
 

 
AN ABSTRACT OF THE THESIS OF 

 
Conner Myers for the degree of Master of Science in Nuclear Engineering presented 
on June 3, 2020 
 
Title:  The Development of a Hybrid Particle-in-Cell Simulation Code in C++ for the 
Modeling of the SPT-70 Hall Thruster. 

 
 
 

Abstract approved: 

______________________________________________________ 

Brian G. Woods 
 
 
 

In order to support the growing satellite propulsion industry, a hybrid Particle-In-Cell 

(PIC) simulation with fluid treatment of electrons and neutral particles was developed 

to model the SPT-70 Hall thruster. The 2D, C++ code assumes azimuthal symmetry 

and a uniform magnetic field in the radial direction with the simulation domain 

limited to the thruster cavity. Ions are treated as discrete superparticles while 

electrons are assumed to distribute instantaneously along magnetic field lines 

according to the Boltzmann relationship and diffuse across magnetic field lines 

through classical electron diffusion. The results from simulations with various 

operational parameters of the SPT-70 are compared to experimental data. Simulated 

thrust underestimates experimental thrust but approximately models electron, ion, and 

neutral particle transport within the thruster cavity.  



 

 

 

 
 
 
 
 
 
 
 
 

©Copyright by Conner Myers  
June 3, 2020 

Creative Commons License



 

 

 

The Development of a Hybrid Particle-in-Cell Simulation Code in C++ for the 
Modeling of the SPT-70 Hall Thruster 

 
 

by 
Conner Myers 

 
 
 
 
 
 
 
 

A THESIS 
 
 

submitted to 
 

 
Oregon State University 

 
 
 
 
 
 
 
 

in partial fulfillment of 
the requirements for the  

degree of 
 
 

Master of Science 
 
 
 
 
 

Presented June 3, 2020 
Commencement June 2020 



 

 

 

Master of Science thesis of Conner Myers presented on June 3, 2020 
 
 
 
 
 
APPROVED: 
 
 
 
 
Major Professor, representing Nuclear Engineering 
 
 
 
 
 
Head of the School of Nuclear Science and Engineering 
 
 
 
 
Dean of the Graduate School 
 
 
 
 
 
 
 
 
 
 
I understand that my thesis will become part of the permanent collection of Oregon 
State University libraries.  My signature below authorizes release of my thesis to any 
reader upon request. 
 
 
 

Conner Myers, Author 



 

 

 

ACKNOWLEDGEMENTS 
 

I would like to express my sincere appreciation to my advisor, Dr. Brian Woods, who 

skillfully guided me through my research while still allowing my work to be my own. 

He introduced me to the field of plasma physics and provided an opportunity to 

pursue my educational goals that I would not have found anywhere else. 

 

I would also like to thank my committee members, Dr. Andrew Klein, Dr. Wade 

Marcum, and Dr. Donghua Xu for making this possible by being responsive and 

accommodating, even in the midst of a global pandemic. 

 

Lastly, I would like to thank the Oregon State University foundation for generously 

supporting my academic and research endeavors. 

 

 
 

  



 

 

 

TABLE OF CONTENTS 
 

                Page 
 

1 Introduction...……………………………………………………………………… 1 

1.1 Background ……………………………………………………………….1 

1.2 Purpose ……….….………………………………………………….…….5 

1.3 Importance ……….…………………………….………….………………6 

1.4 Assumptions ….………………….………………………………………10 

1.5 Limitations ………………………………………………………………11 

2 Literature Review.………………………………………………………………… 13 

2.1 Hall Thrusters ……………………………………………………………13 

2.2 Development of Plasma Simulations ……………………………………14 

2.3 Particle-In-Cell Simulations ….…….……………………………………15 

2.3.1 Superparticles ……………………………………………………...15 

2.3.2 Modeling Particle Collisions ….…………………………………...16 

2.3.3 Accuracy and Stability Conditions ………………………………...16 

2.4 Other Plasma Models ………………….…….……………………………17 

2.5 Hybrid Particle-in-Cell Simulations ….…….……….….…………………18 

2.5.1 Hybrid-PIC Hall Thruster Simulations .……………………….……20 

3 Methods …………………………………………………………………………23 
 
 3.1 The Challenge of Kinetic Simulations ….….……………………………23 
  
 3.2 Particle-in-Cell Simulation Structure ……………………………………25 
   

    3.2.1 Simulation Overview ….….………………………………………25 
     

    3.2.2 Initialization .….….…………………………………………… …26 



 

 

 

TABLE OF CONTENTS (Continued) 
       Page 

3.2.3 Loop Functions …….….……………………………………………28 

3.2.4 Simulation Output ….…….…………………………………………35 

3.2.4 Error Analysis ………………………………………………………36 

4 Results ……………………………………………………………………………39 
 
 4.1 System Setup …….………………………………………………………39 
 

4.2 Simulation Results ….…….……………………………………………...40 

4.2.1 Simulation Results with Standard Operation Parameters ….………41 

4.2.2 Simulation Results with Varied Operation Parameters ……………43 

4.3 Effects of Superparticle Size on Simulation Accuracy ….….……..……..53 
 

5 Conclusion ……………………………………………………………………….55 
 

 5.1 Summary ………………………………………………………………..55 
 

 5.2 Future Work …………………………………………………………….57 
 

Bibliography ………………………………………………………………………..59 
 

Appendix ……………………………………………………………………………62 

 

 

 
  



 

 

 

LIST OF FIGURES  
 

Figure                                                                                                                       Page 
 
1.1 Cross Sectional View of a Hall Thruster………………………………………….2 
 
1.2 ExB Drift for Ions and Electrons….……………………………………………....3 
 
3.1 Algorithm flowchart for the hybrid-PIC simulation……………………………..25 
 
3.2 A sketch of the contribution of the ion’s charge to each grid point in 1D.……....29 
 
3.3 A sketch of the contribution of the ion’s charge to each grid point in 2D.……....29 
 
4.1 Thrust as a function of operating voltage and neutral mass injection rate for 
 experimental and simulation results……………….…………………………43 
 
4.2 Specific Impulse as a function of operating voltage and neutral mass injection rate 
 for experimental and simulation results…….…….………………………….44 
 
4.3 Simulated centerline electric potential as a function of axial distance from the 
 cathode for an operating voltage of 300 V….………………………………..45 
 
4.4 Simulated centerline electric potential as a function of axial distance from the 
 cathode for an operating voltage of 250 V…………………………………...45 
 
4.5 Simulated centerline electric potential as a function of axial distance from the 
 cathode for an operating voltage of 200 V…………………………………...46 
 
4.6 Simulated centerline neutral particle density as a function of axial distance from 
 the cathode for an operating voltage of 300 V……………………………….47  
 
4.7 Simulated centerline neutral particle density as a function of axial distance from 
 the cathode for an operating voltage of 250 V……………………………….47 
 
4.8 Simulated centerline neutral particle density as a function of axial distance from 
 the cathode for an operating voltage of 200 V……………………………….48 
 
4.9 Centerline electron densities for experimental and simulation results for an 
 operating voltage of 300 V…………………………………………………..49 
 
4.10 Centerline electron densities for experimental and simulation results for an 
 operating voltage of 250 V…………………………………………………..49 
 
 
 



 

 

 

LIST OF FIGURES (Continued) 
Figure                                                                                                                       Page 
 
4.11 Centerline electron densities for experimental and simulation results for an 
 operating voltage of 200 V…………………………………………………50 
 
4.12 Simulated centerline electron drift velocity as a function of axial distance from 
 the cathode for standard operating conditions ….….………………………52 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

LIST OF TABLES 
 

Table                 Page 
 
4.1 Simulation results for all standard and varied operation parameters….……. 40 

 
4.2 Experimental and numerical results for the SPT-70 Hall thruster with standard 

 operating parameters……………………………………………………. 41 
 
4.3 Simulation results for varying superparticle size with standard operating 

 parameters………………………………………………………………. 53 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

 

DEDICATION 
 
I would like to dedicate this work to my partner Catherine for inspiring me and 

supporting me through many long nights studying. I know that I would not have 

found success without you by my side and I hope that I will be able to support you in 

kind for all the challenges and adventures that lie ahead.  

 



 

 

1 

1 Introduction 

 

1.1 Background 

 Since the origins of space exploration, chemical propulsion has been the 

primary means of transporting cargo and people into space. To this day, chemical 

propulsion remains the only option to launch a payload from the Earth’s surface into 

orbit. There are some missions, however, where the use of chemical propulsion has 

proven much less effective than alternative propulsion systems. Electric propulsions 

systems rely on electricity to provide energy to the propellant as opposed to releasing 

internal chemical energy through combustion and provide significant advantages in 

terms of the amount of thrust that can be utilized from a given mass of propellant [1]. 

For this reason, electric propulsion systems are frequently used for satellite station 

keeping and navigation, as less propellant is needed in order to provide thrust for the 

duration of the satellite’s lifetime. 

 Hall thrusters are relatively simple and inexpensive electric thrusters that use a 

static axial electric field and radial magnetic field to expel plasma propellant from the 

thruster. The propellant usually consists of heavy noble gases such as xenon or 

krypton, but other gases or even metals can be used [2]. The propellant is injected in 

the back of the thruster cavity at the anode, as seen in figure 1.1. The gas is then 

ionized through collisions with electrons and the resulting plasma is used to provide 

thrust. The thruster cavity is typically annular in shape with the anode at the back end 

of the cavity and the cathode existing as either a metal ring on the walls at the exit of 

the cavity or, as in figure 1.1, simply as a plume of electrons. 



 

 

2 

 

Figure 1.1. Cross Sectional View of a Hall Thruster. 

The electric field in a Hall thruster serves to accelerate ions from the propellant to 

provide the thrust, while the magnetic field serves to confine the electrons to 

movement in the azimuthal direction through E×B drift. To understand this process, 

consider the Lorentz force: 

 𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩) (1) 

In equation 1, F is the force on the particle, q and v are the charge and velocity of the 

particle respectively, and E and B are the electric and magnetic fields. Under a static 

electric and magnetic field, a stationary ion would be accelerated in the direction of 

the electric field and would initially be unaffected by the magnetic field as the 

particle’s velocity is zero. Now imagine that the magnetic field is perpendicular to the 

electric field. As the particle is accelerated by the electric field, it’s velocity increases 

and it experiences force with a component perpendicular to both v and B due to the 



 

 

3 

cross-product term. The v×B term does not change the magnitude of the velocity 

vector, but rather rotates it in the plane orthogonal to the magnetic field. Without an 

electric field, a particle moving in a magnetic field would follow a stationary circular 

path. In the presence of an electric field, the particle travels faster when on the 

“downhill” side of the electric field compared to the “uphill” side, so the particle 

follows a windy path depicted in figure 1.2 below. The time-averaged velocity of the 

particle is perpendicular to both the electric and magnetic field. A negative ion or 

electron follows the same trajectory but with a rotation in the reverse direction due to 

the negative charge q in the Lorentz force. However, the drift velocity is in the same 

direction as a particle with a positive charge. 

 

Figure 1.2. ExB Drift for Ions and Electrons. 

With an axial electric field and radial magnetic field, an electron in the cavity of a 

Hall thruster would experience E×B drift in the azimuthal direction and be confined 

to travel in a ring around the Hall thruster. Ideally, the electrons would be perfectly 

confined as long as the thruster maintained the applied fields, but in reality, the 

electrons gradually diffuse out of the thruster due to collisions and other factors [3]. 



 

 

4 

Electrons lost to diffusion are replaced by electrons liberated from neutral propellant 

and from an electron gun that also serves to neutralize the plasma plume traveling 

away from the thruster. 

 In the cavity of a Hall thruster, the ions are not contained by E×B drift due to 

the relatively larger mass of ions compared to electrons. For a particle experiencing 

E×B drift, the radius of the orbit about its guiding center is given by [4]: 

 𝑟! =
𝑚𝑣^
|𝑞|𝑩 (2) 

In equation 2, rg is the radius of the orbit about the guiding center, m is the mass of 

the particle, and v^ is the component of velocity perpendicular to the magnetic field. 

Therefore, the radius of the circular motion, or Larmor radius, is directly proportional 

to particle mass. For a Hall thruster using Xenon propellant, a singly charged xenon 

ion has a mass that is approximately 240,000 times larger than an electron. However, 

the electrons inside a Hall thruster typically have velocities that are two orders of 

magnitude greater than the ions in a Hall thruster, which relatively increases the 

Larmor radius of electrons [1]. For a typical Hall thruster, the Larmor radius of 

electrons is several millimeters while the Larmor radius of ions is in the range of tens 

of meters. This greatly exceeds the length of Hall thrusters, typically around 10 

centimeters, and so the magnetic field has a negligible effect on the ions in the cavity 

of the thruster. The Larmor radius for lighter propellants such as Krypton is smaller 

but still significantly exceeds the length of the Hall thruster cavity. The electrons in a 

Hall thruster are said to be “magnetically confined” while the ions are not. 

 Because the electrons are confined to motion in the azimuthal direction, 

voltages of a few hundred volts are all that is required for operation of a Hall thruster. 



 

 

5 

This makes the design and development of Hall thrusters relatively simple compared 

to other electric propulsion systems like the gridded ion thruster, frequently used on 

deep space missions, which require tens of kilovolts for operation [1]. Additionally, 

Hall thrusters are electrostatic devices; The only moving component is the neutral 

propellant that is constantly injected into the thruster during operation. As a result, 

Hall thrusters are cost effective propulsion systems in use on numerous small and 

medium satellites. 

1.2 Purpose 

 The purpose of this work is to create a simulation code to model the plasma 

inside of a Hall thruster and extract data about the Hall thruster’s performance. The 

simulation will be a two-dimensional, axisymmetric code with radial and axial 

domains. The SPT-70 Hall thruster will be modeled, and the results will be compared 

to other simulations and experimental data from the SPT-70 thruster. Parameters such 

as time-averaged thrust, electron and neutral density profile, and potential profile will 

be examined as well as the effect of superparticle size on simulation accuracy. 

 While the scope of this project is limited when compared to existing 

commercial and open-source codes, the process of developing a particle-in-cell code 

is laid out to provide a roadmap to others wishing to develop their own code, modify 

an existing code, or simply to better understand the mechanics of an existing code to 

use it more accurately and effectively. The applications of particle-in-cell codes 

extend to many applications beyond Hall thrusters, including other types of plasma 

thrusters, particle beams and accelerators, and fusion devices. This code aims to serve 

as an example of an intermediate level code which incorporates phenomena such as 



 

 

6 

fluid treatment of electrons and neutral particles and magnetic confinement of 

electrons while leaving out more advanced topics such as varied cell geometry and 

transient behavior. Those interested in using particle-in-cell codes may use this 

project as a reference or as a starting point to build other projects that simulate a 

variety of plasma phenomena. 

1.3 Importance 

In recent months, SpaceX has made significant strides in developing and 

launching communication satellites for its Starlink program. The program intends to 

launch thousands of communication satellites in inclined orbits to cover the Earth in a 

"constellation," so that any Starlink antenna on Earth within range of a Starlink 

satellite would be able establish a low latency broadband internet connection [5]. This 

would provide high speed internet to customers in remote locations, as well as a low 

latency connection between networks on different continents. SpaceX has plans to 

expand its constellation quickly, having successfully deployed 182 of its satellites 

over two missions by November 2019 [6]. In 2020, the company aims to deploy 

1,000 satellites with the goal of eventually operating 12,000 satellites in low earth 

orbit by 2027 and has filed paperwork for an additional 30,000 satellites [6]. 

Aside from SpaceX, many other companies are working towards developing a 

constellation of communication satellites. OneWeb, founded in 2012, has plans to 

deploy 650 satellites in low earth orbit by 2021 and is expecting to expand the 

constellation by 1,972 satellites in the following decade [7]. Additionally, Amazon 

unveiled plans to deploy a constellation of 3,236 satellites in April 2019 [8]. 

According to Pixelytics Earth Observation Ltd., in November of 2019 there were 



 

 

7 

1957 active satellites and 3030 inactive satellites orbiting earth [9]. If SpaceX, 

OneWeb, and Amazon reach full deployment according to current FCC filings, an 

additional 17,000 satellites would be put into orbit. Furthermore, if SpaceX is granted 

approval for the 30,000 additional communication satellites, this would vastly 

increase the number of objects orbiting Earth. 

In light of the massive scale of these projects, financial constraints will force 

companies that are developing constellations to minimize the cost and weight of each 

satellite. It is likely that Hall Thrusters will be used for propulsion on the vast 

majority of these satellites, considering their history of use and simple design which 

would ease production. Aside from constellation satellites, the decreasing cost of 

satellite launches has led to an increase in the number of small and mini satellites 

launched by small companies, universities, and numerous countries. Many of these 

satellites lack propulsion systems, but for any extended missions a scalable and 

efficient system is needed. Hall thrusters serve both of these requirements well and 

thrusters for microsatellites, themselves weighing as little as ten kilograms, are 

currently in development [10]. 

Total production of Hall thrusters will need to grow dramatically in order to 

keep up with demand if full scale satellite constellations are to become a reality. To 

date, only a few hundred Hall thrusters are on active satellites in space, yet if full 

constellation deployment is achieved tens of thousands of Hall thrusters would have 

to be produced [1]. Advancements made in optimizing and refining of computational 

models of Hall thrusters would benefit manufacturers of satellites, as computational 

modeling is a crucial step in the manufacturing of Hall thrusters. Programs modeling 



 

 

8 

the plasma inside Hall thrusters require significant computational resources in order 

to produce an accurate model so the development of accurate simplifications would 

save costs in decreasing total run time. Additionally, any work towards more efficient 

and reliable Hall thrusters would reduce the risk of thruster failure, decreasing the risk 

of satellite collisions resulting in space junk [11]. 

Simulation software serves as a critical tool to aid in the design and 

development of Hall thrusters. Research in the field of plasma simulation with 

applications to electric propulsion can increase the accessibility and efficiency of 

accurate simulation software. Hall thrusters are particularly challenging to model 

because of the different behavior of ions and electrons in the thruster cavity. In 

applications where the electrons and ions are coupled, the plasma can often be treated 

as a single conducting fluid which follows the equations laid out by the field of 

magnetohydrodynamics. These simulations can be solved using existing CFD 

software with the addition of magnetohydrodynamics software packages [12]. In Hall 

thrusters, however, the paths of large groups of particles must be tracked in order to 

capture the macroscopic behavior of the plasma, therefore significant computational 

resources are often needed to run full three-dimensional simulations of Hall thrusters 

with high accuracy. Plasma simulation codes that track the motion of groups of 

particles kinetically are called Particle-in-Cell (PIC) codes, due to the discretization 

of the spatial domain into small units or cells. 

Several techniques are employed to increase the speed of the simulations 

while preserving accuracy. The first approach often taken is to model the problem in 

two dimensions while assuming symmetry of the collapsed dimension. In Hall 



 

 

9 

thrusters, azimuthal symmetry can be assumed after modeling electron motion in the 

remaining directions with diffusion coefficients [13]. Electrons in Hall thrusters are 

confined to move primarily in the azimuthal direction due to the E×B drift inside the 

thruster cavity, with limited non-gyro rotational motion in the radial and axial 

directions due to particle collisions and other factors. Eliminating the azimuthal 

direction in simulation, modeling the remaining electron mobility with a diffusion 

model significantly reduces the computational resources needed. 

Another common approach includes applying a fluid model for the electrons 

in the plasma while maintaining a kinetic, particle-based approach for the ions and 

neutral particles. Because of the discrepancy of the charge to mass ratios for electrons 

and ions in plasmas used in Hall thrusters, electron behavior occurs in time scales 

orders of magnitude smaller than ions [13]. Eliminating the need to track microscopic 

electron behavior significantly decreases program runtime and allows for 

considerably larger or longer simulations to be carried out. Fluid modeling of 

electrons in Hall thrusters is viable because of the strong coupling between the 

electrons and the magnetic fields [1]. The electrons’ motion is largely dictated by the 

magnetic and electric fields with individual particle behavior only playing a minor 

role- one that can be well modeled with the addition of an electron diffusion term in 

the equations describing electron motion. PIC codes that utilize fluid treatment of 

electrons are called Hybrid-PIC simulations. 

Hybrid-PIC codes and codes utilizing two-dimensional analysis have been 

used to model Hall thrusters in research and industry. These codes are commercially 

available for licensing and a hybrid-PIC code specific for Hall thruster modeling 



 

 

10 

called HPHall was developed by the Jet Propulsion Laboratory and is available for 

free to contractors working with NASA [14]. However, open source PIC codes 

modeling Hall thrusters are scarce and implementing a hybrid-PIC code without 

commercial software essentially requires constructing the code from scratch. An open 

source 2D hybrid-PIC code would be valuable to companies or institutions looking to 

investigate new thruster designs without having to license expensive software and 

spending considerable computational resources. Additionally, while the 

simplifications made in building the software in this thesis cause the results to be less 

accurate than commercial software, the program can fully execute in several minutes 

on modern personal computers. More accurate simulations generally take hours to run 

and often require immense computational resources. Academic and industrial 

researchers may find this code valuable in running preliminary simulations of Hall 

thrusters in early stages of research and development. Alternatively, developers might 

find that the fast subroutines within the simulation are able to reduce runtime when 

executed within another program. 

1.4 Assumptions 

The models used in the program rely on the physics describing particle 

behavior to be correct. Ions are described by the kinetic theory of plasmas while 

electrons are described by the fluid theory of plasmas, which are both assumed to 

accurately model plasma behavior. Additionally, it is assumed that the computers 

used to simulate the plasmas do so as accurately as dictated by the numerical model 

methods- no internal errors are generated when running the program. 



 

 

11 

The geometry of the system is limited to two dimensions and the system is 

assumed to be symmetric about the azimuthal axis. Phenomenon arising from 

variations about the azimuthal axis such as oscillations are assumed to not have a 

significant impact on electron transport beyond what is contained in the electron 

diffusion approximation. 

Given that the domain of the simulation ends at the thruster channel, ions may 

exit the thruster before accelerating to a potential of zero volts. To get around this 

problem, ions leaving the domain will be accelerated in the most recent direction of 

travel to their final velocity which is then used in thrust calculation. It is assumed that 

this acceleration captures the future acceleration of the particle despite omitting 

plasma interactions in the plume outside the exit of the Hall thruster.  

1.5 Limitations 

 This project will focus on the development of a hybrid-PIC Hall thruster 

simulation code in C++. The plasma domain will be represented in axial and radial 

dimensions and azimuthal symmetry will be assumed. Only the region of plasma 

within the chamber will be simulated as outside of the thruster cavity the magnetic 

field lines become curved which complicate the task of simulating electron transport. 

Electron motion will be assumed to be instantaneous in the radial direction and will 

be approximated through diffusion in the axial direction. Neutral particle motion will 

be approximated with a simplified diffusion model described in chapter 3. 

 While the code can be adapted to simulate a variety of Hall thrusters, only the 

SPT-70 Hall thruster will be modeled in this project. The results from this simulation 

will be compared to other simulations of the SPT-70 thruster along with experimental 



 

 

12 

data, but further analysis about the accuracy of the simulation in varied systems will 

be left for future work. 

 A copy of the simulation code will be provided in the appendix. The code will 

include some basic annotations, but full descriptions of the processes used in the code 

will not be included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

13 

2 Literature Review 

 

2.1 Hall Thrusters 

 Various forms of electric propulsion systems have been envisioned for over a 

century, with the first concepts being conceived independently by famous rocket 

scientists Robert Goddard in 1906 and Konstantin Tsiolkovosky in 1911 [1]. Russia 

preceded the United States in launching electric propulsion systems including Hall 

thrusters, which were first tested in the 1960s using cesium and mercury as 

propellants. Hall thrusters were tested by the US and Russia through the 1980s. The 

first Hall thrusters launched for propulsion outside of testing flew in 1971 on Russian 

satellites. As of 2009, only 238 Hall thrusters had been flown on 48 different 

spacecraft [1]. 

 A common mission that historically employed the use of Hall thrusters is the 

deployment and station keeping of geostationary satellites. Because of the relative 

simplicity of Hall thrusters, low power requirements, and high specific impulse, Hall 

thrusters are reliable and effective means to raise orbits to the desired profile and then 

maintain an orbit for an extended period of time. In one study evaluating a 6 kW class 

Hall thruster, the authors demonstrated that two to four 6 kW Hall thrusters were 

sufficient to raise the orbit of a 3 to 10 ton satellite from a geostationary transfer orbit, 

a highly elliptical orbit with the apogee at the geostationary orbit, to a geostationary 

orbit over a 4 to 6 month period [15]. 

 Hall thrusters with a range of power and size have been investigated and 

employed on missions. A 200 W thruster was developed in 2017 with oblique shaped 



 

 

14 

channel that saw an increase in thrust, specific impulse, propellant utilization, and 

efficiency of 20% [16]. This development along with other advancements in smaller 

Hall thrusters will have implications for missions with satellites with masses in the 

range of one ton, such as the communication constellation satellites expected to be 

launched in large numbers this decade. At the ultimate ends of the range of Hall 

thruster sizes, thrusters as large as 50 kW have been tested for use in deep space 

missions and a thruster as small as 35 grams with a power of 3 W has been designed 

for deorbiting cubesats [17,18]. 

2.2 Development of Plasma Simulations 

 Computers have been used for the simulation of plasma phenomena since 

nearly the dawn of the computer age, with simple one-dimensional simulations being 

carried out in the 1950s [13,19]. Due to the limited computational resources available 

in early computing systems, there was little practical use in plasma simulations aside 

from systems involving few particles. By the early-1960s, simulations of one-

dimensional plasma phenomena were used to study applications such as beam-plasma 

interactions and radio frequency heating of a plasma in between two parallel plates 

[20,21]. At Stanford University in 1964, the invention of fast accurate 2D Poisson 

solvers made the generalization of plasma codes to two dimensions possible [22]. 

These 2D simulations later became known as “Particle-in-Cell” methods, as the 

system was discretized spatially into cells from where the fields generated by 

particles were calculated. In recent decades, 3D simulations have been used to model 

some plasma geometries, but they usually require supercomputers or networks with 

massive parallel computing ability [23]. 



 

 

15 

2.3 Particle-in-Cell Simulations 

Particle-in-cell (PIC) methods allowed for the efficient simulation of weakly 

coupled plasmas where long range forces dominate interactions, since short range 

effects are not included in PIC calculations [13]. In strongly coupled plasmas and 

fluids, short range forces contribute significantly to plasma behavior and alternate 

simulation methods are required. Through careful choice of parameters used 

depending on the application, PIC simulations have been used for electrostatic and 

electromagnetic plasmas to capture details such as phase-space distribution functions, 

particle transport, and nonlinear behavior [24]. 

2.3.1 Superparticles 

An essential aspect of PIC simulations is the use of superparticles, which are 

simulated particles representing anywhere from thousands to billions to high orders of 

ions or electrons at a single point. The resulting particle has the same charge to mass 

ratio of an individual particle and therefore experience the same acceleration and 

trajectories as its component particle [25]. Due to the fewer number of particles per 

Debye length, however, an increased quantity of noise is introduced to the system 

[26]. Given that physical systems may contain fractions of a mole of particles, the use 

of large superparticles is often necessary and must be weighed against accuracy and 

computational resources. 

 

 

 

 



 

 

16 

2.3.2 Modeling Particle Collisions 

Another component function of many PIC codes is the implementation of 

collisions between particles in plasmas. For simulations with a large number of 

particles, tracking the probability of collision for each pair of particles at each 

timestep would introduce a large computational burden. One approach to simplify 

collision calculations is to only calculate the collision probabilities between particles 

in each cell in the simulation, termed the “Binary Collision Model” [27]. This method 

provides a significant reduction in the total calculations required for each time step 

and makes running large scale simulations computationally feasible. In simulations 

where collisions between multiple different plasma species must be calculated, such 

as ion-neutral, electron-neutral, and inelastic collisions between neutrals, the separate 

treatment of each class of collision further encumbers the simulation. Implementation 

of collisions in these simulations is usually done by the Direct Simulation Monte 

Carlo method, where the collision probability for each particle is found independently 

based on information such as particle collision frequency [19,28]. 

2.3.3 Accuracy and Stability Conditions 

The necessary spatial and temporal discretization conditions to converse 

accuracy and stability for a given plasma simulation are discussed at length in [13]. In 

particular, the conditions relate the grid size and time step to the Debye length- the 

distance over which the electric potential from a charge in a plasma will be reduced 

by a factor of e, and the plasma frequency- the resonant frequency of electron 

oscillations in a plasma or metal [4]. To prevent nonphysical behavior of the 

simulated plasma, the spatial grid size should be less than 3.4 Debye lengths of the 



 

 

17 

plasma and the time step should be less than 2 times the inverse plasma frequency 

[13,29]: 

 ∆𝑥 < 3.4𝜆" (3) 

 Δ𝑡 < 2𝜔#$%& (4) 

Outside of these conditions, the effects of the discretization will introduce 

inconsistencies in particle treatment that can compound and destroy the accuracy of 

the system. The application of accuracy and stability conditions are seen in [30,31]. 

2.4 Other Plasma Models 

 Apart from Particle-in-Cell simulations, a number of different models have 

been applied to simulate plasma systems. Prior to the invention of computing 

systems, the field of plasma physics was done through analytical methods. Instead of 

calculating the position and velocity of all the particles in a system at every point in 

time, one can look at the distribution of particles in the position-velocity phase space, 

denoted f(x,v,t) [4]. Working with the distribution function of a system to extract 

information simplifies the calculations at the expense of losing information about 

individual particles. From the distribution function, the Vlasov equation, also called 

the collisionless Boltzmann equation, can be used to derive the fluid equations 

describing a plasma [32]: 

 𝑑𝑓(𝒙, 𝒗, 𝑡)
𝑑𝑡 = 0 (5) 

Where d/dt is the total derivative. The Vlasov equation can be multiplied by v^{i} 

where i=0,1,2, and integrated to produce the zeroith, first, and second order 

“moments” of the Boltzmann equation which describe mass, momentum, and energy 

conservation respectively [4]. Together with Maxwell’s equations, one arrives at a 



 

 

18 

complete set of differential equations that describe the fluid behavior, with a set of 

fluid equations for each species described in the plasma. This model is referred to as 

the two-fluid model and is used in simulations of plasmas where electrons and ions 

have distinctly differing behavior, such as in plasma sheaths near conducting walls 

[33]. In plasmas that are strongly collisional, particle distributions can be assumed to 

be Maxwellian and the two-fluid model can be collapsed to a single conducting fluid 

[4]. The magnetohydrodynamic (MHD) description of plasmas are often applied to 

systems with high densities, such as fusion plasmas and aerospace plasmas [34,35].  

Fluid modeling of plasmas is a rich field and combinations of MHD, two 

fluid, and hybrid fluid-kinetic simulations are commonly used for different plasma 

phenomena.  The treatment of electrons as a fluid is used in this thesis and is 

described in detail in the later chapters. However, alternative modeling methods will 

not be discussed further. 

2.5 Hybrid Particle-in-Cell Simulations 

 Hybrid simulations utilize fluid treatment of one or more species, typically 

electrons, while utilizing kinetic treatment for other species such as ions. Because of 

the large disparity between the charge-to-mass ratios of electrons and ions, electron 

motion occurs over timescales that are up to three orders of magnitude smaller than 

ions [13]. In order to satisfy the accuracy and stability condition for time in equation 

4 above, a PIC simulation would be limited in discretization of time by the oscillating 

frequency of electrons. Alternatively, treating the electrons as a fluid allows for the 

ion motion to dictate the minimum time discretization, allowing for simulations to run 

for approximately 103 times longer using the same total number of time steps. 



 

 

19 

 In unmagnetized plasmas, plasmas without an external magnetic field applied, 

the electron motion is only constrained by electric forces. In plasmas without applied 

external electric fields, such as in the plume of a plasma thruster on a spacecraft, the 

forces on the electrons are solely due to the electric potential within the plasma, 

which is in turn generated from the net charge density. As electrons have negligible 

mass compared to ions, they move practically instantaneously to neutralize any large-

scale, net charge accumulation, leading to what is called quasi-neutrality of the 

plasma [1,4,36]. In the case of no external fields, the modeling of the electron fluid 

becomes relatively simple, depending only on the electric potential and electron 

temperature through the Boltzmann relation [37]. With an added electric field, the 

potential from that field must also be included when finding the electric potential of 

points within a plasma. 

 Applying a magnetic field to a plasma further complicates the motion of the 

electron fluid. In general, motion of electrons is confined to directions parallel to 

magnetic field lines due to the various mechanics arising from the Lorentz force on 

charged particles and the small mass of the electron [4]. Depending on the type of 

phenomenon observed and the associated magnetic field, various mechanisms are 

used to model the behavior of the electron fluid. Typically, many investigations into 

electron fluid behavior of plasmas center on the transport of electrons across magnetic 

field lines as mechanisms for this type of transport are not well understood [1]. An 

important application subject to the consequences of anomalous electron transport is 

in Hall thrusters, which utilize magnetic fields to trap electrons, where the loss of 



 

 

20 

electrons can negatively impact the efficiency and reduce the lifetime of the thruster 

through degradation of surfaces via electron impact [38]. 

2.5.1 Hybrid-PIC Hall Thruster Simulations 

 In principle, most concepts for plasma propulsion systems rely on the same 

mechanism to generate thrust: accelerate ions using electric fields to generate thrust. 

However, Hall thrusters differ through their use of magnetic fields to confine 

electrons and simplify their design. Gridded ion thrusters operate similar to Hall 

thrusters but without a magnetic field, leading to electrons collide with the positively 

charged anode and complete the circuit with an electron current coming from the 

cathode [1]. As a result, gridded ion thrusters require voltages of tens of kilovolts to 

operate, requiring a high voltage power system on a spacecraft that complicates 

design considerations. However, the simulation of such systems is relatively simpler 

as electrons can be modeling using the Boltzmann relation as Jia et al. did in [39]. 

Hall thrusters are the opposite in that they are significantly simpler to construct but 

require more extensive modeling considerations. 

 Hybrid-PIC simulations all use the same formulations for the majority of 

system mechanics, differing mostly in the modeling of phenomena that are not well 

understood such as electron transport across magnetic field lines. The discussion here 

will focus on the modeling of electron transport across field lines as this is the most 

consequential to the development of the model in this thesis. The most common 

electron diffusion model used is the classical model, contributing electron mobility to 

collisions primarily with neutrals, but also sometimes including electron-ion, 

electron-wall, and electron-electron collisions [40]: 



 

 

21 

 𝑣'()*+, = −𝜇^𝐸' −
𝐷-
𝑛$
𝜕𝑛$
𝜕𝑧  (6) 

Where 

 𝜇^ =
𝑒

𝑚$𝜈$.[1 + (
𝜔/$
𝜈$.

)0]
 (7) 

 

 𝐷- =
𝑘𝑇$
𝑒 𝜇^ (8) 

Here,	𝑣'()*+, is the electron drift velocity in the z direction, 𝜇^ is the electron 

mobility, 𝐷- is the diffusion coefficient for electrons crossing magnetic field lines, e 

is the elementary charge, 𝑚$ is the electron mass, 𝑛$ is the electron density, 𝜈$. is the 

electron-neutral collision frequency, and 𝜔/$is the electron cyclotron frequency. 

Shashkov et al. in [41] also includes electron-ion collisions in the classical mobility 

model while Hara et al. in [42] included electron-neutral and electron-wall collisions. 

 Classical electron diffusion deviates from experimental results yet works as a 

close approximation for many applications. Some authors will further augment the 

model by including Bohm diffusion, derived from a random-walk model of electron 

transport within the plasma. The diffusion coefficient from Bohm diffusion is: 

 𝐷1234 =
1
16
𝑘1𝑇
𝑒𝑩  (9) 

Where e is the electron charge, T is temperature, 𝑘1 is the Boltzmann constant, and B 

is the magnetic field. From this Fife in [43] arrives at the expression for classical-

Bohm diffusion given by equation 8: 

 𝑚𝜇^ =
𝑚𝜇$
𝛽$

0 + 𝐾1
1
16𝑩 (10) 



 

 

22 

Where 𝑚𝜇$ is the classical mobility, 𝛽$ is the electron Hall parameter given by 5!"
6"#

, 

and 𝐾1 is an adjustable parameter to weight the contribution of Bohm diffusion. In 

the SPT-70 Hall thruster modeled by Fife a 𝐾1 	value of 0.15 gave theoretical values 

of electron diffusion that were in agreement with experimental results. Cao et al. in 

[44] also used this approach while using a 𝐾1 	value of 0.25 to model the SPT-100 

Hall thruster. 

 Other approaches to the problem of electron diffusion modeling include using 

purely empirical data and avoiding fluid treatment of electrons altogether. Sommier et 

al. in [45] utilized this approach, achieving strong agreement between experimental 

and theoretical data. This method potentially obscures more complicated and 

anomalous behavior of electron transport that might be useful to include in some 

applications. Other authors such as Cao et al. in [46] and Coche and Garrigues in [47] 

use a kinetic simulation of electrons, forgoing the hybrid-PIC method for a pure PIC 

simulation. A full PIC model has the advantages of accurately modeling electron 

behavior at the expense of significantly decreasing the maximum time step allowed 

for each iteration, dramatically increasing the computational cost of a simulation. 

While all approaches have their respective strengths and weaknesses, the classical 

electron diffusion model will be used in this thesis. 

 

 

 

 

 



 

 

23 

3. Methods 

 

3.1 The Challenge of Kinetic Simulations 

 Plasma simulations utilize various tools to simplify the complicated 

interactions within a region of plasma. The main difference between the interactions 

between particles in a typical fluid and the particles in the plasma is the distance over 

which interactions can occur. In a gas, for example, particles essentially only interact 

through collisions, either with each other or a surface in contact with the gas [48]. 

Macroscopic behaviors of gases then arise from largely collisions and other short-

range interactions. In a plasma, the plasma species carry charges that can interact over 

larger ranges within the bulk of the plasma. Recall the Debye length mentioned in 

earlier chapters, which we will define here by the relationship [4]: 

 
𝜆" = Q

𝜖7𝑘1𝑇$
𝑁7𝑞$0

 
(11) 

 Where 𝜆" is the Debye length, 𝜖7 is the vacuum permittivity, 𝑘1 is the Boltzmann 

constant, 𝑇$ is the electron temperature, 𝑁7 is the density of both the ions and 

electrons assuming a quasineutral plasma, and 𝑞$ is the charge of an electron. The 

Debye length is the distance over which the electric field from a charge in the plasma 

will decrease by a factor of e. From here it can be estimated that the number of 

particles that can be affected by a single charge fall within a sphere with a radius 

corresponding to the Debye length [4]: 

 
𝑁" = 𝑁7

4𝜋𝜆"
8

3  
(12) 



 

 

24 

 If we apply this relationship to plasmas found in a Hall thruster, where 

electron temperatures frequently fall into the range of 5 eV and charged particle 

densities are around 1017 particles per meter cubed, we find the Debye length is about 

52.3 microns [1]. Plugging this into equation 12 we find that a particle in a Hall 

thruster interacts with 60,000 other particles in the same type. Since ions and 

electrons can also interact, each particle is effectively in contact with 120,000 other 

particles, meaning that a purely kinetic simulation would have to compute 120,000 

interactions for each particle at each time step. 

To avoid having to simulate the numerous interactions between particles in a 

plasma, simplifications can be made by discretizing the domain into cells. From there, 

the charge density due to the particles in each cell can be calculated. Using Poisson’s 

equation describing the relationship between charge density and electric potential, the 

electric field can be calculated at each grid point which is then used to accelerate 

particles. In this way, particles are interacting not with one another but with the 

special domain surrounding it, only indirectly interacting with particles around it. 

This feature of the simulation is where the name “particle-in-cell” originates. 

 

 

 

 

 

 

 



 

 

25 

3.2 Particle-in-Cell Simulation Structure 

 
Figure 3.1. Algorithm flowchart for the hybrid-PIC simulation 

 
3.2.1 Simulation Overview 

  The simulation code for this thesis is written in C++. The structure of the 

simulation code is shown in figure 3.1 above. For the sake of comparing results to 



 

 

26 

existing data, the SPT-70 Hall thruster was chosen as an initial model to design the 

code. The special domain is divided into radial and axial segments of 1 mm each. The 

SPT-70 Hall thruster channel has an inner radius of 20 mm, outer radius of 35 mm, 

and an axial length of 29 mm [43]. As a result, the domain contains 16 by 30 grid 

points with cells in between. A time step of 10 ns was initially chosen to ensure that 

even the fastest particles during the simulation would travel less than one grid length 

per time step. 

3.2.2 Initialization 

As the SPT-70 is a commercially available Hall thruster, some detailed data is 

unavailable such as the plasma density. Therefore, data from the Stanford Hall 

thruster which has a similar power level was used for initial plasma values. An initial 

ion density of 1.7*1017 m-3 and an initial neutral gas density of 3.2*1019 m-3 at the gas 

inlet and 1.6*1019 m-3 at the thruster exit were used [40]. For the first program runs, 9 

ion superparticles were placed in each cell. Since the sides of each cell measure 1 

mm, each superparticle represents 1.89*107 ions using the previous initial ion density. 

Since electrons and neutrals are not modeled as discrete superparticles, the values of 

each at every grid point can be stored as a continuous value. The plasma is assumed 

to be quasi-neutral and so the initial electron density is the same as the initial ion 

density.  

For each ion, radial and axial position and velocity are stored in an array with 

a length corresponding to the maximum number of particles that the simulation can 

handle. Because C++ is a compiled programming language, the size of each array 

must be predetermined at runtime unless the use of dynamic arrays is employed, 



 

 

27 

significantly increasing the complexity of the code and running the risk of crashing 

without a carefully crafted algorithm. Initially, a maximum number of ions was set to 

5000 times the initial number of superparticles in each cell to give room for a large 

increase in ions over the initial density. 

At initialization, a loop places 9 ion superparticles in each cell with a random 

r- and z- position within the cell. The initial radial velocity is set to zero while the 

initial axial velocity is calculated based on its axial position. A linear relationship is 

applied where particles with z = 0 at the inlet of the thruster have a velocity of zero 

and particles with z = 29 mm at the exit have a velocity of 17 km/s, which is around 

the measured exhaust velocity of similar Hall thrusters [40]. Velocity is interpolated 

based on each superparticle’s z- position. To avoid unused particles in the array 

contributing to calculations within the domain, particles not initialized to the grid are 

given a position of (-1, -1). 

Initial electron densities are uniform across the grid according to the quasi-

neutral approximation of the plasma. However, since electron values are stored at grid 

points, electron densities are slightly smaller than the number of ions per grid since 

there are (n-1) by (m-1) cells within an n by m grid. Neutral particle densities are also 

stored at each grid point. 

Arrays are also initialized to store information about the fields within the 

domain. Charge density, electric potential, and electric field are all initialized as 

independent arrays. Charge density is initially set to zero since values for charge 

density are found before it is used in any calculations. The SPT-70 operates at 300 V 

and so the voltage at the left edge of the domain, also where the gas inlet is, was set to 



 

 

28 

300 V. A linear relationship is applied that drops the potential by 10 V for every axial 

grid point towards the thruster exit, leaving the grid points at the right edge of the 

domain at 10 V. This is a valid initial estimate since an electrode gun outside of the 

thruster serves as the cathode, meaning that the point of zero electric potential could 

easily lie outside of the domain [43]. Initially there is no radial variation in potential 

introduced into the problem. Initial electric field is found by using a finite difference 

method to take a derivative of the electric potential [13]: 

 
𝐸',* = −

𝜙*:&,; − 𝜙*%&,;
2∆𝑧  

(13) 

And at boundaries: 

 
𝐸',* = −

𝜙*,; − 𝜙*%&,;
∆𝑧  

(14) 

 
𝐸',* = −

𝜙*:&,; − 𝜙*,;
∆𝑧  

(15) 

3.2.3 Loop Functions 

 At the start of each loop the first step is to compute the charge density at the 

grid points using the position of each ion superparticle. The scheme used to distribute 

the charges from each ion to the surrounding grid points is called a 1st order scatter 

operation [13]. It is a linear operation that weights the contribution of charge to each 

cell based on the distance of the particle from each grid point. A sketch of this 

operation in one dimension is shown in figure 3.2. In two dimensions, the scatter 

operation acts in both dimensions at the same time. The weight dictating the 

contribution of charge to each grid point then corresponds to an area with sides 

composed of the length from the particle to the grid point in each dimension. A sketch 

of this is shown in figure 3.3. 



 

 

29 

 
Figure 3.2. A sketch of the contribution of the ion’s charge to each grid point in 1D. 

 
Figure 3.3 A sketch of the contribution of the ion’s charge to each grid point in 2D. 

 
 Once the charge density at each grid point is calculated, electric potential at 

each point can then be found using Poisson’s equation. Poisson’s equation, reduced 

from Maxwell’s equations, relates the total charge in a region of space to the 

Laplacian of electric potential through [49]: 

 ∇0𝜙 = −
𝜌
𝜀7

 (16) 

Where	𝜙 is electric potential, 𝜌 is the charge density, and 𝜀7 is the vacuum 

permittivity. Using the finite difference approximation for derivatives and recalling 



 

 

30 

that our system uses radial coordinates, we arrive at the discretized version of 

Poisson’s equation [13]: 

 𝜙$,&'( − 2𝜙$,& + 𝜙$,&)(
(∆𝑟)* +

1
𝑟$,&

𝜙$,&'( − 𝜙$,&)(
2Δ𝑟 +

𝜙$'(,& − 2𝜙$,& + 𝜙$)(,&
(∆𝑧)* = −

𝜌
𝜀+

 (17) 

This can be rewritten in terms of 𝜙*,; to yield: 

 𝜙!,# = #
𝜙!,#$% +𝜙!,#&%

(∆𝑟)' +
1
𝑟!,#

𝜙!,#$% −𝜙!,#&%
2Δ𝑟 +

𝜙!$%,# +𝜙!&%,#
(∆𝑧)' +

𝜌
𝜀(
0 ∗ 2

2
∆𝑧 +

2
∆𝑟3

&%
 (18) 

Using a Dirichlet boundary condition at the inlet of the thruster which is fixed at 300 

V, and Neumann boundary conditions for the other boundaries, a solution to this 

equation can be found numerically. Recall that a Dirichlet boundary condition is fixed 

at a given value, while for a Neumann boundary condition the derivative of the 

function is zero, or in our case, (<
(=
= 0 [50]. From here any Poisson solver can be 

used to find the solution. In this project, an iterative Jacobi solver method is used. 

 An additional step is taken in hybrid simulations, where the electrons are not 

treated as superparticles like ions. In practice this means solving for the distribution 

of electrons and electric potential simultaneously. Since electron motion occurs on a 

time scale that is much shorter than the time scale of the simulation, the electrons 

appear to instantaneously redistribute according to the potential. The electrons carry 

charge themselves, however, and potential must then be found with the electrons in 

place. This process must be iterated over until an acceptable convergence is found 

and the electron density and potential reach stable values. 

 In Hall thrusters, electrons are magnetically confined in the axial direction but 

more or less free in the radial direction. Therefore, electron diffusion across magnetic 

field lines is slow and takes place in between time steps in the simulation. In the case 



 

 

31 

of motion along magnetic field lines, the Boltzmann approximation can be applied to 

simplify calculations. The Boltzmann relationship comes from thermodynamics and 

relates the number of particles in each state to the energy level of each state [48]. In 

the case of electrons in an electric potential, the Boltzmann relationship becomes: 

 𝑛$ = 𝑛$7𝑒
>(<%<,)/BC" (19) 

Where 𝑛$ is the electron number density, 𝑛$7 is a reference electron density, 𝑞 is the 

electron charge, 𝜙 is the electric potential, 𝜙7 is a refence potential, and 𝑘𝑇$ is the 

electron temperature. Prior to computing the potential and electron distribution in 

each column along the magnetic field lines, the average potential is found as used as 

the reference potential, and the total number of electrons in the column is determined 

and used to normalize the Boltzmann relationship. Since electrons are assumed to be 

isothermal, a value of 𝑘𝑇$ = 5	𝑒𝑉 is used in all calculations, closely approximating 

real electron temperatures in [40,43]. 

 Once the electric potential and electron distributions are found, the electric 

fields at each grid point can be calculated using equations 11, 12, and 13 with 

equivalent equations in the radial direction. The next step is to move the particles. A 

method called the leapfrog method is frequently used in PIC codes due to its 

simplicity and numerical stability [13]. It involves moving particle velocity and 

positions in half time steps sequentially, with velocity change coming from the 

Lorentz force: 

 𝑣,:7.E = 𝑣,%7.E +
𝑞𝐸∆𝑡
𝑚  (20) 

 𝑥,:& = 𝑥, + 𝑣,:7.E∆𝑡 (21) 



 

 

32 

The velocity and position steps are varied since it allows the average velocity 

between t and t+1 to be applied towards the change in position over the time step. To 

implement the leapfrog method, the velocity needs to be traced backwards half a time 

step for the first step. Since the initial velocities in the system modeled here are 

significantly higher than the velocity added in half a time step, ignoring the velocity 

backtracking introduces a negligible difference in the initial conditions, which 

essentially serve as an initial guess to the steady state of the system. 

 After the ion particles are moved to their new positions, electron diffusion 

across magnetic field lines is determined using the classical diffusion described in 

equations 6-8. The value for electron cyclotron frequency 𝜔/$ can be determined for 

our system globally since a uniform magnetic field of 0.02 T exists in the SPT-70 

thruster chamber [43]. The equation for 𝜔/$ is provided in [4]: 

 𝜔/$ =
|𝑞|𝐵
𝑚$

 (22) 

Plugging in a value of 0.02 T, we find 𝜔/$ = 3.52 ∗ 10F	𝐻𝑧. Ahedo, Martinez-

Cerezo, and Martinez-Sanchez provide an expression for the electron-neutral collision 

frequency in [51]: 

 𝜈$. = 𝑛.𝜎$.𝑐$ (23) 

Where 𝑛. is the neutral particle density, 𝜎$. is the collision cross section which the 

authors report is 2.7*10-19 m2 for neutral Xenon and eV range electrons, and 𝑐$ =

`8𝑇$ 𝜋𝑚$
b  is the mean electron thermal velocity. Since we assume isothermal 

electrons with a temperature of 5 eV, 𝑐$ will be a constant value. 



 

 

33 

After electrons are diffused across magnetic field lines, then neutral particles 

are allowed to flow across grid lines towards the exit of the thruster. Velocity of the 

neutral particles was assumed to be a constant value given by the specific impulse of 

a cold gas thruster. The specific impulse of a xenon cold gas thruster has been 

measured to be approximately 28 s, which corresponds to an exhaust velocity of 

274.4 meters per second [52]. While the speed of the gas is assumed to be constant, 

the direction was assumed to have some radial component as the gas flows through 

the Hall thruster chamber. In Dettleff and Grabe, particle flux as a function of 

direction was found through experiment and numerical simulation [52]. Using the 

angular flux distribution in the publication, approximately 2.12% of particles will 

have an angle of either positive or negative 45 degrees with respect to the axial axis. 

At an angle of 45 degrees, half of the velocity will be in the radial direction meaning 

that neutral particles will translate one cell towards the exit of the thruster and one 

cell in the positive or negative z- direction. Particle distributions at angles greater than 

45 degrees were insignificant. 

Following the diffusion of electrons and neutral particles, the ionization of 

neutral particles is calculated. This is essentially a particle injection function, where 

ions and electrons are produced as neutral particles are ionized. For the sake of 

simplicity, we assume that recombination is negligible in the hall thruster channel, 

occurring mostly in the plasma plume outside of the domain of the modeled system 

[1]. Assuming that every collision ionizes a neutral particle by freeing an electron, the 

of change of ions, electrons, and neutral particles due to ionizations is given by: 



 

 

34 

 𝑑𝑛*2.
𝑑𝑡 = 𝜈$.𝑛$G$/,)2. (24) 

 𝑑𝑛$G$/,)2.
𝑑𝑡 = 𝜈$.𝑛$G$/,)2. (25) 

 𝑑𝑛.$H,)IG
𝑑𝑡 = −𝜈$.𝑛$G$/,)2. (26) 

Since the electron neutral collision frequency term depends on the neutral particle 

density, the total amount of collisions at each point depends on both electron and 

neutral particle densities as expected. 

Note that the ionization step takes place after diffusion has taken place. The 

reason for this is not because of the factors that go into ionization but because of the 

products that come out. Ideally, ionization would occur with the calculation of radial 

distribution concurrently, but since the electron distribution is coupled with the 

Poisson solver, this would require further coupling ionization which would introduce 

a large computational burden. Since the ionization depends on the recently diffused 

electrons, a discrepancy will arise in that the electron concentration will be artificially 

high, however the electrons will be redistributed in the potential solver prior to their 

use in any calculations. As for the ions, the introduction of particles one cell to the 

right will only result in the loss of acceleration of one grid cell, an acceptable error 

for this calculation. Introduced ions are born with randomized positions in the cell 

and with velocities calculated using the same method as in the initialization. 

The last step in the loop iteration is the introduction of neutral particles at the 

thruster inlet and electrons at the thruster exit from the cathode. Neutral particles are 

injected according to the mass flow rate, which for the SPT-70 Hall thruster is 2.34 



 

 

35 

mg/s [43]. The introduction of electrons is dependent on the current for the Hall 

thruster, again for the SPT-70 Hall thruster is 2.2 Amps. 

3.2.4 Simulation Output 

 At the end of the series of loops conducted for the simulation, either for a 

present number of iterations or until convergence is reached, data can be extracted to 

provide information about the Hall thruster. In this simulation, the loop was run for 

100,000 iterations to allow for convergence to a steady state without prohibiting 

variations that arise between time steps. To extract useful information from the 

simulation, an average value of the last 100 iterations is taken, smoothing out the 

effects of any natural oscillations. 

 The values of interest to both validate the simulation code and to estimate 

values for Hall thruster performance are time-averaged thrust, electric potential 

profile, and electron density. The calculation of thrust is the primary purpose of the 

simulation and can be found by summing up that axial component of ion velocities 

for particles that leave the system. We assume that the net of velocities in the radial 

direction is zero and do not sum over radial velocities. Often the potential at the exit 

of the thruster is nonzero, meaning that the ions will continue to accelerate until they 

reach an electric potential of zero. To account for this, ions are artificially accelerated 

in their direction of travel the moment they leave the thruster with any additional 

radial velocity being counted towards thrust. 

 The electric potential profile is important in that it provides a picture of how 

the ions are accelerated within the channel. The shape of the potential inside of a Hall 

thruster along with the electron density also allows for a comparison with 



 

 

36 

experimental Hall thruster data. The discretization of the spatial and temporal 

domains will frequently eliminate phenomenon seen in physical systems as well as 

create nonphysical phenomenon. An analysis of the final ion distributions will not be 

included in this work but electron and neutral particle densities at the centerline of the 

thruster will be provided. 

3.2.5 Error Analysis 

 The estimation of numerical error in particle-in-cell simulations is difficult 

due to the numerous simplifications that are made in modeling the problem. 

Cartwright and Radtke highlight this in [53]: “Numerical error estimation for PIC 

plasma simulations is challenging due to multiple discretization parameters” 

including “grid, time step, and macroparticle weight” and stochastic noise arising 

from these factors. Individually, error arising from each factor can be determined by 

testing varying values for each parameter. One common factor used for error 

estimation in fluid simulations is the spatial discretization. A procedure for estimated 

error using spatial discretization size is laid out in [54]. This involves starting with 

some value for average grid size used in the simulation and then testing courses and 

finer meshes to simulate the same system. From there, finding the difference between 

solutions for some value such as flux will eventually show convergence to some 

value. This value can then be used to estimate the error introduced by the spatial 

discretization used in the simulation. 

 This method cannot be used in particle-in-cell methods, however. Applying a 

finer mesh to PIC simulations can actually introduce additional error from a variety of 

factors. One of the largest issues is that the charge from superparticles is distributed 



 

 

37 

only to the grid points of the cell containing the superparticle. As the mesh size 

shrinks, fewer superparticles will be in each cell and the resulting electric field around 

each cell originates from fewer superparticles. In the extreme case, where many cells 

are empty and the rest containing only one superparticle, the electric field that moves 

the superparticles comes only from itself, creating a nonphysical self-interaction that 

can introduce enormous error [13]. 

 Varying sizes of superparticles and time discretization can be used as a tool to 

estimate error. In the system simulated in this project, the time discretization is 

already chosen to ensure that superparticles travel less than one grid per time step 

except in outlying cases. Varying the time scale will likely have an effect on the 

fastest superparticles in the simulation and on some transient behavior such as 

oscillations. However, in small scale test runs, reducing the timestep by a factor of ten 

led to no significant change in the results at a much larger computational cost. 

Additionally, transient plasma behavior is not included directly in any output of the 

simulation and the error introduced by the time scale size is acceptable for the scope 

of this project. 

 The parameter that will be used to estimate error in this project will be 

superparticle size. The smaller the superparticles, the closer the simulation becomes 

to a kinetic simulation, which is essentially an extreme case where the superparticle 

mass is equal to a regular particle. Smaller particle size will result in a smoother 

distribution of charge within each cell, resulting in a system that more closely models 

a charge distribution in a real plasma. The smaller error then feeds into the calculation 

of potential, electric field, and eventually the force on each particle, resulting in a 



 

 

38 

more accurate simulation. The program run time increases significantly, however, as 

superparticle size is reduced due to the number of times loop functions need to be 

called for every superparticle. 

Several different values of superparticle size will be used to determine its 

relationship with simulation accuracy. A large decrease in superparticle size will not 

be feasible for this study as the simulation would take too long to run, but incremental 

decreases in size will be examined. The results will be presented in the next chapter 

as well as a discussion on the benefit of using smaller superparticle size compared to 

the increase in computational cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

39 

4 Results 

 

4.1 System Setup 

  The simulation was run on a 2017 macbook pro with the 10.15.3 version of 

macOS Catalina. The computer contained a 2.3 GHz Dual-Core Intel i5 processor and 

8 GB of 2133 MHz LPDDR3 RAM. The code, written in C++, was executed using 

the GNU Compiler Collection (GCC) compiler. The Integrated Development 

Environment (IDE) used was the Eclypse C++ IDE and the simulations were run 

through the Eclypse interface. When using the standard operating parameters for the 

SPT-70 Hall thruster the simulation consistently executed around 4 minutes. 

Variations of the standard input parameters led to no noticeable change in execution 

time. Decreasing the superparticle size, leading to a larger number of total particles, 

did lead to an increase in execution time but still never exceeded an execution time of 

9 minutes. 

 For each simulation a total of 100,000 timesteps was used with each step 

corresponding to 10 ns for a total simulation time of 1 ms. In all cases the thrust 

reached a convergence of 10-5 within 50,000 timesteps. The initial superparticle 

density was set to 9 superparticles per cell corresponding to 1.89*107 particles for 

each superparticle. For analysis against experimental data, 9 simulations were run 

varying the anode voltage between 300 V, 250 V, and 200V with neutral mass 

injection varied between 2.34	𝜇g/s, 1.76	𝜇g/s, and 2.93 𝜇g/s. To test the effect of 

superparticle size on simulation accuracy, 4 additional simulations were run with 



 

 

40 

anode voltage at 300 V, a neutral mass injection of 2.34	𝜇g/s, and initial superparticle 

densities of 3, 6, 12, and 15 per cell. 

4.2 Simulation Results 

Simulation Anode 
Voltage 

Injection 
Rate 

Superparticle 
Size 

(particles per 
superparticle) 

Thrust Specific 
Impulse 
(𝐼J#) 

SOP-1 300 V 2.34	𝜇g/s 1.89*107 33.2 mN 1446 s 

VOP-1 300 V 1.76	𝜇g/s 1.89*107 20.2 mN 1172 s 

VOP-2 300 V 2.93	𝜇g/s 1.89*107 46.1 mN 1603 s 

VOP-3 250 V 2.34	𝜇g/s 1.89*107 29.5 mN 1285 s 

VOP-4 250 V 1.76	𝜇g/s 1.89*107 19.1 mN 1107 s 

VOP-5 250 V 2.93	𝜇g/s 1.89*107 39.8 mN 1384 s 

VOP-6 200 V 2.34	𝜇g/s 1.89*107 24.7 mN 1074 s 

VOP-7 200 V 1.76	𝜇g/s 1.89*107 17.0 mN 985 s 

VOP-8 200 V 2.93	𝜇g/s 1.89*107 32.5 mN 1132 s 

SOP-2 300 V 2.34	𝜇g/s 5.67*107 24.8 mN 1080 s 

SOP-3 300 V 2.34	𝜇g/s 2.83*107 29.1 mN 1268 s 

SOP-4 300 V 2.34	𝜇g/s 1.42*107 34.7 mN 1512 s 

SOP-5 300 V 2.34	𝜇g/s 1.13*107 34.9 mN 1520 s 

Table 4.1. Simulation results for all standard and varied operation parameters. 

 The results from all of the simulation runs are summarized in table 4.1. 

Simulations are named according to whether the inputs were standard operating 

parameters (SOP) or varied operating parameters (VOP). The inputs are anode 



 

 

41 

voltage, injection rate, and superparticle size while the outputs are thrust and specific 

impulse. 

4.2.1 Simulation Results with Standard Operating Parameters 

 Simulation Experiment 
[43] 

CASE 1 [43] CASE 2 [43] 

Thrust 33.2 mN 37.8 mN 34.2 mN 41.4 mN 

Specific 
Impulse (𝐼J#) 

1446 s 1644 s 1489 s 1803 s 

Table 4.2. Experimental and numerical results for the SPT-70 Hall thruster with standard operating 
parameters. Experimental values from [43]. 

 
Table 4.2 displays the results of SOP-1, experimental results, and results from 

other simulations of the SPT-70 Hall thruster during standard operating conditions. 

While error associated with experimental measurements are not provided, the thrust 

stand used has an associated error of 2% [55]. In [43], the author presents an 

advanced numerical model for the SPT-70 Hall thruster and provides experimental 

and numerical results for standard operating conditions of the thruster, in addition to 

experimental results for varied operating parameters. Being published in 1998, the 

two numerical simulations conducted took approximately 8 hours to execute, 

therefore simulations were not run for nonstandard operating conditions. 

The simulated thrust is found to be 12.2% lower than the experimental result 

in [43]. Recall that the specific impulse (𝐼J#) is a measure of the amount of thrust 

generated per mass of propellant, given by the equation [1]:  

 𝐼J# =
𝐹C3)HJ,

ṁ#)2#$GGI.,𝑔$I),3
 (27) 

Where ṁ#)2#$GGI., is the mass flow rate of the propellant and 𝑔$I),3 is the 

acceleration due to gravity at the earth’s surface, approximately 9.81 m/s2. The 



 

 

42 

gravitational acceleration term is used as a standard to reduce 𝐼J# to units of seconds 

so that different types of propellant systems can be easily compared. Since 𝐼J# is 

directly proportional to thrust, the calculated 𝐼J# for the simulation is proportionally 

lower than the experimental results. 

 There are many factors that can contribute to the discrepancy in thrust, 

including limitations of the size of the simulated domain, discretization of the space 

and time domains, approximating ions as superparticles, and errors introduced from 

numerically solving the system. The effect of superparticle size on simulation 

accuracy is examined later in the chapter. The assumptions made in designing the 

program such as isothermal electrons and azimuthal symmetry also contribute to 

deviations between modeled and real plasma behavior. A combination of all of these 

factors likely contribute to the error in the simulation leading to an underestimation of 

thrust. 

 A large portion of the missing thrust in the simulation results is due to the 

limited size of the domain. The region that is modeled is limited to inside of the 

thruster cavity where the magnetic field lines are parallel. This simplifies the 

modeling of electron behavior since the cells line up with the magnetic field lines, 

allowing for the differentiating of electron behavior in the radial and axial directions. 

Outside of the thruster cavity, the magnetic field lines take on a curved shape, 

requiring more advanced cell geometries and field solving methods. 

 In the SPT-70 Hall thruster, electrons are injected outside of the thruster 

cavity through a neutralizing cathode. Electrons then diffuse in through the cavity, 

ionizing neutral particles along the way, until reaching the anode. At the site of the 



 

 

43 

electron injection, the large number of electrons create a relatively low electric 

potential compared to the surrounding regions outside of the thruster. The electron 

injection system is designed to deposit electrons near the middle of the ion beam 

leaving the thruster which serves to focus or tighten the ion beam by pulling ions on 

the edge of the beam towards the center. Since the domain is limited to the thruster 

cavity in the simulation, the effects of beam tightening are not observed. Beam 

tightening has a significant impact on thrust since the axial velocity of particles is 

proportional to the cosine of the angle from the z-axis. The deflection of ion velocity 

towards the z-axis by a few degrees can result in a few percentage points increase in 

thrust. 

4.2.2 Simulation Results with Varied Operating Parameters 

 
Figure 4.1. Thrust as a function of operating voltage and neutral mass injection rate for experimental 

and simulation results. Experimental values from [43]. 
 

0.01

0.02

0.03

0.04

0.05

0.06

150 200 250 300 350

Th
ru

st
 (N

)

Operating Voltage (V)

1.76 μg/s (exp)
1.76 μg/s (sim)
2.34 μg/s (exp)
2.34 μg/s (sim)
2.93 μg/s (exp)
2.93 μg/s (sim)



 

 

44 

 
Figure 4.2. Specific Impulse as a function of operating voltage and neutral mass injection rate for 

experimental and simulation results. Experimental values from [43]. 
 

Experimental data was recovered from Fife in [43] using the macOS version 

of webplot digitizer, a program that allows the extraction of digital values from 

printed plots. This data was then compared to simulation results for the various input 

parameters used. Figure 4.1 shows the relationship between applied voltage, neutral 

mass injection rate, and thrust for experimental (exp) and simulation (sim) results. 

When comparing the results from the simulation to the measured values, the thrust is 

underestimated for all operating voltages and neutral mass injection rates. The 

simulations show a similar sensitivity to voltage as in experimental results, indicating 

that the discrepancy factor is not highly dependent on voltage or neutral mass 

injection rate. Figure 4.2 displays specific impulse as a function of operating voltage 

and neutral mass injection and shows a similar trend with simulated results. 

800

1000

1200

1400

1600

1800

2000

150 200 250 300 350

Sp
ec

ifi
c 

Im
pu

lse
 𝐼𝑠
𝑝

(s
)

Operating Voltage (V)

1.76 μg/s (exp)
1.76 μg/s (sim)
2.34 μg/s (exp)
2.34 μg/s (sim)
2.93 μg/s (exp)
2.93 μg/s (sim)



 

 

45 

 
Figure 4.3. Simulated centerline electric potential as a function of axial distance from the anode for an 

operating voltage of 300 V. 

 
Figure 4.4. Simulated centerline electric potential as a function of axial distance from the anode for an 

operating voltage of 250 V. 

0

50

100

150

200

250

300

0 5 10 15 20 25 30

Po
te

nt
ia

l (
V)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s

0

50

100

150

200

250

300

0 5 10 15 20 25 30

Po
te

nt
ia

l (
V)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s



 

 

46 

 
Figure 4.5. Simulated centerline electric potential as a function of axial distance from the anode for an 

operating voltage of 200 V. 
 
 Figures 4.3, 4.4, and 4.5 show the electric potential at the centerline with a 

radius of 27.5 mm, or 7.5mm from the inside and outside radial edges of the thruster 

cavity. Experimental values are not available for comparison as introducing an 

electrode will cause a Debye sheath to form around the electrode which changes the 

local potential [43]. If no charged particles were in the thruster cavity, the slope of the 

electric potential would be linear from the anode to the cathode. The deviations from 

a linear slope then arise from concentrations of charge in the cavity, typically 

electrons, since the ions rapidly accelerate out of the thruster without being 

magnetically confined. The electron motion, on the other hand, is coupled to the 

electric potential through the classical electron diffusion model described in equation 

6 and nonlinear interactions such as ionization of neutral particles which introduces 

more electrons into the system. At lower operating voltages, the deviations from a 

linear slope become more pronounced for two reasons. First, the electric potential has 

0

50

100

150

200

250

0 5 10 15 20 25 30

Po
te

nt
ia

l (
V)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s



 

 

47 

a shallower gradient when starting at a lower value, so the variation in potential 

arising from charge density is relatively larger. Second, electron densities are higher 

for lower operating voltages, leading to higher concentrations of charge that impact 

the local potential. 

 
Figure 4.6. Simulated centerline neutral particle density as a function of axial distance from the anode 

for an operating voltage of 300 V. 

 
Figure 4.7. Simulated centerline neutral particle density as a function of axial distance from the anode 

for an operating voltage of 250 V. 

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

N
eu

tr
al

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

N
eu

tr
al

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s



 

 

48 

 
Figure 4.8. Simulated centerline neutral particle density as a function of axial distance from the anode 

for an operating voltage of 200 V. 
 

 Figures 4.6, 4.7, and 4.8 show the neutral particle density at the thruster 

centerline for the axial distance from the anode at operating voltages of 300 V, 250 V, 

and 200 V. Experimental values of neutral particle densities are not provided, 

however since neutral particles are only lost through ionization and diffusion, general 

plasma characteristics can be inferred from neutral particle densities. Any neutral 

particle not diffusing in the axial direction is ionized, so the slope corresponds to the 

local ionization rate.  

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

N
eu

tr
al

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s

2.34 μg/s

2.93 μg/s



 

 

49 

 
Figure 4.9. Centerline electron densities for experimental and simulation results for an operating 

voltage of 300 V. Experimental values from [43]. 

 
Figure 4.10. Centerline electron densities for experimental and simulation results for an operating 

voltage of 250 V.  Experimental values from [43]. 

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

El
ec

tr
on

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s (exp)
1.76 μg/s (sim)
2.34 μg/s (exp)
2.34 μg/s (sim)
2.93 μg/s (exp)
2.93 μg/s (sim)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

El
ec

tr
on

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s (exp)
1.76 μg/s (sim)
2.34 μg/s (exp)
2.34 μg/s (sim)
2.93 μg/s (exp)
2.93 μg/s (sim)



 

 

50 

 
Figure 4.11. Centerline electron densities for experimental and simulation results for an operating 

voltage of 200 V.  Experimental values from [43]. 
 

Figures 4.9, 4.10, and 4.11 show the electron density at the thruster centerline 

for the axial distance from the anode for operating voltages of 300 V, 250 V, and 200 

V for experimental (exp) and simulation (sim) results. Error associated with 

experimental measurements of electron density are not provided in [43]. 

Experimental values are only provided to a distance of 20 mm from the anode. The 

general shape of the electron density in both simulation and experiment has the 

electron density increasing as the electrons flow towards the anode. As electrons 

diffuse through the chamber, they ionize neutral particles, freeing new electrons in the 

process. These electrons can then themselves go on to ionize more neutrals, creating a 

positive feedback loop. This is countered by electron mobility which increases with 

increasing electron density, although not immediately evident. 

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

El
ec

tr
on

 D
en

sit
y 

(1
01

7
m

-3
)

z (mm)

1.76 μg/s (exp)
1.76 μg/s (sim)
2.34 μg/s (exp)
2.34 μg/s (sim)
2.93 μg/s (exp)
2.93 μg/s (sim)



 

 

51 

From equations 6-8, electron mobility and diffusion at first seems inversely 

related to electron-neutral collision frequency. However, upon closer inspection the 

(5!"
6"#
)2 term contributes significantly more. In section 3, from equation 22 it was 

derived that a Hall thruster with a 0.02 T magnetic field would have a cyclotron 

frequency 𝜔/$ = 3.52 ∗ 10F	𝐻𝑧. Using equation 23, plugging in an electron 

temperature of 5 eV and a neutral particle density of 1.5*1017 m-3, 𝜈$. = 6.06 ∗

10K	𝐻𝑧. Therefore, (5!"
6"#
)2 is much greater than 1 and electron mobility and diffusion 

become approximately proportional to 𝜈$. as opposed to being inversely proportional. 

As the electron density increases, mobility increases alongside electron production to 

an equilibrium value. 

While experimental data is not available for comparison near the thruster exit, 

the high electron density can be explained in a similar manner. Looking at equation 6 

describing electron drift velocity, the diffusion term depends on the derivative of 

electron density with respect to the z-axis. Near the anode, the mobility term is large 

due to higher rates of electron-neutral collision with the diffusion term negatively 

contributing to electron motion due to the increasing electron density towards the 

anode. At the thruster exit, the diffusion term contributes significantly to electron 

motion due to the large electron density gradient while the mobility term is smaller 

due to the shallower electric potential in this region. 

The electron drift velocity in the direction of the anode at the channel 

centerline is plotted in figure 4.12 for SOP-1. Equations 6-8 together with equation 23 

were used along with the previously specified values for 𝜔/$, 𝜎$., and 𝑐$. The 

derivative of electron density and electric potential, used to find the electric field, was 



 

 

52 

found using the finite difference approximation. Notably, the drift velocity has a 

maximum near the anode and a minimum near the thruster exit. Values of drift 

velocity at the edges of the domain are likely inaccurate due to errors of the finite 

difference approximation at boundaries. 

 
Figure 4.12. Simulated centerline electron drift velocity as a function of axial distance from the anode 

for standard operating conditions. 
 
 The assumptions made in the development of the simulation contributed to 

discrepancies between simulated and experimental electron densities. Notably, the 

electron densities in simulated results are generally higher while still following the 

overall shape of the measured electron density profiles. In chapter 2, it was mentioned 

that the classical diffusion model was used in the simulation, while other authors used 

different diffusion models or combinations of several. Many other models include 

higher order terms which increase electron diffusion, leading to a lower electron 

population as electrons diffuse out of the system at a faster rate. Similarly, while 

interactions in the azimuthal direction were ignored due to the assumed azimuthal 

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Dr
ift

 V
el

oc
ity

 (m
/s

)

z (mm)



 

 

53 

symmetry, other authors have constructed two dimensional 𝜙-z simulations of Hall 

thrusters to investigate the impact of azimuthal oscillations on electron transport [40]. 

Electron oscillations in the azimuthal were shown to increase electron diffusion 

across magnetic field lines, also leading to a lower electron population. Additionally, 

without the assumption of a constant electron temperature, many constants such as 

the neutral atom cross section would vary and quantities such as electron-neutron 

collision frequency would no longer behave linearly. This can introduce factors that 

increase or decrease electron diffusion in different regions, giving the electron density 

profile a different slope. While all of these likely had some impact on the simulation 

accuracy, they will not be examined further in this discussion. 

4.3 Effects of Superparticle Size on Simulation Accuracy 

Initial 
superparticle 

density 

 

3 per cell 

 

6 per cell 

 

9 per cell 

 

12 per cell 

 

15 per cell 

Superparticle 
size 

(particles per 
super) 

 

5.67*107 

 

2.83*107 

 

1.89*107 

 

1.42*107 

 

1.13*107 

Thrust 24.8 mN 29.1 mN 33.2 mN 34.7 mN 34.9 mN 

Specific 
Impulse 
(𝐼J#) 

1080 s 1268 s 1446 s 1512 s 1520 s 

Table 4.3. Simulation results for varying superparticle size with standard operating parameters. 

As mentioned in chapter 3, determining the accuracy of a particle-in-cell 

simulation is difficult due to the number of factors that contribute to error within the 

simulation. The structure of the code is not well suited for variable cell size and 

modifications are needed before such simulations can be executed. Superparticle size 

was chosen as the factor to be varied in order to test the validity of the code. The base 



 

 

54 

superparticle size used in the simulation was 1.89*107 particles per superparticle, 

corresponding to 9 superparticles placed in each cell during initialization. Four 

additional simulations were run with an operating voltage of 300 V and a neutral 

mass injection rate of 2.34 𝜇g/s with superparticle sizes of 5.67*107, 5.67*107, 

1.42*107, and 1.13*107 particles per superparticle, corresponding to 3, 6, 12, and 15 

superparticles per cell during initialization respectively. The results for the 

simulations and for the base simulation are provided in table 4.3. 

As seen in table 4.3, at a large superparticle size the simulation deviates from 

physical results significantly. This is largely due to nonphysical factors that arise 

when the number of particles in a given cell is low. If a cell is occupied by only one 

superparticle, then the electric field that acts on that particle originates from its own 

charge, which is not possible due to Newton’s third law of motion. At smaller 

superparticle sizes, the calculated thrust more closely matches the experimental thrust 

of 37.8 mN provided in table 4.2. The thrust converges around 35 mN for 12 and 15 

superparticles per cell during initialization. Above 15 superparticles per cell during 

initialization, the program crashes after several loop iterations and the source of this 

issue has not been identified. 

Ideally, the superparticle size would be selected after determining the ideal 

size to balance accuracy with computational cost. The simulation was not created 

with greatly varied superparticle size in mind, and it is not well equipped to handle 

significantly smaller superparticle sizes than the size used for the base simulation. 

The base superparticle size of 1.89*107 particles per superparticle appears to exist in 

the range of sizes for which the simulation most closely matches physical values. 



 

 

55 

5 Conclusion 

 

5.1 Summary 

 In this project a 2D axisymmetric code with azimuthal symmetry was 

developed and used to model the SPT-70 Hall thruster. Discrete superparticle 

treatment of ions was used while neutrals and electrons were treated as continuous 

fluid distributions. Neutral particles were assumed to diffuse with a uniform velocity 

and normal angular distribution of that of a xenon cold gas thruster, while electrons 

were assumed to distribute instantaneously along magnetic field lines according to the 

Boltzmann relationship. Electron diffusion across magnetic field lines was modeled 

through classical electron diffusion. The electric potential was found by solving 

Poisson’s equation using an iterative Jacobi solver. The simulation was initialized 

with an estimation of steady-state values and then continued to loop for 100,000 

timesteps at which point the properties of the thruster plasma converged to stable 

values. 

The simulation determines steady-state characteristics of the thruster including 

thrust, centerline electric potential, centerline neutral particle density, and centerline 

electron density. From the output of the simulation, specific impulse was determined. 

Simulation data was compared to experimental data for the SPT-70 Hall thruster for 

operating voltages of 300 V, 250 V, and 200 V and for neutral mass injection rates of 

1.76 𝜇g/s, 2.34 𝜇g/s, and 2.93 𝜇g/s. Thrust and specific impulse for simulated and 

experimental results were compared for the various operational parameters and 

comparisons between electric potential and particle densities were investigated. 



 

 

56 

The simulation code developed approximately modeled the electron transport 

within the thruster cavity as well as ion acceleration and neutral particle diffusion. 

Thrust was consistently lower than the experimental value, indicating the simulation 

is missing a mechanism outside of the system domain or beyond the scope of the 

model that leads to an increase in thrust. The sensitivity of the simulation to 

superparticle size was examined, and smaller superparticle sizes lead to a 

convergence of thrust around 35 mN. 

The simulation offers advantages in computational efficiency due to the nature 

of the programming language. Since C++, built as an extension of C code, is a 

compiled programming language as opposed to an interpreted one, code can be 

executed more efficiently than higher level codes. In a PIC simulation, several 

kilobytes of data are processed and manipulated for each time step, resulting in 

potentially several billions of calculations being carried out in order to complete a 

simulation. However, calculations within a PIC code typically consist of simple 

arithmetic operations, so only basic functions are needed to execute the code. In this 

simulation, the program stores global arrays for electric potential, electric field, 

charge density, population densities, and ions as pointer variables, further increasing 

the speed at which code can be processed at the expense of error handling. Pointer 

variables are references to addresses in computer memory and allow a program to 

bypass traditional methods of referencing computer memory which can be inefficient 

when dealing with large quantities of data. Implementing pointers results in the 

program being executed in a highly optimized way for simple PIC simulations. The 



 

 

57 

framework of the code can be implemented into other Hall thruster codes or related 

simulations for a potential decrease in execution time. 

5.2 Future Work 

 The main priority in further developing the simulation code will be to 

implement a more complete model of electron transport within a Hall thruster. 

Electron behavior is difficult to model in Hall thrusters due to the different mechanics 

of electron motion in the radial, axial, and azimuthal directions. It will be difficult to 

improve the accuracy of the simulation without taking into account more complicated 

electron interactions. Since the simulation runs relatively quickly, the computational 

cost of adding complexity to the model would be insignificant relative to similar 

simulations. 

 To make the simulation more applicable to various systems, the ability to 

handle varied system geometry can be introduced to the program. All of the 

underlying principles of PIC simulations are still valid when working with cells of 

different geometry such as triangles, trapezoids, and parallelograms. In its current 

state, the simulation only works when the magnetic field is uniform and parallel to the 

cell columns. This doesn’t properly model the true magnetic field within a Hall 

thruster and restricts the domain of the simulation to the cavity where the magnetic 

field lines are approximately straight. Variable cell sizes would also provide value in 

allowing investigations into how cell size impacts the accuracy of the simulation. 

 Segments of the program developed for this project can be applied to similar 

thruster types such as the gridded ion thruster which operates like a Hall thruster 

without a magnetic field. If possible, the generalization of this program to simulate a 



 

 

58 

multitude of electric propulsion systems would provide a powerful open source tool 

for groups without access to commercial software. Additionally, a generalized 

simulation program could serve as a platform for the development of more detailed or 

specialized PIC simulations, saving future developers time in constructing PIC 

simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

59 

Bibliography 

[1] D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall 
Thrusters (Jet Propulsion Laboratory, Pasadena, CA, 2008). 
[2] J. J. Szabo, in Light Metal Propellant Hall Thrusters (University of Michigan, Ann 
Arbor, MI, 2009). 
[3] M. S. McDonald, Ph.D dissertation, University of Michigan, 2012. 
[4] U. S. Inan and M. Gołkowski, Principles of Plasma Physics for Engineers and 
Scientists (Cambridge University Press, Cambridge, 2011). 
[5] L. Grush, SpaceX just launched two of its space internet satellites, The Verge 
(2018). 
[6] C. Henry, SpaceX becomes operator of world’s largest commercial satellite 
constellation with Starlink Launch, SpaceNews.com (2020). 
[7] D. Mohney, OneWeb secures $1.25 billion for global satellite broadband 
network, Space IT Bridge (2019). 
[8] J. Porter, Amazon will launch thousands of satellites to provide internet around 
the world, The Verge (2019). 
[9] A. Lavender, How many satellites orbiting the Earth in 2019?, Pixalytics Ltd 
(2019). 
[10] J. W. Dankanich, Small Satellite Propulsion, AstroRecon (2015). 
[11] P. O'Dowd and F. Paris, Possible Satellite Collision Above Pittsburgh A 
Reminder Of The Risk Of 'Space Junk', Here & Now (2020). 
[12] A. Vakhrushev, Numerical modelling of the MHD flow in continuous casting 
mold by two CFD platforms ANSYS Fluent and OpenFOAM, (2018). 
[13] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation 
(McGraw Hill, New York, 1985). 
[14] R. R. Hofer, I. Katz, I. G. Mikellides, and M. Gamero-Castano, Hybrid-PIC 
Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters 
(Pasadena, CA, 2010). 
[15] I. Funaki, S. Cho, T. Sano, T. Fukatsu, Y. Tashiro, T. Shiiki, Y. Nakamura, H. 
Watanabe, K. Kubota, Y. Matsunaga, and K. Fuchigami, Acta Astronautica 170, 163 
(2020). 
[16] Y. Ding, W. Peng, H. Sun, Y. Xu, L. Wei, H. Li, M. Zeng, F. Wang, and D. Yu, 
Physics of Plasmas 24, 023507 (2017). 
[17] D. Manzella, R. Jankovsky, and R. Hofer, 38th AIAA/ASME/SAE/ASEE Joint 
Propulsion Conference &Amp; Exhibit (2002). 
[18] P. Lascombes and J.-L. Maria, The Smallest Hall Effect Thruster Designed for 
Cubesats. 
[19] C. Birdsall, IEEE Transactions on Plasma Science 19, 65 (1991). 
[20] I. J. Morey and R. W. Boswell, Physics of Fluids B: Plasma Physics 1, 1502 
(1989). 
[21] R. W. Boswell and I. J. Morey, Applied Physics Letters 52, 21 (1988). 
[22] A. B. Langdon, IEEE Transactions on Plasma Science 42, 1317 (2014). 
[23] A. Revel, S. Mochalskyy, I. M. Montellano, D. Wünderlich, U. Fantz, and T. 
Minea, Journal of Applied Physics 122, 103302 (2017). 
[24] J. M. Dawson, Reviews of Modern Physics 55, 403 (1983). 



 

 

60 

[25] J. A. Byers, Scientific and Technical Aerospace Reports 8, (1969). 
[26] M. Melzani, R. Walder, D. Folini, and C. Winisdoerffer, International Journal of 
Modern Physics: Conference Series 28, 1460194 (2014). 
[27] T. Takizuka and H. Abe, Journal of Computational Physics 25, 205 (1977). 
[28] V. Vahedi and M. Surendra, Computer Physics Communications 87, 179 (1995). 
[29] K. Ghoos, W. Dekeyser, G. Samaey, P. Börner, D. Reiter, and M. Baelmans, 
Contributions to Plasma Physics 56, 616 (2016). 
[30] F. Ebadpour and A. Navid, International Journal of Applied Physics and 
Mathematics 187 (2012). 
[31] A. Abedalmuhdi, B. E. Wells, and K.-I. Nishikawa, 2017 IEEE 25th Annual 
International Symposium on Field-Programmable Custom Computing Machines 
(FCCM) (2017). 
[32] C. Cheng and G. Knorr, Journal of Computational Physics 22, 330 (1976). 
[33] M. Hong and G. A. Emmert, Journal of Applied Physics 78, 6967 (1995). 
[34] Nishikawa Kyōji and M. Wakatani, Plasma Physics: Basic Theory with Fusion 
Applications (Springer, Berlin, 2000). 
[35] S. O. Macheret, M. N. Shneider, and R. B. Miles, AIAA Journal 40, 74 (2002). 
[36] N. A. Gatsonis and X. Yin, Journal of Propulsion and Power 17, 945 (2001). 
[37] J. Y. Bang and C. W. Chung, Physics of Plasmas 16, 093502 (2009). 
[38] E. Sommier, M. K. Scharfe, N. Gascon, M. A. Cappelli, and E. Fernandez, IEEE 
Transactions on Plasma Science 35, 1379 (2007). 
[39] Y. Jia, J. Chen, N. Guo, X. Sun, C. Wu, and T. Zhang, Plasma Science and 
Technology 20, 105502 (2018). 
[40] C. M. Lam, E. Fernandez, and M. A. Cappelli, IEEE Transactions on Plasma 
Science 43, 86 (2015). 
[41] A. Shashkov, A. Lovtsov, and D. Tomilin, Physics of Plasmas 24, 043501 
(2017). 
[42] K. Hara, I. D. Boyd, and V. I. Kolobov, Physics of Plasmas 19, 113508 (2012). 
[43] J. M. Fife, Ph.D Dissertation, Massachusetts Institute of Technology, 1998. 
[44] X. Cao, G. Hang, H. Liu, Y. Meng, X. Luo, and D. Yu, Plasma Science and 
Technology 19, 105501 (2017). 
[45] E. Sommier, M. K. Scharfe, N. Gascon, M. A. Cappelli, and E. Fernandez, IEEE 
Transactions on Plasma Science 35, 1379 (2007). 
[46] X.-F. Cao, H. Liu, W.-J. Jiang, Z.-X. Ning, R. Li, and D.-R. Yu, Chinese Physics 
B 27, 085204 (2018). 
[47] P. Coche and L. Garrigues, Physics of Plasmas 21, 023503 (2014). 
[48] D. V. Schroeder, An Introduction to Thermal Physics (Addison Wesley 
Longman, San Francisco, CA, 2005). 
[49] D. J. Griffiths, Introduction to Electrodynamics (Pearson, Boston, 2014). 
[50] S. J. Farlow, Partial Differential Equations for Scientists and Engineers (Dover 
Publications, Inc., New York, 2016). 
[51] E. Ahedo, Martı́nez-Cerezo P., and Martı́nez-Sánchez M., Physics of Plasmas 8, 
3058 (2001). 
[52] G. Dettleff and M. Grabe, Basics of Plume Impingement Analysis for Small 
Chemical and Cold Gas Thrusters (Göttingen, 2011). 



 

 

61 

[53] K. L. Cartwright and G. A. Radtke, Numerical Uncertainty Estimation for 
Stochastic Particle-in-Cell Simulations Applied to Verification and Validation 
(Albuquerque, NM, 2015). 
[54] Journal of Fluids Engineering 130, 078001 (2008). 
[55] T. W. Haag, in Thrust Stand for High Power Electric Propulsion Devices, 
Proceedings of the 25th Joint Propulsion Conference, Cleveland, (1989). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

62 

 
Appendix 
 
//============================================================
================ 
// Name        : hybridSimCode.cpp 
// Author      : Conner Myers 
// Version     : 1.0 
// Copyright   : Creative Commons License 
// Description : Hybrid-PIC Simulation for SPT-70 Hall 
Thruster 
//============================================================
================ 
 
#include <iostream> 
using namespace std; 
#include <random> 
#include <math.h> 
 
// Size of spatial grid - In this problem each node is 
separated by dr, dz 
const int rNodes = 16; //16 
const int zNodes = 30; //30 
const double dr = 1; 
const double dz = 1; 
const double rin = 20; 
const double dt = 1; // 10 ns 
 
// Number of superparticles placed in each cell during 
initialization 
const int numParticlesPerCell = 9; 
double particlesPerSuper = (1.7 * pow(10.0, 8.0)) / 
numParticlesPerCell; 
 
const int maxNumberIons = 5000 * numParticlesPerCell; 
 
// Calibration factors 
const double neutralInjectionCal = 1; 
const double phiCal = 1; 
 
// Number of time steps to be iterated over (10 ns each) 
const int timeSteps = 100000; 
 
// INITIALIZATION 



 

 

63 

// ******************** 
// ******************** 
// ******************** 
// ******************** 
 
// Declare rho (charge density) array and pointer array for 
rho 
double rho[zNodes][rNodes]; 
double *ptrRho[zNodes][rNodes]; 
 
// Initializes ptrRho array, pointing to values for rho. Sets 
initial values of rho to zero 
void initPtrRho() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   ptrRho[i][j] = &rho[i][j]; 
   *ptrRho[i][j] = 0; 
  } 
 } 
 cout << "initPtrRho successful" << endl; 
} 
 
//Declare phi (electric potential) array and pointer array for 
phi 
double phi[zNodes][rNodes]; 
double *ptrPhi[zNodes][rNodes]; 
 
// Initializes ptrPhi array, pointing to values for phi. Sets 
initial values of phi to 300-(10*i) Volts 
void initPtrPhi() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   ptrPhi[i][j] = &phi[i][j]; 
   *ptrPhi[i][j] = (300 - 10 * i) * phiCal; 
   // Note: 29 cells, 300V at left end, 10 V at 
right end 
  } 
 } 
 cout << "initPtrPhi successful" << endl; 
} 
 
//Declare eField (electric field - this time a vector with 2 
values) array and pointer array for eField 
double eField[zNodes][rNodes][2]; 



 

 

64 

double *ptrEField[zNodes][rNodes][2]; 
 
// Initializes ptrEField array, pointing to values for eField. 
Doesn't calculate initial values 
void initPtrEField() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   for (int k = 0; k < 2; k++) { 
    ptrEField[i][j][k] = &eField[i][j][k]; 
   } 
  } 
 } 
 cout << "initPtrEField successful" << endl; 
} 
 
// Initializes EField by differencing electric potential. Use 
if conditions for boundary cases 
void setInitEField() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrEField[i][j][1] = 0; 
   if (i == 0) { 
    *ptrEField[i][j][0] = -(*ptrPhi[i + 
1][j] - *ptrPhi[i][j]) 
      / (0.001); 
   } else if (i == (zNodes - 1)) { 
    *ptrEField[i][j][0] = -(*ptrPhi[i][j] - 
*ptrPhi[i - 1][j]) 
      / (0.001); 
   } else { 
    *ptrEField[i][j][0] = -(*ptrPhi[i + 
1][j] - *ptrPhi[i - 1][j]) 
      / (0.002); 
   } 
  } 
 } 
 cout << "setInitEField successful" << endl; 
} 
 
// Declare ion superparticle array and pointers to ions 
double ionArray[maxNumberIons][4]; 
double *ptrIonArray[maxNumberIons][4]; 
 



 

 

65 

// Initializes ptrIonArray, pointing to values for ions, sets 
position values to -1.-1 (out of bounds) 
void initPtrIonArray() { 
 for (int i = 0; i < maxNumberIons; i++) { 
  for (int j = 0; j < 4; j++) { 
   ptrIonArray[i][j] = &ionArray[i][j]; 
  } 
  *ptrIonArray[i][0] = -1.0; 
  *ptrIonArray[i][1] = -1.0; 
 } 
 cout << "initPtrIonArray successful" << endl; 
} 
 
// Global seed variable for random number generator in 
setInitIons() 
int seed = 36; 
 
// Sets initial values for initial ion superparticles (random 
RZ pos within cell, Z- vel, 0 R- vel) 
// Initial Z- vel models linear acceleration from 0 to 17 km/s 
at exhaust 
void setInitIons() { 
 int ionParticle = 0; 
 default_random_engine e(seed); 
 uniform_real_distribution<float> n(0, 1); 
 for (int i = 0; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes - 1; j++) { 
   for (int k = 0; k < numParticlesPerCell; k++) 
{ 
    *ptrIonArray[ionParticle][0] = n(e) + i; 
    *ptrIonArray[ionParticle][1] = n(e) + j; 
    *ptrIonArray[ionParticle][2] = (0.17 / 
29.0) 
      * 
(*ptrIonArray[ionParticle][0]); 
    *ptrIonArray[ionParticle][3] = 0; 
    ionParticle += 1; 
   } 
  } 
 } 
 seed += 1; 
 cout << "setInitIons successful" << endl; 
} 
 



 

 

66 

// Declare electron density points at the center of each cell 
(-> 1 less point than grid pts) 
double electrons[zNodes][rNodes]; 
double *ptrElectrons[zNodes][rNodes]; 
 
// Sets initial density for electrons, corresponding to 1 * 
xenon superparticles (charge of Xe) 
void initPtrElectrons() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   ptrElectrons[i][j] = &electrons[i][j]; 
   *ptrElectrons[i][j] = ((zNodes - 1) * (rNodes 
- 1) 
     * numParticlesPerCell) / (zNodes * 
rNodes); 
  } 
 } 
 cout << "initPtrElectrons successful" << endl; 
} 
 
// Declare neutral particle densities for each cell (-> 1 less 
point than grid pts, like electrons) 
double neutrals[zNodes][rNodes]; 
double *ptrNeutrals[zNodes][rNodes]; 
 
// Sets initial density for neutrals, using initial data 
(density neutrals ~= 188 * density ions) 
void initPtrNeutrals() { 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   ptrNeutrals[i][j] = &neutrals[i][j]; 
   *ptrNeutrals[i][j] = 188 
     * (1 - (static_cast<double>(i) / (2 
* zNodes - 2))) 
     * numParticlesPerCell * 
neutralInjectionCal; 
  } 
 } 
 cout << "initPtrNeutrals successful" << endl; 
} 
 
// Set variable and pointer to store partial ion values 
double remainderIons[zNodes - 1][rNodes - 1]; 
double *ptrRemainderIons[zNodes - 1][rNodes - 1]; 



 

 

67 

 
// Sets remainderIons values to zero and initializes pointer 
variable 
void initPtrRemainderIons() { 
 for (int i = 0; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes - 1; j++) { 
   ptrRemainderIons[i][j] = &remainderIons[i][j]; 
   *ptrRemainderIons[i][j] = 0; 
  } 
 } 
 cout << "initPtrRemainderIons successful" << endl; 
} 
 
// Declare variable to store thrust at each step 
double thrust; 
double *ptrThrust = &thrust; 
double outThrust; 
double *ptrOutThrust = &outThrust; 
 
// LOOP FUNCTIONS 
// ******************** 
// ******************** 
// ******************** 
// ******************** 
 
// Computes Rho for each node using linear (1st order) scatter 
operation. Only works for 
// particles that are within bounds 
void computeRho() { 
 // First clear ptrRho 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrRho[i][j] = 0; 
  } 
 } 
 // Distribute ion charges to grid points 
 for (int i = 0; i < maxNumberIons; i++) { 
  if ((*ptrIonArray[i][0] >= 0) && 
(*ptrIonArray[i][1] >= 0) 
    && (*ptrIonArray[i][0] <= 29) && 
(*ptrIonArray[i][1] <= 15)) { 
   int zBasePos = (int) *ptrIonArray[i][0]; 
   int rBasePos = (int) *ptrIonArray[i][1]; 



 

 

68 

   double zh = *ptrIonArray[i][0] - (double) 
zBasePos; 
   double rh = *ptrIonArray[i][1] - (double) 
rBasePos; 
   *ptrRho[zBasePos][rBasePos] += (1 - zh) * (1 - 
rh); 
   *ptrRho[zBasePos][rBasePos + 1] += (1 - zh) * 
(rh); 
   *ptrRho[zBasePos + 1][rBasePos] += (zh) * (1 - 
rh); 
   *ptrRho[zBasePos + 1][rBasePos + 1] += (zh) * 
(rh); 
  } 
 } 
} 
 
// Declare Epsilon0 for use in computePhiIons (Calculated in 
base units of superparticles) 
// eps0inv depends on the initial number of particles in each 
cell 
// since the initial ion density is independent of 
superparticle size 
double eps0inv = 30.773 / (1.8125 * numParticlesPerCell); 
 
void computePhi() { 
 // INITIALIZATION: DECLARE TEMPORARY VALUES FROM POINTERS 
 // ******************** 
 // Declare temporary electron points and potential for 
calculations; 
 double mobileElectrons[zNodes][rNodes]; 
 double phiValue[zNodes][rNodes]; 
 double newPhiValue[zNodes][rNodes]; 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   mobileElectrons[i][j] = *ptrElectrons[i][j]; 
   phiValue[i][j] = *ptrPhi[i][j]; 
  } 
 } 
 // ******************** 
 // FIRST STEP: DISTRIBUTE ELECTRONS USING THE BOLTZMANN 
RELATIONSHIP 
 // ******************** 
 // Declare normalization factor and total electrons for 
each column 



 

 

69 

 double normFactorElectrons[zNodes]; 
 double totalColumnElectrons[zNodes]; 
 double averagePhiValue[zNodes]; 
 // Compute averagePhiValue here, used below 
 for (int i = 0; i < zNodes; i++) { 
  averagePhiValue[i] = 0; 
  for (int j = 0; j < rNodes; j++) { 
   averagePhiValue[i] += phiValue[i][j]; 
  } 
  averagePhiValue[i] = (1) * averagePhiValue[i] / 
(float) zNodes; 
 } 
 // Store the exponential of potential in an array, used 
for Boltzmann distribution of electrons (assume T=5eV) 
 double expPhi[zNodes][rNodes]; 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   expPhi[i][j] = exp((phiValue[i][j] - 
averagePhiValue[i]) / 5); 
  } 
 } 
 // Store values for total electrons and total exponential 
terms in each column (clearing at the start of each sum) 
 for (int i = 0; i < zNodes; i++) { 
  normFactorElectrons[i] = 0; 
  totalColumnElectrons[i] = 0; 
  for (int j = 0; j < rNodes; j++) { 
   normFactorElectrons[i] += expPhi[i][j]; 
   totalColumnElectrons[i] += 
mobileElectrons[i][j]; 
  } 
 } 
 // Proportionally redistribute electrons based on the 
exponential of potential at each point (normalized) 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   mobileElectrons[i][j] = (1) 
     * (totalColumnElectrons[i] * 
expPhi[i][j]) 
     / normFactorElectrons[i]; 
  } 
 } 
 // ******************** 



 

 

70 

 // SECOND STEP: CALCULATE NEW POTENTIAL AT EACH GRID 
POINT USING NEW ELECTRON POSITIONS 
 // ******************** 
 // Declare and find values for electric potential due to 
charge density 
 double phiFromRho[zNodes][rNodes]; 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   phiFromRho[i][j] = (*ptrRho[i][j] - 
mobileElectrons[i][j]) 
     * eps0inv; 
  } 
 } 
 // First apply Dirichlet boundary condition at inlet 
(redundant step just in case) 
 for (int j = 0; j < rNodes; j++) { 
  newPhiValue[0][j] = 300 * phiCal; 
 } 
 // Find Phi for internal grid points second 
 for (int i = 1; i < zNodes - 1; i++) { 
  for (int j = 1; j < rNodes - 1; j++) { 
   newPhiValue[i][j] = (phiFromRho[i][j] 
     + (phiValue[i][j + 1] + 
phiValue[i][j - 1]) / (dr * dr) 
     + (phiValue[i][j + 1] - 
phiValue[i][j - 1]) 
       / (2 * dr * rin * (dr + 
j)) 
     + (phiValue[i - 1][j] + phiValue[i 
+ 1][j]) / (dz * dz)) 
     / ((2 / (dr * dr)) + (2 / (dz * 
dz))); 
  } 
 } 
 // Then apply the Neumann boundary condition at the top 
(dphi/dr = 0) 
 for (int i = 1; i < zNodes - 1; i++) { 
  newPhiValue[i][0] = (phiFromRho[i][0] + (2 * 
phiValue[i][1]) / (dr * dr) 
    + (phiValue[i - 1][0] + phiValue[i + 
1][0]) / (dz * dz)) 
    / ((2 / (dr * dr)) + (2 / (dz * dz))); 
 } 



 

 

71 

 // Next apply the Neumann boundary condition at the 
bottom (dphi/dr = 0) 
 for (int i = 1; i < zNodes - 1; i++) { 
  newPhiValue[i][rNodes - 1] = (phiFromRho[i][rNodes 
- 1] 
    + (2 * phiValue[i][rNodes - 2]) / (dr * 
dr) 
    + (phiValue[i - 1][rNodes - 1] + 
phiValue[i + 1][rNodes - 1]) 
      / (dz * dz)) / ((2 / (dr * 
dr)) + (2 / (dz * dz))); 
 } 
 // After that, apply the Neumann boundary condition at 
the exit (dphi/dz = 0) 
 for (int j = 1; j < rNodes - 1; j++) { 
  newPhiValue[zNodes - 1][j] = (phiFromRho[zNodes - 
1][j] 
    + (phiValue[zNodes - 1][j + 1] + 
phiValue[zNodes - 1][j - 1]) 
      / (dr * dr) 
    + (phiValue[zNodes - 1][j + 1] - 
phiValue[zNodes - 1][j - 1]) 
      / (2 * dr * rin * (dr + j)) 
    + (2 * phiValue[zNodes - 2][j]) / (dz * 
dz)) 
    / ((2 / (dr * dr)) + (2 / (dz * dz))); 
 } 
 // Lastly, the upper and lower right corners of the 
domain are subject to double Neumann boundary conditions 
 newPhiValue[zNodes - 1][0] = (phiFromRho[zNodes - 1][0] 
   + (2 * phiValue[zNodes - 1][1]) / (dr * dr) 
   + (2 * phiValue[zNodes - 2][0]) / (dz * dz)) 
   / ((2 / (dr * dr)) + (2 / (dz * dz))); 
 newPhiValue[zNodes - 1][rNodes - 1] = (phiFromRho[zNodes 
- 1][rNodes - 1] 
   + (2 * phiValue[zNodes - 1][rNodes - 2]) / (dr 
* dr) 
   + (2 * phiValue[zNodes - 2][rNodes - 1]) / (dz 
* dz)) 
   / ((2 / (dr * dr)) + (2 / (dz * dz))); 
 // Then, set phiValue to newPhiValue for the next 
iteration 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 



 

 

72 

   phiValue[i][j] = newPhiValue[i][j]; 
  } 
 } 
 // ******************** 
 // FINAL STEP: STORE FOUND VALUES OF PHI AND ELECTRONS IN 
POINTER VARIABLES 
 // ******************** 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrElectrons[i][j] = mobileElectrons[i][j]; 
   *ptrPhi[i][j] = newPhiValue[i][j]; 
  } 
 } 
} 
 
// Compute EField from the derivative of Phi (using finite 
difference) 
void computeEField() { 
 // First find the z component of the EField 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrEField[i][j][1] = 0; 
   if (i == 0) { 
    *ptrEField[i][j][0] = -(*ptrPhi[i + 
1][j] - *ptrPhi[i][j]) 
      / (0.001); 
   } else if (i == (zNodes - 1)) { 
    *ptrEField[i][j][0] = -(*ptrPhi[i][j] - 
*ptrPhi[i - 1][j]) 
      / (0.001); 
   } else { 
    *ptrEField[i][j][0] = -(*ptrPhi[i + 
1][j] - *ptrPhi[i - 1][j]) 
      / (0.002); 
   } 
  } 
 } 
 // Then the r component of the EField 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   if (j == 0) { 
    *ptrEField[i][j][1] = -(*ptrPhi[i][j + 
1] - *ptrPhi[i][j]) 
      / (0.001); 



 

 

73 

   } else if (j == rNodes - 1) { 
    *ptrEField[i][j][1] = -(*ptrPhi[i][j] - 
*ptrPhi[i][j - 1]) 
      / (0.001); 
   } else { 
    *ptrEField[i][j][1] = -(*ptrPhi[i][j + 
1] - *ptrPhi[i][j - 1]) 
      / (0.002); 
   } 
  } 
 } 
} 
 
void moveParticles() { 
 double avgPhiAtExit; 
 double totalPhiAtExit = 0; 
 *ptrThrust = 0; 
 for (int j = 0; j < rNodes; j++) { 
  totalPhiAtExit += *ptrPhi[zNodes - 1][j]; 
 } 
 avgPhiAtExit = totalPhiAtExit / rNodes; 
 for (int i = 0; i < maxNumberIons; i++) { 
  if (*ptrIonArray[i][0] != -1.0 && 
*ptrIonArray[i][1] != -1.0) { 
   // First interpolate Efield at each particle 
   double eFieldAtIon[2] = { 0, 0 }; 
   int zBasePos = (int) *ptrIonArray[i][0]; 
   int rBasePos = (int) *ptrIonArray[i][1]; 
   double zh = *ptrIonArray[i][0] - (double) 
zBasePos; 
   double rh = *ptrIonArray[i][1] - (double) 
rBasePos; 
   for (int k = 0; k < 2; k++) { 
    eFieldAtIon[k] = 
*ptrEField[zBasePos][rBasePos][k] * (1 - zh) 
      * (1 - rh) 
      + 
*ptrEField[zBasePos][rBasePos + 1][k] * (1 - zh) 
        * (rh) 
      + *ptrEField[zBasePos + 
1][rBasePos][k] * (zh) 
        * (1 - rh) 
      + *ptrEField[zBasePos + 
1][rBasePos + 1][k] * (zh) 



 

 

74 

        * (rh); 
   } 
   // Accelerate Velocity through v = v_0 + 
(q/m)*E*dt, move position with updated velocity 
   // With E in V/m (equivalently N/C), time = 10 
ns (=dt), q/m=7.346*10^-8 
   for (int k = 0; k < 2; k++) { 
    *ptrIonArray[i][k + 2] += eFieldAtIon[k] 
* 7.346 
      * pow(10.0, -8.0) * dt; 
    *ptrIonArray[i][k] += *ptrIonArray[i][k 
+ 2] * dt; 
   } 
   // Then check to see if the particle is out of 
bounds, either reflect or absorb particles 
   // Recall that we store unused particles at (-
1,-1), so dont count those 
   if (*ptrIonArray[i][0] < 0) { 
    *ptrIonArray[i][0] = -1 * 
(*ptrIonArray[i][0]); 
    *ptrIonArray[i][2] = -1 * 
(*ptrIonArray[i][2]); 
   } else if (*ptrIonArray[i][1] > (double) 
(rNodes - 1)) { 
    *ptrIonArray[i][1] -= 
(*ptrIonArray[i][1] 
      - (double) (rNodes - 1)); 
    *ptrIonArray[i][3] = -1 * 
(*ptrIonArray[i][3]); 
   } else if (*ptrIonArray[i][1] < 0) { 
    *ptrIonArray[i][1] = -1 * 
(*ptrIonArray[i][1]); 
    *ptrIonArray[i][3] = -1 * 
(*ptrIonArray[i][3]); 
   } else if (*ptrIonArray[i][0] > (double) 
(zNodes - 1)) { 
    // If ions leave the domain at the exit, 
accelerate the particles in current direction 
    double twoKEoverM = 2 * avgPhiAtExit / 
(1.223 * pow(10.0, 8)); 
    // Weight acceleration in z-dir by 
v_z/v_total; ∆v=sqrt(2∆KE/m); ∆v given in terms of c, *10^5 
    *ptrIonArray[i][2] += 
(*ptrIonArray[i][2] 



 

 

75 

      / (*ptrIonArray[i][3] + 
*ptrIonArray[i][2])) 
      * sqrt(twoKEoverM) * 3 * 
pow(10.0, 3.0); 
    *ptrThrust += *ptrIonArray[i][2] * 
(particlesPerSuper) 
      * (2.18 * pow(10.0, -12.0)); 
    // After tallying the particle into the 
thrust, remove from domain for later use 
    *ptrIonArray[i][0] = -1.0; 
    *ptrIonArray[i][1] = -1.0; 
    *ptrIonArray[i][2] = 0; 
    *ptrIonArray[i][3] = 0; 
    // Finally, check if reflected particles 
are out of bounds 
    if ((*ptrIonArray[i][0] < 0) || 
(*ptrIonArray[i][0] > 30) 
      || (*ptrIonArray[i][1] < 0) 
      || (*ptrIonArray[i][1] > 16)) 
{ 
     *ptrIonArray[i][0] = -1.0; 
     *ptrIonArray[i][1] = -1.0; 
     *ptrIonArray[i][2] = 0; 
     *ptrIonArray[i][3] = 0; 
    } 
   } 
  } 
 } 
} 
 
// Constants used in the diffuse electrons function, based on 
0.02 T B-field and 5 eV electrons 
double omegaCE = 3.52 * pow(10.0, 9.0); 
 
// Diffuse Electrons using drift diffusion approximation 
void diffuseElectrons() { 
 // Declare arrays used in computations 
 double dneAxial[zNodes][rNodes]; 
 double nuEN[zNodes][rNodes]; 
 double omegaDNu2[zNodes][rNodes]; 
 double diffusion[zNodes][rNodes]; 
 double mobility[zNodes][rNodes]; 
 double driftVel[zNodes][rNodes]; 
 double initialElectrons[zNodes][rNodes]; 



 

 

76 

 double finalElectrons[zNodes][rNodes]; 
 double deltaElectrons[zNodes][rNodes]; 
 // Compute the derivative of neutral particle density at 
each point 
 for (int i = 1; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   dneAxial[i][j] = (particlesPerSuper) 
     * (*ptrElectrons[i + 1][j] - 
*ptrElectrons[i - 1][j]) 
     / (2 * dz * pow(10.0, -3.0)); 
  } 
 } 
 for (int j = 0; j < rNodes; j++) { 
  dneAxial[0][j] = (particlesPerSuper) 
    * (*ptrElectrons[1][j] - 
*ptrElectrons[0][j]) 
    / (dz * pow(10.0, -3.0)); 
  dneAxial[zNodes - 1][j] = (particlesPerSuper) 
    * (*ptrElectrons[zNodes - 1][j] - 
*ptrElectrons[zNodes - 2][j]) 
    / (dz * pow(10.0, -3.0)); 
 } 
 // Compute electron neutral collision frequency at each 
points and (omegaCE/NuEN)^2 
 // Multiply number of neutral particles (not 
superparticles) by NuEN constant in mm^-3 units 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   nuEN[i][j] = (particlesPerSuper) * 
(*ptrNeutrals[i][j]) * 4.039 
     * pow(10.0, -4.0); 
   omegaDNu2[i][j] = (omegaCE / nuEN[i][j]) * 
(omegaCE / nuEN[i][j]); 
  } 
 } 
 // Compute Diffusion coefficient and electron mobility at 
each point 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   mobility[i][j] = (1.759 * pow(10.0, 11)) 
     * (1 / (nuEN[i][j] * (1 + 
omegaDNu2[i][j]))); 
   diffusion[i][j] = (8.794 * pow(10.0, 11)) 



 

 

77 

     * (1 / (nuEN[i][j] * (1 + 
omegaDNu2[i][j]))); 
  } 
 } 
 // Calculate the drift velocity of electrons at each 
point 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   driftVel[i][j] = -(*ptrEField[i][j][0] * 
mobility[i][j]) * (15.0) 
     - (diffusion[i][j] * 
dneAxial[i][j]) * (15.0) 
       / (*ptrElectrons[i][j] * 
particlesPerSuper); 
  } 
 } 
 // Set temporary variables for electrons used in 
calculating electron diffusion 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   initialElectrons[i][j] = *ptrElectrons[i][j]; 
   finalElectrons[i][j] = *ptrElectrons[i][j]; 
  } 
 } 
 // Use drift velocity to move electrons everywhere except 
thruster exit and anode 
 for (int i = 1; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   if (driftVel[i][j] <= 0.0) { 
    deltaElectrons[i][j] = 
initialElectrons[i][j] * -driftVel[i][j] 
      * pow(10.0, -5.0); 
    if (deltaElectrons[i][j] > 
initialElectrons[i][j]) { 
     finalElectrons[i - 1][j] += 
initialElectrons[i][j]; 
     finalElectrons[i][j] -= 
initialElectrons[i][j]; 
    } else { 
     finalElectrons[i - 1][j] += 
deltaElectrons[i][j]; 
     finalElectrons[i][j] -= 
deltaElectrons[i][j]; 
    } 



 

 

78 

   } else { 
    deltaElectrons[i][j] = 
initialElectrons[i][j] * driftVel[i][j] 
      * pow(10.0, -5.0); 
    if (deltaElectrons[i][j] > 
initialElectrons[i][j]) { 
     finalElectrons[i + 1][j] += 
initialElectrons[i][j]; 
     finalElectrons[i][j] -= 
initialElectrons[i][j]; 
    } else { 
     finalElectrons[i + 1][j] += 
deltaElectrons[i][j]; 
     finalElectrons[i][j] -= 
deltaElectrons[i][j]; 
    } 
   } 
  } 
 } 
 // At the Anode, diffusing electrons complete the circuit 
and are removed from the system 
 for (int j = 0; j < rNodes; j++) { 
  if (driftVel[0][j] <= 0.0) { 
   deltaElectrons[0][j] = initialElectrons[0][j] 
* -driftVel[0][j] 
     * pow(10.0, -5.0); 
   if (deltaElectrons[0][j] > 
initialElectrons[0][j]) { 
    finalElectrons[0][j] -= 
initialElectrons[0][j]; 
   } else { 
    finalElectrons[0][j] -= 
deltaElectrons[0][j]; 
   } 
  } else { 
   deltaElectrons[0][j] = initialElectrons[0][j] 
* driftVel[0][j] 
     * pow(10.0, -5.0); 
   if (deltaElectrons[0][j] > 
initialElectrons[0][j]) { 
    finalElectrons[1][j] += 
initialElectrons[0][j]; 
    finalElectrons[0][j] -= 
initialElectrons[0][j]; 



 

 

79 

   } else { 
    finalElectrons[1][j] += 
deltaElectrons[0][j]; 
    finalElectrons[0][j] -= 
deltaElectrons[0][j]; 
   } 
  } 
 } 
 // At thruster exit, electrons are introduced through 
hollow cathode supplying electrons 
 for (int j = 0; j < rNodes; j++) { 
  // First diffuse electrons just like before 
  if (driftVel[zNodes - 1][j] <= 0.0) { 
   deltaElectrons[zNodes - 1][j] = 
initialElectrons[zNodes - 1][j] 
     * -driftVel[zNodes - 1][j] * 
pow(10.0, -5.0); 
   if (deltaElectrons[zNodes - 1][j] 
     > initialElectrons[zNodes - 1][j]) 
{ 
    finalElectrons[zNodes - 2][j] += 
      initialElectrons[zNodes - 
1][j]; 
    finalElectrons[zNodes - 1][j] -= 
      initialElectrons[zNodes - 
1][j]; 
   } else { 
    finalElectrons[zNodes - 2][j] += 
deltaElectrons[zNodes - 1][j]; 
    finalElectrons[zNodes - 1][j] -= 
deltaElectrons[zNodes - 1][j]; 
   } 
  } else { 
   deltaElectrons[zNodes - 1][j] = 
initialElectrons[zNodes - 1][j] 
     * driftVel[zNodes - 1][j] * 
pow(10.0, -5.0); 
   if (deltaElectrons[zNodes - 1][j] 
     > initialElectrons[zNodes - 1][j]) 
{ 
    finalElectrons[zNodes - 1][j] -= 
      initialElectrons[zNodes - 
1][j]; 
   } else { 



 

 

80 

    finalElectrons[zNodes - 1][j] -= 
deltaElectrons[zNodes - 1][j]; 
   } 
  } 
  // Then introduce new electrons from 2.2 Amp 
current 
  // Remember to normalize the current based on 
simulation area / total area 
  finalElectrons[zNodes - 1][j] += 0.0933 
    * (pow(neutralInjectionCal, 2.5)) 
    * (double) numParticlesPerCell; 
 } 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   finalElectrons[i][j] *= 0.9 
     + 0.1 * exp(-(double) (i) / 29) / 
0.63212; 
 
  } 
 } 
 // Finally, set the global values for electrons to 
computed final electrons 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrElectrons[i][j] = finalElectrons[i][j]; 
  } 
 } 
} 
 
// Neutral Drift Vel, 274.4 m/s -> 0.002744 mm/(10ns) 
double neutralDriftVel = 0.002774; 
 
// Diffuse neutrals 
void diffuseNeutrals() { 
 // Declare variables used in computing neutral diffusion 
 double initialNeutrals[zNodes][rNodes]; 
 double finalNeutrals[zNodes][rNodes]; 
 // Initialize temporary variables 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   initialNeutrals[i][j] = *ptrNeutrals[i][j]; 
   finalNeutrals[i][j] = *ptrNeutrals[i][j]; 
  } 
 } 



 

 

81 

 // Calculate diffusion for internal points 
 for (int i = 1; i < zNodes - 1; i++) { 
  for (int j = 1; j < rNodes - 1; j++) { 
   // 97.88% of drift velocity is straight ahead 
   finalNeutrals[i + 1][j] += 
initialNeutrals[i][j] * neutralDriftVel 
     * 0.9788; 
   finalNeutrals[i + 1][j + 1] += 
initialNeutrals[i][j] 
     * neutralDriftVel * 0.0106; 
   finalNeutrals[i + 1][j - 1] += 
initialNeutrals[i][j] 
     * neutralDriftVel * 0.0106; 
   finalNeutrals[i][j] -= initialNeutrals[i][j] * 
neutralDriftVel; 
  } 
 } 
 // At top and bottom, neutral particles reflect of 
thruster walls 
 for (int i = 1; i < zNodes - 1; i++) { 
  finalNeutrals[i + 1][0] += initialNeutrals[i][0] * 
neutralDriftVel 
    * 0.9894; 
  finalNeutrals[i + 1][1] += initialNeutrals[i][0] * 
neutralDriftVel 
    * 0.0106; 
  finalNeutrals[i + 1][rNodes - 1] += 
initialNeutrals[i][rNodes - 1] 
    * neutralDriftVel * 0.9894; 
  finalNeutrals[i + 1][rNodes - 2] += 
initialNeutrals[i][rNodes - 1] 
    * neutralDriftVel * 0.0106; 
  finalNeutrals[i][0] -= initialNeutrals[i][0] * 
neutralDriftVel; 
  finalNeutrals[i][rNodes - 1] -= 
initialNeutrals[i][rNodes - 1] 
    * neutralDriftVel; 
 } 
 // At the thruster exist neutral particles leave the 
domain 
 for (int j = 0; j < rNodes; j++) { 
  finalNeutrals[zNodes - 1][j] -= 
initialNeutrals[zNodes - 1][j] 
    * neutralDriftVel; 



 

 

82 

 } 
 // At inlet, particles enter domain at drift velocity 
 // Assume initial density is correct, corresponds to 
addition of ~3.09 neutral superparticles added each step 
 for (int j = 1; j < rNodes - 1; j++) { 
  finalNeutrals[1][j] += initialNeutrals[0][j] * 
neutralDriftVel * 0.9788; 
  finalNeutrals[1][j + 1] += initialNeutrals[0][j] * 
neutralDriftVel 
    * 0.0106; 
  finalNeutrals[1][j - 1] += initialNeutrals[0][j] * 
neutralDriftVel 
    * 0.0106; 
  finalNeutrals[0][j] = 1128 * neutralInjectionCal; 
 } 
 finalNeutrals[1][0] += initialNeutrals[0][0] * 
neutralDriftVel * 0.9894; 
 finalNeutrals[1][1] += initialNeutrals[0][0] * 
neutralDriftVel * 0.0106; 
 finalNeutrals[1][rNodes - 1] += initialNeutrals[0][rNodes 
- 1] 
   * neutralDriftVel * 0.9894; 
 finalNeutrals[1][rNodes - 2] += initialNeutrals[0][rNodes 
- 1] 
   * neutralDriftVel * 0.0106; 
 finalNeutrals[0][0] = 1128 * neutralInjectionCal; 
 finalNeutrals[0][rNodes - 1] = 1128 * 
neutralInjectionCal; 
 // Set global neutral values to computed neutral values 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrNeutrals[i][j] = finalNeutrals[i][j]; 
   if (*ptrNeutrals[i][j] < 0) { 
    *ptrNeutrals[i][j] = 0; 
   } 
  } 
 } 
} 
 
int ionExceededCount = 0; 
 
// findNextValue finds the next available value in the Ion 
Array 
int findNextValue(int startingValue) { 



 

 

83 

 // Declare variables used 
 int ionCounter = startingValue; 
 bool counterFlag = 0; 
 bool loopingFlag = 0; 
 bool skipInjectFlag = 0; 
 // Loop over the values in the Ion Array, returning to 0 
once if last value is filled. Return available index 
 while (counterFlag == 0) { 
  if (*ptrIonArray[ionCounter][0] <= -0.95 
    && *ptrIonArray[ionCounter][1] <= -0.95) 
{ 
   counterFlag = 1; 
  } else { 
   ionCounter += 1; 
  } 
  if (ionCounter >= maxNumberIons) { 
   if (loopingFlag == 1) { 
    counterFlag = 1; 
    ionExceededCount += 1; 
    skipInjectFlag = 1; 
   } 
   ionCounter = 0; 
   loopingFlag = 1; 
  } 
 } 
 if (skipInjectFlag == 1) { 
  return -1; 
  cout << "Index of -1 returned" << endl; 
 } else { 
  return ionCounter; 
 } 
} 
 
// Initialize an ion array counter to speed up findNextValue 
function 
int ionArrayCounter = (zNodes - 1) * (rNodes - 1) * 
(numParticlesPerCell) - 1; 
 
// Ionize Particles using electron and neutral densities, 
adjust values and inject ion particles 
void ionizeParticles() { 
 // Declare temporary variables 
 double nuEN[zNodes][rNodes]; 
 double deltaElectrons[zNodes][rNodes]; 



 

 

84 

 double deltaIons[zNodes][rNodes]; 
 double deltaNeutrals[zNodes][rNodes]; 
 double deltaAtIons[zNodes - 1][rNodes - 1]; 
 double injectIons[zNodes - 1][rNodes - 1]; 
 *ptrOutThrust = 0; 
 // Set DeltaAtIons to zero 
 for (int i = 0; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes - 1; j++) { 
   deltaAtIons[i][j] = 0; 
  } 
 } 
 // Compute nuEN at each point, concurrently finding 
deltaElectrons and deltaNeutrals 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   nuEN[i][j] = (particlesPerSuper) * 
(*ptrNeutrals[i][j]) * 4.039 
     * pow(10.0, -6.0) * 0.75 / 
pow(neutralInjectionCal, 2.0); 
   // delta variables should use units of 
superparticles 
   deltaElectrons[i][j] = nuEN[i][j] * 
(*ptrElectrons[i][j]) 
     / (particlesPerSuper); 
   deltaIons[i][j] = deltaElectrons[i][j]; 
   deltaNeutrals[i][j] = -deltaElectrons[i][j]; 
   double twoKEoverM = 3 * *ptrPhi[i][j] / (1.223 
* pow(10.0, 8)); 
   if (twoKEoverM < 0) { 
    twoKEoverM = abs(twoKEoverM); 
   } 
   double inj = neutralInjectionCal * phiCal; 
   if (neutralInjectionCal > 1) { 
    inj = sqrt(neutralInjectionCal) * 
phiCal; 
   } 
   *ptrOutThrust += deltaIons[i][j] * 
sqrt(twoKEoverM) 
     * inj * pow(10.0, 5.0) 
     * (particlesPerSuper / 
numParticlesPerCell) 
     * (3.093 * pow(10.0, -11.0)); 
  } 
 } 



 

 

85 

 // Change Neutral and Electron values 
 for (int i = 0; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrElectrons[i][j] += deltaElectrons[i][j]; 
   *ptrNeutrals[i][j] += deltaNeutrals[i][j]; 
   if (*ptrElectrons[i][j] < 0) { 
    *ptrElectrons[i][j] = 0; 
   } 
   if (*ptrNeutrals[i][j] < 0) { 
    *ptrNeutrals[i][j] = 0; 
   } 
  } 
 } 
 // Compute delta ions at the center of each grid point, 
including any remaining particle ions 
 // from previous ionization steps 
 for (int i = 1; i < zNodes - 1; i++) { 
  for (int j = 1; j < rNodes - 1; j++) { 
   deltaAtIons[i - 1][j - 1] += 0.25 * 
deltaIons[i][j]; 
   deltaAtIons[i - 1][j] += 0.25 * 
deltaIons[i][j]; 
   deltaAtIons[i][j - 1] += 0.25 * 
deltaIons[i][j]; 
   deltaAtIons[i][j] += 0.25 * deltaIons[i][j]; 
  } 
 } 
 // At top and bottom, only distribute ions to 2 grid 
center points 
 for (int i = 1; i < zNodes - 2; i++) { 
  deltaAtIons[i - 1][0] += 0.5 * deltaIons[i][0]; 
  deltaAtIons[i][0] += 0.5 * deltaIons[i][0]; 
  deltaAtIons[i - 1][rNodes - 2] += 0.5 * 
deltaIons[i][rNodes - 1]; 
  deltaAtIons[i][rNodes - 2] += 0.5 * 
deltaIons[i][rNodes - 1]; 
 } 
 // At left and right ends, only distribute ions to 2 grid 
center points 
 for (int j = 1; j < rNodes - 2; j++) { 
  deltaAtIons[0][j - 1] += 0.5 * deltaIons[0][j]; 
  deltaAtIons[0][j] += 0.5 * deltaIons[0][j]; 
  deltaAtIons[zNodes - 2][j - 1] += 0.5 * 
deltaIons[zNodes - 1][j]; 



 

 

86 

  deltaAtIons[zNodes - 2][j] += 0.5 * 
deltaIons[zNodes - 1][j]; 
 } 
 // Finally, at the corners the ions are distributed to 
their only neighboring grid center 
 deltaAtIons[0][0] += deltaIons[0][0]; 
 deltaAtIons[zNodes - 2][0] += deltaIons[zNodes - 1][0]; 
 deltaAtIons[0][rNodes - 2] += deltaIons[0][rNodes - 1]; 
 deltaAtIons[zNodes - 2][rNodes - 2] += deltaIons[zNodes - 
1][rNodes - 1]; 
 // Now add back any remainder ions from previous 
ionization steps, calculate ions to inject and remainder 
 for (int i = 0; i < zNodes - 1; i++) { 
  for (int j = 0; j < rNodes - 1; j++) { 
   deltaAtIons[i][j] += *ptrRemainderIons[i][j]; 
   injectIons[i][j] = 
static_cast<int>(deltaIons[i][j]); 
   *ptrRemainderIons[i][j] = deltaAtIons[i][j] 
     - 
static_cast<double>(injectIons[i][j]); 
  } 
 } 
 // Next inject ions in each cell using calculated 
injections 
 // Index variable to call findNextValue function, call 
randomizer object to generate random numbers 
 int index; 
 bool breakFlag = 0; 
 default_random_engine e(seed); 
 uniform_real_distribution<float> n(0, 1); 
 for (int i = 0; i < zNodes - 1; i++) { 
  if (breakFlag == 1) { 
   break; 
   cout << "Ionize Particles Break" << endl; 
  } 
  for (int j = 0; j < rNodes - 1; j++) { 
   if (breakFlag == 1) { 
    break; 
   } 
   for (int k = 0; k < injectIons[i][j]; k++) { 
    if (breakFlag == 1) { 
     break; 
    } 
    index = findNextValue(ionArrayCounter); 



 

 

87 

    if (index < 0) { 
     breakFlag = 1; 
     break; 
     cout << "Index < 0 for i,j,k: " << 
i << ", " << j << ", " 
       << k << endl; 
    } 
    *ptrIonArray[index][0] = n(e) + i; 
    *ptrIonArray[index][1] = n(e) + j; 
    *ptrIonArray[index][2] = 
neutralDriftVel; 
    *ptrIonArray[index][3] = 0; 
    ionArrayCounter += 1; 
   } 
  } 
 } 
 seed += 1; 
} 
 
double avgPhiGlobal = 140 * phiCal; 
 
void normalizePhi() { 
 // Ensures constant global potential in the system, 
ignores potential at anode which is fixed 
 double totalPhi = 0; 
 double avgPhi = 0; 
 double deltaPhi = 0; 
 for (int i = 1; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   totalPhi += *ptrPhi[i][j]; 
  } 
 } 
 avgPhi = totalPhi / ((zNodes - 1) * (rNodes)); 
 deltaPhi = (avgPhiGlobal - avgPhi) / 2; 
 for (int i = 1; i < zNodes; i++) { 
  for (int j = 0; j < rNodes; j++) { 
   *ptrPhi[i][j] += deltaPhi; 
  } 
 } 
} 
 
int main() { 
 
// Initialization function calls 



 

 

88 

 initPtrRho(); 
 initPtrPhi(); 
 initPtrEField(); 
 setInitEField(); 
 initPtrIonArray(); 
 setInitIons(); 
 initPtrElectrons(); 
 initPtrNeutrals(); 
 initPtrRemainderIons(); 
 
 double timeAvgThrust = 0; 
 
 for (int k = 0; k < timeSteps; k++) { 
  for (int t = 0; t < 5; t++) { 
   computePhi(); 
   normalizePhi(); 
  } 
  computeEField(); 
  moveParticles(); 
  diffuseElectrons(); 
  diffuseNeutrals(); 
  ionizeParticles(); 
  cout << "ptrOutThrust for t = " << k + 1 << ": " << 
*ptrOutThrust 
    << endl; 
  if (k > timeSteps - 101) { 
   timeAvgThrust += *ptrOutThrust; 
  } 
 } 
 
 cout << "Time Averaged Thrust: " << timeAvgThrust / 100 
<< endl; 
 
 for (int i = 0; i < zNodes; i++) { 
  cout << "ptrElectrons at (" << i << ",7.5): " 
    << (*ptrElectrons[i][8] + 
*ptrElectrons[i][7]) / 2 << endl; 
 } 
 for (int i = 0; i < zNodes; i++) { 
  cout << "ptrNeutrals at (" << i << ",7.5): " 
    << (*ptrNeutrals[i][8] + 
*ptrNeutrals[i][7]) / 2 << endl; 
 } 
 for (int i = 0; i < zNodes; i++) { 



 

 

89 

  cout << "ptrPhi at (" << i << ",7.5): " 
    << (*ptrPhi[i][8] + *ptrPhi[i][7]) / 2 
<< endl; 
 } 
 
// NOTES: ******************** 
 return 0; 
} 
 


