gal. -.0031 -.16 -.56

18 gal. + 1 .044 .19 -.086

* WF = 1 35,45;35 45,55;45 52,60
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Modes are slightly overlapped, using 1,8,10;9,13,23. The

results are excellent for both cases. One should note that

the error of .044% in k
eff

is as good as one should reasonab-

ly expect with cross-sectional data and size involved, and

comparisons of errors of the order of a factor of ten smaller

than this are meaningless. To put things in perspective,

the .044% is under the 5 group error of .070%. Regional

reaction rates are likewise excellent in both cases, as are

reaction rates as a function of position.

Another set of results which can be used as an illustra

tion is included in section 5.4.3. These cases use 10,35,45

in the core and 35,45 55 as trial functions in the blanket

and reflector, and thus already have considerable overlap to

aid interface conditions. All cases give reasonable results.

Addition of unity at an interface gives a somewhat poorer

weighting as was noted earlier in this section.

Over all, it appears that using unity as one of three

or more weight functions can be extremely useful where the

coupling between regional modes is weak and does not have

any major adverse effect where coupling is good.

5.4 Regional Weighting

5.4.1 Introduction

Up to this point our demonstrations have been primarily

made with Galerkin weighting. We have also demonstrated the

vital importance of the interface conditions when using
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spatially discontinuous modes and have shOWnsoMe methodsto

strengthen theseconditions.

This section examines the choice of weight functions

within the regions. All of the calculations are for the

G.E. reactor model. The choices examined will be Galerkin,

adjoint, reaction rate, and group weighting. Since the re-

sults are dependent upon the choices of weighting at the

interfaces and the degree of trial function set overlap,

each of these weightings will be examined with a variety of

trial function sets and interface weightings.

Section 5.4.2 examines the various weightings using

three modes per region, section 5.4.3 using spatially con-

tinuous trial functions, and section 5.4.4 using two bracket-

ing trial functions per region.

5.4.2 Three Modes Per Region

The results with three modes per region are summarized

in Table 5-7, with modes listed in Table 5-8. The table

generally is set up so that the overlap decreases from trial

function set A to set D. Trial function set A has the most

set overlap, using fluxes 1,35,45 in the core and 35,45,55

in the blanket and reflector. Trial function set B is the

same in the core and blanket as set A, but uses 45,52,60 as

a set which chould better represent the reflector spectra

while retaining considerable overlap.



Table 5-7. Results with Three Modes per Region.

Case

Trial
Func.
Set Weightings

Radial
K
eff

Error (%)

Regional Errors-Radial Axial
Absorption (%) Fission (%) Keff

Core Blanket Reflector Core Blanket Error (%)

19 A Gal -.013 -.017 2.5 1.0 -.087 3.4 -.13
20 A Gal +l -.035 -.087 4.1 2.0 -.12 5.5 +.015
16 A E,0 +.026 +.29 4.2 2.0 -.093 +5.2
17 A Ea4+1 +.006 -.069 1.0 .15 -.012 +.76
21 A Adj +.018 -.056 -.78 -4.5 0.001 .016 -.070
12 B Gal -.014 +.011 +1.7 -11 +.041 +1.9
22 B Gal +l +.016 +.013 +1.3 -35 -.009 +.55
23 B Adj +.019 -.044 -.005 -3.8 .0085 +.33 -.072
11 C Gal +.23 1.1 31 50 -1.2 +53
24 C Gal +l +.0042 .040 1.2 .45 .03 1.3
25 C Cont. Gal .041 .029 1.0 -5.3 -.015 +.63
10 D Gal .54
14 D Gal+1 +.018 -.017 1.2 -1.8 -.035 +1.5
15 D Wide Gal +.050 .18 5.9 5.5 -.23 +10.2
26 D

,a(1)
+.074 -3.2 +10 +5 -.38 +17

27 D Grp .005 .035 -1.2 +15 +.038 -1.3 -.021

Table 5-8. Modal Sets for Table 5-7.

Set Modes

A 1,35;45; 35,45,55; 35,45,55
In some cases, point 10 replaces point 1 in the first set.

B 1,35,45; 35,45,55; 45,52,60

1,38,41; 40,44,51; 50,54,60

C 1,33,40; 41,45,50; 51 54 60

rn
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Sets A and B will be discussed together. The comments

in this section will be numbered as an aid to clarity.

1. The sets 1,35,45;35,45,55 work well over the core

and blanket. We note that all the values of keff
are

equal or less than the three group error, for all of the

weightings.

2. The use of gal+1 weighting appears to have little

effect with this considerable overlap, Gal +l being slightly

worse. In Figures 5-2 and 5-3 the absorption reaction rate

errors are plotted for set A. We note that gal and (0.1+1

error curves are similar in the region of the second inter-

face, where fluxes are automatically conserved because the

trial functions are continuous.

3. In the case of absorption reaction rate weighting

(E
a
cp = weight function, where E

a
is the absorption cross

section from the same region as (P), unity as a weight funs-

tion at the interfaces improves the results considerably,

most spectacularly the reaction rates as a function of posi-

tion (Figure 5-3), with a generally excellent fit throughout.

4. The blanket to reflector interface presents a pro-

blem, since it is here that the largest spectral variation

occurs. Galerkin and Galerkin+l weighting do not appear to

handle this well. Adjoint and EacP and EacP+1 handle this

quite well.

This appears to be primarily a weighting problem, since

the change in modes doesn't cause any appreciable change.
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We proceed to sets C and D, which we will discuss to-

gether. C overlaps by a point at each interface while D does

not.

5. As one decreases the trial function overlap, forc-

ing the conservation of flux and current across and interface

is a necessity. For trial function sets C and D the results

are spectacularly improved by use of unity as one of the

weight functions at interfaces. As stated in the section on

interface weighting, it appears this is primarily a problem,

caused by a narrow spectral range of weight functions at the

interface, since use of continuous weight functions 1,44,54

for case 25 and a broader variety of weight functions 1,35,

45;35,45,55;45,52,60 for case 15, both have an appreciable

positive effect, although not as good as that produced by

using unity at the interface.

6. Figure 5-4 illustrates that Galerkin weighting can

be very good using trial function sets chosen entirely from

within the region and conservation of integrals of flux and

current at interfaces.

5.4.3 Spatially Continuous Trial Functions

The use of spatially continuous trial functions can be

considered the ultimate in trial function overlap. Again we

use the G.E. radial model as the sample problem. The first

three cases use fluxes from points 1,45, and 55, or the cen-

ters of the material regions, as trial functions.

For comparison, a three group calculation is included.

This calculation uses region average fluxes for collapsing
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cross sections (or, in terms of the modal method, the modes

chosen are segments of the region average fluxes).

The results of these calculations are summarized in

Table 5-9. Galerkin and adjoint weighting appear comparable

in calculating keff and regional integrals of reaction rates

and also comparable to the multigroup method. For these

quantities, the group weighted modal method appears distinct-

ly better, reducing errors in keff by about a factor of 10.

Figure 5-5 is a graph of the error in absorption rate

as a function of position. Here the Galerkin weighting and

the multigroup method show error curves with similar shapes

and maxima. The modal method with adjoint and with group

weighting is distinctly more accurate, with maxima in the

error curves reduced by a factor of 4 or 5 times.

Also included in Table 5-9 is a calculation using re-

gion average fluxes as modes for a group weighted synthesis

calculation. It is interesting to compare this to the stan-

dard 3-group calculation since identical information is used

in both calculations, namely the region average flux shapes.

The only difference is that for the multigroup calculation,

one uses energy segments of these as modes while for the

synthesis calculation the continuous (in energy) shapes are

superimposed. The results for the synthesis approximation

are clearly superior. A plot of reaction rate errors for

the synthesis calculation (case 31) is not included since it

is essentially identical to that for the group weighted case

30 (Figure 5-5).



Table. 59.- Results. with. Continuous Trial Functions..

Case

Trial
Func.
Set Weightings

Radial
Keff

Error (%)

Regional Errors-Radial
Axial
KKeff

Error (%)

Absorption (%) Fission (%)

Core Blanket Reflector Core Blanket

28

29

30

31

E

E

E

3-Group*

RA

Gal.

ADJ

GRP

GRP

-.087

.038

-.004

-.035

+.0011

.080 .22

-.073 .32

-.005 -.05

-.0021 +.4

.0088 -.11

-1.8

-4.3

-1.9

+ .14

-1.5

-.005

-.13

-.002

-.012

- .0024.

.43

.59

+.19

+.52

-.097

+.31

.439

Trial Function Sets:

E 1,45,55

RA Region Average Fluxes

Three group calculation uses region average fluxes for cross section
collapsing.
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Functions.
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5.4.4 Two Trial Functions

In section 5.2, calculations were made using two

bracketing modes per region and Galerkin weighting. This

will now be examined for a broader choice of weighting.

Again,-the G.E. radial model will be used. The results of

these calculations are included in Table 5-10 and Figure

5-6.

For this choice of trial functions, the results are

comparable for Galerkin and adjoint weighting, with keff

errors comparable to that for the three group. calculation..

Using absorption reaction rate weighting improves. these re-

sults appreciably, reducing the regional absorption errors,

in the blanket and point by point, by a factor of-about two.

Group weighting provides even better regional numbers, al-.

though its fit in the reflector is not as good.

Three different choices for dividing the fine groups

among two broad groups have been made, with a split using

1 -8, 9-26 giving the most accurate keff. Since the flux

drops off rapidly beyond group 12 and since the splits at

high energy give better results, the implication is that one

should weight over the high energy end of the spectrum and

essentially ignore the low energy end.

Without a one dimensional calculation, the production

of flux shapes to represent the interface presents some spe-

cial techniques which are somewhat more difficult than



Table 5-10. G.E. Radial Geometry-Two Modes with Various Weighting

(Bracketing Modes - 1,40;41,50;51,60)
Absorption Error (%)

Weight Function k
eff

% of Error in keff Core Blanket Reflector

Galerkin 1.0803118 -.035 -.32 10.% 1.3%

Adjoint 1.0801451 -.050 -.23 + 9.3 -4.2

,a(1)
1.0805638 -.011 -.20 + 4.5 -2.0

Group (1-8 1.0806066 -.0073 -.15 + 2.1 -1.5
9-26)

Group (1-6 1.0805383 j.014
7-26)

Group (1-11 1.0814613 +.070
12-26)

Split :Blanket- - 1,45;45,55

Group (1-8 1.0806217 -.0059 -.12 - 2.0 -6.6
9 -26)
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producing fluxes characteristic of regions. Thus, unless a

two dimensional calculation is to be made, in which case a

one dimensional calculation to generate modes is justified,

an expansion in terms of modes representative of regions is

preferable.

The last calculation of Table 5-10, a group weighted,

G.E. radial problem, uses modes chosen from the centers-Of

the regions. This yields two trial function regions with

the trial function interface at the center of the blanket.

Trial functions for the first region are 1,45 and for the

second region 45,55. Errors in keff and in absOrption of

the core and blanket are all slightly less than for modes

which bracket material regions, but the absorption error in

the reflector is somewhat greater.
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VI. TWO DIMENSIONAL METHODS AND RESULTS

6.1 Introduction

Multidimensional calculations are the probable ultimate

use of modal methods due to the substantial potential cost

savings involved. Extension of-the modal, method as deve-

loped for a single spatial dimension to multi-dimensional

problems is conceptionally simple. It merely consists of

replacing the spatial variable r by a vector position r to

denote a point in multi-dimensional space. Again the start-

ing point in the development is the energy dependent diffu-

dion equation.

- D(E)V20,E) + It(E)q)(,E) =

, r r
7 xtE)JyLf(V)01:,E1)dEl + fls(E4+E)0

6.2 Developing the Method

(6-1)

' ) dE '

The development of the differential equationswhich are

the modal approximation to equation (6-1) is identical to

that for the one dimensional case. Namely, one substitutes

the expansion in trial functions (P(i'",E) ai(1.)fi(E) into
i=1

equation (6-1), multiplies by a weight function g,(E), inte-
J

grates over E, and requites an equality. Using N such

weight functions, the resulting equations can be combined

into a matrix equation



D72ai (r) + Itai(1.) -- xvIfa) + Isaj(P)
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(6-2)

where the matrices are identical with those of Chapter II,

for example

Dj1 fgp (E) D (E) fi (E) dE (6-3)

The vector a(1) is a column vector of the combining coeffi-

cients at point r in space.

In common with the developments of Chapter II, equation

(6-2) has been multiplied by the inverse of the D matrix.

This places the identity matrix in its position, which is

advantageous sinceitsimplifies the coupling between adjacent

space points and thereby reduces the computational effort.

The interface conditions are symbolically thoseof the

one dimensional development. The energy dependent flux in

the flux and current continuity equations is replaced by the

modal expansions. Then equality is required in a weighted

residuals sense, i.e., one multiplies through by a weight

function gj (E) and integrates over E and requires equality.

This gives

N
I fg (E)f71 (E)dE ai(r-) =

i=1 j

N
2 fg: (E.)'f (E) dE ai(r+)

i=1 3
1

and

(6r4)



N
2 fg(E)D-(E)f(E)dE Vai(r-)

i=1 3

N

ifg.(E)D
+ (E)fi(E)dE Vai(r

+
)

=1
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(6-5)

Again, by using N such weight functions, these can be writ-

ten in matrix form. The equations are applicable in axial

and radial directions and the matrices so formed can be com-

bined into a single matrix. We will use such forms in the

further development, i.e.,

and

=
a = M a

V = N Va ,

(6-6)

(6-7)

where Va refers to a derivative with respect to a single

space variable.

Examining the equations, both at the interfaces and in

homogeneous regions one notes that the matrix elements cal-

culated are identical with those used in the one dimensional

formulation, Thus, the codes produced there to generate in-

put cross sections are generally applicable here.

6.3 The Difference Equation for Two-Dimensional Geometry

It was considered desirable to develop a two dimen-

sional code which will handle cartesian (x-y) as well as

cylindrical (r-z) geometry. Assuming no dependence on the

third coordinate (z or e) for each of these geometries, the
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Laplacianterraofequation.(6-2Va.(r) can be written

2

"i(d"
,y)

and

2, a
'

(x y)

px2 aye

Da..(r,z) 82a.(r,z)
1 8 1
p ar 8z2

(6-8)

(6:-9)

The two forms above can be combined into a single form

21D; D

17TErp ai(r,z)] +
8z2 i(r'z)

(6-10)

where p=0 for slab geometry and p=1 for cylindrical geometry.

In the first case r and z now signify cartesian coordinates.

For the remainder of the development, a special form of

the synthesis diffusion equation (6-2) will be used. Namely,

multiplying equation (6-:2) by the inverse D matrix and combin-

ing the I and It matrices yields

=
T V27a(r z) + I

st
Tg.TFTFT X.Y4'gTT7FT (6-11)

Using the Laplacian of (6-10), this form of the diffusion

equation reads:

y Epa
p r ar a(r,z)]

D2

z2
a (r,z)} +

Ist-77721 "If 'gTTTTT

(6-12)

where this matrix form represents N equations for an N-modal

expansion. The symbols here represent the digested form of

the second sentence of this paragraph. A single equation



from this matrix form, let us say the ith, is

lDa
[r

ID
ai(r,z)] + DD:2 a

i
(r

'
z )

+ (I
st

)

ik
k=1

a (r 1 v
z) = L7 (XvLf)ik aQ (r, z)

123

(6-13)

Next we lay out a mesh spacing in our generalized

orthogonal r-z geometry with r having points j=1 to J and z

having points k=1 to K. Points are included on interfaces

and at exterior boundaries. First let us consider a point

interior to a region, namely point j,k with coordinates rj,

z
k

We multiply equation (6-13) by rP and integrate over

the region enclosed by the dashed rectangle in Figure (6-1),

1 " tonamely, from r ,

Ar-
to r _.-J- and from zk Az

7 2 i

.1_

2 2
Azk

zk + Thus, term by term we have

rp 4-- ai
or i

r, z) drdz = rP ar
i

ak ( r)

r.- +
2

r.
1

Az +Az i
.

k k-1
Ar. a.__lap t 3+1,k-a.3,k_

2 7 2 1 ' Ar.
7

Az +Az air -al
(

k k-1
)

Ar._,
tr. 3 ip t 3,k 3-1,k)

2
%

2 ' ' Ar.
7-1

z +Azk-1
2

2

(6-14)
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Ar.

p+1 rj 2

ff rP rz2 ai(r,z)drdz
Ar.

7-1rj

r °-1 10+1

13+1

Lr.
(r. + --1 P+1

- r 3 2 )

L p+1

a. - a. a. a.3,k+l 3,k 3 k 3 k-1]
Azk Azk-1

(r, -

f f

Q=1.

aa:(z)

az

ik
a (r

'
z rPdrdz = (1st

) ik kak(r)
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Az
k

z +
k 2

Azk-1

(6-15)

r
p+1

Ar.
+

+ Azk-1

(r.

Ar.

(6-16)

)P+1

r.
3 2

Or.
_ 3-1

p+1

N

k=1.
(

[Azk

r

2

Ar.
2

k
). a.
12,

Azk
-1j.

2
p+1 p+1

2

The development for the right hand side is identical with

that for (6-14), giving

ff(Xv4).2, ak r,z)drd2 =
k=1 1

_j,k

(6-17)
Ar. Ar.

. 3\10+1 3-1\1)+1
r. + --A--) Az

k
+ A

zk-13 2 '[ 3 z
] . [p+1 p+1 2

To simplify this we will use the following notation:



VR.

Azk + Azk_i
VZ

k 2

Qr.
(r

j

+ __.41D+1
2

p+1

Ar.
(r, _ __211) P+1

3 2

= VR. VZk

p+1
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(6-18)

The reason for using the symbol V is that this represents

volume, of one radian third dimension for cylindrical geo-

metry and unit length third dimension for slab geometry.

Combining the terms with these substitutions one has

Ar Ar.
(r3. +

i 3

(r.
2 i

_
2 VZk a

3

V.Zk
3

a.
-1,k

+
Ar. j+1,k Ar.

-1

k 7 ,k+i Az . i k-1
1 1 VR aVR. a .

3 kl Dj

c.
3,k

j,k

+ e,
K

- (1 )

1.1
. Vj aj , +(1st)

,

1
a3

r
, = L (XvL,k A f

V. a.
3,k

(6-21)

where bj,k is the coefficient to aj+1,k in the first term of

the equation, and cj,k, di,k and ej,k are the coefficients

in the second, third and fourth terms respectively.

This is a standard form for this difference equation

except for two changes. First, one typically has a diagonal

but not an identity D matrix and second, the scatter matrix
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appears separated on the right hand side for typical multi-

group codes. Because this is a two dimensional code, our

choice of approximation leads to a 5-point difference equa,-

tion, i.e , there are 5 space points represented in the above.

equation. (Note that in the above bi,k = ci+1,k.and dj,k

ej ).k+1

6.4 The Two Dimensional Code

6.4.1 The Equation Form

The choice of how to construct a two-dimensional code

was an outgrowth of the success of the simultaneous solution

methods used in the one dimensional code. A decision was,

made to solve simultaneously for all combining coefficients

at all radial space points along a line of constant'axial

dimension Z and axial index k. This was done,by shifting

the terms involving a i
,k+1 and a

j,k-1
in equation (6-21) to

j

the right hand side of the equation where they essentially

become part:of the source. The resulting left hand side in-

volves three space points on a line of constant Z and, is

identical in form to the one dimensional equation of Chapter

II.

6.4.2 Some Restrictions on Mesh Spacing for Computational
Simplicity

Consider the G.E. quarter geometry as an example. All

of the regional interfaces are completed (dashed lines) to



divide the regions, into rec-

tangles. In the following

discussion, axial (radial)

region one will refer to

the lowest (left most)

group of-three rectangles,

etc.

Radial Regions
2

REFLECTOR

BLANKET

CORE
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Figure 6-2, Regional Notation

A restriction will be

made that all mesh lines are

continuous across interfaces. It is also required that all

axial mesh intervals within an axial region be equal. Radial

mesh spacing within a radial region has also been kept con-

stant, but this is not necessary for the code.

To provide a set of equations whose solution is simi-

lar to that described in Chapter III, the third and fourth

terms of equation 6-19 are moved to the right hand side.

Then, combining all of these equations along a radial mesh

line (line of constant z with axial index k), this can be

written as a single matrix equation.

Q a3c 5ourcek (6-22)

This is a multidiagonal matrix equation with the same form

asequations (3-4) and (3-5) except for the axial derivative

terms.

In the Q matrix, only the cross-sections and the Az

appearing in Vi,k, VZk and Azk vary with axial position and
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these change only at regional interfaces. Thus, the same Q

matrix can be used, with the appropriate source, for every

interior mesh line (line of constant z) of an axial region.

For example, for the G.E. model, it is only necessary to

produce and "invert" (Crout method) three Q matrices, one

for each axial region.'

In section 6.4.5, it will be demonstrated that it is

also possible to use the same Q matrix for an exterior mesh

line of the region.

6.4.3 General Iterative Scheme

The general scheme is to assume a flux distribution for

all points and calculate a fission source. Then, beginning

with the axial.line at z=0 equation (6-22) is solved for

the ak vector for each successive line of increasing z (and

index k). Leaving the detail of crossing interfaces until

later, this cycling to solve for successive ak is repeated

to improve the axial flux shape.

This sweep through lines of increasing k,to calculate

new fluxes (actually combining coefficients) is called an

inner iteration. Normal procedure is to sweep through

preset number of times or until the fluxes change by less

than some preset fractional amount, whichever comes first.

At this point a new fission source is calculated. The

ratio of this new total fission source to that for the pre

vious iteration (the original total source) is just-the
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definition of the effective multiplication constant and in-

deed approaches that number as the flux approaches the

shape. This is the eigenvalue A. The calculating of

the new fission source and A is an outer iteration.

Unless the flux is to increase by A at each outer

iteration, it must be renormalized. There are a number of

ways of doing this, basically all normalize the total fis-

sion source to its original, magnitude. In

code, the values of the or or the fission yields for each

"group", are changed by dividing by A after each outer

iteration to normalize the fission source. After sufficient

iterations, A approaches to within some preset tolerance

from unity and the eigenvalue is said to have converged.

The ratio of the original Xi to the xi at convergence is

the effective multiplication constant. For example, if Xi

has been reduced to 0.8 of its original value using the

original (true) value will cause a neutron multiplication

of 1.0/0.8=1.25 per generation.

This is the source-flux iteration of the code.

flux shape is assumed and a fission source calculated.

Then inner iterations are made to improve the axial flux

shape, an outer iteration calculates a new fission source

and tests for convergence, etc. When the flux and eigen-

value have converged to acceptable levels, the calculation

is complete.
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In the discussion above the treatment at interfaces

between axial regions has been neglected. This detail will

be considered in the next two sections before examining

the results of the calculations.

6.4.4 The Interface Between Axial Regions/Integrals Over
a Half Interval

Equation (6-21) has been developed for points interior

to a region. To treat the interfaces between axial regions,

it will be necessary to develop equa- j-1 j-1
0

tions for exterior points of a re- -H k=6
0

gion. Figure 6-3 is included as an (NI

k=5
aid to this development. Axial re- .cl

4 k=4
gion 1 has a reflected lower boun- k -3z-

o
°H
tY1

dary at z=0 (and k=1) and includes
0

two space intervals. The solid lines 1Z,cl k=2

in the diagram separate space inter- .cl

vals, with the space points at the

intersections of intervals. Axial

indices 3 and 4 refer to expansion

k=1

Figure 6-3. Finite
Difference Mesh

at the regional interface in terms of the trial function

sets for region 1 and region 2,respectively. Thus, ai,3

is the combining coefficient for the ith mode of the re-

gion 1 set and ai the coefficient for the ith mode ofj,4

the region 2 set, etc.

Consider the integration of equation 6-13 over the

regicm from 1. . - ire /2 to r
j

+ Ar, /2 and from z4 to z4 +
j-1 7.
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8z4/2. This is a half interval in region 2. This integra-

tion produces an equation similar to equation (6-21), namely

b a.
j,4 3+1,4

VR. V
J z

+

a.
3,

c3.
,4

a.
3 -1,4

+

+ d

c
j,4

+

a3,
,

d.
3,4

+

(6 -23)

(I ) V. + (1 ) V.
ii 3,4 3,4 st in 4

n#i
N

n r
a. = -5- L (xv1 ) V. an.

,43,,i f in 3,4
n=1

The notable differences between this equation and

equation (6-21) are

1. VZ
4
= Az/2 where Az is the mesh interval for re-

gion 2.

2. Vj,4 thus is also a half interval.

3. V al =
d al is the axial gradient at the

z dz j

interfacewheretheaj.-are combining coefficients

for the modeS of region 2. The + sign is used to

denote the region above the interface (-_sign be-

low) to avoid confusion with the point indices.

4. Since the gradient appears directly, the term

ei,4 does not appear.

A similar equation can be developed by integration

over the top half interval in region 1, namely, from z3

Az
2 3
/2 to z

3
and from r. - Ar

i-1
/2 to r + Ar./2. This

equation is



b al + c ai + VR. V a +
j,3 j+1,3 j,3 j-1,3 3 z j,-

e a - + c + e
3,f3 i,2 3,3 3,3 j,3

(/ ).. V. ]ai + ) V
st 3,3 j,3 st in j,ni

1 7 , r

7 kVL N7
j

a
f in 3,3
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n (6-24)
a. =
3 3

The list of differences between this and equation (6-

21) is similar to that above including the half intervals,

in volume, absence of the d terms, and their replacement

with the gradient in terms of the modal expansion of re-

gion 1.

6.4.5 The Interface Between Axial Regions /General. Scheme

The general iteration of section 6.4.3 treats lines of

increasing z (and index k) successively. In this process

the half interval equations. (6-23) and (6-24) are used.

The solution of these equations by using the Q matrices of

equation (6-22) will first be established before discussing

the actual scheme.

Consider equation (6-23). Transferring the third and

fourth terms to the right hand side of, the equation, the

set of equations, can be combined into a single multidiago-

nal matrix, equation of the same form as equation (6-22).

5, a4 = Source
4

(6-25)
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Examining the elements of (6-23) which are included in Wo

they are each half as large as those' for a point interior

to the region, except for d However, d = e for
j,4* j,k j,k

such an interior point and ej,k is missing from Q' thus

halving this contribution also. Thus, the elements of the

matrix Q' are each half of those-of.the Q matrix for the

same region. This is fortunate, since it allows the use of

the inverted Q matrix for the half interval solution.

Specifically, the equation

26' a4 = 2 Source (6-26)

is solved. That is, the source for line 4 of Figure 6-3

is multiplied by two and the second equation of (6-26)

solved for a4.

It is now possible to discuss the overall iteration

scheme. A flux guess is made for all points in the system

and a fission source calculated. Then an equation of the

form (6-26) is solved for the set of coefficients for line

1, that is, for a Line 1 has a reflected boundary and
1

thus V a. 0 is used in the source term. Next the gene-

ral regional matrix equation (6-22) is solved for the co-

efficients of line 2 (a2), with the improved al appearing

in the source term for that calculation. This is repeated

until only the equation for the last half interval of re-

gion 1 remains below the first interface.
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At this point a decision must be made. Equations (6-

23) and (6-24) can both ,be solved by using the Q matrices

for their respective regions in an equation of the form of

equation (6-26). However, since information about the

axial flux gradient is also needed, one of the equations

must be solved for the gradients. The choice used in the

code, which is arbitrary and open to further investigation,

is to solve the equations for the half interval below the

interface for the fluxes. This assumes an initial gueSs

of V a
i

- Then the fluxes (combining coefficients) in
z j,

terms of the modal set above the interface are calculated

using

aj,k+1

where ZM is the M matrix of equation (6-6) applied in the z

direction.

Next, equation (6-23) for the first half interval in

region 2 is solved for V al . These are calculated indi-
z j,+

vidually. From these the gradient in terms of the modal

set below the interface are calculated using

V a.
z 7,-

= ZN a.
z 3,+ (6-28)

The V
z

a
j

are used in the source term of the top line of
,-

region 1 for the next inner iteration. Note that ZN is

the inverse of that used in the one dimensional code. That
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is, it calculates gradients for the region nearer the core

from gradients from the region further away.

The matrix solution method [equation (6-22] is now

used for successive lines of increasing z and index k"for.

axial region 2 until the next interface is reached, etc.

Only the exterior axial boundary remains. Consider

that the fluxes go to zero at mesh line k=K. Equation (6-

21) is applicable for the integration of .the k=K-1 line. A

value of zero is inserted for a
j,k+1 = aj,K in that equa-

tion. General use of the Q matrix solution is applicable.

6.5 Results of Two Dimensional Calculations

The number of calculations in two space dimensions is

necessarily limited due to the substantially increased cal-

culational times when compared to one dimensional calcula-

tions. A summary of these calculations is included in

Table 6-1.

The first calculation uses bracketing fluxes chosen

from the radial case as trial functions. Fluxes from

points 1 and 40 are used in the(core, 41 and 50 in the

blanket and 51 and 60 in the reflector. The weighting is.

Galerkin. The error in k
eff

of -1.6% is large.

Considering that the above choice might not be broad

enough to bracket the blanket and reflector, a broader

choice was made there. Case II uses this choice with essen-

tially identical results. Cases III-V use the same choice
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Table 6-1. Two Dimensional Results

Case WF Reactor Error in keff(%) Core TF

I Gal. GE -1.6 1R 40R

II Gal. GE -1.5 1R,40R

III Gal. GE -1.92 20R ,15A

IV Gal. GE -1.1 1A,20A

V Gal, GE -1.04 1A,27A

VI Gal. EBR 3.1 1A,12A

VII Gala EBR -1.9 1A, 9A

VIII Gal. EBR - .64 1A,10A

IX Gal. GE -1.2 lOR 35R,45R

X Gal. +l GE - .73 lOR 35R,45R

XI group GE .5 1R,40R

XII group GE .21 1,45,55
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of trial functions in the blanket and reflector as for case

II. Case III tests a mixture of radial and axial functions

while cases IV and V test use of axial fluxes. The latter

have somewhat smaller errors. The choice in going into the

blanket appreciably for case V is to use a softer spectrum,

perhaps more representative of the far corner of the core,

which will better bracket the overall core. The change is

slight

Cases VI-VIII are a similar test for the EBR model,

with a variety of trial functions for the core and bracket-

ing trial functions for the other regions. Here the

various choices bracket the correct k
eff'

but the dependence

on trial function does not provide a useful reliability. It

is noted that this bracketing of the correct keff is pos-

sible here because the fluxes rapidly become softer with

depth in the reflector. Changes in the G.E. blanket are

much less.

Case IX is a calculation for the G.E. model using

spatially discontinuous modes with,considerable overlap be-

tween trial function sets. Trial functions in the core are

10R, 35R, 45R with the set in the blanket, and reflector be-

ing 35R, 45R, 55R. This is set A of Chapter V. The two

dimensional calculation yields an error of -1.2%. This

compares with errors for the one dimensional calculations.

of -.013% and -.13% for the radial and axial cases respec-

tively.
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The above cases are a rather extensive group of nega-

tive results. They were obtained with a new code. conse-.

quently, considerable effort was expended in testing the

new code. For-example, a cartesian (x,y) geometry problem

was run with.coordinates reversed to verify that the itera-

tive (axial) solution was identical with the simultaneous:

radial solution.

Satisfied that the code was operating properly, the

formulation itself came under scrutiny. In particular,

the only other two dimensional work which had been done was

that by Lorenzini and Robinson (33, 34). This method has

since been evaluated by Greenspan. (13). Their method,

while limited to spatially continuous trial functions,

yields generally better results than those above. Their

interface conditions require the conservation of integrals

of flux and current at interfaces. This motivated the in,

vestigation of forcing this conservation with spatially

discontinuous trial functions.

Case X examines the same three mode expansion as case

IX except for the use of Galerkin +l weighting at the re-

gional interfaces. That is, one of the weight functions at

each interface is replaced by unity, conserving integrals

of flux and current. This reduces the error in keff to

0.73%.

The remainder of the two dimensional results are for

cases where integrals of flux and current across interfaces
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are conserved. Rerunning the bracketing fluxes of Case I

with group weighting (case XI) yields an error in keff of

0.5%. A three mode group weighted run with three con-

tinuous trial functions (case XII) reduces the error in keff

to 0.21%.

It is reasonable that the two dimensional calculation

is more sensitive to interface conditions than the one di-

mensional calculation. In the two dimensional calculations'

all of the leakage is calculated within the code, while for

the one dimensional calculation that part of the leakage

perpendicular to the direction of interest is treated by an

artificial absorption term. If the perpendicular buckling

is accurately known, this will automatically add accuracy

to the latter calculation.

6.5.1 Analysis of the Two Dimensional Results

To further examine the two dimensional results a num

ber of methods are used.

First, an attempt is made to answer the question, "Is

the spectral shape at a given point as good as it can be

with the given set of trial functions?" To examine this,

the 26 group fluxes are synthesized using the usual expan-

sion equation. This has been done for a number of points

for Case X and is included in Tables 6-2, 6-3, and 6-4.

Also included in the same tables are-least square fits to

the true fluxes (26 group, two dimensional) for comparison.
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Table 6 -2. Fit of Synthesized Flux. at Core Center. Case X.

Group

Syn. Flux
from 2-D

Modal Calc.

Flux from
26-Group
2-D Calc. Error (%)

Least
Square

Error (%)

1 5.1942E 13 5.1796E 13 .282 -0.002

2 2.6791E 14 2.6705E 14 .322 .017

3 6.5642E 14 6.5439E 14 .311 .017

4 9.1963E 14 9.1632E 14 .361 .097

5 1.1867E 15 1.1831E 15 .311 .100

6 2.2202E 15 2.2245E 15 -0.191 -0.244

7 2.7398E.15 2.7457E 15 -0.216 -0.207

8 2.7467E 15 2.7426E 15 .149 .098

9 2.2973E 15 2.2839E 15 .586 .386

10 1.7150E 15 1.7059E 15 .536 .091

11 1.0851E 15 1.0746E 15 .981 .228

12 4.6465E 14 4.6889E 14 -0.904 -1.759

13 1.6699E 14 1.6989E 14 -1.708 -2.586

14 2.3019E 14 2.3700E 14 -2.874 -4.049

15 7.3832E 13 8.2325E 13 -10.316 -11.526

16 1.3813E 13 2.1776E 13 -36.567 -36.945

17 4.4577E 11 4.3274E 12 -89.699 -87.847

18 -1.2521E 12 5.5612E 11 -325.142 -311.005

19 -5.6675E 11 8.3838E 10 -776.004 -739.655

20 -1.3217E 11 6.0152E 09 -2297.348 -2176.982

21 -1.7150E 10 4.8715E 08 -3620.542 -3428.864

22 -6.4457F 10 9.1700E 07 *

23 -2.3287E 10 3.5760E 06 *. *

24 -9.7519E 09 8.6971E 04 * *

25 -2.7402E 08 4.7701E 02 * *

26 -1.0711E 07 3.4939E 00 *

* Computer overflow.
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Table 6-3. Fit of Synthesized Flux at Core-Blanket Inter
Face. Case X.

Group

Syn. Flux
from 2-D

Modal Calc.

Flux from
26-Group
2-D Calc. Error (%)

Least
Square

Error (%)

1 8.0261E 12 8.5941E 12 -6.609 -0.880

2 4.1041E 13 4.4097E 13 -6.931 -0.973

3 1.0084E 14 1.0802E 14 -6.649 -0.754

4 1.4118E 14 1.5107E 14 -6.543 -0.623

5 1.8373E 14 1.9488E 14 -5.724 .003

6 3.6913E 14 3.8254E 14 -3.505 .319

7 4.8834E 14 4.9917E 14 -2.170 -0.170

8 5.2141E 14 5.2463E 14 -0.613 -0.196

9 4.6646E 14 4.6166E 14 1.039 -0.179

10 3.8304E 14 3.7120E 14 3.192 -0.240

11 2.5779E 14 2.4612E 14 4.738 -0.074

12 1.2401E 14 1.1507E 14 7.764 .448

13 4.6395E 13 4.2574D 13 8.975 .813

14 7.0465E 13 6.3635E 13 10.732 .693

15 3.0104E 13 2.5335E 13 18.824 3.461

16 1.2393E 13 8.8748E 12 39.640 12.714

17 4.1536E 12 2.4291E 12 70.993 29.839

18 1.4532E 12 5.4453E 11 166.869 90.351

19 4.8526E 11 1.4668E 11 230.828 131.156

20 9.8356E 10 1.7639E 10 457.611 284.949

21 1.2455E 10 2.0411E 09 510.192 320.287

22 4.4884E 10 4.0952E 09 996.016 651.830

23 1.6133E 10 5.5493E 08 2807.217 1893.226

24 6.7515E 09 1.1551E 08 5744.994 3907.143

25 1.8970E 08 9.0315E 05 20904.384 14299.891

26 7.4151E 06 3.0486E 04 24223.185 16575.137
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Table 6-4. Fit of Synthesized Flux in Blanket. Case X.

Syn. Flux Flux From Least
from 2-D 26-Group Square

Group Modal Cald. 2-D Cale. Error (%) Error (%)

1 2.2209E 12 2.2743E 12 -2.349 2.209

2 1.0980E 13 1.1235E 13 -2.271 2.554

3 2.7297E 13 2.9825E 13 -2.249 2.455

4 3.8293E 13 3.9143E 13 -2.171 2.487

5 5.1868E 13 5.2835E 13 -1.830 1.975

6 1.3065E 14 1.3382E 14 -2.371 .072

7 2.0278E 14 2.0749E 14 -2.267 -0.364

8 2.4360E 14 2.4575E 14 -0.876 -0.449

9 2.3943E 14 2.4019E 14 -0.317 .046

10 2.2061E 14 2.1908E 14 .695 .197

11 1.5749E 14 1.5485E 14 1.708 .614

12 8.4371E 13 8,2704E 13 2.a15 .401

13 3.2675E 13 3.1919E 13 2.369 .274

14 5.3221E 13 5.1374E 13 3.596 .181

15 2.6897E 13 2.5554E 13 5.255 -0.686

16 1.4094E 13 1.3064E 13 7.881 -2.089

17 5.8154E 12 5.0173E 12 15.907 -6.095

18 2.5978E 12 1.9694E 12 31.911 -14.023

19 1.1546E 12 6.7475E 11 71.114 -34.708

20 4.8480E 11 1.3864E 11 248.964 -134.525

21 2.4873E 11 1.7596E 10 1313.493 -739.896

22 2.0692E 11 6.3029E 10 228.303 -120.397

23 9.4379E 10 2.2653E 10 316.625 -170.345

24 3.7452E 10 9.4641E 09 295.726 -158.165

25 8.4142E 09 2.6611E 08 3061.946 -1729.393

26 6.7411E 08 1.0443E 07 6354.968 -3600.367



143

The two fits are generally very comparable, except that the

modal fit is somewhat poorer at the core-blanket interface.

This indicates that the two dimensional code determines the

spectral shape about as well as can be done within the

limits of the trial functions available.

Next, for cases X, XI, and XII an examination is made

of the accuracy of fit along a radial traverse. The synthe-

sized fluxes along the traverse are used to calculate reac-

tion rates as a function of position and these are, compared

to the 26 group -two dimensional calculation for the same

traverse. Normalization is to the same source. These com-

parisons are made with the aid of a Lagrangian interpolation

scheme since the mesh spacings are different.

The results of this comparison are summarized in the

regional reaction rate errors of Table 6-5 and the absorp-

tion errors as a function of position in Figure 6-4. The

fit is generally highly acceptable except for the reflector

for case X. This is noted by comparing case X with case 20

of Table 5-7 and on the graph of Figure 5-2. Similarly,

Case XI can be compared to the group weighted two mode cal-

culation of Table 5-10 and Figure 5-6 and Case XII corres-

ponds to case 30 of Table 5-9 and Figure 5-5. Since the

error curves for the two dimensional calculation are nearly

identical to that for the one dimensional case, it appears

that the numerical treatment for the two dimensional code

is performing well. The fit in the core is not as good as
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the one dimensional fit. This is thought to be, caused by

the flux not being fully converged.

Table 6-5. Regional Reaction Rate Errors for Two Dimen-
sional Calculations

T.F. Absorption Error (%) Fission Error (%)
Case Set Wts. Core. Reflector Core Blanket

X A Gal. +l -.60 6.6 17.5 -.23 9.7

XI F Group .25 3.8 -1.2 -.20 9.8

XII E Group -.13 1.7 -1.5 -.085 4.0

T.F. Sets: A 10,35,45; 35,45,55; 35,45,55

F 1,40; 41,50; 51,60

E 1,45,55; 1,45,55; 1,45,55

6.2 Assessment of the Code, Suggestions

The two dimensional code in its present form has

deanonstrated reasonable:convergence properties and speed.

It has converged for the continuous trial function case and

for a number of cases using discontinuous trial functions.

We have experienced convergence failure for three cases us-

ing discontinuous. functions: with considerable set

overlap using adjoint and reaction rate weighting, and with

slight set overlap using,Galerkin+1 weighting. All were

three mode calculations.

The author feels that the direction taken in producing

the present code is correct. Other attempts in two dimen-

sions have been with continuous trial functions and have
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been done in standard multigroup codes. Here the problem

which is of concern is-the large upscatter terms inherent

in overlapping groups. This has been approached by itera-

tion on groups. In explanation, for a multigroup calcula-

tion with no upscatter, given a fission source, one can

calculate the flux in the highest energy group and from this

the down scatter to lower energy groups. This is repeated

for the next highest energy group, etc., and when completed,

one has exact, answers for the fluxes caused by the assumed

fission source. With upscatter terms, this is not the case

since the source for the first group depends upon scatter

from lower groups. To iterate on the groups means to re-

calculate the source for group one (and other groups) after

calculations are made for succeeding groups.

The simultaneous solution method of this thesis pro-

vides an exact answer for a given fission source, indepen-

dent of direction of scatter.

We feel that the primary difficulty with the present

code is associated with the interface crossing method in

the axial iterative prOcedure. The reason for so adjudging

is experience. We have found that an underrelaxation of

the derivative term Vza(r,z) is a necessity in operating

the code. Briefly, over-relaxation is a technique usually

used to speed convergence of an iteration procedure (10).

One writes

b1 by + a (bP+1 - bP),
or



147

where p refers to the pth iteration and p + 1 to the p + ith

iteration. The over-relaxed value is on the left. If a,

or the over - relaxation, is one, the new value is just that

obtained by a standard iterative procedure. If it is

greater than one, the difference between old and new values

is increased.

The two dimensional code has typically been run with

an a of .5 for the V a(r,z) at the interface between axial

regions to control oscillatory behavior. The general

fluxes and fission sources have been moderately over-re-

laxed (1.0-1.2).

A suggested method to solve this problem is to adopt'

an alternating direction scheme. That is, equation (6-21)

can be adopted for Q matrix solution along both radial and

axial lines. Specifically, for the axial lines, the a and

b terms of (6-21) (the radial derivative terms) are moved

to the right hand side of the equation. Then, dividing the

resulting equation by VR the resulting equation is solu-

ble by a single Q matrix for each radial region. With this

alternating direction scheme, the complicated iterative

crossing between axial regions is not used and the Q matrix

solution can be used throughout.
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APPENDIX: THE ONE DIMENSIONAL DIFFUSION THEORY CODE WDIF1.

WDIFI is a code of the type outlined in Chapter III.

The form given is fairly specialized, namely; it uses the

identity matrix in the D matrix position and is restricted

to two or three modes. This can easily be modified. Over

relaxation should also be added. After the first Crouting,

a subroutine specialized to the number of modes treats suc-

cessive new right hand sides. This was done for speed,

since the code is an important building block in the, two

dimensional code. The code is extremely stable, it has

always converged.

The input is as follows:

Input from the teletype (this could be put on cards)

are extrapolation distance, convergence limit on the eigen-

value and perpendicular buckling TTYIN is applicable to the

OSU computer.

Input from unit 37

Card 1 50 characters of identifying information

Card 2 'NG = # of groups (modes) NR = number of regions,

p = geometry factor, p = 0, slab; p = 1, cylinder;

p = 2 sphere (315 FORMAT)

Card 4 NP(1) = No. of intervals in region 1; W(1) = width

of region 1 (cm) (I5, E10.5)

Card 5 (CHI(l,IG),IG = 1 NG) Fission Fractions for modes

(5E14.7)
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Card 6 (SIGFN(IG),IG=LNG)v for each group (mode)

(5 E14.7)

Card 7 (SST(1,JG),JG=1,,NG) Ist(1, JG) (5 E14.7)

Card 8 (SST(2,JG),JG==1,NG) Ist(2,JG) (5 E14.7)

Card N (SST(NG,JG),JG = 1,NG) (5 E14.7)

Cards 4 to N repeated for successive regions.

Input from unit 19: Interface matrices M and N (all

5 E14.7)

Card 1 (XM(1,JG),JG = 1,NG) first line of M matrix at

first interface

Card NG (XM(NG,JG) ,JG = 1,NG) last line of M matrix at

first interface

Card NG+1(XN(1 JG),JG = 1,NG) first line of N matrix at

first interface

Card 2NG (XN(Nq,JG),JG=1,NG) last line of N matrix

Cards for successive interfaces
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00001: PROGRAM WDIF1
00002: INTEGER P,PPI
00003: COMMON A(200,7),SS(200),N0(4,6),BOX(6,20),NR,MODOMAX
00004: DIMENSION H(6),W(6),SST(4,4),CHI(6,4),XM(4,4),XN(4,4),
00005: 1 SIGFN(4),F(200),FISS(200),R(I00),NP(6)
00006: EFFK=EFFKOLD=1.0
00007: REWIND 37
00008: REWIND 19
00009: READ(37,907)
00010:907 FORMAT(IX,50H

00011: PRINT 907
000I2: EXTRAP=TTYIN(4HEXTR,4HAP= )

00013: EP=TTYIN(4HEP= )

00014: BUCK=TTYIN(4H9UCK,4H = )

00015: READ(37,98)NG,NR,P
00016: MOD=NG
00017: PPI=P+I
00018:102 FORMAT(6E12.5)
00019 :98 FORMAT(3I5)
00020: PRINT 99,NG,NR,P
00021:99 FORMAT('ODIFFUSION THEORY PROBLEM' /' # OF GROUPS=105,
00022:

1 ' # OF REGIONS:105/1 GEOMETRY FACTOR= 1,15)
00023:904 FORMAT(5E14.7)
00024:C****** CALCULATE SOME CONSTANTS ******************
00025: MID=MOD+1
00026: MOMI=MOD-1
00027: MPI=MID+I
00028: JMAX=2*M0D+1
00029: MP2=MID+2 $ MP3=MID+3 $ MMI=MID-1 $ MM2=MID-2
00030: MM3=MID-3 $ JMMI=JMAX-I $ JMM2=JMAX-2
00031: DO 91 IR=1,NR
00032: READ(37,901)NP(IR),W(IR)
00033:901 FORMAT(I5,E10.5)
00034: H(IR)=W(IR)/NP(IR)
00035: WRITE(61,902)IR,NP(IR),W(IR)
00036:902 FORMAT('OREGION103,1 HAS103,1 INTERVALS & WIDTH',E10.2)
00037: READ(37,904)(CHI(IROG),IG=1,NG)
00038: PRINT 909,(CHI(IROG),IG=1,NG)
00039:909 FORMAT(' FISSION FRACTION:' /6E11.3)
00040: READ(37,904)(SIGFN(IG),IG=1,NG)
00041: PRINT 905,(SIGFN(IG),IG=1,NG)
00042:905 FORMAT('OSIGFN' /6E11.3)
00043: PRINT 908
00044:908 FORMAT('OSIGST MATRIX')
00045: DO 90 IG=I,NG
00046: READ(37,904)(SST(IG,JG),JG=1,NG)
00047: WRITE(61,101)(SST(IG,JG),JG=I,NG)
00048:101 FORMAT(IH ,5E12.5)
00049: SST(IG,IG)=SST(I1,IG)+3UCK
00050:90 CONTINUE
00051: IF(IR.E0.1)G0 TO 92
00052: DO 93 IG=I,NG
00053:93 READ(19,904)(XN(IG,JG),JG =1,NG)
00054:92 IF(IR.EO.NR)10 TO 94
00055: DO 94 IG=I,NG
00056: READ(19,904)(XM(IG,JG),JG=1,NG)
00057:94 CONTINUE
00058:CCC**** SETTING UP MATRIX *************************
00059:C ******* LEFT BOUNDRY CONDITIONS *****************
00060: IF(IR.NE.I)G0 TO 444



00061:
00062:
00063:
00064:
00065:
00066:
00067:
00068:
00069:
00070:
00071:
00072:
00073:5
00074:
00075:4
00076:

JI=MID $ J2=2*MOD
LJ=1 $ R(1)=0. $ V=VP=(.5*H(1))**PP1/PP1
RX=-(.5*H(1))**P/H(1)
DO 4 IG=1,MOD
I=IG
IPM0=I+MOD
A(I,JMAX)=A(IPM0,1)=RX

FISS(I)=SIGFN(IG)*V
F(I)=1.0
DO 5 J=J1,J2
JG=J-JI+1
A(I,J)=A(I,J)+1ST(IG,JG)*V
JI=JI-1 $ J2=J2-I
CONTINUE
N2=I

00077: GO TO 445
00078:444 CONTINUE
00079:CC **** LEFT EDGE OF REGION********************
0001_!0: II=N2=W+MOD
00081: J1=MID $ J2=2*MOD
00082: LJ=LJ+1 $ R(LJ)=R(LJ-1)
00083: V=VP $ VP=CR(LJ)+.5*H(IR))**PP1/PPI $ V=VP-V
00084: Rx=-(R(LJ)+.5*H(IR))**P/H(IR)
00085: RP=R(LJ)**P
00086: DO 9 IG=1,MOD
00087:
00088: IPM0=I+MOD
00089: A(1,JMAX)=ACIPM0,1)=RX
00090: A(I,MID)=-A(I,JMAX)
00091: FISS(I)=SIGFN(IG)*V
00092: F(I)=1.0
00093: DO 8 J=J1,J2
00094: JG=J-J1 +1
00035: KJG=J-MOD $ IF(KJG.LT.1)G0 TO 8
00096: A(I,KJG)=A(I,XJG)+RP*XN(IG,JG)
00097:8 A(I,J)=A(I,J)+SST(IG,JG)*V
00038: JI=J1-1 $ J2=J2-1
00099:9 CONTINUE
00100: IRMI=I11-1
00101: B0X(IRM1,11)=RP*XN(2,1)
00102: IF(MOD.EG.2)G0 TO 443
00103: BOX(IRMI,12)=RP*XN(3,1)
00104: BOX(IRMI,13)=RP*XN(3,2)
00105: IF(MOD.E(1.3)G0 TO 443
00106: BOX(IRM1,14)=RP*XN(4,1)
00107: BOX(IRMI,19)=RP*XN(4,2)
00108: BOX(IRMI,16)=RP*XN(4,3)
00109: IF(MOD.E(.4)G0 TO 443
00110:443 CONTINUE
00111:445 CONTINUE
00112:C* * * MAIN BODY OF MATRIX * * * * * * * * *
00113: N1=N2+MOD $ N2=N1+(NP(IR)-2)*MOD
00114: DO 7 II=N1,N2,M00
00115: J1=MID $ J2=2*M0D
00116: LJ=LJ+I $ R(LJ)=R(LJ-I)+H(IR)
00117: V=VP $ VP=CR(LJ)+.5*H(IR))**PPI/PPI $ V=1./P-V
00118: RX=-(R(LJ)+.5*H(IR))**P/H(IR)
00119: DO 10 IG=1,M0D
00120: I=II-1+10
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00121:
00122:
00123:
00124:
20125:
001? :

00!27:
00128:11
00129:
00130:10
00131:7
00152:
0013:
00134:
001.)9:
00136:
00137:
00138:

00140:
00141:
00142:
00143:
00144:
00145:
00146:13
00147:
00148:12
00149:
00150:
00151:
00152:
00153:
00154:
00155:
00156:
00157:
00158:
00159:
00160:
00161:17
00162:
00163:16
00164:
00165:
00166:
00167:
00168:
00169:19
00170:91

IPM0=I+MOD
A(I,JMAX)=A(IPM0,1)=RX
A(I,MID)=-A(I,1)-A(I,JMAX)
FISS(I)=SIGEN(IG)*V
F(I)=1.0
DO 11 J=J1,J2
JG=J-J1+1
A(I,J)=A(I,J)+SST(IG,JG)*V
J1=J1-1 T J2=J2-1
CONTINUE
CONTINUE
IF(IR.EO.NR)G0 TO 6
J1=MID $ J2=2*MOD
II=N2=M2+MOD
LJ=LJ+1 $ R(LJ)=R(LJ-1)+H(IR)
w:VP $ VP=R(LJ)**PPI/PP1 $ V=VP-V
RX=-R(LJ)**P
DO 12 IG=1,MOD
I=II+IG-1
A(I,JMAX)=RX
A(I,MID)=-A(I,I)
FISS(I)=SIGEN(IG)*V
F(I)=1.0
DO 13 J=J1,J2
JG=J-J1+1
A(I,J)=A(I,J)+SST(IG,JG)*V
JI=JI-1 $ J2=J2-1
CONTINUE
II=N2=N2+M0D
J1=MID $ J2=2*MOD
LJ=LJ+1 $ R(LJ)=R(LJ-1)
V=0,0
DO 16 IG=I,MOD
I=II+IG-I
A(I,JMAX)=-1.0
FISS(I)=0.0
DO 17 J=J1,J2
JG=J-J1+1
IPM0=J-MOD $ IF(IPMO.LT.1)G0 TO 17
A(I,IPM0)=XM(IG,JG)
CONTINUE
JI=J1-1 $ J2=J2-I
CONTINUE
BOX(IR,1)=XM(2,1) $ IF(MOD.EQ.2)G0 TO 19
BOX(IR,2)=XM(3,1) $ BOX(IR,3)=XM(3,2)
IF(MOD.EQ.3)G0 TO 19
BOX(IR,4)=XM(4,I) $ BOX(IR,5)=XM(4,2) $ BOX(IR,6)=XM(4,3)
IF(MOD.EQ.4)G0 TO 19
CONTINUE
CONTINUE
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00171:6 CONTINUE
00172:C ***** RIGHT BOUNDRY *********************************
00173: J1=MID $ J2=2*M0D
00174: LJ=LJ+1 $ R(LJ)=R(LJ-I)+H(NR)
00175: V=VR $ VP=CR(LJ)+.5*EXTRAP)**PPI/PPI $ V=VP-V
00176: RX=-(R(LJ)+.5*ExTRAP)**P/EXTRAP
00177: II=N2
00178: DO 24 IG:loon
00179: I:II+MOMI+IG
00180: A(I,MID)=-A(I,1)-RX



00181:
0012:
0013:
00184:25
00135:
00186:24
00187:
0018:
00189:3

FISS(I)=SIGEN(IG)*V
DO 25 J=J1,J2
JG=J-J1+1
A(I,J)=A(1,J)+3ST(IG,JG)*V
J1=J1-1 $ J2=J2-I
CONTINUE
IMAX=NP(1)+1
DO 3 IR=2,NR
IMAX=I1AX+NP(IR)+2

00190: IMAX=IMAX*MOD
00191:0 * * CROUTING MATRIX * * * * * * * * * * * * * * * *
00192:
00193: 71
00194:
00195:
00196: 72
00197:
00198:
00199:
00200:
00201:
00202: 73
D)
00203:
00204:
00205:
00206:
00207:
00208:
00209:
00210:
00211:
00212:
00213: 74
00214:
00215:
00216:
00217:
00218:
00219: 76
00220:
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DO 71 J=MPI,JMAX
A(1,J)=A(1,J)/A(1,MID)
A(2,MI))=A(2,MID)-A(1,MP1)*A(2,MM1)
DO 72 J=MPI,JMM1
A(2,J)=CA(2,J)-A(1,J+1)*A(2,MMI))/A(2,MID)
4(2,JMAX)=A(2,JMAX)/A(2,MID)
IF(MOD.E(t.2)G0 TO 76
A(3,MMI)=A(3,MMI)-A(3,MM2)*A(I,MPI)
A(3,MID)=A(3,MID)-4(3,MM2)*A(1,MP2)-A(3,MMI)*A(2,MPI)
DO 73 J=MP1,JMM2
A(3,J)=JA(3,J)-A(I,J+2)*A(3,MM2)-A(2,J+1)*A(3,MMI))/A(3,MI

A(3,JMMI)=(14(3,JMM1)-A(2,JMAX)*A(3,MMI))/A(3,MID)
A(3,JMAX)=A(3,JMAX)/A(3,MID)
IF(MOD.E0.3)G0 TO 76
A(4,MM2)=14(4,MM2)-4(40M3)*A(1,MPI)
04(4,MMI)=A(4,MM1)-A(4,MM2)*A(2,MP1)-A(4,MM3)*A(1,MP2)
A(4,MID)=A(4,MID)-A(4,MM3)*A(1,MP3)-A(4,MM2)*A(2,MP2)
A(4,MID)=A(4,MID)-A(4,MMI)*A(3,MPI)
JMM3=JMAX-3
DO 74 J=MP1,JMM3
A(4,J)=A(4,J)-A(401M3)*A(1,J+3)-A(4,MM2)*A(2,J+2)
A(4,J)=(A(4,J)-A(401M1)*A(3,J+1))/A(4,MID)
A(4,JMM2)=A(4,JMM2)-A(2,JMAX)*A(4,MM2)-A(3,JMM1)*A(4,MM1)
A(4,JMM2)=A(4,JMM2)/A(4,MID)
A(4,JMM1)=CA(4,JMM1)-A(3,JMAX)*A(4,MM1))/A(4,MID)
A(4,JMAX)=A(4,JMAX)/A(4,MID)
IF(MOD.E0,4)G0 TO 76
CONTINUE
N2=MOD

00221:C ****** REGIONAL CROUTING ****************
00222: DO 300 IR=I,NR
00223: NI=N2+1 $ N2=NI+NP(IR)*MOD
00224: IF(IR.E0.NR)N2=N2-1
00225: N0(3,IR)=N1
00226: N0(4,IR)=N2
00227: DO 30 I=N1,N2
00228: DO 31 JJ=1,MM1
00229: IK=I-MID+JJ $ JI=JJ+1 $ J2=JI+MOD-1
00230: DO 32 J=J1,J2
00231: JK=J-JI+MPI
00232:32 A(I,J)=A(I,J)-A(I,JJ)*A(IK,JK)
00233:31 CONTINUE
00234: DO 35 J=MP1,JMAX
00235:35 A(I,J)=A(I,J)/A(I,MID)
00236:30 CONTINUE
00237: IF(IR.EO.NR)G0 TO 300
00238:C *****CROUTING AT INTERFACE **************************
00239: NI=N2+1 $ N2=NI+2*MOD-2 $ NX=(N1+N2)/2
00240: I1=1 $ 12=2 $ 13=3 $ 14=4 $ I5;5 $ 16=6
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00241: DO 170 I=NI,N2
00242: IF(I.LE.NX)G0 TO 1S9
00243: 11=11 $ 12=12 $ 13=13 $ 14=14 $ 15=15 $ 15 =16
00244:169 IF(I.EO.NX)10 TO 180
00245: IF(I.E0,N1)10 TO 17
00246: IF(I.E(J.N1+1)10 TO 72
00247: IF(I.E0,NX+1)G0 TO 71

00248: IF(I.E0-N1+2)G0 TO 73
00249: IF(I.F0.NX+2)10 TO 72
00250: IF(I.E0.NX +3)00 TO 73
0025I:0 ** SINGLE BOX **
00252:171 IK=I-MOD-1
00253: DO 181 J=1,MM1
00254: JK=MID+J
00255:181 A(I,J)=A(I,J)-30X(IR,I1)*A(IX,JK)
00256: 10 TO 190
00257:C ** DOUBLE BOX **
00258:172 IK=I-MOD-2 $ KK=I-M00-1
00259: BOX(IR,I3)=BOX(IR,I3)-BOX(IR,I2)*A(IK,MID+I)
00260: DO 192 J=I,MM2
00261: JK=MID+J+I
00262:182 A(I,J)=A(I,J)-BOX(IR,I2)*A(IK,JK)
00263: DO 133 J=1,M1+1I
00264: JK=MID+J
00265:183 A(I,J)=A(I,J)-B0X(IR,I3)*A(KK,JX)
00266: GO TO 180
00267:C ** TRIPLE BOX **
00268:173 IK=I-MOD-3 $ KK=I-MOD-2 LJ=I-M0D-1
00269: BOx(IR,I5)=BOX(IR,I5)-BOX(IR,I4)*A(IK,MID+1)
00270: B0X(IR,I6)=BOX(IR,I6)-B0X(IR,I4)*A(IX,MID+2)
00271: DO 185 J=I,MM3
00272: JK=J*MID+2
00273:185 A(I,J)=A(I,J)-BOX(IR,I4)*A(B,JK)
00274: BOX(IR,I6)=BOX(IR,IS)-BOX(IR,I5)*A(KK,MID+1)
00275: DO 136 J=1,MM2
00276: JX=MID+J+1
00277:136 A(I,J)=A(I,J)-BOX(IR,I5)*A(KK,JK)
00278: DO 187 J=1,MMI
00279: JK=MID+J
00280:187 A(I,J)=A(I,J)-BOX(IR,I6)*A(LJ,JK)
00281: GO TO 180
00282:180 CONTINUE
00283: JJ=0 $ J1=1 $ J2=MID-1
00284:188 JJ=JJ+1 $ JI=JI+1 $ J2=J2+I
00285: DO 191 J=JI,J2
00286: JX=MID+J-JJ $ IK=I-MOD+JJ-1
00287:191 A(I,J)=A(I,J)-A(I,JJ)*A(IK,JK)
00288: IF(IK.LT.I-1)10 TO 188
00289: DO 192 J=MP1,JMAX
00290:192 A(I,J)=A(I,J)/A(1,MID)
00291:170 CONTINUE
00292: 300 CONTINUE
00293:C * * * ** *CALCULATE SOME NUMBERS *********************
00294: N0(1,1)=1 $ N0(2,1)=(NP(1)+1)*M0D+1
00295: DO 214 IR=2,NR
00296: N0(1,IR)=N0(2,IR-1)+MOD
00297: 214 N0(2,IR)=N0(1,IR)*(NP(IR)+1)*MOD
00298: N0(2,NR)=N0(2,NR)-M0D
00299:C ******CALC. INITIAL FISSION SOURCE *****************
00300: FISH0=0.0
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00301: 00 303 I=1,IMAX
00302: F(I)=1.0
00303:303 FISHO=FISHO+FISS(I)
00304: WRITE(61,141)
00305:141 FORMATCOITER K-EFF CHANGE')
00306:CC ******** MAIN ITERATION LOOP *********************
00307: DO 60 ITER = 1,100
00308:C ******* SET UP SOURCE *******************************
00309: DO 62 IR=1,NR
00310:
00311:
00312:
00313:
00314:
00315:
00316:
00317:64
00318:
00319:

NI=NO(1,IR)
N2=110(2,IR)
DO 63 I4=N1,N2,MOD
JK=I4-1
54=0.0
DO 64 IG=1,NG
I=JK+IG
S4=F(I)*FISS(I)/EFFK+S4
DO 65 JG=1,NG
1 =I4 -1+JG

00320:65 SS(I)=S4*CHI(IR,JG)
00321:63 CONTINUE
00322:62 CONTINUE
00323:C * * * SOLVING FOR NEW FLUX * *
00324: GO T0(66,66,67,68,69),MOD

* * * * * * * * :

00325: 66 CALL SOLV2
00326: GO TO 77
00327: 67 CALL SOLV3
00328: GO TO 77
00329: 68 CONTINUE
00330: 69 CONTINUE
00331: 77 CONTINUE
00332:C * * * * NEW FLUXES ARE IN SS * * * * * * * * * *
00333:C ********CALCULATION OF K-EFFECTIVE ********************
00334: F1SH=0.0
00335:
00336:
00337:82
00338:
00339:
00340:
00341:148
00342:
00343:
00344:
00345:60
00346:C
00347: 85
00348:
00349:107
00350:
00351:
00352:
00353:
00354:86
00355:108
00356:
00357:
00358:
00359:
00360:

DO 82 I=1,IMAX
F(I)=SS(I)
F1SH=FISH+FISS(I)*F(I)
EFFK=EFFKOLD*FISH/FISHO
DELK=EFFK-EFFKOLD
WRITE(61,148)ITER,EFFK,DELK
FORMAT(I5,2E15.7)
IF(ABS(DELK).LT.EP)G0 TO 85
FISHO=FISH
EFFKOLD=EFFK
CONTINUE

END OF LOOP
CALL EQUIP(9,5HFILE )
PRINT 107
FORMAT('OPOINT RADIUS FLUXES FOR MODE 1,2,---')
DO 86 I4=1,IMAX,MOD
IJ=I4/M0D+1
IM=I4+MOD-1
WRITE(9,102)R(IJ),(F(I),I=I4,IM)
WRITE(61,108)IJ,R(IJ),(F(I),I=I4,IM)
FORMAT(13,F7.2,1X,5E12.5)
END

SUBROUTINE SOLV2
COMMON A(200,7),SS(200),N0(4,6),BOX(6,20),NR,MOD,IMAX
SS(1)=SS(1)/A(1,3)
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00361:
0032:
00363:
00364:
00365:
00366: 94
00367:
00368:
00369:

00370:
00371:
00372:
00373:
00374:
00375:
00376: 93
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SS(2)=(SS(2)-SS(1)*A(2,2))/A(2,3)
DO 93 IR=I,NR
NI=NO(3,IR) $ N2=N0(4,IR)
DO 94 I=N1,N2
SS(I)=(SS(I)-A(I,2)*SS(I-1)-A(I,1)*SSII-2))/A(I,3)
CONTINUE
IF(IR.E0.NR)G0 TO 93
I=N2+I
SS(I)=SS(I)-BOX(IR,I)*SSCI-3)-A(I,1)*SS(I-2)-ACI,2)*SSCI-1

SS(I)=SS(I)/AtI,3)
I=N2+2
SS(I)=(SS(I)-ACI,I)*SS(I-2)-ACI,2)*SS(I-1))/A(I,3)
I=N2+3
SS(I)=SS(I)-BOX(IR,11)*SS(I-3)-ACI,I)*SS(I-2)
SS(I)=CSS(I)-ACI,2)*SS(I-1))/A(I,3)
CONTINUE

00377:C * ** * * ** *BACKWARD SUBSTITUTION ********************
00378: IMP=IMAX+1
00379: DO 50 II=I,IMAX
C0380: I=IMP-II
00381: 50 SS(I)=SS(I)-A(I,4)*SS(I+1)-A(I,5)*SSCI+2)
00382: RETURN
00383: END
00384: SUBROUTINE SOLV3
00385: COMMON A(200,7),SS(200),N0(4,6),BOX(6,20),NR,MOD,IMAX
00386: SS(I)=SS(I)/A(1,4)
00387: SS(2)=CiS(2)-SS(1),KA(2,3))/4<2,4)
00388: SS(3)=(SS(3)-SS(2)*A(3,3)-SS(I)*A(3,2))/A(3,4)
00389: DO 93 IR=I,NR
00390: N1=N0(3,IR) $ N2=N0(4,IR)
00391: DO 94 I=NI,N2
00392: SS(I)=CSS(I)-A(I,3)*SS(I-1)-A(I,2)*SS(I-2)-A(I,1)*SS(I-3))
/ACI,4)
00393: 94 CONTINUE
00394: IF(IR.EO.NR)G0 TO 93
00395: I=N2+I
00396: SS(I)=SS(I)-BOX(IR,I)*SS(I-4)-ACI,1)*SS(I-3)-AtI,2)*SSCI-2

00397: SS(I)=(SS(I)-A(I,3)*SS(I-I))/A(I,4)
00398: I=N2+2
00399: SS(I)=(SS(I)-BOX(IR,2)*SS(I-5)-BOX(Ik,3)*SSII-4)
00400: 1-A(I,1)*SS(I-3)-A(I,2)*SS(I-2)-A(I,3)*SS(I-1))/A(I,4)
00401: I=N2+3
00402: SS(I)=(SS(I)-A(I,1)*SS(I-3)-A(I,2)*SS(I-2)-A(I,3)*9s(I-1))
/A(I,4)
00403: I=N2+4
00404: SS(I)=SS(I)-130X(19,11)*SS(I-4)-A(I,1)*SS(I-3)
00405: SS(I)=(S8(I)-A(I,2)*SS(I-2)-A(I,3)*SS(I-1))/A(I,4)
00406: I=N2+5
00407: q9(I)=(SS(I)-130X(IR,12)*SS(I-5)-BOX(IR,13)*qS(I-4)-A(I,1)
00408: 1*SS(I-3)-A(I,2)*S8(I-2)-A(I,3)*SS(I-1))/A(I,4)
00409: 93 CONTINUE
00410:C ********BACKWARD SUBSTITUTION ********************
00411: IMP=IMAX+1
00412: DO 50 II=1,IMAX
00413: I=IMP-II
00414: 50 SS(I)=38(I)-A(I,5)*SS(I+1)-A(I,6)*SS(I+2)-A(I,7)*S9(I+3)
00415: RETURN
00416: END


