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Ecological Indexes as a Means
of Evaluating Climate, Species
Distribution, and Primary
Production
W H. Emmingham

iNTRODUCTION

Much of the research conducted in the Coniferous Forest Biome program
was directed toward obtaining a deep understanding of one or more ecosys-
tems. This chapter reports on some of the efforts to obtain a broader under-
standing of how gradients of moisture, temperature, and light across the biome
affect ecosystem structure and function.

The diversity of vegetation and environment found in the western conif-
erous biome (Chapter 1; Whittaker 1961; Waring 1969; Franklin and Dyrness
1973) makes land-use allocation and management difficult. Productivity, for
example, is difficult to predict, because trees grow differently in cool moist
sites than they do under other conditions. In addition, the number of trees per
hectare on dry sites never approaches that found on more moist sites (Wikstrom
and Hutchinson 1971; Maclean and Bolsinger 1973). Successful regeneration
of cutover land is often difficult because of a great variety of conditions (Cleary
et al. 1977).

The natural vegetation types mentioned in Chapter 2 provide a means of
identifying ecosystems that behave in a similar manner following disturbance.
Ecological indexing methods have now been developed that help determine
why each ecosystem behaves differently; they therefore aid in choosing among
management options for maximizing desired forest products. These methods
involve measuring the climate at representative forest sites and evaluating the
climatic data with models of the response of Douglas-fir (Waring et al. 1972).
The result is a set of ecological indexes that quantify the climate at each loca-
tion. This is analogous to planting an individual or clone of one species at each
of several locations and measuring the response to that particular environment.

The quantification of environmental factors has helped: (1) to explain
species distribution and community composition (Chapter 2; Waring 1969;
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Waring et al. 1975; D. B. Zobel and G. M. Hawk, pers. comm.; (2) to explain
changes in productivity along environmental gradients (Emmingham and War-
ing 1977; Reed and Waring 1974); and (3) to predict silvicultural problems and
suggest solutions for them (Cleary et al. 1977). Perhaps the most important
contribution has been the demonstration of the important link between natural
vegetation classification and climate (Dyrness et al. 1974; Zobel et al. 1976).

This chapter compares widely situated coniferous ecosystems using these
ecological indexing methods. Emphasis was on determining which climatic
factors were responsible for changes in the structure and function of the ecosys-
tems. Structural features were height and basal area of tree stands, while func-
tional analysis centered on primary productivity. Ecological indexes includ-
ed evaluations of temperature, soil moisture, evaporative demand, and light.

BACKGROUND

The techniques used to compare climates with ecological indexes were the
result of over ten years of research into the physiology and ecology of conif-
erous biome species and ecosystems. The general approach is stated in Waring
et al. (1972).

The major steps involved in comparing forest ecosystems include: (1)
choosing sites representative of widely occurring forest ecosystems or habitat
types; (2) collecting climatic and physiological data from each ecosystem; (3)
using Douglas-fir, a widespread dominant plant, as a reference species to
develop models of how the physical environment affects important plant pro-
cesses on a daily basis; (4) evaluating the climate with these models (that is,
simulations); (5) summing up the results of the simulations for important time
intervals; (6) comparing the ecological indexes with observed structural and
functional characteristics of the ecosystem; and (7) using the ecological indexes
in a stand growth and succession simulation (see Chapter 4).

Comparison of the environment at different locations required a standard
set of plant response models. The models were based on one reference species
(coastal Douglas-fir), which, although widespread, does not span the diversity
of environments found within the coniferous forest biome. No species does.
This technique has the advantage of providing a single set of standards but
should not be interpreted as a precise estimate of what the local variety or
species could do.

Ecological indexes used were: (1) temperature growth index (TGI)effect
of soil and air temperatures on Douglas-fir growth (Cleary and Waring 1969);
(2) moisture stress indexes(a) maximum predawn plant moisture deficit or
xylem water potential during the summer (Waring and Cleary 1967; Waring
1969; Zobel et al. 1976), and (b) sum of deficits during the growing season
(Emmingham 1974), where the growing season is the number of days between
year days 121 and 288 when soil and air temperatures are above 5°C and 1°C,
respectively; (3) the summation of daily simulated photosynthesis indexes(a)
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potential, (b) predicted actual, and (c) the ratio of predicted to potential (Em-
mingham and Waring 1977; these are estimates for coastal Douglas-fir and may
be quite different from actual CO2 fixation by a local conifer species); and (4)
transpiration indexes(a) potential (the summation of the daily product of
absolute humidity deficit and maximum leaf conductance), (b) predicted actual
(using leaf conductance estimated from moisture deficits), and (c) predicted!
potential ratio. This last ratio is well correlated with the maximum height of
trees in a variety of coniferous forest ecosystems (Reed and Waring 1974).

The data required to evaluate temperature, light, and moisture regimes
were collected by cooperators in each state (see Acknowledgments). Tempera-
ture, humidity, and moisture stress observations were taken within each forest
stand. Radiation data were recorded in the open. While the temperature, hu-
midity, and radiation data were measurements of the physical conditions taken
continuously, the soil moisture condition was evaluated by measuring plant
water deficits at night on established one- to two-m-tall trees at two-week
intervals. Methods are described in detail in Waring and Cleary (1967), Cleary
and Waring (1969), Waring (1969), Zobel et al. (1976), Emmingham and
Waring (1977), and Emmingham and Lundberg (1977).

Several measures of site productivity were used because of the difficulty in
assessing stands of different ages. Site index (base age 100) was used because it
is a conventional measure of site quality (Carmean 1975). Despite its wide-
spread use, however, site index has many disadvantages (Daubenmire 1976).
Thus two other measures of productivity were also used: growth basal area
(GBA) (E C. Hall, pers. comm.), and the product of a constant and the height
and diameter growth indexes, being a volume index. The GBA method in-
volved estimation of the ability of dominant trees to grow in diameter given the
basal area of the surrounding trees as an estimate of competition. The basal area
at which trees would grow 2.54 cm in radius in 30 years (GBA30) was chosen as
an index because many of these stands were growing at or near that rate.

STUDY AREAS

Study sites in Alaska, Arizona, Colorado, Idaho, Montana, Oregon, Utah,
and Washington were selected to cover the geographic, floristic, and climatic
ranges found within the coniferous forest biome. For descriptive purposes the
study sites were divided into arctic and alpine forests, dry forests, and modal
forest types.

In all areas the study plots were chosen to be representative of widespread
ecosystems. In Oregon and Idaho the plant communities were described and
named according to the dominant climax species after Dyrness et al. (1974) and
Daubenmire and Daubenmire (1968). In other areas plant communities were
named for the species that dominated the tree stand. In all cases the descriptive
data were collected on the study plot. Floristic and physical descriptions are
given in Tables 3.1 and 3.2, respectively.



TABLE 3.1 Floristic description of forest ecosystems studied.

00

LOCATION
Forest type Major tree species

Tree
layer
cover
(%) Major shrub species

Shrub
layer
cover
(%) Major ground layer plants

Ground
layer
cover
(%)

ALASKA
Black spruce (Arctic) Picea ,nariana 55 Salix scouleriana 25 Geocaulon lividum 100

Vaccinium uliginosum Pleurozium schreberi
Vaccinium vitis-idaea Cladonia spp.

White spruce (Arctic) Picea glauccf 70 Alnus crispa 20 Hylocomium sp. 50

Populus trernuloides Salix alaxensis Pleurozium sp.
Viburnum edule

ARIZONK
Ponderosa pine (dry) Pinus ponderosd 75 none 0 Festuca arizonica 5

Muhienbergia montana

COLORADOd

Spruce fir (alpine) Picea engelrnannii 70 Vacciniurn scoparium 15 Carex geyeri 75

Abies lasiocarpa" Ribes lacustre Arnica cordifolia
Sambucus pubens Lichens, mosses

IDAHO
Douglas-fir (dry) Pinus ponderosa 80 Physocarpus ,nalvaceus 30 Fragaria spp. 5

Pseudotsuga Symphoricarpos albus Festuca idahoensis

menziesii Berberis repens Achillea millefolium

var. glauca
Grand fir (modal) Pinus ponderosa 90 Berberis repens 15 Calamagrostis 20

Pseudotsuga Rosa gymnocarpa rubescens

menziesii Holodiscus discolor Linnaea borealis

var. glauca Rubus parviflorus Fragaria spp.

Larix occidentalis Pachisti,na myrsinites Clintonia uniflora

Pinus contorta
Abies grandi?



Western hemlock (modal) Pseudotsuga menziesii 95 Rubus parvzflorus 10 Linnaea borealis
var. glauca Rosa gymnocarpa Clintonia unflora

Larix occjdentaljs Lonicera utahensis Viola orbiculata
Pinus monticola Spiraea betulifolia Adenocaulon bicolor
Thuja plicata Pachistima myrsinites Smilacina stellata
Abies grandis
Tsuga heterophylla

Lodgepole pine (modal) Pinus contorta 60 Vaccinium membranaceum 10 Xerophyllum tenax
Pseudotsuga menziesii Pachistima myrsinites Spiraea betulifolia

vat. glauca Sorbus sitchensis Goodyera oblongifolia
Abies lasiocarpa'
Pinus monti cola

Subalpine fir (alpine) Tsuga heterophylla 70 Menziesia ferruginea 10 Xerophyllum tenax
Larix occidentalis Vaccinium membranaceum Gaultherja humfusa
Abie lasiocarpa Vaccinium scoparium Goodyera oblongifolia
Pinus monticola

OREGON'
Sitka spruce (modal) Pseudotsuga menziessi 95 Vaccinium parv(folium 25 Polystichum munitum

var. menziesii Menziesia ferruginea Oxalis oregana
Picea sitchensis Maianthemum dilatarum
Tsuga hererophylla Montia sibirica

Eurhynchium oreganum
Douglas-fir (dry) Psuedotsuga menziesir 50 Holodiscus discolor 30 Whipplea modesta

var. menziesii Acer circinatum Polystichum munitum
Pinus lambertiana Corylus cornuta Synthyris reniformis

var. californica Linnaea borealis
Berberjs nervosa

Western hemlock (modal) Pseudorsuga menziesii 100 Rhododendron macrophylluin 40 Linnaea borealis
var. menziesii Berberis nervosa Polystichum munitum

Tsuga heterophylla Acer circinatum Coptis laciniata
Chimaphila umbellata

25

40

30

50

30

30



V

TABLE 3.1 Continued

Tree Shrub Ground
layer layer layer

LOCATION cover cover cover
Forest type Major tree species (%) Major shrub species (%) Major ground layer plants (%)

OREGON1
Pacific silver fir (modal) Pseudotsuga menziesii 100 Vaccinium membranaceum 5 Tiarella unifoliata 40

var. menziesii Acer circinatum Achlys triphylla
Abies amabilis" Cornus canadensis
Tsuga heterophylla

Mountain hemlock Tsuga merrensiand 60 Vaccinium membranaceum 5 Xerophyllum tenax 50

(arctic & alpine) Abies procera Pyrola secunda
Abies amabilis"
Pinus mOnti cola

MONTANA"
Douglas-fir (modal) Pseudotsuga menziesii" 60 Arctostaphylos uva-ursi 15 Calamagrostis rubescens 5

var. glauca Berberis repens Arnica cordifolia
Pinus contorta Spiraea berulifolia
Larix occidentalis

UTAW
Douglas-fir (modal) Psuedotsuga menziesii" 80 Acer glabruni 10 Clematis pseudoalpina 5

'var. glauca Berberis repens Arnica cordifolia
Pinus flexilis Lonicera utahensis Goodyera oblongifolia

Englemann spruce-subalpine Picea engelmannii 75 Pachistima myrsinires 1 Osmorhiza chilensis 15

fir (arctic & alpine) Abies lasiocarpa" Lonicera utahensis Pedicularis racemosa
Aster foliaceus



WASHINGTON
Ponderosa pine-oak (dry) Pinus ponderosa" 50 Ceanothus integerrimus 5 Apocynum

Quercus garryana Amelanchier alnifolia androsaemifolium
Pseudotsuga menziesii' Corylus cornuta var. pumilum

var menziesii Vicia americana
var. truncata

Lupinus sp.
Arenaria macrophylla
Gramineae

Ponderosa pine (dry) P inns ponderosa 80 Purshia tridentata 5 Achillea millefolium
Pseudotsuga menziesii Chrysothamnus viscidiflorus Viola nuttallii

var. menziesii Osmorhiza chilensis
Horkelia fusca
Gramineae

Pacific silver fir (modal) Abies amabilis" 90 Vaccinium membranaceum 20 Berberis nervosa
Abies procera Pachistima myrsinites Xerophyllum te,wx
Pseudotsuga menziesii Acer circinatum Chimaphila umbellata

var. menziesii Linnaea borealis
Tsuga heterophylla

Grand fir (modal) Pseudotsuga menziesii" 95 Holodiscus discolor 5 Berberis nervosa
Var. menziesii Coi-lus cornuta Chimaphila menziesii

Pinus ponderosa Rubus parviflorus Preridium aquilinum
Abies grandis Symphoricarpos mollis Ach/ys triphylla

Trientalis latzfolia

"Designates the major reproducing tree species.
Viereck and Little 1975.
'Avery et al. 1976.
dj D. Richards, personal communication.
"Hitchcock and Cronquist 1974.
'Franklin and Dyrness 1973.
"Hønderson et al. 1976.- Susan Meyer, under direction of K. L. Reed; James Long and Gordon Swartzman contributed to the study.
Pseudotsuga menziesii was judged to be the climax species in this location although it had been excluded by repeated fires.
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TABLE 3.2 Physical description of reference sites and tree stands.

Dominant
Tree Means Stand

basal

LOCATION Elevation Slope Age Diam Ht area

Forest type Latitude Longitude (m) () Aspect (yr) (cm) (m) (m2/ha)

ALASKA
Black spruce 65l0' l4753' 490 0 - 68 7 6 6

White spruce 64°51' 148°44' 260 10 SSW 70 37 20 40

ARIZONA
Ponderosa pine 35°16' 111°45' 2270 0 88 41 20 39

COLORADO
Engelmann spruce-

subalpine fir 37°50' 107°30' 3470 15 W 100 24 17 44

IDAHO
Douglas-fir 48°22' 116°29' 780 27 SSW 82 46 28 31

Grand fir 48°22' 116°29' 730 9 W 71 38 27 41

Western hemlock 48°22' 11629' 850 6 NW 100 40 32 40

Londgepole pine 48°21' 116°25' 1555 14 WSW 94 24 18 60

Subalpine fir 48°21' 11625' 1555 6 NE 137 27 20 42

MONTANA
Douglas-fir 4652' 113°27' 1470 16 S 175 26 20 45

OREGON
Sitkaspnice 4504' 123°57' 200 10 W 116 76 48 119

Douglas-fir 44l2' 122°15' 510 35 SW 450 117 49 56

Western hemlock 44°13' 122°14' 530 20 NNW 450 129 75 119

Pacific silver fir 44°16' 112°08' 1310 27 W 350 104 46 109

Mountain hemlock 44°21' 122°04' 1530 15 NW 135 53 37 65

UTAH
Douglas-fir 4l057 111°31' 2210 2 E 166 41 27 43

Engelmann spruce-
subalpine fir 41°58' lll25' 2650 32 N 237 67 32 58

WASHINGTON
Ponderosa pine-oak 45°55' l2l04' 646 1 WNW 83 41 20 41

Ponderosa pine 46°00' 12l019 572 0 139 72 32 46

Pacific silver fir 46°07' l2l037 1009 19 W 217 63 40 77

Grand fir 46°00' l2l026 750 1 SE 207 67 40 50

Arctic and Alpine Forest Types

The most northern and severe study site was a diminutive black spruce
forest north of Fairbanks, Alaska, where the permafrost layer melted to a depth

of only 50 to 60 cm during the growing season (Viereck 1973). A few kilome-
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ters west of Fairbanks a white spruce forest was chosen because it, too, expen-
enced the rigors of the central Alaskan winter but was not underlain by perma-
frost (Van Cleve and Zasada 1976; Zasada 1976).

In Colorado and Utah, Engelmann spruce and subalpine fir forests at high
elevation were examined. The composition and basal area of the stands were
similar, but the trees in Utah were over 100 years older and 20 m taller than
those in Colorado.

The coolest site in northern Idaho was the subalpine fir stand, which had
white pine and western larch as seral dominant tree species rather than
Engelmann spruce. It was classified as an Abies lasiocarpa/Menziesiaferrugi-
nea habitat type (Daubenmire and Daubenmire 1968).

A mountain hemiock in the Cascade Mountains of Oregon was at the cool
end of the Oregon gradient and had a rich mixture of tree species including seral
noble fir, western white pine, and the shade-tolerant Pacific silver fir. This site
was representative of the Tsuga mertensianaAbies amabilis/Xerophyllum
tenax habitat type of Dyrness et al. (1974).

Modal Forest Types

The modal forest types were those judged to be at neither the coldmoist
nor warm-dry extremes in the local area. Three forest sites in Oregon (Sitka
spruce, western hemlock, and Pacific silver fir) were chosen. These forests
were the tallest (48 to 75 m) and had the greatest basal area (over 100 m2/ha)
found in this study.

Near the Pacific Ocean a forest dominated by Sitka spruce and western
hemlock was chosen because of its high productivity (Fujimori 1971). In
contrast to all the other study sites, snow is rare at this location.

At the western hemlock forest site in the western Cascades of Oregon,
snow is common, but persistent winter snowpack is unusual. Stands are domi-
nated by large, old-growth Douglas-fir that average over 1 m in diameter at
breast height (dbh). This site is typical of the Tsuga heterophylla/Rhodo-
dendron macrophyllum/Berberis nervosa habitat type (Dyrness et al. 1974).

At higher elevations, the Pacific silver fir forest sites of Oregon and Wash-
ington contained both Douglas-fir and noble fir as seral dominants. A heavy
snowpack is common on these sites and snow often persists until the first of
July.

The grand fir site in western Washington occurred in a depression and from
climatic records it was evident that frost was frequent and severe. Like the
grand fir site in Idaho (Abies grandis/Pachistiina myrsinites habitat type), it had
both Douglas-fir and ponderosa pine as seral dominants in the stand.

The three modal types in Idaho included the grand fir and western hemlock
(Tsuga heterophylla/Pachistima myrsinites habitat type) sites, and a lodgepole



54 W. H. Emmingham

pine stand on an Abies lasiocarpa/Xerophyllum tenax habitat type. The grand
fir and hemlock sites were similar in elevation, but the fir type was on a more
southerly aspect. Lodgepole pine was at higher elevation in a denser stand (60
versus 40 m2/ha basal area) than the grand fir and hemlock. Despite the greater
basal area found in this stand, tree height indicated lower site productivity.

The Douglas-fir site in northern Utah and the lodgepole pine stand in
Montana were chosen to represent modal types in their areas. Both stands were
at the cool end of the climatic gradient for Douglas-fir. Henderson et al. (1976)
classed the Utah site as a Pseudotsuga menziesii (var. glauca)/Berberis repens
habitat type, while the Montana site fell into the Pseudotsuga menziesii (var.
glauca)ILinnaea borealis habitat type of Pfister et al. (1977).

Dry Forest Types

An open ponderosa pine forest near Flagstaff, Arizona, was the most
southern of the sites. It was chosen for comparison with the ponderosa pine
stand in Washington. The pine communities in Western Washington were in the
arid rain shadow of the Cascade Mountains. The driest of the two sites was a
ponderosa pine/Oregon white oak community located on rocky, shallow soils.
A pure pine stand was located at a lower elevation on a deeper soil. Douglas-fir
was judged capable of regenerating, but it had been excluded by repeated
wildfires.

The driest of the Idaho sites was typical of the Pseudotsuga menziesii (var.
glauca)/Physocarpus malvaceus habitat type. It was chosen for comparison
with the Pseudotsuga menziesii (var. menziesii)/Holodiscus discolor habitat
type in Oregon, which is the driest conifer-dominated type west of the Cascade
Mountains of Oregon. The larger trees on this site were 49 m high and the basal
area was 56 rn/ha. Thus growth was relatively good compared with that on
other dry sites, but considerably less than on other Oregon sites.

COMPARISON OF ECOLOGICAL AND
PRODUCTIVITY INDEXES ACROSS THE
CONIFEROUS BIOME

Evaluation of the climate at a variety of western coniferous forest sites
provided a means to examine functional relations responsible for differences in
vegetation composition and productivity. For example, interior western hem-
lock, Douglas-fir, and ponderosa pine forest sites can be compared with similar
forest types nearer the Pacific coast. Arctic and alpine forests also can be
compared. Ecological (temperature, moisture, photosynthesis, and transpira-
tion) and productivity indexes are shown in Table 3.3 for each site. Sites were
assigned reference numbers.
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Temperature Indexes

The TGI ranged from 14 to 115 at the cold and dry extremes, while modal
types in Oregon were 80 to 90 (Table 3.3). For the arctic sites (1 and 2) TGI
values were less than 25, while on the alpine sites in Colorado (4), and Idaho
(9), Oregon (15), and Utah (17), they averaged about 43. Warm dry sites (3, 5,
11, 18, and 19) averaged 89. The Douglas-fir type in Oregon (11) and pine/oak
types in Washington (18) had TGI values over 105. Interestingly, the ponderosa
pine site in Arizona (3) had a temperature index of only 70, partly because of
restriction of the growing season by frost. In general the low-elevation sites in
Oregon and Washington had greater temperature indexes than inland areas
because they had longer growing seasons.

Moisture Stress Indexes

Both maximum and sum-of-moisture stress measured on small trees at each
site confirmed the droughty nature of the sites with Douglas-fir or ponderosa
pine as dominant species (sites 3,5,6, 11, 16, and 18, Table 3.3). The grand fir
type (6) in Idaho was included because Douglas-fir and ponderosa pine domi-
nated the stand. The Douglas-fir/ponderosa pine site in Washington (19) had
much lower stress than these dominants indicated, suggesting that repeated
fires have excluded more tolerant species. Even relatively moist sites, includ-
ing the spruce sites in Oregon (12) and Alaska (1 and 2) had maximum moisture
deficits of -5 or -6 bars.

Moisture stress sum, which represents accumulated drought during the
growing season, was greatest in ponderosa pine types of Arizona (3) and
Washington (18) and the Douglas-fir site (11) in Oregon (Table 3.3). Lowest
sums were in Alaska (sites I and 2) and the Engelmann spruce site (19) in Utah.
The spruce site in Utah had a low moisture stress total because summer frosts
cut the growing season off before the moisture deficit became severe.

Modal forest types in the Cascades of Washington and Oregon (sites 13,
14, 20, and 21) averaged less than -11 bars maximum moisture deficit at the
peak of drought (Table 3.3). In contrast, inland modal sites (7, 8, 10, and 16)
averaged around -15 bars. Although all these sites probably start the growing
season with soils at field capacity, the inland sites apparently did not have as
great a soil water storage capacity to meet evaporative demand.

The western hemlock forests of Oregon have many floristic similarities to
those in Idaho, although inland forests were more diverse in both tree and shrub
layers. Climatically, the Oregon site (13) was warmer (TGI = 90) than the
Idaho site (7; TGI = 65) and more moist (-9.1 versus -15.9 maximum mois-
ture deficit; Table 3.3). The ponderosa pine type in Washington (18) was
warmer (TGI = 115 versus 70), but similar in moisture deficit to the analogous
pine type in Arizona (3).
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TABLE 3.3 Indexes to reference stand productivity and environment.

Site
No.

LOCATION
Forest type

Eco-
class

Productivity indexes

Htb Diam Vol TGI

Moisture
stress

(-ba)

Max. Sum.

Ecological indexes
(in growing season)

Photosynthesis
(mg[COjdm)

Poten- Pre-
tial dicted Ratio

Transpiration
(mg[H2O]em)

Pre-
dicted Ratio

ALASKA
1 Black spruce A 28 25 10 14 6.1 200 2538 1076 0.42
2 White spruce A 86 87 107 24 5.7 316 4870 2801 0.58 274 0.57

ARIZONA
3 Ponderosa pine D 83h 175 207 70 22.2 1715 10 196 1296 0.13 107 0.11

COLORADO
4 Engelmann spruce-

subalpine fir A 56' - 50 13.8 820 9191 3502 0.38 214 0.39

IDAHO
5 Douglas-fir D 98 142 199 80 19.5 1235 11 242 2842 0.25 191 0.25

6 Grand fir M 1011 171 247 64 21.5 1022 10322 3300 0.32 215 0.31
7 Western hemlock M 105' 161 241 65 15.9 992 11 109 3725 0.34
8 Lodgepole pine M 62' 200 177 43 15.6 820 7540 2118 0.28 178 0.30
9 Subalpine fir A 59' 165 139 33 12.5 721 6587 1774 0.27 129 0.27

MONTANA
10 Lodgepole pine M 50 164 117 59 10.5 687 9687 5123 0.53 360 0.54
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OREGON
11 Sitka spruce M 150' 480 1303 80 5.0 402 13 170 10296 0.78
12 Douglas-fir D 120' 210 360 106 25.7 2017 13 116 5190 0.40 460 0.46
13 Western hemlock M 160' 477 1070 90 9.1 758 12936 8694 0.67 646 0.58
14 Pacific silverfir M 120' 413 708 60 8.1 579 9308 5697 0.61 272 0.51
15 Mountain hemlock A 110' 280 440 47 13.4 629 6559 3546 0.54 216 0.44

UTAH
16 Douglas-fir M 75k 167 179 53 18.6 1230 8522 2045 0.24 247 0.33
17 Engelmann spruce-

subalpine fir A 65k 290 269 41 13.1 373 4905 4882 0.95 689 0.95

WASHINGTON
18 Ponderosa pine-oak D 70' 95 95 115 20.8 1840 13 020 2907 0.22 298 0.19
19 Douglas-fir-

ponderosa pine D 88 390 490 73 7.8 754 9615 3311 0.34 283 0.35
20 Pacific silver fir M 104' 186 276 60 11.0 688 9537 4705 0.49 381 0.52
21 Grand fir M 108' 441 680 69 7.5 630 8508 3791 0.45 361 0.43

Each site was placed in one of the following ecological classes: A = arctic and alpine; D dry; and M = modal type.
bThe height/growth index is the height (in feet; 1 ft 0.305 m) to which dominant and codominant trees grow in 100 years.
The diameter/growth index is the basal area (in square feet per acre; square feet per acre times 0.2296 square meters per hectare) of
surrounding or competing trees when dominant and codominant trees grow by a radius of 0.85 mm/yr or 1 in/30 yr (GBA,O).
dThe volume/growth index is equal to the height index times volume index times 70'. This approximates cubic volume growth potential of the
site.
TGI is the temperature/growth index, which integrates the effect of air and soil temperatures on tree growth (Cleary and Waring 1969; Zobel
et al. 1976).
Fhe height/growth index was estimated directly when trees were near 100 years of age (see Table 3.2).
kDetived from Farr 1967.
hDened from Minor 1964.
'Derived from Meyer 1961.
'Derived from McArdle et al. 1961.
kF Henderson et al. 1976.
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Photosynthesis Indexes

The lowest potential photosynthesis was at the Alaska black spruce perma-
frost site, while the highest was in the Oregon Sitka spruce zone (Table 3.3).
The potential photosynthesis index was relatively high for the Arizona pon-
derosa pine and the warm, low-elevation sites in Idaho, Oregon, and Washing-
ton. Surprisingly, there was only about a fivefold difference between photosyn-
thesis potentials at all the sites.

Photosynthesis simulations throughout the year for nine representative
sites are shown in Figure 3.1. The upper curve is the simulated potential
photosynthesis using air temperature and solar radiation. The predicted (actual)
photosynthesis is the lower or heavy line, and represents the photosynthesis
given moisture deficits, frost, and cold soils. The Oregon sites are characteris-
tic of the west coast area, including Oregon and Washington. The other sites
shown include the cold extremes in Alaska and Colorado, as well as the interior
forests of Utah, Idaho, Arizona, and Montana.

The potential photosynthesis during the summer was between 70 and 90
mg dm2 . day' for all sites. There was a general trend toward higher potential
with decreasing latitude. The similarity between sites at such wide extremes
suggests, however, that temperature and radiant energy are not the most impor-
tant limiting factors during the growing season.

There were large differences in photosynthetic potential during the winter
months. Interior sites were generally lower than coastal sites. At the coastal
sites, the winter potential was near 40 mg .dm2 day (Figure 3, if, i) while in
the arctic and more severe sites it was zero (Figure 3.1 a, b, d). Although classed
as an alpine site, the mountain hemlock site in Oregon showed considerable
potential because of mild air temperatures (0° to 5°C) during part of the winter.

In extreme arctic Alaska and the nearly desert environment of Arizona, no
more than 50 percent of the photosynthetic potential was captured during any
period of the year (Figure 3. la, g). In all other locations, nearly 100 percent of
the potential for photosynthesis was captured at some time during the year. The
big difference between the interior sites in Colorado, Idaho, and Montana
(Figure 3.lb, e, h) was in the duration of full photosynthetic potential. In the
western hemlock (Figure 3.11) and Douglas-fir types of Oregon (Figure 3.1 i),
the winter and spring months appear especially important for the capture of the
sun's energy. The mountain hemlock site in Oregon (Figure 3. ic) showed a soil
temperature restriction during winter and spring and fairly severe reduction
from drought during the growing season.

Although western hemlock sites in Idaho (Figure 3. le) and Oregon (Figure
3.11) have similar photosynthetic potential, moisture stress at the Idaho site
reduced predicted photosynthesis to less than half that in Oregon. This helps
explain higher productivity (site index 160 versus 105) of the Oregon sites.
Also, wintertime photosynthetic potential was greater in Oregon (Figure 3.1 1).
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Comparison of Douglas-fir forests of Oregon and Idaho showed a similar
trend in temperature and predicted photosynthesis (Table 3.3); however, maxi-
mum moisture deficit was greater in Oregon Douglas-fir forests (Table 3.3).
Conditions for photosynthesis during winter and spring are considerably more
favorable in Oregon than in the Douglas-fir forests of either Idaho or Utah.

On a growing season basis, ponderosa pine forests of Washington were
considerably warmer than those in Arizona (Table 3.3). In addition, dry spring
conditions in Arizona (Figure 3. ig) induced high moisture deficits reducing
predicted photosynthesis to only about 13 percent of the potential. Moisture
stress indexes for the growing season were similar for both sites (Table 3.3).

The lowest predicted photosynthesis indexes occurred at the geograph-
ic extremes; in Alaska black spruce and Arizona ponderosa pine sites. The
highest predicted photosynthesis indexes were at the coastal location and
western hemlock site in Oregon. There was a nearly tenfold difference
in the index between the black spruce site in Alaska and Sitka spruce site in
Oregon.

Comparison of photosynthesis ratio showed the ponderosa pine site in
Arizona was at the low extreme with only 13 percent of the potential. In
contrast, the spruce-fir site in Utah had 95 percent of the potential. The Sitka
spruce site (12) had the highest predicted photosynthesis, but this was only 78
percent of the potential photosynthesis.

Transpiration Indexes

Lowest predicted transpiration occurred in Arizona (3), where, although
demand for water was quite high, moisture stress restricted leaf conductance
(Table 3.3). Highest transpiration occurred at the western hemlock site in
Oregon (13), where demand was high and supply relatively good. Humidity
data were not available for the Sitka spruce site and therefore were not included
in this comparison. Transpiration ratios were highly correlated with the photo-
synthesis ratio because both were dependent on moisture deficits and leaf
conductance.

Productivity Indexes and Relationships to
Ecological Indexes

The relationship between productivity and temperature index is shown in
Figure 3.2. Productivity diminished at either end of the temperature scale,
indicating that cold temperatures restrict productivity and that high tempera-
tures were generally accompanied by excessive evaporative demand and high
respiration costs. The solid curve traces the maximum potential productivity.
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In Figure 3.3 total stand basal area is plotted against maximum moisture
stress index. Low moisture stresses are required for, but do not guarantee, high
productivity. The solid line is an estimate of maximum basal area at moisture
stress index levels in areas with a mild winter. The dotted line shows basal area
in inland areas where winters are severe. The implication is that stressful
conditions during the growing season may be compensated for by photosyn-
thesis during the dormant season. Also, the maximum stress index is most
useful in comparing sites in a smaller area with similar macroclimates.

The relation between volume productivity and summer photosynthesis
index is shown in Figure 3.4. This is nearly a linear relationship and all indexes
of productivity were better correlated with the predicted photosynthesis index
than any of the other ecological indexes. Correlation coefficients (r) between
the predicted photosynthesis and site index, GBA3O, volume index, and accu-
mulated basal area were 0.81, 0.73, 0.86, and 0.73, respectively. Since the
model used to compute the predicted photosynthesis index includes evaluation
of many of the stress factors affecting primary production, this high correlation
could be expected. Between 75 and 85 percent of the variation in site index,
volume index, basal area growth, or total basal area was explained in multiple
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productivity (see Table 3.3 for units).
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regression equations that included up to three of the indexes to environment.
The most common second and third terms to enter were the maximum plant
moisture stress and transpiration orphotosynthesis ratio. The fact that many of
the points fall below the line connecting the higher volume index values indi-
cates there are other important factors unaccounted for in this comparison.
Preliminary comparisons indicate that an annual predicted photosynthesis in-
dex accounts for more of these factors.

CONCLUSIONS

Ecological indexes provide a method for evaluating stress in coniferous
forest ecosystems. One stress feature that seems to be common to all coniferous
forest ecosystems is drought or physiological drought. Even the moist coastal
Sitka spruce ecosystem had moisture stress that lasted several weeks and re-
duced predicted actual photosynthesis to 78 percent of the potential for that site.
At the black spruce site in Alaska, moisture stresses of -4 to -6 bars during the
growing season were responsible for a 50 percent reduction in carbon fixation.
This may be a case of physiological drought induced by the cool temperature in
the root system.

The two- to five-times greater productivity of the modal types in western
Oregon can be explained in several ways. They had less moisture stress and
were warmer than the inland areas. This allowed for more photosynthesis
during the summer. Mild winter conditions indicate that a significant portion of
the annual carbon uptake may occur during the "dormant" period on the
coastal and Cascade Mountains.

Results of the photosynthesis simulations support the hypothesis that the
rise of the western mountain ranges and resultant summer drought was a pri-
mary factor in the elimination of rich hardwood forest ecosystems apparent in
the fossil records (Franklin and Dyrness 1973). Evergreen trees can take advan-
tage of the relatively favorable winter conditions when hardwoods are without
leaves.

The system of ecological indexes used here provides a systematic way of
quantifying the difficult-to-measure environmental differences found among
coniferous forest ecosystems. It can be used to quantify test hypotheses about
species distribution, ecosystem structure, or functional attributes. For exam-
ple, the hypothesis that the climate in northern Idaho and western Oregon is
similar because forests of western hemlock dominate the landscape was proved
false; the Oregon site was both warmer and less droughty.

High correlation between the ecological indexes and productivity demon-
strates the link between the ecosystem function and the indexes. The nearly
linear relationship between productivity and the predicted photosynthesis index
make that index the most promising for future investigation.
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