

AN ABSTRACT OF THE THESIS OF

Viviane Klein for the degree of Doctor of Philosophy in Mathematics presented on

May 26, 2011.

Title:

Two–grid a-priori and a-posteriori Error Analysis for Coupled Elliptic and Parabolic

Systems with Applications to Flow and Transport Problems

Abstract approved:

Ma lgorzata Peszyńska

We develop several a-priori and a-posteriori error estimates for two–grid finite element

discretization of coupled elliptic and parabolic systems with a set of parameters P. We

present numerical results that verify the convergence order of the numerical schemes

predicted by the a-priori estimates. We present numerical results that verify the robust-

ness of the estimators developed with respect to the two–grid discretization and with

respect to the parameters P. The theoretical and numerical results in this thesis apply

to models of many important phenomena in fluid flow and transport in porous media.

We demonstrate some applications with numerical simulations.

c©Copyright by Viviane Klein
May 26, 2011

All Rights Reserved

Two–grid a-priori and a-posteriori Error Analysis for Coupled Elliptic and
Parabolic

Systems with Applications to Flow and Transport Problems

by

Viviane Klein

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented May 26, 2011

Commencement June 2011

Doctor of Philosophy thesis of Viviane Klein presented on May 26, 2011.

APPROVED:

Major Professor, representing Mathematics

Chair of the Department of Mathematics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Viviane Klein, Author

ACKNOWLEDGEMENTS

Academic

I would like to thank my advisor Dr. Ma lgorzata Peszyńska for her patience and

guidance over the last 5 years. Dr. Peszyńska, I am very thankful for all your help and

disponibility to go over my questions how many times it was necessary. Thank you for

pushing me to go further and to help me to ”almost” overcome my fear of presenting at

conferences.

I would like to acknowledge that this thesis research was partially supported by the

grants NSF 0511190 and DOE 98089.

Personal

Eu gostaria de agradecer aos meus pais, Ivonete e Mercedo, a todo o apoio que me

deram quando eu decidi seguir carreira como Matemática. Obrigado por me apoiar em

todas as minhas decisões mesmo quando eu sabia que vocês não concordavam com elas.

Eu sei que vocês sempre fizeram tudo que puderam para me ajudar e sou muito grata

por isso.

Agradeço a professora Teresa Tsukazan de Ruiz que sempre me apoiou desde do ińıcio

dos meus estudos na Matemática. Agradeço ao professor Julio Ruiz Clayessen por me

incentivar a vir fazer meu doutorado no exterior e nunca me deixar desanimar. Sem o

apoio do professor Julio e todos os seus conselhos ao longos desses 8 anos eu não

chegado a esse feito.

Agradeço as minha amigas Bianca, Luzinha, Táıs e Tati que fizeram com que o frio e a

distância de casa ficassem mais amenos nesses últimos 5 anos.

TABLE OF CONTENTS

Page

1 Introduction . 1

2 Applications . 5

2.1 Basic Models . 5

2.1.1 Flow . 5

2.1.2 Mass Transport . 7

2.2 Double-porosity models . 8

2.3 Pseudoparabolic Models . 11

2.4 Diffusion-Adsorption System . 11

2.5 Enhanced Coalbed Methane Recovery . 13

3 Analysis of the models . 15

3.1 Overview . 15

3.2 Existence and uniqueness results for the models 17

3.2.1 Preliminaries on Sobolev Spaces 17

3.2.2 E-model . 22

3.2.3 LP-model . 26

3.2.4 WR-model . 28

3.2.5 PP-model . 29

3.2.6 NLP-model . 31

4 Numerical Analysis . 37

4.1 Preliminaries on Multilevel Finite Elements 38

TABLE OF CONTENTS (Continued)

Page

4.2 Overview a-priori and a-posteriori estimators 40

4.3 E-model . 50

4.3.1 A-priori error estimates for the E-model 51

4.3.2 A-posteriori error estimates for the E-model 53

4.3.2.1 Residual calculations . 54

4.3.2.2 Interpolation and scaling techniques 57

4.3.2.3 Upper bound . 59

4.3.2.4 Lower bound . 60

4.3.2.5 Upper bound for the error in only one of the unknowns . 69

4.4 NLP-model . 72

4.4.1 A-priori estimation for the continuous in time problem 73

4.4.2 A-priori estimate for the fully-discrete problem 80

4.4.3 A-priori estimates for the multilevel discretization for the NLP-

model . 88

4.5 LP model . 90

4.5.1 Discrete Models . 91

4.5.1.1 Semi-discrete problem . 91

4.5.1.2 Fully-discrete problem . 91

4.5.2 A-priori estimates for the LP-model 92

4.5.3 Norms . 93

4.5.4 Error indicators . 97

4.5.5 Upper Bound . 98

4.5.5.1 Bound for [[(uτ , vτ)− (uhτ , vHτ)]](tn) 104

4.5.5.2 Interpolation Results . 106

4.5.5.3 Bound for [[(u, v)− (uhτ , vHτ)]](tn) 109

TABLE OF CONTENTS (Continued)

Page

4.5.6 Lower Bound . 112

4.5.6.1 Bound for the time indicator Tn 112

4.5.6.2 Bound for the spatial estimators 116

4.5.6.3 Estimate in the elements 116

4.5.6.4 Estimate on the edges . 119

4.6 WR-model . 122

4.6.1 Error indicators . 123

4.7 PP-model . 125

4.7.1 Error indicators . 126

4.8 A-posteriori error estimator for the NLP-model 127

4.9 Dependence of the solution on the parameters 128

5 Implementation and Numerical Experiments 132

5.1 General notes on the implementation of the models 132

5.2 Interpolation between the spaces Vh and VH 134

5.2.1 Projection Π′ . 135

5.2.2 Implementation of IhH in 1D . 137

5.2.3 Implementation of IhH in 2D . 139

5.2.4 Idea of the algorithm that implements IhH 142

5.3 Implementation of the models . 143

5.3.1 Implementation of the E-Model 143

5.3.2 Implementation of the LP, PP, and WR models 145

5.3.3 Implementation of the NLP-model 146

TABLE OF CONTENTS (Continued)

Page

5.4 Numerical results for the E-model . 149

5.4.1 Numerical results in 1D . 150

5.4.2 Adaptivity example . 154

5.4.3 Numerical results for error in only one of the variables 156

5.4.4 Numerical results in 2D . 159

5.4.5 Numerical results for piecewise constant coefficients 161

5.5 Numerical results for the LP, WR, and PP models 163

5.6 Numerical results for the NLP-model . 169

5.6.1 Simulations for the diffusion-adsorption applications 170

5.6.2 Numerical results for the NLP-model 172

5.7 Double-porosity, Barenblatt model . 179

5.7.1 Details of the model . 180

5.7.2 Computing coefficients of the macro-model 182

5.7.3 Numerical solution of the macromodel 183

5.8 Numerical results for the dependence of the solutions in the parameters . 189

6 Conclusions . 192

Bibliography . 193

Appendix . 198

.1 Codes for computing IhH . 199

.1.1 Dimension 1 . 199

TABLE OF CONTENTS (Continued)

Page

.1.2 Dimension 2 . 200

.2 Code for computing E-model in 1D . 204

LIST OF FIGURES

Figure Page

2.1 Illustration of double-porosity domain . 10

4.1 Illustration of the sets ω̃T (left), ωE(right) . 39

4.2 Comparison of run time for one-level and multilevel for Example 4.2.2 49

5.1 Example of mesh in 2-dimensions . 133

5.2 Projection operator Π : VH → Vh. VH is generated by the spanning of

{ψi(x)}5i=1 and Vh is generated by the spanning of {φi(x)}7i=1. The node i of

the mesh is denoted by xi. 136

5.3 Illustration of a uniform refinement in 1D with r = 2. Plotted are the basis

functions ψ1(x), ψ2(x), ψ3(x) spanning Vh which is based on cells 1 and 2;

and basis functions φ1(x), φ2(x) spanning VH which is based on element 1.

x1, x2, x3 are the nodes of the grid. 137

5.4 Illustration of the basis functions φ1(x), φ2(x), ψ1(x), ψ2(x) transformed from

cell 1 to the reference element (−1, 1). 138

5.5 Illustration of triangles (elements) in the coarse mesh (full line) and fine mesh

(dashed line) . 139

5.6 Illustration of the cell numbering in one element for r = 2. The fine mesh Th
has 8 cells [dashed line], the coarse mesh Th has 2 elements [full line]. The

first number correspond to the local numbering of the cell inside the element,

the second number corresponds to the global numbering of the cell in Th. . . 140

5.7 Solutions u, v in Example 5.4.5. Left: plot over (0, 1). Right: zoomed in

boundary layer for u, v with an additional boundary layer for u. 155

5.8 Illustration of adaptive steps from Example 5.4.5: plot of solution (uh, vH).

Top: solution in step 1. Bottom: solution step 2. 157

5.9 Illustration of adaptive steps from Example 5.4.5: plot of solution (uh, vH).

Top: step 3 with original strategy. Bottom: step 3 with alternative strategy.

Zoom is indicated by the range of x. 158

5.10 Illustration of the piecewise constant parameter a(x, q) 162

5.11 Example 5.5.1: behavior of solutions u, v to LP-model and of spatial error

indicators [∂νu], [∂νv] for different P. 164

LIST OF FIGURES (Continued)

Figure Page

5.12 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 10−2} and

linear isotherm. 173

5.13 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 102} and

linear isotherm. 174

5.14 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 10−2} and

Langmuir isotherm for α = 0.05, β = 2. 175

5.15 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 102} and

Langmuir isotherm for α = 0.05, β = 2. 176

5.16 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 10−3, 0, 102}
and linear isotherm. 177

5.17 Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 10−3, 0, 102}
and Langmuir isotherm for α = 0.05, β = 2. 178

5.18 Illustration of a periodic heterogeneous media. Figure (a): Ω1 - white, Ω2 -

grey, and Ω3 - dark grey. Figure (b): zoom of one cell. 181

5.19 Illustration of Y3 in grey . 182

5.20 Illustration of numerical experiments for the double-porosity model with 9 cells183

5.21 Illustration of the part of the numerical solutions used to compute the error

with different ε . 186

5.22 Example 5.7.3: Comparison of approximating the exact model with the double-

porosity model with different mesh sizes . 188

LIST OF TABLES

Table Page

4.1 List of some a-posteriori estimators and their properties [4] for elliptic problems 44

4.2 Comparison of efficiency indices for two different choices of estimators in

Example 4.2.1 . 47

4.3 Comparison of run time and number of elements needed to achieve error

below a given tolerance τ using the one-level and the multilevel approaches

for Example 4.2.2. The first column in each approach denotes the number of

elements in the partition Th and TH , respectively. 49

5.1 Results for Example 5.4.1 . 151

5.2 Results for Example 5.4.2 . 152

5.3 Results for Example 5.4.3 with degenerate P 153

5.4 Efficiency index Θ in Example 5.4.4. Each row corresponds to a different

value of a parameter from P as indicated while other parameters are kept

fixed with value 1. Each column corresponds to the different r 154

5.5 Refinement at each step (recall symmetry of the domain) 156

5.6 Robustness and use of estimator in one variable only in Example 5.4.6. Shown

on the left are the error, estimate, and efficiency index corresponding to the

usual estimator (4.34). On the right we show the corresponding values for

the quantities computed in the u variable only (4.67) and in particular η∗ and

E∗ := ‖u− uh‖∗, and Θ∗ := η∗

E∗ . 159

5.7 Convergence of the error and estimator for Example 5.4.7, N = n that is

r = 1 (left) and N = 4n or r = 4 (right) . 160

5.8 Efficiency index Θ for Example 5.4.8 . 160

5.9 Example 5.4.10: Robustness of the estimator for the E-model with P =

{1, 1, a(x, 10−3), 1, 10}. 162

5.10 Example 5.4.11: Efficiency index Θr for different values of q and r. 163

5.11 Example 5.5.2: Robustness of the estimator for the LP-model with P = 15,

T = 0.1, τ = h. The numerical experiment convergence order is O(hα). From

theory, we expect α = 1. 165

LIST OF TABLES (Continued)

Table Page

5.12 Example 5.5.3: Robustness of the estimator for the WR-model with P =

{1, 1, 1, 0, 1}, T = 0.1, τ = h. The numerical experiment convergence order

is O(hα). From theory, we expect α = 1. 166

5.13 Example 5.5.3: Robustness of the estimator for the PP-model with P =

{0, 1, 1, 0, 1}, T = 0.1, τ = h. The numerical experiment convergence order

is O(hα) given in the fifth column. From theory, we expect α = 1. 167

5.14 Example 5.5.4: P = {λ1, 1, 1, b, 1} . 168

5.15 Example 5.5.4: P = {λ1, 1, 1, 104, 1}, h = τ = 1.25× 10−3, H = 5× 10−3 . . . 168

5.16 Example 5.5.4: P = {1, 1, a, 1, c} . 169

5.17 Example 5.5.5: Robustness of the estimator for the LP-model with P = 15,

T = 1, τ = h . 170

5.18 Example 5.6.2: Adsorption-Diffusion, P = {1, 1, a, 0, 1}. Recall Enlp is the

error, ηnlp is the estimator, and Θ is the efficiency index 172

5.19 Example 5.6.3: Nonlinear pseudo-parabolic, P = {0, 1, a, 0, 1}. Recall Enlp is

the error, ηnlp is the estimator, and Θ is the efficiency index 179

5.20 Example 5.7.2: ”convergence” of the double-porosity model to the exact model186

5.21 Example 5.7.3: Comparison of the error between the numerical solution for

the exact model and the double-porosity model with different mesh sizes . . . 187

5.22 Example 5.7.4: Sensitivity to c. The differences in the errors occur in the

tenth decimal place. 188

5.23 Example 5.7.4: Sensitivity to k1 . 189

5.24 Example 5.8.1: EP = O(‖ε‖α). From theory we expect α = 1. 190

5.25 Example 5.8.2: we verify EP = O(‖ε‖α). From theory we expect α = 1. 190

5.26 Example 5.8.3: we verify EP = O(‖ε‖α). From theory we expect α = 1. 190

5.27 Example 5.8.4: c, c̃ piecewise constant functions. We verify EP = O(‖ε‖α).

From theory we expect α = 1. 191

1 Introduction

In this thesis we describe how to solve numerically a particular coupled system of partial

differential equations, specifically, of so-called reaction-diffusion type.

There are several applications of such systems to subsurface fluid flow and transport

models. Models similar to the one considered in this thesis occur also in chemical engi-

neering, and medical applications. In this work we only develop the first class of applica-

tions. In particular, we are interested in double porosity models of flow in heterogeneous

porous media [12, 34, 50], ([47], II.5), and in diffusion in such media. In addition, we con-

sider kinetic and equilibrium models of adsorption [7, 42, 48]. Such models can be used

to simulate oil and gas recovery processes in fractured media, and contamination and

remediation of contaminated groundwater. General information about reaction-diffusion

systems can be found in [7, 51].

Before the models are solved analytically or numerically, one has to study their well-

posedness. In general, the coefficients and source-terms in the models are only piecewise

smooth and only bounded. This means that the classical solutions to the models may

not exist and one has to seek a weaker notion of solutions. In this work we will consider

well-posedness of the weak solutions in appropriate Sobolev spaces.

Since, in general, the differential equations in the models cannot be solved analyt-

ically, one uses numerical methods to approximate their solutions. There are many

choices of numerical methods that can be used: Finite Elements (FEM), Finite Differ-

ences (FDM), and Finite Volume (FVM) methods. They each have several advantages

and disadvantages. One has to decide which one to use depending on the regularity of

the underlying solutions, the intended accuracy of approximations, the geometry of the

domain, and on the ease of implementation. In this work we use only the Finite Element

method, and, specifically, the conforming Galerkin FEM, which is well suited to deal with

approximation of solutions with different properties and regularity. Most importantly,

Galerkin FEM is easy to implement for complicated geometry of the domains, allows

for high order approximations to smooth solutions, and has a strong mathematical foun-

2

dation that allow us to analyse and estimate the numerical error, even for non-smooth

solutions.

The main idea of the FEM is to approximate the solution of the PDE in a finite

dimensional subspace of the original (Sobolev) function space. We cover the domain Ω

with a mesh (grid) made of a finite number of elements and then look for an approximate

solution in the form of globally continuous piecewise polynomials on that grid [22].

To estimate the approximation error, i.e., the difference between the true solution and

the approximate solution, one combines variational methods with interpolation theory. It

is possible to prove that, as the number of elements increases, the approximate solutions

converge to the true solution. Unfortunately, the magnitude of the error is unknown

a-priori if the true solution is not known. In order to control the numerical error, we

estimate it by a computable quantity called a-posteriori error estimator. In some cases

it is possible to prove that a given estimator provides upper and lower bounds to the true

error. In this thesis we use residual type estimators which can be computed easily from

the approximate solution, and we prove appropriate bounds for our model systems. An

important feature of the a-posteriori error estimators is that they provide information

about local behavior of the error so that one can refine the mesh locally wherever the

error estimator is large. This process is called mesh adaptivity. The theory and practice

of residual a-posteriori error estimators is well developed for scalar stationary problems,

see review in [53]. For systems, the only results available are for adjoint-based estimators

for elliptic equations in [2, 3]. Results for scalar parabolic equations are also available,

and we follow the idea of residual estimators developed in [15, 56].

In this thesis we are particularly interested in the influence of the coefficients of

the system upon its solutions, and in the choice of optimal numerical techniques to

approximate them. In particular, in the applications of interest, the coefficients may

vary from case to case by orders of magnitude. It is desirable to have numerical methods

whose properties do not depend on the particular value of the coefficients, but which

at the same time can exploit the special properties of the solutions in order to decrease

the complexity of the numerical computations without sacrificing their accuracy. The

feature of independence of a-posteriori estimators on the magnitude of the coefficients

is called robustness and was introduced in [55, 54]. In this thesis we develop robust

estimators for systems of elliptic and parabolic equations, and prove appropriate lower

and upper bounds for the true error. In fact, we are able to show that these results hold

3

true when some coefficients are set equal to zero and even when, as a result, the system

becomes degenerate, i.e., its type changes.

In addition, an important observation is true for the families of solutions of the

systems of PDEs. In some applications the components of the solution may have similar

qualitative nature but a significantly different variability, which may lead to different

orders of convergence for different components of the solution. In such cases it is natural

to approximate the smooth component on a coarse grid and the less-smooth component

on a fine grid. This multilevel discretization requires certain grid transfer operators so

that the coupling term can be defined and the convergence ensured. Clearly, we want to

ensure that the estimators we developed satisfy the lower and upper bounds also in this

multilevel case, and that they remain robust. This is presented in this thesis.

The plan of the thesis is as follows. In the outline we emphasize the main results and

main difficulties.

In Chapter 2 we give an overview of the applications and the models.

In Chapter 3 we present existence and uniqueness results for the studied models.

Most results are straightforward extensions of available theory, but we include them

here for completeness.

In Chapter 4 we define the numerical formulation of the model problems. We prove

a-priori and a-posteriori error estimates for the numerical approximation of the model

problems. These include the results for the elliptic system called E-model, which we

published in [30]. The two challenges here are the treatment of the system and the

use of different grids for each component of the system. The bounds for the robust

a-posteriori estimator are presented in Theorem 4.3.4, 4.3.5.

Next we develop results for the a-posteriori error estimator for a parabolic coupled

system called the LP-model. Partial results were published in [29]. The a-posteriori

error estimator is robust with respect to the coefficients of the problem and behaves well

also for the cases called WR and PP-model, when some of the coefficients are set to be

zero. The main result is presented in Theorem 4.5.6.

The theoretical results that we proved are for linear models. However, they can be

extended to a semilinear coupled system.

In Chapter 5 we give details on the implementation of the numerical algorithm, and

present numerical experiments to confirm the a-priori error estimates as well as we

verify the robustness of the a-posteriori error estimators. We also show some simulation

4

results for the double-porosity model, the pseudo-parabolic model, and for the linear and

nonlinear adsorption models.

For the double-porosity model, we develop additional results which relate the under-

lying microscopic model to the coupled system. The latter can be understood as the limit

of the former as shown in [50]. In particular, we show how to compute the coefficients

of the macroscopic problem.

The implementation details in Chapter 5 include careful development of the intergrid

operators that are used for multilevel grids.

In Chapter 6 we present the conclusions of our thesis. The Appendix contains the

listing of some of the MATLAB codes that we developed for the computations shown in

this thesis.

5

2 Applications

In this thesis we develop tools to improve the numerical simulation of the modelling of

phenomena involving fluid in porous media. In this chapter we give a brief introduction

to the applications of models considered in this work, namely: double-porosity model,

pseudoparabolic model, diffusion-adsorption system and enhanced coalbed methane re-

covery (ECBM).

From now on, we consider an open bounded convex region Ω ⊆ Rd, d = 1, 2, 3,

with Lipschitz boundary ∂Ω. The variable t denotes time. All the applications above

can be modelled by the following general parabolic reaction-diffusion system of partial

differential equations (PDEs)

λ1
∂

∂t
u(x, t)−∇ · (a∇u(x, t)) + c(ϕ(x, u(x, t))− v(x, t)) = f(x, t), x ∈ Ω, t > 0, (2.1a)

λ2
∂

∂t
v(x, t)−∇ · (b∇v(x, t)) + c(v(x, t)− ϕ(x, u(x, t))) = g(x, t), x ∈ Ω, t > 0. (2.1b)

Here the set of parameters P = {λ1, λ2, a, b, c} are, in general, non-negative bounded

functions of x. The meaning of the unknowns u, v and of the parameters depend on the

application considered. The function ϕ : R× R→ R is, in general, Lipschitz continuous

in the second variable, u. The system (2.1) is subject to proper initial and boundary

conditions. Before going into the applications mentioned above we present a summary

of the governing equations for fluid flow and for solute transport in porous media. The

equations shown in here are standard and can be found in several textbooks such as

[37, 32]. Throughout this thesis we assume isothermal conditions.

2.1 Basic Models

2.1.1 Flow

We consider the case of single phase and single component fluid flow in porous media.

The main three equations governing the fluid flow in single component and phase in

porous media are the continuity equation (conservation of mass of the fluid), Darcy’s

6

law (conservation of momentum of the fluid) and equation of state. The continuity

equation
∂

∂t
(φρ) +∇ · (ρ~u) = q, (2.2)

states that the fluid mass is conserved in any fixed control volume. Here, φ denotes

the porosity of the medium, ~u is the fluid velocity and ρ is the density of the fluid.

Throughout this thesis, q is called a source and accounts for all the phenomena that add

or subtract (in this case the source term is called a sink) mass within the control volume.

The Darcy’s law

~u = −k
µ

(∇p− ρg∇z), (2.3)

gives an empirical relationship between the fluid velocity and the gradient of pressure p.

Here, g is the gravity acceleration, k is the permeability of the medium, µ is the viscosity

of the fluid and z represents the depth. In this work, we ignore the gravitational effects,

thus we use its simplified version

~u = −k
µ
∇p. (2.4)

The equation of state is given by

ρ = ρ0e
β(p−p0), (2.5)

where β is the fluid compressibility and ρ0, p0 are the density and pressure of the fluid

at a reference conditions, respectively. From the equation of state it follows that

∂ρ

∂p
= βρ, (2.6)

and consequently,

∇ρ =
∂ρ

∂p
∇p = βρ∇p. (2.7)

Substituting the Darcy’s law (2.4) and then the relation (2.7) into the mass conservation

equation (5.14) we arrive at equation describing the density of slightly compressible fluid

flow through porous media

q =
∂

∂t
(φρ) +∇ · (ρ~v) =

∂

∂t
(φρ)−∇ · (ρk

µ
∇p) =

∂

∂t
(φρ)−∇ · (k

βµ
∇ρ).

7

For simplicity, for the rest of the thesis, we set β = 1, µ = 1, so that

∂

∂t
(φρ)−∇ · (k∇ρ) = 0. (2.8)

Note that the use of the relation (2.7) allows us to transform the nonlinear PDE (2.8)

into the linear PDE (2.9). This substitution is called Kirchhof’s transformation.

It should be noticed that the porosity φ and the permeability k are both functions of

space and time, φ = φ(x, t), k = k(x, t). The dependence in the space variable reflects

the fact that most reservoirs are heterogeneous. The dependence on time can be due to

natural processes such as, swelling, infiltration, formation of fractures, to cite some. In

this thesis we consider only the case in which the porous media is rigid, i.e., φ := φ(x)

and k := k(x), so that equation (2.8) is simplified to

φ
∂ρ

∂t
−∇ · (k∇ρ) = 0. (2.9)

The heterogeneity of the medium properties, φ and k, leads to two of the applications

considered in this thesis, the double-porosity model and the pseudoparabolic model pre-

sented in Sections 2.2 and 2.3, respectively.

2.1.2 Mass Transport

Consider the presence of n distinct substances being transported by the fluid flow. For

all i, let ci be the concentration of solute i. The conservation of mass for solute i, is

given by

φ
∂ci
∂t

+∇ · Fi + ~v · ∇ci = qi, ∀i. (2.10)

Here qi is a source for the solute i. The conservation of mass (2.10) is coupled with the

flow equation (2.9) through the fluid velocity, ~v. In this thesis we consider these two

equations separately. For the remainder of this thesis we consider only the case ~v = ~0

in the mass transport equation (2.10). This simplification guarantees that the PDE is

self-adjoint in the space derivatives. For the remainder of this section we consider the

presence of only one type of solute in the fluid.

8

We can then rewrite the conservation of mass (omitting the subscript for simplicity)

φ
∂c

∂t
+∇ · F = q. (2.11)

The term F is the diffusive flux given by the Fick’s law of diffusion,

F = −D∇c, (2.12)

where D is the diffusion coefficient. Substituting the Fick’s law (2.12) into the mass

conservation equation (2.11) we get the equation for the mass transport of solute in

porous media

φ
∂c

∂t
−∇ · (D∇c) = q. (2.13)

where, again, φ is the porosity of the porous media. Note that the equation that models

the fluid flow (2.9) and the one that models the mass transport (2.13) have the same

structure.

The equation for transport of solute (2.13) has to be modified in case of phenomena

that affect the mass balance. One of these phenomena, adsorption, arises in the other two

applications considered in this thesis, the diffusion-adsorption process and the ECBM.

Besides the four applications studied in this thesis, the system of equations (2.1) have

other applications such as heat diffusion in heterogeneous media, chemotaxis, chemical

reactions in the presence of catalysis. Next we give a brief introduction to the applications

studied here.

2.2 Double-porosity models

Suppose the reservoir Ω presents two regions with very distinct porosities and permeabil-

ities. One scenario for this situation is a porous medium composed of alternate layers of

two different materials, e.g., clay and sand. Separate Ω, into two disjoint open regions,

Ω1 and Ω2. Each region represents one of the two different behavior in Ω such that

Ω = Ω1 ∪ Ω2 (see Figure 2.1). Denote the interface between the two regions by Γ. In

general, Ω1 is called the fast region and Ω2 the slow region. The porosity, φ(x), and

9

permeability, k(x), in Ω can be described as

φ(x) =

{
φ1(x), x ∈ Ω1,

φ2(x), x ∈ Ω2.
k(x) =

{
k1(x), x ∈ Ω1,

k2(x), x ∈ Ω2.

Therefore the density ρ of the fluid flow can represented by

ρ =

{
ρ1, in Ω1,

ρ2, in Ω2.

The fluid flow in the region Ω is described by equation (2.9). However equation (2.9) is

equivalent to the problem written separately in Ω1 and Ω2

φ1
∂ρ1

∂t
−∇ · (k1∇ρ1) = 0, in Ω1, (2.14a)

φ2
∂ρ2

∂t
−∇ · (k2∇ρ2) = 0, in Ω2. (2.14b)

The functions ρ1, ρ2 have to satisfy the interface conditions

ρ1 = ρ2, on Γ, (2.15a)

k1∇ρ1 · ~n1 = k2∇ρ2 · ~n2, on Γ, (2.15b)

where ~ni is the outward normal vector to ∂Ωi, i = 1, 2. These conditions assure the

continuity of mass and flow across the interface of the two regions. In general, to nu-

merically simulate fluid flow in such reservoirs, a very fine grid is required to represent

the several changes in the properties of Ω.

Two alternatives to the model (2.14)-(2.15) are the Barenblatt model [12], and the

Warren-Root model [57]. The novelty proposed by [12] in 1960, was to consider two

different averaged fluid variables ρ̃1, ρ̃2 in a way that both ρ̃1 and ρ̃2 are defined at each

point of the domain Ω and that the densities in both regions are connected through

an exchange term. The fluid flow is then modelled by the following system of coupled

10

Figure 2.1: Illustration of double-porosity domain

Ω1

Ω

Ω2 Ω2

parabolic equations

φ̃1
∂ρ̃1

∂t
−∇ · (k̃1∇ρ̃1) + c(ρ̃1 − ρ̃2) = 0, in Ω, t > 0, (2.16a)

φ̃2
∂ρ̃2

∂t
−∇ · (k̃2∇ρ̃2) + c(ρ̃2 − ρ̃1) = 0, in Ω, t > 0. (2.16b)

Here, c is called the shape factor and c(ρ1 − ρ2) is the exchange term between the two

regions. The quantities φ̃1, φ̃2, k̃1, k̃2 are averaged functions of the original φ(x), k(x), in

the region Ω, as discussed in Section 2.1.1. The same model was proposed by Rubinstein

[41] in 1948 for heat flow in heterogeneous media.

A similar result to the one in [12] was proposed in 1969 by Warren et al. [57]. The

difference is that only storage is considered in the region Ω2. So in this model we set

k̃2 = 0. This model is known as the Warren-Root model. From now on, we drop the

superscript ˜.

In 1990, Arbogast et al. [6], considered a periodic fractured media problem and

used homogenization techniques to derive mathematically a formula for the theoretical

models for double-porosity different from those in [12] and [57]. In 2004, Showalter et al.

[50], considered a periodic problem with three different regions where the third region

separates the other two and is called the exchange region. Applying homogenization

theory they arrived at the system of equations (2.16) and presented formulas to calculate

the quantities φ1, φ2, k1, k2 and c using the geometry of the regions and the properties

of the three materials. These formulas and the mathematical model together with its

convergence proposed in [50] is implemented and presented in Chapter 5. It is important

to stress that these models are only valid for media having a periodic structure.

11

2.3 Pseudoparabolic Models

A particular case of the double-porosity model (2.16) is a fractured porous media. In this

case, the fast region, Ω1, accounts for the fractures and the slow region, Ω2, represents

the porous media blocks (the matrix). The region Ω2 is formed by disconnected pieces

of porous media, implying k2 = 0, and also the storage term (variation with respect to

time) of the fluid in the fractures region Ω1 is too small in comparison to the other terms

and can be disregarded, [12]. The system modelling the fluid flow is then given by

−∇ · (k1∇ρ1) + c(ρ1 − ρ2) = 0, in Ω, (2.17a)

φ2
∂

∂t
ρ2 + c(ρ2 − ρ1) = 0, in Ω. (2.17b)

The system (2.17) is known as the pseudoparabolic system [49]. Note that by eliminating

ρ2 in the first equation, one arrives at the single nonlinear equation

φ2
∂

∂t

(
ρ1 −∇ ·

(
k1

c
∇ρ1

))
−∇ · (k1∇ρ1) = 0. (2.18)

As c increases, the solution of equation (2.18) tends to the solution of the parabolic

equation

φ2
∂ρ1

∂t
−∇ · (k1∇ρ1) = 0. (2.19)

A more recent application of the pseudoparabolic system (2.17) is to the modelling

of unsaturated flow with dynamic capillary pressure. It this application ρ1 represents

the saturation of the fluid flow and ρ2 is an auxiliary variable [39]. Another application

is heat conduction in heterogeneous media [41].

2.4 Diffusion-Adsorption System

Adsorption is the process where the solute temporarily adheres to the surface of solid in

porous media. The solute mass is divided between the amount present in the fluid and

the amount adsorbed, a, with reference to the mass of the porous media. The amount

adsorbed is proportional to the volume fraction of the porous medium, i.e., (1 − φ).

12

Hence, the diffusive transport in presence of adsorption is given by

φ
∂c

∂t
+
∂a

∂t
−∇ · (D∇c) = 0. (2.20)

The relationship between the quantities a and c depend on the characteristic of the

adsorption process. In general, this relationship can be represented by

∂a

∂t
= κ(ϕ(c)− a), (2.21)

where κ is the sorption time and ϕ is called the isotherm curve. Examples of isotherms

considered in this thesis are:

1. Linear isotherm :

ϕ(c) = α1c, α1 > 0, (2.22)

2. Langmuir’s isotherm:

ϕ(c) =
α2c

1 + α3c
, α2, α3 > 0. (2.23)

Examples of other isotherms can be found in [37]. The adsorption process can be in

equilibrium or have a kinetic nature.

If the adsorption process is kinetic, the adsorption process is described by equation

(2.21). Thus, the diffusion-adsorption process is modelled by the degenerate parabolic

system

φ
∂

∂t
c−∇ · (D∇c) +

∂a

∂t
= 0, (2.24a)

∂a

∂t
− κ(ϕ(c)− a) = 0. (2.24b)

Notice that the system (2.24) can be rewritten as the system (2.1).

Another case is when the process is at equilibrium. In this case the adsorption is not

modelled by equation (2.21). Instead, the amount adsorbed, a, satisfies the equation

a = ϕ(c). (2.25)

13

Substitute the relation 2.25 into the conservation of mass equation (2.20). Then the

equilibrium diffusion-adsorption process is modelled by

∂

∂t
(φc+ ϕ(c))−∇ · (D∇c) = 0. (2.26)

In the diffusion-adsorption application we only consider the case of one species present

in the fluid flow. The next application is a multi-component example of diffusion-

adsorption.

2.5 Enhanced Coalbed Methane Recovery

Coal reservoirs (coalbeds) contain large amounts of methane adsorbed into the coal

surface. The ECBM recovery consists of displacing the methane(CH4) from the coalbed

by carbon dioxide (CO2) or some other gas(es). When two or more species are competing

to adsorb to the surface of a medium, we have the so-called competitive adsorption. In

some cases, coal adsorbs two to ten times more CO2 than CH4 [45], making the ECBM

process favorable.

The general idea of the process is to inject CO2 into the coalbed, so that the CH4

desorbs and is recovered while the CO2 adsorbs replacing the CH4 in the coal surface,

remaining stored. In this thesis we consider the process containing only CH4 and CO2;

it is usual to also include the gas nitrogen in the mixture. Another simplification is the

absence of advection in the process. This is a plausible assumption for the process after

the injection wells are shut off.

We are going to consider the so-called dry case model in which the only present

phases are the gas phase and the adsorbed phase. Another case is the wet-gas model

where three phases are present: the water, the gas and the adsorbed phases. Let us

define some notation before introducing the mathematical model.

• Components: CH4 is denoted by subscript M and CO2 by D.

• Phases: gas phase is denoted by subscript g and the adsorbed phase by the sub-

script a.

• Mass fractions: denoted by X, e.g., XaM represents the amount of CH4 adsorbed

to the coal surface.

14

Since ci = Xiρi, we can rewrite the transport equation (2.20) for component i

φρgi
∂Xgi

∂t
+ (1− φ)ρai

∂Xai

∂t
−∇ · (Di∇(ρgiXgi)) = 0, for i = M,D. (2.27)

In the multi-component case the adsorption process of component i depends on the

presence of the other components as well. One way to model this competitive process is

through the so-called extended Langmuir

ϕi(XgD, XgM) =
βiαiXgi

1 + αDXgD + αMXgM
, for i = M,D, (2.28)

where βi, αi are the Langmuir volume capacity and the Langmuir constant for the com-

ponent i, respectively. For i = M,D, the system of equations describing the ECBM

recovery process, with only diffusion, is given by

φρgi
∂Xgi

∂t
+ (1− φ)ρai

∂Xai

∂t
−∇ · (Di∇ρgiXgi) = 0, (2.29a)

∂Xai

∂t
− κ(ϕi(XgD, XgM)−Xai) = 0. (2.29b)

In the case of non-equilibrium adsorption we have a system of four PDEs coupled

through the extended Langmuir isotherm (2.28). In the case of equilibrium the problem

gets reduced to a system of two coupled PDEs.

In this thesis we do not present numerical results for the ECBM application. However

we mention this application here, because the results of the a-posteriori error estimator

developed in this thesis can be applied for the ECBM process. Mathematically, the

diffusion-adsorption model can be seen as particular case of the ECBM model with only

one component, M or D. We present results for the diffusion-adsorption application.

The results for ECBM would be an extension of the results for the diffusion-adsorption

application. This extension is part of my future work.

15

3 Analysis of the models

3.1 Overview

In Chapter 2 we discussed five different physical models. We review them here for con-

venience, and supplement them with initial and boundary conditions. For simplicity, we

consider all models are subject to homogeneous Dirichlet boundary conditions. How-

ever, most results can be extended for non-homogeneous Dirichlet conditions or mixed

Dirichlet-Neumann conditions. As in Chapter 2, let Ω ⊆ Rd be an open bounded con-

vex region, for d = 1, 2, 3, with a Lipschitz boundary ∂Ω. For some fixed T > 0, let

ΩT = Ω× (0, T].

• LP-model is a particular case of system (2.1) where ϕ is the linear isotherm (2.22),

ϕ(u) = u.

λ1
∂u

∂t
−∇ · (a∇u) + c(u− v) = f, in ΩT , (3.1a)

λ2
∂v

∂t
−∇ · (b∇v) + c(v − u) = g, in ΩT , (3.1b)

u = 0, v = 0, on ∂Ω× [0, T], (3.1c)

u = u0, v = v0, in Ω× {t = 0}. (3.1d)

• E-model is the elliptic system

λ1u(x)−∇ · (a∇u(x)) + c(u(x)− v(x)) = f(x), in Ω, (3.2a)

λ2v(x)−∇ · (b∇v(x)) + c(v(x)− u(x))) = g(x), in Ω, (3.2b)

u = 0, v = 0, on ∂Ω. (3.2c)

The system (3.2) arises as a discrete time approximation of the system (3.1). To

see that, fix a time t = T1 > 0, and approximate the time derivative by a finite

16

difference. Let ∆t > 0,

∂u(x, T1)

∂t
≈ u(x, T1)− u(x, T1 −∆t)

∆t
, (3.3)

∂v(x, T1)

∂t
≈ v(x, T1)− v(x, T1 −∆t)

∆t
. (3.4)

Substitute (3.3)-(3.4) in the system (3.1). After rearranging the terms, we arrive

to the stationary system at time t = T1

λ1u(x, T1)−∇ · (ā∇u(x, T1)) + c̄(u(x, T1)− v(x, T1)) = F (x, T1), in Ω,

λ2v(x, T1)−∇ · (b̄∇v(x, T1)) + c̄(v(x, T1)− u(x, T1)) = G(x, T1), in Ω,

u(x, T1) = 0, v(x, T1) = 0, on ∂Ω.

where

ā = a∆t, F (x, T1) = ∆tf(x, T1) + λ1u(x, T1 −∆t),

b̄ = b∆t, G(x, T1) = ∆tg(x, T1) + λ2v(x, T1 −∆t),

c̄ = c∆t.

In this way, system (3.2) can be viewed as an approximation of system (3.1).

• WR-model is the degenerate parabolic system. This is a particular case of the

LP-model with b = 0.

λ1
∂u

∂t
−∇ · (a∇u) + c(u− v) = f, in ΩT , (3.6a)

λ2
∂v

∂t
+ c(v − u) = g, in ΩT , (3.6b)

u = 0, on ∂Ω× [0, T], (3.6c)

u = u0, v = v0, in Ω× {t = 0}. (3.6d)

We denote this system as the WR-model regarding the Warren-Root model [57].

17

• PP-model is the pseudo-parabolic system

−∇ · (a∇u) + c(u− v) = f, in ΩT , (3.7a)

λ2
∂v

∂t
+ c(v − u) = g, in ΩT , (3.7b)

u = 0, on ∂Ω× [0, T], (3.7c)

v = v0, in Ω× {t = 0}. (3.7d)

This is a particular case of the WR-model with λ1 = 0, or of the LP-model with

λ1 = b = 0. However, the structure of the system is very different. Here we couple

an ODE with an elliptic PDE, and hence the analysis of the well-posedness is quite

different from the WR-model.

• NLP-model is the nonlinear parabolic system (2.1). We repeat the system (2.1)

here and add the initial and boundary conditions.

λ1
∂u

∂t
−∇ · (a∇u) + c(ϕ(u)− v) = f, in ΩT , (3.8a)

λ2
∂v

∂t
−∇ · (b∇v) + c(v − ϕ(u)) = g, in ΩT , (3.8b)

u = 0, v = 0, on ∂Ω× [0, T], (3.8c)

u = u0, v = v0, in Ω× {t = 0}. (3.8d)

In the remainder of this chapter we discuss the existence and uniqueness of solutions

for the models treated in here. Most follows from standard results in the PDE literature,

which we review below.

3.2 Existence and uniqueness results for the models

3.2.1 Preliminaries on Sobolev Spaces

We begin by introducing some notation and standard results given in textbooks. We

follow closely [1, 26, 47].

For any subset ω ⊆ Ω, itself an open bounded region, with Lipschitz boundary, ∂ω,

consider the Lebesgue spaces Lp(ω) and denote their norm by ‖·‖Lp(ω). The space L2(ω)

18

is equipped with the usual scalar product (f, ψ)ω := (f, ψ)L2(ω) =
∫
ω f(x)ψ(x)dx and

the simplified notation, ‖ · ‖ω, for its norm is adopted. If ω = Ω, the subscript ω will be

omitted.

Definition 3.2.1. Let u, ψ ∈ L1
loc(Ω), and α = (α1, . . . , αd) be a multi-index. We say

that ψ is the weak derivative of u, and denote ∂αu = ψ, if∫
uDαφdx = (−1)|α|

∫
ψφdx, ∀φ ∈ C∞0 (Ω),

where |α| = α1 + . . .+ αd.

If it exists, the weak derivative is a linear operator that is uniquely defined. Further-

more, the weak derivative agrees with the classical derivative when the latter exists.

Example 3.2.1. The weak derivative owes its name to the fact that functions that do

not have the classical derivative might have the weak derivative. Let Ω = (−1, 1), and

define

h(x) =

{
x+ 1, −1 < x ≤ 0

−x+ 1, 0 ≤ x < −1
, sgn(x) =

{
−1, −1 < x < 0

1, 0 ≤ x < 1
.

The function h(x), called the ”hat function”, is usual in the finite element analysis. Note

that h(x) is not differentiable at x = 0. However, it is weakly differentiable and ∂h(x)

can be identified with −sgn(x), a.e. x ∈ Ω.

From now on, we adopt the notation D for weak derivative as well. Next we define

the Sobolev spaces Wm,p(Ω).

Definition 3.2.2. If u ∈ Lp(Ω) and Dαu ∈ Lp(Ω) for all α ≤ m, we then say that

u ∈Wm,p(Ω) and define the norm in Wm,p(Ω) by

‖u‖m,p =


(∑

|α|≤m ‖Dαu‖pLp(Ω)

)1/p
, 1 ≤ p <∞,

max0≤|α|≤m ‖Dαu‖L∞(Ω),
(3.9)

19

and its semi-norm by

|u|m,p =

 ∑
|α|=m

‖Dαu‖pLp(Ω)

1/p

, 1 ≤ p <∞. (3.10)

To account for Dirichlet boundary conditions, we search for weak solutions of the

model problems in the spaces Wm,p
0 (Ω) defined below. The reason for that becomes

clear after we state the Trace Theorem 3.2.5.

Definition 3.2.3. Define Wm,p
0 (Ω) as the closure of C∞0 (Ω) in Wm,p(Ω).

Theorem 3.2.4. The Sobolev spaces are Banach spaces.

Remark 3.2.1. Recall that Banach spaces are complete normed spaces.

The case p = 2, is a special case in the sense that Wm,2(Ω) are Hilbert spaces. For

that reason, they receive a distinguished notation in the literature. Recall that Hilbert

spaces are complete inner product spaces.

Notation. We denote Hm(Ω) := Wm,2(Ω) and Hm
0 (Ω) := Wm,2

0 (Ω). The usual norms

in Hm(Ω), Hm
0 (Ω) are denoted by ‖ · ‖m, | · |m, respectively.

For u ∈ W 1,p(Ω), u is not necessarily defined pointwise in sets of measure zero. To

study PDEs with Dirichlet boundary conditions we need the notion of the value of the

function on the boundary of the domain. This notion is given through the trace operator

γ.

Theorem 3.2.5 (Trace Theorem). There exists a bounded linear operator γ : W 1,p(Ω)→
Lp(∂Ω) such that ‖γu‖Lp(∂Ω) ≤ C‖u‖1,p. Moreover, if u ∈ C(Ω), γu = u|∂Ω.

The spaces W 1,p
0 (Ω) are then characterized by functions u ∈W 1,p(Ω) so that γu ≡ 0.

Another useful result from Sobolev spaces is the Poincaré-Friedrichs’ inequality (The-

orem 3, page 265 in [26]).

Lemma 3.2.1 (Poincaré-Friedrichs’ Inequality). Let u ∈W 1,p
0 (Ω), 1 ≤ p ≤ ∞. Then

‖u‖Lp(Ω) ≤ CPF ‖∇u‖Lp(Ω), (3.11)

where CPF depend only on p and Ω.

20

To establish well-posedness of a class of elliptic problems we will use the Lax-Milgram

Theorem. Let V be a Hilbert space.

Definition 3.2.6. The bilinear form a : V × V → R is

1. continuous if ∃C > 0 such that

a(u, v) ≤ C‖u‖V ‖v‖V , ∀u, v ∈ V,

2. coercive if ∃α > 0 such that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V.

Theorem 3.2.7 (Lax-Milgram). Let a : V × V → R be a bilinear, continuous and

coercive mapping. Let f : V → R be a bounded linear functional. Then there exists an

unique solution u ∈ V so that

a(u, φ) = f(φ), ∀φ ∈ H.

If B is a Banach space, we denote by B′ the space of all bounded linear functionals

l : B → R, the dual space. An important space in the study of PDEs is H1
0 (Ω). Its dual

space is denoted by H−1(Ω) := (H1
0 (Ω))′.

Remark 3.2.2. H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Along the way we apply the standard inequalities listed below in many instances.

Proposition 3.2.1. Inequalities:

1. Cauchy-Schwarz inequality: let u, v ∈ L2(Ω), then

|(u, v)| ≤ ‖u‖‖v‖. (3.12)

2. Discrete Cauchy-Schwarz inequality: let ai, bi ∈ R positive numbers, for every

i = 1, . . . , n, then

n∑
i=1

aibi ≤

{
n∑
i=1

a2
i

}1/2{ n∑
i=1

b2i

}1/2

(3.13)

21

3. Young’s Inequality: let a, b ∈ R positive. Then, for any ε > 0,

ab ≤ ε

2
a2 +

1

2ε
b2 (3.14)

4. Hölder Inequality: let w ∈ Lp(Ω), z ∈ Lq(Ω), where p, q are conjugate exponents,

1 = 1/p+ 1/q, then

|(u, v)| ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (3.15)

In order to study the non-stationary models we need the following theory. We use

the notation ′ to denote
∂

∂t
.

Definition 3.2.8. Let B be a Banach space, the space Lp(0, T ;B) consists of all func-

tions u : [0, T]→ B with

‖u‖Lp(0,T ;B) :=

(∫ T

0
‖u(t)‖pBdt

)1/p

. (3.16)

The following is a useful result to establish estimates in Chapter 4.

Proposition 3.2.2. Let u ∈ L2(0, T ;H1
0 (Ω)), with u′ ∈ L2(0, T ;H−1(Ω)), then

1. u ∈ C([0, T], L2(Ω)).

2.
1

2

d

dt
‖u‖2 =< u′, u >, a.e. 0 ≤ t ≤ T .

Definition 3.2.9. We say that V is continuously imbedded in H, and denote this by

V → H, if V ⊂ H and the identity operator I is continuous, i.e., I : V → H, defined

via Ix = x is continuous.

Let V,H be two Hilbert spaces. Consider V is dense subset of H so that V → H.

Definition 3.2.10. Define the operator A : D → H related to the continuous bilinear

form a : V × V → R via

a(u, v) = (Au, v), u ∈ D, v ∈ V.

Here D is the set of all functions u on V so that the function v 7→ a(u, v) is continuous

with respect to the H-norm.

22

Definition 3.2.11. Let A : D → H as above. For t ∈ [0, T],

du(t)

dt
+Au(t) = f(t), (3.17a)

u(0) = u0. (3.17b)

This initial boundary value problem is called the Cauchy problem.

Definition 3.2.12. The operator A : D → H is m-accretive if A is positive, i.e.,

(Au, u) ≥ 0,∀u ∈ D, and I +A : D → H is onto.

Proposition 3.2.3. If the bilinear form a : V × V → R satisfies:

1. a(u, u) ≥ 0 for all u ∈ V ,

2. ∃α > 0, so that

a(u, u) + ‖u‖2H ≥ α‖u‖2V .

Then A is m-accretive.

Note that a(·, ·) coercive implies that A is m-accretive.

To establish the well-posedness of the Cauchy problem we use the following applica-

tion of the Hille-Yosida Theorem, see [47], page 25 and Proposition 2.5 on page 113.

Corollary 3.2.13 (Application of Hille-Yosida Theorem). Let A be a m-accretive and

self-adjoint operator, f ∈ L2(0, T ;H) and u0 ∈ V . Then the Cauchy problem (3.17) has

a unique solution in u ∈ C([0, T], H) so that u(t) ∈ D(A) at a.e. t ∈ (0, T).

Below we discuss the weak formulation of the models presented.

3.2.2 E-model

For the purposes of the exposition we adopt the following notation.

23

Notation.

V = H1
0 (Ω), (3.18)

V ′ = H−1(Ω), (3.19)

V 2 = V × V, (3.20)

(V ′)2 = V ′ × V ′, (3.21)

~u = (u, v), (3.22)

~ψ = (φ, ψ). (3.23)

Note that V is a Hilbert space. The norm in V 2 is given by

‖~u‖2V 2 := |u|21 + |v|21. (3.24)

Consider the system (3.2). To get its weak formulation multiply (3.2a), (3.2b) by

φ, ψ ∈ V , respectively. Integrate by parts. The weak form of (3.2) is as follows.

Find ~u ∈ V 2 such that, for all ~φ ∈ V 2,

(λ1u, φ) + (a∇u,∇φ) + (c(u− v), φ) = (f, φ), (3.25a)

(λ2v, ψ) + (b∇v,∇ψ) + (c(v − u), ψ) = (g, ψ). (3.25b)

We make the following assumptions in the parameters and data.

Assumptions 3.2.14.

A1. Each function in P = {λ1, λ2, a, b, c} belongs to L∞(Ω).

A2. Each function in P = {λ1, λ2, a, b, c} is bounded below by a positive constant, a.e.

x ∈ Ω

a(x) ≥ a0 > 0, λ1(x) ≥ λ1,0 > 0,

b(x) ≥ b0 > 0, λ2(x) ≥ λ2,0 > 0,

c(x) ≥ c0 > 0.

A3. The data (f, g) ∈ (V ′)2.

24

Definition 3.2.15. Define the form A : V 2 × V 2 → R

A(~u, ~φ) := (λ1u, φ) + (λ2v, ψ) + (a∇u,∇φ) + (b∇v,∇ψ) + (c(u− v), φ− ψ). (3.26)

Lemma 3.2.2. A is symmetric, bilinear, continuous, and coercive with respect to the

product norm ‖ · ‖V 2.

Proof. The symmetry and bilinearity of A(·, ·) are clear. Now, let us prove the continuity

of A(·, ·). Apply the Cauchy-Schwarz inequality (3.12) to the bilinear form (3.26)

|A(~u, ~φ)| ≤ ‖λ1/2
1 u‖‖λ1/2

1 φ‖+ ‖λ1/2
2 v‖‖λ1/2

2 ψ‖+ ‖a1/2∇u‖‖a1/2∇φ‖

+ ‖b1/2∇v‖‖b1/2∇ψ‖+ ‖c1/2(u− v)‖‖c1/2(φ− ψ)‖.

Now apply the discrete Cauchy-Schwarz inequality

|A(~u, ~φ)| ≤
{
‖λ1/2

1 u‖2 + ‖λ1/2
2 v‖2 + ‖a1/2∇u‖2 + ‖b1/2∇v‖+ ‖c1/2(u− v)‖2

}1/2

+
{
‖λ1/2

1 φ‖2 + ‖λ1/2
2 ψ‖2 + ‖a1/2∇φ‖2 + ‖b1/2∇ψ‖2 + ‖c1/2(φ− ψ)‖

}1/2
.

Note that

‖c1/2(u− v)‖2 ≤ ‖c‖L∞ (‖u‖+ ‖v‖)2 ≤ ‖c‖L
∞

2

(
‖u‖2 + ‖v‖2

)
.

Also, by the Poincaré-Friedrichs’ inequality in Lemma 3.2.1 and assumption A1

‖λ1/2
1 u‖2 ≤ ‖λ1‖L∞C2

PF |u|21.

Thus

|A(~u, ~φ)| ≤ CA‖~u‖V 2‖~φ‖V 2 , (3.27)

where

CA = max{‖λ1‖L∞C2
PF , ‖λ2‖L∞C2

PF , ‖a‖L∞ , ‖b‖L∞ , ‖c‖L∞C2
PF }.

Note that the constant CA > 0 independent of u, v, φ, ψ.

25

To prove the coercivity, apply assumption A2 and the fact that c(u−v)u+c(v−u)v =

c(u− v)2 ≥ 0.

A(~u, ~u) = ‖λ1/2
1 u‖2 + ‖λ1/2

2 v‖2 + ‖a1/2∇u‖2 + ‖b1/2∇v‖2 + ‖c1/2(u− v)‖2

≥ ‖a1/2∇u‖2 + ‖b1/2∇v‖2.

Thus

A(~u, ~u) ≥ αA‖~u‖2V 2 , (3.28)

where αA = min{a0, b0}. We stress that both CA, αA depend on P.

From Lemma 3.2.2 we see that A(·, ·) can be used as an inner product on V 2. The

associated norm is the energy norm

‖~u‖2e := A(~u, ~u). (3.29)

Define a functional L : V 2 → R via

L(~φ) = 〈f, φ〉+ 〈g, ψ〉, (3.30)

where 〈·, ·〉 denotes the standard duality pairing between V and V ′. It is standard that

L is linear and continuous [26]. The weak formulation of the E-model can be rewritten

as follows:

Find ~u ∈ V 2 so that for all ~φ ∈ V 2

A(~u, ~φ) = L(~φ). (3.31)

Lemma 3.2.3. Assume that assumptions A1-A3 holds. The problem (3.25) has a unique

weak solution ~u ∈ V 2. In addition, if (f, g) ∈ L2(Ω)× L2(Ω), then ~u ∈ H2(Ω)×H2(Ω).

Proof. By Lemma 3.2.2, we apply the Lax-Milgram Theorem 3.2.7 to conclude the ex-

istence of a unique solution for the problem. The extra regularity in ~u follows from the

fact that each component solves an elliptic problem with a source term in L2(Ω).

26

3.2.3 LP-model

Following the same procedure we did for the E-model we arrive at the weak form of the

system (3.1)

Find ~u ∈ L2(0, T ;V 2) with ~u′ ∈ L2(0, T ; (V ′)2), such that, for all ~φ ∈ V 2, 0 ≤ t ≤ T

(λ1u
′(t), φ) + (a∇u(t),∇φ) + (c(u(t)− v(t)), φ) = (f(t), φ), (3.32a)

(λ2v
′(t), ψ) + (b∇v(t),∇ψ) + (c(v(t)− u(t)), ψ) = (g(t), ψ). (3.32b)

u(0) = u0 v(0) = v0. (3.32c)

Remark 3.2.3. By Proposition 3.2.2, ~u ∈ C([0, T];L2(Ω)2).

For the LP-model we make the following assumptions.

Assumptions 3.2.16.

B1. Each function in P = {λ1, λ2, a, b, c} is independent of t.

B2. Assumptions A1 and A2 hold.

B3. The data (f, g) ∈ L2(0, T ;L2(Ω))× L2(0, T ;L2(Ω)).

B4. The initial conditions ~u0 ∈ V 2.

Remark 3.2.4. Note that assumption B1 is consistent with the assumption that the

porous medium is rigid in Section 2.1.1.

Definition 3.2.17. Define the form B : V 2 × V 2 → R

B(~u, ~φ) := (a∇u,∇φ) + (b∇v,∇ψ) + (c(u− v), φ− ψ). (3.33)

Remark 3.2.5. Note that

A(~u, ~φ) = B(~u, ~φ) + (λ1u, φ) + (λ2v, ψ). (3.34)

Lemma 3.2.4. The form B is bilinear, symmetric, continuous, and coercive with respect

to the product norm ‖ · ‖V 2.

27

Proof. The proof is analogous for the proof for the form A(·, ·) in Lemma 3.2.2. The

continuity constant is CB = max{‖a‖L∞ , ‖b‖L∞ , ‖c‖L∞C2
PF }, and coercivity constant is

αB = αA.

From Lemma 3.2.4, B(·, ·) defines an inner product on V 2. Next we define the energy

norm associated with it

‖~u‖2b := B(~u, ~u). (3.35)

With the above notation, the weak problem (3.32) can be rewritten as:

Find ~u ∈ L2(0, T ;V 2) with ~u′ ∈ L2(0, T ; (V ′)2), such that, for all ~φ ∈ V 2, 0 ≤ t ≤ T

(~u′, ~φ) +B(~u, ~φ) = L(~φ), ∀~φ ∈ V 2, (3.36a)

~u(0) = (u0, v0). (3.36b)

Lemma 3.2.5. Let assumptions B1-B4 hold. The weak problem (3.36) admits a unique

solution ~u ∈ C([0, T];L2(Ω)2).

Proof. Let H = L2(Ω)×L2(Ω), so V 2 is dense and continuously imbedded in H. Define

the operator B : D → H via the symmetric bilinear form B(~u, ~φ) =
(
B(~u), ~φ

)
,

B =

[
−a∂2 + cI −cI
−cI −b∂2 + cI

]
, D(B) = {~u ∈ V 2 : ∂2~u ∈ H}.

Since the form B is coercive, by Proposition 3.2.3, B is m-accretive and by the application

of Hille-Yosida theorem, Corollary 3.2.13, there exists a unique solution ~u ∈ C([0;T], H)

for (3.1) provided that ~u0 ∈ V 2.

Another way to prove Lemma 3.2.5 is to apply the Galerkin method. The general

idea of the Galerkin method is solve the problem in a subspace Vm ⊂ V 2 generated by

m basis functions of V 2. Next step is to let m→∞ to get a solution in the whole space

V 2.

28

3.2.4 WR-model

The WR-model (3.6) has a degenerate structure in the sense that is an ODE coupled

with a parabolic PDE.

Notation. From now on:

W = H1
0 (Ω)× L2(Ω),

W 2 = W ×W.

Note that W is a Hilbert space.

Definition 3.2.18. For ~u ∈W , we define

‖~u‖2W := |u|21 + ‖v‖2. (3.37)

We define the weak problem which follows from multiplying (3.6a)-(3.6b) by φ ∈
V, ψ ∈ L2(Ω), respectively and integrating by parts:

Find ~u ∈ L2(0, T ;W) with ~u′ ∈ L2(0, T ;W ′), such that, for all ~φ ∈W

(λ1u
′(t), φ) + (a∇u(t),∇φ) + (c(u(t)− v(t)), φ) = (f(t), φ), (3.38a)

(λ2v
′(t), ψ) + (c(v(t)− u(t)), ψ) = (g(t), ψ), (3.38b)

u(0) = u0 v(0) = v0. (3.38c)

For the WR-model we make the following assumptions.

Assumptions 3.2.19.

W1. Each function in PWR = {λ1, λ2, a, c} is independent of t.

W2. Each function in PWR = {λ1, λ2, a, c} belongs to L∞(Ω).

W3. Each function in PWR = {λ1, λ2, a, c} is bounded below by a positive constant, for

a.e. x ∈ Ω

a(x) ≥ a0 > 0, λ1(x) ≥ λ1,0 > 0,

c(x) ≥ c0 > 0, λ2(x) ≥ λ2,0 > 0.

29

W4. Assumptions B3 and B4 hold.

Definition 3.2.20. Define the bilinear form BWR : W 2 → R via

BWR(~u, ~φ) := (a∇u,∇φ) + (c(u− v), φ− ψ). (3.39)

Lemma 3.2.6. Assume that assumptions W1-W4 hold. The system (3.6) has a unique

solution ~u ∈ C([0;T], H).

Proof. Let H = L2(Ω)×L2(Ω), so W is dense and continuously imbedded in H. Define

the operator W : D → H via the symmetric bilinear form BWR(~u, ~φ) =
(
W(~u), ~φ

)
,

W =

[
−a∂2 + cI −cI
−cI cI

]
, D(W) = {~u ∈W : ∂2u ∈ L2(Ω)}.

It is easy to see that BWR(~u, ~u) ≥ 0 and that for αW = minx∈Ω{a0, 1}

BWR(~u, ~u) + ‖~u‖2H ≥ αw‖~u‖2W , ∀~u ∈W.

Therefore by Proposition 3.2.3, W is m-accretive and by the application of Hille-Yosida

theorem, Corollary 3.2.13, there exists a unique solution ~u ∈ C([0;T], H) for (3.6) pro-

vided that ~u0 ∈W .

3.2.5 PP-model

The weak form of system (3.7) reads:

Find ~u ∈ V × L2(0, T ;L2(Ω)) with v ∈ L2(0, T ;L2(Ω)), such that, for all ~φ ∈ V ×
L2(0, T ;L2(Ω))

(a∇u(t),∇φ) + (c(u(t)− v(t)), φ) = (f(t), φ), (3.40a)

(λ2v
′(t), ψ) + (c(v(t)− u(t)), ψ) = (g(t), ψ), (3.40b)

v(0) = v0. (3.40c)

The PP-model (3.7) is also a degenerate system. It couples an ODE with an elliptic PDE.

In fact, the ODE in the PP-model is the same as the one for the WR-model. We do not

30

show the well-posedness of (3.40). Instead we rewrite the problem as a pseudo-parabolic

problem and state the results found in [18]. Note that from (3.7a)

u =
1

c

(
λ2
∂v

∂t
+ cv − g

)
, in ΩT . (3.41)

Thus, finding the component v gives the component u as well. First, we rewrite (3.7)

to put the problem in the framework of [18]. Let A = −∇ · (a∇) and I be the identity

operator on V ,

λ2
∂v

∂t
+ c

(
I − (I +

1

c
A)−1

)
v = g + (I +

1

c
A)−1f, (3.42a)

v(0) = v0. (3.42b)

Next, we apply (I + 1
cA) to both sides of (3.42)

λ2
∂v

∂t
+
λ2

c
A

(
∂v

∂t

)
+A(v) = (I +

1

c
A)g + f, (3.43a)

v(0) = v0. (3.43b)

The weak formulation of (3.43) is as follows: Find v ∈ C1([0, T], V) such that for all

ψ ∈ V

(λ2v
′, ψ) +

λ2

c
(a∇v′,∇ψ) + (∇v,∇ψ) = (I +

1

c
A)g + f, ψ) a.e.t ∈ (0, T] (3.44a)

v(0) = v0. (3.44b)

We need the follow assumptions for the existence of a weak solution of (3.44).

Assumptions 3.2.21.

PP1. Each function in PPP = {λ2, a, c} is independent of t.

PP2. Each function in PPP = {λ2, a, c} belongs to L∞(Ω).

31

PP3. Each function in PPP = {λ2, a, c} is bounded below by a positive constant, for a.e.

x ∈ Ω

a(x) ≥ a0 > 0, λ2(x) ≥ λ2,0 > 0

c(x) ≥ c0 > 0.

PP4. g ∈ C([0, T], V), f ∈ C([0, T], L2(Ω)).

PP5. v0 ∈ V .

We assume that Assumptions 3.2.21 hold. Thus by Theorem 2.3 in [18], the problem

(3.44) has a solution v ∈ C1([0, T], V). Then with equation (3.41) we can find the

component u ∈ C1([0, T], V). More results on the well-posedness of such systems can be

found in [46, 18, 17].

3.2.6 NLP-model

The weak form of system (3.8) reads: Find ~u ∈ L2(0, T ;V 2) with ~u′ ∈ L2(0, T ; (V ′)2),

such that, for all ~φ ∈ V 2, 0 ≤ t ≤ T

(λ1u
′(t), φ) + (a∇u(t),∇φ) + (c(ϕ(u(t))− v(t)), φ) = (f(t), φ), (3.45a)

(λ2v
′(t), ψ) + (b∇v(t),∇ψ) + (c(v(t)− ϕ(u(t))), ψ) = (g(t), ψ). (3.45b)

u(0) = u0 v(0) = v0. (3.45c)

By Proposition 3.2.2 ~u ∈ C([0, T], L2(Ω)2).

We define assumptions to guarantee existence and uniqueness of solution for (3.8).

Assumptions 3.2.22.

NL1. Assume that B1-B3 hold.

NL2. ϕ(0) = 0.

NL3. ϕ is Lipschitz continuous.

NL4. u0, v0 ∈ V .

32

NL5. ϕ is monotone increasing.

The following Lemma is immediate.

Lemma 3.2.7. The Langmuir and linear isotherms, equations (2.23) and (2.22), re-

spectively, satisfies the assumptions NL2-NL4.

To prove the existence and uniqueness of a solution for (3.45) we will apply the

Banach Fixed Point Theorem.

Theorem 3.2.23 (Banach Fixed Point Theorem). Let X be a Banach space and assume

F : X → X is a non-linear mapping such that for all u, ũ ∈ X

‖A(u)−A(ũ)‖ ≤ γ‖u− ũ‖, (3.46)

for some constant γ < 1. That is, suppose that A is a strict contraction. Then A has a

unique fixed point.

We also apply the integral form of Gronwall’s Lemma.

Lemma 3.2.8 (Gronwall’s Lemma - integral form). Let ξ(t) be a nonnegative, summable

function on [0, T] so that a.e. t

ξ(t) ≤ C1

∫ t

0
ξ(s)ds+ C2,

for some constants C1, C2 ≥ 0. Then a.e. 0 ≤ t ≤ T ,

ξ(t) ≤ C2(1 + C1te
C1t).

Now we have all the tools to prove the following.

Lemma 3.2.9. Suppose NL1-NL4 hold. Then there exists a unique solution

~u ∈ C([0, T], L2(Ω)2) for (3.45).

Proof. This proof is a straightforward adaptation of the proof for a scalar reaction-

diffusion problem presented in Example 1, page 499 in [26], we even follow the same

notation. Nevertheless the proof is presented here as an exercise.

33

We apply the Banach Fixed Point Theorem 3.2.23 in the space X = C([0, T], L2(Ω)2)

with the norm

‖~u‖X := max
0≤t≤T

{
λ1‖u‖2 + λ2‖v‖

}1/2
. (3.47)

Let the operator A be defined as follows. Given ~u = (u, v) ∈ X, set

h(t) := ϕ(u(t))− v(t), 0 ≤ t ≤ T. (3.48)

With the use of the Nemitskyi operator, ϕ Lipschitz from R to R implies that ϕ is

Lipschitz from L2 to L2 (see Proposition in [38], page 169, for functions with linear

growth). Following further the example in [26], we see that h ∈ L2(0, T ;L2(Ω)). We now

rewrite the system (3.8) using the function h for ~w = (w1, w2) as follows

λ1
∂w1

∂t
−∇ · (a∇w1) = f − ch, in ΩT , (3.49a)

λ2
∂w2

∂t
−∇ · (b∇w2) = g + ch, in ΩT , (3.49b)

w1 = 0, w2 = 0, on ∂Ω× [0, T], (3.49c)

w1 = u0, w2 = v0, in Ω× {t = 0}. (3.49d)

The weak form of (3.49) is given by:

Find ~w ∈ L2(0, T, V 2) with ~w′ ∈ L2(0, T, (V ′)2 so that for all ~φ ∈ V 2

(λ1w
′
1, φ) + (a∇w1,∇ψ) = (f − ch, φ), (3.50a)

(λ2w
′
2, ψ) + (b∇w2,∇ψ) = (g + ch, ψ), (3.50b)

w1 = u0, w2 = v0, in Ω× {t = 0}. (3.50c)

Both equations in (3.50) are heat equations with initial data in L2(Ω) and right hand

side in L2(0, T ;L2(Ω)). From the theory for linear parabolic PDEs we know that (3.50a)

and (3.50b) have a unique weak solution w1 ∈ L2(0, T, V) with w′1 ∈ L2(0, T, V ′) and

w2 ∈ L2(0, T, V) with w′2 ∈ L2(0, T, V ′), respectively, provided that Assumptions 3.2.16

hold. Thus (3.50) has a unique solution ~w ∈ L2(0, T, V 2) with ~w′ ∈ L2(0, T, (V ′)2).

34

Define A : X → X via A(~u) = ~w. We now prove that if T is small enough, A is a

strict contraction. Take ~u = (u1, u2), ~z = (z1, z2) ∈ X and define ~wu = A(~u), ~wz = A(~z).

That is,

(λ1w
′
1,u, φ) + (a∇w1,u,∇ψ) = (f − ch(~u), φ), (3.51a)

(λ2w
′
2,u, ψ) + (b∇w2,u,∇ψ) = (g + ch(~u), ψ), (3.51b)

w1,u = u0, w2,u = v0, in Ω× {t = 0}. (3.51c)

And

(λ1w
′
1,z, φ) + (a∇w1,z,∇ψ) = (f − ch(~z), φ), (3.52a)

(λ2w
′
2,z, ψ) + (b∇w2,z,∇ψ) = (g + ch(~z), ψ), (3.52b)

w1,z = u0, w2,z = v0, in Ω× {t = 0}. (3.52c)

We set φ = w1,u −w1,z, ψ = w2,u −w2,z and subtract equation (3.51a) from (3.52a) and

equation (3.51b) from (3.52b)

λ1

2

d

dt
‖w1,u − w1,z‖2 + a|w1,u − w1,z|21 = (−ch(~u) + ch(~z), w1,u − w1,z), (3.53a)

λ2

2

d

dt
‖w2,u − w2,z‖2 + b|w2,u − w2,z|21 = (ch(~u)− ch(~z), w2,u − w2,z). (3.53b)

Multiplying both equations by 2 both sides and using Young’s Inequality (3.14)

λ1
d

dt
‖w1,u − w1,z‖2 + 2a|w1,u − w1,z|21 ≤

1

ε
‖h(~u)− h(~z)‖2 + ε‖c(w1,u − w1,z)‖2

(3.11)

≤ 1

ε
‖h(~u)− h(~z)‖2 + C2

PF ε|c(w1,u − w1,z)|21,

λ2
d

dt
‖w2,u − w2,z‖2 + 2b|w2,u − w2,z|21 ≤

1

ε
‖h(~u)− ch(~z)‖2 + ε‖c(w2,u − w2,z)‖2

(3.11)

≤ 1

ε
‖h(~u)− h(~z)‖2 + C2

PF ε|c(w2,u − w2,z)|21.

35

Let ε > 0 sufficiently small to conclude that

λ1
d

dt
‖w1,u − w1,z‖2 ≤ C‖h(~u)− h(~z)‖2,

λ2
d

dt
‖w2,u − w2,z‖2 ≤ C‖h(~u)− ch(~z)‖2.

Now use that h is Lipschitz,

λ1
d

dt
‖w1,u − w1,z‖2 ≤ C(λ1, λ2, L)

(
λ1‖(u1 − z1)‖2 + λ2‖u2 − z2‖2

)
,

λ2
d

dt
‖w2,u − w2,z‖2 ≤ C(λ1, λ2, L)

(
λ1‖(u1 − z1)‖2 + λ2‖u2 − z2‖2

)
.

Add both inequalities above and integrate from 0 to s to get to

λ1‖w1,u − w1,z‖2(s) + λ2‖w2,u − w2,z‖2(s) ≤ C(λ1, λ2, L)

∫ s

0

(
λ1‖(u1 − z1)‖2

+ λ2‖u2 − z2‖2
)

(t)dt

≤ C(λ1, λ2, L)T‖~u− ~z‖2X , 0 ≤ s ≤ T.

Taking the maximum with respect to s in the left hand side we arrive at

‖~wu − ~wz‖2X ≤ C(λ1, λ2, L)T‖~u− ~z‖2X .

Hence,

‖A(~u)−A(~z)‖X ≤ (C(λ1, λ2, L)T)1/2 ‖~u− ~z‖X .

Thus A is a strict contraction if (C(λ1, λ2, L)T)1/2 < 1. Given any T > 0, we choose

T1 > 0 so that (C(λ1, λ2, L)T1)1/2 < 1. Then by the Banach Fixed Point Theorem 3.2.23

there is a unique solution ~u ∈ X of (3.45) on [0, T1]. Since ~u(t) ∈ V 2, a.e. 0 ≤ t ≤ T1,

we can assume that ~u(T1) ∈ V 2, we might have to redefine T1. We can repeat then

the construction of the solution in the interval [T1, 2T1]. After finitely many steps we

construct a solution for (3.45) on [0, T].

36

To show the uniqueness, suppose that ~u, ~z are two solutions of (3.45). Then we have

that ~wu = ~u, ~wz = ~z in inequality (3.55), so for 0 ≤ s ≤ T ,

λ1‖u1 − z1‖2(s) + λ2‖u2 − z2‖2(s) ≤ C(λ1, λ2, L)

∫ s

0

(
λ1‖(u1 − z1)‖2

+ λ2‖u2 − z2‖2
)

(t)dt.

Using the integral form of the Gronwall’s Lemma 3.2.8 with C2 = 0 we see that ~u = ~z.

37

4 Numerical Analysis

This Chapter presents the theoretical part of the major contributions of this thesis. In

Section 4.1 we present an introduction to the Finite Element setting and definitions,

with particular attention to the use of multilevel grids. Next, in Section 4.2 we present

an introduction to error estimates and estimators. In the remainder of the Chapter we

discuss various estimates for the FE solutions to the models E, LP, WR, PP, NLP as

listed below.

1. In Section 4.3, we prove a-priori and a-posteriori error estimates for the E-model

(3.25). These results were published in [30].

2. In Section 4.4, we prove a-priori error estimates for the NLP-model (3.45).

3. In Section 4.5, we prove a-posteriori error estimates for the LP-model (3.32). These

results were partially presented in [29]. We also state the a-priori error estimates

as a particular case of the a-priori error estimate for the NLP-model. Note that

the NLP-model gets reduced to the LP-model when ϕ(u) = u.

4. In Section 4.6, we state the a-priori and a-posteriori error estimates for the WR-

model as Corollaries of the results obtained for the NLP-model in Section 4.4 and

the LP-model in Section 4.5, respectively. Note that the WR-model is a particular

case of the LP-model with b = 0 and of the NLP-model with b = 0 and ϕ(u) = u.

5. In Section 4.7, we state the a-priori and a-posteriori error estimates for the PP-

model as Corollaries of the results obtained for the WR-model in Section 4.6. Note

that the PP-model is a special case of the WR-model with a = 0.

6. Finally, in Section 4.8, we postulate a-posteriori estimates for the NLP-model.

The theoretical work on this is currently in progress. However, we will apply the

postulated a-posteriori error estimator developed for the LP-model to the cases

where ϕ(u) ≈ u, i.e., the cases where the system is ”almost” linear.

38

7. In Section 4.9 we discuss the dependence of the numerical solution of the LP-model

with respect to the parameters P.

4.1 Preliminaries on Multilevel Finite Elements

The finite element method consists of finding a numerical solution in a finite dimensional

space that approximates the analytical solution of a given PDE. We apply finite element

method to approximate the solution (u, v) ∈ V × V of our model systems. First, we

discuss a finite dimensional space Vh ⊂ V constructed as follows.

We denote by Th, h > 0, a family of partitions of Ω into a finite number of ele-

ments. To avoid the presence of curvilinear elements we assume from now on that Ω is

a convex polygon. We require that the elements in any partition Th satisfy the standard

assumptions as in [53]:

• admissibility: any two elements in Th are either disjoint, or share a vertex, or share

an edge (if d=2, a face, if d=3). This condition assures that the partition has no

”hanging” nodes.

• shape-regularity: for any element in Th the ratio between the inscribed ball rT and

the circumscribed ball RT is bounded above by a constant. This condition assures

that the inner angles of the elements are bounded below by a constant.

We denote by Eh the set of all edges in the partition Th that are not contained in ∂Ω.

For any element T ∈ Th we let ω̃T be the set of all elements that share a vertex or an

edge with T and hT be the diameter of T . We denote by h = maxT∈Th hT . For any edge

E ∈ Eh we define ωE to be the set of all elements that contain the edge E and we let hE

denote the diameter of the edge E.

Denote by Pk(T) the space of polynomials of degree k in Rd and define the space of

approximations

Vh =
{
vh ∈ C(Ω) : ∀T ∈ Th, vh|T ∈ Pk(T), vh|∂Ω = 0

}
.

We actually want to approximate u and v in different finite element spaces. So we

seek an approximation (uh, vH) ∈ Vh× VH to (u, v) ∈ V × V . Because of the fact that u

and v are approximated in different finite element spaces we call this method multilevel

finite element.

39

Figure 4.1: Illustration of the sets ω̃T (left), ωE(right)

T

E

In this thesis we consider the case Vh ⊆ V and VH ⊆ V . Moreover we only consider

the case where VH ⊆ Vh. Because the models treated here are coupled we need to define

some interpolation/projection operators between the spaces. Various choices for these

operators can be made e.g., via inter-grid operators used in multigrid theory or multilevel

schemes [27, 20, 59].

Consider now h ≤ H and some two partitions Th, TH with the associated spaces

Vh, VH . Denote H = {h,H}. Note that h = H does not necessarily mean Th = TH . We

seek approximations (uh, vH) ∈ Vh × VH to (u, v) ∈ V × V .

Remark 4.1.1. If Th 6= TH , we will consider for simplicity only k = 1. Our a-posteriori

calculations will be carried out however for any k.

In the analysis below it will be evident that we need to relate the two partitions Th,

TH to one another. We say that Th is a refinement of TH , if every element of Th intersects

the interior of exactly one element in TH . A general case of unrelated partitions Th, TH
could be treated but will not be discussed in this thesis.

Definition 4.1.1. Let r ∈ N be fixed. We call the partition Th an r-uniform refinement

of TH if for every element K ∈ TH , the number of T ∈ Th : T ⊆ K equals r.

Definition 4.1.2. Let Π : VH → Vh be the interpolation operator and Π′ : Vh → VH be

defined by

(Π′φh, ψH) := (φh,ΠψH), ∀ψH ∈ VH , (4.1)

That is, Π′ is adjoint to Π with respect to the L2(Ω) product on VH . This choice

eliminates additional error terms that otherwise would arise in error analysis developed

40

below. Now let us introduce a partition of the finite element spaces. Note that if

Th = TH , then VH = Vh and Π and Π′ both trivially reduce to identity. Another

important observation follows.

Lemma 4.1.1. Let VH ⊆ Vh, we have ∀ψH ∈ VH

ΠψH = ψH , (4.2)

Π′ΠψH = ψH . (4.3)

In other words the composition Π′Π|VH is the identity operator.

4.2 Overview a-priori and a-posteriori estimators

Here we give a general overview of error estimates for a general problem. Let X be a

Banach space equipped with the norm ‖ · ‖∗. Let Z : X × X × P → R be a bilinear,

continuous and coercive form on X with respect to the norm ‖ · ‖∗. Here P represents

the set of parameters of the bilinear form. Suppose we want to solve:

Find u ∈ X such that for all φ ∈ X

Z(u, φ, p) =< f, φ >, (4.4)

for f ∈ X ′ and p ∈ P .

If we cannot solve problem (4.4) analytically, we want to approximate its solution u

by a discrete solution uh in a finite dimensional subspace Xh ⊂ X by solving

Find uh ∈ Xh such that for all φh ∈ Xh

Z(uh, φh, p) = (fh, φh). (4.5)

Here fh is the projection of f into Xh. The subscript h is related with the maximum

diameter of the elements of the mesh representing the domain Ω as described in the

previous section. We assume that (4.5) can be solved in a computer.

Naturally, we need to quantify how good is the numerical approximation. We choose

one of the norms ‖ · ‖∗ on X to measure the error ‖u − uh‖∗. There are two types of

error estimates. The one that uses only a-priori knowledge and the one that uses the

numerical solution, the a-posteriori estimate.

41

• A-priori estimate: controls the error ‖u− uh‖∗ by a quantity that is independent

of the numerical solution uh of (4.5). They have the general form:

Assume that u ∈ X ⊂ X (extra regularity on u), then

‖u− uh‖∗ ≤ C(Ω, p)hα‖u‖∗∗, (4.6)

where ‖ · ‖∗∗ is the norm in X . Here C is a constant that depends on the domain

and on the parameters of the problem (4.4). A typical example is X = H1
0 (Ω) and

X = H2(Ω) ∩H1
0 (Ω).

The a-priori estimate gives the rate of convergence of numerical solution, O(hα),

with respect to the mesh size. It is useful because it guarantees that refining the

mesh the numerical solution will converge to the solution of the problem (4.4).

However, the a-priori estimates have some drawbacks:

1. Most of the time we cannot guarantee the extra smoothness assumption u ∈
X .

2. The right hand side of (4.6) is not computable since we do not know u.

3. The right hand side of (4.6) gives a global error estimate. It does not give

any information about local behaviour of the error.

• A-posteriori estimator: controls the error by a quantity that is a function of the

mesh, the parameters P , the numerical solution uh and the data f . A-posteriori

estimates have the general form:

‖u− uh‖∗ ≤ C(Ω, p)η(uh, f, fh, p), (4.7)

where

η(uh, f, fh, p) =
∑
T∈Th

ηT (uh, f, fh, p). (4.8)

The advantages of the a-posteriori estimates besides being computable is the fact

that the error is bounded by the sum over all elements in the partition of local

estimators ηT (4.8). This ”localization” of the a-posteriori estimator provides

information about where to refine the mesh, i.e., it guides mesh adaptivity. There

42

are several types of residual estimators [4]. In Table 4.1 we present a summary of

some type of estimators. In this thesis we developed explicit residual a-posteriori

estimators. Below we give a brief description of the explicit residual estimators.

The explicit estimators are computed directly from the numerical solution without

the need to solve any additional problems. Define the residual of problem (3.25), R :

X → X ′, via

< R(uh), φ > := < f, φ > −Z(uh, φ) (4.9)

= Z(u− uh, φ).

Note that the residual R is a function of the approximated solution uh, the parameters

P and of Ω. Apply the continuity of form Z:

| < R(uh), φ > | ≤ CZ‖u− uh‖∗‖φ‖∗.

Now divide by ‖φ‖∗ and take the supremum over all φ ∈ X

‖R(uh)‖X′ ≤ C‖u− uh‖∗.

On the other hand, let φ = u − uh in definition (4.9). Apply the coercivity of Z to see

that

< R(uh), u− uh > = Z(u− uh, u− uh)

≥ αZ‖u− uh‖2∗.

Thus by the definition of dual norms

‖R(uh)‖X′ ≥ C‖u− uh‖∗.

We conclude that the dual norm of residual R is equivalent to norm of the error. It is

not usually clear how to compute the norm ‖R(uh)‖X′ . Instead, we estimate ‖R(uh)‖X′
by a computable quantity η called residual estimator so that

C∗η ≤ ‖R(uh)‖X′ ≤ C∗η, for some constants C∗, C∗.

43

Therefore,

C∗η ≤ ‖u− uh‖∗ ≤ C∗η.

We emphasize that C∗, C∗, η depend on Ω and P .

Definition 4.2.1. An a-posteriori error estimator η is said to be reliable if, ∃C∗ > 0

such that

‖u− uh‖∗ ≤ C∗η,

and it is said to be efficient if, ∃C∗ > 0 such that

C∗η ≤ ‖u− uh‖∗.

The reliability of the estimator allow us to control the error. The efficiency of the es-

timator guarantees that the error and the estimator are of the same order of convergence.

The efficiency guarantees that the mesh is not overly refined.

The residual estimators are reliable. Unfortunately, they are not very efficient, i.e.,

the gap between the estimator and true error can be substantial even for problems with

all parameters set equal to one and simple domains [21]. One way used to quantify the

quality of an estimator is through its efficiency index Θ.

Definition 4.2.2. The efficiency index Θ of an estimator is defined as

Θ :=
η

‖u− uh‖∗
. (4.10)

Ideally, one desires that Θ ≈ 1 as the mesh size decreases and such estimators are

called asymptotically exact. Most estimators, including the residual-type estimator do

not have this property. Other families of estimators [53, 21] are much more efficient and

even asymptotically exact but can be cumbersome in implementation and computation-

ally expensive. We will not study these but mention the work of [2, 3] on systems.

Aside of efficiency, the additional difficulty with residual estimators is the dependence

of the efficiency constants on the parameters of the problem. This is directly related to

dependence of the ellipticity, continuity, and equivalence constants on the parameters.

44

Table 4.1: List of some a-posteriori estimators and their properties [4] for elliptic prob-
lems

Name Description Properties

Explicit residual estimates the error by the
residual of the numerical ap-
proximation

easy to implement

Implicit subdomain
residual

estimates the error by solving
a Dirichlet problem in a neigh-
borhood of a vertex for every
vertex in the mesh grid [9]

very expensive to solve
the auxiliary problems
in such subdomains

Implicit element
residual

estimates the error by solving
a Dirichlet problem in a neigh-
borhood of each element or by
solving a Neumann problem
in each element of the mesh
[11]

expensive and most
the time the Neumann
problem does not have
a solution

Recovery-based esti-
mator

estimates the error by post-
processing the gradient of the
numerical solution uh [60]

easy to implement,
asymptotically exact in
special meshes, method
fails if the approxima-
tion uh is zero in a
neighborhood

Hierarchical estima-
tor

estimates the error using a
more accurate numerical solu-
tion computed in an enhanced
space [24, 10]

works for nonlinear
problems, hard to
implement

Equilibrated resid-
ual

estimates the error by solving
an auxiliary problem in each
element taking into account
the inter-element fluxes [31]

can be used in par-
titions with hanging
nodes, very hard to
implement

45

This issue was brought up in [16, 55] and a remedy involving a particular scaling was

proposed; we follow these ideas in this thesis.

Definition 4.2.3. An estimator is said to be robust if Θ is independent of the parameters

of the problem and of the partition of the domain.

The robustness of the estimator depend mainly on the choice of the norm. For elliptic

linear problems, the choice of the energy norm seems to work well. In this thesis we use

the energy norm for all model problems. Below see an example of the norm influence in

the robustness of the residual estimator

Example 4.2.1. Consider the scalar example{
−ε∆u+ u = 1, x ∈ Ω = (0, 1),

u = 0, x ∈ ∂Ω,

and its FE approximation.

The variational form of the problem is: Find u ∈ H1
0 (Ω) so that

aEX(u, v) =

∫
Ω
vdx,

for all v ∈ H1
0 (Ω). Here

aEX(u, v) =

∫
Ω
ε∇u · ∇v + uvdx.

The discrete problem is: Find uh ∈ Xh so that:

aEX(uh, vh) =

∫
Ω
vhdx, ∀vh ∈ Xh.

Here Xh ⊂ H1
0 (Ω) is the space of continuous piecewise linear functions with zero value

at the boundary

Xh = {vh ∈ C0(Ω);∀K ∈ Th, vh|K ∈ P1, vh = 0 on ∂Ω}.

46

We are going to compare the error and the explicit residual estimator using the usual

H1-norm

‖u‖21 =

∫
Ω

(∇u)2 + u2dx,

and the energy norm

‖u‖2e = aEX(u, u) =

∫
Ω
ε(∇u)2 + u2dx.

We now define the estimators η1, ηe for the H1
0 -norm and energy norm, respectively. The

η1 estimator can be found in textbooks such as [19] and the ηe estimator can be found

in [55]. Define the residuals [19]:

RK(uh) = ε∆uh − uh + f, Re(uh) = [ε∂nuh]e.

For the ηe estimator we need to define the scaling constants:

γ = 2ε−1/4, β = min{hKε−1/2, 1}.

Define the estimators:

η1 =

∑
K∈τh

[
h2
K‖RK‖20,K +

1

2

∑
e⊂∂K

he‖Re‖20,e

]
1/2

,

ηe =

∑
K∈τh

[
β2‖RK‖20,K + β

∑
e⊂∂K

γ2‖Re‖20,e

]
1/2

.

We have that

‖u− uh‖1 ≤ c(ε)η1,

‖u− uh‖e ≤ cηe.

47

Table 4.2: Comparison of efficiency indices for two different choices of estimators in
Example 4.2.1

ε Θ1 Θe

10−4 4.85× 10−4 7.63
10−2 4.90× 10−2 7.73

1 4.90 7.74
102 4.90× 102 7.74
104 4.90× 104 7.74
106 4.90× 106 7.74

Let us fix a uniform partition of Ω = (0, 1) with 2560 elements. We vary ε and test

the behavior of the efficiency indices Θ1,Θe for the two cases. Here

Θ1 =
η1

‖u− uh‖1
, Θe =

ηe
‖u− uh‖e

.

We can see in Table 4.2 how the choice of the appropriate norm can lead to a robust

estimator. In this case the estimator proposed in [55] for the energy norm of the prob-

lem is robust. Meanwhile the usual explicit estimator for the H1
0 -norm varies with the

parameter ε of the problem.

For convection-diffusion problems, a robust residual a-posteriori estimator was pro-

posed in [54]. Later on, with a better norm choice, an alternative a-posteriori error

estimator was proposed in [44]. In [44] numerical results were presented demonstrating

that their choice of norm yielded more robust estimator that in [54]. This illustrates the

importance of choosing the right norm.

For semilinear elliptic equations, a residual a-posteriori estimator that takes into

consideration the error of solving the nonlinear system using Newton’s method is pre-

sented in [33]. Also for semilinear elliptic (and convective) equations, a robust residual

a-posteriori estimator was presented in [54]. In both papers, it is assumed that the

semilinear function ϕ(u) is differentiable with respect to the u and that the derivatives

are bounded.

Up to know we only discussed a-posteriori estimators for elliptic problems. Let us

consider a time-dependent problem. The error in a time-dependent problem is composed

48

of the error in the space discretization and in the time discretization. Along this thesis, we

use Galerkin finite element method to discretize in space and implicit Euler to discretize

in time. Another approach, used in [25] is to apply Galerkin finite elements continuous in

space, discontinuous in time and to compute the a-posteriori error estimator by solving

an adjoint problem. The same approach as ours can be found in [40, 56, 15] for the scalar

linear and quasi-linear heat equation. Here we follow closely [15] and extend the results

presented there for a coupled parabolic system with a robust and multilevel estimator.

Now we return to our model problems. The main goal in this thesis is to develop

a-posteriori residual error estimates for the models so that the estimator is robust and

multilevel. From Example 4.2.1 we see what we mean by a robust estimator. Our goal is

to construct such an estimator for our model problems by extending the ideas presented

in [55]. By multilevel we understand that the unknowns of the model problems (u, v)

are approximated by (uh, vH) in distinct finite dimensional spaces Vh, VH . The following

example gives a motivation for using multilevel approximation:

Example 4.2.2. Let Ω = (0, 1). Consider the LP-model with homogeneous Dirichlet

boundary conditions and P = {0.08, 0.7, 0.85, 0.2, 3}. Suppose the exact solution is ~u =

(e−t sin(4πx), e−2t(x2 − x)). The final time is T = 2 × 10−3. We want the error in the

energy norm of the model, Elp := [[(u, v)−(uhτ , vHτ]](T), to be less than a fixed tolerance

τ = 5× 10−4. The energy norm is defined in (4.115). Denote by RT the run time of the

computation in seconds. The results can be seen in Table 4.3 and in Figure 4.2.

Note that the multilevel approach took 1050 elements while the one-level approach

needed 2000 elements to achieve the desired tolerance.

In this Chapter we define residual-type error estimators for the models E and LP and

prove the global upper and some lower bounds. The lower bounds, due to the presence

of coupling terms, work only if H are small enough. See Theorem 4.3.5 for a qualification

of H ”small enough”.

We begin the exposition with the E-model. The reason for that is that, as seen

in Section 3.1, after discretization in time, the LP-model gets reduced to a system of

E-models. Thus some results we will obtain for the E-model will be useful for the LP-

model. Next we present a-priori estimates for the NLP-model and adapt it to the LP,

WR, and PP models. To finalize we present the a-posteriori results for the LP-model

and adapt it for the WR, PP, and NLP models.

49

Table 4.3: Comparison of run time and number of elements needed to achieve error below
a given tolerance τ using the one-level and the multilevel approaches for Example 4.2.2.
The first column in each approach denotes the number of elements in the partition Th
and TH , respectively.

One-Level Multilevel

Vh × Vh Elp (10−4) RT Vh × VH Elp (10−4) RT

125× 125 33.66 7.83 125× 25 33.76 6.31
250× 250 16.82 16.38 250× 25 17.02 12.37
500× 500 8.41 36.34 500× 25 8.81 24.88

1000× 1000 4.21 84.10 1000× 50 4.28 52.48
2000× 2000 2.12 214.73 2000× 100 2.14 114.70

2000 elements 1050 elements

Figure 4.2: Comparison of run time for one-level and multilevel for Example 4.2.2

3.37 1.7 0.88 0.42 0.210

50

100

150

200

250

Error (10−3)

Computational time in seconds

one−level
multilevel

50

4.3 E-model

Here we first develop estimators for both components of the system (3.25) and later an

additional estimator for the error in one component only. We follow standard techniques

for residual estimators [53] which for scalar diffusion problems and the error in energy

norm involves the following steps. First rewrite the energy norm of the error (u−uh, v−
vH) using Galerkin orthogonality (4.16) with an auxiliary function (zh, wH) ∈ Vh × VH ,

and localize the error by integrating by parts over each element T ∈ Th, K ∈ TH . Thereby

the error terms per element and per element boundary are identified; this follows from

integration by parts elementwise. The integration by parts will contain terms with

∆uh|T ,∆vH |K . Note that for k = 1, both these terms vanish. To keep the calculations

general we will keep them in the equations.

The proof of the upper bound is lengthy but not very complicated as it extends the

standard techniques to a system, and involves handling the coupling terms. The lower

bound is more delicate to obtain; we develop a global lower bound which is valid for fine

enough H, and a local lower bound in TH . Finally, we develop a bound for the error in

one component only.

The discrete form of (3.25) reads:

Find (uh, vH) ∈ Vh × VH such that, for all (φh, ψH) ∈ Vh × VH ,

(λ1uh, φh) + (a∇uh,∇φh) + (c(uh −ΠvH), φh) = (f, φh), (4.11a)

(λ2vH , ψH) + (b∇vH ,∇ψH) + (c(Π′ΠvH −Π′uh), ψH) = (g, ψH). (4.11b)

We assume that Assumptions 3.2.14 hold.

Define the bilinear form

Ã((uh, vH), (φh, ψH)) := (λ1uh, φh) + (λ2, vHψH) + (a∇uh, ·∇φh) (4.12)

+ (b∇vH , ·∇ψH) + (c(uh −ΠvH), φh) +
(
c(Π′ΠvH −Π′uh), ψH

)
.

Note that Ã(·, ·) is a restriction of A(·, ·) to Vh × VH . It follows from Lemma 3.2.2 that

Ã(·, ·) is continuous and coercive on Vh × VH . Now we rewrite the weak form (4.11) as:

Find (uh, vH) ∈ Vh × VH so that, for all (φh, ψH) ∈ Vh × VH

Ã((uh, vH), (φh, ψH)) = L((φh, ψH)), ∀(φh, ψH) ∈ Vh × VH . (4.13)

51

The problem (4.13) is square and finite dimensional. By Lemma 3.2.3 and the fact that

Ã = A|Vh×VH it is easy to see that its solution exists and is unique.

4.3.1 A-priori error estimates for the E-model

The error estimates are with respect to the energy norm defined in (3.29)

‖~u‖2e := ‖λ1/2
1 u‖2 + ‖λ1/2

2 v‖2 + ‖a1/2∇u‖2 + ‖b1/2∇v‖2 + ‖c1/2(u− v)‖2.

Remark 4.3.1. The norms ‖ · ‖V 2 , ‖ · ‖e are equivalent and the equivalence constants

depend on P.

For the error analysis of (4.13) we first develop the counterpart of Galerkin orthog-

onality. Thanks to our definition of Π,Π′, the calculations follows smoothly without

additional consistency errors.

Notation. To simplify the exposition, let

eu,h := u− uh, (4.14)

ev,H := v − vH . (4.15)

Let φ = φh and ψ = ψH in (3.31) and subtract it from (4.13) to get

0 = A((u, φh), (v, ψH))− Ã((uh, φh), (vH , ψH))

= A((u, φh), (v, ψH))−A((uh, φh), (vH , ψH))

−
∫

Ω
c(vH −ΠvH)φh −

∫
Ω
c(uh −Π′uh)ψH

= A((eu,h, φh), (ev,H , ψH))−
∫

Ω
c(vH −ΠvH)φh +

∫
Ω
c(uh −Π′uh)ψH .

Now, if Th is a refinement of TH , then by Lemma 4.1.1 the last two terms vanish and we

obtain the Galerkin orthogonality

A((eu,h, φh), (ev,H , ψH)) = 0, ∀(φh, ψH) ∈ Vh × VH . (4.16)

This is a basic step in proving convergence of the scheme in the energy norm ‖ · ‖e and

of the subsequent a-posteriori estimates.

52

Theorem 4.3.1. Assume that the solution ~u ∈ V 2 of the problem (3.25) satisfies ~u ∈(
H2(Ω) ∩H1

0 (Ω)
)
×
(
H2(Ω) ∩H1

0 (Ω)
)
. Assume also that Th is a refinement of TH , k = 1,

and let (uh, vH) ∈ Vh×VH be the two-level solution of the discrete problem (4.11). Then

there exist constants κ1, κ2 independent of H and of u, v, such that

‖(u− uh, v − vH)‖e ≤ κ1h‖u‖2 + κ2H‖v‖2. (4.17)

Proof. Consider the following calculation, similar to the derivation of Céa’s lemma in

the scalar case [22, 19]. For an arbitrary (zh, wH) ∈ Vh × VH it follows by (4.16) that

‖(eu,h, ev,H)‖2e = A((eu,h, eu,h), (ev,H , ev,H))

= A((eu,h, eu,h), (ev,H , ev,H)) +A(eu,h, uh − zh), (ev,H , vH − wH))

= A((eu,h, u− zh), (ev,H , v − wH)).

We bound this last term from above and from below using, respectively, continuity and

coercivity of A(·, ·) in the energy norm. Dividing both sides of the resulting inequality

by ‖(eu,h, ev,H)‖e yields the standard estimate. Now, since zh, wH are arbitrary, we take

the infimum to get

‖(eu,h, ev,H)‖e ≤ C inf
(zh,wH)∈Vh×VH

‖(u− zh, v − wH)‖e, (4.18)

where C is a ratio of continuity and coercivity constants. To get the desired convergence

estimates, we select the test functions to be the piecewise linear interpolations (zh, wH) =

(Ihu, IHv) of the respective components of the analytical solution and set z = u − Ihu
and w = v − IHv. Now we have

‖(eu,h, ev,H)‖e ≤ C‖(z, w)‖e

= C

[∫
Ω

(λ1z
2 + λ2w

2) +

∫
Ω

(a(∇z)2 + b(∇w)2) +

∫
Ω
c(z − w)2

]
≤ C

[∫
Ω

((λ1 + 2c)z2 + (λ2 + 2c)w2) +

∫
Ω

(a(∇z)2 + b(∇w)2)

]
≤ C

[
max{a, λ1 + 2c}‖z‖21 + max{b, λ2 + 2c}‖w‖21

]

53

The interpolation theory [22, 19] lets us bound the interpolation error ξ − Ihξ for a

smooth enough ξ. For k = 1 we have as follows

‖ξ − Ihξ‖m ≤ c̃h2−m|ξ|t,Ω for ξ ∈ Ht(Ω), 0 ≤ m ≤ 2.

Applying this bound to z and w we get

‖(eu,h, ev,H)‖2e ≤ max{a, λ1 + 2c}‖u− Ihu‖21 + max{b, λ2 + 2c}‖v − IHv‖21
≤ C max{a, λ1 + 2c}c̃2h2|u|22 + C max{b, λ2 + 2c)}c̃2H2|v|22.

Taking square root of both sides completes the proof.

This a-priori result shows the structure of the error. First, if Th = TH , then the error

converges with the rate O(h), and an easy extension can be formulated for k > 1. If

Th 6= TH , then the error in (4.17) is dominated asymptotically by the O(H) terms, at

least for P = 15. For general P the individual contributions to the error depend on P.

The magnitude of each of the contributions depends on P and on the variability of u, v.

Thus H and h could be adapted to take advantage of this potential disparity.

For example, if c = O(1) is moderate, and a >> 1 very large but b << 1 very

small, one can find TH for the component v so that the total error does not increase

substantially. Note that with H > h the total number of unknowns decreases. We would

proceed similarly if b = O(1) but |v|2 is very small. Conversely, if the error on some

coarse grid used for both components is too large for our needs, then one could refine

only the grid for the strongly varying component, for example u, for which |u|2 is large.

See Section (some examples) for relevant examples.

To guide the adaptive choice of h,H, i.e., of Th, TH , we need the a-posteriori error

analysis provided in the next Section.

4.3.2 A-posteriori error estimates for the E-model

To develop the a-posteriori estimates we make the stronger assumptions than Assump-

tions 3.2.14 for the parameters and data.

Assumptions 4.3.2.

DA1. Each function in P = {λ1, λ2, a, b, c} is a positive constant.

54

DA2. The data (f, g) ∈ L2(Ω)× L2(Ω).

Our initial goal was to assume that each function in P = {λ1, λ2, a, b, c} to be piece-

wise constant and to extend the results presented in [16]. The problem treated in [16] is

the Poisson problem that do not include zero order terms of the unknowns. The pres-

ence of the zero order terms on the system for the E-model complicates the extensions

and the results for the extension are not presented here. Besides that, we do apply our

a-posteriori estimates for piecewise constant parameters with success, as is shown in

Chapter 5.

4.3.2.1 Residual calculations

Let Qh : V → Vh, QH : V 7→ VH be some maps to be made precise later. Using (4.16)

‖(eu,h, ev,H)‖2e = A((eu,h, ev,H), (eu,h, ev,H))

= A((eu,h, ev,H), (eu,h −Qheu,h, ev,H −QHev,H)).

Now we follow the standard procedure for residual calculations. We rewrite the last

term A((eu,h, ev,H), (φ, ψ)) with φ = eu,h −Qheu,h, ψ = ev,H −QHev,H , replacing
∫

Ω by∑
T

∫
T , taking advantage of (3.25a)-(3.25b) and the continuity of u, v, ψ, φ across each

edge and integrating by parts on each element T . As before, our calculations work for a

general k ≥ 1. We obtain

55

A((eu,h, ev,H), (φ, ψ)) =
∑
T

{∫
T

(λ1eu,hφ+ λ2ev,Hψ + (c(eu,h − ev,H)(φ− ψ))

−
∫
T

(a∆eu,hφ+ b∆ev,Hψ) +

∫
∂T

(a∂neu,hφ+ b∂nev,Hψ)

}
=

∑
T

∫
T

(λ1uφ+ λ2vψ + c(u− v)(φ− ψ)− a∆uφ− b∆vψ

−
∑
T

∫
T

(λ1uhφ+ λ2vHψ + c(uh − vH)(φ− ψ)

− a∆uhφ− b∆vHψ)

+
∑
E

∫
E

([a∂n(u− uh)]φ+ [b∂n(v − vH)]ψ)

=
∑
T

∫
T

(fφ+ gψ)

+
∑
T

∫
T

[−λ1uhφ− λ2vHψ − c(uh − vH)(φ− ψ)

+
∑
E

∫
E

([a∂nuh]φ+ [b∂nvH]ψ

]
.

Combining the terms we get

‖(eu,h, ev,H)‖2e =
∑
T∈Th

(R∗T,u, eu,h −Qheu,h)T +
∑
E∈Eh

(RE,u, eu,h −Qheu,h)E (4.19)

+
∑
K∈TH

(R∗K,v, ev,H −QHev,H)K +
∑
F∈EH

(RF,v, ev,H −QHev,H)F ,

56

where we have used the element and edge residual terms defined as follows

R∗T,u := f − λ1uh + a∆uh − c(uh − vH)

= f − fh +

RT,u︷ ︸︸ ︷
fh − λ1uh + a∆uh − c(uh − vH),

R∗K,v := g − λ2vH + b∆vH − c(vH − uh)

= g − gH +

RK,v︷ ︸︸ ︷
gH − λ2vH + b∆vH − c(vH − uh)

RE,u := [a∂nuh]E ,

RF,v := [b∂nvH]F ,

and where fh, gH are the L2-projections of f, g onto Vh, VH respectively.

Now we estimate the terms in (4.19) by Cauchy-Schwarz inequality to obtain

‖(eu,h, ev,H)‖2e ≤
∑
T∈Th

‖R∗T,u‖T ‖eu,h −Qheu,h‖T +
∑
E⊂Eh

‖RE,u‖E‖eu,h −Qheu,h‖E

+
∑
K∈TH

‖R∗K,v‖0,K‖ev,H −QHev,H‖K

+
∑
F⊂EH

‖RF,v‖F ‖ev,H −QHev,H‖F . (4.20)

Consider eu,h−Qheu,h. The idea is to bound the terms eu,h−Qheu,h from above by the

terms involving the energy norm of eu,h, without requiring more smoothness than that

eu,h ∈ V ; then the estimate for ‖(eu,h, ev,H)‖e will follow.

Such estimates are available for various quasi-interpolators [23, 53]. We use the

definition and properties of Qh as modified by Verfürth [53] and quote two basic relevant

interpolation estimates which work in any T ∈ Th and any E ∈ Eh.

The first result ([55], Lemma 3.1) states;

Lemma 4.3.1. For any w ∈ Hk(ω̃T), 0 ≤ k ≤ 1

‖∇l(w −Qhw)‖T ≤ Chk−lT ‖∇
kw‖ω̃T 0 ≤ l ≤ k ≤ 1, (4.21)

where the constant C is independent of h,w.

57

This inequality is due to Clément [23].

Next, we quote ([54], Lemma 3.1) to estimate the edge terms.

Lemma 4.3.2. Let E ∈ Eh and let T be an element in Th which has E as an edge. The

following trace inequality holds for all w ∈ H1(T)

‖w‖E ≤ c3

(
h
−1/2
T ‖w‖T + ‖w‖1/2T ‖∇w‖

1/2
T

)
, (4.22)

where c3 is a constant independent of w, hT .

4.3.2.2 Interpolation and scaling techniques

To derive the estimates in the energy norm we find that they involve various equivalence

constants dependent on P between ‖ · ‖V 2 , ‖ · ‖e. To prevent the estimates from blowing

up when the parameters of the problem change, we define certain scaling factors following

[55, 54, 43].

Define for all T ∈ Th and all K ∈ TH

θu,T := min{hTa−1/2, λ
−1/2
1 }, (4.23)

θv,K := min{HKb
−1/2, λ

−1/2
2 }, (4.24)

γu,E := a−1/4θ
1/2
u,E , (4.25)

γv,F := b−1/4θ
1/2
v,F . (4.26)

Let T ∈ Th and K ∈ TH . Clearly eu,h ∈ H1(ω̃T) and ev,H ∈ H1(ω̃K). By (4.21)

‖eu,h −Qheu,h‖T ≤ Cλ
−1/2
1 ‖λ1eu,h‖ω̃T

≤ Cλ
−1/2
1

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

,

‖eu,h −Qheu,h‖T ≤ ChTa
−1/2

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

.

We combine these and (4.23) to get

‖eu,h −Qheu,h‖T ≤ C min
{
λ
−1/2
1 , hTa

−1/2
}{∫

ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

. (4.27)

58

Similar calculations can be done for ev,H , and it follows that we have

‖eu,h −Qheu,h‖T ≤ c1θu,T

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

, (4.28)

‖ev,H −QHev,H‖K ≤ c2θv,K

{∫
ω̃K

b(∇ev,H)2 + λ2e
2
v,H

}1/2

, (4.29)

where c1, c2 are independent of P,H.

On the edges the calculations are a bit longer. Apply (4.22) to w = eu,h −Qheu,h

‖eu,h −Qheu,h‖E ≤ c3

(
h
−1/2
T ‖eu,h −Qheu,h‖T

+ ‖eu,h −Qheu,h‖
1/2
T ‖∇(eu,h −Qheu,h)‖1/2T

)
.

Next, apply (4.21) to get

‖∇(eu,h −Qheu,h)‖1/2T ≤ a−1/4‖a1/2∇eu,h‖
1/2
ω̃T
≤ a−1/4

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/4

.

Using (4.28) and noticing h
−1/2
T θ

1/2
u,T + a−1/4 ≤ 2a−1/4 we get

‖eu,h −Qheu,h‖E ≤ c4

(
h
−1/2
T θu,T

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

+θ
1/2
u,Ta

−1/4

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2
)
,

and conclude

‖eu,h −Qheu,h‖E ≤ c4γu,E

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

. (4.30)

Similar estimates follow for the edges F ∈ EH

‖ev,H −QHev,H‖F ≤ c5γv,F

{∫
ω̃K

b(∇ev,H)2 + λ2e
2
v,H

}1/2

, (4.31)

where c4, c5 are independent of P,H.

59

4.3.2.3 Upper bound

Now we define the local component error estimators

ηu,T := θ2
u,T ‖RT,u‖2T +

1

2

∑
E⊂∂T

γ2
u,T ‖RE,u‖2E , (4.32)

ηv,K := θ2
v,K‖RK,v‖2K +

1

2

∑
F⊂∂K

γ2
v,K‖RF,v‖2F , (4.33)

and the global error estimator for the error in both variables (u, v)

ηe :=

∑
T∈Th

ηu,T +
∑
K∈TH

ηv,K


1/2

. (4.34)

Remark 4.3.2. For d = 1, let zh, zH be the set of internal nodes of Th, TH , respectively.

Then

ηu,T := θ2
u,T ‖RT,u‖2T +

∑
z∈zh

γ2
u,T [u′h(z)]2, (4.35)

ηv,K := θ2
v,K‖RK,v‖2K +

∑
z∈zH

γ2
v,K [v′H(z)]2, (4.36)

where [u′h(z)] := limε→0 u
′
h(z + ε) − u′h(z − ε) is the jump of the derivatives along the

nodes of the mesh.

We recognize the two parts of each local component error estimator (4.32), (4.33) as

the terms which arise on the right hand side of (4.20). They are multiplied by factors

which have been estimated in (4.69)–(4.72). Taking all these into account along with an

additional application of the discrete Cauchy-Schwarz inequality yields finally our main

result on the upper bound.

Definition 4.3.3. We denote

Ee := ‖(eu,h, ev,H)‖e. (4.37)

Theorem 4.3.4. Let the assumptions of Theorem 4.3.1 hold and in particular, let (u, v)

be the unique solution of (3.25) and (uh, vH) be the unique solution of (4.11). The

60

following upper bound holds

Ee ≤ C∗ηe +

∑
T∈Th

θ2
u,T ‖f − fh‖20,T +

∑
K∈TH

θ2
v,K‖g − gH‖20,T


1/2

,

where C∗ does not depend on H, P, or u, v.

In [2, 3], an asymptotically exact a-posteriori error estimator for a coupled elliptic

system was developed. However this estimator is of the element residual type that

estimates the error by solving an auxiliary problem in the neighborhood of each element

in the grid (see Table 4.1). This method is more computationally expensive that the

explicit residual estimator we present in this thesis. Besides that, the multilevel grid and

robustness of the estimator were not taken into account in the results presented in [2, 3].

4.3.2.4 Lower bound

In this section we want to establish the global lower bound i.e. C∗ηe ≤ Ee, and some

appropriate local counterpart, with some constant C∗ independent of H,P, u, v. Due to

the coupling terms in our system this is not possible without additional assumptions.

To establish the result, we proceed using the standard approach of bubble functions

[53]. Let T ∈ Th be fixed and denote by NT the set of its vertices. For x ∈ NT denote

by λx the nodal basis function from Vh associated with the point x. Define the element

bubble ΨT = ΓT
∏
x∈NT λx where the constant ΓT is chosen so that ΨT equals 1 at the

barycenter of T . Now let E ∈ Eh and denote by NE the set of all vertices of the edge E

and define the edge bubble function ΨE = ΓE
∏
x∈Ne λx where the constant ΓE is chosen

so that ΨE equals 1 at the barycenter of E.

The element and edge bubbles have the following properties shown in ([55], Lemma

3.3), with generic constants depending only on the shape of the elements; these constants

are different from those in Section 4.3.2.3. Let T ∈ Th, E ∈ Eh and let w ∈ P1(T),

61

σ ∈ P1(E) be arbitrary. We have

‖ΨT ‖∞ ≤ 1, (4.38)

c1‖w‖2T ≤ (w,ΨTw)T , (4.39)

‖∇ΨTw‖T ≤ c2h
−1
T ‖w‖T , (4.40)

c3‖σ‖2E ≤ (σ,ΨEσ)E (4.41)

‖∇ΨEσ‖T ≤ c4h
−1/2
E ‖σ‖E , (4.42)

‖ΨEσ‖ωE ≤ c5h
1/2
E ‖σ‖E . (4.43)

Now we fix an element T , define ρT := ΨTRT,u, and estimate RT,u from above in the

goal to isolate the coupling terms and to get the bounds in terms of the energy norm of

the error.

‖RT,u‖20,T = ‖(fh +∇(a∇uh)− (λ1 + c)uh + cvH)‖20,T (4.44)

(4.40)

≤ c−2
1

∫
T

(fh + a∆uh − (λ1 + c)uh + cvH)ρT

= c−2
1

[∫
T

(fh + a∆uh − (λ1 + c)uh + cvH)ρT +

∫
T
fρT −

∫
T
fρT

]
.

Next we integrate by parts over T , use the strong form of (2.1a), i.e., f = λ1u− a∆u+

c(u− v), and the fact that ρT |∂T ≡ 0 to see from (4.44) that

‖RT,u‖2T = c−2
1

[∫
T

(a∇(u− uh) · ∇ρT (4.45)

+ [(λ1 + c)(u− uh)− c(v − vH)] ρT +

∫
T

(fh − f)ρT

]
Now we estimate both integrals using Cauchy-Schwarz inequality. For the second integral

in (4.45) we have, using (4.38) and Cauchy-Schwarz again∫
T

(fh − f)ρT ≤ ‖fh − f‖0,T ‖ρT ‖0,T ≤ ‖fh − f‖0,T ‖RT,u‖0,T . (4.46)

The bounds for the first integral in (4.45) involve
∫
T (c(u−uh)−c(v−vH))ρT =

∫
T
c
2(eu,h−

ev,H)2ρT leading to, by a multiple application of Cauchy-Schwarz to the upper bound

62

for that term, to the expression{∫
T

(a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2{∫
T
a(∇ρT)2 + (λ1 + 2c)ρ2

T

}1/2

.

To estimate the second term in this expression from above by a multiple of ‖RT,u‖0,T ,

we first observe that by (4.23)

h−2
T a+ λ1 ≤ 2 max{ah−2

T , λ1} = θ−2
u,T . (4.47)

Next, applying (4.40), (4.38), followed by (4.47) we estimate{∫
T
a(∇ρT)2 + (λ1 + 2c)ρ2

T

}1/2

≤ a1/2‖∇ρT ‖T + (λ1 + 2c)1/2‖ρT ‖T

≤ a1/2c2h
−1
T ‖RT,u‖T + (λ1 + 2c)1/2‖RT,u‖T

≤ c̄2(2 max{a1/2h−1
T , λ

1/2
1 }+ (2c)1/2)‖RT,u‖T

≤ c̄2(θ−1
u,T + c1/2)‖RT,u‖T .

Here c̄2 = max{c2, 1}. Now we combine the estimates following (4.45) to get, upon

dividing by ‖RT,u‖T

‖RT,u‖T ≤ c−2
1

[
c̄2(θ−1

u,T + c1/2)

{∫
T
a(∇eu,h)2 + λ1(eu,h)2 +

c

2
(eu,h − ev,H)2

}1/2

+‖fh − f‖0,T] . (4.48)

Multiplying both sides by θ̄u,T := (θ−1
u,T + c1/2)−1 we finally obtain

θ̄u,T ‖RT,u‖0,T ≤ c−2
1

[
c̄2

{∫
T
a(∇eu,h)2 + λ1(eu,h)2 +

c

2
(eu,h − ev,H)2

}1/2

+θ̄u,T ‖fh − f‖0,T
]
.

Next we estimate the edge residuals. Consider an arbitrary edge E ∈ Eh and denote

by T1, T2 the two elements that it separates. Let ρE := βΨE [a∂nuh]E = βΨERE,u with

some scaling factor 0 < β ≤ 1 to be determined later as in [55]. We will estimate

63

‖RE,u‖0,E from above using steps similar to those above: adding and subtracting terms

and integrating by parts over T1 ∪ T2 and taking advantage of (2.1a) and of the bubbles

ωE vanishing conveniently at all edges of T1 ∪ T2 other than E, and estimating by

Cauchy-Schwarz inequality

‖RE,u‖20,E = ‖[a∂nuh]E‖20,E ≤ c−2
3

∫
E

[a∂nuh]EρE

= c−2
3

[∫
T1∪T2

a∆uhρE +

∫
T1∪T2

a∇uh∇ρE +

∫
T1∪T2

fρE −
∫
T1∪T2

fρE

]
(2.1a)

= c−2
3

[∫
T1∪T2

(f + a∆uh)ρE −
∫
T1∪T2

a∇eu,h∇ρE + (λ1u+ c(u− v))ρE

]
= c−2

3

[∫
T1∪T2

(fh + a∆uh − λ1uh + c(uh − vH)) ρE +

∫
T1∪T2

(f − fh)ρE

−
∫
T1∪T2

a∇eu,h∇ρE + (λ1eu,h + c(eu,h − ev,H)ρE

]
≤ c−2

3

2∑
i=1

[‖RT,u‖0,Ti‖ρE‖0,Ti + ‖(f − fh)‖0,Ti‖ρE‖0,Ti

+

{∫
Ti

a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2

{∫
Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2
]
.

In the last inequality we need to bound ‖ρE‖0,T i and
{∫

Ti
a(∇ρE)2 + (λ1 + 2c)ρE

}1/2
in

terms of the edge residuals. We have

‖ρE‖0,T i = ‖βΨERE,u‖0,Ti ≤ c5βh
1/2
E ‖RE,u‖0,E .

Also, by (4.42) and (4.43){∫
Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2

≤ 2 max{c4, c5}β(h
−1/2
E θ−1

u,E + h
1/2
E c1/2)‖RE,u‖0,E

64

To remove the dependence of the constants on the right hand side on hE , we define

β := min{1, h−1/2
E a1/4λ

−1/4
1 }. Now we see a−1/2hEβ

2 = θ2
u,E and further

βh
1/2
E θ−1

u,E = γ−1
u,E ,

βh
1/2
E = γu,Ea

1/2.

We obtain therefore

‖ρE‖0,T i ≤ c5γu,Ea
1/2‖RE,u‖E ,{∫

Ti

a(∇ρE)2 + (λ1 + 2c)ρE

}1/2

≤ c6(γ−1
u,E + γu,Ea

1/2c1/2)‖RE,u‖E ,

where c6 = 2 max{c4, c5}. Using the above estimates we get from (4.49), upon dividing

by ‖RE,u‖E

‖RE,u‖E ≤ c−2
3

2∑
i=1

[
c5γu,Ea

1/2 (‖RT,u‖0,Ti + ‖f − fh‖Ti)

+ c6

(
γ−1
u,E + γu,Ea

1/2c1/2
){∫

Ti

a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2
]
.

Substituting (4.48) in the bound above and with (4.23)-(4.24) we arrive at

‖RE,u‖E ≤ C

2∑
i=1

[
γu,Ea

1/2‖f − fh‖Ti

+
(
γ−1
u,E + γu,Ea

1/2c1/2
){∫

Ti

a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2
]
.

Equivalently, with γ̄u,E :=
(
γ−1
u,E + γu,Ea

1/2c1/2
)−1

we have

γ̄u,E‖RE,u‖0,E ≤ C
2∑
i=1

[
γu,Ea

1/2γ̄u,E‖f − fh‖0,Ti (4.49)

+

{∫
Ti

a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2
]
.

65

One can now prove similar lower bounds for the second component of the system in

terms of ‖RF,v‖0,F and ‖RK,v‖0,Ki , and b en lieu of a, and λ2 instead of λ1. Upon adding

the u and v components and by combining
∫
Ti
a(∇eu,h)2 + λ1e

2
u,h + c

2(eu,h − ev,H)2 with∫
Ti
b(∇ev,H)2 +λ2e

2
v,H + c

2(eu,h−ev,H)2, we recover on the right hand-sides of (4.48) and

(4.49) the error Ee. On the left hand side we combine the element and edge residuals

corresponding to u and v. This seems superficially like a straightforward procedure

leading to the bounds of the type proven in [55].

Unfortunately, due to the presence of the coupling terms, the scaling in the residuals

such as in (4.48), (4.49) involves the factors θ̄u,T and γ̄u,E instead of θu,T and γu,E ,

respectively. Since these scaling constants are dependent on additional parameters as

well as on the grid discretization, we cannot obtain the “usual” lower bounds. However,

under additional assumptions the lower bounds can be established.

The main idea to get the lower bound robust in parameters of the problems and mesh

discretization is to find a lower bound for θ̄u,T and γ̄u,E in terms of θu,T and γu,E . These

can be established in various ways. Below we show that if h,H are small enough, there

is a lower bound for a-posteriori estimates.

Theorem 4.3.5. Let the assumptions of Theorem 4.3.1 hold. Assume also that

h ≤
√
amin{λ−1/2

1 , c−1/2}, (4.50)

H ≤
√
bmin{λ−1/2

2 , c−1/2}. (4.51)

Then there is a constant C∗ such that

C∗ηe ≤ ‖(u− uh, v − vH)‖e +

∑
T∈Th

θ2
u,T ‖f − fh‖20,T +

∑
K∈TH

θ2
v,K‖g − gH‖20,T


1/2

.

Proof. We note that by (4.50) we have from (4.23)

θu,T
√
c =

hT√
a

√
c ≤ 1. (4.52)

66

Next, from (4.25) we see that by (4.52) we have

γu,E = a−1/4
√
θu,E =

√
hE√
a
. (4.53)

Thus

θ̄u,T := (θ−1
u,T + c1/2)−1 =

θu,T
1 + θu,T

√
c
≥
θu,T

2
, (4.54)

if only θu,T
√
c ≤ 1 which follows from (4.52). Similarly, we obtain that

γ̄u,E = (γ−1
u,E + γu,Ea

1/2c1/2)−1 =
γu,E

1 + γ2
u,E

√
ac
≥
γu,E

2
, (4.55)

as long as γ2
u,E

√
ac ≤ 1 which in turn is guaranteed by (4.53).

Analogous estimates hold for the v component as a consequence of (4.51)

θv,K ≥ θ̄v,K ≥
θv,K

2
, (4.56)

γv,F ≥ γ̄v,F ≥
γv,F

2
. (4.57)

The rest of the proof is straightforward. We collect (4.48), (4.49), apply (4.54) and

(4.55) to see that

θu,T ‖RT,u‖0,T ≤ C [θu,T ‖fh − f‖0,T (4.58)

+

{∫
T

(a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2
]
,

γu,E‖RE,u‖0,E ≤ C

2∑
i=1

[θu,E‖f − fh‖0,Ti (4.59)

+ 2

{∫
Ti

a(∇eu,h)2 + λ1e
2
u,h +

c

2
(eu,h − ev,H)2

}1/2
]
.

67

We repeat the same steps to estimate ‖RK,v‖0,T , ‖RE,v‖0,E and obtain

θv,K‖RK,v‖0,K ≤ C [θv,K‖g − gH‖0,K (4.60)

+

{∫
K

(b(∇ev,H)2 + λ2e
2
v,H +

c

2
(eu,h − ev,H)2

}1/2
]
,

γv,F ‖RF,v‖0,F ≤ C

2∑
i=1

[θv,F ‖g − gH‖0,Ki (4.61)

+ 2

{∫
Ki

b(∇ev,H)2 + λ2e
2
v,H +

c

2
(eu,h − ev,H)2

}1/2
]
.

Adding these equations and summing over all elements T and all elements K completes

the proof of the global lower bound. The constant C∗ := max{c̃2,
c5c̃2+c6

c23
}, where c̃2 :=

max{c2,1}
c21

is independent of P and H.

The bound in Theorem 4.3.5 is a global lower bound. We would like also to prove

some local lower bounds which are typically obtained for scalar equations. Define ωT :=

∪{ωE : E ⊂ ∂T}. The local lower bound follows by adding the terms similar to those

in (4.58)-(4.59) over all edges E of the element T which in turn requires adding the

contributions from ωT . The lower bound involves on the right hand side the energy

norm restricted to the neighborhood ωT of T .

On multilevel grids, in order to obtain a local lower bound between the error and

estimator over an element T , we must be able to combine on the left hand side the

contributions from all edges of T and over all edges of K. On the right hand-side a

recombination in terms of energy norm is only possible if the summation over all elements

T : T ⊂ K and over all corresponding edges E,F is done, see Corollary 4.3.6. However,

no result for a lower bound local to T is available.

68

Corollary 4.3.6. Let TH 3 K =
⋃n
i=1 Ti where Ti ∈ Th and assume (4.50), (4.51) hold.

Then the following local lower bound holds{
ηv,K +

1

n

n∑
i=1

ηu,Ti

}1/2

≤ ‖(u− uh, v − vH)‖e,ωK

+

 1

n

n∑
i=1

∑
T ′i∈ωTi

θ2
u,T ′i
‖f − fh‖20,T ′i

+
∑

K′∈ωK

θ2
v,K′‖g − gH‖20,K′


1/2

.

Proof. To shorten the exposition let Ap := a(∇eu,h)2 + λ1e
2
u,h + c

2(eu,h − ev,H)2 and

Bp := b(∇ev,H)2 + λ2e
2
v,H + c

2(eu,h − ev,H)2.

The equation (4.59) can be written as:

γu,E‖RE,u‖0,E ≤ C

{∫
ωE

Ap

}1/2

+
∑
T ′∈ωE

θu,E‖f − fh‖0,T ′

 . (4.62)

Adding the square of (4.58) and (4.62), and using (4.32) we have

ηu,T ≤ C
[∫

T
Ap + θ2

u,T ‖fh − f‖20,T +
1

2

∑
E⊂∂T

∫
ωE

Ap +
∑
T ′∈ωE

θ2
u,E‖f − fh‖20,T ′

 .
Note that

∑
E⊂∂T

∫
ωE
w ≤ s

∫
ωT
w for any positive-valued w, where s is the number of

sides of T . Also
∑

E⊂∂T
∑

T ′∈ωE w =
∑

T ′∈ωT w for any w. Thus

ηu,T ≤ C

∫
ωT

Ap +
∑
T ′∈ωT

θ2
u,T ′‖fh − f‖20,T ′

 . (4.63)

Similarly,

ηv,K ≤ C

∫
ωK

Bp +
∑

K′∈ωK

θ2
v,K′‖gH − g‖20,K′

 . (4.64)

69

Let K =
⋃n
i=1 Ti. Note that ωK ⊃

⋃n
i=1 ωTi . Then

n∑
i=1

ηu,Ti ≤ C

n∑
i=1

∫
ωTi

Ap +
∑

T ′i∈ωTi

θ2
u,T ′i
‖fh − f‖20,T ′i


≤ C

n ∫⋃n
i=1 ωTi

Ap +

n∑
i=1

∑
T ′i∈ωTi

θ2
u,T ′i
‖fh − f‖20,T ′i


≤ C

n ∫
ωK

Ap +

n∑
i=1

∑
T ′i∈ωTi

θ2
u,T ′i
‖fh − f‖20,T ′i

 .
Thus

ηv,K +
1

n

n∑
i=1

ηu,Ti ≤ C

[∫
ωK

Ap +Bp

+
1

n

n∑
i=1

∑
T ′i∈ωTi

θ2
u,T ′i
‖fh − f‖20,T ′i +

∑
K′∈ωK

θ2
v,K′‖gH − g‖20,K′

 ,
which completes the proof.

4.3.2.5 Upper bound for the error in only one of the unknowns

In some instances it may be known a-priori that one of the unknowns is smoother than

the other and that its numerical approximation has a smaller error associated with it.

In such a case, we can use a multilevel grid. For the purposes of grid adaptation, it is

also useful to estimate the error only in the variable that contributes the bulk fraction

of the error. For example, if v is smoother than u, then it is natural to use a multilevel

grid with H >> h, and define an estimate for the error in u only.

Throughout this section we will assume that there is a constant 0 < α� 1 such that

cα < 1 and

‖ev,H‖0,T < α‖eu,h‖0,T , ∀T ∈ Th. (4.65)

70

We will consider the form on V × V

a(u, φ) =

∫
Ω

(λ1 + c)uφ+ a∇u · ∇φ,

and the norm ‖u‖2∗ := a(u, u) on V. With these we prove the following result, which

resembles the scalar estimates in [55] for a = 1.

Theorem 4.3.7. Let u, uh, v, vH be as in Theorem 4.3.1. and suppose that (4.65) holds.

Then

E∗ := ‖eu,h‖∗ ≤ C̄η∗, (4.66)

where C̄ := (1− cα)−1 max{c1, c4} and

η∗ :=
{∑

T∈Th(θ∗u,T)2‖R∗T,u‖20,T + 1
2

∑
E⊂∂T (γ∗u,E)2‖RE,u‖20,E

}1/2
(4.67)

with

θ∗u,T := min{hSa−1/2, (λ1 + c)−1/2} ∀S ∈ Th ∪ Eh,

γ∗u,E := a−1/4(θ∗u,E)1/2.

Proof. Subtracting the first component of (4.11a) from the respective one of (3.25a) with

φ = φh we get

a(eu,h, φh) =

∫
Ω
c(v − λvH)φh

(4.2)
=

∫
Ω
cev,Hφh. (4.68)

By letting φh = Iheu,h in (4.68) we get

‖eu,h‖2∗ = a(eu,h, eu,h)
(4.68)

= a(eu,h, eu,h)− a(eu,h, Iheu,h) + (cev,H , Iheu,h)

= a(eu,h, eu,h − Iheu,h) + (cev,H , Iheu,h).

71

Now we integrate by parts, use (3.25a), and add and subtract c(vH , eu,h) in the second

identity to get

‖eu,h‖2∗ =
∑
T∈Th

(f − (λ1 + c)uh +∇(a∇uh) + cv, eu,h − Iheu,h)T + (cev,H , Iheu,h)

+
∑
E⊂Eh

([a∂nuh], eu,h − Iheu,h)E

=
∑
T∈Th

(R∗T,u, eu,h − Iheu,h)T + (cev,H , eu,h) +
∑
E⊂Eh

(RE,u, eu,h − Iheu,h)E .

Next we estimate the terms in this identity with Cauchy-Schwarz inequality

‖eu,h‖2∗ ≤
∑
T∈Th

‖R∗T,u‖0,T ‖eu,h − Iheu,h‖0,T + c‖ev,H‖0,T ‖eu,h‖0,T

+
∑
E⊂Eh

‖RE,u‖0,E‖eu,h − Iheu,h‖0,E ,

and by (4.65) we obtain

(1− cα)‖eu,h‖2∗ ≤
∑
T∈Th

‖R∗T,u‖0,T ‖eu,h − Iheu,h‖0,T +
∑
E⊂Eh

‖RE,u‖0,E‖eu,h − Iheu,h‖0,E .

To conclude, we apply (4.28) and (4.30) replacing λ1 with λ1 + c to get the following

estimate

(1− cα)‖eu,h‖2∗ ≤
∑
T∈Th

c1θ
∗
u,T ‖R∗T,u‖0,T ‖eu,h‖∗,ω̃T +

∑
E⊂Eh

c4γ
∗
u,E‖RE,u‖0,e‖eu,h‖∗,ω̃T

≤ max{c1, c4}

∑
T∈Th

θ∗u,T ‖R∗T,u‖0,T ‖eu,h‖∗

+
∑
E⊂Eh

γ∗u,E‖RE,u‖0,E‖eu,h‖∗

 .
Dividing both sides by (1− cα) concludes the proof.

We apply the above estimates to (4.20) and obtain

72

Lemma 4.3.3. The following estimates hold

‖eu,h −Qheu,h‖0,T ≤ c1θu,T

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

, (4.69)

‖ev,H −QHev,H‖0,K ≤ c2θv,K

{∫
ω̃K

b(∇ev,H)2 + λ2e
2
v,H

}1/2

, (4.70)

‖eu,h −Qheu,h‖0,E ≤ c4γu,E

{∫
ω̃T

a(∇eu,h)2 + λ1e
2
u,h

}1/2

, (4.71)

‖ev,H −QHev,H‖0,F ≤ c5γv,F

{∫
ω̃K

b(∇ev,H)2 + λ2e
2
v,H

}1/2

. (4.72)

4.4 NLP-model

Now we present a-priori estimates for the NLP-model. Here we discretize the problem

first in space. The resulting discrete ODE system is called ”continuous in time”. We

begin by finding an a-priori estimate for the one-level approximation (uh, vh), then we

extend the result found to the multilevel approximation (uh, vH) using Lemma 4.1.1. The

results presented here are standard for nonlinear parabolic problems. In this Section we

follow closely the techniques presented in [52] for scalar problems and extend it to a

coupled system.

We mention now the fundamental result in [58] where a-priori L2 error estimates for

linear and nonlinear parabolics problems were obtained, and where the use of the Ritz

(elliptic) projection (4.78) was first proposed. In [58] the function ϕ in the semilinear

term is Lipschitz continuous. In fact, the results of this section can be seen as a mere

extension of the work in [58] to coupled parabolic systems.

For the particular case of b = 0, a-priori error estimates for the case where ϕ is

not Lipschitz continuous were proved using regularization theory in [13]. Using these

results, error estimates for equilibrium diffusion-adsorption process (see equation 2.26)

were proved as a limiting case of the NLP-model for c going to infinity in [14].

In this thesis we restrict ourselves to the case which ϕ is Lipschitz continuous which

cover a wide range of applications.

73

4.4.1 A-priori estimation for the continuous in time problem

Let us seek a finite dimensional solution (uh, vh) ∈ Vh × Vh where Vh ⊂ V . The semi-

discrete formulation of the problem will be given by:

Find (uh, vh) ∈ V 2
h such that for all (ξ, ψ) ∈ V 2

h

(λ1u
′
h, ξ) + (a∇uh,∇ξ) + c(ϕ(uh)− vh, ξ) = (f, ξ) (4.73a)

(λ2v
′
h, ψ) + (b∇vh,∇ψ)− c(ϕ(uh)− vh, ψ) = (g, ψ) (4.73b)

(uh(x, 0), ξ) = (u0h, ξ), (vh(x, 0), ψ) = (v0h, ψ). (4.73c)

Represent the solutions by

uh =

Nh∑
j=1

αj(t)ωj(x), vh =

Nh∑
j=1

βj(t)ωj(x),

where {ωj}Nhj=1 is the standard basis of piecewise linear functions for Vh. Thus (4.73)

may be rewritten as

Nh∑
j=1

λ1α
′
j(t)(ωj , ωk) +

Nh∑
j=1

αj(t)a(∇ωj ,∇ωk) + c(ϕ(

Nh∑
j=1

αjωj), ωk) (4.74a)

− c
Nh∑
j=1

βj(ωj , ωk) = (f, ωk), ∀1 ≤ k ≤ Nh,

Nh∑
j=1

λ2βj(t)
′(ωj(x), ωi) +

Nh∑
j=1

βj(t)b(∇ωj ,∇ωi) + c

Nh∑
j=1

βj(ωj , ωi) (4.74b)

− c(ϕ(

Nh∑
j=1

αjωj), ωi) = (g, ωi), ∀1 ≤ i ≤ Nh.

Set α = α(t) = (α1(t), α2(t), . . . , αNh , β1(t), β2(t), . . . , βNh)T .

74

Let:

B = (bjk) where bjk := (ωj , ωk),

A = (ajk) where ajk := (∇ωj ,∇ωk),

F = ((f, ω1), . . . , (f, ωNh), (g, ω1), . . . , (g, ωNh)),

Φ(α) = (−ϕ̃1(α), . . . ,−ϕ̃Nh(α), ϕ̃1(α), . . . , ϕ̃Nh(α))T

Here ϕ̃j(α) := (ϕ(
∑Nh

l=1 αlωl), ωj). So the system (4.74a)-(4.74b) may also be written in

matrix form as [
λ1B 0

0 λ2B

]
α′ +

[
aA −cB
cB bA

]
α = F + cΦ(α). (4.75)

We assume that there exists a unique solution for (4.75).

We define a continuous and a discrete norm energy norm for the model problem.

Definition 4.4.1. For any (u, v) ∈ V 2 define:

‖|(u, v)‖|2nlp(t) := λ1‖u(t)‖2 + λ2‖v(t)‖2 +

∫ t

0

(
a|u(s)|21 + b|v(s)|21

)
ds, (4.76)

‖|(u, v)‖|2dnlp(tn) := λ1‖u(tn)‖2 + λ2‖v(tn)‖2 + τn

n∑
m=1

a|u(tm)|21 + b|v(tm)|21.(4.77)

Along this Section we shall use the following lemma in its differential form [26], the

integral form is given by Lemma 3.2.8.

Lemma 4.4.1 (Gronwall’s Lemma). Let β ∈ R, χ ∈ C1([0, T],R) and f ∈ C0([0, T],R)

such that χ′(t) ≤ βχ+ f . Then

χ(t) ≤ eβtχ(0) +

∫ t

0
eβ(t−τ)f(t)dτ

In order to compute the norm of the difference (uh − u) we will use the triangle

inequality

‖uh − u‖∗ ≤ ‖uh − ũ‖∗ + ‖ũ− u‖∗.

75

Definition 4.4.2. Define the Ritz-elliptic projection ũ into Vh via

(∇(ũ− u),∇χ) = 0 ∀χ ∈ Vh. (4.78)

We will use the following lemma from [52] to prove the a-priori estimate for the

fully-discrete problem.

Lemma 4.4.2. Assume that u, u′, u′′ ∈ V . Then for any t ∈ [0, T]

‖∇ũ′′(t)‖ ≤ C(u).

Using (4.78) into the weak form of the NLP system (3.45) leads us to

(λ1ũ
′, ξ) + a(∇ũ,∇ξ) + c(ϕ(u)− v, ξ) = (f, ξ) + (λ1(ũt − u′), ξ), (4.79a)

(λ2ṽ
′, ψ) + b(∇ṽ,∇ψ)− c(ϕ(u)− v, ψ) = (g, ψ) + (λ1(ṽ′ − v′), ψ). (4.79b)

Subtracting the above equation from equation (4.73)

(λ1(uh − ũ)′, ξ) + a(∇(uh − ũ),∇ξ) + c((ϕ(uh)− ϕ(u))− (vh − v), ξ) = (λ1(u− ũ)′, ξ),

(4.80a)

(λ2(vh − ṽ)′, ψ) + b(∇(vh − ṽ),∇ψ)− c((ϕ(uh)− ϕ(u))− (vh − v), ψ) = (λ2(v − ṽ)′, ψ).

(4.80b)

Use as test functions ξ = uh − ũ and ψ = vh − ṽ.

λ1((uh − ũ)′, uh − ũ) = −a|uh − ũ|21 − c((ϕ(uh)− ϕ(u))− (vh − v), uh − ũ)

+(λ1(u− ũ)′, uh − ũ),

λ2((vh − ṽ)′, vh − ṽ) = −b|vh − ṽ|21 + c((ϕ(uh)− ϕ(u))− (vh − v), vh − ṽ)

+(λ2(v − ṽ)′, vh − ṽ).

76

Adding the two equations above and using the Proposition 3.2.2

1

2

d

dt

[
λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2

]
≤ −a|uh − ũ|21 − b|vh − ṽ|21 (4.81)

− c(ϕ(uh)− ϕ(u)− vh − v, uh − ũ− vh − ṽ)

+ (λ1(u− ũ)′, uh − ũ) + (λ2(v − ṽ)′, vh − ṽ).

Let ϕ be Lipschitz with Lipchitz constant L. Apply Cauchy-Schwarz and the Lipschitz

assumption to equation (4.81)

1

2

d

dt

[
λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2

]
≤ −a|uh − ũ|21 − b|vh − ṽ|21 (4.82)

+ L‖uh − u‖(‖uh − ũ‖+ ‖vh − ṽ‖)

+ ‖vh − v‖(‖uh − ũ‖+ ‖vh − ṽ‖)

+ λ1‖(u− ũ)′‖‖uh − ũ‖+ λ2‖(v − ṽ)′‖‖vh − ṽ‖.

Use the inequality ab ≤ 1
2 [εa2 + 1

ε b
2],

1

2

d

dt

[
λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2

]
≤ −a|uh − ũ|21 − b|vh − ṽ|21 (4.83)

+
L

2

[
2‖uh − u‖2 + ‖uh − ũ‖2 + ‖vh − ṽ‖2

]
+

1

2

[
2‖vh − v‖2 + ‖vh − ṽ‖2 + ‖uh − ũ‖2

]
+

λ1

2

[
‖(u− ũ)′‖2 + ‖uh − ũ‖2

]
+

λ2

2

[
‖(v − ṽ)′‖2 + ‖vh − ṽ‖2

]
.

Use the triangle inequality to assure that all terms in the equation above are differences

containing ũ or ṽ,

1

2

d

dt

[
λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2

]
≤ −a|uh − ũ|21 − b|vh − ṽ|21 (4.84)

+
C1

2
‖uh − ũ‖2 +

C2

2
‖vh − ṽ‖2

+ L‖u− ũ‖2 + ‖v − ṽ‖2

+
λ1

2
‖(u− ũ)′‖2 +

λ2

2
‖(v − ṽ)′‖2.

77

Here,

C1 = 2

(
L+ 2 +

λ1

2

)
, (4.85)

C2 = 2

(
3 +

λ2

2

)
. (4.86)

Thus, using that a, b are positive, −a ≤ −a
2 ,

d

dt

[
λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2

]
≤ −a|uh − ũ|21 − b|vh − ṽ|21 (4.87)

+ C1‖uh − ũ‖2 + C2‖vh − ṽ‖2

+ 2L‖u− ũ‖2 + 2‖v − ṽ‖2

+ λ1‖(u− ũ)′‖2 + λ2‖(v − ṽ)′‖2.

Apply Gronwall’s lemma 4.4.1 with β := max{C1, C2} and χ := λ1‖uh−ũ‖2+λ2‖vh−
ṽ‖2. Also use that −eβt ≤ −1 to get

λ1‖uh − ũ‖2 + λ2‖vh − ṽ‖2 ≤ eβt
[
λ1‖uh − ũ‖2(0) + λ2‖vh − ṽ‖2(0)

]
− a|uh − ũ|2L(0, T ;H1

0 (Ω))2 − b|vh − ṽ|2L(0, T ;H1
0 (Ω))2

+ eβt
[
2L‖u− ũ‖2L2(0,T ;L2(Ω)) + λ1‖(u− ũ)′‖2L2(0,T ;L2(Ω))

]
+ eβt

[
2‖v − ṽ‖2L2(0,T ;L2(Ω)) + λ2‖(v − ṽ)′‖2L2(0,T ;L2(Ω))

]
.

Next we need estimates for ‖(u − ũ)′‖, ‖u − ũ‖. Assume that the following holds

([52], page 4): Given a family {Vh} of finite-dimensional subspaces of H1
0 such that, for

some integer r ≥ 2 and small h,

inf
ξ∈Sh
{‖z − ξ‖+ h‖∇(z − ξ)‖} ≤ C3h

s‖z‖s, 1 ≤ s ≤ r (4.88)

when z ∈ Hs ∩H1
0 . The number r is referred to as the order of accuracy of the family

{Vh}. The following result is from ([52], page 8).

Lemma 4.4.3. Assume that (4.88) holds. Then, with ũ defined by (4.78) we have

‖ũ− u‖+ h‖∇(ũ− u)‖ ≤ C3h
s‖u‖s, for u ∈ Hs ∩H1

0 , 1 ≤ s ≤ r.

78

In particular,

‖∇(ũ− u)‖ ≤ C3h‖u‖2, (4.89)

‖ũ− u‖ ≤ C3h
2‖u‖2. (4.90)

We also need estimates for ‖(ũ−u)t‖, for simplicity, let ρt := (ũ−u)′. For that we shall

use a duality argument (see [52], pages 233-234). We start with the interpolation result:

define the interpolator operator Ih : Hr ∩H1
0 → Vh such that

‖Ihz − z‖+ h‖∇(Ihz − z)‖ ≤ C4h
s‖z‖s, 1 ≤ s ≤ r. (4.91)

for all z ∈ Hr.

Let us solve a dual problem for ξ ∈ L2(Ω):

−∇ · (∇ψ) = ξ in Ω, ψ = 0 on ∂Ω. (4.92)

The weak formulation of (4.92) is given by :

(∇ψ,∇χ) = (ξ, χ), (4.93)

for all χ ∈ H1
0 (Ω). Note that since ‖ψ‖ ≤ CPF ‖∇ψ‖ for ψ ∈ H1

0 (Ω), (Poincaré-Friedrichs

inequality (3.11))

‖∇ψ‖2 = (∇ψ,∇ψ)
(4.93)

= (ξ, ψ) ≤ ‖ξ‖‖ψ‖ ≤ CPF ‖ξ‖‖∇ψ‖,

which implies that ‖∇ψ‖ ≤ CPF ‖ξ‖ and ‖ψ‖ ≤ C2
PF ‖ξ‖.

Using χ = ρt as a test function and equation (4.78)

(ρt, ξ) = (∇ρt,∇ψ) = (∇ρt,∇(ψ − Ihψ)).

Thus,

|(ρt, ξ)| ≤ ‖∇ρt‖‖∇(ψ − Ihψ)‖
(4.91)

≤ C4h‖∇ρt‖‖ψ‖ ≤ C4h‖∇ρt‖‖ξ‖. (4.94)

79

Now we need to estimate ‖∇ρt‖. Recall that by definition (∇ρt,∇χ) = 0 for all χ ∈ Vh.

‖∇ρt‖2 = (∇ρt,∇ρt) = (∇ρt,∇(u′ − Ihu′) + (∇ρt,∇(ũ′ − Ihu′))︸ ︷︷ ︸
=0

≤ ‖∇ρt‖‖∇(u′ − Ihu′)‖ ≤ C5h‖∇ρt‖‖u′‖2.

That is, ‖∇ρt‖ ≤ C5h‖u′‖2. Plugging this into equation (4.94) we arrive at

‖(u− ũ)′‖ ≤ C5h
2‖u′‖2. (4.95)

To finalize the semi-discrete a-priori estimation we notice that:

‖uh − ũ‖(0) = ‖u0h − ũ(0)‖ ≤ ‖u0h − u0‖+ ‖u0 − ũ(0)‖ ≤ ‖u0h − u0‖+ C6h
2‖u0‖.

We have proved the following estimate for the Ritz projection (4.78)

Proposition 4.4.1. Let (uh, vh) be the solution of the problem (4.73) and ũ, ṽ be defined

via (4.78). Assume that (u, v), (u′, v′) ∈ L2(0, T ;H2(Ω)) × L2(0, T ;H2(Ω)). Then, for

any t, 0 ≤ t ≤ T ,

‖(ũ− uh, ṽ − vh)‖2nlp(t) ≤ eβt
[
2LC2

3h
4‖u‖2L2(0,T ;H2(Ω)) + λ1C

2
5h

4‖v′‖2L2(0,T ;H2(Ω))

]
+ eβt

[
2C2

3h
4‖v‖2L2(0,T ;H2(Ω)) + λ1C

2
5h

4‖v′‖2L2(0,T ;H2(Ω))

]
+ 2eβt

[
λ1‖u0h − u0‖2 + λ1C

2
6h

4‖u0‖2 (4.96)

+ λ2‖v0h − v0‖2 + λ2C
2
6h

4‖v0‖2
]
.

Now, to get the error estimate for the error in u−uh, v−vh we note that by applying

the triangle inequality

‖(u− uh, v − vh)‖2nlp(t) ≤ 2‖(ũ− uh, ṽ − vh)‖2nlp(t) + 2‖(u− ũ, v − ṽ)‖2nlp(t).

80

Using (4.96), (4.89), (4.90),

‖(u− uh, v − vh)‖2nlp(t) ≤ 2
{

2eβt
[
λ1‖u0h − u0‖2 + λ1C

2
6h

4‖u0‖2)

+ λ2‖v0h − v0‖2 + λ2C
2
6h

4‖v0‖2
]

+ eβt
[
2LC2

3h
4‖u‖2L2(0,T ;H2(Ω)) + λ2C

2
5h

4‖u′‖2L2(0,T ;H2(Ω))

]
+ eβt

[
2C2

3h
4‖v‖2L2(0,T ;H2(Ω)) + λ1C

2
5h

4‖v′‖2L2(0,T ;H2(Ω))

]}
+ 2

[
λ1C

2
3h

4‖u‖22(t) + λ2C
2
3h

4‖v‖22(t)
]

+ 2
[
aC2

3h
2‖u‖22 + bC2

3h
2‖v‖22

]
.

We have shown the following.

Theorem 4.4.3. Suppose that the assumptions of Proposition 4.4.1 hold. Also assume

that (4.88) holds. If (u, v) is the solution of (3.45) and (uh, vh) is the solution of (4.73),

then, the following estimate holds:

‖(u− uh, v − vh)‖nlp(t)2 ≤ C∗(u, v, u0, v0,P)h2 + C∗(u, v, u0, v0,P)h4 (4.97)

+ 4eβt
[
λ1‖u0h − u0‖2 + λ2‖v0h − v0‖2

]
.

Here

C∗ := 4eβt { C2
6

[
λ1‖u0‖2 + λ2‖v0‖2

]
+ C2

3

[
L‖u‖2L2(0,T ;H2(Ω)) + ‖v‖2L2(0,T ;H2(Ω))

]
+ C2

5

[
λ1‖u′‖2L2(0,T ;H2(Ω)) + λ2‖v′‖2L2(0,T ;H2(Ω))

]
+ 2C2

3

[
λ1‖u‖22 + λ2‖v‖22

]
} ,

C∗ := C2
3

[
a‖u‖22 + b‖v‖22

]
.

4.4.2 A-priori estimate for the fully-discrete problem

Notation. From now on we will adopt the following notation:

un := u(tn),

τn := tn+1 − tn,

∂nu :=
u(tn+1)− u(tn)

τn
,

∆n(ũ) := ∂nũ− ũnt .

81

Now we consider the backward Euler discretization of equation (4.73). The fully-

discrete problem reads:

For n, 1 ≤ n ≤ N − 1, find (un+1
h , vn+1

h) ∈ V 2 such that ∀(ξ, ψ) ∈ V 2

(λ1∂
nuh,t, ξ) + a(∇un+1

h ,∇ξ) + c(ϕ(un+1
h)− vn+1

h , ξ) = (fn+1, ξ), (4.98a)

(λ2∂
nvh,t, ψ) + b(∇vn+1

h ,∇ψ)− c(ϕ(un+1
h)− vn+1

h , ψ) = (gn+1, ψ). (4.98b)

To derive error estimates, we subtract the system of equations (4.79) from the system

(4.98)

(λ1(∂n(uh − ũ), ξ) + (λ2∂
n(vh − ṽ), ψ) + a(∇(un+1

h − ũn+1),∇ξ)

+b(∇(vn+1
h − ṽn+1),∇ψ) + c((ϕ(unh)− ϕ(un))− (vnh − vn), ξ − ψ) =

(λ1(un − ũn)′, ξ) + (λ2(vn − ṽn)′, ξ)− λ1(∆n(ũ), ξ)− λ2(∆n(ṽ), ψ).

Multiply it all by τn and use as test functions ξ = un+1
h − ũn+1 and ψ = vn+1

h − ṽn+1

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
=

−cτn((ϕ(unh)− ϕ(un))− (vnh − vn), un+1
h − ũn+1 − (vn+1

h − ṽn+1))

+λ1(unh − ũn, u
n+1
h − ũn+1) + λ2(vnh − ṽn, v

n+1
h − ṽn+1)

+τn
[
(λ1(un − ũn)′, un+1

h − ũn+1) + (λ2(vn − ṽn)′, vn+1
h − ṽn+1)

−λ1(∆n(ũ), un+1
h − ũn+1)− λ2(∆n(ṽ), vn+1

h − ṽn+1)
]
.

Since

−cτn((ϕ(unh)− ϕ(un))− (vnh − vn), un+1
h − ũn+1 − (vn+1

h − ṽn+1)) =

−cτn(ϕ(un+1
h)− ϕ(un+1), un+1

h − ũn+1) + cτn(ϕ(un+1
h)− ϕ(un+1), vn+1

h − ṽn+1)

+cτn(vn+1
h − vn+1, un+1

h − ũn+1)− cτn(vn+1
h − vn+1, vn+1

h − ṽn+1),

82

we get,

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
=

− cτn((ϕ(unh)− ϕ(un))− (vnh − vn), un+1
h − ũn+1 − (vn+1

h − ṽn+1)) =

− cτn(ϕ(un+1
h)− ϕ(un+1), un+1

h − ũn+1) + cτn(ϕ(un+1
h)− ϕ(un+1), vn+1

h − ṽn+1)

+ cτn(vn+1
h − vn+1, un+1

h − ũn+1)− cτn(vn+1
h − vn+1, vn+1

h − ṽn+1)

+ λ1(unh − ũn, un+1
h − ũn+1) + λ2(vnh − ṽn, vn+1

h − ṽn+1)

+ τn
[
(λ1(un − ũn)′, un+1

h − ũn+1) + (λ2(vn − ṽn)′, vn+1
h − ṽn+1)

−λ1(∆n(ũ), un+1
h − ũn+1)− λ2(∆n(ṽ), vn+1

h − ṽn+1)
]
. (4.99)

As in Section 4.4.1 we present an a-priori error estimate using the discrete norm

(4.77).

Along this section we shall use the Discrete Gronwall’s Lemma, [35]:

Lemma 4.4.4 (Discrete Gronwall’s Lemma). Let t0 := 0 < t1 < . . . < tn < . . . < tN :=

T be a partition of [0, T] into N subintervals of length τn and define

Jτ := {t0, t1, . . . , tN = T}.

Let φ(t) and ψ(t) be non-negative functions defined on Jτ , the latter being non-decreasing.

If

φ(t) ≤ ψ(t) + Cτn

t−τn∑
τ=0

φ(τ), t ∈ Jτ ,

then

φ(t) ≤ eCtψ(t).

We pursue the a-priori estimate for the norm ‖| · ‖|dnlp (4.77) for the implicit Euler

discretization of the weak problem (3.45). Applying the Cauchy-Schwarz inequality to

83

equation (4.99) we get

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
≤

cτn
[
‖ϕ(un+1

h)− ϕ(un+1)‖‖un+1
h − ũn+1‖+ ‖ϕ(un+1

h)− ϕ(un+1)‖‖vn+1
h − ṽn+1‖

+‖vn+1
h − vn+1‖‖un+1

h − ũn+1‖+ ‖vn+1
h − vn+1‖‖vn+1

h − ṽn+1‖
]

+λ1‖unh − ũn‖‖un+1
h − ũn+1‖+ λ2‖vnh − ṽn‖‖vn+1

h − ṽn+1‖

+τn
[
λ1‖(un − ũn)′‖‖un+1

h − ũn+1‖+ λ2‖(vn − ṽn)′‖‖vn+1
h − ṽn+1‖

+ λ1‖∆nũ‖‖un+1
h − ũn+1‖+ λ2‖∆n(ṽ)‖‖vn+1

h − ṽn+1‖
]
.

Now let us apply the inequality ab ≤ 1
2 [εa2 + 1

ε b
2] and the fact that ϕ is L-Lipschitz

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
≤

λ1

2

[
‖unh − ũn‖2 + ‖un+1

h − ũn+1‖2
]

+
λ2

2

[
‖vnh − ṽn‖2 + ‖vn+1

h − ṽn+1‖2
]

+
τnλ1

2

[
‖(un − ũn)′‖2 + 2‖un+1

h − ũn+1‖+ ‖∆n(ũ)‖2
]

+
τnλ2

2

[
‖∆n(ṽ)‖2 + 2‖vn+1

h − ṽn+1‖2 + ‖(vn − ṽn)′‖2
]

+
cτnL

2

[
2‖un+1

h − un+1‖2 + ‖un+1
h − ũn+1‖2 + ‖vn+1

h − ṽn+1‖2
]

+
cτn
2

[
‖vn+1
h − ṽn+1‖2 + ‖un+1

h − ũn+1‖2 + 2‖vn+1
h − vn+1‖2

]
.

Using that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 we obtain

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
≤

λ1

2

[
‖unh − ũn‖2 + ‖un+1

h − ũn+1‖2
]

+
λ2

2

[
‖vnh − ṽn‖2 + ‖vn+1

h − ṽn+1‖2
]

+
τnλ1

2

[
‖(un − ũn)′‖2 + 2‖un+1

h − ũn+1‖2 + ‖∆n(ũ)‖2
]

+
τnλ2

2

[
‖∆n(ṽ)‖2 + 2‖vn+1

h − ṽn+1‖2 + ‖(vn − ṽn)′‖2
]

+
cτnL

2

[
4‖un+1

h − ũn+1‖2 + 4‖ũn+1 − un+1‖2 + ‖un+1
h − ũn+1‖2 + ‖vn+1

h − ṽn+1‖2
]

+
cτn
2

[
‖vn+1
h − ṽn+1‖2 + ‖un+1

h − ũn+1‖2 + 4‖vn+1
h − ṽn+1‖2 + 4‖ṽn+1 − vn+1‖2

]
.

84

Thus,

λ1

2
‖un+1

h − ũn+1‖2 +
λ2

2
‖vn+1
h − ṽn+1‖2 +

τn
2

[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
≤

λ1

2
‖unh − ũn‖2 +

λ2

2
‖vnh − ṽn‖2 +

τnλ1

2

[
‖(un − ũn)′‖2 + ‖∆n(ũ)‖2

]
+
τnλ2

2

[
‖∆n(ṽ)‖2 + ‖(vn − ṽn)′‖2

]
+
C7τnλ1

2
‖un+1

h − ũn+1‖2 + 2cτnL‖ũn+1 − un+1‖2

+
C8τnλ2

2
‖vn+1
h − ṽn+1‖2 + 2cτn‖ṽn+1 − vn+1‖2.

Here

C7 :=
2λ1 + 5cL+ c

λ1
,

C8 :=
2λ2 + cL+ 5c

λ2
.

Multiply the previous equation by 2 and let βf = max{C7, C8} to get

λ1‖un+1
h − ũn+1‖2 + λ2‖vn+1

h − ṽn+1‖2 + τn
[
a|un+1

h − ũn+1|21 + b|vn+1
h − ṽn+1|21

]
≤

λ1‖unh − ũn‖2 + λ2‖vnh − ṽn‖2

+τnλ1

[
‖(un − ũn)′‖2 + ‖∆n(ũ)‖2

]
+τnλ2

[
‖∆n(ṽ)‖2 + ‖(vn − ṽn)′‖2

]
(4.100)

+τnβf
[
λ1‖un+1

h − ũn+1‖2 + λ2‖vn+1
h − ṽn+1‖2

]
+4cτnL‖ũn+1 − un+1‖2 + 4cτn‖ṽn+1 − vn+1‖2.

85

Adding the equations (4.100) for n = 0 to N − 1 we get

λ1‖uNh − ũN‖2 + λ2‖vNh − ṽN‖2 + τn

N−1∑
n=0

a|un+1
h − ũn+1|21 + b|vn+1

h − ṽn+1|21 ≤

λ1‖u0
h − ũ0‖2 + λ2‖v0

h − ṽ0‖2 + βfτn

N−1∑
n=0

[
λ1‖un+1

h − ũn+1‖2 + λ2‖vn+1
h − ṽn+1‖2

]
+τn

N−1∑
n=0

λ1

[
‖(un − ũn)′‖2 + ‖∆n(ũ)‖2

]
+ τn

N−1∑
n=0

λ2

[
‖∆n(ṽ)‖2 + ‖(vn − ṽn)′‖2

]
+τn

N−1∑
n=0

4c
[
L‖ũn+1 − un+1‖2 + ‖ṽn+1 − vn+1‖2

]
.

Apply the discrete Gronwall’s Lemma 4.4.4

‖|(uNh − ũ(tN), vNh − ṽ(tN))‖|2dnlp ≤ eβf tN
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
h − ṽ0‖2 (4.101)

+ τn

N−1∑
n=0

λ1

[
‖(un − ũn)′‖2 + ‖∆n(ũ)‖2

]
+ τn

N−1∑
n=0

λ2

[
‖∆n(ṽ)‖2 + ‖(vn − ṽn)′‖2

]
+ τn

N−1∑
n=0

4c
[
L‖ũn+1 − un+1‖2 + ‖ṽn+1 − vn+1‖2

]}
.

We now require bounds for ‖∆n(ũ)‖, ‖∆n(ṽ)‖.

τn∆n(ũ) = ũn+1 − ũn − τnũn+1
t = −

∫ tn+1

tn

(s− tn)ũtt(s)dt

⇒ τn‖∆n(ũ)‖ ≤
∫ tn+1

tn

|s− tn|‖ũtt‖dt

⇒ ‖∆n(ũ)‖ ≤
∫ tn+1

tn

‖ũtt‖dt.

Applying the Poincaré-Friedrichs inequality and Lemma 4.4.2

‖∆n(ũ)‖ ≤
∫ tn+1

tn

CPF ‖∇ũ′′‖ds ≤ τnCPFC(u).

86

Adding from n = 0 to N − 1 and using that Nτn = T

N−1∑
n=0

‖∆n(ũ)‖2 ≤
N−1∑
n=0

τ2
nC

2
PFC(u)2 = TτnC

2
PFC(u)2. (4.102)

Similarly to (4.102) we obtain,

N−1∑
n=0

‖∆n(ṽ)‖2 ≤ TτnC2
PFC(v)2. (4.103)

Gathering these estimates into (4.101) plus the estimates (4.89)-(4.95),

‖|(uNh − ũN , vNh − ṽN)‖|2dnlp ≤ eβf tN
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
h − ṽ0‖2 (4.104)

+ Tτ2
nC

2
PF

[
C(u)2 + C(v)2

]
+ τn

N−1∑
n=0

C2
5h

4
[
λ1‖u′n+1‖22 + λ2‖v′n+1‖22

]
+ τn

N−1∑
n=0

4cC2
3h

4
[
L‖un+1‖22 + ‖vn+1‖22

]}
.

Using the triangle inequality

‖|(uNh − uN , vNh − vN)‖|2dnlp ≤ 2‖|(uNh − ũN , vNh − ṽN)‖|2dnlp
+ 2‖|(uN − ũN , vN − ṽN)‖|2dnlp.

87

Apply (4.104)

‖|(uNh − uN , vNh − vN)‖|2dnlp ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
h − ṽ0‖2

+ τn

N−1∑
n=0

C2
5h

4
[
λ1‖u′n+1‖22 + λ2‖v′n+1‖22

]
+ Tτ2

nC
2
PF

[
C(u)2 + C(v)2

]
+ τn

N−1∑
n=0

4cC2
3h

4
[
L‖un+1‖22 + ‖vn+1‖22

]}
+ 2

[
λ1‖uN − ũN‖2 + λ2‖vN − ṽN‖2

+ τn

N−1∑
n=0

a|un+1 − ũn|21 + b|vn+1 − ṽn|21

]
.

Using the estimates (4.89)-(4.90)

‖|(uNh − uN , vNh − vN)‖|2dnlp ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
h − ṽ0‖2

+ τn

N−1∑
n=0

C2
5h

4
[
λ1‖u′n+1‖22 + λ2‖v′n+1‖22

]
+ Tτ2

nC
2
PF

[
C(u)2 + C(v)2

]
+ τn

N−1∑
n=0

4cC2
3h

4
[
L‖un+1‖22 + ‖vn+1‖22

]}
+ 2C2

3h
4
[
λ1‖uN‖22 + λ2‖vN‖22

]
+ 2C2

3τnh
2
N−1∑
n=0

[
a‖un+1‖22 + b‖vn+1‖22

]
.

Theorem 4.4.4. Assume that the approximation property (4.88) holds. Let (u, v) be the

solution of (3.45) and {(unh, vnh)}Nn=1 be the solution of (4.98). Then, if the assumptions

3.2.22 hold, and ũ, ũ′, ũ′′, ṽ, ṽ′, ṽ′′ ∈ V

‖|(uNh − uN , vNh − vN)‖|2dnlp ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
h − ṽ0‖2

}
+C9h

2 + C10h
4 + C11τ

2
n.

88

Here

C9 := 2C2
3 max
n=1:N

{
a‖un‖22 + b‖vn‖22

}
,

C10 := 2eβfTC2
5 max
n=1:N

{
λ1‖u′N‖22 + λ2‖v′N‖22

}
+8eβfT cC2

3 max
n=1:N

{
L‖un‖22 + ‖vn‖22

}
+ 2C2

3

[
λ1‖uN‖22 + λ2‖vN‖22

]
,

C11 := TC2
PF

[
C(u)2 + C(v)2

]
.

4.4.3 A-priori estimates for the multilevel discretization for the NLP-

model

We now extend the results of Theorems 4.4.3 and 4.4.4 to the multilevel discretization

of problem (3.45). The difficulty of the multilevel problem consists in the interpolator

operators Π,Π′. Due to the choice of interpolators operators made in this thesis, and the

fact that VH ⊂ Vh, Lemma 4.1.1 guarantees that the interpolator operators do not add

any extra term to the error analysis. The Lemma 4.1.1 also makes it straightforward

to eliminate the operators for the error analysis. We first extend the results for the

semi-discrete problem, and next we deal with the fully-discrete problem.

The semi-discrete problem may be written as:

Find (uh, vH) ∈ Vh × VH , so that for any (ξ, ψ) ∈ Vh × VH

(λ1u
′
h, ξ) + a(∇uh,∇ξ) + c(ϕ(uh)−ΠvH , ξ) = (f, ξ), (4.105a)

(λ2v
′
H , ψ) + b(∇vH ,∇ψ) + c(Π′ϕ(uh)−ΠvH ,−ψ) = (g, ψ), (4.105b)

(uh(x, 0), ξ) = (u0h, ξ), (vH(x, 0), ψ) = (v0H , ψ). (4.105c)

Subtracting the system (4.79) from the system (4.105)

(λ1(uh − ũ)′, ξ) + (a∇(uh − ũ), ξ) (4.106a)

+ c((ϕ(uh)− ϕ(u))− (ΠvH − v), ξ) = (λ1(u− ũ)′, ξ),

(λ2(vh − ṽ)′, ψ) + (b∇(vh − ṽ), ψ) (4.106b)

+ c((Π′ϕ(uh)− ϕ(u))− (vH − v),−ψ) = (λ2(v − ṽ)′, ψ).

89

Because of Lemma 4.1.1, the system (4.106) gets reduced to a system similar to

system (4.80).

(λ1(uh − ũ)′, ξ) + a(∇(uh − ũ),∇ξ) (4.107a)

+ c((ϕ(uh)− ϕ(u))− (vH − v), ξ) = (λ1(u− ũ)′, ξ),

(λ2(vH − ṽ)′, ψ) + b(∇(vH − ṽ),∇ψ) (4.107b)

− c((ϕ(uh)− ϕ(u))− (vH − v), ψ) = (λ2(v − ṽ)′, ψ).

Therefore we can mimic the steps in Section 4.4.1 and arrive at

Theorem 4.4.5. Suppose that the assumptions of Proposition 4.4.1 hold. Also assume

that (4.88) holds. If (u, v) is the solution of (3.45) and (uh, vH) is the solution of (4.105),

then, the following estimate holds:

‖(u− uh, v − vH)‖nlp(t)2 ≤ C12h
2 + C13h

4 + C14H
2 + C15H

4 (4.108)

+4eβt
[
λ1‖u0h − u0‖2 + λ2‖v0H − v0‖2

]
.

Here

C12 := C2
3a‖u‖22,

C13 := 4eβt
{
C2

6λ2‖v0‖2 + C2
3L‖u‖2L2(0,T ;H2(Ω))

+ C2
5λ1‖u′‖2L2(0,T ;H2(Ω)) + 2C2

3λ1‖u‖22
}
,

C14 := C2
3b‖v‖22,

C15 := 4eβt
{
C2

6λ2‖v0‖2 + C2
3‖v‖2L2(0,T ;H2(Ω)) + C2

5 λ2‖v′‖2L2(0,T ;H2(Ω)) + 2C2
3λ2‖v‖22

}
.

Next we consider the fully-discrete problem:

For each n, 0 ≤ n ≤ N , find (un+1
h , vn+1

H) ∈ Vh×VH such that for all (ξ, ψ) ∈ Vh×VH

(λ1∂
nuh, ξ) + (a∇un+1

h ,∇ξ) + c(ϕ(un+1
h)−Πvn+1

H , ξ) = (fn+1, ξ), (4.109a)

(λ2∂
nvH , ψ) + (b∇vn+1

H ,∇ψ) + c(Π′(ϕ(un+1
h)−Πvn+1

H),−ψ) = (gn+1, ψ).

90

Again because of the properties of Π, Π′ (4.2), the problem (4.109) gets reduced to

the problem (4.98).

Theorem 4.4.6. Suppose that the assumptions of Proposition 4.4.4 hold. Let (u, v) be

the solution of (3.45) and {(unh, vnH)}Nn=1 be the solution of (4.109), then

‖|(uNh − uN , vNH − vN)‖|2dnlp ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
H − ṽ0‖2

}
+ C16h

2 + C17h
4 + C18H

2 + C19H
4 + C20τ

2
n.

Here

C16 := 2C2
3 max
n=1:N

{
a‖un‖22

}
,

C17 := 2eβfTC2
5 max
n=1:N

{
λ1‖u′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
L‖un‖22

}
+ 2C2

3λ1‖uN‖22,

C18 := 2C2
3 max
n=1:N

{
b‖vn‖22

}
,

C19 := 2eβfTC2
5 max
n=1:N

{
λ2‖v′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖vn‖22

}
+ 2C2

3λ2‖vN‖22,

C20 := TC2
PF

[
C(u)2 + C(v)2

]
.

4.5 LP model

First, we present a-priori error estimates for the LP-model as a particular case of the

Theorem 4.4.6. Second, we develop an a-posteriori error estimator for the LP-model

(3.32). Our work is an extension of [15] for the scalar heat equation to a reaction-

diffusion system, and also is an extension of our results in [30], described in Section 4.3,

for elliptic systems to a parabolic system. The main challenges in extending [15] is to

deal with the coupling term c(u − v), to develop a robust estimator, and to deal the

interpolation between the spaces.

We need stronger assumptions than Assumptions 3.2.16 to prove the error estimates.

Assumptions 4.5.1.

DB1. Each function in P = {λ1, λ2, a, b, c} is a positive constant.

DB2. The data (f, g) ∈ C([0, T], L2(Ω))× C([0, T], L2(Ω)).

DB3. The initial data ~u0 ∈ V 2.

91

4.5.1 Discrete Models

The LP-problem includes spatial and time derivatives. We discretize the problem in two

steps. First we discretize the time derivative using the implicit Euler scheme that is

unconditionally stable. We call the resulting system semi-discrete. Later, we discretize

the time derivatives using the FEM and arrive at the fully-discrete problem.

4.5.1.1 Semi-discrete problem

In order to describe the time discretization of the system (3.32) we introduce a partition

of the interval [0, T] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < . . . <

tN = T . We denote by τn the length of the interval [tn−1, tn] and by στ the maximum

ratio between to consecutive time steps, i.e., στ := max2≤n≤N
τn
τn−1

. For uniform time-

stepping, στ = 1.

We apply the implicit Euler scheme to get to the semi-discrete problem:

Find a sequence (un, vn)0≤n≤N ∈ (L2(Ω) × V N) × (L2(Ω) × V N) such that for 1 ≤
n ≤ N , for all (φ, ψ) ∈ V 2

(λ1u
n, φ) + τn [(a∇un,∇φ) + (c(un − vn), φ)] = τn(fn, φ) + (λ1u

n−1, φ), in Ω,

(4.110a)

(λ2v
n, ψ) + τn [(b∇vn,∇ψ) + (c(vn − un), ψ)] = τn(gn, ψ) + (λ2v

n−1, ψ), in Ω,

(4.110b)

u(·, 0) = u0 v(·, 0) = v0, in Ω.

(4.110c)

Between the nodes in the partition of the time interval [0, T] we extend the semi-discrete

solution to be piecewise linear in time via the following definition.

Definition 4.5.2. For any sequence {zn}1≤n≤N define the affine function zτ via

zτ (t) = zn − tn − t
τn

(zn − zn−1) for any t ∈ [tn−1, tn]. (4.111)

4.5.1.2 Fully-discrete problem

In this section we describe the spatial discretization of the semi-discrete problem (4.110).

92

Find {(unh, vnH)}0≤n≤N ∈ (Vh,0, VH,0) ×
∏N
n=1(Vh,n, VH,n) such that for 1 ≤ n ≤ N ,

∀(φh, ψH) ∈ Vh,n × VH,n

τ−1
n (λ1(unh − un−1

h), φh) + (a∇unh,∇φh) + (c(unh −ΠvnH), φh) = (fn, φh), (4.112a)

τ−1
n (λ2(vnH − vn−1

H , ψH) + (b∇vnH ,∇ψH) + (c(vnH −Π′unh), ψH) = (gn, ψH), (4.112b)

(u0
h, v

0
H) = Ih(u0, v0) in Ω. (4.112c)

Here Ih denotes an interpolator or projection operator into (Vh,0, VH,0), Π : VH → Vh

is the interpolation operator. Also, Π′ : Vh → VH is defined in Definition 4.1.2.

We assume that the problem (4.112) has a unique solution (uh,n, vH,n) ∈ Vh,n× VH,n
for f, g ∈ C0(0, T ;V ′). This can be shown by following the same steps of Lemma 3.2.5.

4.5.2 A-priori estimates for the LP-model

We consider here the NLP-model for ϕ(u) = u, thus the Lipschitz constant L = 1. We

state the a-priori estimate as a particular case of Theorem 4.4.6.

Corollary 4.5.3. Suppose that equation (4.88) holds. Let (u, v) be the solution of (3.32)

and {(unh, vnH)}Nn=1 be the solution of (4.112), then

‖|(uNh − uN , vNH − vN)‖|2dnlp ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
H − ṽ0‖2

}
(4.113)

+ C21h
2 + C22h

4 + C23H
2 + C24H

4 + C25τ
2
n.

Here

C21 := 2C2
3 max
n=1:N

{
a‖un‖22

}
,

C22 := 2eβfTC2
5 max
n=1:N

{
λ1‖u′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖un‖22

}
+ 2C2

3λ1‖uN‖22,

C23 := 2C2
3 max
n=1:N

{
b‖vn‖22

}
,

C24 := 2eβfTC2
5 max
n=1:N

{
λ2‖v′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖vn‖22

}
+ 2C2

3λ2‖vN‖22,

C25 := TC2
PF

[
C(u)2 + C(v)2

]
.

That is, ‖|(uNh − uN , vNH − vN)‖|dnlp = O(h+H + maxn=1:N τn). Next we define the

energy norms of the LP-model.

93

4.5.3 Norms

We begin by defining the two norms that are going to be used in the sequel. We define

two energy norms; a continuous and a discrete energy norm. In Lemma 4.5.1, we show

that the two norms are equivalent. The same procedure can be found in [15]. We recall

the definition of the form B(·, ·), equation (3.33)

B(~u, ~u) = ‖a1/2∇u‖2 + ‖b1/2∇v‖2 + ‖c1/2(u− v)‖2.

Notation. To simplify the exposition for any ~u

B(~u) := B(~u, ~u). (4.114)

Also note that for ~u = (u, v), when necessary for clarity, we might write

B(~u) = B(u, v).

Definition 4.5.4. For any ~u ∈ V 2

[[~u]]2(t) = ‖λ1/2
1 u(t)‖2 + ‖λ1/2

2 v(t)‖2 +

∫ t

0
B(~u), (4.115)

and for any sequence {~un}n=1 ∈ V n × V n

[[~um]]2n = ‖λ1/2
1 un‖2 + ‖λ1/2

2 vn‖2 +
n∑

m=1

τmB(~um). (4.116)

Using the definition (4.111) we can see that∫ tn

tn−1

B(~uτ) ≥ τn
4
B(~un). (4.117)

Now we establish the ”equivalence” between the norms (4.115) and (4.116).

Lemma 4.5.1. For any sequence {~un}0≤n≤N ∈ (V N+1)2

1

4
[[~um]]2n ≤ [[~uτ]]2(tn) ≤ 1

2

(
1 +

1

στ

)
[[~um]]2n +

τ1

2
B(~u0), (4.118)

94

where B is defined by (3.33).

Proof. The proof follow the same steps as the proof of Lemma 2.1 in [15]. Nevertheless,

we present the proof in here for completeness. We want to relate [[(uτ , vτ)]]2(tn) to

[[(um, vm)]]2n. By definition

[[(uτ , vτ)]]2(tn) = ‖λ1/2
1 uτ (tn)‖2 + ‖λ1/2

2 vτ (tn)‖2 +

∫ tn

0
B(~uτ). (4.119)

But uτ (tn) = un and vτ (tn) = vn, thus

[[(uτ , vτ)]]2(tn) = ‖λ1/2
1 un‖2 + ‖λ1/2

2 vn‖2 +

∫ tn

0
B(~uτ). (4.120)

Since

[[(um, vm)]]2n = ‖λ1/2
1 un‖2 + ‖λ1/2

2 vn‖2 +
n∑

m=1

τmB(~um),

we are, in fact, left to compare
∫ tn

0 B(~uτ) to
∑n

m=1 τmB(~um).

By definition,∫ tm

tm−1

B(~uτ) =

∫ tm

tm−1

‖a1/2∇u‖2 + ‖b1/2∇v‖2 + ‖c1/2(u− v)‖2.

From the first term in the right-hand side of the equation above∫ tm

tm−1

‖a1/2∇uτ‖2dt
(4.111)

= a

∫ tm

tm−1

‖∇um − tm − s
τm

(∇um −∇um−1)‖2dt

= a

[
τm
3

(
1− tm − s

τm

)3
]tm
tm−1

‖∇um‖2

+ 2

(
−1

2

(tm − s)2

τm
+

1

3

(tm − s)3

τ2
m

)∣∣∣∣tm
tm−1

< ∇um,∇um−1 >

+
τm
3

(
tm − s
τm

)3

‖∇um−1‖2
∣∣∣∣∣
tm

tm−1

 .

95

Thus,∫ tm

tm−1

‖a1/2∇uτ‖2dt =
aτm

3

[
‖∇um‖2+ < ∇um,∇um−1 > +‖∇um−1‖2

]
. (4.121)

Applying the inequality xy ≥ −x2 − 1
4y

2, we get∫ tm

tm−1

‖a1/2∇uτ‖2dt ≥ a
τm
3

[
‖∇um‖2 − ‖∇um−1‖2 − 1

4
‖∇um‖2 + ‖∇um−1‖2

]
≥ τm

4
‖a1/2∇um‖2.

Similarly we get ∫ tm

tm−1

‖b1/2∇vτ‖2dt ≥
τm
4
‖b1/2∇vm‖2,∫ tm

tm−1

‖c1/2(uτ − vτ)‖2dt ≥ τm
4
‖c1/2(um − vm)‖2.

Thus, ∫ tm

tm−1

B(~uτ) ≥ τm
4
B(~um). (4.122)

Adding from m = 1 to n∫ tn

0
B(~uτ) =

n∑
m=1

∫ tm

tm−1

B(~uτ) ≥ 1

4

n∑
m=1

τmB(~um).

Therefore

[[(uτ , vτ)]]2(tn) ≥ 1

4
[[(um, vm)]]2n.

On the other hand, if we apply the inequality xy ≤ x2

2 + y2

2 to (4.121) we get∫ tn

tn−1

‖a1/2∇uτ‖2dt ≤ a
τn
2

[
‖∇un‖2 + ‖∇un−1‖2

]
.

96

So, ∫ tn

tn−1

‖a1/2∇uτ‖2dt ≤
τn
2

[
‖a1/2∇un‖2 + ‖a1/2∇un−1‖2

]
.

Similarly we have∫ tn

tn−1

‖b1/2∇vτ‖2dt ≤
τn
2

[
‖b1/2∇vn‖2 + ‖b1/2∇vn−1‖2

]
,

and ∫ tn

tn−1

‖c1/2(uτ − vτ)‖2dt ≤ τn
2

[
‖c1/2(un − vn)‖2 + ‖c1/2(un−1 − vn−1‖2

]
.

So, ∫ tn

tn−1

B(~uτ) ≤ τn
2

(
B(~un) + B(~un−1)

)

∫ tn

0
B(~uτ) =

n∑
m=1

∫ tm

tm−1

B(~uτ)

≤
n∑

m=1

τm
2

(
B(~um) + B(~um−1)

)
=

n∑
m=1

τm
2
B(~um) +

n∑
m=1

τm
2
B(~um−1)

=
n∑

m=1

τm
2
B(~um) +

n−1∑
m=1

τm+1

2
B(~um−1) +

τ1

2
B(~u0).

97

Note that for any 2 ≤ m ≤ N , στ ≥ τm+1

τm
⇒ τm+1 ≤ τm

στ
, and hence

∫ tn

0
B(~uτ) ≤

n∑
m=1

τm
2
B(~um) +

n−1∑
m=1

τm
2στ
B(~um−1) +

τ1

2
B(~u0)

=
1

2

(
1 +

1

στ

) n−1∑
m=1

τm
2
B(~um) +

τn
2
B(~un) +

τ1

2
B(~u0)

≤ 1

2

(
1 +

1

στ

) n∑
m=1

τm
2
B(~u0) +

τ1

2
B(~u0).

So,

[[(uτ , vτ)]]2(tn) ≤ 1

2

(
1 +

1

στ

)
[[(um, vm)]]2n +

τ1

2
B(~u0).

4.5.4 Error indicators

The a-posteriori error estimator for the LP-model is composed of two parts. A temporal

part, called time error indicator, and a spatial part, called space error indicator. For

each n, 1 ≤ n ≤ N , we define the time error indicator, Tn:

T 2
n :=

τn
3
B(unh − un−1

h , vnH − vn−1
H). (4.123)

The time error indicator indicates the contribution of the time-stepping in the error.

For each n, 1 ≤ n ≤ N , any T ∈ Tn,h and any K ∈ Tn,H we define the space error

indicators, Sn,T,u,Sn,K,v:

Sn,T,u :=

θ2
lp,u,T ‖RnT,u‖2 +

1

2

∑
E∈ET

γ2
lp,u,E‖RnE,u‖2

1/2

, (4.124)

Sn,K,v :=

θ2
lp,v,K‖RnK,v‖2 +

1

2

∑
F∈EK

γ2
lp,v,F ‖RnF,v‖2

1/2

. (4.125)

98

Here

RnT,u := fn − λ1
unh − u

n−1
h

τn
+∇ · (a∇unh)− c(unh − vnH), (4.126)

RnK,v := gn − λ2
vnH − v

n−1
H

τn
+∇ · (b∇vnH)− c(vnH − unh), (4.127)

RnE,u := [a∂νu
n
h]E , (4.128)

RnE,v := [b∂νv
n
H]F , (4.129)

θlp,u,S := min{hSa−1/2,max{c−1/2, hSb
−1/2}}, S ∈ Tn,h ∪ En,h, (4.130)

θlp,v,S := min{HSb
−1/2,max{c−1/2, HSa

−1/2}}, S ∈ Tn,H ∪ En,H , (4.131)

γlp,u,E := 2h
−1/2
E θlp,u,E , (4.132)

γlp,v,F := 2h
−1/2
F θlp,v,F , (4.133)

where [∂νw]E denotes the jump of the normal derivative of w through the edge E.

Note here the similarity with the scaling constants for error estimator of the E-model

(4.23)-(4.26). We also would like to point out that the scaling factors (4.130)-(4.133) are

well defined and finite for the case where a = 0 or b = 0 exclusively. These cases account

for the WR and PP models so we can apply to these models the error estimators to be

developed in this Section.

Finally, we would like to stress an important difference between the results presented

in [15] and our results. In [15], the spatial indicator is non-scaled, in the sense that

it does not take into account the parameters of the problem. To be precise, in [15],

θlp,u,S = hS , θlp,v,S = HS , γlp,u,E = h
1/2
E , γlp,v,F = h

1/2
F . As illustrated by Example

4.2.1 and discussed in [55], a non-scaled error estimator leads to non-robustness of the

estimator. Other difference is that we deal with a system with a multilevel finite element

approximation, while only the scalar heat equation (linear and quasilinear) is considered

in [15].

4.5.5 Upper Bound

Our goal is to achieve an upper bound as in Theorem 4.3.4 for the E-model to bound

above the error

[[(u, v)− (uhτ , vHτ)]](tn),

99

for 1 ≤ n ≤ N . We prove this bound by dividing it in two parts [[(u, v)− (uτ , vτ)]](tm)

and [[(uτ , vτ)− (uhτ , vHτ)]](tn). To bound the first part we bound the error of approxi-

mating the weak problem (3.32) by the semi-discrete problem (4.110). The second part

bounds the error of approximating the semi-discrete problem (4.110) by the fully-discrete

problem (4.112). We follow the same techniques used in [15], the difference in here is

that we have a coupled system instead of a scalar problem.

First let us estimate [[(u, v)− (uτ , vτ)]](tm). Note that

∂uτ
∂t

=
um − um−1

τn
for any t ∈ [tm−1, tm]. (4.134)

Let

T1 := (λ1u
′
τ , φ) + (a∇uτ ,∇φ) + (c(uτ − vτ), φ).

Apply (4.134) to T1

T1 = τ−1
n

(
λ1(um − um−1), φ

)
+ (a∇uτ ,∇φ) + (c(uτ − vτ), φ)

= τ−1
n

(
λ1(um − um−1), φ

)
+ (a∇um,∇φ) + (c(um − vm), φ)︸ ︷︷ ︸

(4.110a)
= (fm,φ)

+(a∇(uτ − um),∇φ) + (c((uτ − um)− (vτ − vm)), φ)

= (fm, φ) + (a∇(uτ − um),∇φ) + (c((uτ − um)− (vτ − vm)), φ). (4.135)

Similarly,

(λ2v
′
τ , ψ) + (b∇vτ ,∇ψ) + (c(uτ − vτ),−φ) = (gm, ψ) + (b∇(vτ − vm),∇ψ)(4.136)

+ (c((uτ − um)− (vτ − vm)),−ψ).

Subtract equations (4.135) and (4.136) from equations (3.25a) and (3.25b), respectively,

(λ1(u− uτ)′, φ) + (λ2(v − vτ)′, ψ) +B((uτ − um, vτ − vm), (φ, ψ)) (4.137)

= (f − fm, φ) + (g − gm, ψ) +B((uτ − um, vτ − vm), (φ, ψ)).

100

Now, let φ = u− uτ and ψ = v − vτ

(λ1(u− uτ)′, u− uτ) + (λ2(v − vτ)′, v − vτ) + B(u− uτ , v − vτ)

= (f − fn, u− uτ) + (g − gn, v − vτ)

+ B((uτ − um, vτ − vm), (u− uτ , v − vτ)).

Integrate from tn−1 to tn and use the property (w′, w) = 1
2
d
dt‖w‖

2

1

2

[
‖λ1/2

1 (u− uτ)‖2(tn) + ‖λ1/2
2 (v − vτ)‖2(tm)

]
+

∫ tm

tm−1

B(u− uτ , v − vτ) (4.138)

=

∫ tm

tm−1

RHS +
1

2

[
‖λ1/2

1 (u− uτ)‖2(tm−1) + ‖λ1/2
2 (v − vτ)‖2(tm−1)

]
.

Here

RHS := (f − fm, u− uτ) + (g − gm, v − vτ)

+ B((uτ − um, vτ − vm), (u− uτ , v − vτ)).

Add equation (4.138) for m = 1 to n and note that by the definition of uτ , vτ , we have

(u− uτ)(0) = (v − vτ)(0) = 0, to get

1

2
[[(u, v)− (uτ , vτ)]]2(tn) ≤

n∑
m=1

∫ tm

tm−1

RHS.

Now let us estimate
∫ tm
tm−1

RHS.

∫ tm

tm−1

RHS =

∫ tm

tm−1

(f − fm, u− uτ)︸ ︷︷ ︸
:=T2

+ (g − gm, v − vτ)︸ ︷︷ ︸
:=T3

+ B((uτ − um, vτ − vm), (u− uτ , v − vτ))︸ ︷︷ ︸
:=T4

 dt.

101

Next we estimate the terms T2, T3, T4. We start with T4. Apply the Cauchy-Schwarz

inequality (3.12) twice to get

|
∫ tm

tm−1

T4dt| ≤

{∫ tm

tm−1

B(uτ − um, vτ − vm)

}1/2{∫ tm

tm−1

B(u− uτ , v − vτ)

}1/2

.

We now are left to estimate the terms
∫ tm
tm−1

T2,
∫ tm
tm−1

T3.

|
∫ tm

tm−1

T2dt|
(3.12)

≤

{∫ tm

tm−1

1

a
‖f − fm‖2dt

}1/2{∫ tm

tm−1

‖a1/2(u− uτ)‖2dt

}1/2

(3.11)

≤

{∫ tm

tm−1

C2
PF

a
‖f − fm‖2dt

}1/2{∫ tm

tm−1

‖a1/2∇(u− uτ)‖2dt

}1/2

.

On the other hand, using the inequalities (3.12) and (3.11)

|
∫ tm

tm−1

T2dt| ≤
∫ tm

tm−1

|(f − fm, (u− uτ)− (v − vτ))|dt+

∫ tm

tm−1

|(f − fm, v − vτ)|dt

≤

{∫ tm

tm−1

1

c
‖f − fm‖2dt

}1/2{∫ tm

tm−1

‖c1/2((u− uτ)− (v − vτ)‖2dt

}1/2

+

{∫ tm

tm−1

C2
PF

b
‖f − fm‖2dt

}1/2{∫ tm

tm−1

‖b1/2∇(v − vτ)‖2dt

}1/2

.

Combining the two inequalities above we arrive at

|
∫ tm

tm−1

T2dt| ≤ Fc

{∫ tm

tm−1

‖f − fm‖2dt

}1/2{∫ tm

tm−1

B(u− uτ , v − vτ)

}1/2

.

Here,

Fc := min

{
C2
PF

a1/2
,

1

c1/2
+
C2
PF

b1/2

}
. (4.139)

102

Similarly,

|
∫ tm

tm−1

T3dt| ≤ Gc

{∫ tn

tm−1

‖g − gm‖dt

}1/2{∫ tm

tm−1

B(u− uτ , v − vτ)

}1/2

.

Here,

Gc := min

{
C2
PF

b1/2
,

1

c1/2
+
C2
PF

a1/2

}
. (4.140)

To put it all together we define Iτ as in [15] as the interpolation operator with values in

piecewise constant functions on [0, T], defined as follows: for any function w continuous

on [0, T], Iτw is constant on each interval (tn−1, tn], 1 ≤ n ≤ N , and Iτw(tn) = w(tn)

n∑
m=1

∫ tm

tm−1

RHS ≤
n∑

m=1


Fc{∫ tm

tm−1

‖f − fm‖dt

}1/2

+Gc

{∫ tm

tm−1

‖g − gm‖dt

}1/2

+

{∫ tm

tm−1

B(uτ − um, vτ − vm)

}1/2
{∫ tm

tm−1

B(u− uτ , v − vτ)

}1/2


≤

[
Fc

{∫ tn

0
‖f − Iτf‖dt

}1/2

+Gc

{∫ tn

0
‖g − Iτg‖dt

}1/2

+

{
n∑

m=1

∫ tm

tm−1

B(uτ − um, vτ − vm)

}1/2
{∫ tn

0
B(u− uτ , v − vτ)

}1/2

.

Therefore,

1

2
[[(u− uτ , v − vτ)]](tn) ≤ C(f, g) +

{
n∑

m=1

∫ tm

tm−1

B(uτ − um, vτ − vm)

}1/2

where

C(f, g) = Fc

{∫ tn

0
‖f − Iτf‖dt

}1/2

+Gc

{∫ tn

0
‖g − Iτg‖dt

}1/2

. (4.141)

103

To simplify the left-hand side we use the definition of uτ for t ∈ [tn−1, tn]

uτ − un =
tn − t
τn

(un − un−1).

Let T5 := B(uτ − um, vτ − vm)

3

τm

∫ tm

tm−1

T5dt = B(um − um−1, vm − vm−1)

≤ B((um − umh)− (um−1 − um−1
h), (vm − vmH)− (vm−1 − vm−1

H))

+B(umh − um−1
h , vmH − vm−1

H)

(4.122)

≤ 4

τm

∫ tm

tm−1

B((u− uh)τ , (v − vH)τ)dt

+ B(umh − um−1
h , vmH − vm−1

H).

That is,∫ tm

tm−1

B(uτ − um, vτ − vm) ≤ 4

3

∫ tm

tm−1

B((u− uh)τ , (v − vH)τ)dt+ T 2
n .

Summing it over and taking the square-root we arrive at{
n∑

m=1

∫ tm

tm−1

B(uτ − um, vτ − vm)

}1/2

≤

{
n∑

m=1

T 2
n

}1/2
2√
3

+

{∫ tn

0
B((u− uh)τ , (v − vH)τ)dt

}1/2

︸ ︷︷ ︸
≤[[(u−uh)τ ,(v−vh)τ]]

.

We have proved the following result.

Proposition 4.5.1. Suppose Assumptions 4.5.1 hold. The following bound for error be-

tween the solution (u, v) of (3.32) and the solution (un, vn)0≤n≤N of the problem (4.110),

for all tn, 1 ≤ n ≤ N :

1

2
[[(u− uτ , v − vτ)]](tn) ≤ C(f, g) +

2√
3

[[(u− uh)τ , (v − vH)τ]](tn) +

{
n∑

m=1

T 2
m

}1/2

(4.142)

104

Now we are left to bound [[(uτ , vτ)− (uhτ , vHτ)]](tn).

4.5.5.1 Bound for [[(uτ , vτ)− (uhτ , vHτ)]](tn)

In here we bound the error between the semi-discrete and the fully-discrete problems,

[[(uτ , vτ) − (uhτ , vHτ)]](tn). Use (vnH − ΠvnH , φh) = 0 (see Lemma 4.1.1) in equation

(4.112a) to reduce it to

(λ1u
n
h, φh) + τn [(a∇unh,∇φh) + c(unh − vnH , φh)] = τn(fn, φh) + (λ1u

n−1
h , φh), (4.143)

Let φ = φh, in the semi-discrete equation (4.110a) and subtract it from the fully-discrete

equation (4.143) to get

λ1(un − unh, φh) + τn [(a∇(un − unh),∇φh)

+ c((un − unh)− (vn − vnH), φh)] = λ1(un−1 − un−1
h , φh).

Adding and subtracting the appropriate terms we arrive at

λ1(un − unh, φ) + τn [(a∇(un − unh),∇φ) + (c((un − unh)− (vn − vnH)), φ)]︸ ︷︷ ︸
:=T6

= λ1(un−1 − un−1
h , φh) + λ1(un − unh, φ− φh)

+τn [(a∇(un − unh),∇(φ− φh)) + c((un − unh)− (vn − vnH), φ− φh)] .

Integrating the right hand side of the equation above by parts,

T6 = τn
∑
T∈Th

[∫
T

(
λ1
un − unh − (un−1 − un−1

h)

τn
−∇ · (a∇(un − unh))

+ c((un − unh)− (vn − vnH))) (φ− φh)

+
1

2

∑
e∈∂T

∫
E

[a∂νu
n
h](φ− φh)] + λ1(un−1 − un−1

h , φ),

105

Using the semi-discrete equation (4.110a), the right hand side of the equation above

becomes

T6 = τn
∑
T∈Th

[∫
T

(
fn − λ1

unh − u
n−1
h

τn
+∇(a∇unh)− c(unh − vnH)

)
(φ− φh) (4.144)

+
1

2

∑
E∈∂T

∫
E

[a∂νu
n
h]E(φ− φh)

]
+ λ1(un−1 − un−1

h , φ),

Repeating the same steps for the (4.112b) we arrive at

λ2(vn − vnH , ψ) + τn [(b∇(vn − vnH),∇ψ)− (c((un − unh)− (vn − vnH)), ψ)]

= τn
∑
K∈TH

[∫
K

(
gn − λ2

vnH − v
n−1
H

τn
+∇(b∇vnH)

− c(vnH − unh)) (ψ − ψH) +
1

2

∑
F∈∂K

∫
F

[b∂νv
n
H]F (ψ − ψH)

]
+ λ2(vn−1 − vn−1

H , ψ). (4.145)

Using the notation (4.126)-(4.129), we add both equations above and let φ = un − unh,

ψ = vn − vnH to get to

‖λ1/2
1 (un − unh)‖2 + ‖λ1/2

2 (vn − vnH)‖2 + τnB(un − unh, vn − vnH)

(3.12)

≤
∑
T∈Th

τn [‖RnTu‖T ‖φ− φh‖T + ‖RnTv‖T ‖ψ − ψH‖T

+
1

2

∑
E∈∂T

‖RnEu‖E‖φ− φh‖E + ‖RnEv‖E‖ψ − ψH‖E

]
+ ‖λ1/2

1 (un−1 − un−1
h)‖‖λ1/2

1 (un − unh)‖

+ ‖λ1/2
2 (vn−1 − vn−1

H)‖‖λ1/2
2 (vn − vnH)‖.

106

Applying Young’s inequality 3.14 in the two last terms and adding the equations for

m = 1 to n

‖λ1/2
1 (un − unh)‖2 + ‖λ1/2

2 (vn − vnH)‖2 + 2
n∑

m=1

τmB(um − umh , vm − vmH) (4.146)

≤ 2

n∑
m=1

∑
T∈Th

τn [‖RmTu‖T ‖φ− φh‖T + ‖RmTv‖T ‖ψ − ψH‖T

+
1

2

∑
E∈∂T

‖RmEu‖E‖φ− φh‖E + ‖RmEv‖E‖ψ − ψH‖E

]
+‖λ1/2

1 (u0 − u0
h)‖2 + ‖λ1/2

2 (v0 − v0
H)‖2.

Next we need to establish some interpolation results to be able to estimates the terms

of the type ‖φ− φh‖ in the equation above.

4.5.5.2 Interpolation Results

In here we mimic the same procedures done in Section 4.3.2.2. Recall that VH ⊆ Vh. Let

φh, ψh be the interpolator of φ, ψ into Vh respectively and φH , ψH be the interpolator of

φ, ψ into VH respectively.

‖φ− φh‖T ≤ ‖(φ− φh)− (ψ − ψh)‖T + ‖ψ − ψh‖T
(4.21)

≤ ‖φ− ψ‖ω̃T + hT ‖∇ψ‖ω̃T

=
1

c1/2
‖c1/2(φ− ψ)‖ω̃T +

hT

b1/2
‖b1/2∇ψ‖ω̃T

≤ max{ 1

c1/2
,
hT

b1/2
}
(
‖c1/2(φ− ψ)‖ω̃T + ‖b1/2∇ψ‖ω̃T

)
≤
√

2 max{ 1

c1/2
,
hT

b1/2
}
(∫

ω̃T

c(φ− ψ)2 + b∇ψ2

)
≤
√

2 max{ 1

c1/2
,
hT
b1/2
}
(∫

ω̃T

c(φ− ψ)2 + b∇ψ2 + a∇φ2

)1/2

︸ ︷︷ ︸
:=BT=B|ω̃T

.

Also

‖φ− φh‖T
(4.21)

≤ hT ‖∇φ‖ω̃T =
hT
a1/2
‖a1/2∇φ‖ω̃T ≤

hT

a1/2
BT ,

107

thus, for θlp,u,T := min{ hT
a1/2

,max{ 1
c1/2

, hT
b1/2
}}

‖φ− φh‖T ≤ θlp,u,TBT . (4.147)

To prove the interpolation estimates in the edges we use Lemma 4.3.2. To apply equation

(4.22) we need to estimate ‖∇(φ− φh)‖T :

‖∇(φ− φh)‖T
(4.21)

≤ ‖∇φ‖ω̃T =
hT

a1/2hT
‖a1/2∇φ‖ω̃T

≤ h−1
T θlp,u,TBT . (4.148)

Estimating (4.22)

‖φ− φh‖E ≤ h
−1/2
T ‖φ− φh‖T + ‖φ− φh‖

1/2
T ‖∇φ− φh‖

1/2

(4.147)+(4.148)

≤ h
−1/2
T θlp,u,TBT + θ

1/2
lp,u,TB

1/2
T h

−1/2
T θ

1/2
lp,u,TB

1/2
T

≤ 2h
−1/2
T θlp,u,T︸ ︷︷ ︸
:=γlp,u,E

BT .

Similarly we can get the upper bounds to ‖ψ − ψH‖K and ‖ψ − ψH‖F .

We summarize the interpolation bounds that will be used further on:

‖φ− φh‖T ≤ θlp,u,TBT , ‖φ− φh‖E ≤ γlp,u,TBT , (4.149)

‖ψ − ψH‖K ≤ θlp,v,KBK , ‖ψ − ψh‖F ≤ γlp,v,FBK . (4.150)

Let us go back to the estimation of ‖λ1/2
1 (un − unh)‖2 + ‖λ1/2

2 (vn − vnH)‖2 + τnB(un −
unh, v

n − vnH). Applying the interpolation results above to equation (4.146) and the

108

Cauchy-Schwarz inequality we have that:

‖λ1/2
1 (un − unh)‖2 + ‖λ1/2

2 (vn − vnH)‖2 + 2

n∑
m=1

τmB(um − umh , vm − vmH)︸ ︷︷ ︸
:=T7

(3.12)

≤
n∑

m=1

τn
∑
T∈Th

[
θlp,u,T ‖RnT,u‖TBT (un − unh, vn − vnH)

+
1

2

∑
E∈∂T

γlp,u,E‖RnE,u‖EBT (un − unh, vn − vnH)

]
+ τn

∑
K∈TH

[
θlp,v,K‖RnK,v‖KBK(un − unh, vn − vnH)

+
1

2

∑
F∈∂K

γlp,u,F ‖RnF,v‖FBK(un − unh, vn − vnH)

]
+ ‖λ1/2

1 (u0 − u0
h)‖2 + ‖λ1/2

2 (v0 − v0
H)‖2.

Apply the Cauchy-Schwarz inequality two more times

T7

(3.12)

≤
n∑

m=1

τn
∑
T∈Th

(
θ2
lp,u,T ‖RnT,u‖2T +

1

2

∑
E∈∂T

γ2
lp,u,T ‖RnE,u‖2E

)1/2

︸ ︷︷ ︸
:=Sn,T,u

BT

+
n∑

m=1

τn
∑
K∈TH

(
θ2
lp,v,T ‖RnK,v‖2K +

1

2

∑
F∈∂K

γ2
lp,v,K‖RnE,v‖2E

)1/2

︸ ︷︷ ︸
:=Sn,K,v

BK

+ ‖λ1/2
1 (u0 − u0

h)‖2 + ‖λ1/2
2 (v0 − v0

H)‖2

(3.12)

≤
n∑

m=1

τn

∑
T∈Th

S2
n,T,u

∑
K∈TH

S2
n,K,v

+

n∑
m=1

τmB(um − umh , vm − vmH)

+ ‖λ1/2
1 (u0 − u0

h)‖2 + ‖λ1/2
2 (v0 − v0

H)‖2.

Subtracting
∑n

m=1 τmB(um − umh , vm − vmH) from both sides we arrive at the following

result.

109

Proposition 4.5.2. Assume that the data f, g ∈ C([0, T], L2(Ω)) and that the functions

u0, v0 ∈ V . Then, the following a-posteriori error bound holds for the error between the

solution (un, vn)0≤n≤N of the problem (3.32) and the solution (unh, v
n
H)0≤n≤N of problem

(4.112), for all tn, 1 ≤ n ≤ N :

[[(u− uh)m, (v − vH)m]]2n ≤
n∑

m=1

τm

∑
T∈Th

S2
m,T,u +

∑
K∈TH

S2
m,K,v

 (4.151)

+‖λ1/2
1 (u0 − u0

h)‖2 + ‖λ1/2
2 (v0 − v0

H)‖2

4.5.5.3 Bound for [[(u, v)− (uhτ , vHτ)]](tn)

Now we can use Propositions 4.5.1 and 4.5.2 to get the estimate for the total error,

[[(u, v)− (uhτ , vHτ)]](tn) ≤ [[(u, v)− (uτ , vτ)]](tn) + [[(uτ , vτ)− (uhτ , vHτ)]](tn)

(4.142)

≤ 2C(f, g) +
4√
3

[[(uτ , vτ)− (uhτ , vHτ)]](tn)

+ 2

{
n∑

m=1

T 2
m

}1/2

+ [[(uτ , vτ)− (uhτ , vHτ)]](tn)

= 2C(f, g) +
4 +
√

3√
3

[[(uτ , vτ)− (uhτ , vHτ)]](tn)

+ 2

{
n∑

m=1

T 2
m

}1/2

.

110

We apply Lemma 4.5.1 to get

[[(u, v)− (uhτ , vHτ)]](tn) ≤ 2C(f, g) + 1

{
n∑

m=1

T 2
m

}1/2

+ C26

[
C27[[(u− uh)m, (v − vH)m]]2n +

τ1

2
B(u0, v0)

]1/2

(4.151)

≤ 2C(f, g) + 2

{
n∑

m=1

T 2
m

}1/2

+ C26

C27

 n∑
m=1

τm

∑
T∈Th

S2
m,T,u +

∑
K∈TH

S2
m,K,v


+ ‖λ1/2

1 (u0 − u0
h)‖2 + ‖λ1/2

2 (v0 − v0
H)‖2

]
+

τ1

2
B(u0, v0)

]1/2
.

Here

C26 :=
4 +
√

3√
3

, (4.152)

C27 :=
1

2

(
1 +

1

στ

)
. (4.153)

We recall the following property of positive numbers x, y,

√
x+ y ≤

√
x+
√
y, (4.154)

√
x+
√
y ≤

√
2
√
x+ y. (4.155)

111

We can reorganize the last expression arriving at:

[[(u, v)− (uhτ , vHτ)]](tn)
(4.154)

≤ 2C(f, g) + 2

{
n∑

m=1

η2
m

}1/2

+ C26C
1/2
27


n∑

m=1

τm

∑
T∈Th

η2
m,T,u +

∑
K∈TH

η2
m,K,v


1/2

+ C26C
1/2
27 ‖λ

1/2
1 (u0 − u0

h)‖+ C1C
1/2
2 ‖λ

1/2
2 (v0 − v0

H)‖

+ C26

√
τ1

2
B(u0, v0)1/2

(4.155)

≤
√

2

4
n∑

m=1

T 2
m + C2

26C27

n∑
m=1

τm

∑
T∈Th

S2
m,T,u +

∑
K∈TH

S2
m,K,v


1/2

+ 2C(f, g) + C26C
1/2
27 ‖λ

1/2
1 (u0 − u0

h)‖+ C26C
1/2
27 ‖λ

1/2
2 (v0 − v0

H)‖

+ C26

√
τ1

2
B(u0, v0)1/2.

Define the constants,

C∗ :=
√

2 max

{
2,

4 +
√

3√
6

(
1 +

1

στ

)1/2
}
, (4.156)

C∗ := max

{
2,

4 +
√

3√
6

(
1 +

1

στ

)1/2

,
4 +
√

3√
6

}
. (4.157)

We have proved the following.

Definition 4.5.5. We denote

Elp(tn) := [[(u, v)− (uhτ , vHτ]](tn). (4.158)

Theorem 4.5.6. The following upper bound holds for the a-posteriori estimator holds for

the error between the solution (u, v) of the system (3.32) and the solution {(unh, vnH)}0≤n≤N

112

of the problem (4.112), for all tn, 1 ≤ n ≤ N :

Elp ≤ C∗ηlp + C∗

(
C(f, g) + ‖λ1/2

1 (u0 − u0
h)‖ (4.159)

+ ‖λ1/2
2 (v0 − v0

H)‖+
√
τ1B(u0, v0)1/2

)
,

η2
lp :=

n∑
m=1

τm
∑
T∈Th

S2
m,T,u +

∑
K∈TH

S2
m,K,v

+ T 2
m

 . (4.160)

where C(f, g), C∗, C∗ is given by equation (4.141), (4.156), and (4.157), respectively.

4.5.6 Lower Bound

Here we prove a lower bound for the error indicators. We prove separate bounds for

the time indicator Tn and the spatial indicators Sn,T,u,Sn,K,v. Due to the presence of

the scaling factors we do not prove a lower bound for the estimator ηlp. However, its

efficiency is guaranteed by the former bounds.

4.5.6.1 Bound for the time indicator Tn

Applying the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) to the definition of Tn (4.123)

Tn ≤
√
τn
[
B(un − un−1, vn − vn−1)

+ B(un − unh, vn − vnH) + B(un−1 − un−1
h , vn−1 − vn−1

H)
]1/2

.

Since

τnB(un − unh, vn − vnH) =

∫ tn

tn−1

B(un − unh, vn − vnH) ≤ [[(un − unh, vn − vnH)]]2(tn),

we have that

Tn ≤
{
τnB(un − un−1, vn − vn−1)

+ [[(un − unh, vn − vnH)]]2(tn) + [[un−1 − un−1
h , vn−1 − vn−1

H]]2(tn)
}1/2

≤
√
τnB(un − un−1, vn − vn−1)1/2 (4.161)

+ [[(un − unh, vn − vnH)]](tn) + [[un−1 − un−1
h , vn−1 − vn−1

H]](tn).

113

Let φ = un − un−1 and ψ = vn − vn−1 in equation (4.137) and integrate between tn−1

and tn∫ tn

tn−1

[(λ1(u− uτ)′, un − un−1) + (λ2(v − vτ)′, vn − vn−1)

+ B(u− uτ , v − vτ), (un − un−1, vn − vn−1))
]

=

∫ tn

tn−1

[
(f − fn, un − un−1) + (g − gn, vn − vn−1)

+ B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))
]
.

Note that uτ − un = t−tn
τn

(un − un−1). Thus,

∫ tn

tn−1

B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))

=

∫ tn

tn−1

t− tn
τn
B(un − un−1, vn − vn−1) = −τn

2
B(un − un−1, vn − vn−1). (4.162)

So we get,∫ tn

tn−1

[(λ1(u− uτ)′, un − un−1) + (λ2(v − vτ)′, vn − vn−1)

+ B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))
]

=

∫ tn

tn−1

[
(f − fn, un − un−1) + (g − gn, vn − vn−1)

]
− τn

2
B(un − un−1, vn − vn−1).

Rearranging the terms

τn
2
B(un − un−1, vn − vn−1)

∫ tn

tn−1

[
(f − fn, un − un−1) + (g − gn, vn − vn−1)

]
−
∫ tn

tn−1

[
(λ1(u− uτ)′, un − un−1) + (λ2(v − vτ)′, vn − vn−1)

+B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))] .

114

Note that if u0, v0 ∈ H1
0 (Ω)

|
∫ tn

tn−1

(λ1(u− uτ)′, un − un−1)|

≤ λ1

a1/2
‖(u− uτ)′‖L2(tn−1,tn,H−1(Ω))

{∫ tn

tn−1

‖a1/2∇(un − un−1)‖2
}1/2

=
λ1

a1/2
‖(u− uτ)′‖L2(tn−1,tn,H−1(Ω))

√
τn‖a1/2∇(un − un−1)‖.

Using the same calculations as above we conclude that

|
∫ tn

tn−1

[
(f − fn, un − un−1) + (g − gn, vn − vn−1)

+
[
(λ1(u− uτ)′, un − un−1) + (λ2(v − vτ)′, vn − vn−1)

+ B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))
]]
|

≤
√
τn
a
‖f − fn‖L2(tn−1,tn;H−1(Ω))‖a1/2∇(un − un−1)‖

+

√
τn
b
‖g − gn‖L2(tn−1,tn;H−1(Ω))‖b1/2∇(vn − vn−1)‖

+
λ1
√
τn

a1/2
‖∂t(u− uτ)‖L2(tn−1,tn;H−1(Ω))‖a1/2∇(un − un−1)‖

+
λ2
√
τn

b1/2
‖∂t(v − vτ)‖L2(tn−1,tn;H−1(Ω))‖b1/2∇(vn − vn−1)‖

+
√
τn‖a1/2∇(u− uτ)‖L2(tn−1,tn;L2(Ω))d‖a1/2∇(un − un−1)‖

+
√
τn‖b1/2∇(v − vτ)‖L2(tn−1,tn;L2(Ω))d‖b1/2∇(vn − vn−1)‖

+
√
τn‖c1/2((u− uτ)− (v − vτ))‖L2(tn−1,tn;L2(Ω))‖c1/2(un − un−1)− (vn − vn−1))‖.

Using the Cauchy-Schwarz inequality

|
∫ tn

tn−1

[
(f − fn, un − un−1) + (g − gn, vn − vn−1) + (λ1(u− uτ)′, un − un−1)

+ (λ2(v − vτ)′, vn − vn−1) +B((uτ − un, vτ − vn), (un − un−1, vn − vn−1))
]
|

≤
√

3τnC(f, g, u, uτ , v, vτ)1/2B(un − un−1, vn − vn−1)1/2,

115

where

C(f, g, u, uτ , v, vτ) := {1

a
‖f − fn‖2L2(tn−1,tn;H−1(Ω)) +

1

b
‖g − gn‖2L2(tn−1,tn;H−1(Ω))

+
λ2

1

a
‖∂t(u− uτ)‖2L2(tn−1,tn;H−1(Ω)) (4.163)

+
λ2

2

b
‖∂t(v − vτ)‖2L2(tn−1,tn;H−1(Ω))

+ ‖a1/2∇(u− uτ)‖L2(tn−1,tn;L2(Ω))d

+ ‖b1/2∇(v − vτ)‖L2(tn−1,tn;L2(Ω))d

+ ‖c1/2((u− uτ)− (v − vτ))‖L2(tn−1,tn;L2(Ω))}.

Putting it all together

τn
2
B(un − un−1, vn − vn−1) ≤

√
3
√
τnC(f, g, u, uτ , v, vτ)1/2B(un − un−1, vn − vn−1)1/2

and simplifying

√
τnB(un − un−1, vn − vn−1)1/2 ≤ 2

√
3C(f, g, u, uτ , v, vτ)1/2.

Substituting in (4.161) we arrive at the following result:

Proposition 4.5.3. Assume that the data f, g ∈ C[0, T], V ′) and that the functions

u0, v0 ∈ V . The following estimate holds for the indicator Tn defined by (4.123), 1 ≤
n ≤ N :

Tn ≤ 2
√

3C(f, g, u, uτ , v, vτ)1/2

+ [[(un − unh, vn − vnH)]](tn) + [[un−1 − un−1
h , vn−1 − vn−1

H]](tn) (4.164)

where C(f, g, u, uτ , v, vτ) is defined by (4.163).

116

4.5.6.2 Bound for the spatial estimators

Recall the definition of

Sn,T,u :=

θ2
lp,u,T ‖RnT,u‖2 +

1

2

∑
E∈ET

γ2
lp,u,E‖RnE,u‖2

1/2

,

where

RnT,u := fn − λ1
unh − u

n−1
h

τn
+∇ · (a∇unh)− c(unh − vnH),

RnE,u := [a∂νu
n
h]E ,

θlp,u,S := min{hSa−1/2,max{c−1/2, hSb
−1/2}} S ∈ Tn,h ∪ En,h,

γlp,u,E := 2h
−1/2
E θlp,u,E .

We are going to estimate the two parts of the spatial estimator Sn,T,u separately.

4.5.6.3 Estimate in the elements

Fix an element T ∈ Th and let ΦT be the element bubble function as described in [30].

In equation (4.144), let φh = 0 and φ = RnT,uΦT , so that

λ1(un − unh, φ) + τn [a(∇(un − unh),∇φ) + c((un − unh)− (vn − vnH), φ)] (4.165)

= λ1(un−1 − un−1
h , φ) + τn

∑
T∈Th

[∫
T
RnT,uφ− (fn − fnh)φ+

1

2

∑
E⊂∂T

∫
E
RnE,uφds

]
.

Because of the properties of the bubble function we have that supp(φ) ⊂ T . Thus the

equation above simplifies to

λ1(un − unh, φ)T + τn [a(∇(un − unh),∇φ)T + c((un − unh)− (vn − vnH), φ)T]

= λ1(un−1 − un−1
h , φ)T + τn

∫
T
RnT,uφ− (fn − fnh)φ.

117

Reorganizing the terms

‖RnT,uΦ
1/2
T ‖

2
T = λ1

(
(un − unh)− (un−1 − un−1

h)

τn
, φ

)
T

+ a(∇(un − unh),∇φ)T + c((un − unh)− (vn − vnH), φ)T − (fn − fnh , φ)T .

The element and edge bubbles have the same properties as in Section 4.3.2.4

c1‖RnT,u‖2T ≤ ‖Rnt,uΦ
1/2
T ‖

2
T

(4.39)

≤ λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
T

‖φ‖T

+ a‖∇(un − unh)‖T ‖∇φ‖T + c‖(un − unh)− (vn − vnH)‖T ‖φ‖T
+ ‖fn − fnh ‖T ‖φ‖T

(3.12)

≤

(
λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
T

+ ‖fn − fnh ‖T

)
‖φ‖T

+

{∫
T
a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

{∫
T
a∇φ2 + cφ2

}1/2

.

Using the fact that ΦT ≤ 1 everywhere, we notice that{∫
T
a∇φ2 + cφ2

}1/2 (4.154)

≤ a1/2‖∇φ‖T + c1/2‖φ‖T
(4.40)

≤ (c2h
−1
T a1/2 + c1/2)‖RnT,u‖T .

Recalling the definition (4.23)

θlp,u,T := min{hTa−1/2,max{c−1/2, hT b
−1/2}},

it is easy to see that

θ−1
lp,u,T = max{h−1

T a1/2,min{c1/2, h−1
T b1/2}}.

118

This leads us to make the following assumption about the mesh size:

hT ≤
√
b

c
, (4.166)

obtaining then the relation

√
c ≤ min{c1/2, h−1

T b1/2}.

Thus

(c2h
−1
T a1/2 + c1/2) ≤ max{c2, 1}(h−1

T a1/2 + c1/2)

≤ max{c2, 1}(h−1
T a1/2 + min{c1/2, h−1

T b1/2}),

arriving at the estimate

(c2h
−1
T a1/2 + c1/2) ≤ 2 max{c2, 1}θ−1

lp,u,T . (4.167)

Finally, we arrive at the estimate for ‖RnT,u‖T

c1‖RnT,u‖T ≤ λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
T

+ ‖fn − fnh ‖T (4.168)

+ 2 max{c2, 1}θ−1
lp,u,T

{∫
T
a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

.

Similarly, for any element K ∈ TH and assuming that Hk ≤
√

a
c :

c1‖RnK,v‖K ≤ λ2

∥∥∥∥∥(vn − vnH)− (vn−1 − vn−1
H)

τn

∥∥∥∥∥
K

+ ‖gn − gnh‖K (4.169)

+ 2 max{c2, 1}θ−1
lp,v,K

{∫
K
b∇(vn − vnH)2 + c((un − unh)− (vn − vnH))2

}1/2

.

119

4.5.6.4 Estimate on the edges

In the edges, let E ∈ Eh such that T1, T2 are the two elements that contain E. Go back

to (4.165) and now let φ = RnE,uΦE where ΦE is the edge bubble function. Recall that

ΦE = 0 at all edges of T1 ∪ T2 other than E and that supp(ΦE) ⊂ T1 ∪ T2.

Then from (4.165) we get

λ1

(
(un − unh)− (un−1 − un−1

h)

τn
, φ

)
+ a(∇(un − unh),∇φ) + c((un − unh)− (vn − vnH), φ)

=

∫
T1∪T2

(RnT,u − (fn − fnh))φ+ ‖RnE,uΦ
1/2
E ‖

2
E .

Thus using the estimate (4.41) and Cauchy-Schwarz inequality

c3‖RnE,u‖2E ≤ ‖RnE,uΦ
1/2
E ‖

2
E

≤ λ1

(
(un − unh)− (un−1 − un−1

h)

τn
, φ

)
+ a(∇(un − unh),∇φ)

+ c((un − unh)− (vn − vnH), φ)−
∫
T1∪T2

(RnT,u − (fn − fnh))φ

≤
2∑
i=1

(
λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
Ti

+‖RnT,u‖Ti + ‖fn − fnh ‖Ti
)
‖φ‖T

+

{∫
Ti

a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

+

{∫
Ti

a∇φ2 + cφ2

}1/2

.

Recalling the definition (4.25)

γlp,u,E := 2h
−1/2
E θlp,u,E ,

120

we see that{∫
Ti

a∇φ2 + cφ2

}1/2

≤ a1/2‖∇φ‖T + c1/2‖φ‖T

(4.42)−(4.43)

≤ (c4h
−1/2
E a1/2 + c5h

1/2
E c1/2)‖RnE,u‖T

≤ max{c4, c5}h1/2
E (h−1

E a1/2 + c1/2)‖RnE,u‖T
(4.167)

≤ max{c4, c5}h1/2
E θ−1

lp,u,E‖R
n
E,u‖T

= 2 max{c4, c5}γ−1
lp,u,E‖R

n
E,u‖T .

Using (4.43) we conclude that

c3‖RnE,u‖E ≤
2∑
i=1

c5h
1/2
E

(
λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
Ti

+ ‖RnT,u‖Ti + ‖fn − fnh ‖Ti
)

+ 2 max{c4, c5}γ−1
u,E

{∫
Ti

a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

.

Now apply (4.168)

c3‖RnE,u‖E ≤
2∑
i=1

c5h
1/2
E

[
λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
Ti

+ c−1
1

(
λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
Ti

+ ‖fn − fnh ‖Ti

+ 2 max{c2, 1}θ−1
lp,u,T

{∫
T
a∇(un − unh)2

+ c((un − unh)− (vn − vnH))2
}1/2

)
+ ‖fn − fnh ‖Ti]

+ 2 max{c4, c5}γ−1
u,E

{∫
Ti

a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

.

121

Thus

c3‖RnE,u‖E ≤
2∑
i=1

{
c5h

1/2
E

(
(1 + c−1

1)λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
Ti

+ (1 + c−1
1)‖fn − fnh ‖Ti

)
+ 2 (2c5 max{c2, 1}+ max{c4, c5}) γ−1

lp,u,E{∫
Ti

a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2
}
.

Adding over the edges of T we arrive at the following result:

Proposition 4.5.4. Assume that the data f, g ∈ C([0, T], L2(Ω)) and that u0, v0 ∈ V .

The following estimate holds for the indicator Sn,T,u defined by (4.124), for all T ∈ Th,

1 ≤ n ≤ N :

Sn,T,u ≤ θnlp,u,T C̃1

λ1

∥∥∥∥∥(un − unh)− (un−1 − un−1
h)

τn

∥∥∥∥∥
ωT

+ ‖fn − fnh ‖ωT

(4.170)

+C̃2

{∫
ωT

a∇(un − unh)2 + c((un − unh)− (vn − vnH))2

}1/2

.

Here

C̃1 := c−1
1 + c−1

3 c5(1 + c−1
1), (4.171)

C̃2 := 2(c−1
1 + c−1

3 c5) max{c2, 1}+ c−1
3 max{c4, c5}. (4.172)

Similarly we arrive at

Proposition 4.5.5. Assume that the data f, g ∈ C([0, T], L2(Ω)) and that u0, v0 ∈ V .

The following estimate holds for the indicator Sn,K,v defined by (4.125), for all K ∈ TH ,

122

1 ≤ n ≤ N :

Sn,K,v ≤ θnlp,v,KC̃1

λ2

∥∥∥∥∥(vn − vnH)− (vn−1 − vn−1
H)

τn

∥∥∥∥∥
ωK

+ ‖gn − gnH‖ωK

(4.173)

+C̃2

{∫
ωK

b∇(vn − vnH)2 + c((un − unh)− (vn − vnH))2

}1/2

.

The lower bound is not complete, now it would remain to add the estimates (4.164),

(4.170), and (4.173) for n = 1, . . . , N . However, due to the choice of the scalar factors and

the presence of terms involving the scaling factors multiplying the terms un, unh, v
n, vnH

in the estimates listed above, a usual lower bound cannot be obtained for the whole

estimator ηlp.

4.6 WR-model

Here we use the results from Sections 4.5, 4.4 to get a-priori and a-posteriori error

estimates for the discretization of the WR-model. The fully-discrete problem for the

WR-model is as follows:

For each n, 0 ≤ n ≤ N , find (un+1
h , vn+1

H) ∈ Vh×VH such that for all (ξ, ψ) ∈ Vh×VH

(λ1∂
nuh, ξ) + (a∇un+1

h ,∇ξ) + c(un+1
h −Πvn+1

H , ξ) = (fn+1, ξ), (4.174a)

(∂nv′H , ψ) + c(Π′un+1
h − vn+1

H ,−ψ) = (gn+1, ψ). (4.174b)

The a-priori estimate is derived with respect to the following norm

Definition 4.6.1. For any (u, v) ∈ V 2

‖|(u, v)‖|2wr(tn) := λ1‖u(tn)‖2 + λ2‖v(tn)‖2 + τn

n−1∑
m=0

a|u(tm+1)|21. (4.175)

This norm is just a particular case of norm (4.77). We can now set b = 0 in Theorem

4.4.6 to arrive at the following estimate for the WR-model. Also note that in here, L = 1

since ϕ(u) = u.

123

Corollary 4.6.2. Suppose that equation (4.88) holds. Let (u, v) be the solution of (3.38)

and {(unh, vnH)}Nn=1 be the solution of (4.174), then

‖|(uNh − uN , vNH − vN)‖|2wr ≤ 2eβfT
{
λ1‖u0

h − ũ0‖2 + λ2‖v0
H − ṽ0‖2

}
(4.176)

+C28h
2 + C29h

4 + C30H
4 + C31τ

2
n.

Here

C28 := 2C2
3 max
n=1:N

{
a‖un‖22

}
,

C29 := 2eβfTC2
5 max
n=1:N

{
λ1‖u′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖un‖22

}
+ 2C2

3λ1‖uN‖22,

C30 := 2eβfTC2
5 max
n=1:N

{
λ2‖v′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖vn‖22

}
+ 2C2

3λ2‖vN‖22,

C31 := TC2
PF

[
C(u)2 + C(v)2

]
.

We comment now on the difference between the order of convergence for the LP-

model and the order of convergence of the WR-model. Note that ‖|(uNh − uN , vNH −
vN)‖|wr = O(h + H2 + maxn=1:N τn). For the LP-model the convergence is of order

O(h+H + maxn=1:N τn) while for the WR-Model is O(h+H2 + maxn=1:N τn). Thus for

approximating the WR-model we need a much coarser mesh for the VH space than for

the LP-model. This makes clear the importance of multilevel discretization used in this

thesis.

To get the a-posteriori error estimator we use the results from Section 4.5.

Definition 4.6.3. For any ~u ∈ V 2

[[~u]]2wr(t) = ‖λ1/2
1 u(t)‖2 + ‖λ1/2

2 v(t)‖2 +

∫ t

0
BWR(~u, ~u). (4.177)

Now we have to adapt the error indicators for the WR-model.

4.6.1 Error indicators

For each n, 1 ≤ n ≤ N , we define the time error indicator, Tn,wr:

T 2
n,wr :=

τn
3
BWR(unh − un−1

h , vnH − vn−1
H). (4.178)

124

For each n, 1 ≤ n ≤ N , any T ∈ Tn,h and any K ∈ Tn,H we define the space error

indicators, Sn,T,u,wr,Sn,K,v,wr:

Sn,T,u,wr :=

θ2
wr,u,T ‖RnT,u,wr‖2 +

1

2

∑
E∈ET

γ2
wr,u,E‖RnE,u,wr‖2

1/2

, (4.179)

Sn,K,v,wr :=
(
θ2
wr,v,K‖RnK,v,wr‖2

)1/2
. (4.180)

Here

RnT,u,wr := fn − λ1
unh − u

n−1
h

τn
+∇ · (a∇unh)− c(unh − vnH), (4.181)

RnK,v,wr := gn − λ2
vnH − v

n−1
H

τn
− c(vnH − unh), (4.182)

RnE,u,wr := [a∂νu
n
h]E , (4.183)

θwr,u,S := hSa
−1/2, S ∈ Tn,h ∪ En,h, (4.184)

θwr,v,S := max{c−1/2, HSa
−1/2}, S ∈ Tn,H ∪ En,H , (4.185)

γwr,u,E := 2h
−1/2
E θwr,u,E , (4.186)

where [∂νw]E denotes the jump of the normal derivative of w through the edge E.

Definition 4.6.4. Denote

Ewr(tn) := [[(u, v)− (uhτ , vHτ]]wr(tn). (4.187)

Corollary 4.6.5. The following a-posteriori error estimator holds between the solution

(u, v) of the system (3.38) and the solution {(unh, vnH)}0≤n≤N of the problem (4.174), for

all tn, 1 ≤ n ≤ N :

Ewr(tn) ≤ C∗ηwr + C∗

(
C(f, g) + ‖λ1/2

1 (u0 − uh,0)‖ (4.188)

+ ‖λ1/2
2 (v0 − v0,H)‖+

√
τ1BWR(~u0, ~u0)1/2

)
,

η2
wr :=

n∑
m=1

τm
∑
T∈Th

S2
m,T,u,wr +

∑
K∈TH

S2
m,K,v,wr

+ T 2
m,wr

 ,
(4.189)

125

where C(f, g), C∗, C∗ are given by equations (4.141), (4.156), and (4.157), respectively.

4.7 PP-model

Here we use the results from Section 4.6 with λ1 = 0 to get a-priori and a-posteriori

error estimates for the discretization of the PP-model. The fully-discrete problem for

the PP-model is:

For each n, 0 ≤ n ≤ N , find (un+1
h , vn+1

H) ∈ Vh×VH such that for all (ξ, ψ) ∈ Vh×VH

(a∇un+1
h ,∇ξ) + c(un+1

h −Πvn+1
H , ξ) = (fn+1, ξ), (4.190a)

(∂nv′h, ψ) + c(Π′(un+1
h −Πvn+1

h),−ψ) = (gn+1, ψ). (4.190b)

We get the a-priori estimate with respect to the following norm

Definition 4.7.1. For any (u, v) ∈ V 2

‖|(u, v)‖|2pp(tn) := λ2‖v(tn)‖2 + τn

n−1∑
m=0

a|u(tm+1)|21. (4.191)

This norm is just a particular case of norm (4.175). We can now set λ1 = 0 in

Corollary 4.6.2 to arrive at the following estimate for the WR-model.

Corollary 4.7.2. Suppose that equation (4.88) holds. Let (u, v) be the solution of (3.40)

and {(unh, vnH)}Nn=1 be the solution of (4.190), then

‖|(uNh − uN , vNH − vN)‖|2wr ≤ 2eβfT
{
λ2‖v0

H − ṽ0‖2
}

+ C32h
2 + C33h

4 + C34H
4 + C35τ

2
n.

Here

C32 := 2C2
3 max
n=1:N

{
a‖un‖22

}
,

C33 := 8eβfT cC2
3 max
n=1:N

{
‖un‖22

}
,

C34 := 2eβfTC2
5 max
n=1:N

{
λ2‖v′N‖22

}
+ 8eβfT cC2

3 max
n=1:N

{
‖vn‖22

}
+ 2C2

3λ2‖vn‖22,

C35 := TC2
PF

[
C(u)2 + C(v)2

]
.

126

Note that ‖|(uNh − uN , vNH − vN)‖|pp = O(h+H2 + τn) the same convergence rate we

have for the WR-model.

To get the a-posteriori error estimator we use the results from Section 4.6 with

λ1 = 0. Now we have to adapt the error indicators for the WR-model.

4.7.1 Error indicators

For each n, 1 ≤ n ≤ N , we define the time error indicator, Tn,pp:

T 2
n,pp :=

τn
3
BWR(unh − un−1

h , vnH − vn−1
H). (4.192)

For each n, 1 ≤ n ≤ N , any T ∈ Tn,h and any K ∈ Tn,H we define the space error

indicators, Sn,T,u,pp,Sn,K,v,pp:

Sn,T,u,pp :=

θ2
pp,u,T ‖RnT,u,pp‖2 +

1

2

∑
E∈ET

γ2
wr,u,E‖RnE,u,pp‖2

1/2

, (4.193)

Sn,K,v,pp :=
(
θ2
pp,v,K‖RnK,v,pp‖2

)1/2
. (4.194)

Here

RnT,u,pp := fn +∇ · (a∇unh)− c(unh − vnH), (4.195)

RnK,v,pp := gn − λ2
vnH − v

n−1
H

τn
− c(vnH − unh), (4.196)

RnE,u := [a∂νu
n
h]E , (4.197)

θpp,u,S := hSa
−1/2, S ∈ Tn,h ∪ En,h, (4.198)

θpp,v,S := max{c−1/2, HSa
−1/2}, S ∈ Tn,H ∪ En,H , (4.199)

γpp,u,E := 2h
−1/2
E θpp,u,E , (4.200)

where [∂νw]E denotes the jump of the normal derivative of w through the edge E.

Definition 4.7.3. Denote

Epp(tn) := [[(u, v)− (uhτ , vHτ]]pp(tn) (4.201)

127

Corollary 4.7.4. The following a-posteriori error estimator holds between the solution

(u, v) of the system (3.40) and the solution {(unh, vnH)}0≤n≤N of the problem (4.190), for

all tn, 1 ≤ n ≤ N :

Epp(tn) ≤ C∗ηpp + C∗

(
C(f, g) + ‖λ1/2

1 (u0 − uh,0)‖ (4.202)

+ ‖λ1/2
2 (v0 − v0,H)‖+

√
τ1BWR(~u0, ~u0)1/2

)
, (4.203)

η2
pp :=

n∑
m=1

τm
∑
T∈Th

S2
m,T,u,pp +

∑
K∈TH

S2
m,K,v,pp

+ T 2
m

 ,
(4.204)

where C(f, g), C∗, C∗ are given by equations (4.141), (4.156), and (4.157), respectively.

4.8 A-posteriori error estimator for the NLP-model

In this Section we consider the particular case where ϕ(u) ≈ u and apply the results of

Section 4.5 for the NLP-problem to arrive at an upper bound for the error. We only

postulate the theoretical result and present no proofs. Numerical experiments are shown

in the next Chapter.

We need to modify the residual definitions (4.126)-(4.127) to add the nonlinearity ϕ.

Define the space error indicators, Sn,T,u,nlp,Sn,K,v,nlp:

Sn,T,u,nlp :=

θ2
lp,u,T ‖RnT,u,nlp‖2 +

1

2

∑
E∈ET

γ2
lp,u,E‖RnE,u‖2

1/2

, (4.205)

Sn,K,v,nlp :=

θ2
lp,v,K‖RnK,v,nlp‖2 +

1

2

∑
F∈EK

γ2
lp,v,F ‖RnF,v‖2

1/2

. (4.206)

Here

RnT,u,nlp := fn − λ1
unh − u

n−1
h

τn
+∇ · (a∇unh)− c(ϕ(unh)− vnH), (4.207)

RnK,v,nlp := gn − λ2
vnH − v

n−1
H

τn
+∇ · (b∇vnH)− c(vnH − ϕ(unh)). (4.208)

128

Definition 4.8.1. Denote

Enlp := [[~u− (uhτ , vHτ]](tn). (4.209)

The following proposition is not proved.

Proposition 4.8.1. The following bound for the a-posteriori error estimator holds be-

tween the solution (u, v) of the system (3.45) and the solution {(unh, vnH)}0≤n≤N of the

problem (4.109), for all tn, 1 ≤ n ≤ N :

Enlp ≤ C∗ηnlp + C∗

(
C(f, g) + ‖λ1/2

1 (u0 − u0
h)‖ (4.210)

+ ‖λ1/2
2 (v0 − v0

H)‖+
√
τ1B(u0, v0)1/2

)
,

η2
nlp :=

n∑
m=1

τm
∑
T∈Th

S2
m,T,u,nlp +

∑
K∈TH

S2
m,K,v,nlp

+ T 2
m

 , (4.211)

where C(f, g), C∗, C∗ are given by equations (4.141), (4.156), and (4.157), respectively.

4.9 Dependence of the solution on the parameters

In this last section we are interested in the effect that the parameter c has in the numerical

solution of the LP-model. Suppose that P = {λ1, λ2, a, b, c} denotes the correct param-

eters for the LP-model that generates the numerical solution (unh, v
n
H), n = 1, . . . , N ,

for the problem (4.112). Suppose also a different set of parameters P̃ = {λ1, λ2, a, b, c̃}
that generates the numerical solution (ũnh, ṽ

n
H), n = 1, . . . , N , for the problem (4.112).

The difference between c and c̃ can be due, for example, to measurement or numerical

computation errors.

An example where the parameters are computed numerically is shown in Section 5.7,

where the parameters of the macro-model model have to be computed from the param-

eters of the original model.

129

Let enu,c := unh − ũnh and env,c := vnH − ṽnH , n = 1, . . . , N . We estimate the error caused

by using c̃ instead of c in the norm

‖(eu,c, ev,c)‖∗∗ := ‖λ1/2
1 eNu,c‖2 + ‖λ1/2

2 eNv,c‖2 +
N∑
n=1

τn

[
‖a1/2∇enu,c‖+ ‖b1/2∇env,c‖2

]
,

(4.212)

We assume that c̃(x) > 0, x ∈ Ω. Subtracting the system (4.112) for P from the

system (4.112) for P̃ we get

(λ1e
n
u,c, φh)+ τn

(
a∇enu,c,∇φh) + (c̃(enu,c −Πenv,c), φh)

)
= τn((c̃− c)(unh −ΠvnH), φh) + (λ1e

n−1
u,c , φh),

(λ2e
n
v,c, ψH)+ τn

(
b∇env,c∇ψH) + (c̃(env,c −Π′enu,c), ψH)

)
= τn((c̃− c)(vnH −Π′unh), ψH) + (λ2e

n−1
v,c , ψH).

Use Lemma 4.1.1 and let φh = enu,c and ψH = env,c in the system above. Adding the two

resulting equations

‖λ1/2
1 enu,c‖2 + ‖λ1/2

2 env,c‖2 + τn

[
‖a1/2∇enu,c‖+ ‖b1/2∇env,c‖2 + ‖c̃1/2(enu,c − env,c)‖2

]
= τn((c̃− c)(unh − vnH), enu,c − env,c) + (λ1e

n−1
u,c , e

n
u,c) + (λ2e

n−1
v,c , e

n
v,c)

≤ τn((c̃− c)(unh − vnH), enu,c − env,c) +
1

2

(
‖λ1/2

1 en−1
u,c ‖2 + ‖λ1/2

1 enu,c‖2
)

+
1

2

(
‖λ1/2

2 en−1
v,c ‖2 + ‖λ1/2

2 env,c‖2
)
.

Reorganizing the terms

1

2

(
‖λ1/2

1 enu,c‖2 + ‖λ1/2
2 env,c‖2

)
+ τn

[
‖a1/2∇enu,c‖+ ‖b1/2∇env,c‖2 + ‖c̃1/2(enu,c − env,c)‖2

]
= τn((c̃− c)(unh − vnH), enu,c − env,c) + (λ1e

n−1
u,c , e

n
u,c) + (λ2e

n−1
v,c , e

n
v,c)

≤ τn((c̃− c)(unh − vnH), enu,c − env,c) +
1

2

(
‖λ1/2

1 en−1
u,c ‖2 + ‖λ1/2

2 en−1
v,c ‖2

)
.

130

We need to simplifying the term τn((c̃ − c)(unh − vnh), enu,c − env,c) to get rid of terms

involving enu,c, e
n
v,c in the right-hand side of the inequality above

τn((c̃− c)(unh − vnh), enu,c − env,c) = τn

(
(c̃− c)√

c̃
(unh − vnH),

√
c̃(enu,c − env,c)

)
≤ τn

2

(
‖|c̃− c|√

c̃
(unh − vnH)‖2 + ‖c̃1/2(enu,c − env,c)‖2

)
.

This leads to

‖λ1/2
1 enu,c‖2 + ‖λ1/2

2 env,c‖2 + τn

[
‖a1/2∇enu,c‖+ ‖b1/2∇env,c‖2 + ‖c̃1/2(enu,c − env,c)‖2

]
(4.213)

≤ ‖λ1/2
1 en−1

u,c ‖2 + ‖λ1/2
2 en−1

v,c ‖2 + τn‖
|c̃− c|√

c̃
(unh − vnH)‖2.

Recall that
∑N

n=1 τn = T . Adding the equations (4.213) for n = 1, . . . , N , we obtain

‖(eu,c, ev,c)N‖2∗∗ ≤ τn

N∑
n=1

‖|c̃− c|√
c̃

(unh − vnH)‖2

≤ T max
1≤n≤N

{
‖|c̃− c|√

c̃
(unh − vnH)‖2

}
.

Applying Cauchy-Schwarz inequality we arrive at

‖(eu,c, ev,c)‖2∗∗ ≤ T
∫

Ω

|c̃− c|2

c̃
dx max

1≤n≤N

{
‖unh − vnH‖2

}
.

Suppose that c̃(x) = c(x) + ε where ε is the ”error” in c̃. We have proven the following

a-priori error estimate

Proposition 4.9.1. Let (unh, v
n
H), (ũnh, ṽ

n
H), n = 1, . . . , N , be the solutions of the problem

(4.112) for P and P̃, respectively. Then the difference between the two set of solutions

can be estimate by

‖(eu,c, ev,c)‖2∗∗ ≤ T
∫

Ω

ε2

c+ ε
dx max

1≤n≤N

{
‖unh − vnH‖2

}
. (4.214)

Here ‖(eu,c, ev,c)‖2∗∗ is given by (4.212).

131

From the MacLaurin series expansion of ε2

c+ε

ε2

c+ ε
=

1

c
ε2 − 1

c2
ε3 +

1

c3
ε4 +

Thus for ε ≈ 0,

‖(eu,c, ev,c)‖∗∗ = O (||ε||) .

132

5 Implementation and Numerical Experiments

In this Chapter we explain how the numerical algorithms are implemented and we present

numerical examples to illustrate the theoretical results obtained in Chapter 4.

In Section 5.1, we give an overview of finite element implementation. In Section

5.2 we give details on the multilevel grids. In particular, we discuss the interpolation

operators, Π : VH → Vh, Π′ : Vh → VH . In Section 5.3 we give the details of the

discrete formulation of the models. In Sections 5.4–5.6 we present numerical examples to

verify the a-priori and a-posteriori estimates derived for the model problems in Chapter

4. In Section 5.7 we present an application of the double-porosity model obtained via

homogenization and compare the numerical results of solving the original problem and

solving the homogenized problem. In Section 5.8 we present numerical results to illustrate

Proposition 4.9.1. The results estimate the dependence of the numerical solution on P.

5.1 General notes on the implementation of the models

Here we outline how to implement the discrete formulation of the models E, LP, NLP

given by (4.11),(4.112), and (4.98), respectively. The implementation of the WR and PP

models are just particular cases of the implementation of the LP-model. Most of these

steps are common to all finite element implementation. In this thesis the implementation

is made in MATLAB. Some codes are shown in the Appendix.

We follow these steps:

STEP 1. Discretization of the domain into finite elements:

In the 1-dimensional case, the elements in the domain are segments. The mesh can

be uniform or not. For the 2-dimensional implementation, we use a uniform mesh

with right isosceles triangles with directions as shown in Figure 5.1.

STEP 2. Computation of the matrices and right hand sides of the linear and

residuals and Jacobians of the nonlinear system:

For the 2-dimensional examples the matrices computations are based in the code

presented in [5]. Most of the implementation is standard finite element implemen-

133

Figure 5.1: Example of mesh in 2-dimensions

tation. The difference here is the multilevel finite element. Because the systems in

the model problems are coupled we need to implement the interpolation operators

Π,Π′ (4.2). The derivation and implementation of the interpolators is shown in

Section 5.2.

STEP 3. Solve the linear and nonlinear algebraic systems.

After the problems are in the algebraic form we implement them in the computer

using MATLAB. We solve the systems using the backslash ”\” operation in MAT-

LAB. We use the Newton-Raphson method for the nonlinear system [8, 28].

With the discrete solutions of the model problems in hand, the next step is to analyse

the convergence of the method, and check the a-priori and a-posteriori error estimates

developed in Chapter 4.

STEP 4. Assess the convergence of the methods and verify the a-priori estimates:

We test the methods with model problems for which the analytical solution is

known, and compute the errors Ee, Elp given by (4.37), (4.158). For the NLP-model

we compute the error also using Elp however we call it Enlp := Elp for symmetry

in the exposition. The errors are computed element-by-element using Gauss inte-

gration with 7 points. For the WR-model we compute the particular case of Elp
for b = 0 and we denote it by Ewr. For the PP-model we compute the particular

134

cases of Elp for λ1 = b = 0 and we denote it by Epp. We recall here the order of

convergence expected from the a-priori estimates for uniform time-stepping τ :

Ee = O(h+H) (5.1)

Elp = O(h+H + τ) (5.2)

Ewr = O(h+H2 + τ) (5.3)

Epp = O(h+H2 + τ) (5.4)

Enlp = O(h+H + τ) (5.5)

STEP 5. Test the a-posteriori error estimators:

We implement the estimators ηe, ηlp, ηwr, and ηnlp given by equations (4.34),

(4.160), (4.189), (4.204), and (4.211), respectively. For model problems we compute

the efficiency index Θ and test the robustness of the estimators with respect to the

mesh and with respect to the parameters P.

STEP 6. Simulations:

We implement simulations examples and use the a-posteriori error estimator to

guide adaptivity of the meshes.

5.2 Interpolation between the spaces Vh and VH

In this Section we address the issue of multilevel grids. We explain the derivation and

implementation of the interpolator operators Π,Π′. Let VH ⊆ Vh, {φi}ni=1 be a basis

for Vh and {ψi}Ni=1 be a basis for VH . We want to construct the projection operator

Π : VH → Vh such that for any v ∈ VH

(Πv, g) = (v, g), ∀g ∈ Vh. (5.6)

To solve the discrete models we are actually interested in the quantity (Πv, φi), i =

1, . . . , n. See for example the discrete formulation for the E-model (4.11). Note that by

(5.6), (Πv, φi) = (v, φi), i = 1, . . . , n.

135

We can write v =
∑N

k=1 vkψk, so

(Πv, φi) = (v, φi) =
N∑
k=1

vk(ψk, φi) :=
(
IhH~v

)
i
, i = 1, . . . , n. (5.7)

Here ~v = [v1, . . . , vN] and
(
IhH
)

is i-th row of the n×N interpolation matrix given by

IhH =


(ψ1, φ1) (ψ2, φ1) . . . (ψN , φ1)

(ψ1, φ2)
. . .

...
...

. . .
...

(ψ1, φn) (ψN , φn)

 . (5.8)

Due to the fact that VH ⊆ Vh, the projection operator Π defined by (5.6) is an inter-

polation operator, since it preserves the values of the function in the nodes. For an

illustration of the action of Π see Figure 5.2.

5.2.1 Projection Π′

Now we discuss the projection operator Π′ : Vh → VH . Let VH ⊆ Vh, {φi}ni=1 be a basis

for Vh and {ψi}Ni=1 be a basis for VH . We want to construct the projection operator

Π′ : Vh → VH so that for any u ∈ Vh

(Π′u, g) = (u, g), ∀g ∈ VH . (5.9)

We are interested in the quantity (Π′u, ψi), i = 1, . . . , N . We can write u =
∑n

k=1 ukφk

and using the definition (5.9).

(Πu′, ψi) = (u, ψi) =
n∑
k=1

uk(φk, ψi) =
(

(IhH)T~u
)
i
, i = 1, . . . , N. (5.10)

Here ~u = [u1, . . . , un] and (IHh)T is the transpose of the interpolation matrix (5.8).

136

Figure 5.2: Projection operator Π : VH → Vh. VH is generated by the spanning of
{ψi(x)}5i=1 and Vh is generated by the spanning of {φi(x)}7i=1. The node i of the mesh
is denoted by xi.

0 .25 .5 .75 1
x1 x2 x3 x4 x5

1

2

3

4
v(x) = 1 ∗ ψ1(x) + 2 ∗ ψ2(x) + 3 ∗ ψ3(x) + 2 ∗ ψ4(x) + 4 ∗ ψ5(x)

0 .25 .5 .75 1

1

2

3

4

x1 x2 x3 x4 x5 x6 x7

.1 .6

Πv(x) = φ1(x) + 1.4 ∗ φ2(x) + 2 ∗ φ3(x) + 3 ∗ φ4(x) + 2.6 ∗ φ5(x) + 2 ∗ φ6(x) + 4 ∗ φ7(x)

137

Figure 5.3: Illustration of a uniform refinement in 1D with r = 2. Plotted are the basis
functions ψ1(x), ψ2(x), ψ3(x) spanning Vh which is based on cells 1 and 2; and basis
functions φ1(x), φ2(x) spanning VH which is based on element 1. x1, x2, x3 are the
nodes of the grid.

Element 1
x1 x2 x3
0

1

cell 1 cell 2

φ2

ψ1 ψ2φ1 φ3

5.2.2 Implementation of IhH in 1D

Now we show how to implement the computation of matrix IhH . From now on, we denote

the elements on the fine mesh Th by cells, and the elements of the coarse grid TH by

elements. We denote by ri the number of cells in the element i. Note that if the ri = r,

∀i, the refinement is uniform, see Definition 4.1.1.

We need to compute the entries (ψi, φj) of the matrix IhH (5.8). To compute (ψi, φj),

we integrate in the reference element (−1, 1) for each cell. Notice that when we do this,

the functions ψ are transformed into functions that depend on the value of r. In Figure

5.3 see an example for r = 2. In Figure 5.4 we show the reference element for cell 1, and

we illustrate how the functions ψ’s and φ’s are translated to the reference element.

138

Figure 5.4: Illustration of the basis functions φ1(x), φ2(x), ψ1(x), ψ2(x) transformed
from cell 1 to the reference element (−1, 1).

Reference Element
-1

1
r

1
0

1

cell 1

φ2 = .5(1 + x)

ψ1 = − x
2r

+
(
1− 1

2r

)

ψ2 = x
2r

+ 1
2r

φ1 = .5(1− x)

In general for an element with r cells, ψ1, ψ2 at the j − th cell is given by :

ψ1(x) =
−x
2r

+
2r − (2j − 1)

2r
,

ψ2(x) =
x

2r
+

(2j − 1)

2r

where j is a integer with values from 1 to r that informs the location of the cell inside

the element.

For every element T of Th we do the integration in every cell contained in T .After

assembling the matrix for every element, we assemble the matrices for all the elements

getting the interpolation matrix IhH .

Next we give some simple examples of interpolation matrices.

Example 5.2.1. Assume that TH has one element only, and let r = 2, i.e., Th has two

cells. This is the scenario illustrated in Figure 5.3. In this case the interpolation matrix

139

Figure 5.5: Illustration of triangles (elements) in the coarse mesh (full line) and fine
mesh (dashed line)

is given by

IhH =
1

2

 5/6 1/6

1 1

1/6 5/6

 .
Next let r = 4, i.e., Th has four cells. In this case the interpolation matrix is given

by

IhH =
1

4


11/12 1/12

3/2 1/2

1 1

1/2 3/2

1/12 11/12

 .

5.2.3 Implementation of IhH in 2D

Here we consider for simplicity only uniform refinements. Let r =
H

h
. In each element

of the coarse grid TH we have r2 elements of the refined grid Th, as one can see in Figure

5.5 for the case r = 2. As before, we refer to the elements of the fine grid Th as cells,

and to the elements in the coarse grid TH as elements. The reference element in 2D

triangulations is the right triangle with vertices at (0, 0), (1, 0), and (0, 1).

The integration to compute the entries (ψi, φj) of the interpolation matrix takes

place in each of the cells, then the values are assembled for each element. Each cell is

mapped to the reference element with basis functions φ1(x, y) = 1− x− y, φ2(x, y) = x,

140

Figure 5.6: Illustration of the cell numbering in one element for r = 2. The fine mesh Th
has 8 cells [dashed line], the coarse mesh Th has 2 elements [full line]. The first number
correspond to the local numbering of the cell inside the element, the second number
corresponds to the global numbering of the cell in Th.

ψ1 ψ2

ψ3

1
r

1, 1

2, 2

3, 3

4, 5

φ3(x, y) = y. In each element we compute a submatrix of IhH of size 3 × (r+2)(r+1)
2 .

(r+2)(r+1)
2 is the number of nodes of the refined mesh in one element of the coarse mesh.

Due to the uniformity of the mesh and of the refinement we calculate a relationship

between the elements in both meshes. Let r = 2 as in Figure 5.6. Each triangle is

subdivided into r2 = 4 cells. Note that cell 2 has orientation different from the orientation

of triangle that was refined. In this cases we say that the cell 2 is ”flipped”. It is easy

to see that the flipped cells are cells with even global indices in the grid Th.

One of the challenges in the implementation is to realize how the basis functions of

the element place themselves in each cell. This depends on:

• the location of each cell inside the element.

• the orientation of the cell (flipped or not): every element have r(r+1)
2 flipped cells.

To keep track of this location, each cell i is identified with a vector~ji = (ji(1), ji(2), ji(3)).

The entry ji(k) gives information about the k-th basis element ψk in the cell i. The ji(k)

are integers from 1 to r for the non-flipped cells and from 1 to r-1 for the flipped cells.

141

The ji(k) depends on the position and orientation of the cell. So every cell has its vector

~j that tells us how are we seeing the basis function ψ of the element in it.

Example 5.2.2. In Figure 5.6, only cell 2 is a flipped cell. First let us consider the

non-flipped cells. The k-th position of the vector ~ji informs the ”distance + 1” of where

ψ(x, y)k = 1 from the k-th node of cell i. In this way we see that for cell 1: ~j1 = (1, 2, 2)

since ψ1(x, y) = 1 at node 1 of cell 1, ψ2(x, y) = 1 at one ”distance” of node 2 of cell 1,

and ψ3(x, y) = 1 at one ”distance” of node 3 of cell 1. Similarly we get that

~j1 = (1, 2, 2),

~j3 = (2, 1, 2),

~j4 = (2, 2, 1).

For the flipped cell 2 we get the vector ~j by the ”distance” (1/r) of where ψk = 1 from

the k-th node of cell i. So that ~j2 = (1, 1, 1). To illustrate better, how the algorithm for

generating the vectors ~j work we present another example. Consider r = 4, then we have

r2 = 16 cells inside every element and r(r+1)
2 = 6 flipped cells. For r = 4:

Non-flipped Flipped

~j1 = (1, 4, 4), ~j2 = (1, 3, 3),

~j3 = (2, 3, 4), ~j4 = (2, 2, 3),

~j5 = (3, 2, 4), ~j6 = (3, 1, 3),

~j7 = (4, 1, 4), ~j9 = (2, 3, 2),

~j8 = (2, 4, 3), ~j11 = (3, 2, 2),

~j10 = (3, 3, 3), ~j14 = (3, 3, 1),

~j12 = (4, 2, 3),

~j13 = (3, 4, 2),

~j15 = (4, 3, 2),

~j16 = (4, 4, 1).

142

After some routine computation, one can realize that in each non-flipped cell:

ψ1(x, y) =
r − j(1) + 1

r
− x

r
− y

r
,

ψ2(x, y) =
r − j(2)

r
+
x

r
,

ψ3(x, y) =
r − j(3)

r
+
y

r
.

For the flipped cells, the basis functions ψ of the element are:

ψ1(x, y) =
r − j(1)− 1

r
+
x

r
+
y

r
,

ψ2(x, y) =
r − j(2)

r
− x

r
,

ψ3(x, y) =
r − j(3)

r
− y

r
.

If the refinement is uniform this has to be done for one element only.

5.2.4 Idea of the algorithm that implements IhH

1. Decide if the cell is flipped or not. This is going to be given by the even numbered

cells. See the code elementmatching.m in the Appendix.

2. Get the cells nodes numbers inside the element. This only had to be done once

because we are only considering uniform meshes and uniform refinements in 2D.

The code can be easilly extend for non-uniform refinements by just informing the

vector ri where ri is the number of cells inside the element i of the coarser mesh.

See code assemblingcells.m in the Appendix.

3. Get the address of the cell ~j. See code the interpolator2D.m in the Appendix.

4. Get a local interpolation matrix for each cell in an element.

See code the interpolator2D.m in the Appendix.

5. Assemble the local interpolation matrices into another local interpolation matrix

now in the element. See the code interpolator2D.m in the Appendix.

143

6. Assemble the local element interpolation matrices for all elements to get IhH . See

the codes interpolator2D.m and matching.m in the Appendix.

5.3 Implementation of the models

In this Section we briefly discuss the implementation of the model problems.

5.3.1 Implementation of the E-Model

Recall the discrete formulation of the E-model, see equation (4.11):

Find (uh, vH) ∈ Vh × VH such that, for all (φh, ψH) ∈ Vh × VH ,

(λ1uh, φh) + (a∇uh,∇φh) + (c(uh −ΠvH), φh) = (f, φh),

(λ2vH , ψH) + (b∇vH ,∇ψH) + (c(vH −Π′uh), ψH) = (g, ψH).

Let VH ⊆ Vh, {φi}Nui=1 be a basis for Vh and {ψi}Nvi=1 be a basis for VH . Using the

basis notation we can write

uh =

Nu∑
i=1

uiφi, vH =

Nv∑
i=1

viψi.

Thus for j = 1, . . . , Nu and k = 1, . . . , Nv.

Nu∑
i=1

λ1ui(φi, φj) +

Nu∑
i=1

aui(∇φi,∇φj) + c

Nu∑
i=1

ui(φi, φj)− c(ΠvH , φi) = (f, φj),

Nv∑
i=1

λ2vi(ψi, ψk) +

Nv∑
i=1

bvi(∇ψi,∇ψk) +

Nv∑
i=1

vic(ψi, ψk)− c(Π′uh, ψk) = (g, ψk).

In the matrix form, using (5.7) and (5.10)

λ1MVh~uh + aSVh~uh + cMVh~uh − cI
h
H~vH = ~f, j = 1, . . . , Nu,

λ2MVH~vH + bSVH~vH + cMVH~vH − c(I
h
H)T~uh = ~g, k = 1, . . . , Nv.

144

Here the vectors are defined by

~uh = [uh,1, . . . , uh,Nu],

~vH = [vH,1, . . . , vH,Nv],

~f = [(f, φ1), . . . , (f, φNu)],

~g = [(g, ψ1), . . . , (g, ψNv)].

Also MVh is called the mass matrix and SVh is called the stiffness matrix and they are

given by

MVh =


(φ1, φ1) (φ2, φ1) . . . (φNu , φ1)

(φ1, φ2)
. . .

...
...

. . .
...

(φ1, φNu) (φNu , φNu)

 , (5.14)

SVh =


(∇φ1,∇φ1) (∇φ2,∇φ1) . . . (∇φNu ,∇φ1)

(∇φ1,∇φ2)
. . .

...
...

. . .
...

(∇φ1,∇φNu) (∇φNu ,∇φNu)

 . (5.15)

In the implementation we solve the system

AE ~U = bE , (5.16)

using the backslash ”\” operation in MATLAB. Here

AE :=

[
(λ1 + c)MVh + aSVh −cIhH

−c(IhH)T (λ2 + c)MVH + aSVH

]
, (5.17)

~U :=

[
~uh

~vH

]
, (5.18)

bE :=

[
~f

~g

]
. (5.19)

145

5.3.2 Implementation of the LP, PP, and WR models

Here we describe the implementation of the LP-model. The implementation of the WR-

model and the PP-model, are obtained by setting b = 0 and λ1 = b = 0 in the LP-model,

respectively. Recall the discrete formulation of the LP-model (4.112).

For each n, 1 ≤ n ≤ N , find (uh, vH) ∈ Vh × VH such that ∀(φh, ψH) ∈ Vh × VH

τ−1
n (λ1(unh − un−1

h), φh) + (a∇unh,∇φh) + (c(unh −ΠvnH), φh) = (fn, φh),

τ−1
n (λ2(vnH − vn−1

H , ψH) + (b∇vnH ,∇ψH) + (c(vnH −Π′unh), ψH) = (gn, ψH).

Let VH ⊆ Vh, {φi}Nui=1 be a basis for Vh and {ψi}Nvi=1 be a basis for VH . Using the bases

notation we write

unh =

Nu∑
i=1

uni φi, vnH =

Nv∑
i=1

vni ψi. (5.21)

Multiply the system by τn and use (5.21). At every time step n we solve

Nu∑
i=1

λ1u
n
i (φi, φj) + τn

Nu∑
i=1

uni [(a∇φi,∇φj) + (cφi, φj)]− c(ΠvnH , φj) =

(fn + λ1u
n−1
h , φj), j = 1, . . . , Nu,

Nv∑
i=1

vni λ2(ψi, ψk) + τn

Nv∑
i=1

vni [(b∇ψi,∇ψk) + (cψi, ψk)]− c(Π′unh, ψk) =

(gn + λ2v
n−1
H , ψk), k = 1, . . . , Nv.

We apply (5.7) and (5.10) and write the system in the matrix form,

ALP ~U = bLP . (5.23)

146

Here

ALP :=

[
(λ1 + c)MVh + aSVh −cIhH

−c(IhH)T (λ2 + c)MVH + bSVH

]
,

~U :=

[
~unh
~vnH

]
,

bLP :=

[
~fn

~gn

]
.

The matrices MVh and SVh are the mass and the stiffness matrices given by (5.14), (5.15),

respectively. The vectors are defined by

~unh = [unh,1, . . . , u
n
h,Nu], (5.24)

~vnH = [vnH,1, . . . , v
n
H,Nv], (5.25)

~fn = [(fn + un−1
h , φ1), . . . , (fn + un−1

h , φNu)], (5.26)

~gn = [(gn + vn−1
H , ψ1), . . . , (gn + vn−1

H , ψNv)]. (5.27)

For every n, 1 ≤ n ≤ N we solve the algebraic system (5.23) using the backslash operator

”\” in MATLAB.

5.3.3 Implementation of the NLP-model

Here we discuss the fully-discrete form of the NLP-model, (4.109). For every n, 1 ≤ n ≤
N we need to solve find (un+1

h , vn+1
H) ∈ Vh × VH such that for all (ξ, ψ) ∈ Vh × VH .

(λ1u
n
h, ξ) + τn

[
(a∇unh,∇ξ) + c(ϕ(unh)−Πvn+1

H , ξ)
]

= (τnf
n + λ1u

n−1
h , ξ),

(λ2v
n
H , ψ) + τn

[
(b∇vnH ,∇ψ)− c(Π′ϕ(unh)− vnH , ψ)

]
= (τng

n + λ2v
n−1
H , ψ).

Since this system is nonlinear, we apply the Newton-Raphson’s method [8, 28].

Rewrite the problem in the residual form: find (un+1
h , vn+1

H) ∈ Vh × VH such that for

all (ξ, ψ) ∈ Vh × VH

AnNLP (unh, v
n
H , ξ, φ) = ~0.

147

Here AnNLP = [An1 , A
n
2]T where

An1 (unh, v
n
H , ξ, φ) = (λ1u

n
h, ξ) + τn

[
(a∇unh,∇ξ) + c(ϕ(unh)−Πvn+1

H , ξ)
]

−(τnf
n + λ1u

n−1
h , ξ),

An2 (unh, v
n
H , ξ, φ) = (λ2v

n
H , ψ) + τn

[
(b∇vnH ,∇ψ)− c(Π′ϕ(unh)− vnH , ψ)

]
−(τng

n + λ2v
n−1
H , ψ).

We need to compute the Jacobian DANLP of the operator. Let (z1, z2) ∈ Vh × VH

DAnNLP (unh, v
n
H , ξ, φ; z1, z2) =

[
An1,unh

(z1) An1,vnH
(z2)

An2,unh
(z1) An2,vnH

(z2)

]
.

Here

An1,unh
(z1) = (λ1z1, ξ) + τn

[
(a∇z1,∇ξ) + c(ϕ′(unh)z1, ξ)

]
.

Note that if ϕ is the Langmuir isotherm (2.23), we have

ϕ′(unh)z1 =
βz1

(1 + αunh)2
.

The operators Π,Π′ defined by (5.6), (5.9) are clearly linear. Using this linearity we

compute

An1,vnH
(z2) = lim

ε→0

An1 (unh, v
n
H + εz2, ξ, φ)−An1 (unh, v

n
H , ξ, φ)

ε
= −τnc(Πz2, ξ),

An2,unh
(z1) = lim

ε→0

An2 (unh + εz1, v
n
H , ξ, φ)−An2 (unh, v

n
H , ξ, φ)

ε
= −cτn(Π′ϕ′(unh)z1, ψ),

An2,vnH
(z2) = lim

ε→0

An2 (unh, v
n
H + εz2, ξ, φ)−An2 (unh, v

n
H , ξ, φ)

ε
= (λ2z2, ψ) + τn [(b∇z2,∇ψ) + c(z2, ψ)] .

Now for each n, 1 ≤ n ≤ N , we choose some initial guess (un,0h , vn,0H) ∈ Vh × VH . At

every k-th iteration step, we compute (zk1 , z
k
2) = (un,kh − u

n,k−1
h , vn,kH − vn,k−1

H) ∈ Vh× VH

148

so that for all (ξ, ψ) ∈ Vh × VH

DAnNLP (un,kh , vn,kH , ξ, φ; zk1 , z
k
2) = AnNLP (un,k−1

h , vn,k−1
H , ξ, φ). (5.29)

In here, at every time step we choose as initial guess the solution for the previous time

step. We stop this iteration when

‖(un,kh − un,k−1
h , vn,kH − vn,k−1

H)‖ ≤ 10−6.

We can now apply the basis notation (5.21) and rewrite the Newton-Raphson’s

method (5.29) as a linear algebraic system. To that end, note that by definition of

Π′ via (5.9), for j = 1, . . . , Nv, we have

(Π′ϕ′(unh)z1, ψj) = (ϕ′(unh)z1, ψj) =

Nu∑
i=1

z1,i(ϕ
′(unh)φi, ψj).

The matrix (IhH(ϕ(u)))T , which is a ”weighted” version of the interpolation matrix (IhH)T ,

is defined via

IhH(ϕ(u)) =


(ϕ′(u)ψ1, φ1) (ϕ′(u)ψ2, φ1) . . . (ϕ′(u)ψNv , φ1)

(ϕ′(u)ψ1, φ2)
. . .

...
...

. . .
...

(ϕ′(u)ψ1, φNu) (ϕ′(u)ψNv , φNu)

 . (5.30)

Also let MVh,ϕ(u) be the ”weighted” mass matrix

MVh,ϕ′(u) =


(ϕ′(u)φ1, φ1) (φ2, φ1) . . . (ϕ′(u)φNu , φ1)

(ϕ′(u)φ1, φ2)
. . .

...
...

. . .
...

(ϕ′(u)φ1, φNu) (ϕ′(u)φNu , φNu)

 . (5.31)

149

Therefore the system (5.29) is equivalent to[
λ1MVh + τn

[
aSVh + cM

Vh,ϕ′(u
n,k−1
h)

]
−τncIhH

−τnc(IhH(ϕ(un,k−1
h))T (λ2 + τnc)MVH + τnbSVH

][
~zk1
~zk2

]
=

[
~Fn,k

~Gn,k

]
.

(5.32)

Here the vectors are defined by

~Fn,k = (λ1MVh + τnaSVh)~un,k−1
h + cτn

[
ϕVh(un,k−1

h)− IhH~v
n,k−1
H

]
−τn ~fn − λ1MVh~u

n−1
h ,

~Gn,k = [(λ2 + τnc)MVH + τnbSVH]~vn,k−1
H − cτnϕVH (vn,k−1

H)

−τn~gn − λ2MVH~v
n−1
H ,

where ~fn, ~gn are given by (5.26)-(5.27), and the vector ϕVh(un,k−1
h) is given by

ϕVh(un,k−1
h) = [(ϕ(un,k−1

h), φ1), . . . , (ϕ(un,k−1
h), φNu)],

ϕVh(vn,k−1
H) = [(ϕ(vn,k−1

H), ψ1), . . . , (ϕ(vn,k−1
H), ψNv)].

Note that if Vh = VH then IhH(ϕ(unh)) = IhH and MVh,ϕ′(u) = MVh .

5.4 Numerical results for the E-model

In this section we present results for the elliptic system E-model. We do not spend

much time on the verification of the a-priori results because they are fairly standard.

Our focus is to demonstrate the robustness of a-posteriori estimators with respect to

P = (λ1, λ2, a, b, c) and to illustrate how the multilevel scheme and error estimation

work together.

On multilevel grids, we use grid parameters h and H with the number of elements in

Th and TH denoted, respectively, by n and N . Except in Example 5.4.5 we only consider

r-refinements Th of TH . That is, we only consider the case r = H/h where 1 ≤ r ∈ N.

For r > 1 we refer to Th as the fine mesh and to TH as the coarse mesh.

In each case, we obtain (uh, vH) by solving the linear system associated with (4.11),

and compute the error Ee (4.37) using the known analytical solution (u, v). If (u, v)

150

are not known, then we estimate it from the finest grid possible or by Richardson’s

extrapolation.

We recall that the efficiency index Θ := ηe
Ee . For various implicit estimators, asymp-

totically, Θ ↓ 1. However, for residual estimators Θ >> 1 [21, 44]. For perspective, we

show typical values of Θ for scalar and non-scalar model problems below. In this paper

our concern is in showing that Θ remains constant or stable for a large range of values

in P.

We consider the numerical solution (4.11) to the coupled system (3.25). We demon-

strate that the algorithm converges on multilevel grids and that Θ remains essentially

constant. The latter is thanks to the appropriate scaling in the definition of the estima-

tor.

5.4.1 Numerical results in 1D

Example 5.4.1. Let Ω = (0, 1) and u(x) = x2 sin(πx), v(x) = x − x3, be the exact

solution of (3.25) with P = 15. We compute the corresponding f and g, and solve for

the numerical solutions uh, vH . We consider here various uniform multilevel grids with

r = 1, 2, 5, 100. Table 5.1 shows the value of the error and of the error estimate as well

as of the efficiency index Θ.

We see that for any grid level r, the error and the estimator converge linearly with

H: the error decreases by 1/2 when N is halved. This example also shows robustness of

the estimator with respect to h and r: Θ remains essentially constant in all Tables. The

value Θ ≈ 7 is typical for the coupled system in 1-dimensional examples.

Next we discuss the error for a fixed H and varying r, in order to understand the

merits of multilevel discretizations. For example we compare the error and the estimator

for N = 160 i.e. fourth row in the list for each r in Table 5.1. We see that the error

decreases quite a bit initially between r = 1 and r = 2 but that it remains dominated

by the O(H) component for large r.

These results illustrate in what instances it makes sense to refine the grid in one

component only. In general, the refinement in u-component increases the total number of

unknowns from N+N = 2N to rN+N = (r+1)N . If useful, this should be accompanied

by a proportional decrease in the error by a factor of (1+r)/2. In Example 5.4.1 for large

r this is not true since for small h the error remains bounded by the O(H) contribution.

151

Table 5.1: Results for Example 5.4.1

N Ee ηe Θ

r = 1

20 0.109 0.814 7.46
40 0.0545 0.415 7.61
80 0.0272 0.209 7.68
160 0.0136 0.105 7.71
320 0.0068 0.0526 7.73
640 0.00341 0.0264 7.74
1280 0.00170 0.0132 7.74
2560 0.00085 0.0066 7.74
5120 0.00042 0.0033 7.74

N Ee ηe Θ

r = 2

20 0.0696 0.526 7.56
40 0.0348 0.266 7.62
80 0.0174 0.134 7.70
160 0.00870 0.0672 7.72
320 0.00435 0.0336 7.73
640 0.00218 0.0168 7.74
1280 0.00109 0.00842 7.74
2560 0.000544 0.00421 7.74
5120 0.000272 0.00211 7.74

N Ee ηe Θ

r = 5

20 0.0536 0.404 7.54
40 0.0268 0.205 7.64
80 0.0134 0.103 7.69
160 0.00670 0.052 7.72
320 0.00335 0.026 7.73
640 0.00168 0.013 7.74
1280 0.000838 0.0065 7.74
2560 0.000419 0.0032 7.74
5120 0.000209 0.0016 7.74

N Ee ηe Θ

r = 100

20 0.0500 0.376 7.52
40 0.0250 0.191 7.63
80 0.0125 0.0961 7.69
160 0.00625 0.0482 7.72
320 0.00312 0.0242 7.73
640 0.00156 0.0121 7.74

However, for r = 2 we have the desired proportional decrease in the error. Here the

number of unknowns between r = 1 and r = 2 increases by a factor of 1.5 while the error

decreases by the factor of 0.0136/0.00870 ≈ 1.563.

The computational cost of a multilevel algorithm is obviously case-dependent since

the error components depend on u, v, h,H. Example 5.4.1 can be seen as the ”worst

case scenario”, since the components u and v have comparable variability and P = 15.

However, the usefulness of multilevel grids is evident in other cases to follow, and, in

particular, in the next example which is a variation on Example 5.4.1.

Example 5.4.2. Here we modify Example 5.4.1 and choose a fast oscillating u com-

ponent u(x) = x2 sin(10πx). We keep v(x) = x − x3 with P = (1, 1, 1, 1, 1). Table 5.2

shows the results.

152

Table 5.2: Results for Example 5.4.2

n Ee ηe Θ

r = 1

20 4.4206 30.049 6.7975
40 2.2704 16.996 7.4860
80 1.1433 8.7785 7.6780
160 0.57269 4.4259 7.7281
320 0.28648 2.2176 7.7411
640 0.14325 1.1094 7.7446
1280 0.071629 0.55480 7.7455
2560 0.035815 0.27741 7.7458
5120 0.017907 0.13871 7.7459

n Ee ηe Θ

r = 5

20 4.4274 30.094 6.7971
40 2.2737 17.019 7.4850
80 1.1450 8.7904 7.6774
160 0.57351 4.4320 7.7278
320 0.28688 2.2208 7.7409
640 0.14346 1.1110 7.7445
1280 0.071731 0.55559 7.7455
2560 0.035866 0.27781 7.7458
5120 0.017933 0.13891 7.7459

Consider the error in Example 5.4.2 for a fixed h and varying r. For instance, focus

on n = 160 and the fourth row in each r in Table 5.2. The error remains almost constant

between r = 1 and r = 5 despite the fact that we are coarsening the H grid by a factor of

5. This is because the error is dominated by the O(h) terms for small r. The number of

elements between r = 1 and r = 5 decreases from 320 down to 192, i.e., by the factor of

1.66, while the error increases only by less than one percent since 0.5735/0.5727 ≈ 1.0014.

Next we illustrate other properties of the estimator. First we verify how ηe behaves

for a system close to being degenerate.

Example 5.4.3. Let Ω = (0, 1) and u(x) = v(x) = x2 sin(πx) be the exact solution of

(3.25). Let P = (1, 1, 1, 10−5, 10). We use r = 1, 5, 40, see Table 5.3.

In Example 5.4.3 we demonstrate the robustness of the estimator with respect to

H, r, i.e., we show that the estimator converges and that Θ is essentially constant with

respect to H and r. This Example also provides yet another motivation for the use

of multilevel grids. The error between r = 1 and r = 5 appears to decrease by the

factor 0.0625/0.0015 ≈ 4.1 while the number of unknowns increases by (1 + 5)/2 = 3 (cf.

row 4). With r > 5 the advantages of multilevel grids deteriorate slowly as r increases

because the error in u gets resolved better and it slowly stops dominating the total

error. For r = 40 we have a decrease of the error by 0.0625/0.00015 ≈ 40 in row 4 but

only 0.0499/0.0017 ≈ 29 while the number of unknowns increases by about 20.5. This

153

Table 5.3: Results for Example 5.4.3 with degenerate P

N Ee ηe Θ

r = 1

20 0.049999 0.37583 7.52
40 0.025000 0.19076 7.63
80 0.012500 0.096101 7.68
160 0.0062500 0.048231 7.71
320 0.0031250 0.024161 7.73
640 0.0015625 0.012092 7.73
1280 0.00078125 0.0060487 7.74
2560 0.00039063 0.0030251 7.74
5120 0.00019531 0.0015127 7.74

N Ee ηe Θ

r = 5

20 0.010069 0.077007 7.64
40 0.0050085 0.038615 7.71
80 0.0025013 0.019336 7.73
160 0.0012503 0.0096758 7.74
320 0.00062509 0.0048400 7.74
640 0.00031254 0.0024205 7.74
1280 0.00015627 0.0012103 7.74
2560 7.81× 10−5 0.00060520 7.74
5120 3.91× 10−5 0.00030261 7.74

N Ee ηe Θ

r = 40

20 0.0017252 0.0098209 5.69
40 0.00069009 0.0048530 7.03
80 0.00032240 0.0024250 7.52
160 0.00015841 0.0012146 7.67
320 7.89× 10−5 0.00060995 7.73
640 3.94× 10−5 0.00030498 7.74
1280 1.97× 10−5 0.00015249 7.74

suggests that r = 40 is close to the final value of r beyond which no decrease of the error

can happen.

Now we demonstrate the robustness of the estimator with respect to P.

Example 5.4.4. Here we have Ω = (0, 1) and f, g as in Example 5.4.1. We now vary the

coefficients in P. Since an analytical solution is not easily obtained for such a problem,

we approximate (u, v) ≈ (u∗, v∗) where the latter is obtained on a grid with n∗ = 5210

elements. We fix the grid and set N = 160 elements. and let the various coefficients

in P vary, one at a time, by several orders of magnitude. In Table 5.4 we show the

variation of the efficiency index Θ with respect to P and r.

We observe in Table 5.4 that the ratio Θ is essentially constant i.e. the estimator ηe

is quite robust with respect to r and c, λ1. It is also stable with respect to a, b. However,

for a, b ↓ 0 the efficiency index Θ varies, even though it changes only by a factor less

154

Table 5.4: Efficiency index Θ in Example 5.4.4. Each row corresponds to a different
value of a parameter from P as indicated while other parameters are kept fixed with
value 1. Each column corresponds to the different r

H
HHH

HHa
r

1 2 4 16

1010 7.76 7.75 7.76 7.72
105 7.76 7.75 7.76 7.72
1 7.76 7.82 7.92 7.73

10−5 3.06 5.59 6.89 8.08
10−10 1.42 1.63 1.48 2.26

H
HHH

HHb
r

1 2 4 16

1010 7.76 7.89 8.67 8.94
105 7.76 7.89 8.67 8.94
1 7.76 7.82 7.92 7.73

10−5 3.19 3.11 3.10 3.06
10−10 1.53 1.53 1.42 1.43

H
HHH

HHc
r

1 2 4 16

1010 7.76 6.94 6.24 5.67
105 7.76 7.61 7.60 7.51
1 7.76 7.82 7.92 7.73

10−5 7.76 7.82 7.92 7.74
10−10 7.76 7.82 7.92 7.74

H
HHH

HHλ1

r
1 2 4 16

1010 7.76 7.75 7.76 7.72
105 7.69 7.74 7.76 7.72
1 7.76 7.82 7.92 7.73

10−5 7.76 7.82 7.92 7.74
10−10 7.76 7.82 7.92 7.74

than 4 when a, b change by a factor of 1010. This variability could be eliminated for a

small enough H,h.

5.4.2 Adaptivity example

Next we consider application of the multilevel estimator to grid adaptivity.

Remark 5.4.1. Various adaptive strategies based on a-posteriori error estimates can be

defined. For the needs of the subsequent example, we use the following strategy one. In

each step we mark for refinement those elements T ′ ∈ Th for which the local estimator

ηT ′,u > 0.5 max
T

ηT,u.

Analogously we mark the elements K ∈ TH . The actual choice of new grid elements

honors the requirement that Th be a refinement of TH .

As an alternative strategy we refine those T ′ ∈ Th for which

ηT ′,u > 0.5 min(max
T

ηT,u,max
K

ηK,v),

155

Figure 5.7: Solutions u, v in Example 5.4.5. Left: plot over (0, 1). Right: zoomed in
boundary layer for u, v with an additional boundary layer for u.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
v

with a natural K-analogue. These two strategies can frequently mark the same elements,

but sometimes the alternative method leads to a faster decrease in Ee than the original.

Example 5.4.5. Let P = (1, 1, a, b, 1) and Ω = (0, 1), f = g ≡ 1. This example is from

([36], Example 1) where it is shown that both u, v have both boundary layers of width

O(b1/2 ln b), and that u has an extra layer of width O(a1/2 ln a). Let a = 10−7, b = 10−4.

The solution is shown in Figure 5.7.

Starting from a uniform grid T 0
h = T 0

H with h = 0.2 and n = N = 5, we use our

a-posteriori estimator ηe to guide the appropriate grid refinement in the boundary layer

as in Remark 5.4.1. We show details of the first few steps of this strategy, referring only

to the boundary layer on the left hand side; the other side follows by symmetry. Table 5.5

summarizes the quantitative information and Figures 5.8 and 5.9 illustrate its effects.

1. After we compute the solution (uh, vH) and the local error estimator for T 0
h = T 0

H

we find that we need to refine the grid in the intervals [0, 0.2] for both u and v

components, according to both strategies in Remark 5.4.1. We denote this grid by

T 1
h = T 1

H .

2. Compute the solution and the local error estimator for T 1
h = T 1

H , here n = N = 43.

We find that we need to refine the elements in [0, 0.1] for u components and in

[0, 0.1], [0.1, 0.2] for v component. The marking is the same for both strategies.

We denote the resulting grid by T 2
h , T 2

H . Note that T 2
h 6= T 2

H .

156

Table 5.5: Refinement at each step (recall symmetry of the domain)

1st Step 2nd Step 3rd Step

max ηu,T 0.2318 0.0518 0.0178

max ηv,K 0.2315 0.1087 0.0444

ηe 0.4818 0.2120 0.140

of elements 5 + 5 =10 43+43 = 86 79 + 61 = 140

3. Compute the solution and the local error estimator for T 2
h , T 2

H . Here we have

n = 79, N = 61. Using the original component-based strategy, we find that we need

to refine in the interval [0, 0.001] for u and in [0.02, 0.03] for v component. The

alternative strategy marks [0, 0.001] for u and [0.01, 0.02], [0.02, 0.03] for v.

4. Continue . . .

Analysing this last Example we see that the a-posteriori error estimators suggest after

Step 2 that a multilevel rather than identical grid should be used for the two components.

In order to refine separately the u- and v- grids, we need an ability to estimate the error

in each component separately and at best locally.

5.4.3 Numerical results for error in only one of the variables

Our next example shows the application of the error estimate in one variable only.

Example 5.4.6. Let Ω = (0, 1) and u(x) = x2 sin(10πx), v(x) = x − x2 be the exact

solution of (2.1a)–(2.1b) with P = (1, 1, 10−3, 1, 100). We note that c = 100 indicates a

rather strong coupling in the system. We use N = 320 and let r vary. Table 5.6 shows

the application of the global system estimator and of the one for u-variable only.

Studying the first row of Table 5.6 and comparing Ee with E∗ and ηe with η∗ we

notice that that they are close, i.e., error is dominated by the error in u. It is important

to notice that since both estimators are robust in r, we can use the estimators instead

of the error information as a tool to determine the dominating component. To decrease

that component of the error, we refine the mesh on which u is computed. This helps to

decrease the error significantly while making the total number of unknowns grow by a

factor smaller than 2r between each grid steps. However, in row 6 the errors and the

157

Figure 5.8: Illustration of adaptive steps from Example 5.4.5: plot of solution (uh, vH).
Top: solution in step 1. Bottom: solution step 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
v

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
v

REFINE

REFINE

158

Figure 5.9: Illustration of adaptive steps from Example 5.4.5: plot of solution (uh, vH).
Top: step 3 with original strategy. Bottom: step 3 with alternative strategy. Zoom is
indicated by the range of x.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
v

REFINE

REFINE

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
vREFINE

REFINE

159

Table 5.6: Robustness and use of estimator in one variable only in Example 5.4.6. Shown
on the left are the error, estimate, and efficiency index corresponding to the usual esti-
mator (4.34). On the right we show the corresponding values for the quantities computed
in the u variable only (4.67) and in particular η∗ and E∗ := ‖u− uh‖∗, and Θ∗ := η∗

E∗

rN ηe Ee Θ

320 0.071569 0.0093135 7.6844
640 0.037764 0.0048850 7.7305
1280 0.022419 0.0028967 7.7396
2560 0.016486 0.0021303 7.7387
5120 0.014631 0.0018910 7.7371
10240 0.014129 0.0018263 7.7365

rN η∗ E∗ η∗/E∗
320 0.070195 0.0091370 7.6825
640 0.035090 0.0045396 7.7296
1280 0.017544 0.0022662 7.7416
2560 0.0087722 0.0011327 7.7443
5120 0.0043861 0.00056644 7.7433
10240 0.0021931 0.00028347 7.7365

estimators vary already by a factor of ≈ 6 that is, we have decreased the dominating

component of the error.

As for computational complexity, we see that the error decreases by a factor of almost

2 between the first row and the second while the number of unknowns increased by a

factor of 3/2 = 1.5. Without multilevel grids, we would have to refine grid in u, v

simultaneously, i.e., double the total number of unknowns. We conclude that multilevel

grids are quite useful in this example.

In summary, Example 5.4.6 is a nice illustration of applicability of the estimator in

one variable only. It is associated by design with the strongly varying component, i.e.,

the u component.

Next we consider a few examples in d = 2 dimensions.

5.4.4 Numerical results in 2D

Example 5.4.7. Use as exact solution to (3.25) the functions u(x, y) = sin(2πx)(y2 −
y), v(x, y) = (x2 − x)(y2 − x). Let Ω = (0, 1)2. The coefficients are set to be P =

(1, 1, 1, 10−3, 10). We calculate the corresponding f, g. Next, we solve for (uh, vH) and

consider the rate of convergence of the energy error and of the estimator. We use N = rn

for r = 1, 4. In Table 5.7 we can see that Θ changes a little with N but not much with r.

Example 5.4.8. Now we vary P in Example 5.4.7. Since the analytical solution for gen-

eral P is not easy to find, we use Richardson extrapolation with n∗ = 131072 elements to

160

Table 5.7: Convergence of the error and estimator for Example 5.4.7, N = n that is
r = 1 (left) and N = 4n or r = 4 (right)

1
h Ee ηe Θ

16 0.13244 1.6367 12.358
32 0.066409 0.83876 12.630
64 0.033228 0.42340 12.742
128 0.016617 0.21255 12.791

1
h Ee ηe Θ

4 0.13966 1.6731 11.979
8 0.067145 0.84301 12.555
16 0.033321 0.42397 12.724
32 0.016632 0.21265 12.786

Table 5.8: Efficiency index Θ for Example 5.4.8

H
HHH

HHa
λ2 10−10 10−5 1 105 1010

10−10 3.8324 3.8324 3.7714 1.3563 1.3563
10−5 4.5796 4.5796 4.5117 1.8375 1.8375

1 12.237 12.237 12.231 12.076 12.076
105 13.839 13.839 13.839 12.025 12.076
1010 13.840 13.840 13.839 2.2928 12.039

approximate the true error. We are interested in the behavior of Θ for P = (1, λ2, a, 1, 10)

when a and λ2 decrease; this example is relevant to a steady-state pseudo-parabolic sys-

tem [39]. The solution uh, vH is computed with n = 8192, N = 2048 elements. The

results are presented in Table 5.8.

Our last example shows the application of the global error estimate to adapt the grid

uniformly in the goal to satisfy a prescribed tolerance. Specifically, we want to ensure

‖(eu, ev)‖e ≤ τ (5.33)

for a given τ . This follows of course if we ensure ηe ≤ τ .

Example 5.4.9. We consider P = (0.1, 1, 1, 10−3, 10) and Ω = (0, 1)2 in (3.25). The

analytical solution is given by u(x, y) = sin(2πx)(y2 − y), v(x, y) = (x2 − x)(y2 − x).

To satisfy (5.33) with τ = 0.02 we can use either Th = TH and h = H = 1/128 with a

total 16641+16641 = 33282 nodes. On the other hand, to satisfy the same tolerance with

multilevel mesh it suffices to have h = 1/128, H = 1/16, r = 8 and 16641 + 289 = 16930

nodes.

161

For τ = 0.05, we find that 4225 + 4225 = 8450 nodes are necessary while 4225 + 81

nodes of multilevel mesh will suffice. Here h = 1/64 = 0.015625, and H = 1/8 = 0.0125,

so r = H/h = 8.

5.4.5 Numerical results for piecewise constant coefficients

In the two examples below we consider the following setting:

• Ω = (0, 1).

• f ≡ 1 and g ≡ 0.

• Homogeneous Dirichlet boundary conditions.

• P = {1, 1, a(x, q), 10}.

The parameter a(x, q) is given by

a(x, q) =

{
1, x ∈ (0, 0.2) ∪ (0.3, 0.5) ∪ (0.7, 0.8) ∪ (0.9, 1),

q, otherwise.

Here q is a positive constant. Note that if q = 1, then a ≡ 1. Figure 5.10 illustrates

a(x, q).

We vary the parameter q and analyse the robustness of the estimator ηe. To compute

the efficiency index Θ we use as the true solution the solution approximated in a mesh

with 8000 elements and use this solution to approximate the true error Ee.

Example 5.4.10. Let q = 10−3. We test the error convergence and the robustness of

the estimator for:

• h−1 = 500, 1000, 2000.

• r = 1, 2, 5, 10.

In Table 5.9 we observe that the efficiency Θ remains close to the value 7.7 despite

the fact that a is piecewise constant.

Example 5.4.11. Fix h−1 = 2000. We verify the robustness of the estimator ηe for:

• r = 1, 2, 5, 10.

162

Figure 5.10: Illustration of the piecewise constant parameter a(x, q)

0 0.2 0.3 0.5 0.7 0.8 0.9

1

q

x

a(x, q)

Table 5.9: Example 5.4.10: Robustness of the estimator for the E-model with P =
{1, 1, a(x, 10−3), 1, 10}.

r = 1 r = 2

h−1 Ee ηe Θ Ee ηe Θ

500 0.0021545 0.015812 7.3390 0.0022479 0.016566 7.3695

1000 0.00098153 0.0081987 8.3530 0.0010323 0.0085637 8.2958

2000 0.00049239 0.0041781 8.4854 0.00051766 0.0043574 8.4175

r = 5 r = 10

h−1 Ee ηe Θ Ee ηe Θ

500 0.0028460 0.021086 7.4090 0.0045935 0.032313 7.0345
1000 0.0013387 0.010775 8.0495 0.0021298 0.016378 7.6902
2000 0.00066880 0.0054494 8.1480 0.0010476 0.0082400 7.8659

163

Table 5.10: Example 5.4.11: Efficiency index Θr for different values of q and r.

q Θ1 Θ2 Θ5 Θ10

1 8.6501 8.3646 7.9388 7.8013
10−2 8.6036 8.4139 8.0071 7.8217
10−4 8.1298 8.1165 8.0148 7.6365
10−6 5.8863 5.8891 5.8500 5.6569

• q = 1, 10−2, 10−4, 10−6.

In Table 5.10 we observe that the estimator is essentially robust with respect to r

and to the parameter a(x, q).

5.5 Numerical results for the LP, WR, and PP models

In this Section we show examples of the application of the a-posteriori error estimators

ηlp, ηwr, ηpp for the LP, WR, and PP models, respectively. We verify the robustness of

the estimators with respect to the multilevel scheme and with respect to the parameters

P = (λ1, λ2, a, b, c). For all the examples we use uniform time stepping, i.e., τn = τ , ∀n.

We begin by showing a simulation example that illustrates the effect of the parameters

P in the behavior of the solution. Figure 5.11 illustrates the effect of P on the solutions.

Example 5.5.1. We use homogeneous initial and boundary conditions and g ≡ 0 and f

a point source at x = 1/3. In Figure 5.11, we plot the solutions and the spatial estimators

for P = {1, 1, 1, 1, 10} and P = {1, 1, 1, 0, 10} at the times t = 0.002, 0.3.

Notice in Figure 5.11 the difference in scales and in qualitative behavior of u, v for

different P. In particular, the error in v is always small at the initial time steps but

when b = 0 it may dominate the global error long after u is smooth.

Next, we verify the a-priori error estimate given in Corollary 4.5.3. Based on the

a-priori error estimate we know that the error is O(h + H + τ). So we refine h, H and

τ at the same rate. We also verify the robustness of the a-posteriori estimator ηlp from

Theorem 4.5.6 with respect to the h and τ and the ratio r = H/h.

Example 5.5.2. Let Ω = (0, 1) and (e−t sin(4πx),−e−2t(x2 − x)) be the exact solution

of 3.32. We are going to test the estimator for:

164

Figure 5.11: Example 5.5.1: behavior of solutions u, v to LP-model and of spatial error
indicators [∂νu], [∂νv] for different P.

165

Table 5.11: Example 5.5.2: Robustness of the estimator for the LP-model with P = 15,
T = 0.1, τ = h. The numerical experiment convergence order is O(hα). From theory,
we expect α = 1.

r = 1 r = 2

h−1 Elp α ηlp Θ Elp α ηlp Θ

100 0.097818 - 0.74751 7.6418 0.097860 - 0.74783 7.6418

200 0.049037 0.9962 0.37498 7.6470 0.049057 0.9963 0.37514 7.6471

400 0.024549 0.9982 0.18776 7.6483 0.024560 0.9981 0.18784 7.6484

800 0.012282 0.9991 0.093944 7.6487 0.012288 0.9991 0.093985 7.6488

r = 4 r = 10

h−1 Elp α ηlp Θ Elp α ηlp Θ

100 0.098024 - 0.74907 7.6417 0.099179 - 0.75728 7.6355

200 0.049140 0.9962 0.37578 7.6472 0.049718 0.9963 0.38012 7.6454

400 0.024601 0.9982 0.18817 7.6486 0.024891 0.9981 0.19039 7.6489

800 0.012308 0.9991 0.094148 7.6491 0.012454 0.9990 0.095275 7.6504

• LP-model: P = 15.

• h−1 = 100, 200, 400, 800.

• r = 1, 2, 4, 10.

The time step is kept τ = h and the errors are all analysed at T = 0.1. In Tables 5.11,

Elp and ηlp is given by (4.158) and (4.160), respectively.

In Table 5.11 we show the results of theses experiments. As expected from Corol-

lary 4.5.3, Elp decays by a factor of 2 as we decrease h by a factor of 2. In this Example

the use of a multilevel mesh is beneficial due to the nature of the solutions. The u com-

ponent changes more in the spatial direction while the changes in the v component are

not as drastic.

Next verify the robustness of the estimators ηwr, ηpp, presented in Corollaries 4.6.5

and 4.7.4, with respect to the h and τ and the ratio r = H/h for the WR-model and

PP-model. We also confirm the a-priori error estimates given by Corollaries 4.6.2 and

4.7.2, respectively. For both models, WR and PP, the order of convergence of error is

O(h+H2 + τ). So if we refine H by a factor of s, we refine h and τ by a factor of s2.

166

Table 5.12: Example 5.5.3: Robustness of the estimator for the WR-model with P =
{1, 1, 1, 0, 1}, T = 0.1, τ = h. The numerical experiment convergence order is O(hα).
From theory, we expect α = 1.

h−1 H−1 r Ewr α ηwr Θ

20 20 1 0.48200 - 3.6523 7.5774
80 40 2 0.12121 0.9958 0.93748 7.7344
320 80 4 0.030324 0.9995 0.23484 7.7443
1280 160 8 0.0075821 0.9999 0.058723 7.7449

Example 5.5.3. Let Ω = (0, 1) and (e−t sin(4πx),−e−2t(x2 − x)) be the exact solution

of 3.38 and 3.40. We test the estimator for:

• WR-model: P = {1, 1, 1, 0, 1}.

• PP-model : P = {0, 1, 1, 0, 1}.

• h−1 = 20, 80, 320, 1280.

• H−1 = 20, 40, 80, 160.

The time step is kept τ = h and the errors are all analysed at T = 0.1.

In this Example, s = 2, i.e., we refine H by a factor of 2, h = τn by a factor of

4. We keep h = τ =
√
H, and compute the numerical convergence order O(hα). For

both models the theoretical α = 1 and the results in Tables 5.12 and 5.11 show that the

numerical α ≈ 1.

In Table 5.12, Ewr and ηwr are given by (4.187) and (4.189), respectively. In Table

5.13, Epp and ηpp are given by (4.201) and (4.204), respectively.

In Tables 5.12 and 5.13 we see the robustness of the estimators ηwr, ηpp for the

different values of r,h, and H. Note that the convergence order is pretty close to the

value α = 1 expected from Corollary 4.6.2.

In Examples 5.5.2 and 5.5.3 we confirmed the a-priori error estimates and verified

the robustness of the a-posteriori error estimator with respect to the mesh size. Next,

we verify the robustness of the estimator with respect to the parameters in P.

Example 5.5.4. We keep the same exact solution as in Examples 5.5.2 and 5.5.3. Fix

h = τ = 2.5 × 10−3 and H = 5 × 10−3, i.e., r = 2. We vary two parameters in P at a

time. The parameters that are not varying are kept equal to one.

167

Table 5.13: Example 5.5.3: Robustness of the estimator for the PP-model with P =
{0, 1, 1, 0, 1}, T = 0.1, τ = h. The numerical experiment convergence order is O(hα)
given in the fifth column. From theory, we expect α = 1.

h−1 H−1 r Epp α ηpp Θ

20 20 1 0.47674 - 3.5719 7.4923
80 40 2 0.12205 .09829 0.93246 7.6399
320 80 4 0.030663 0.9965 0.23457 7.6499
1280 160 8 0.0076747 0.9992 0.058717 7.6507

Table 5.14 analyses the robustness of the estimator as the LP-model ”tends” to the

PP-model. We observe the the estimator is robust and the only ”bad” values for Θ are

in the last column when b = 104. For finer meshes this last column also behaves well as

one can see in Table 5.15 for h = τ = 1.25 × 10−3, H = 5 × 10−3. Thus if the mesh is

fine enough Θ ≈ 7.7.

In Table 5.16 we verify the robustness of the estimator with respect to the parameters

a and c. Again we get bad values for Θ when a = 104. As mentioned before and

illustrated in Table 5.15, it suffices to have the mesh fine enough to Θ to approach values

around 7.7 as expected.

Now we test the a-priori error convergence and the a-posteriori error estimator in a

2-dimensional example. We verify the robustness of the estimator with respect to the h

and τ and the ratio r = H/h.

Example 5.5.5. Let Ω = (0, 1) and (e−t sin(4πx) sin(2πy), e−2t(x2 − x)(y2 − y)) be the

exact solution of 3.32. We are going to test the estimator for:

• LP-model: P = 15.

• h−1 = 4
√

2, 8
√

2, 16
√

2.

• r = 1, 2, 4.

The time step is kept τ =
h√
2

and the errors are all analysed at T = 1. Based on the

a-priori error estimate we know that the error convergence rate is O(h+H + τ). So we

refine h,H, τ at the same rate.

Note in Table 5.17 the robustness of the estimator for the different values of r, h. As

expected form the a-priori estimate (4.113), Elp decays by a factor of 2 as we decrease

168

Table 5.14: Example 5.5.4: P = {λ1, 1, 1, b, 1}

b 10−8 10−4 1 104

λ1 Elp
10−8 0.024538 0.024538 0.024557 0.098619
10−4 0.024538 0.024538 0.024557 0.098619

1 0.024541 0.024541 0.024560 0.098619
104 0.024808 0.024808 0.024826 0.098686

λ1 ηlp

10−8 0.18772 0.18772 0.18784 0.66808
10−4 0.18772 0.18772 0.18784 0.66808

1 0.18772 0.18772 0.18784 0.66808
104 0.18773 0.18773 0.18785 0.66808

λ1 Θ

10−8 7.6502 7.6502 7.6492 6.7744
10−4 7.6502 7.6502 7.6492 6.7744

1 7.6494 7.6494 7.6484 6.7744
104 7.5676 7.5676 7.5667 6.7698

Table 5.15: Example 5.5.4: P = {λ1, 1, 1, 104, 1}, h = τ = 1.25× 10−3, H = 5× 10−3

λ1 Elp ηlp Θ

10−8 0.012605 0.093927 7.4514
10−4 0.012605 0.093927 7.4515

1 0.012635 0.094150 7.4517
104 0.087077 0.64724 7.4330

169

Table 5.16: Example 5.5.4: P = {1, 1, a, 1, c}

a 10−8 10−4 1 104

c Elp
10−8 0.00097025 0.00097026 0.0010284 0.034239
10−4 0.0010008 0.0010008 0.0010573 0.034240

1 0.024557 0.024557 0.024560 0.042123
104 2.4536 2.4536 2.4536 2.4538

c ηlp

10−8 0.0064095 0.0064098 0.0064440 0.035286
10−4 0.0066815 0.0066817 0.0067165 0.035324

1 0.18783 0.18783 0.18784 0.19171
104 18.771 18.771 18.771 18.772

c Θ

10−8 6.6060 6.6063 6.2659 1.0306
10−4 6.6758 6.6761 6.3524 1.0317

1 7.6488 7.6488 7.6484 4.5512
104 7.6507 7.6507 7.6507 7.6502

h by a factor of 2. Also note that Θ ≈ 4.4, different from the value of Θ ≈ 7.7 for the

1-dimensional examples. However the constants that determine the value of Θ depend

on the domain Ω, so for different domains we expect different values of Θ.

5.6 Numerical results for the NLP-model

In this section we consider the estimator ηnlp (4.211) and its performance for the NLP-

model, for ϕ(u) = βu
1+αu , the Langmuir isotherm. In this case the system is ”almost”

linear for small values of α. We use the parameters:

• β = 1, α = 0: get back the linear system LP.

• β = 2, α = 0.05.

• β = 1, α = 0.5.

• β = 1.5, α = 0.1.

170

Table 5.17: Example 5.5.5: Robustness of the estimator for the LP-model with P = 15,
T = 1, τ = h

r = 1 r = 2

h−1 Elp α ηlp Θ Elp α ηlp Θ

4
√

2 2.3880 - 10.929 4.5768 2.3882 - 10.931 4.5770

8
√

2 1.2912 0.8871 5.5990 4.3363 1.2914 0.8870 5.6003 4.3364

16
√

2 0.66547 0.9563 2.8339 4.2586 0.66601 0.9555 2.8349 4.2565

r = 4

h−1 Elp α ηlp Θ

4
√

2 2.3889 - 10.934 4.5769

8
√

2 1.2914 0.8874 5.6023 4.3380

16
√

2 0.66556 0.9563 2.8363 4.2616

Recall that the NLP-model models the diffusion-adsorption application described in Sec-

tion 2.4 if b ≡ 0. Thus, in this section we only consider the case b ≡ 0. We also only

consider the case h = H.

In Section 5.6.1 we show simulations results that illustrate the dependence of the

solutions in the parameters P and in the coefficients α, β of the Langmuir isotherm. In

Section 5.6.2 we present numerical results to illustrate the robustness of the estimator

ηnlp presented in Proposition 4.8.1.

5.6.1 Simulations for the diffusion-adsorption applications

Here we present simulations of a diffusion-adsorption process. We set P = {1, 1, a, 0, c}.
Recall that for the diffusion-adsorption application, u represents the concentration of

the solute in the fluid flow and v represents the amount of the solute adsorbed by the

porous media.

For the simulation examples we use the following setting:

• Ω = (0, 1).

• h = H, h−1 = 103,

• Uniform time-steps with τ = 10−2 and final time T = 0.1.

• Homogeneous Dirichlet boundary conditions.

171

• Initial conditions u(x, 0) = v(x, 0) = 0.

• g ≡ 0 and f(x, t) =

{
1, |x− 0.5| < 1 and t < 0.05,

0, otherwise.

Note that we start with u(x, 0) = v(x, 0) = 0 and we have the source f(x, t) until

t = 0.05. Thus we expect u(x, t), v(x, t) to increase up to t = 0.05 and then to start to

decrease for t > 0.05.

Example 5.6.1. Let P = {1, 1, a, 0, c}, we simulate the diffusion-adsorption process for:

• a = 1, 10−3.

• c = 10−2, 102.

• Linear isotherm: α = 1, β = 1.

• Langmuir isotherm: α = 0.05, β = 2.

We plot u(x, t), v(x, t) for:

• t = 0.01, right after the beginning of the process.

• t = 0.05, at the time the source term f is shut off. Here u(·, t), v(·, t) should achieve

its maximum.

• At the final time t = 0.1 .

Recall that a represents the diffusivity of the porous media and that c is the inverse

of the sorption time. This mean that the larger is the c, the smaller is the sorption time.

Lower the sorption time faster the solute gets adsorbed to the media. Thus we expected

the concentration adsorbed v to increase when c increases and the concentration of the

solute in the fluid flow u to decrease as c increases.

To verify the effect of the sorption time c in the solutions compare the magnitude

of the solutions between Figure 5.12 to Figure 5.13 for the linear isotherm. The two

simulations presented in Figure 5.12 and Figure 5.13 only differ in the value of c. Note

the difference especially in the amount adsorbed v(x, t). For t = 0.05, v(x, 0.05) ranges

from 0 − 6 × 10−6 for the high sorption time 1/c = 102 in Figure 5.12 and v(x, 0.05)

ranges from 0 − 10−2 for the low sorption time 1/c = 10−2 in Figure 5.13. The same

172

Table 5.18: Example 5.6.2: Adsorption-Diffusion, P = {1, 1, a, 0, 1}. Recall Enlp is the
error, ηnlp is the estimator, and Θ is the efficiency index

β = 1, α = 0 (Linear) β = 2, α = 0.05 (Langmuir)

a τn h−1 Enlp ηnlp Θ Enlp ηnlp Θ

1
10−4 103 2.41.10−4 1.87.10−3 7.74 2.41.10−4 1.87.10−3 7.74

5.10−5 2.103 1.24.10−4 9.61.10−4 7.74 1.24.10−4 9.61.10−4 7.74

10−3 10−4 103 8.39.10−6 5.92.10−5 7.06 8.84.10−6 5.93.10−5 6.70
5.10−5 2.103 4.16.10−6 3.04.10−5 7.31 4.39.10−6 3.04.10−5 6.92

β = 1, α = 0.5 (Langmuir) β = 1.5, α = 0.1 (Langmuir)

a τn h−1 Enlp ηnlp Θ Enlp ηnlp Θ

1
10−4 103 2.42.10−4 1.87.10−3 7.74 2.42.10−4 1.87.10−3 7.74

5.10−3 2.103 1.24.10−4 9.62.10−4 7.74 1.24.10−4 9.61.10−4 7.74

10−3 10−4 103 9.08.10−6 5.93.10−5 6.53 8.63.10−6 5.93.10−5 6.86
5.10−5 2.103 4.34.10−6 3.05.10−5 7.02 4.28.10−6 3.04.10−5 7.11

phenomenon is observed when comparing Figure 5.14 to Figure 5.15 for the Langmuir

isotherm.

Comparing Figure 5.13 to Figure 5.16 and Figure 5.15 to Figure 5.17 we observe the

effect of the permeability on the solutions.

5.6.2 Numerical results for the NLP-model

The next examples verify the robustness of the estimator ηnlp given in Proposition 4.8.1.

The error is computed using the norm Enlp (4.209).

Example 5.6.2. Here we fix u = e−t sin(2πx), b = g = 0, and c = 1 in (3.45). The

final time is T = 10−3. We then verify the robustness of the estimator ηnlp with respect

to the parameter a.

In Table 5.18 we see that the estimator is robust for both linear and Langmuir

isotherms for various values of α.

The next example models the nonlinear pseudo-parabolic equation.

Example 5.6.3. In this example we fix u = e−t sin(2πx), b = g = 0, and c = 1 in (3.45)

as in Example 5.6.2. The final time is T = 10−3. Again, we verify the robustness of the

estimator ηnlp given by (4.211) with respect to the parameter a and compare the results

for the NLP-model for linear and the Langmuir isotherms.

173

Figure 5.12: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 10−2}
and linear isotherm.

0 0.5 10

0.005

0.01

u(x,t)
t = 0.01

0 0.5 10

0.5

1 x 10−6
v(x,t)

t = 0.01

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

5 x 10−6 t = 0.05

0 0.5 10

0.01

0.02

x

t = 0.1

0 0.5 10

1

2 x 10−5

x

t = 0.1

174

Figure 5.13: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 102} and
linear isotherm.

0 0.5 10

5 x 10−3
u(x,t)

t = 0.01

0 0.5 10

2

4 x 10−3
v(x,t)

t = 0.01

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

0.005

0.01
t = 0.05

0 0.5 10

0.005

0.01
t = 0.1

x
0 0.5 10

0.005

0.01
t = 0.1

x

175

Figure 5.14: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 10−2}
and Langmuir isotherm for α = 0.05, β = 2.

0 0.5 10

0.005

0.01

u(x,t)
t = 0.01

0 0.5 10

1

2 x 10−6
v(x,t)

t = 0.01

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

0.5

1 x 10−5 t = 0.05

0 0.5 10

0.01

0.02
t = 0.1

x
0 0.5 10

2

4 x 10−5 t = 0.1

x

176

Figure 5.15: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 1, 0, 102} and
Langmuir isotherm for α = 0.05, β = 2.

0 0.5 10

2

4 x 10−3
u(x,t)

t = 0.01

0 0.5 10

2

4 x 10−3
v(x,t)

t = 0.01

0 0.5 10

0.005

0.01
t = 0.05

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

0.005

0.01

x

t = 0.1

0 0.5 10

0.01

0.02

x

t = 0.1

177

Figure 5.16: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 10−3, 0, 102}
and linear isotherm.

0 0.5 10

0.005

0.01

u(x,t)
t = 0.01

0 0.5 10

2

4 x 10−3
v(x,t)

t = 0.01

0 0.5 10

0.02

0.04
t = 0.05

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

0.02

0.04
t = 0.1

x
0 0.5 10

0.02

0.04
t = 0.1

x

178

Figure 5.17: Example 5.6.1: simulation diffusion-adsorption for P = {1, 1, 10−3, 0, 102}
and Langmuir isotherm for α = 0.05, β = 2.

0 0.5 10

0.005

0.01

u(x,t)
t = 0.01

0 0.5 10

5 x 10−3
v(x,t)

t = 0.01

0 0.5 10

0.01

0.02
t = 0.05

0 0.5 10

0.02

0.04
t = 0.05

0 0.5 10

0.01

0.02
t = 0.01

x
0 0.5 10

0.02

0.04
t = 0.01

x

179

Table 5.19: Example 5.6.3: Nonlinear pseudo-parabolic, P = {0, 1, a, 0, 1}. Recall Enlp
is the error, ηnlp is the estimator, and Θ is the efficiency index

β = 1, α = 0 (Linear) β = 2, α = 0.05 (Langmuir)

a τn h−1 Enlp ηnlp Θ Enlp ηnlp Θ

1
10−4 103 2.41.10−4 1.87.10−3 7.74 2.41.10−4 1.87.10−3 7.74

5.10−5 2.103 1.24.10−4 9.61.10−3 7.74 1.24.10−4 9.61.10−3 7.74

10−3 10−4 103 8.02.10−6 5.92.10−5 7.38 8.50.10−6 5.93.10−5 6.98
5.10−3 2.103 4.12.10−6 3.04.10−5 7.38 4.36.10−6 3.04.10−5 6.99

β = 1, α = 0.5 (Langmuir) β = 1.5, α = 0.1 (Langmuir)

a τn h−1 Enlp ηnlp Θ Enlp ηnlp Θ

1
10−4 103 2.42.10−4 1.87.10−3 7.74 2.42.10−4 1.87.10−3 7.74

5.10−5 2.103 1.24.10−4 9.62.10−4 7.74 1.24.10−4 9.62.10−4 7.74

10−3 10−4 103 8.74.10−6 5.93.10−5 6.78 8.28.10−6 5.93.10−5 7.16
5.10−3 2.103 4.30.10−6 3.04.10−5 7.08 4.24.10−6 3.04.10−5 7.18

In Table 5.19 we observe the robustness of the estimator for the linear and Langmuir

isotherm.

5.7 Double-porosity, Barenblatt model

In this section we present simulations for the Warren-Root model, see Section 2.2. This

model can be considered a macro–model, i.e., a homogenization limit of another micro–

model. We discuss how to compute the coefficients of the macro-model from the micro–

model and how to accurately and efficiently implement the macro-model. We consider

the following questions:

Q1. How close are the numerical solutions of the micro and macro–model?

Q2. Since the macro-model is defined by averaging, how coarse can the grid for the

macro-model be so we can still maintain a good approximation of the micro-model?

Q3. How accurately do we need to compute the coefficients of the macro-model?

Q4. How to estimate the error in the numerical solution of the macro-model?

Below we give details of numerical computations that address these questions.

180

5.7.1 Details of the model

Consider a porous media composed by three different materials layered periodically as

in Figure 5.19(a). The media in divided in three disjoint regions Ω1,Ω2,Ω3. The region

Ω3 is called the interface region and it separates regions Ω1 and Ω2, usually called the

fast and slow region, respectively. In each cell the regions are denoted by Y1, Y2, Y3, as

shown in Figure 5.19(b).

The fluid flow in the media is modelled by (2.9), which we recall here

φ(x)
∂u

∂t
−∇ · (k(x)∇u) = 0. (5.34)

The parameters φ and k represent the porosity and permeability of the medium, respec-

tively. Because of the heterogeneity of the media

φ(x) = φ1χ1(x) + φ2χ2(x) + φ3χ3(x),

k(x) = k1χ1(x) + k2χ2(x) + k3χ3(x).

Here χi, i = 1, 2, 3, is the characteristic function

χi(x) =

{
1, x ∈ Ωi,

0, x /∈ Ωi.

The φ1, φ2, φ3 generally differ from each other by several orders of magnitude. The same

with the coefficients k1, k2, k3. As discussed in Section 2.2, solving the equation (5.34)

directly, is very costly since it requires a very fine grid. Therefore an upscaled model is

formulated in Ω for φ3 = 0 in [50].

Because the region Ω2 is disconnected we have the WR-model proposed in [57], see

Section 2.2. 
φ̃1
∂u1

∂t
−∇ · (K̃1∇u1) + c(u1 − u2) = 0 in Ω,

φ̃2
∂u2

∂t
+ c(u2 − u1) = 0 in Ω.

(5.35)

181

Figure 5.18: Illustration of a periodic heterogeneous media. Figure (a): Ω1 - white, Ω2

- grey, and Ω3 - dark grey. Figure (b): zoom of one cell.

Micro-model

(a) Periodic media

Y1, φ1, K1

Y3

Y2, φ2, K2

fast

medium

slow

medium

(b) One cell

The parameters φ̃1, φ̃2 are given by the average of the original porosities φ1, φ2 in a

cell

φ̃i =

∫
Yi

φi(y)dy, i = 1, 2.

The parameters k̃1 and c are more complicated to obtain. They require an auxiliary PDE

equation to be numerically solved. Let us start with the parameter k̃1. The parameter

is given by a 2× 2 matrix via

k̃1(i, j) =

∫
Y1

k1(y)(~ei +∇Wi(y)) · (~ej +∇Wj(y))dy, i, j = 1, 2.

Here Wi, i = 1, 2, is the solution of
∇ · [k1(~ei +∇Wi(y))] = 0, in Y1,

k1(~ei +∇Wi(y)) · ~n1 = 0, on Γ1,3,

Wi, k1∇Wi · ~n1 are periodic.

(5.36)

182

Figure 5.19: Illustration of Y3 in grey

Γ1,3

Γ2,3

The parameter c is given by the solution of

c =

∫
Γ1,3

∇yU · ν3ds.

Here U is the solution of the following
∇ · [k3∇U] = 0 in Y3,

U = 1, on Γ1,3,

U = 0, on Γ2,3.

(5.37)

See Figure 5.19 for an illustration of Y3.

5.7.2 Computing coefficients of the macro-model

The parameters of this system k̃1, c have to be computed numerically. To this aim,

we solve the PDEs (5.37), (5.36) using finite element spaces Vhc , Vhk1 , respectively. In

Example 5.7.1 we show an example of the computation of the parameters c and k1.

Example 5.7.1. Let Ω = (0, 1)2, Y2 = (0.3, 0.7)2, Y3 = (0.2, 0.8)2/Y2, and Y1 =

(0, 1)2/Y3. Let k = [1e − 2, 1e − 4, 1e − 7] and φ = [1e − 3, 1e − 6, 0]. We discretize

Y1 and Y3 in a mesh Th with diameter h, for h−1 = 10, 40, 80 as listed below. We solve

the PDEs (5.37) and (5.36) in the subspace generated by the meshes. The results are:

• h−1 = 10: k̃1 =

[
4.6305× 10−3 0

0 4.6305× 10−3

]
and c = 1.9000× 10−6.

183

Figure 5.20: Illustration of numerical experiments for the double-porosity model with 9
cells

(a) Exact Model

(b) Double-porosity model, u1

• h−1 = 40: k̃1 =

[
4.5196× 10−3 0

0 4.5196× 10−3

]
and c = 1.8412× 10−6.

• h−1 = 80: k̃1 =

[
4.5086× 10−3 0

0 4.5086× 10−3

]
and c = 1.8310× 10−6.

5.7.3 Numerical solution of the macromodel

From now on we drop the superscript ”˜” from the parameters φ̃1, φ̃2, k̃1. Since the

double porosity model (5.35) is an example of the WR-model, we know from the a-priori

estimate (4.176) that the use of multilevel discretization is advantageous. The multilevel

discrete form of (5.35) is given by:
(φ1

un1,h − u
n−1
1,h

τn
, φh) + (k

hk1
1 ∇un1,h,∇φh) + (chc(un1,h −Πun2,H), φh) = 0,

(φ2

un2,H − u
n−1
2,H

τn
, ψH) + (chc(un2,H −Π′un1,h), ψH) = 0.

(5.38)

In Figure 5.20 we see an illustration of the numerical solution of the original model

(5.34) and of the numerical solution for the fast medium u1 of the double-porosity model

(5.35).

184

With the notation introduced above we rephrase the question posed at the beginning

of the section.

Q1. How well does u1,h approximate uh in the fracture?

We want to compare the numerical approximation of the homogenized double-

porosity system (5.35) with the numerical approximation of the exact model (5.34).

Q2. How well does u1,h̃ approximate uh in the fracture, with h̃ >> h?

We want to compare the numerical approximation of the homogenized system using

a coarser grid than the one to compute the micro-model. Since one of the goals

in deriving the double-porosity model (5.35) is to be able to use a coarser mesh to

compute the solution.

Q3. How small does hc, hk1 have to be?

We want to have an idea of the of how coarse the mesh to compute the parameters

have to be in comparison with the mesh used to solve the double-porosity system

(5.38).

Q4. How well does u1,h approximate u1?

This is where our a-posteriori error estimator plays it role. We use the estimator

to estimate the error and it also can be used for mesh adaptivity. See Example

5.5.5 for that.

From now on, we set for the problem (5.34):

• Domain Ω = (0, 1)2.

• Boundary conditions: homogeneous Dirichlet-Neumann boundary given by

u(x, 0; t) = 1, u(x, 1; t) = 0,

u(x, y; t) · ~n = 0 at x = 0, 1.

• Initial conditions: u(x, y; 0) = 1.

• Parameters of the original problem (5.34):

φ = [1, 10−4, 0], k = [1, 10−1, 10−4].

185

• Cells: Y2 = (0.3ε, 0.7ε)2, Y3 = (0.2ε, 0.8ε)2/Y2 and Y1 = (0, ε)2/Y3.

We compare the numerical approximations of the original model (5.34) and the numerical

solution of the fast medium u1 homogenized model (5.35) we use the following norms.

Definition 5.7.1. Let T be the final time. For u(x, y, T) ∈ Vh

‖u(x, y, T)‖∗,1 :=

∫ 1

0
|u(x, 0.5, T)|dx,

‖u(x, y, T)‖∗,2 :=

{∫ 1

0
|u(x, 0.5, T)|2dx

}1/2

.

That is, we measure the L1 and L2 norm at the final time restricted to the strip [0, 1]×
{0.5}.

Next we present examples concerning questions Q1, Q2, and Q3. All the examples

use the settings described above.

Example 5.7.2. Let Ω = (0, 1)2 and fix the final time T = 0.05, τ = 10−4. Let h = H,

h−1 = 180, h−1
c = 90, h−1

k1
= 180. We compare the solutions uN1,h and uNh at the final

time, T , for different number of cells in Ω.

In Example 5.7.2 we address the question Q1. We compare the numerical solutions

at the final time in the strip [0, 1] × 0.5, see in Figure 5.21 that bigger the number of

cells, the closer the numerical solution of the micro-model is to the solution of the macro-

model. In Table 5.20 we see that the smaller the size ε of the cells, the closer the solution

of the two problem gets. We also note that the convergence seems to be of order O(ε).

This convergence was shown in [50] but no rate was given there.

In the next example we address Q2. We want to compare the numerical solution

for fast component double-porosity solution u1 in a coarser mesh than the one used to

compute the numerical approximation uh to the original model (5.34).

Example 5.7.3. We use a mesh with 5× 5 cells and h−1 = 100 for approximating the

original model (5.34). The run time for the simulation was 120 seconds.

The double-porosity model solution u1,h̃ is approximated is a mesh with diameter h̃

for the values:

• h̃−1 : 10, 50, 100.

186

Table 5.20: Example 5.7.2: ”convergence” of the double-porosity model to the exact
model

cells Nc size cells ε ‖uNh − uN1,h‖∗,1 ‖uNh − uN1,h‖∗,2
3× 3 0.3333 3.24× 10−2 1.19× 10−2

9× 9 0.1111 1.05× 10−2 0.39× 10−2

5× 5 0.2 7.4716× 10−3 0.039027

15× 15 0.0667 2.3850× 10−3 0.011395

45× 45 0.0222 0.80489× 10−3 0.0037118

Figure 5.21: Illustration of the part of the numerical solutions used to compute the error
with different ε

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Comparison of the numerical solution of the macro−model u
1,h

 to the solution
 of the micro−model u

h
 with different number of cells

u
h
, 3× 3 cells

u
h
, 5× 5 cels

u
h
, 9× 9 cells

u
1,h

187

Table 5.21: Example 5.7.3: Comparison of the error between the numerical solution for
the exact model and the double-porosity model with different mesh sizes

h̃−1 ‖uNh − uN1,h̃‖∗,1 ‖uNh − uN1,h̃‖∗,2 run time(s)

100 7.0921× 10−3 1.9034× 10−2 511
50 7.0940× 10−3 1.9044× 10−2 56
10 7.1153× 10−3 1.9134× 10−2 3

• We compute the parameters c, k1 using the mesh diameters: h̃ = hc = hk. The

different values of c and k1 can be see in Tables 5.22-5.23, respectively.

We compare the solutions uh and u1,h̃ for the different values of h̃ in Table 5.21. The

run time shown in Table 5.21 is referent for computing the solution of the double-porosity

system and includes the run time of computing the parameters of the system.

In Table 5.21 we see that the error remains stable for approximating the system with

a mesh much coarser than the one used for approximating the original model. Note also

the difference in the computational time. We can decrease he computational time from

511 seconds to 3 seconds without significant changes in the error of the approximation.

Also see in Figure 5.22 how close the solutions for different h̃ are from each other.

The next example address Q3, the issue of what mesh diameter to use to approximate

the parameters of the double-porosity system.

Example 5.7.4. Here we discuss the computation of the parameters c, k1 of the double-

porosity model with different mesh sizes. We fix 3× 3 cells and h−1 = 60 to compute the

numerical solution of the original model and of the double-porosity model, (5.34), (5.35),

respectively. To compute the parameters we use:

• Keep hk1 = h and h−1
c = 10, 50, 100, 200.

• Keep hc = h and h−1
k1

= 10, 50, 100, 200.

Because k1 is a diagonal matrix with the diagonal entries equal to each other, only the

entry k1(1, 1) is show in Table 5.23.

From the results shown in Tables 5.22 and 5.23 we conclude that the problem is not

very sensitive to c, thus we can use large hc. We also see that the problem is more

sensitive to the changes in the parameter k1.

188

Figure 5.22: Example 5.7.3: Comparison of approximating the exact model with the
double-porosity model with different mesh sizes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Comparison of the numerical solution of the micro−model u
h
 for h = 0.01

to the solution of the macro−model u
1,h

 for h = 0.01 and h = 0.1

x

u
h
, h = 0.01

u
1,h

, h = 0.01

u
1,h

, h = 0.1

Table 5.22: Example 5.7.4: Sensitivity to c. The differences in the errors occur in the
tenth decimal place.

h−1
c c ‖uh − u1,h‖∗,1 ‖uh − u1,h‖∗,2
10 1.9000× 10−3 3.6251× 10−2 5.9026× 10−2

50 1.8370× 10−3 3.6251× 10−2 5.9026× 10−2

100 1.8292× 10−3 3.6251× 10−2 5.9026× 10−2

200 1.8258× 10−3 3.6251× 10−2 5.9026× 10−2

189

Table 5.23: Example 5.7.4: Sensitivity to k1

h−1
k1

k1(1, 1) ‖uh − u1,h‖∗,1 ‖uh − u1,h‖∗,2
10 4.6306× 10−1 3.5392× 10−2 5.7835× 10−2

50 4.5141× 10−1 3.6222× 10−2 5.8989× 10−2

100 4.5046× 10−1 3.6301× 10−2 5.9093× 10−2

200 4.5009× 10−1 3.6332× 10−2 5.9134× 10−2

5.8 Numerical results for the dependence of the solutions in the pa-

rameters

Here we present numerical experiments to illustrate the result in Proposition 4.9.1.

In all the examples, we use the following set up:

• Ω = (0, 1).

• H = h and Th a uniform grid with h−1 = 200. Except for Example 5.8.4 where

h−1 = 10, 000.

• Uniform time-stepping τ = τn = 10−2 and final time T = 1.

• Right-hand side functions f = e−tx2, g = x+ t.

We suppose that P is the exact set of parameters. Then, we compare the difference

between the numerical solution of the LP-model (4.112) for P = {λ1, λ2, a, b, c} and

for another set of parameters P̃ = {λ1, λ2, a, b, c̃}. We analyse this difference in the

norm defined by equation (4.212). For simplicity we denote EP := ‖(eu,c, ev,c)‖∗∗. From

proposition 4.9.1 we expect EP = O(‖ε‖ = ‖c− c̃‖).
Examples 5.8.1– 5.8.3 illustrate the case where both c, c̃ are constants. Example 5.8.4

consider the case where c, c̃ are both piecewise constants however the position of the jump

is different.

Example 5.8.1. Let P = {10−2, 1, 1, 10−3, 10−4} and P̃ = {10−2, 1, 1, 10−3, c̃} for:

c̃ = 10−4 + 1, 10−4 + 10−1, 10−4 + 10−2, 10−4 + 10−3, 10−4 + 10−4.

Thus

‖ε‖ = 1, 10−1, 10−2, 10−3, 10−4.

190

Table 5.24: Example 5.8.1: EP = O(‖ε‖α). From theory we expect α = 1.

‖ε‖ 1 10−1 10−2 10−3 10−4

EP 2.230× 10−1 2.775× 10−2 2.839× 10−3 2.846× 10−4 2.846× 10−5

α – 0.9051 0.9900 0.9990 0.9999

Table 5.25: Example 5.8.2: we verify EP = O(‖ε‖α). From theory we expect α = 1.

‖ε‖ 1 10−2 10−4 10−6

EP 2.2305× 10−2 2.8393× 10−3 2.8465× 10−5 2.8466× 10−7

α – 0.9480 0.9994 1.000

In Table 5.24 we verify that EP = O(‖ε‖). In the next example we let c ≡ 0.

Example 5.8.2. Let P = {10−2, 1, 1, 10−3, 0} and P̃ = {10−2, 1, 1, 10−3, c̃} for:

c̃ = 1, 10−2, 10−4, 10−6.

Thus

‖ε‖ = 1, 10−2, 10−4, 10−6.

Example 5.8.3. Let P = {10−2, 1, 1, 10−3, 104} and P̃ = {10−2, 1, 1, 10−3, c̃} for:

c̃ = 104 + 1, 104 + 10−2, 104 + 10−4, 104 − 1, 104 − 10−2.

Thus

ε = 1, 10−2, 10−4,−1,−10−2.

Example 5.8.4. Let P = {10−2, 1, 1, 10−3, c} and P̃ = {10−2, 1, 1, 10−3, c̃}. Here

c(x) =

{
0.01, 0 ≤ x ≤ .5,
1, .5 < x ≤ 1, .

c̃(x) =

{
0.01, 0 ≤ x ≤ d,
1, d < x ≤ 1.

Table 5.26: Example 5.8.3: we verify EP = O(‖ε‖α). From theory we expect α = 1.

|ε| 1 10−2 10−4 1 10−2

EP 2.035× 10−8 2.035× 10−10 2.079× 10−12 2.035× 10−8 2.035× 10−10

α – 1.000 0.9954 – 1.000

191

Table 5.27: Example 5.8.4: c, c̃ piecewise constant functions. We verify EP = O(‖ε‖α).
From theory we expect α = 1.

d 0.6 0.51 0.501 0.5001

‖ε‖ 10−1 10−2 10−3 10−4

EP 3.96× 10−2 3.89× 10−3 3.97× 10−4 3.98× 10−5

α – 1.0077 0.9912 0.9989

d 0.4 0.49 0.499 0.4999

‖ε‖ 10−1 10−2 10−3 10−4

EP 3.81× 10−2 3.82× 10−3 3.97× 10−4 3.98× 10−5

α – 0.9987 0.9832 0.9989

for d ∈ (0, 1). We test the convergence of EP for

d = 0.6, 0.51, 0.501, 0.5001, 0.4, 0.49, 0.499, 0.4999.

It is easy to see that ‖ε‖ = (0.99)2|d− 0.5|.

192

6 Conclusions

In this thesis, we developed several a-priori and a-posteriori error estimates applicable

to elliptic and parabolic systems. The main theoretical results are in Theorems 4.3.4 and

4.5.6 and in Corollaries 4.6.5, 4.7.4. The numerical experiments presented in Chapter 5

confirm that the estimators have the desired properties, and that the schemes converge

at the predicted rate. The estimators are robust with respect to the parameters of

the problem P. Moreover, the estimators are robust with respect to the multilevel

discretization of the system studied here.

The theoretical and numerical results in this thesis apply to models of many impor-

tant phenomena in fluid flow and transport in porous media. We demonstrated some

applications with numerical simulations.

Our current work includes extensions of the theory to various nonlinear models.

We are also working on extending the results for time-dependent problems to allow for

multilevel time-stepping. Another extension is to apply the estimator developed to the

LP-model for the ECBM process. Other important but non-trivial extensions include

first order, i.e., advection terms.

We would like to acknowledge that this thesis research was partially supported by

the grants NSF 0511190 and DOE 98089.

193

Bibliography

[1] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied
Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,
2003.

[2] M. Ainsworth and J. T. Oden. A posteriori error estimators for second order elliptic
systems. I. Theoretical foundations and a posteriori error analysis. Comput. Math.
Appl., 25(2):101–113, 1993.

[3] M. Ainsworth and J. T. Oden. A posteriori error estimators for second order el-
liptic systems. II. An optimal order process for calculating self-equilibrating fluxes.
Comput. Math. Appl., 26(9):75–87, 1993.

[4] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element
analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John
Wiley & Sons], New York, 2000.

[5] J. Alberty, C. Carstensen, and S. A. Funken. Remarks around 50 lines of Matlab:
short finite element implementation. Numer. Algorithms, 20(2-3):117–137, 1999.

[6] T. Arbogast, J. Douglas Jr., and U. Hornung. Derivation of the double poros-
ity model of single phase flow via homogenization theory. SIAM J. Math. Anal.,
21(4):823–836, 1990.

[7] R. Aris. The mathematical theory of diffusion and reaction in permeable catalysts.
Oxford University Press, 1975.

[8] K. Atkinson and W. Han. Theoretical numerical analysis, volume 39 of Texts in Ap-
plied Mathematics. Springer, Dordrecht, Third edition, 2009. A functional analysis
framework.

[9] I. Babuska and W. C. Rheinboldt. Error estimates for adaptive finite element
computations. SIAM J. Numer. Anal., 15(4):736–754, 1978.

[10] R. E. Bank and R. K. Smith. A posteriori error estimates based on hierarchical
bases. SIAM J. Numer. Anal., 30(4):921–935, 1993.

[11] R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial
differential equations. Math. Comp., 44(170):283–301, 1985.

194

[12] G. Barenblatt, I. Zheltov, and I. Kochina. Basic concepts in the theory of seepage
homogeneous liquids in fissured rock (strata). Appl. Math. Mech., 24(1):1286–1303,
1960.

[13] J. W. Barrett and P. Knabner. Finite element approximation of the transport of
reactive solutes in porous media. I. Error estimates for nonequilibrium adsorption
processes. SIAM J. Numer. Anal., 34(1):201–227, 1997.

[14] J. W. Barrett and P. Knabner. Finite element approximation of the transport
of reactive solutes in porous media. II. Error estimates for equilibrium adsorption
processes. SIAM J. Numer. Anal., 34(2):455–479, 1997.

[15] A. Bergam, C. Bernardi, and Z. Mghazli. A posteriori analysis of the finite ele-
ment discretization of some parabolic equations. Math. Comp., 74(251):1117–1138
(electronic), 2005.

[16] C. Bernardi and R. Verfürth. Adaptive finite element methods for elliptic equations
with non-smooth coefficients. Numer. Math., 85(4):579–608, 2000.

[17] M. Bohm and R. E. Showalter. Diffusion in fissured media. SIAM J. Math. Anal.,
16(3):500–509, 1985.

[18] M. Bohm and R. E. Showalter. A nonlinear pseudoparabolic diffusion equation.
SIAM J. Math. Anal., 16(5):980–999, 1985.

[19] D. Braess. Finite elements. Cambridge University Press, Cambridge, third edition,
2007. Theory, fast solvers, and applications in elasticity theory, Translated from the
German by Larry L. Schumaker.

[20] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition,
2000.

[21] C. Carstensen. Some remarks on the history and future of averaging techniques in a
posteriori finite element error analysis. ZAMM Z. Angew. Math. Mech., 84(1):3–21,
2004.

[22] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam;
MR0520174 (58 #25001)].

[23] P. Clément. Approximation by finite element functions using local regularization.
Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse
Numérique, 9(R-2):77–84, 1975.

195

[24] A. W. Craig, J. Z. Zhu, and O. C. Zienkiewicz. A posteriori error estimation,
adaptive mesh refinement and multigrid methods using hierarchical finite element
bases. In The mathematics of finite elements and applications, V (Uxbridge, 1984),
pages 587–594. Academic Press, London, 1985.

[25] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic prob-
lems. I. A linear model problem. SIAM J. Numer. Anal., 28(1):43–77, 1991.

[26] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, 1998.

[27] W. Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 1985.

[28] C. T. Kelley. Iterative methods for linear and nonlinear equations, volume 16 of
Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1995. With separately available software.

[29] V. Klein and M. Peszynska. Adaptive multi-level modeling of coupled multiscale
phenomena with applications to methane evolution in subsurface. In Proceedings of
CMWR XVIII, Barcelona, June 21-24.

[30] V. Klein and M. Peszynska. Robust a-posteriori estimators for multilevel discretiza-
tions of reaction- diffusion systems. IJNAM, 8(1):1–27, 2011.

[31] P. Ladeveze and D. Leguillon. Error estimate procedure in the finite element method
and applications. SIAM J. Numer. Anal., 20(3):485–509, 1983.

[32] L. W. Lake. Enhanced Oil Recovery. Prentice Hall, INC., 1989.

[33] M. G. Larson and A. J. Niklasson. Adaptive multilevel finite element approximations
of semilinear elliptic boundary value problems. Numer. Math., 84(2):249–274, 1999.

[34] A. I. Lee and J. M. Hill. On the general linear coupled system for diffusion in media
with two diffusivities. J. Math. Anal. Appl., 89(2):530–557, 1982.

[35] M. Lees. A priori estimates for the solutions of difference approximations to
parabolic partial differential equations. Duke Math. J., 27:297–311, 1960.

[36] N. Madden and M. Stynes. A uniformly convergent numerical method for a cou-
pled system of two singularly perturbed linear reaction-diffusion problems. IMA J.
Numer. Anal., 23(4):627–644, 2003.

[37] G. Marsily. Quantitative Hydrology. Academic Press, INC., 1986.

196

[38] D. Pascali and S. Sburlan. Nonlinear mappings of monotone type. Martinus Nijhoff
Publishers, The Hague, 1978.

[39] M. Peszynska, R. Showalter, and S.-Y. Yi. Homogenization of a pseudoparabolic
system. Appl. Anal., 88(9):1265–1282, 2009.

[40] M. Picasso. Adaptive finite elements for a linear parabolic problem. Comput.
Methods Appl. Mech. Engrg., 167(3-4):223–237, 1998.

[41] L. I. Rubinstein. On a question about the propagation of heat in heterogeneous
media. Izvestiya Akad. Nauk SSSR. Ser. Geograf. Geofiz., 12:27–45, 1948.

[42] D. Ruthven. Principles of adsorption and adsorption processes. Wiley, 1984.

[43] G. Sangalli. Numerical evaluation of FEM with application to the 1D advection-
diffusion problem. In Numerical mathematics and advanced applications, pages 165–
172. Springer Italia, Milan, 2003.

[44] G. Sangalli. Robust a-posteriori estimator for advection-diffusion-reaction problems.
Math. Comp., 77(261):41–70 (electronic), 2008.

[45] J.-Q. Shi, S. Mazumder, K.-H. Wolf, and S. Durucan. Competitive methane des-
orption by supercritical CO2 injection in coal. TiPM, 75:35–54, 2008.

[46] R. E. Showalter. Hilbert space methods for partial differential equations. Pitman,
London, 1977. Monographs and Studies in Mathematics, Vol. 1.

[47] R. E. Showalter. Monotone operators in Banach space and nonlinear partial differ-
ential equations, volume 49 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1997.

[48] R. E. Showalter, T. D. Little, and U. Hornung. Parabolic PDE with hysteresis.
Control Cybernet., 25(3):631–643, 1996. Distributed parameter systems: modelling
and control (Warsaw, 1995).

[49] R. E. Showalter and T. W. Ting. Pseudoparabolic partial differential equations.
SIAM J. Math. Anal., 1:1–26, 1970.

[50] R. E. Showalter and D. Visarraga. Double-diffusion models from a highly-
heterogeneous medium. J. Math. Anal. Appl., 295(1):191–210, 2004.

[51] J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, New York, second edition, 1994.

197

[52] V. Thomee. Galerkin finite element methods for parabolic problems, volume 25 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second
edition, 2006.

[53] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement
techniques. Wiley & Teubner, 1996.

[54] R. Verfürth. A posteriori error estimators for convection-diffusion equations. Numer.
Math., 80(4):641–663, 1998.

[55] R. Verfürth. Robust a posteriori error estimators for a singularly perturbed reaction-
diffusion equation. Numer. Math., 78(3):479–493, 1998.

[56] R. Verfurth. A posteriori error estimates for finite element discretizations of the
heat equation. Calcolo, 40(3):195–212, 2003.

[57] J. E. Warren and P. J. Root. The behavior of naturally fractured resevoirs. Soc.
Petroleum Engr. J., 3:245–255, 1963.

[58] M. F. Wheeler. A priori L2 error estimates for Galerkin approximations to parabolic
partial differential equations. SIAM J. Numer. Anal., 10:723–759, 1973.

[59] J. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J.
Numer. Anal., 33(5):1759–1777, 1996.

[60] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure
for practical engineering analysis. Internat. J. Numer. Methods Engrg., 24(2):337–
357, 1987.

198

APPENDIX

199

.1 Codes for computing IhH

.1.1 Dimension 1

function [Int] = interpolationmatrix(xnelH,h,nodH,r,nnodesh,nnodesH)

%% computes the interpolation matrix Int = N-by-n

%matrices computed by hand for r=2 and r=4 to test the code

%inin = [5/12 1/2 1/12 ; 1/12 1/2 5/12]*hel/2; % for r=2

%inin = 1/4*[11/12 3/2 1 1/2 1/12;1/12 1/2 1 3/2 11/12]*hel/2; % for r=4

%%%%%%%%%%%%%%%%%%%%%%%%% set up numerical integration

%% set up quadrature parameters on the reference element (-1,1)

%% set up number of integration points nw, nodes xw, and weights w

maxord = 2;

if maxord == 1 %% exact for linears

nw = 1;

xw(1) = 0.;

w(1) = 2.;

elseif maxord == 2 %% exact for cubics

nw = 2;

xw(1) = -1/sqrt(3); xw(2) = -xw(1);

w(1) = 1; w(2) = 1;

elseif maxord == 3 %% exact for polynomials of degree 5

nw = 3;

xw(1) = -sqrt(3./5.); xw(2)=0.; xw(3) =- xw(1);

w(1) = 5./9.; w(2)=8./9.; w(3)=w(1);

end;

%% Matching Elements

% says which intervals of the refined grid are inside the coarse interval

Match = zeros(xnelH,r+1);

for el = 1:xnelH

Match(el,:) = [1:r+1] + (el-1)*r;

end

%% Interpolation Matrix

%interpolation matrix for prolongation (VH to Vh), use Int’ for restriction

Int = sparse(nnodesh,nnodesH);

Element = zeros(2,r+1);

dx = h/2;

for j = 1:r

cell = zeros(2,2);

for l = 1:nw

[psi,phi] = shape(xw(l),r,j);

cell = cell + phi*psi’*w(l)*dx;

end

200

vec = [1:2] + (j-1);

Element(:,vec) = Element(:,vec) + cell;

end

for el = 1:xnelH %assembling by element in Vh

Int(Match(el,:),nodH(el,:)) = Int(Match(el,:),nodH(el,:)) + Element’;

end

%%%

%% end of algorithm

%%%

function [y,z] = shape(x,r,j)

%% shape function on reference element (-1,1)

y (1,:) = .5.*(1.-x);

y (2,:) = .5.*(1.+x);

z(1,:) = -1/(2*r) .*x + (1 - (2*j-1)/(2*r));

z(2,:) = 1/(2*r) .*x + (2*j-1)/(2*r);

.1.2 Dimension 2

1. elementmatching.m

function M = elementmatching(n,N)

%% Input:

%% n = number of elements in the finer mesh in the x-direction;

%% N = number of elementes in the coarser mesh in the x-direction

%% Note that n>= N;

%% Gives the cells in the refined grid inside the Elements in the coarse

%% grid, the even numbered cells are the flipped cells

%% Output:

%% M = # of the cells of refined grid inside each element in the coarse one)

r = n/N;

M = zeros(1,r^2);

last = 0; %flag for vec

for k = 1:r

vec = [last + 1 : last + 2*r - 1 - 2*(k-1)];

last = vec(end);

vecodd = [1:2*r-1 - 2*(k-1)]+2*n*(k-1);

M(vec) = vecodd;

end

2. assemblingcells.m

function Matching = assemblingcells(n,N)

%% Input:

201

%% n = number of elements in the finer mesh in the x-direction;

%% N = number of elementes in the coarser mesh in the x-direction

%% Note that n>= N;

%% Gives the information needed to assemble the integration

%% inside an element for the r^2 cells

%% Output:

%% Matching = r^2 - by 3 matrix containing the nodes of each cell inside an element

r = n/N;

Matching = [];

z = 0;%flags for the jumps in each level

w = 0;

for i = 1:r

M = zeros(2*(r - i) + 1,3);

P = zeros(r-i+1,3);

P(:,1) = [1:r-i+1] + z;

P(:,2) = P(:,1) + 1;

P(:,3) = P(:,2) + r - i + 1;

if r-i > 0

F = zeros(r-i,3);

F(:,1) = [r+3:2*r+2-i] + w;

F(:,2) = F(:,1) - 1;

F(:,3) = F(:,2) - r + i - 1;

M(1:2:2*(r-i) + 1,:) = P;

M(2:2:2*(r-i),:) = F;

else

M = P;

end

Matching = [Matching;M];

z = z + r - i + 2; %update the flags

w = w + r - i + 1;

end

3. matching.m

function M = matching(n,N)

%% Input:

%% n = number of elements in the finer mesh in the x-direction;

%% N = number of elementes in the coarser mesh in the x-direction

%% Note that n>= N;

%% Gives back the matrix relating the nodes in the refined grid with the

%% elements in the coarse one. The matrix is oriented in the way that

%% matchs the order of the nodes in the reference element.

r = n/N;

M = zeros(2*N^2 , (r+1)*(r+2)/2);

%% Assembling

for i = 1:N

for j = 1:N

202

last = 0; %flag for vec

for k = 1:r+1

vec = [last + 1 : last + 1 + r + 1 - k] ;

last = vec(end);

vecodd = [1:r+1 - k + 1] + r*(j-1) + (k-1)*(n+1);

M(2*j-1 +2*N*(i-1),vec) = vecodd + (i-1)*r*(n+1);

veceven = (r+1) + (n+1)*r - [0:r - k + 1] + r*(j-1) - (k-1)*(n+1);

M(2*j + 2*N*(i-1),vec) = veceven + (i-1)*r*(n+1);

end

end

end

4. interpolation2D.m

function I = interpolation2D(n,N)

%%%

%% Interpolation in 2D

%% Remarks:

%% 1)only uses uniform grids,with triangles

%% 2)the grid is square

%% 3)n >= N

%% Input:

%% N = number of elements in coarse grid

%% n = number of elements in the refined grid

%% Output

%% I = interpolation matrix I_H^h

r = n/N;

h=1/N;

x=0:h:1;

[coordinates,en]=feval(@fegrid2,N,x); %generates the coarser grid

%% Set up numerical integration

%% Gaussian points (xq,yq) and weights wq for integrating in a triangle

wq = [0.1125 0.0662 0.0662 0.0662 0.0630 0.0630 0.0630];

xq = [0.3333 0.4701 0.0597 0.4701 0.1013 0.7974 0.1013];

yq = [0.3333 0.4701 0.4701 0.0597 0.1013 0.1013 0.7974];

%% Set up the vectors J for the flipped and non-flipped cells

J_flipped = zeros(r*(r-1)/2,3);

J = zeros(r*(r+1)/2,3);

last = 0; %flag for vec

for i = 1:r

vec = [last + 1 : last + r - i + 1];

last = vec(end);

J(vec,1) = [i:r];

J(vec,2) = r - [0:r-i];

203

J(vec,3) = r-i+1;

end

last_f = 0;

for i = 1:r-1

vec = [last_f + 1 : last_f + r - i];

last_f = vec(end);

J_flipped(vec,1) = [i:r-1];

J_flipper(vec,2) = r-1 - [0:r-i-1];

J_flipper(vec,3) = r-i;

end

%% Integrating in a reference element

%% Divide every element in the coarse grid into r^2 cells and integrate in

%% each cell, then assemble the results for the element

Match = elementmatching(N,n);% used to find the flippers

Matcell = assemblingcells(N,n); %find the nodes inside the reference element

flagf = 0;

flag = 0;

Element = zeros(3,(r+2)*(r+1)/2);

jac = 1/n^2; %jacobian of the change of variables for the numerical integration

for j = 1 : r^2

cell = zeros(3,3);

if mod(Match(1,j),2) == 0 %the cell is flipped

flagf = flagf + 1; %count the flippers

w = J_flipped(flagf,:);%find the behavior of the basis functions

phi = basisflipped(xq,yq,w,r);

else

flag = flag + 1; %count the non-flippers

w = J(flag,:);%find the behavior of the basis functions

phi = basisnonflipped(xq,yq,w,r);

end

psi = basisfunction(xq,yq,wq);

cell = phi*psi’*jac;

Element(:,Matcell(j,:)) = Element(:,Matcell(j,:)) + cell;

end

%% Assembling the interpolation matrix

I = sparse((n+1)^2,(N+1)^2);

Matelement = matching(n,N);

for i = 1: size(en,2)

I(en(:,i),Matelement(i,:)) = I(en(:,i),Matelement(i,:)) + Element;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF THE CODE%%%%%%%%%%%%%%%%%%%%%%

function [psi] = basisfunction(x,y,wq)

psi(1,:) = (1 - x - y).*wq;

psi(2,:) = x.*wq;

psi(3,:) = y.*wq;

204

function [phi] = basisnonflipped(x,y,j,r)

phi(1,:) = (r - j(1) + 1)/r - x/r - y/r;

phi(2,:) = (r - j(2))/r + x/r;

phi(3,:) = (r - j(3))/r + y/r;

function [phi] = basisflipped(x,y,j,r)

phi(1,:) = (r - j(1) - 1)/r + x/r + y/r;

phi(2,:) = (r - j(2))/r - x/r;

phi(3,:) = (r - j(3))/r - y/r;

.2 Code for computing E-model in 1D

function [error,estimator,efficiency_index] = two_grid_FEM1d (xnel_u,xnel_v,coef,a,b);

%%

%% This function shows how to set up a finite element solution

%% of a two-point BVP in the interval (a,b)

%% lambda1*u- div(alpha*grad u) + c*(u - v) =f,

%% lambda2*v- div(beta*grad v) + c*(v - u) =g, u(a)=ua, u(b)=ub

%% using Galerkin linear Finite Elements

%% coef = [lambda1,lambda2,a,b,c]

%% xnel_u >= xnel_v later one can develop a more complete code

%% that can alternate which solution is in a finer mesh

%% The code use the exact solution that can be modified

%% together wit the right-hand side to compute the error

%% and get the boundary conditions

%% Output:

%% -Error in the energy norm

%% -Estimator

%% - Efficiency index of the estimator

%% Example to run:

%% two_grid_FEM1d(100,50,[1 2 1 2 1],0,1);

%%

clf;

set(0,’DefaultLineLineWidth’,3);

%%%%%%%%%%%%%%%%%%%%%%%%% set up the two grids

r = xnel_u/xnel_v;

[nnodes_v,nnodes_u,nels_v, nels_u,xnel_v,xnel_u,nod_v,nod_u,xnod_v,...

xnod_u,maxord,ord_v,ord,hel_v,hel_u] = setupgrid(xnel_v,xnel_u,a,b);

%%%%%%%%%%%%%%%%%%% separate the free nodes

freenodes = [2:nnodes_u-1, nnodes_u+2:(nnodes_u + nnodes_v-1)];

%% set up quadrature parameters on the reference element (-1,1)

%% set up number of integration points nw, nodes xw, and weights w

if maxord == 1 %% exact for linears

nw = 1;

205

xw(1) = 0.;

w(1) = 2.;

elseif maxord == 2 %% exact for cubics

nw = 2;

xw(1) = -1/sqrt(3); xw(2) = -xw(1);

w(1) = 1; w(2) = 1;

end

%%%%%%%%%%%% matrix and rhs of linear system %%%%%%%%%%%%%%%%%%%%%%%%%%%

%% set up can be easily modified to include higher order elements

%% as well as

S_u = sparse(nnodes_u,nnodes_u); %stiffness matrix for Vh

S_v = sparse(nnodes_v,nnodes_v);

RHS_u = sparse(nnodes_u,1);

RHS_v = sparse(nnodes_v,1);

M_v = sparse(nnodes_v,nnodes_v);%mass matrix for VH

M_u = sparse(nnodes_u,nnodes_u);

%% assemble mass and stiffness matrix for Vh

for el = 1:nels_u

x1 = xnod_u(nod_u(el,1)); x2 = xnod_u(nod_u(el,2)); %% left and right endpoint

dx = (x2-x1)/2.; %% Jacobian of transformation

%% compute element stiffness matrix and load vector

aa = zeros(ord(el),ord(el)); %% element stiffness matrix for b

bb = zeros(ord(el),ord(el));

f = zeros(ord(el),1);

for l = 1:nw

x = x1 + (1 + xw(l))*dx; %% x runs in true element,

%% xw runs in reference element

[psi,dpsi] = shape(xw(l),ord); %% calculations on ref.element

aa = aa + dpsi*dpsi’/dx/dx * w(l)*dx;

bb = bb + psi*psi’ * w(l)*dx;

[fval] = feval(@rhsfun,x,coef);

f = f + fval * psi * w(l)*dx;

end

RHS_u(nod_u(el,:)) = RHS_u(nod_u(el,:)) + f(:);

S_u (nod_u(el,:),nod_u(el,:)) = S_u(nod_u(el,:),nod_u(el,:)) + aa;

M_u(nod_u(el,:),nod_u(el,:)) = M_u(nod_u(el,:),nod_u(el,:)) + bb;

end;

%% assemble mass and stiffness matrix for VH

for el = 1:nels_v

x1 = xnod_v(nod_v(el,1)); x2 = xnod_v(nod_v(el,2)); %% left and right endpoint

dx = (x2-x1)/2.; %% Jacobian of transformation

%% compute element stiffness matrix and load vector

aa = zeros(ord(el),ord(el)); %% element stiffness matrix for b

bb = zeros(ord(el),ord(el));

g = zeros(ord(el),1);

for l = 1:nw

x = x1 + (1 + xw(l))*dx; %% x runs in true element,

206

%% xw runs in reference element

[psi,dpsi] = shape(xw(l),ord); %% calculations on ref.element

aa = aa + dpsi*dpsi’/dx/dx * w(l)*dx;

bb = bb + psi*psi’ * w(l)*dx;

[fval,gval] = feval(@rhsfun,x,coef);

g = g + gval * psi * w(l)*dx;

end

RHS_v(nod_v(el,:)) = RHS_v(nod_v(el,:)) + g(:);

S_v (nod_v(el,:),nod_v(el,:)) = S_v(nod_v(el,:),nod_v(el,:)) + aa;

M_v(nod_v(el,:),nod_v(el,:)) = M_v(nod_v(el,:),nod_v(el,:)) + bb;

end;

%% interpolation matrix I_Hh

Int = interpolationmatrix(xnel_v,hel_u,nod_v,r,nnodes_u,nnodes_v);

Mat = [(coef(1) + coef(5))*M_u + coef(3)*S_u -coef(5)*Int ;...

-coef(5)*Int’ (coef(2) + coef(5))*M_v + coef(4)*S_v];

RHS = [RHS_u;RHS_v];

sol = zeros(nnodes_u+nnodes_v,1);

%% impose Dirichlet boundary conditions

[b1u,b1v] = feval(@exfun,a); sol(1)=b1u; sol(1+nnodes_u)=b1v;

[b2u,b2v] = feval(@exfun,b); sol(nnodes_u) = b2u; sol(nnodes_u + nnodes_v)=b2v;

%% eliminate known values from the system

RHS = RHS - Mat*sol;

sol(freenodes) = Mat(freenodes,freenodes)\RHS(freenodes);

solu = sol(1:nnodes_u);

solv = sol(nnodes_u+1:nnodes_u + nnodes_v);

%% set up the interpolation of the solution to compute the error in the

%% finer mesh Vh

solvi = M_u\Int*solv;

solui = M_v\Int’*solu;

%% set up numerical integration

%quadrature points

exw(1)=-.9491079123; exw(2)=-.7415311856;

exw(3)=-.4058451514;exw(4)=0;exw(5)=-exw(3);exw(6)=-exw(2);exw(7)=-exw(1);

%weights

ew(1)=0.1294849662;ew(2)=0.2797053915;ew(3)=0.3818300505;ew(4)=0.4179591837;

ew(5)=ew(3);ew(6)=ew(2);ew(7)=ew(1);

207

%% Error computation by element in Vh

jacobian=.5*hel_u;

en = 0;

for i=1:nels_u

t=xnod_u(i)+.5*hel_u*(xw+1);

[uex,vex]=exfun(t);

[duex,dvex]=diffexfun(t);

du = 1/hel_u*(solu(i+1)-solu(i))*ones(1,length(w));

u=interp1([xnod_u(i) xnod_u(i+1)],[solu(i) solu(i+1)],t);

dv = 1/hel_u*(solvi(i+1)-solvi(i))*ones(1,length(w));

v=interp1([xnod_u(i) xnod_u(i+1)],[solvi(i) solvi(i+1)],t);

en = en + jacobian*(coef(1)*(uex-u).^2 + coef(2)*(vex-v).^2 ...

+coef(3)*(duex-du).^2 + coef(4)*(dvex-dv).^2 ...

+ coef(5)*((uex-u)-(vex-v)).^2)*w’;

end

error = sqrt(en);

%% Estimator computation

%% compute the jumps on the edges

edgejumpu = zeros(1,2*nels_u);

for i = 1 : nels_u

edgejumpu(2*i-1) = (solu(i + 1) - solu(i))/hel_u;

edgejumpu(2*i) = edgejumpu(2*i-1);

end

edgejumpv = zeros(1,2*nels_v);

for i = 1 : nels_v

edgejumpv(2*i-1) = (solv(i + 1) - solv(i))/hel_v;

edgejumpv(2*i) = edgejumpv(2*i-1);

end

Reu = zeros(1,nnodes_u);

% Reu(1) = 0; % Reu(end) = 0;

Rev = zeros(1,nnodes_v);

% Rev(1) =0; % Rev(end) = 0 ;

for i = 2 : nnodes_u-1

Reu(i) = coef(3)^2*(edgejumpu(2*i-1) - edgejumpu(2*i-2))^2;

end

for i = 2 : nnodes_v-1

Rev(i) = coef(4)^2*(edgejumpv(2*i-1) - edgejumpv(2*i-2))^2;

end

%% compute the residuals

208

Rtu = zeros(1,nels_u);

Rtv = zeros(1,nels_v);

jac_u = 0.5*hel_u;

for i=1:nels_u

t=xnod_u(i)+.5*hel_u*(xw+1);

[f]=rhsfun(t,coef);

uinterp=interp1([xnod_u(i) xnod_u(i+1)],[solu(i) solu(i+1)],t);

vinterp=interp1([xnod_u(i) xnod_u(i+1)],[solvi(i) solvi(i+1)],t);

fgu = f + coef(5).*(vinterp - uinterp) - coef(1)*uinterp;

fgu = fgu.^2;

Rtu(i) = jac_u*((fgu)*w’);

end

jac_v = 0.5*hel_v;

for i=1:nels_v

t=xnod_v(i)+.5*hel_v*(xw+1);

[f,g]=rhsfun(t,coef);

uinterp=interp1([xnod_v(i) xnod_v(i+1)],[solui(i) solui(i+1)],t);

vinterp=interp1([xnod_v(i) xnod_v(i+1)],[solv(i) solv(i+1)],t);

fgv = g + coef(5).*(uinterp - vinterp) - coef(2)*vinterp;

fgv = fgv.^2;

Rtv(i) = jac_v*((fgv)*w’);

end

%% set up the scaling coefficients

thetau = zeros(1,nels_u);

thetav = zeros(1,nels_v);

gammau = zeros(1,nels_u);

gammav = zeros(1,nels_v);

for i = 1:nels_u

thetau(i) = min(hel_u/sqrt(coef(3)),1/sqrt(coef(1)));

gammau(i) = 2*sqrt(thetau(i))*(coef(3))^(-.25);

end

for i = 1:nels_v

thetav(i) = min(hel_v/sqrt(coef(4)), 1/sqrt(coef(2)));

gammav(i) = 2*sqrt(thetav(i))*(coef(4))^(-.25);

end

%% add the estimator over the elements

etau = zeros(1,nels_u);

etav = zeros(1,nels_v);

for i =1:nels_u

etau(i) = thetau(i)^2 * Rtu(i) + 0.5*(gammau(i)^2*Reu(i) + gammau(i)^2*Reu(i+1));

end

for i =1:nels_v

209

etav(i) = thetav(i)^2 * Rtv(i) + 0.5*(gammav(i)^2*Rev(i) + gammav(i)^2*Rev(i+1));

end

estimator = sqrt(sum(etau) +sum(etav));

efficiency_index = estimator/error;

%% Graphic representation

xplot = a:0.01*hel_u:b;

[exactu,exactv] = exfun(xplot);

subplot(1,2,1)

plot(xplot,exactu,’r’,xnod_u,solu’,’o-’);

subplot(1,2,2)

plot(xplot,exactv,’r’,xnod_v,solv’,’o-’);

%%%

%% end of algorithm

%%%

function [y,dy] = shape(x,n)

%% shape function on reference element (-1,1)

%% n = 2: linear

%% n = 3: quadratic (must be coded)

if n == 2

y (1,:) = .5.*(1.-x);

y (2,:) = .5.*(1.+x);

dy (1,:) = -.5;

dy (2,:) = .5;

end

function [f,g] = rhsfun(x,coef) %%%%%%%%%%%%% rhs function

f = coef(1)*x.^2.*sin(pi*x) - coef(3)*(2*x.*pi.*cos(pi*x)-x.^2*pi^2.*sin(pi*x)...

+ 2*sin(pi*x) +2*x.*pi.*cos(pi*x)) + coef(5)*(x.^2.*sin(pi*x) - (x - x.^3));

g = coef(2)*(x - x.^3) + coef(4)*6*x + coef(5)*((x - x.^3) - x.^2.*sin(pi*x));

function [u,v] = exfun(x) %%%%%%%%%%%%% exact solution: provides ua,ub

u = x.^2.*sin(pi*x);

v = (x - x.^3);

function [u,v] = diffexfun(x)

u = x.^2.*pi.*cos(pi*x) + 2*x.*sin(pi*x);

v = 1 - 3*x.^2;

function[nnodes,nnodes2,nels, nels2,xnel,xnel2,nod,nod2,...

xnod,xnod2,maxord,ord,ord2,hel,hel2] = setupgrid(xnel,xnel2,a,b);

%% uniform grid

210

nels = xnel;

hel = (b-a)./nels;

xel = a : hel : b-hel;

nels2 = xnel2;

hel2 = (b-a)./nels2;

xel2 = a : hel2 : b-hel2;

%% set up uniform order of elements = 1 + degree of polynomial =

%% = number of degrees of freedom

ord = zeros(nels,1) + 2; %% type of elements: linear

maxord = max(ord);

ord2 = zeros(nels2,1) + 2; %% type of elements: linear

maxord2 = max(ord2);

%% number of nodes

nnodes = sum(ord-1)+1;

nnodes2 = sum(ord2-1)+1;

%% derive global indexing of nodes:

%% nod(i,1) is the global number of j’th node in element i

nod = zeros(nels,maxord); myel = zeros(nnodes,2);

n = 1;

for i = 1:nels

for j = 1:ord(i)

nod(i,j) = n;

if j == 1

myel(n,2) = i;

elseif j == ord(i)

myel(n,1) = i;

else myel(n,1) = i;

myel(n,2) = i;

end;

if j ~= ord(i)

n = n+1;

end

end;

end;

nod2 = zeros(nels2,maxord2); myel = zeros(nnodes2,2);

n = 1;

for i = 1:nels2

for j = 1:ord2(i)

nod2(i,j) = n;

if j == 1

myel(n,2) = i;

elseif j == ord2(i)

myel(n,1) = i;

211

else myel(n,1) = i;

myel(n,2) = i;

end;

if j ~= ord2(i)

n = n+1;

end

end;

end;

%% xnod (i=1..nnodes): coordinates of node i

xnod = zeros(nnodes,1);

for i=1:nels-1

h = xel(i+1)-xel(i);

hi = h/(ord(i)-1);

for j=1:ord(i)

xnod (nod(i,j)) = xel(i) + hi*(j-1);

end;

end;

i = nels; h = b-xel(i); hi=h/(ord(i)-1);

for j=1:ord(i)

xnod (nod(i,j)) = xel(i) + hi*(j-1);

end;

xnod2 = zeros(nnodes2,1);

for i=1:nels2-1

h = xel2(i+1)-xel2(i);

hi = h/(ord2(i)-1);

for j=1:ord2(i)

xnod2 (nod2(i,j)) = xel2(i) + hi*(j-1);

end;

end;

i = nels2; h = b-xel2(i); hi=h/(ord2(i)-1);

for j=1:ord2(i)

xnod2 (nod2(i,j)) = xel2(i) + hi*(j-1);

end;

