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Markov Decision Processes (MDPs) are the de-facto formalism for studying sequential

decision making problems with uncertainty, ranging from classical problems such as in-

ventory control and path planning, to more complex problems such as reservoir control

under rainfall uncertainty and emergency response optimization for fire and medical

emergencies. Most prior research has focused on exact and approximate solutions to

MDPs with factored states, assuming a small number of actions. In contrast to this,

many applications are most naturally modeled as having factored actions described in

terms of multiple action variables. In this thesis we study domain-independent algo-

rithms that leverage the factored action structure in the MDP dynamics and reward,

and scale better than treating each of the exponentially many joint actions as atomic.

Our contributions are three-fold based on three fundamental approaches to MDP plan-

ning namely exact solution using symbolic dynamic programming (DP), anytime online

planning using heuristic search and online action selection using hindsight optimization.

The first part is focused on deriving optimal policies over all states for MDPs whose

state and action space are described in terms of multiple discrete random variables. In

order to capture the factored action structure, we introduce new symbolic operators for

computing DP updates over all states efficiently by leveraging the abstract and symbolic

representation of Decision Diagrams. Addressing the potential bottleneck of diagram-

matic blowup in these operators we present a novel and optimal policy iteration algorithm



that emphasizes the diagrammatic compactness of the intermediate value functions and

policies. The impact is seen in experiments on the well-studied problems of inventory

control and system administration where our algorithm is able to exploit the increasing

compactness of the optimal policy with increasing complexity of the action space.

Under the framework of anytime planning, the second part expands the scalability of

our approach to factored actions by restricting its attention to the reachable part of the

state space. Our contribution is the introduction of new symbolic generalization opera-

tors that guarantee a more moderate use of space and time while providing non-trivial

generalization. These operators yield anytime algorithms that guarantee convergence to

the optimal value and action for the current world state, while guaranteeing bounded

growth in the size of the symbolic representation. We empirically show that our on-

line algorithm is successfully able to combine forward search from an initial state with

backwards generalized DP updates on symbolic states.

The third part considers a general class of hybrid (mixed discrete and continuous)

state and action (HSA) MDPs. Whereas the insights from the above approaches are

valid for hybrid MDPs as well, there are significant limitations inherent to the DP ap-

proach. Existing solvers for hybrid state and action MDPs are either limited to very

restricted transition distributions, require knowledge of domain-specific basis functions

to achieve good approximations, or do not scale. We explore a domain-independent ap-

proach based on the framework of hindsight optimization (HOP) for HSA-MDPs, which

uses an upper bound on the finite-horizon action values for action selection. Our main

contribution is a linear time reduction to a Mixed Integer Linear Program (MILP) that

encodes the HOP objective, when the dynamics are specified as location-scale probability

distributions parametrized by Piecewise Linear (PWL) functions of states and actions.

In addition, we show how to use the same machinery to select actions based on a lower-

bound generated by straight-line plans. Our empirical results show that the HSA-HOP

approach effectively scales to high-dimensional problems and outperforms baselines that

are capable of scaling to such large hybrid MDPs. In a concluding case study, we cast

the real-time dispatch optimization problem faced by the Corvallis Fire Department as

an HSA-MDP with factored actions. We show that our domain-independent planner sig-

nificantly improves upon the responsiveness of the baseline that dispatches the nearest

responders.
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Chapter 1: Introduction

Markov Decision Processes (MDPs) [118] have been the de-facto formalism for studying

sequential decision making problems with uncertainty. The MDP planning problem

concerns choosing actions that effect states stochastically with the goal of maximizing

the expected reward accumulated over time, with respect to some reward function over

states. It is well known that the planning problem in MDPs is very hard in theory, and

it is challenging to design domain-independent algorithms whose performance scales well

with the size of the MDP.

Many planning problems involve choosing actions from a combinatorial set of de-

cisions at every time step, where each action can be described as an assignment to a

set of action variables. These include many planning problems of interest that involve

controlling multiple actuators simultaneously as in the Mars Rover problem [107], con-

trolling multiple units in real-time strategy games [6], with factored exogenous events

as in elevators control [7], and water reservoirs control under rainfall uncertainty [124],

and in Smart Grids [2]. Factored actions frequently arise in planning problems with

spatial spreading, e.g. conservation planning for birds [150], or controlling forest fires

and eradicating invasive species [37], where each land parcel has a corresponding ac-

tion. Domains with temporally extended actions are naturally modeled with factored

actions e.g. emergency response optimization [14] where the action variables correspond

to responding vehicles.

On the other hand, the computational complexity of most of the standard domain-

independent planning approaches scales with the number of actions, that is exponential

in the number of action variables. Dynammic Programming (DP) approaches must

tackle the maximization over an exponential number of action-value functions. Online

approaches based on heuristic search such as Real-Time Dynamic Programming (RTDP)

[8] and UCT [84] suffer from the large branching factor caused by the large number of

actions. This issue is exacerbated when continuous and discrete valued states and ac-

tions abound. Therefore, there is a need for planning algorithms that can leverage the

structure of such factored actions, in order to scale better than treating each of the
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exponentially many joint actions as atomic. Earlier work on Concurrent MDPs [148]

tackles concurrency of actions but ignores the factored structure in the state dynamics.

Although some notable frameworks from classical planning have incorporated concur-

rency, these lack in generality and are not applicable in factored state and action MDPs.

For example, the works of [152, 94] can only tackle goal-based problems with specified

initial states.

In this thesis, we present new optimal and online algorithms that are tailored to

factored states and actions. The takeaway is that explicitly accounting for the factored

nature of the effects of joint actions on the dynamics and reward leads to improved em-

pirical performance and scalability against the curse of dimensionality that is the number

of state and action variables. This is exemplified in a well studied problem with factored

states and actions where increasing the number of actions does not necessarily lead to

increased planning time as seen in existing MDP solvers, but on the contrary our algo-

rithm is able to exploit the increased simplicity of the optimal solution with decreasing

planning time. Our contributions span different settings for domain independent model

based planning, in that a declarative description of the true MDP dynamics and reward

is assumed as input. Similarly, the theoretical guarantees of our algorithms also span

provably optimal policies to anytime optimal online action selection to heuristic online

action selection for a wide class of factored state and action MDPs.

Factored MDPs [18] were originally invented as a compact description for very large

MDPs with multidimensional discrete-valued states. Factored planning algorithms at-

tempt to exploit regularities and context-specific dependencies in the problem description

in order to compute a compact representation of the optimal value function and policy.

Algorithms that exploit factored state dynamics are successfully able to tackle the appar-

ent state-space explosion, that is the exponential growth of the number of states with the

number of state dimensions. However, most prior work has focused on exact Symbolic

Dynamic Programming (SDP) [66, 130] and approximate solutions [129, 137] to factored

MDPs with factored states only. This includes symbolic Value Iteration(VI) using Alge-

braic Decision Diagrams (ADDs) [66], symbolic Real Time Dynamic Programming [44],

and symbolic heuristic search [46].

The bottleneck for existing SDP planners applied to factored actions is that they

work by iteratively computing the result of decision-theoretic regression over each joint

action. These algorithms ignore any structure in the action space, causing both plan-
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ning and execution times to scale at least linearly in the number of actions, which is

exponential in the number of action variables. In Chapter 3, we introduce new SDP

operators based on our previous work [120] and [121], which exploit a compact factored-

action MDP representation in order to compute value functions in the form of algebraic

decision diagrams over state and action variables. Addressing the potential bottleneck

of diagrammatic blowup in these operators, we present a novel and optimal policy itera-

tion algorithm that emphasizes the diagrammatic compactness of the intermediate value

functions and policies (Section 3.6).

The optimal SDP planners proposed in Chapter 3 sometimes scale to large MDPs,

but depend on compactly representing the optimal value function of the entire MDP

[66]. Due to this requirement, these algorithms exceed practical memory and time limits

in many problems of interest. The success of online planning in MDPs depends crucially

on the extent to which the information gathered from search is generalized to unseen

states. In the absence of generalization and heuristic guidance, the planner must explore

the entire reachable state space.

Symbolic Real-Time Dynamic Programming (sRTDP) [44, 46] aims to combine the

benefits of the symbolic methods and online planning by incorporating symbolic state

generalization into the computation of the online planner. However, sRTDP is a general

framework, and its performance is sensitive to the definition of generalized states. Ex-

isting definitions in prior work lead to algorithms that exceed memory limits in many

cases. Despite the aim for generalization, the resulting planner is often inferior to the

corresponding algorithms working in the flat state space (e.g. RTDP). We give symbolic

RTDP algorithms that guarantee superior anytime performance than the corresponding

tabular representation in Chapter 4 based on our previous work [122].

Our main contribution in Chapter 4 is the introduction of new symbolic generaliza-

tion operators that guarantee a more moderate use of space and time, while providing

non-trivial generalization. The first set of operators guarantees bounded growth in the

size of the symbolic representation. These operators are combined with the pruning

operator developed in Chapter 3 to further control the size of intermediate results. The

resulting anytime planning algorithms are convergent and provide generalization only

when it does not increase space requirements compared to a flat state space search. To

the best of our knowledge, it is the first symbolic algorithm to yield a sound general-

ization while guaranteeing not to use more memory than flat RTDP. We show that in
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some domains, the symbolic online planner is able to identify succinct and meaningful

generalized states. These results show the potential for symbolic speedup learning for

intra-problem generalization for online planning.

The next chapter considers a more general class of hybrid (mixed discrete and contin-

uous) state and action (HSA) MDPs. Many real-world decision-theoretic planning prob-

lems are naturally modeled using concurrent, hybrid (discrete and continuous) state and

action (HSA) MDPs. Existing approaches to solving expressive HSA-MDPs largely fall

into two categories: dynamic programming for special restricted classes of HSA-MDPs,

and approximate optimization of restricted value function or policy representations. Un-

fortunately, each category has critical limitations discussed in Chapter 5. Whereas the

insights from the above approaches are valid for hybrid MDPs as well, there are signifi-

cant limitations inherent to the DP approach. Existing solvers for hybrid state and action

MDPs are either limited to very restricted transition distributions, require knowledge of

domain-specific basis functions to achieve good approximations, or do not scale.

In that chapter, based on our previous work [123], we explore a qualitatively different

approach to solving a broad class of HSA-MDPs that does not require domain-specific

assumptions on the value function or policy representation. Our approach is based on de-

veloping the framework of hindsight optimization (HOP) [25, 26] for HSA-MDPs. HOP

provides an upper bound on the finite-horizon action values in the current state, which

can be used for action selection. But the challenge is to compute this bound efficiently.

We develop a generic linear space and time compilation of an expressive subset of HSA-

MDPs to a mixed integer linear program (MILP). This compilation is augmented with

action constraints to yield different algorithmic variations. This generalizes previous

work on HOP [72] to handle both continuous random variables and state-action depen-

dent stochasticity. We develop a second variant based on straight line plans which is

complementary in that it provides a lower bound on action values.

The expressive subset of HSA-MDPs consists of location-scale probability distribu-

tions for the transitions of each state variable. The importance of location-scale distribu-

tions is that they allow a compile-time encoding of the sampled next states at some time

step in the future, even though the parameters of the corresponding density function

involves state and action variables that are unknown at compile time. In our instanti-

ation of this approach, the MILP solver then maximizes over the unknown policy over

multiple sampled futures. This instantiation assumes that the parameters are piecewise
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linear functions of state and action variables, or location-scale distributions over them.

To the best of our knowledge, this is the first characterization of a subset of HSA-MDPs,

and corresponding fragment of the RDDL planning domain description language, that

have a linear time compilation to an MILP of linear size. The general approach is more

broadly applicable by using a more complex solver that matches the function space of

the parameters, e.g. using an MIQP solver when a quadratic function is the appropriate

reward function.

In each chapter we extensively compare the empirical performance of our algorithms

to those based on flat actions, as well as simple hand coded baselines, on multiple bench-

mark planning problems. In a concluding case study in Chapter 6, we cast the real-time

dispatch optimization problem faced by the Corvallis Fire Department as an HSA-MDP

with factored actions. There are no existing domain independent planners that are ap-

plicable to this HSA-MDP, thus prior research primarily relies on a heuristic policy that

always dispatches the nearest responders.

After briefly reviewing the vast literature on this problem, we justify the assumptions

of our domain description that allows HSA-HOP to be applied. We adapt HSA-HOP

to sample futures from real-world data collected in the city of Corvallis. We show that

HSA-HOP significantly improves the responsiveness by significantly lowering the fraction

of unresponded emergencies as well as the average response time over the responded

calls. Secondly, we illustrate model learning in the space of RDDL expressions that are

usable by HSA-HOP. Empirically, the responsiveness of HSA-HOP is further improved

by incorporating the learned model because it generalizes the emergencies beyond the

observed data.
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Chapter 2: Problem Formulation

After presenting the relevant background on MDPs in Section 2.1, we develop our for-

mulation of MDPs with factored state and action spaces in Section 2.2. We build upon

the Modified Policy Iteration in Chapter 3.

2.1 Markov Decision Processes (MDP)

MDPs [118] and factored MDPs [16] have been used successfully to solve sequential

decision problems under uncertainty. An MDP is a tuple (S,A, T,R, γ) where S is a

finite state-space, A is a finite action space, T : S×A× S→ [0, 1] denotes the transition

function such that T (s, a, s′) = Pr(s′|s, a), R : S × A → R denotes the immediate

reward of taking action a in state s, and the parameter γ ≤ 1 is used to discount future

rewards. We refer to this representation as the flat MDP representation as it uses flat or

atomic states and actions. The following notions of value function and policy are used

throughout the thesis.

A policy indicates the action to choose in a state. To facilitate a general view, we

emphasize that the policy can be a partial mapping or multi-map π : S → 2A that

assigns each state to a set of actions. The value function V π : S → R is the expected

discounted accumulated reward E[
∑n

i=0 γ
ir(si, π(si)) | π] where si is the i’th state visited

when following π. An optimal policy π∗ is a policy that maximizes the value for all states

simultaneously. The action-value function Qπ : S×A→ R indicates the expected reward

accumulated by executing action a in state s and following policy π thereafter. For every

MDP, there is a deterministic optimal policy π∗ and unique optimal value function V ∗

such that V ∗(s) = maxaQ
∗(s, a) and π∗(s) = arg maxaQ

∗(s, a).

Dynamic Programming is one approach to arrive at the optimal policy via computing

the optimal value function. For example, the Value Iteration (VI) algorithm identifies V ∗

and π∗ by the fixed point of iteration below. Each iteration is a Dynamic Programming
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update for all states and is known as the bellman backup operator T (Vn),

Vn+1(s) = T (Vn)(s) = max
a

[
R(s, a) + γ

∑
s′

Pr(s′|s, a)Vn(s′)

]
(2.1)

with V π
0 (s′) = 0 ∀s′ ∈ S and,

πn+1(s) = arg max
a

[
R(s, a) + γ

∑
s′

Pr(s′|s, a)Vn(s′)

]

Policy Iteration (PI) is a complimentary approach that identifies the optimal policy by

alternating policy evaluation and policy improvement. The value function V π for any

fixed partial policy π is the fixed point of the following iteration,

V π
n+1(s) = Tπ(Vn)(s) =

[
R(s, π(s)) + γ

∑
s′

T (s, π(s), s′)V π
n (s′)

]
(2.2)

with V π
0 (s′) = 0 ∀s′ ∈ S. This operator is known as policy evaluation Tπ, and the next

operator is known as policy improvement over the policy π using V π
n ,

V π′
0 (s)=max

a

[
R(s, a) + γ

∑
s′

Pr(s′|s, a)V π
n (s′)

]
. (2.3)

Note that Vn+1 = T (Vn) = maxaQ
a(Vn) where Qa(Vn) = Ta(Vn). In fact, both VI

and PI belong to the family of Modified Policy Iteration (MPI) algorithms. Until now

we described the MDP and its update equations in terms of “flat” or “atomic” states

and actions. In matrix-vector notation, an implementation of Equation 2.2 stores V and

R as vector of dimension |S| × 1 and T as a matrix of dimension |S| × |S|. The outer

maximization in Equation 2.1 involves the maximum over |A| matrices of dimension

|S| × 1. Clearly, this is prohibitive for exponentially large state and action spaces as

is our case. However, most problems of interest have structure inherent among state

and action variables. Factored MDPs [18] exploit this structure and compute bellman

backups in a more compact form.

Modified PI [119] is a general PI framework for solving MDPs, that contains the two

popular approaches to planning in MDPs namely Value Iteration and PI. PI is generally
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Algorithm 2.1.1: MPI(k)

//Policy Improvement
(V 0
n+1, π)← T (Vn)

if ||V 0
n+1 − Vn|| ≤ ε(1− γ)/2γ return (Vn, π)

//Partial Policy Evaluation
j ← 0
while j < k

do

{
V j+1
n+1 ← Tπ(V j

n+1)
j ← j + 1

Vn+1 ← V k
n+1;n← n+ 1.

Figure 2.1: One iteration of Modified Policy Iteration (MPI) [119] : T and Tπ denote a
bellman and policy backup respectively. The value function V0 is initialized with a lower
bound on V ∗.

preferred over VI as it directly optimizes the function of interest namely the policy.

Although VI like PI converges to the optimal policy, the value of a state in VI may be

slow to converge to its true value, whereas the optimal action may converge quickly.

The general MPI algorithm for an MDP is shown in 2.1. MPI alternates between

policy improvement and steps of policy evaluation. When k = 0 (k = ∞) we have VI

(PI, respectively). When k > 0, we can expect larger jumps in the policy because the

improvement is based on a more accurate value of the current policy in comparison to

k = 0. MPI for any value of k has the following theoretical properties which will be

used later in proving convergence of our algorithm. MPI is guaranteed to converge to

the optimal value and policy if V0 is initialized with a lower bound for value of states.

We study the symbolic implementation of MPI via the introduction of backup operators

tailored to Factored Actions.

2.2 MDPs with Factored State and Action Spaces

Our formulation of a factored-action MDP (FA-MDP) is the tuple (S,A, T,R, γ,AC).

The state space S is specified by a finite set of state variables X = {X1, . . . , Xl} so that

|S| = 2l, and an atomic state s is an assignment of values to them. Following [18], we



9

Figure 2.2: Illustration of the factored actions in the SysAdmin example.

assume that X1, . . . , Xn are binary because of our intention of finding optimal policies.

While factored MDPs with real valued state variables have been considered, for example

in [45, 130], it is yet unknown whether optimal solutions can be derived in general.

However, in contrast with previous work on exact solutions to factored MDPs where

|A| is assumed to be small, the action space A is also specified by a finite number of binary

variables A1, . . . , Am, herein called action variables and |A| = 2m. In what follows we

use a ∈ A to represent a ground action where action variables A = {A1, . . . , Am} are

instantiated to particular binary values.

The markovian transition probability function T (s, a, s′) = Pr(s′|s, a) is factored as a

product of conditional probability distributions over next state variables X′. Each Pi(qi)

is a function of some (typically small) subset qi ⊆ {X,A,X′} where X′ are the next

state variables and the set of dependencies is acyclic. At any time t, x
(t+1)
i ∼ Pi(q(t)

i ) =

Pr(X ′i|q
(t)
i ). The reward function is modeled in a similar manner.

Note that the factorization is similar to a Dynamic Bayesian Network (DBN) [34, 111]

(a two time slice bayesian network). Previous work on optimal planning for factored state

MDPs [18, 66] required as input a separate DBN describing the effects of each action. The

inclusion of action variable nodes and reward nodes, in addition to current and next state

variable nodes, allows a compact representation of the effects of factored actions. For

example, localized and independent effects on disjoint state variables can be compactly

specified. This representation is sometimes known as an Influence Diagram [68]. As

noted by [18], the inclusion of action variables increases the treewidth of the network

that require corresponding algorithms to deal with the blowup in value computation.
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For the purpose of exposition, we will use the prototypical system administration

problem (SysAdmin [57] for short) as a running example. A SysAdmin problem instance

(Section 3.7) consists of a network of n computers, each either running or failed with an

associated action of rebooting. The objective is to maximize the uptime of computers

under a fixed cost of rebooting, and under stochastic spreading of failures according to

the network topology. Our interest is when we increase the number of computers that

can be rebooted in one time step. On one hand, the hardness in terms of planning

time increases for optimal DP algorithms, due to the maximization over actions, or due

to sampling of actions as in online tree search algorithms [81]. On the other hand, the

optimal policy is increasingly simple due to fewer constraints, that in the limit of factored

actions the optimal policy is to simply reboot all failed computers.

Returning to our running example, Figure 2.2 shows the transition and reward rep-

resentation in the SysAdmin domain. The factorization captures the fact that the com-

puters c1, c2 and c3 are arranged in a directed ring network so that the running status

of each computer in the network is influenced by its own reboot action and the status of

its predecessor.

Finally, the last element of our formulation is a function AC : A → {1,−∞} which

denotes the set of valid actions. In our empirical evaluation, we use AC to restrict the

number of actions via restricting the number of action variables that can be set in any

state, allowing us to evaluate the scaling of our algorithms with the size of the action

space while keeping the state space the same. Our encoding using action variables can

potentially create combinations of assignments to action variables that are not valid, and

can lead to invalid states that never occur in practice.

For example, consider the FA-MDP for controlling multiple elevators in a building.

Here the state variables include the location of elevators (one binary variable for each

floor) and action variables include one for moving each elevator one floor above and one

for moving each elevator below its current location. Roughly speaking, the update rule

for each action is to simply set the corresponding binary variable for the location of the

elevator. Here the factorization of the effects of actions causes a problem namely, the

simultaneous action of moving an elevator up and down causes the elevator to be in two

locations at the same time.

We use the input FA-MDP as is throughout this thesis, with the following implied

assumptions relating invalid states and invalid actions.
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Assumption 1. 1. Any initial state is valid.

2. Any state that is valid has at least one valid action.

3. Executing any valid action in a valid state cannot lead to any invalid state with

probability greater than zero.

The above assumptions ensure that the stochastic dynamics of the FA-MDP can be

used as specified, without the need for setting the probability of any transition to zero

followed by normalization. Using induction on the length of any sequence of states, it can

be shown that a policy that outputs legal actions does not reach invalid states. In our

algorithms, we force the Q-value to −∞ whenever AC is −∞, so that the corresponding

greedy policy outputs legal actions only. Using induction on n, it can be shown that

Vn+1 is not equal to −∞ for every valid state.
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Chapter 3: Optimal Planning using Symbolic Dynamic

Programming

3.1 Introduction

There are several approaches addressing factored actions, but unlike our work either do

not give optimal policies over all states or not applicable in a domain independent setting,

or do not leverage the jointly factored state-action space or make strong assumptions

about the MDP. Our work builds on optimal planning with factored states alone as in

[18, 66]. We review these next under the framework of Symbolic Dynamic Programming

(SDP).

Factored MDPs [18] were originally invented as a compact description for very large

MDPs with multidimensional discrete-valued states. Factored planning algorithms at-

tempt to exploit regularities in the problem description in order to compute a compact

representation of the optimal value function and policy. Algorithms that exploit factored

state dynamics are successfully able to tackle the apparent state-space explosion, that

is the exponential growth of the number of states with the number of state dimensions.

However, most prior work has focused on exact Symbolic Dynamic Programming (SDP)

[66, 130] and approximate solutions [129, 137] to factored MDPs with factored states

only.

The literature on SDP generally considers variants of Dynamic Programming (DP)

that compute the optimal value function as the fixed point of a symbolic bellman backup

operator. This includes symbolic Value Iteration(VI) using Algebraic Decision Diagrams

(ADDs) [66], symbolic Real Time Dynamic Programming [44], and symbolic heuristic

search [46]. These DP algorithms have been extended to new representations that are

more compact in some cases, such as Affine ADDs [129], and extended to deal with

continuous quantities [130] and relational states [77]. Similar to our approach of explicitly

reasoning about action variables, [154, 144] incorporate factored actions but are restricted

to deterministic MDPs.

Notwithstanding these and other representational improvements [31], the bottleneck
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for existing SDP planners applied to factored action MDPs (FA-MDPs) is that they

work by iteratively computing the bellman update for every joint action. Thus, these

algorithms ignore any structure in the action space, causing both planning and execution

times to scale at least linearly in the number of joint actions, which is exponential in the

number of action variables. Our contribution is to address this issue by extending the

exact SDP approach to FA-MDPs with boolean state and action variables.

3.1.1 Outline

We propose two new symbolic operators specific to action variables that let us derive

value functions efficiently (Section 3.4). The Factored Action Regression (FAR) operator

[120] (Section 3.4.1), generalizes the symbolic operator for factored states, to factored

states and actions by incorporating explicit action variables in its symbolic computation

leading to a significant improvement in wall-clock solution time. However, the inclusion

of action variables exacerbates the high memory usage common to symbolic methods.

The Memory Bounded FAR (MBFAR) operator [120] (Section 3.4.2) addresses this

issue and provides a parametric trade-off between memory usage and solution time.

MBFAR computes bellman backups over a dynamic set of (partial) action assignments

determined by the compactness of intermediate value functions. MBFAR is parameter-

ized by an upper bound on memory usage, where at one extreme (minimal space) we

get the standard SDP operator which ignores action variables (e.g. SPUDD), and at the

other extreme (unbounded space) we get factored action regression (FAR).

We then consider Modified Policy Iteration (MPI) [119] using the symbolic operators

as our approach to the planning problem. MPI generalizes the above SDP approaches

which were based on VI, but in comparison, is under-explored in the symbolic planning

literature. MPI works by iterating DP backups, but adds a few policy evaluation steps

between consecutive backups. This makes MPI especially attractive for factored-action

spaces because policy evaluation does not require reasoning about all actions at all states,

but rather only about the current policy’s action at each state.

Interestingly, the first approach to symbolic planning in MDPs was a version of

MPI for factored states called Structured Policy Iteration (SPI) [19], which was later

adapted to relational problems [146]. SPI represents the policy as a decision tree with

state-variables labeling interior nodes and a joint action as a leaf node. Although SPI
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leverages the factored state representation, it represents the policy in terms of joint

actions, which fails to capture the structure among the action variables in FA-MDPs.

The value of a policy is computed using the graphical form of the policy. For each every

joint action a, its Q-function Qa is first computed, which is impractical in factored action

spaces. In addition, the space required for policy backup can be prohibitive because each

Qa is joined to each leaf of the policy. A policy backup in SPI can potentially be more

expensive than a bellman backup, which challenges our intuition and motivates a new

policy backup operator. In fact, we are not aware of any implementations of SPI that

scales well even without the additional complexity of factored actions.

The key to efficient symbolic MPI in FA-MDPs is viewing a policy backup as a sym-

bolic bellman backup with the policy as a constraint. Unfortunately, similar to SPI,

a naive handling of the policy constraints in symbolic MPI could significantly increase

the size of the ADD. Our algorithmic contribution in Section 3.6, symbolic Opportunis-

tic Policy Iteration (OPI) [121] is a novel PI algorithm with increased flexibility over

the sequence of policies in PI. OPI is motivated by the fact that the intermediate poli-

cies generated by MPI may have complex value functions not easily representable using

ADDs. OPI opportunistically broadens the policy space to policies whose value function

is at least as compact as the value function of the current policy. We prove that OPI is

guaranteed to converge to the optimal policy at least as quickly as optimal MPI while

representing ADDs no larger than optimal MPI at each iteration.

Our empirical evaluation (Section 3.7) in factored-action benchmarks shows that FAR

and MBFAR can be significantly more efficient than current approaches of symbolic VI

that ignore action variables. We show that OPI is empirically superior to MPI in terms

of wall clock time and compactness of intermediate value functions whereas MPI exceeds

memory limits and crashes. We close with a discussion of the relevant literature on

planning in large action spaces (Section 3.8) and compare them with our approach.

Some real-world applications of this work and its extensions for future work are briefly

discussed.

3.2 Algebraic Decision Diagrams (ADDs)

We now turn to the representation of the Conditional Probability Distributions (CPD)

Pi for each state variable Xi and reward function R. In tabular form the table for Pi
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Figure 3.1: SysAdmin : ADD for the conditional probability distribution for the state
variable running c1.

has O(2|qi|) entries where |qi| is the number of parents of X ′i in the DBN. However, most

of the arcs in the DBN are contextual [17], leading to tables populated with few unique

non-zero probabilities. In the boolean case as in [17], Decision Trees are a natural choice

for representing the discrete probability mass functions within the support of the unit

hypercube. More generally, Decision Diagrams [147] are a popular implicit representation

on the boolean lattice [31], capable of compactly capturing contextual, logical (e.g. XOR-

structure), sparsity and algebraic structures. We build upon the SPUDD algorithm

of [66], who use Algebraic Decision Diagrams (ADDs) [5] as the representation of the

transition functions Pi and R. In contrast to the work of [66] who considered factored

states alone, our ADDs for Pi and R will be over both state and action variables. The

leaf nodes of the ADD are real-values.

An Algebraic Decision Diagram (ADD) [5] represents a real-valued function Bn → R
over n boolean variables in the form of a rooted Directed Acyclic Graph (DAG). Each

interior node of the DAG is labeled with a boolean test variable with two directed

outgoing edges labeled by true or false that lead to its children.

ADDs are an example of an ordered DD, in that they assume that a total ordering

O on the boolean variables is given, which allows canonicity and efficient manipulation

of ADDs. Every assignment of truth values to variables traces a unique ordered path to

a leaf from the root. Each leaf node represents a distinct value that the ADD function

takes over all of its assignments. If D is the ADD, let D[x] denote the scalar value when

D is evaluated on the assignment x.
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Returning to our running example, Figure 3.1 shows the ADD representing the con-

ditional probability distribution for the state variable running c1. The primed variable

running c1’ represents the truth value of running c1 in the next state, the solid and

dotted lines represent the true and false branches respectively. The ADD shows that

running c1 becomes true w.p. 1 if it is rebooted (a deterministic action), and otherwise

the next state depends on the status of the neighbors. When not rebooted, c1 fails w.p.

0.3 if its neighboring computer c3 has also failed, and w.p. 0.05 otherwise. Additionally,

when not rebooted, a failed computer becomes operational w.p. 0.05. Note that the CPD

specifies the transition dynamics for many joint actions compactly (e.g. all joint actions

that have the reboot c1 = true), a consequence of adding action variables.

Ordered ADDs offer a canonical representation for any function (although their com-

pactness depends on the ordering) and polynomial time pointwise operations over the

functions they represent. The unary “restrict operator” fixes the value of a variable x to

x (or x̄) in an ADD D and returns a new ADD denoted by D↓x (or D↓x̄, respectively).

ADDs support binary operations over the functions they represent so that F op G =

H if and only if ∀x, F (x) op G(x) = H(x). Operations between diagrams will be rep-

resented using the usual symbols with op ∈ {+,−,×,÷,max,min}, and the distinction

between scalar operations and operations over functions should be clear from context.

The result H is computed symbolically and in polynomial time in the size of the ADDs F

and G. Marginalization operations of such as G(y) = maxx F (x, y), G(y) = minx F (x, y)

and G(y) =
∑

x F (x, y) are defined naturally over all possible restrictions of D over val-

ues of x e.g. maxx F ≡ max(F↓x, F↓x̄).

The ADD resulting from these operations has a size that is quadratic in the worst

case (but much more compact on average), rather than the potentially exponentially

larger number of entries in a tabular representation of the same function. We will define

the ordering dependent notion of a path in an ADD.

Definition 2. A path in an ADD is a sequence of edge traversals starting at the root

node and ending in a leaf node. A path induces an assignment to a subset of the variables

in O.

A partial assignment is a truth assignment to a subset of variables in the diagram. An

assignment is full if it assigns values to all variables. An extension of a partial assignment

is a full assignment which is consistent with it. Every path in the ADD from the root to
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the leaf defines a partial assignment over the internal variables in that path. The ADD

function returns equal values for all extensions of a path. For example, the path to 0.95

traversed in the example above, defines a partial assignment to three of the variables but

leaves other variables, for example running c2, unspecified.

Definition 3. Let ε(p) denote the set of extensions of a path p, that is the set of assign-

ments to all variables in O such that each assignment is consistent with p.

The path function for an ADD D maps a full assignment x to the partial assignment

defined by the path traced by x in D and is denoted by Φ(D,x). The path function is

represented as an ordered Binary Decision Diagram (ordered ADD with 0/1 leaves) [24]

that returns 1 for all assignments consistent with the partial assignment and 0 otherwise.

For an assignment x, ADD D and φ = Φ(D,x), let ε(φ) denote the set of all extensions

of φ.

We also use the “masking” operator ⊕C for ADDs, where A⊕C B = (1−C)A+CB,

for a binary valued ADD (a BDD) C. That is, the result takes the values from B if C

is true and otherwise from A. This is similar to the ITE(C,B,A) notation in the BDD

literature. This operation can cause merging of paths within the ADD due to reduction,

e.g. if A and B agree on many values.

Two additional transformations are useful. The first converts a BDD B to an ADD

D by mapping the 0-leaf in B to −∞, denoted by D = B. The second, a complementing

operation, converts an ADD D to a BDD B by mapping the 0-leaf in D to 1 and all

other real-valued leaves to 0, denoted by B = D.

Basically, ADDs have the same expressive power as branching programs with real-

valued outputs, but can be exponentially more compact than Decision Trees. ADDs

contain the more widely known Binary Decision Diagrams (BDDs) that have been applied

widely in deterministic planning, model checking, motion planning, formal verification

of programs and digital circuits in VLSI etc.

For the remainder of this chapter and the next chapter we use ADDs for representing

Pi, R and value functions, and BDDs for representing deterministic policies. An inter-

esting implication is that any polynomial sized BDD policies derived by our algorithms

(e.g. MDPs whose optimal policy is a symmetric function, threshold function or selector

function) can be synthesized into an extremely compact combinational circuit despite the

large number of atomic actions [71]. However, families of boolean functions are known
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that do not posses the polynomial property [21].

3.3 SPUDD : Prior State of the Art for MDPs with Factored States

The bellman backup operator requires that the value of every state be updated and

this is prohibitive with 2l states over l state variables. Symbolic Dynamic Programming

(SDP) [16] uses state aggregation to avoid the cost of enumerating the states. The steps

of state aggregation are interleaved with bellman backups on the aggregated states.

In practice, SDP offers the option of calculating optimal value functions for large

MDPs. As shown in [66], some large factored state MDPs possess compact optimal

value functions in the form of ADDs. Their SPUDD algorithm is an implementation

of symbolic VI using ADDs. SPUDD is described in Figure 3.2 where the main loop

implements Equation 2.1 over factored states. This algorithm implements the following

equations,

Qan+1 = Ta(Vn) = Ra + γ
∑
X
′
1

P a1 (q1) · · ·
∑
X
′
l

P al (ql)× (Vn)′ ∀a ∈ A (3.1)

Vn+1 = T (Vn) = max{Qa1n+1, Q
a2
n+1, · · · , Q

a2m
n+1} (3.2)

In these equations (Vn)′ is the value function Vn expressed over next state variables X′.

(Vn)′ is obtained by renaming each interior node labeled with a current state variable

Xi with the label X ′i (n.b. Vn is a function of X only). Equation 3.1 should be read

right to left as follows: each probability ADD P ai (qi) assigns a probability to X ′i from

assignments to qi, introducing the variables qi into the value ADD as a result of the

ADD product. Each
∑

marginalization over X ′i removes the variable X ′i from the ADD.

One can use the conditional independence of X ′ variables to push the summation of next

state variables into the products. We arrive at the Q-value function for each action in

the form of an ADD Qa for each action a. Equation 3.2 maximizes the value of states

over Qa and produces an ADD equivalent to a bellman backup of Vn.

Thus, SPUDD and other works in the literature of factored state SDP such as APRI-

CODD [137] and MADCAP [129] do not scale well with the number of action variables,

because these algorithms rely on enumerating all actions, checking if each violates the

action constraints AC , and if not, computing the value of the action over factored states
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Algorithm 3.4.1: SPUDD(V )

Input : ADDs P ai , R
a for each a ∈ A

V ′ ← Swap variables Xi in Vn with X ′i
for each action a ∈ A

if AC(a) is 1
Qa ← V ′

for each X ′i
Qa ← Qa × P ai
Qa ←

∑
X′i
Qa

Qa ← Ra + γQa

else Qa ← −∞
Vn+1 ← max(Vn+1, Q

a)
Update πn+1 to a if (Vn+1 −Qa) == 0

Return (Vn+1, πn+1)

Figure 3.2: The SPUDD algorithm [66].

Algorithm 3.4.2: FAR(V )

Input : ADDs Pi, R with action variables
V ′ ← Swap variables Xi in Vn with X ′i
Qn+1 ← AC × V ′
for each X ′i
Qn+1 ← Qn+1 × Pi
Qn+1 ←

∑
X′i
Qn+1

Qn+1 ← R+ γQn+1

Vn+1 ← max
A1,...,Am

Qn+1

πn+1 ← arg max
A1,...,Am

(Qn+1)

Return (Vn+1, πn+1)

Figure 3.3: Factored Action Regression
(FAR).

using ADDs. In the next section we will define backup operators for FA-MDPs that

exploit the factorization of the actions. These operators can then be iterated to derive

symbolic VI, or more generally symbolic MPI algorithms.

3.4 Backup Operators for Factored Action MDPs

In the following, we use superscript as in T Q to denote that actions are not maximized

and we have an ADD over state and action variables so that T ≡ maxA1,A2,...,Am T Q.

Similarly, T Qπ restricts to a (possibly partial) BDD policy π and does not maximize over

the unspecified action choice.
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3.4.1 Factored Action Regression (FAR)

T Q(V ) = AC ×

R+ γ
∑
X′1

P1 . . .
∑
X′l

Pl × (V )′

 (3.3)

= R+ γ
∑
X′1

P1 . . .
∑
X′l

Pl × [AC × (V )′] (3.4)

T (V ) = max
A
T Q(V ) (3.5)

Here V is any ADD over state variables ⊆ X and (V )′ swaps each Xi in V with X ′i.

Equation 3.3 should be read right to left as follows: each ADD Pi assigns a probability to

X ′i from assignments to qi ⊆ (X,A,X′), introducing the variables qi into the ADD. The∑
marginalization eliminates the variableX ′i. After all primed variables are marginalized

and the reward ADD is added to the result, we arrive at the Q-function that maps

assignments to subsets of {X,A} to real values. Finally, we multiply with the action

constraints AC , that “masks” the values of illegal action combinations to −∞. Formally,

paths that lead to −∞ in AC also lead to −∞ in T Q and these paths do not contribute

to the max over actions in T .

Proposition 1. FAR as in Equation 3.5 is equivalent to a bellman backup.

Proof. Recall from our formulation (Assumption 1) that for every state there exists

some action that satisfies AC . So there can be no −∞ in R, V or (V )′. Every path p in

Equation 3.3 is such that p leads to −∞ if and only if the path p also leads to −∞ in

AC . Equation 3.4 is equivalent to Equation 3.3 by distributive property of ADDs along

with the fact that AC is independent of any primed variables.

In order to avoid computing any values for illegal actions, the product with AC is

pushed inside the summations. The pseudocode for FAR is shown in Figure 3.3 alongside

SPUDD in Figure 3.2. In Figure 3.3, lines 3-7 include representations of V and Q

that explicitly refer to action variables, and lines 8 and 9 explicitly marginalize action

variables one at a time and in this way compute an exact bellman backup. SPUDD as

originally proposed cannot handle constraints between actions, so in our implementation

of SPUDD, we check to see if the constraint is satisfied for each action.
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FAR is subtly different from SPUDD that leads to large improvements in run time

in practice. FAR accounts for action variables explicitly using ADDs. In many domains

with factored actions, it is efficient to compute T Q as in FAR than each Qa as in

SPUDD. An important distinction is the maximization over actions. FAR uses ADD

marginalization of action variables maxA = maxA1,...,Am . Thus, the maximization takes

into account the structure of the ADD similar to variable elimination, and the position

of action variables in the ordering of nodes in the ADD, and can be much more efficient

than the max between two ADDs as in SPUDD. In addition to this, FAR computes the

expectation over each state variable X ′i only once. This yields additional savings in run

time, especially for those state variables X ′i whose CPD do not depend on any action

variable (e.g. exogenous state variables).

The explicit use of action variables allows us to take advantage of structure in state-

action space. On the other hand, action variables increase the connectivity and treewidth

of the bayesian network representation. In terms of FAR, the intermediate diagrams

capturing the Q-function depend on all actions simultaneously and can be more complex.

Basically, we have traded the exponential time complexity of SPUDD for higher memory

usage. This cost, too, can become prohibitive. In the next section we show how one can

strike a more refined trade-off between SPUDD and FAR.

3.4.2 Memory Bounded FAR (MBFAR)

SPUDD and FAR are two extremes of handling factored actions in SDP - we either enu-

merate all actions or none at all, yielding extreme points w.r.t. time and space complexity.

Roughly speaking, we expect FAR to be faster unless it exceeds the space available on

the computer. In such cases we can obtain a more refined trade-off by controlling the

space explicitly.

We develop this idea by analogy to recursive conditioning in Bayesian Networks

(BN) [30]. Recursive conditioning is an any-space inference algorithm. In each iteration,

a “cutset variable” is chosen and instantiated with every possible value, giving a set of

simpler BNs that are in turn passed to an optimal inference algorithm. In our context, the

cutset variables are action variables whose instantiation need not form a cutset of the BN.

The cutset is chosen dynamically, with the goal that each instantiated BN (corresponding

to fixed partial assignment to action variables) leads to a compact bellman backup (as
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Algorithm 3.4.3: MBFAR(M,Z)

if Z = ∅
V ′ ← V ′ ×AC

else
V ′ ← Restrict action variables in V ′ according to Z (1)

for each X ′i ∈ V ′
if size(V ′) > M

(Recusive Conditioning)
ap ← pick action variable
Qap=T , πap=T ← MBFAR(V ′, Z ∪ {ap = T})
Qap=F , πap=F ← MBFAR(V ′, Z ∪ {ap = F})
QZ ← max(Qap=T , Qap=F )
πZ ←

[
πap=T × (Qap=T ≥ Qap=F )

]⋃ [
πap=F × (Qap=T < Qap=F )

]
RETURN(QZ , πZ)

else (2)
V ′ ← V ′ × PrZ(X ′i|X,A− Z)
V ′ ←

∑
X′i
V ′ (3)

end
end
QZ ← max

A1...Am
(R+ γV ′)

πZ ← Z
⋃

arg max
A1,...,Am

QZ

RETURN(QZ , πZ)

Figure 3.4: Memory Bounded Factored Action Regression (MBFAR) is initialized with
Z = ∅. The maximum size M is compared to the number of nodes in V ′. The set Z
denotes constraints on action variables.

in FAR) of its (partial) action value function.

We start by computing a backup as in FAR, but when the memory bound is exceeded

an action variable is picked and conditioned. This variable is instantiated to the values

zero and one, to form two versions of the DBN with simplified CPDs for the corresponding

action variable. Similarly, the partially computed FAR backup is also simplified to avoid

recomputation. The remaining action and state variables are handled symbolically as

in FAR, until the memory bound is exceeded. Finally, the bellman backup is computed

by the maximum over the ADDs (as in SPUDD) that represent the value functions of

partially instantiated actions.
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The pseudo-code for the MBFAR algorithm is shown in Figure 3.4. The algorithm

takes as input a partially computed value function V ′ in the form of an ADD over

state, action and next state variables and Z specifying a partially instantiated action.

Line 1 restricts action variables in V ′ to their assignments in Z. Then, as long as

the ADDs calculated are small our algorithm behaves exactly as FAR (lines 2-3). If any

intermediate stage of symbolic computation results in an ADD that has more nodes than

the pre-specified space bound C, the algorithm picks an action variable ap to instantiate,

and calls the function recursively twice by adding the constraints {ap = T} and {ap = F}
to Z respectively. It then finds the max of the two ADDs returned by the recursive calls

and updates the policy (lines 3.4.3-2).

Importantly, the set of action variables to instantiate are decided dynamically in a

recursive manner. The variable picked can be different for different instantiations of

previous variables which makes the approach more flexible. In general, different choices

of action variables can lead to different sizes of ADD value functions over partially

specified actions. As a consequence the total number of actions backed up as ADDs

also depends on the choice of the cutset variable. This method of conditioning can also

alleviate bad ADD orderings wrt action variables. We used a heuristic static ordering in

our implementation. We pick the variable ap to be the action variable with the highest

out-degree in the DBN.

The value functions over partially specified actions, e.g. Qap=T , are similar to the

generalized value functions over subsets of actions introduced by [115]. However, unlike

in their work where these subsets are hand-crafted, our method is motivated by the size

of the ADD and constructs these subsets incrementally.

MBFAR generalizes FAR and SPUDD in that MBFAR with zero memory is equiva-

lent to SPUDD, and MBFAR with unbounded memory is equivalent to FAR. In principle

MBFAR can be extended to use recursive conditioning on state variables as well. To

increase efficiency, external memory can be utilized to store the partial value functions

similar to memory based VI [40].

Symbolic planners including SPUDD have memory as the common mode of failure.

MBFAR overcomes this important limitation of SDP. Empirically, the iteration of MB-

FAR within VI gives state-of-the-art performance in some FA-MDPs.

Using the FAR and MBFAR operators, near-optimal VI [120] and MPI algorithms

can be realized [121] that are efficient for factored actions. We will first discuss the imple-
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mentation of MPI using the MBFAR operator in Section 3.5 and note its shortcomings.

In Section 3.6, we present a novel policy iteration approach called Opportunistic Policy

Iteration with strong theoretical and practical advantages over MPI.

3.5 Factored Action Modified Policy Iteration

In this section, we introduce Factored Action MPI (FA-MPI), a Modified Policy Iteration

(MPI) approach to solving FA-MDPs. MPI works by interleaving bellman backups(max

over actions) with a small number of policy backups(fixed action per state). Bellman

backups are computed by MBFAR. FA-MPI uses a new method for computing policy

backups using MBFAR, by treating the policy as a constraint on MBFAR backups similar

to the treatment of action constraints AC in FAR.

The policy is represented as a Binary Decision Diagram (BDD) with state and action

variables where a leaf value of 1 denotes any combination of action variables that is the

policy action, and a leaf value of −∞ indicates otherwise.

Using this representation, we perform policy backups using TQπ (V ) given in Equa-

tion 2 below followed by a max over the actions in the resulting diagram. In this equation,

the diagram resulting from the product π × (V )′ sets the value of all off-policy state-

actions to −∞, before computing any value for them and this ensures correctness of the

update as indicated by the next proposition.

Tπ(V ) = max
A

π × T Q (3.6)

= max
A

(π ×R) + (γπ)
∑
X′1

PX
′
1 . . .

∑
X′l

PX
′
l × (V )′


= max

A

R+ γ
∑
X′1

PX
′
1 . . .

∑
X′l

PX
′
l × (π × (V )′)

 (3.7)

First, it should be clear that Equation 3.6 computes policy backups. T Q computes

an exact backup over all actions. Those state-action combinations that do not agree are

with the policy π are “masked” with a value of −∞, and hence don’t to contribute to the

max. However, this approach would not be much different from SPI, because computing
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T Q is hard. But we can do better.

Proposition 2. FA-MPI as in Equation 3.7 computes exact policy backups i.e. maxA T Qπ =

Tπ. That is, T Qπ (s, a) = −∞ whenever π(s, a) = −∞ and T Qπ (s, a) = Tπ(s) 6= −∞ when-

ever π(s, a) = 1.

The policy π can be pushed inside the summations as they do not depend on state

and action variables. The summation will result in −∞ for any action that violates the

policy and thus, the reward diagram need not be multiplied with the policy.

One important consequence of using a BDD policy representation is that π can now be

a partial policy (more than one action per state). The operator T Qπ computes the one step

backup for the value of all of the actions specified by any partial policy, and the max over

actions is a partial policy improvement of π. This agrees with the usual definition of Tπ
in the literature (Figure 2.1). The arg max can be calculated using diagram operations as

πn+1 =
[
maxA T Qπ

]
− T Qπ , where D is the complementing operator (Section 3.2). Since

[maxAQ] − Q ≥ 0 everywhere and > 0 on paths that include suboptimal actions this

identifies the greedy policy with respect to Q. Below we slightly abuse notation and

denote this operation as πn+1 = arg maxAQ.

FA-MPI retains the convergence of MPI. The policy must be initialized with the

action constraint AC , so that all policies generated by FA-MPI are consistent with AC

(and so AC is omitted from Equation 3.7).

Memory Bounded FA-MPI (MB-MPI) is a simple extension that uses MBFAR in

place of FAR for the backups in Figure 3.5. MB-MPI is parametrized by k, the number of

policy backups, and M , the maximum size (in nodes) of any intermediate value function.

MB-MPI generalizes MPI in that MB-MPI(k,0) is the same as SPI(k) [19] and MB-

MPI(k,∞) is FA-MPI(k). Also, MB-MPI(0,0) is SPUDD [66] and MB-MPI(0,∞) is

FAR [120].

While FA-MPI can lead to improvements over VI (i.e. FAR), like SPI, it can also lead

to large space requirements in practice. In this case, the bottleneck is the ADD product

π × (V )′, which in this case leads to a quadratic growth of the ADD (the worst-case of

ADD multiplication), due to multiplying of two ADDs that have disjoint interior nodes.

We motivate the next section by viewing π as a constraint on (V )′, and FA-MPI strictly

enforces this constraint via π× (V )′. The strict enforcement of this constraint leads to a

size-blow up. The next section uses a more conservative backup that opportunistically
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Algorithm 3.5.1: FA-MPI/OPI(k)

V 0 ← 0, i← 0

(V i+1
0 , πi+1)← max

A
T Q(V i)

while ||V i+1
0 − V i|| > ε

do



for j ← 1 to k

do


For algorithm FA-MPI :

V i+1
j ← max

A
T Q
πi+1(V i+1

j−1 )

For algorithm OPI :

V i+1
j ← max

A
T̂ Q
πi+1(V i+1

j−1 )

V i+1 ← V i+1
k

i← i+ 1

(V i+1
0 , πi+1)← max

A
T Q(V i)

return (πi+1).

Figure 3.5: Factored Action MPI and Opportunistic Policy Iteration (OPI).

enforces policy backups while ensuring no growth in the size due to the consideration of

the constraint.

3.6 Symbolic Opportunistic Policy Iteration

In this section, we develop a new policy iteration algorithm which addresses the shortcom-

ings of FA-MPI (and MPI). The iteration in FA-MPI(k) converges to the optimal policy

(value function) via a sequence of intermediate policies π1, π2, . . . , πn (value functions).

The scalability of this approach crucially depends on the compactness of intermediate

value functions as ADDs, which depends on k. In addition, there is an interaction be-

tween the choice of k and the convergence rate of FA-MPI. At the level of factored states,

the trade-off in FA-MPI corresponds to choosing a set of actions to regress such that the

global representation of the policy (value function) is compact. In particular, FA-MPI

makes the two extreme choices of regressing one or all actions. Symbolic Opportunistic

Policy Iteration(OPI) addresses this issue and provides strong theoretical guarantees.

OPI applies the idea of subsumption in BDDs to the policies π1, π2, . . . , πn generated



27

Algorithm 3.6.1: P(D, π)

if π = −∞ return (−∞)
if π = 1 return (D)
if D is a leaf return (D)
d← variable at the root node of D
c← variable at root node of π
if d < c in ordering

then return (ADD(d,P(DT , π),P(DF , π)))
if d = c

then return (ADD(d,P(DT , πT ),P(DF , πF )))
if d > c in ordering

then return (P(D,max(πT , πF )))

Figure 3.6: Pseudo-code for the pruning operator P(D,π) ≡ Pπ(D) for any ADD D and
a policy constraint BDD π.

by FA-MPI. A BDD B subsumes another b if B ⇒ b. That is, the BDD B is more

general than b, or a weaker premise. When the BDD represents a policy over state and

action variables, the policy Π subsumes another π if its models contain every state-action

mapping in the models of π, in addition to possibly some models not contained in π.

Consequently, the optimal value function of Π must dominate that of π for every state in

the FA-MDP because it is the maximum over a superset of actions. In the next section

we introduce a new symbolic operator for finding a subsuming policy of a given policy

such that the dominating value function is also more compact.

3.6.1 Pruning Operator

OPI carries over from FA-MPI that the policy is treated as a constraint on usual symbolic

bellman backups. As seen in Figure 3.5, the pseudo-code OPI is identical to FA-MPI

except that it uses an alternative, more conservative backup operator. This operator

enforces the policy constraint opportunistically, i.e. only when they do not increase

the size of the value function representation. In addition, it is more efficient than the

corresponding operator in FA-MPI.

The pruning operator (pseudo-code in Figure 3.6) constrains some parts of the ADD
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Figure 3.7: An example for pruning. D and π denote the given function and constraint
respectively. The result of pruning is no larger than D, as opposed to multiplication. T
(true) and F (false) branches are denoted by the left and the right child respectively.

function D with a constraint π, it assigns a value of −∞ to only those paths in D all of

whose extensions violate π. The operator does not alter any other paths, thus the result

is not identical to D × π in general. The interesting case is when the root variable of π

is ordered below (d > c in Figure 3.6) the root of D. Thus, c not appear in D and D

is more general than π, so that the only way to violate the constraint is to violate both

true and false branches max{πT , πF } (equivalenty, ∃cπ). Clearly, the result of pruning

depends on the ordering of variables in the ADD.

In terms of efficiency, computing P(D,π) take space and time O(min(|D|, |π|)),
whereas computing D×π takes space and time O(|D||π|). In addition, the ADD P(D,π)

can never be larger than the ADD D. This is illustrated in Figure 3.7. Here the input

function D does not contain the root variable X of the constraint, and the max under

X is also shown. The result of pruning P(D,π) is smaller than D, whereas the product

D×π is larger than D. The evaluation for the assignment x̄yz is 10 according to P(D,π)

whereas its evaluation is −∞ according to D × π. This is the nature of mistakes made

by the pruning operator in exchange for compactness. We can state the following about

the result of the pruning operator.

Proposition 3. Let G = P(D,π) then

(P1) Every path in G is a sub-path of a path in D.

(P2) If a path p in G does not lead to −∞, then for all extensions y ∈ E(p), G(y) = D(y).

(P3) If a path p in G does not lead to −∞, then there is an extension y ∈ E(p), s.t.

π(y) = 1.

(P4) If a path p in G does lead to −∞, then for all extensions y ∈ E(p) either π(y) = −∞
or D(y) = −∞.
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Proof. We argue that P1 holds inductively over the recursive structure of the algorithm.

Note that whenever the procedure returns it either returns a leaf or it combines a node

label in D with a sub-diagram satisfying that all paths are sub-paths of D.

We next show that P2, P3, P4 hold by induction on the number of variables in the

union of D and π. For the base case we have zero variables, and the algorithm returns

−∞ or the leaf value of D. The claim holds in both cases. For the inductive step consider

D,π with k+1 variables and consider the cases d < c, d = c, d > c as in the procedure.

In each case, the recursive calls have at most k variables and therefore we can apply the

inductive hypothesis on the corresponding diagrams.

Case I: d < c: Let the outputs of the recursive calls be GL = P(DT , π) and GR =

P(DF , π). There are two sub cases to consider wrt to the operation ADD(d, GL, GR). If

GL = GR then the ADD procedure returns G = GL = GR. Consider any path p in G

leading to a value v which is not −∞. By the inductive assumption, for all extensions y

of p we have that DT (y) = G(y) = v and DF (y) = G(y) = v. Therefore, regardless of

the value of d in y we have D(y) = G(y) = v, and P2 holds. In addition, by the inductive

assumption there exists a y extending p s.t. π(y) = 1, and P3 holds. Consider next any

path p in G leading to −∞. By the inductive assumption, for all extensions y of p we

have that π(y) = −∞ or DT (y) = −∞ and that π(y) = −∞ or DF (y) = −∞ . Now if

π(y) = −∞ then P4 holds and if π(y) 6= −∞ then both DT (y) = −∞ and DF (y) = −∞
and therefore, regardless of the value of d in y we have D(y) = −∞ and P4 holds.

Consider next the sub case where GL 6= GR and the ADD procedure returns a

diagram G with root label d and children GL, GR (the children may share some sub

diagrams but this does not affect the argument). Consider any path p = (d, p′) that

follows the true branch out of the root in G and which leads to a value v which is not −∞.

By the inductive assumption, for all extensions y′ of p′ we have that DT (y′) = GL(y′) = v

and in particular this holds for all such y that assign d = 1. Therefore, for all extensions

y of p where d = 1 we have G(y) = GL(y) = DT (y) = D(y) where the first and last

equalities hold by the structure of D and G. The argument for paths p = (¬d, p′) is

symmetric. This shows that P2 holds. To see that P3 holds note that by the inductive

assumption there exists a y ∈ E(p′) s.t. π(y) = 1, Since π does not depend on the variable

d (because we are in the case d < c) we can set d = 1 in y and still maintain π(y) = 1.

For P4, consider any path p = (d, p′) in G leading to −∞. By the inductive assumption,

for all extensions y of p′ we have that π(y) = −∞ or DT (y) = −∞. Therefore, for all
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extensions with d = 1 we have π(y) = −∞ or D(y) = DT (y) = −∞.

Case II: d = c: Let the outputs of the recursive calls be GL = P(DT , πT ), GF =

P(DF , πF ). Again, there are two cases wrt the ADD construction ADD(d,GL, GR). If

GL = GR, we return G = GL = GR. Consider any path p in G that leads to a value

v 6= −∞. By the inductive assumption, for all extensions y of p we have DT (y) =

G(y) = v and DF (y) = G(y) = v. Therefore, regardless of the value of d in y we have

D(y) = G(y) = v for all y. This shows that P2 holds. To see that P3 holds note that by

the inductive assumption there exists a y ∈ E(p) s.t. πT (y) = 1, Now, since πT does not

depend on the variable d we can set d = 1 in y and obtain π(y) = 1. For P4, consider

a path p in G that leads to −∞. By inductive assumption, for all extensions y of p we

have that πT (y) = −∞ or DT (y) = −∞ and that πF (y) = −∞ or DF (y) = −∞. Now,

if d = 1 in y then π(y) = πT (y) and D(y) = DT (y) and P4 holds. A similar argument

handles the case d = 0.

If GL 6= GR, we return ADD(d,GL, GR). Consider any path p = (d, p′) that follows

the true branch out of d, and leads to a value v 6= −∞. By the inductive assumption,

for all extensions y′ of p′ we have GL(y′) = DT (y′) = v and so, when d = 1 in y, we

have G(y) = GL(y) = DT (y) = D(y) where the first and last equalities hold by the

structure of D and G. The argument for paths p = (¬d, p′) is symmetric. This shows

that P2 holds. To see that P3 holds note that by the inductive assumption there exists

a y ∈ E(p′) s.t. πT (y) = 1, Now, since πT does not depend on the variable d we can

set d = 1 in y and obtain π(y) = 1. For P4, consider a path p = (d, p′) in G that

leads to −∞. By the inductive assumption, for all extensions y′ of p′ we have that

πT (y′) = −∞ or DT (y′) = −∞. Therefore, for d = 1, we have that all extensions y of p

have π(y) = πT (y) = −∞ (since y sets d = 1) or D(y) = DT (y) = −∞.

Case III: d > c: In this case, the recursive call is G = P(D,maxc π). For P2, consider

a path p that leads to a value v 6= −∞. By the inductive assumption, for all extensions

y of p we have G(y) = D(y) as needed. For P3 note that the path p does not include the

variable d since d does not appear in either diagram of the recursive call. Now, by the

inductive assumption, there is a y extending p s.t. (maxc π)(y) = 1. This implies that

at least one of πT , πF is satisfied by y. Setting d = 1 in y if πT is satisfied and d = 0

otherwise, we get that π(y) = 1 as needed. For P4, consider a path p in G that leads

to −∞. By the inductive assumption, for all extensions y of p we have D(y) = −∞ or

maxc π(y) = −∞. In the second case, p leads to −∞ in π regardless of the value of c,
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and π(y) = −∞. We therefore have D(y) = −∞ or π(y) = −∞ as needed.

3.6.2 Effect of Repeated Pruning

In the following we will propose algorithms that apply pruning repeatedly during Bellman

or policy backup in order to keep diagrams as small as possible, in particular using

updates of the following form:

T̂ QC (V ) = PC

PC(R) + γ
∑
X′1

PC(PX
′
1 . . .PC(

∑
X′l

PX
′
l × (V )′) . . .)

 (3.8)

where C represents some constraints. Below we will use this where C is the set of ac-

tion constraints, and where C is a policy. Note that this computation uses multiplication,

addition, and marginalization.

To show correctness of this process we extend the notation from the previous propo-

sition as follows. We say that diagram Â satisfies P2 with respect to diagram A if for

any path p in Â which does not lead to −∞, we have that for all extensions y ∈ E(p),

Â(y) = A(y). We say that diagram Â satisfies P3 with respect to diagram A (and

constraint C) if for any path p in Â which does not lead to −∞, we have that there

exists y ∈ E(p), s.t. C(y). We say that diagram Â satisfies P4 with respect to diagram

A (and constraint C) if for any path p in Â which does lead to −∞, we have that for all

extensions y ∈ E(p) either C(y) = −∞ or A(y) = −∞. We next show that the properties

are inductively maintained by the operations in backups.

Proposition 4. If Â satisfies P2,P4 with respect to A and B̂ satisfies P2,P4 with respect

to B then Â× B̂ satisfies P2,P4 with respect to A×B.

Proof. Let p be a path to a leaf valued v 6= −∞ in Â× B̂ and let y be any extension of

p. Then, by the correctness of the ADD operations we have that there exist v1, v2 s.t.

Â(y) = v1, B̂(y) = v2, and v = v1 ∗ v2. Let p1, p2 be the corresponding paths in Â, B̂.

Since y extends both p1 and p2, by P2 in the assumption of the proposition we have that

A(y) = v1 and B(y) = v2. Therefore (A×B)(y) = v and P2 holds.

For P4, if v = −∞ then at least one of v1, v2 is −∞. Assume wlog that this holds

for v1. Then by P4 in the assumption of the proposition we have that C(y) = −∞, or
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A(y) = −∞ and as a result C(y) = −∞, or A(y) ∗B(y) = −∞.

By changing × to + in the previous proof we get

Proposition 5. If Â satisfies P2,P4 with respect to A and B̂ satisfies P2,P4 with respect

to B then Â+ B̂ satisfies P2,P4 with respect to A+B.

The same holds for marginalization.

Proposition 6. If Â satisfies P2,P4 with respect to A then
∑

x Â satisfies P2,P4 with

respect to
∑

xA.

Proof. This follows by the previous proposition because for any diagram D, we have∑
xD = Dx=0 +Dx=1.

It is easy to see that the binary operations and marginalization do not always preserve

property P3. However, as we show next P3 is reinforced at any application of the pruning

operator.

Proposition 7. If Â satisfies P2,P4 with respect to A and G = PC(Â) then G satisfies

P2,P3,P4 with respect to A.

Proof. P3 is obtained directly from Proposition 3 and P2, P4 by chaining the properties

from Proposition 3 with the assumptions of the current proposition. In particular, let

p be a path to a leaf valued v 6= −∞ in G. Then by P3 of Proposition 3 there is an

extension y of p s.t. C(y) = 1. In addition, by P2 of Proposition 3 for all extensions y of p

we have G(y) = Â(y) and by P2 in the condition of the proposition G(y) = Â(y) = A(y).

The argument for P4 is similar.

3.6.3 Pruned Backup Operators

Consider the update which prunes action constraints

T̂ QAC (V ) = PAC

PAC (R) + γ
∑
X′1

PAC (PX
′
1 . . .PAC (

∑
X′l

PX
′
l × (V )′) . . .)

 (3.9)

and recall that T (V ) is the Bellman backup as in Equation 3.5.
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Proposition 8. maxA T̂ QAC (V ) = T (V )

Proof. Applying the propositions inductively, we see that T̂ QAC (V ) satisfies P2, P3, P4

with respect to T Q(V ). Now, by P4, for any extension y of any path leading to −∞, we

have AC(y) = −∞ (i.e. the action is not legal) or T Q(V ) = −∞ (i.e. the true value is

−∞). Therefore, legal actions whose value is not −∞ are not assigned −∞ value. Next

note that by P3, for any path not leading to −∞, there is an extension y s.t. AC(y) = 1

(i.e., a legal action). Now the crucial point is that because AC does not include state

variables this holds for all states covered by p. In other words, for any path p and a state

covered by this path there is a legal action covered by this path. Finally, by P2, for y not

leading to −∞ we have, [T̂ QAC (V )](y) = [T Q(V )](y) so the value on these paths is correct

for the legal action. Therefore, maxA T̂ QAC (V ) = maxA[AC × T Q(V )] = T (V )

It is interesting to note that if AC was allowed to include state variables then the

proof above does not hold. In this case, every path with value v has some extension

y where AC is satisfied but this might apply only to some of the states covered by the

path but not necessarily all the states. If we nonetheless use the update some states

could be using a value from an illegal action. This implies that if a planning domain

requires state-action constraints then these much be explicitly modeled within the DBN

(or enforced by multiplication) and cannot be pruned. On the other hand, if the state-

action constraints are imposed by a policy, the effect is to ignore the constraint, or in

other words use a non-policy action instead of the policy action when performing policy

backup. As we show next, this is still legal, and yields a novel algorithm that partially

enforces policy choices to improve the space requirement of the backup.

Consider the update which prunes policy constraints (where we assume that action

constraints AC are implicitly enforced)

T̂ Qπ (V ) = Pπ

Pπ(R) + γ
∑
X′1

Pπ(PX
′
1 . . .Pπ(

∑
X′l

PX
′
l × (V )′) . . .)

 (3.10)

let T̂π(V ) = maxA T̂ Qπ (V ) and recall that Tπ(V ) is the true policy backup as in Equation

3.6.

Proposition 9. Tπ(V ) ≤ T̂π(V ) ≤ T (V ).
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Proof. As in the previous proposition T̂ Qπ (V ) satisfies P2, P3, P4 with respect to T Q(V ).

Since we assume that action constraints have been applied, all actions are legal and

therefore by P2 the upper bound T̂π(V ) ≤ T (V ) holds. Next note that by P4, every

pruned path in T̂ Qπ (V ) is justified by π and because T Qπ (V ) enforces all the choices of π

we have T Qπ (V ) ≤ T̂ Qπ (V ) and Tπ(V ) = maxA T Qπ (V ) ≤ maxA T̂ Qπ (V ) = T̂π(V ).

The same properties hold when in each step we prune both action constraints and

the policy in sequence, that is, Pπ(PAC (D)) where D is the diagram from the previous

stage. In this case P3 for AC implies that each action used for the update is legal. That

is the update used in the experiments. Intuitively, the theorem can be interpreted using

the notion of subsumption in BDDs. A BDD A subsumes another BDD B, denoted by

A |= B, if every path that leads to a value of 1 in B also leads to a 1 in A. The BDD

1 (0) subsumes all (none) other BDDs. When the BDD represents a policy constraint,

πA |= πB implies that for every state, πA allows for all the actions that πB does (and

possibly more in addition). It should be clear that πA |= πB ⇒ V πB ≤ V πA ≤ V ∗. The

operator T̂ π(V ) does exactly this. Given a policy π, T̂ π(V ) returns an ADD V such

that there exists a policy π′ with T̂ π(V ) = T π′(V ).

3.7 Experiments

In this section, we experimentally evaluate each combination of algorithm and operator

in three probabilistic planning problems with factored actions. Two of the three do-

mains we test were part of the probabilistic planning benchmarks of 2011 (IPPC-2011)

viz. SysAdmin and Elevator Control. These domains have high branching factors and

number of actions which pose significant challenges for both symbolic [121] and sub-

symbolic methods [86]. Our experiments highlight the benefits of the symbolic MPI

approach over the state of the art symbolic VI approach SPUDD. To the best of our

knowledge, this is also the first empirical demonstration of Symbolic MPI (almost 20

years after being first proposed) and its adaptation for factored actions.

3.7.1 Domain Descriptions

The following domains were described using the Relational Dynamic Influence Diagram

Language (RDDL) [128]. We ground the relational description to arrive at our proposi-
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tional DBN-MDP similar to Figure 2.2. RDDL also allows the specification of constraints

which we use to bound the number of parallel actions. The number of parallel actions is

the action constraint AC in our algorithms and determines the size of the action space.

The action constraint allows us to test the scaling of our algorithms, and the state-of-

the-art symbolic VI algorithm SPUDD, as a function of the action space keeping the

state space fixed.

We also use RDDL constraints to specify states that can never occur. State con-

straints are used to generate an initial state for execution of any policy, from which an

invalid state cannot occur as long as the policy obeys action constraints. Our algorithms

that use pruning (viz. OPI and MB-OPI) may output a non-trivial value for invalid

states, but these values cannot propagate to valid states (Assumption 1). Note that

FA-MPI and MB-MPI output a fixed value of −∞ for invalid states.

3.7.1.1 Inventory Control (IC)

The first domain we consider is a simple Inventory Control problem from Operations

Research. This domain consists of n independent shops, with two state variables per

shop denoting whether the shop is full empty(shop), and whether there is a customer in

the shop person(shop). Each shop can be filled by a deterministic action fill(shop) that

sets empty(shop) to false, and incurs a cost of −0.35. The total number of shops that can

be filled in one time step is restricted using the action constraint which can be interpreted

as a fixed number of “trucks” available. The rate of arrival of a customer is distributed

independently and identically(IID) for all shops as Bernoulli(p) with p = 0.05, and so

this domain is the simplest domain we consider. A customer at an empty shop continues

to wait with a reward of -1 for each time step until the shop is not empty, at which time

the shop is emptied and the person leaves. The reward function is the sum over the

rewards at each shop. An instance of IC with n shops and m trucks has a joint state

and action space of size 22n and
∑m

i=0

(
n
i

)
respectively.

3.7.1.2 SysAdmin : System Administration Domain

The “SysAdmin” domain was part of the IPPC 2011 benchmark and was introduced in

earlier work [57]. The SysAdmin problem has several applications in spatial planning
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problems e.g. spreading of disease or fire in a forest, the migration of birds, spreading

of invasive plant species [37], fault tolerance in large computer networks etc.

A SysAdmin problem instance consists of a network of n computers connected in a

given topology. The topology defines the spatial relations and thus the hardness of the

planning problem. Each computer is either running (reward of +1) or failed (reward of 0)

so that |S| = 2n, and each computer has an associated deterministic action of rebooting

(with a cost of -0.75) so that |A| = 2n. The objective is to maximize the uptime

of computers. Unlike the previous domain, the exogenous events viz. the crashing of

computers are not independent of one another. A running computer that is not being

rebooted is running in the next state with probability p proportional to the number of

its running neighbors, where p = 0.45 + 0.5
(

1+nr
1+nc

)
, nr is the number of neighboring

computers that have not failed and nc is the number of neighbors. We restrict the

number of computers that can be rebooted in one time step using an action constraint.

We test this domain on three topologies of increasing difficulty, viz. a star topology, a

unidirectional ring and a bidirectional ring.

3.7.1.3 Elevator Control

This domain was also part of the 2011 planning benchmarks. The problem of automat-

ically controlling elevators in a building has long been studied in operations research

reinforcement learning [7]. The objective is to control m elevators in a building with n

floors. A state is described as follows: for each floor, whether a person is waiting to go

up or down (2 bits per floor); for each elevator, whether a person inside the elevator is

going up or down (2 bits per elevator), whether the elevator is at each floor (1 bit per

elevator per floor), and its current direction (up or down). A person arrives at a floor

f , independently of other floors, with a probability Bernoulli(pf ), where pf is drawn

from Uniform(0.1, 0.3) for each floor. Each person gets into an elevator if it is at the

same floor and has the same direction (up or down). Ties between multiple elevators

that are available at the same floor are broken deterministically using a total ordering

among elevators. A person going up exits the elevator at the top floor (a person going

down exits at the bottom floor).

In this domain we can describe the dynamics of elevators compactly using a clever

encoding of action variables. Each elevator has three actions: move−up or move−down
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by one floor, or flip its direction. The effects of these actions are deterministic and,

more importantly assumed to be independent of the other actions ie. move − up sets

the location of the elevator to be set for the floor above the current floor and unset at

the current floor. So executing move − up and move − down simultaneously causes an

erroneous state due to this independence assumption (see Assumption 1). These invalid

actions are prevented from being part of any policy by using the action constraint that

only one action is allowed per elevator. This encoding allows for a compact DBN and

avoids the use of synchronic arcs between the locations of elevators.

Each person receives a reward of -1 when waiting at a floor and -1.5 if he is in an

elevator that is moving in a direction opposite to his destination. There is no penalty

if their directions are the same. The reward function is the sum of rewards over each

elevator and floor. So the optimal policy will prefer people waiting within the elevator

rather than at any floor, as long as the elevator does not move in the opposite direction.

This is a complex domain, requiring coordination among elevators, and is generally out

of the reach of an exact solution, but we are able to illustrate the difference between the

algorithms on a small problem instance.

3.7.2 Experimental Setup

In our experiments the variables in the ADDs are ordered so that parents(X ′i) occur

above X ′i and the X ′is are ordered by |parents(X ′i)|. We heuristically chose to do the ex-

pectation over state variables in the top-down way, and maximization of action variables

in the bottom-up way with respect to the variable ordering. In order to evaluate scaling

with respect to the action space we fix the size of the state-space and measure the total

CPU time1 to convergence (Bellman error less than 0.1 with a discount factor of 0.9).

The charts denote OPI with k steps of evaluation as OPI(k), and MB-OPI with memory

bound M as MB-OPI(k,M)(similarly FA-MPI(k) and MB-MPI(k,M)). In addition, we

compare to symbolic value iteration: the well-established baseline for factored states,

SPUDD [66], and factored states and actions FAR-VI (or FA-MPI(0)) [120]. Since both

are variants of VI we will denote the better of the two as VI in the charts.

We used our own Java implementation of ADDs and symbolic operations between

1These experiments were run on a single core of an Intel Core 2 Quad 2.83GHz with 4GB limit on
memory usage.
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ADDs. The CPU times shown here include the time spent waiting for the automatic

garbage collector. An important aspect of this implementation is that it uses a global

LRU cache of fixed size for ADD apply operations, that stores the results of opera-

tions between ADDs. This improves the runtime performance of SPUDD because, even

though SPUDD completely ignores action structure, some backups are shared indirectly

through the cache, and reduces the difference between SPUDD and FAR-VI. The reader

is directed to [120] for a comparison of SPUDD and FAR/MBFAR-VI when a global

cache is not used. Those results are not replicated here as our focus is mainly on MPI.

3.7.3 Experimental Validation

The experiments are organized as follows. First, we will compare the effectiveness of

MPI(k)(k > 0) for three different values of k. In our experiments, and in theory, OPI

is always better than FA-MPI so we compare OPI directly.

Representation compactness : To motivate our MPI approach to these MDPs,

we first show that the optimal policy has a much more compact ADD representation over

the optimal value function. The ADDs are not able to compactly represent the additive

structure of the optimal value functions in these domains, a well-known limitation of

ADDs that is circumvented by our MPI approach. To illustrate this, Table 3.1 shows

the compression provided by representing the optimal value functions and policies as

ADDs versus tables. We observe orders of magnitude more compression for representing

policies. The compression ratio for value functions is less impressive and surprisingly

close to 1 for the Uniring domain.

Domain # parallel actions # parallel actions
Compression in V Compression in π

2 3 4 5 6 7 2 3 4 5 6 7
IC(8) 0.06 0.03 0.03 0.02 0.02 0.02 0.28 0.36 0.35 0.20 0.09 0.03

Star(11) 0.67 0.58 0.50 0.40 0.37 0.35 1.8e−4 2.3e−4 2.1e−4 1.9e−4 1.4e−4 9.6e−5

Biring(10) 0.96 0.96 0.95 0.94 0.88 0.80 1.1e−3 1.3e−3 1.2e−3 1.1e−3 9.8e−4 7.4e−4

Uniring(10) 0.99 0.99 0.99 0.99 0.99 0.99 9.3e−4 1e−3 9.4e−4 8.2e−4 5.2e−4 2.9e−4

Table 3.1: Ratio of size of ADD (nodes) to tabular representation of V ∗ and π∗.

Impact of policy evaluation : We compare OPI(0), OPI(2) and OPI(5) in Figure

3.8. OPI(0) is equivalent to FAR-VI, the state-of-the-art symbolic VI algorithm for

factored actions. The charts are shown in Figure 3.8.

First, in an Inventory Control problem with 8 shops (65536 states and 256 actions),
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as the number of parallel actions increases, OPI(0) takes increasingly more time for

parallel actions 1-4. The time to converge reduces with more parallel actions due to the

(a) increased sparsity of the domain dynamics under any policy viz. filling more shops

causes fewer shops to be empty. (b) increased structure in the value function viz. all

states that have t shops empty have the same value since most of them can be filled in

one time step. An increase in the steps of evaluation in OPI(2) and OPI(5) leads to a

speedup of upto 3x on the hardest problem.

In the SysAdmin domain, we tested three different topologies. For all the topologies,

as the size of the action space increases, OPI(0) (i.e. VI) takes an increasing amount of

time, so we stopped the planner after six hours. The bellman error is annotated in the

Figure at termination. OPI scales significantly better and does better with more steps

of policy evaluation, suggesting that more lookahead is useful in this domain.

In an Elevator Control problem (about 4 million states and 64 actions) OPI(0) con-

verges the fastest, while OPI(2) and OPI(5) have similar convergence rates. This result

suggests that lookahead is not crucial in this domain, but it may also be due to the small

size of the building in this problem instance.

Impact of pruning : Here we will compare OPI vs. FA-MPI. Although OPI is

proven to be no worse than FA-MPI, these experiments demonstrate that OPI signifi-

cantly outperforms FA-MPI in terms of run-time, whereas FA-MPI blows up in memory

in some cases (EML stands for Exceeded Memory Limit in the charts). These charts are

shown in Figure 3.9.

In Inventory Control, FA-MPI(5) exceeds the memory limit on five out of the seven

problem instances. The bellman error is annotated for these instances showing that

FA-MPI becomes worse with more actions. On the other hand, OPI(5) converges in all

instances. In the SysAdmin domain, we show the scaling of OPI vs FA-MPI for problems

that increase in state and action space. The chart shows the relative time FA-MPI takes

more than OPI with increasing number of parallel actions. FA-MPI takes increasingly

more time more than OPI. On the largest problem, FA-MPI exceeds the memory-limit,

and is at least 150% slower than OPI. In Elevator control, FA-MPI exceeds the memory

limit and is at least 250% slower, whereas OPI converges much faster than FA-MPI.

Impact of memory-bounding : Even though memory bounding can mitigate the

memory blowup in FA-MPI, it can cause some overhead in time, and can still exceed

the limit due to exact policy backups. These experiments show how MB-MPI compares
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Figure 3.8: Impact of Steps of Policy Evaluation. EML denotes Exceeded Memory Limit.
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Figure 3.9: Impact of Pruning : OPI vs FA-MPI. EML denotes exceeded memory limit.

with OPI and MB-OPI, and whether the combination of memory bounding and pruning

is useful. The charts are shown in Figure 3.10.

In the Inventory Control problem, we already saw that FA-MPI exceeds memory limit

in five out of seven instances. MB-MPI mitigates this and reduces the number of EML

to two out of seven. On the other hand, OPI can solve all the seven instances and its

combination with MB as in MB-OPI provides some speedup. In the SysAdmin domain,

the figure shows a comparison between MB-MPI and MB-OPI on a particular problem

instance. In this instance, FA-MPI exceeds memory while MB-MPI does not, but is

outperformed by MB-OPI. A similar plot is seen in the elevators domain for MB-MPI

vs MB-OPI. Thus, the combination of MBFAR and OPI seems to be new best planner

for symbolic planning in these domains.

Impact of action variables : Next, we compare our MDP formulation with ac-

tion variables and the operators FAR against the state-of-the-art symbolic VI algorithm

SPUDD. Figure 3.11 show this comparison for the Inventory and Elevator Control do-

mains. As mentioned earlier, since our focus here is mainly on MPI, our implementation

uses a global cache that obscures the difference between SPUDD and FAR-VI. See [120]

for a detailed comparison of SPUDD, FAR-VI and MBFAR-VI for ADDs and Affine

ADDs.

3.8 Discussion

In this chapter we presented symbolic domain-independent near-optimal algorithms for

planning in MDPs that have factored states and actions. Our algorithms do not make
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Figure 3.10: Impact of Memory Bounding : MB-MPI vs MB-OPI.

any assumptions on the MDP dynamics or reward and produce a policy over all states.

Memory-Bounded OPI (MB-OPI) scales well with the number of actions and outperforms

the state-of-the-art symbolic planners. Next we discuss some works in the literature that

tackle the planning problem in large action spaces.

There are several approaches addressing factored action MDPs, but unlike our work

most of these works do not attempt to compute an exact optimal policy or value function

over all states. For example, prior work for goal-based problems with specified initial

states [94, 152], does not deal with arbitrary rewards, and does not compute the policy

over all states, or guarantee optimality. The work of [98] extends to general rewards

but still assumes an initial state and does not compute a policy over the entire space

or guarantee optimality. The approach of [57] considers general MDPs and computes

policies over the entire space, but is based on function approximation relative to a set of

hand-engineered features, which requires additional knowledge and does not guarantee

optimality.

Our work in this chapter is related to work on model-minimization for factored action

spaces [82]. Like our work, that approach leverages decision diagrams in order to com-

pactly represent policies and value functions, but in a very different way. The approach

pre-processes the MDP description in order to compute a “homogeneous” partition of

the state-action space that makes all distinctions necessary for representing the value

function of any policy. These partitions are then provided to an explicit MDP solver
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Figure 3.11: Impact of action variables.

to find a policy. In contrast, SDP interleaves partitioning with steps of planning (i.e.,

regression) and thus only needs to make distinctions necessary for the value functions

encountered during planning. For this reason, the model-minimization approach, by its

very nature, is less efficient than SDP in general [53].

Another common way to deal with FA-MDPs in practice is to convert it to a factored-

state MDP (such as [80]). This involves treating the action variables as part of the state

description, here called “pseudo state variables”. If there are k action variables, each

concrete action is split into k pseudo-actions, wherein one pseudo-state variable is set or

unset. At the end of k pseudo-actions, we can extract a joint action from the pseudo-state

variables and execute it. This method is unsatisfactory for several reasons. Firstly, it

increases the size of the state space by a multiplicative factor of 2k, an undesirable change

because many planners have a polynomial dependence on the size of the state space.

Secondly, it increases the horizon of the decision making problem by a multiplicative

factor of k, undesirable for planners whose quality depends exponentially on the horizon

(e.g., Monte-Carlo methods). Action variables are different by their very nature, and

need different solution strategies.

Several promising directions are available for future work in factored action spaces.

There is very little research addressing factored actions, and even the best planning

algorithms using Monte-Carlo Tree Search fail in the face of large action spaces with a

large number of successor states for each action. Our algorithms are able to successfully
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tackle these problems, but the scalability for an arbitrary problem is not clear.

Existing techniques that address scalability of symbolic planners can readily be ap-

plied within our algorithms. For example, Affine ADDs offer a more compact represen-

tation over ADDs and may be more scalable. Earlier work [120] explored AADDs in

the context of VI in factored action spaces. Similarly, the simple APRICODD approxi-

mation [137] for ADDs can be readily applied to MB-OPI to get approximate MPI. An

important part of scalability of classical planners is the use of relaxations of the domain

description, and there is no such work on relaxation for factored state and action MDPs.

Coming up with principled relaxations and corresponding symbolic algorithms is also

future work.
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Chapter 4: Memory-Efficient Anytime Planning using Symbolic

Dynamic Progamming

4.1 Introduction

The success of online planning in Markov Decision Processes (MDPs) depends crucially

on the extent to which the information gathered from search is generalized to unseen

states. In the absence of generalization and heuristic guidance, the planner must explore

the entire reachable state space. In factored MDPs, the size of the state and action

spaces is exponential in the number of state and action variables, causing algorithms

that are polynomial in the number of states and/or actions to be impractical.

The current state-of-the-art online algorithms based on e.g. , Real-Time Dynamic

Programming (RTDP) [8] and UCT [84], search in terms of atomic or “flat” states. They

are unable to take advantage of the factored structure present in the MDP descriptions

which allows strong generalization among states [18]. For example, these planners are

not able to identify irrelevant state variables (state features) in factored MDPs, e.g. in

the presence of exogenous events the value of a state depends only on the most important

request.

In contrast, symbolic decision theoretic planners, such as SPUDD [66], do take ad-

vantage of the factored structure of transitions and rewards among state and action

variables. These algorithms interleave Dynamic Programming (DP) [13] updates with

steps of model minimization [53] in a selected representation such as Algebraic Decision

Diagrams (ADD) [5]. As seen in the previous chapter, the factored MDP model is com-

piled into the representation ADDs as preprocessing and a (near optimal) value function

is symbolically deduced within this representation, e.g. SPUDD a symbolic VI algorithm

for factored state MDPs, later extended to factored state and action MDPs[120]. These

offline planners sometimes scale to large MDPs, but depend on compactly representing

the optimal value function of the entire MDP [66]. Due to this requirement, these al-

gorithms exceed practical memory and time limits in many problems of interest. When

they do work it is because the optimal values generalize over many states leading to the
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compact ADD value function.

Symbolic Real-Time Dynamic Programming (sRTDP) [44, 46] aims to combine the

benefits of the symbolic methods and online planning by incorporating symbolic state

generalization into the computation of the online planner. This effectively imposes state

constraints capturing reachability from the current world state into the symbolic com-

putation. However, sRTDP is a general framework, and its performance is sensitive to

a prespecified definition of generalized states that maps flat states to generalized states.

Existing definitions in prior work lead to algorithms that cannot tradeoff the coarseness

of the generalization with the memory consumption. Due to this, despite the aim for

generalization the resulting planner is often inferior to the corresponding RTDP algo-

rithm working in the flat state space, and in some cases simply blows up in memory

without failing gracefully to a flat search method.

Our contribution is the introduction of new symbolic generalization operators that

guarantee a more moderate use of space and time, while providing non-trivial gener-

alization. Using these operators, we present symbolic online planning algorithms that

combine forward search from an initial state with backwards generalized DP updates.

The symbolic updates are applied to generalized states. The first algorithm, Path Dy-

namic Programming (PDP) (Section 4.3.1), samples fixed-length trajectories by acting

greedily and refines one path in an ADD for each visited state. It uses either an operator

based on value invariance (PDP-V) or one based on policy invariance (PDP-π). Both

operators yield anytime algorithms that guarantee convergence to the optimal value and

action for the current world state, while maintaining bounded growth in the size of the

symbolic representation.

In spite of the slow growth of the value function representation, intermediate com-

putations in PDP leading to that representation can potentially exceed memory limits.

This motivates our second operator that performs a more careful control of space in

its generalization, in that it takes a more incremental approach to ADD path refine-

ment. The resulting planning algorithm, Pruning Path Dynamic Programming (pPDP)

(Section 4.4), applies the pruning procedure of [121] to control the size of intermediate

results. The algorithm is convergent and provides generalization only when it does not

increase space requirements compared to flat state search. Thus, it is guaranteed not

be worse than flat state space search. It is the first symbolic algorithm to yield a sound

generalization while guaranteeing not to use more memory than flat RTDP.
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We empirically demonstrate (Section 4.5) the performance of PDP and pPDP on

three benchmark domains from the recent International Probabilistic Planning Compe-

titions (IPPC), where the proposed algorithms show significantly better anytime perfor-

mance than previous previous symbolic and sub-symbolic methods. We illustrate some

compact generalized states found by our approach to show the context-specific nature of

these domains and the presence of irrelevant state variables that our approach is able to

exploit.

4.2 Symbolic Online Planning

In order to facilitate the presentation of online symbolic methods we next consider an

update that explicitly controls which states are updated. Let X be a BDD representing

some set of states, and let X be the corresponding constraint ADD mapping states in

X to 1, and states not in X to −∞. The operator B∗(V,X) performs an exact update

(a Bellman backup) for the values of states in X and copies the values from V for other

states using ⊕. This operator can be implemented via the ADD expression:

B∗(V,X)
∆
= V ⊕X [max

A
(R+ γEX′1 . . . EX′l (X × V

′))] (4.1)

where multiplication by X is not necessary for correctness but it helps control space.

The product of V ′ with X fixes the value of states that are not in the set X to −∞.

Therefore, the sum and product operations also result in −∞ without increasing the size

of ADDs for these states. The constraint X can be pushed inside the summations due

to the distributive property of ADD operations (Chapter 3). Note that sRTDP uses an

operator equivalent to B∗(V,X) via a more memory intensive ADD expression.

We can now explain more general algorithms. Let X denote a set of states or “a

generalized state” and s denote an atomic state or “flat state”. FAR (Equation 3.5) uses

the backup of Equation 4.1 with X = 1, which means it updates the values of all states.

Real-Time Dynamic Programming (RTDP) [8] is an online planning algorithm that

only updates the values of reachable states. RTDP works by simulating trajectories from

a starting state and setting X = s for each encountered flat state s. While each update

is time and space-efficient, convergence can take a long time in factored MDPs.

sRTDP [44] generalizes RTDP updates, uses an update similar to Equation 4.1 by
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setting X to an arbitrary set of states. The set X is defined by an equivalence relation

over states (e.g. the bisimulation relationship [53]), which is in practice, heuristically

chosen to trade off the efficiency of the update with the benefit of generalization. An

unwise choice ofX in Equation 4.1 can lead to unreasonable space (or time) requirements.

Despite its goal of generalization, the performance of sRTDP can be inferior to RTDP

in the online setting where both space and time are limited.

Next we describe our formulations of generalized states X that lead to efficient up-

dates both in time and space. Convergence of RTDP (and sRTDP) can be retained if

X includes state s. Efficiency comparable to RTDP can be achieved if the generalized

value functions and policies can be captured with about the same amount of memory.

We give equivalence relationships that are more restricted than bisimulation [92], and

lead to efficient symbolic online algorithms.

4.3 Path Dynamic Programming

Our algorithms are instantiations of Trial-Based Real Time Dynamic Programming

(RTDP) [8, 81] with a particular generalized backup function and a fixed trial length.

They have two parameters : a lookahead integer H > 0 that is the length of trajectories

and a real valued ε that controls approximation error in the values of states.

In contrast to most online planners which use a tabular representation, we maintain

one value ADD V d, d ∈ [0, H − 1] per level of the lookahead tree. We chose this over

a global ADD (as in sRTDP) because it allows representing non-stationary policies and

value functions compactly, as well as allowing different levels of approximation per level,

e.g., for increasingly coarse representations of the future . In addition, to simplify the

presentation, we explicitly maintain a policy BDD πd, for each level d.

Our algorithms start from an initial state and sample a trajectory 〈s0, a0, . . . , aH−2, sH−1〉
by following the greedy policy π0, . . . , πH−1. Then, the ADDs are updated in the back-

ward direction: V H−1 is updated from the ADD 0, V H−1 is used to update V H−2 and

so on till V 0, which includes s0 but may be more general.

The general pseudocode for all the algorithms is shown in Figure 4.1. They have an

update of the form V = V ⊕M maxAQ. The algorithm requires three properties: (A) M

is a path over state variables (hence the name Path Dynamic Programming), (B) Q is

an ADD over state and action variables with updated values for a super-set of the states
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Algorithm 4.3.1: (ADDs V 0, . . . , V H−1, π0, . . . , πH−1)

Initialize each V i ← (H − i+ 1)Rmax, πi ← NoOp.
Sample trajectory 〈s0, a0, . . . , aL−1, sL〉 using π.
for i← L− 1 downto 0

do


if PDP-V then (Q,M)← Equations 4.3, 4.4
if PDP-π then (Q,M)← Equations 4.5, 4.7
if pPDP then (Q,M)← Equations 4.8, 4.10
V i ← V i ⊕M maxAQ
πi ← πi ⊕M arg maxAQ

if beyond time or trajectory budget
then return π0(s0)

Figure 4.1: Pseudocode for Path Dynamic Programming (PDP). A⊕X B = (1−X)A+
XB.

in M . (C) The current state si is included in path M .

Proposition 10. Any instance of the PDP algorithm (Figure 4.1) satisfying properties

B and C converges to the optimal value (and action) for s0.

Proof (sketch): The proof directly follows from the convergence of Trial-Based

RTDP [8]. First, it can be shown that PDP maintains the invariants Vi ≥ V ∗i for all i.

Second, it uses greedy action selection to sample trajectories and each trajectory always

includes the state s0. Hence if each update is equivalent to DP update on some states,

the value and policy at s0 converge to their optimal values.

4.3.1 PDP-V

The main idea for PDP is to restrict the update to one path in the ADD, instead of one

state in RTDP, and PDP-V uses one path in the value ADD. However, this requires a



50

careful control of the set M as shown below.

B(V, s) = V ⊕M max
A

Q (4.2)

Q = R+
∑
X′1

P1 × . . .
∑
X′l

Pl × (Φ(V, s)× V ′) (4.3)

M = Φ(max
A

Q, s) ∧ Φ(V, s) (4.4)

For a given state s and value ADD V , the values of all states that are extensions of

the current path Φ(V, s) are updated in the ADD Q (Equation 4.3). The ADD maxAQ

has updated values for the path extensions of Φ(V, s) and −∞ otherwise. But using

this update with M = Φ(V, s) might lose compactness if many of the extensions of

Φ(V, s) have different values. Additionally, the new path Φ(maxAQ, s) can be shorter

than Φ(V, s) whereas only the extensions Φ(V, s) have correctly updated values. Sound

generalization and compactness are both achieved by restricting the update to the path

refinement of Φ(V, s) by setting M to be the intersection of the set of states that share

the same path as state s before and after the update. This is the main difference between

PDP and sRTDP. It guarantees that the updated V has the same number of leaves as

the flat state update, an important guarantee for a symbolic method.

Proposition 11. Let V be an ADD, s a state, W = B(V, s) and M the path according

to Equation 4.4.

(a) For all states q ∈ ε(M), W [q] = B∗(V, q)[q].
(b) W grows by at most one leaf node over V .

Proof (sketch): (a) follows because ADD Q is a sound update for states in Φ(V, s)

(because the constraint Φ(V, s) can be pushed inside the summation (Chapter 3). The

BDD M represents a subset of states that satisfy Φ(V, s) due to Equation 4.41. (b) is

true because the path M leads to a leaf in maxAQ. For paths in 1−M the values are

copied from V and do not add leaves to W .

The first part of Proposition 11 guarantees the convergence of PDP-V according to

Proposition 10. In practice, it is observed that the paths in symbolic VI often remain

unchanged between consecutive iterations while the values have not converged. PDP-V

1Note that the proposition does not hold for the path Φ(W, s) (rather than M) due to the ⊕ operator
which might merge an updated path with a path that was not updated.
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updates these efficiently and succinctly, gaining a speedup proportional to the number

of states in the path. However, in order to find the mask M in PDP-V we have to

calculate updated values for all extensions of Φ(V, s) in Equation 4.3, and in some cases

this preparatory step exceeds memory limits. Section 4.4 gives an algorithm that does

not have this disadvantage.

4.3.2 PDP-π

PDP-π similarly restricts the update to one path. However, is appeals to the notion

of policy irrelevance [76, 92, 67], that captures states having the same optimal action.

Recall that PDP maintains a policy representation in addition to the value ADDs. PDP-

π updates states that share a path in π before and after a DP update to the policy. The

memory efficiency of path refinement is retained with respect to the policy representation.

PDP-π starts with a trivial policy (e.g. NoOp) and refines the policy for generalized

states visited by trajectories. In this way, PDP-π behaves more like a policy search

method. It is well known that in some cases paths in the policy BDD remain unchanged

during iterations of symbolic VI even though the values keep changing. PDP-π captures

these succinctly (as shown empirically in Section 4.5).

Let π(s) be the policy action, i.e., a complete assignment to action variables for state

s according to BDD π, π(s) = arg maxA π↓s. In case of a tie, some action variables are

set to false (including the case when they are unspecified by π↓s). Let Φπ(s) be the path

over state variables according to the greedy action in π, Φπ(s) = Φ(π, s ∧ π(s)). The

update is similar to PDP-V except it uses Φπ and arg max instead.

Q = (R+
∑
X′1

P1 × . . .
∑
X′l

Pl × (Φπ(s)× V ′)) (4.5)

µ = arg max
A

Q (4.6)

M = Φµ(s) ∧ Φπ(s) (4.7)

The ADD Q contains updated values for the states in Φπ(s) rather than Φ(V, s) as in

PDP-V. The mask M uses µ = arg maxAQ to denote the greedy policy BDD extracted

from Q. Finally, the policy BDD is updated as π = π ⊕M arg maxAQ. Clearly, the

property in Proposition 11 (a) holds here as well and therefore by Proposition 10 the
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algorithm PDP-π converges.

4.4 Pruning Path Dynamic Programming

The idea in pPDP is to repeatedly prune the intermediate ADDs of Equation 4.3 so that

the ADD Q has space complexity no larger than the DP update of a flat state. We use

the pruning operator proposed in Chapter 3 to control the size of the ADD. Briefly, the

pruning operator denoted by P(D,C) for an ADD D and a constraint C represented as

a BDD returns an ADD which is no larger than D. The result of pruning removes some

of the paths from D that violate the constraint C but not all.

Lemma 1. [121]. Let G = P(D,π) then

(1) Every path in G is a sub-path of a path in D.

(2) If a path p in G does not lead to −∞, then for all extensions y ∈ ε(p), G(y) = D(y).

(3) If a path p in G does lead to −∞, then for all extensions y ∈ ε(p) either π(y) = −∞
or D(y) = −∞.

Part (1) gives a strong memory guarantee that G is no larger than D. Pruning

accomplishes this by leaving some paths in G unchanged if only some (not all) of their

extensions violate the constraint. pPDP uses the flat state C = s as the constraint. Let

Ps(D) denote P(D, s) for any ADD D and a flat state s.

Q = Ps(R+ Ps(
∑
X′1

P1 × . . .Ps(
∑
X′l

Pl × V ′))) (4.8)

As the expectation is computed over X ′i, state and action variables are introduced into

the paths of V ′. The paths that do not cover the current state are pruned and point to

−∞. Hence it is efficient to compute the ADD Q in memory.

Proposition 12. (1) Q contains O(2m) paths over state and action variables that do

not lead to −∞.

(2) Every path p that does not lead to −∞ is a DP update for the Q-value of all states

and actions in p.

Proof (Sketch) : (1) is due to using the state s as the constraint. Any path that

has assignments to state variables differing from s is pruned and leads to −∞. The paths
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Figure 4.2: Example illustrating the mask M in pPDP. V is set to Rmax initially. Q is
computed using Equation 4.8 for the state s1 = 1, s2 = 1. The ADD maxAQ gives an
incorrect value for s1 = 1, s2 = 0, compared to W , the update using PDP-V (Equation
4.2).

that do not lead to −∞ have different assignments to action variables for a maximum

of O(2m) paths. (2) is due to part two of Lemma 1 because the pruning operator does

not alter the paths that are consistent with state s.

The pruning operator removes portions of the diagram in subtle ways and therefore we

have to be careful in choosing the mask M . Consider using the path M = Φ(maxAQ, s)

which at first appears to be a natural choice. Unfortunately, this path does not give

sound generalization because of the maximization.

To illustrate this, consider the hypothetical diagram Q shown on the left of Figure 4.2

where the state s assigns s1 = 1 and s2 = 1 and paths disagreeing with this assignment

have been replaced with −∞. The diagram maxAQ is shown on the right and gives a

value of 10 for state s1 = 1 and s2 = 0. This is incorrect since the true value of Q from

the path s1 = 1, a = 1, s2 = 0 can be larger than 10. In maxAQ the true value of the

states on this path is ignored and assumed to be −∞, and therefore the value calculated

for the partial assignment s1 = 1 is not correct for all extensions.

To guarantee correctness we require that all the values in the sub-diagram below

the node to be different than −∞. Therefore, states whose values are valid in maxAQ

are those where for all actions A, (Q 6= −∞), denoted by the BDD ∀A(Q 6= −∞).

In this example, (Q 6= −∞) when {s1 = 1, A = 0} ∨ {s1 = 1, A = 1, s2 = 1}, and

quantification yields the mask M = {s1 = 1, s2 = 1}. Note that the BDDs (Q 6= −∞)

and ∀A(Q 6= −∞) cannot be zero because all actions are updated in state s. Therefore,

in the worst case, the mask M is equal to the state s and the step degenerates to a flat
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RTDP update. Formally, the operator used in pPDP is

B̂(V, s) = V ⊕M Ps(max
A

Q) (4.9)

M = Φ(∀A(Q 6= −∞), s) (4.10)

Proposition 13. Given an ADD V and state s, let W = B̂(V, s) as in Equation 4.9,

and let M be the path from 4.10. Then, ∀q ∈ ε(M), W [q] = B∗(V, q)[q].

The proof follows from the soundness of pruning (Lemma 1) and the fact that all

path extensions of M lead to a value not equal to −∞ in Q. Therefore, by Proposition

10 pPDP converges as well. In cases where PDP exceeds memory limits pPDP can

capture some of the sound generalizations, precisely those that can be captured without

increasing the size of intermediate Q ADD. The only overhead in pPDP is the time

required for the pruning operations which is negligible.

4.5 Experiments

We now evaluate the empirical impact of our proposed generalization operators within

the family of RTDP-syle algorithms. To do this we compare our algorithms PDP-V,

PDP-π, and pPDP to the following baselines: 1) RTDP(Table) is a simple table-based

implementation of RTDP with state values initialized to Rmax. 2) RTDP(ADD) is

like RTDP(Table) (i.e. no state generalization), except that each state backup is done

symbolically using the FAR operator. This can be more efficient for factored actions

compared to enumerating actions. 3) sRTDP [44], where our implementation uses FAR

for updates in order to exploit factored actions. 4) LR2TDP [86] is an extension of

RTDP(Table) to solve finite horizon MDPs using iterative deepening and labeling, which

was successful in recent planning competitions. 5) FAR [120] as described above. FAR

is limited to 500 minutes of offline planning and then the resulting policy is executed

online. This algorithm is only applicable to some of the small problem instances in our

experiments and is included to give an optimal baseline value when possible.

All planners were implemented in a common framework, except for LR2TDP, for

which we used the publicly available code. For PDP-V and pPDP, we initialized each

V i with Rmax (scaled by i). For PDP-π, we initialized πi to the NoOp policy. Plan-

ning domains and problems are specified in the Relational Dynamic Influence Diagram
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Language (RDDL) [128], which we convert to an ADD-based representation. The ADD

variable ordering puts parents(X ′i) above X ′i, where the X ′is are ordered (ascending) by

the number of parents that are action variables. Note that the parents include current

state variables and action variables so that this defines an ordering over all variables. In

all experiments, our symbolic operators allow an approximation error of ε = 0.1 with

the upper bound merging strategy [137].

Our experiments below are on 5 problem instances of varying sizes from three domains

of the 2011 and 2014 International Probabilistic Planning Competitions (IPPCs). A

memory limit of 4G is imposed to restrict the size of the ADDs, beyond which the

planner can no longer proceed which we denote as “EML”(Exceeded Memory Limit).

A planner is evaluated on a problem by running 30 trials of horizon 40 and averaging

the total reward across the trials. We report the averages and 95% confidence intervals

for each problem. Planners use a specified time limit per decision and we give results

for different time limits. The value functions and policies are reinitialized after each

decision.

Academic Advising Problem: The Academic Advising domain [56], from IPPC

2014, is a stochastic cost minimization problem that models the process of selecting the

courses for a student in order to complete degree requirements, where the courses have

complex prerequisite structure. The state space encodes which courses have been taken

and whether they were passed or not. The actions at each step correspond to selecting one

or more courses to take next. We consider two variants of the domain, a non-concurrent

variant, which only allows a single course to be selected at each decision point, and a

concurrent version, which allows multiple courses to be selected. The dynamics encode

the probability that a course is passed if taken. Missing requirements and retaking of

courses are penalized.

Figure 4.32 shows the performance vs. time for the different planners on IPPC 2014

problem instances for the non-concurrent and concurrent variants. All algorithms use

a planning lookahead horizon of 16 steps. In the non-concurrent variant and shortest

time limit (top left panel), we see that sRTDP fails to scale beyond the two smallest

problems, and that FAR is able to solve these two problems as well. In larger instances

both of these methods EML. In contrast, PDP-V, PDP-π and pPDP are able to give

good performance across problem sizes. Moreover, for the smallest instances where FAR

2Charts best viewed in color.
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is able to compute an optimal policy, these algorithms yield near optimal performance.

This result demonstrates the importance of using update operators that attempt to trade

off generalization and memory usage.

The flat search methods RTDP(Table), RTDP(ADD), and LR2TDP do not perform

well. For the largest three instances, these methods have a return no better than that

of a NoOp policy. This shows the importance of generalization across states in order to

achieve good performance in reasonable time.

Comparing performance across time limits (increasing time from left to right) we see

the following. The flat search methods are not able to improve by much as the time

limit is increased. PDP-V, PDP-π and pPDP also do not improve significantly with

more time. Importantly they are able to avoid EML as more trajectories are sampled

with larger time limits. PDP-V shows the most improvement on the largest instance

as time increases. This shows that, in this domain, the use of generalization by our

methods is the dominating factor in improving performance, and is even more effective

than increasing the time limit.

Figure 4.3 (bottom) shows results for the same problem instances, but with concur-

rency (of 5 for the first instance and 2 for others). Here, both sRTDP and FAR (not

shown) exceed memory limits even for the smallest instances. The flat search methods de-

grade quickly as the problem instances become larger. Our proposed methods (with one

exception) outperform the competitors, especially for the larger instances. The exception

is PDP-π on the largest instance, which results in EML after 18 seconds of planning due

to the size of the intermediate ADDs in Equation 4.5. If we increase the time further

(not shown here), PDP-V also does exceed memory limits. On the-other-hand pPDP

does not result in EML due to its guarantees on bounding the diagram size (including

intermediate diagrams), possibly at the expense of less aggressive generalization.

SysAdmin Problem : SysAdmin [57] models a computer network with n comput-

ers. Computers can fail with some probability, which requires a reboot action to correct.

Neighbors of a failed computer have a higher probability of failing. The reward is based

on the number of running computers with a cost associated with a reboot action. Unlike

the academic advising domain, the number of reachable states in this domain is practi-

cally the entire state space. To allow sRTDP to produce non-EML results we consider

networks of 10 computers connected in a star network. Following [120], we consider prob-

lems that vary the maximum number of computers that can be rebooted per decision
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Figure 4.3: Academic Advising Problem : Performance vs. Time for time limits 6,
12 and 18 seconds per decision without (with) concurrency in the top (bottom) panels
respectively. Error bars show 95% confidence intervals. The size of the state space is 22x,
x is the number of courses shown on the x-axis. The algorithms that exceed memory
limits (EML) are annotated as E.

Figure 4.4: Performance vs. Time for 6, 12 and 18 seconds per decision in the SysAdmin
Problem vs. concurrent actions : The state space is 210 and action space is O(2x), x is
the maximum number of parallel actions. Error bars show 95% confidence intervals.

(1, 3, 5, 7, or 10), which gives a progressively growing factored action space.

Figure 4.4 gives results for three different time-limit settings. Due to the highly

random nature of the problem, we used a short lookahead of four steps for all algorithms.

The curve above the bar graphs shows the performance of the optimal policy found by

FAR.

sRTDP exhibits interesting behavior in this domain. It performs worse than using

no state generalization (i.e. RTDP(ADD)) in the first four instances and then optimally

for the largest instance. The increased complexity of the sRTDP backup causes poor

performance in the smaller action spaces—sRTDP samples fewer trajectories than our
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algorithms. On the largest instance as the value ADD becomes more compact (more

states have similar values), sRTDP is able to exploit generalization. This shows the diffi-

culty of predicting apriori how much space and time the sRTDP generalization operator

may require. In this domain, PDP-V and pPDP scale similarly to RTDP(ADD), because

the reward function involves counting the number of computers, which makes the path

formula Φ(R, s) the same as s. This means that these algorithms achieve very little state

generalization in this domain. However, they do outperform RTDP(Table) due to the

use of the factored FAR backup compared to a backup based on action enumeration.

In this domain, PDP-π clearly outperforms PDP-V and pPDP. In this case, policy

irrelevance is able to capture abstract states more succinctly. For example, in the first

instance, any state in which the computer at the center of the network is down has the

same path formula : ¬running c1 ⇒ reboot c1. Note that the values of these states

are not equal and depend on the status of other computers. As parallelism increases,

nodes near the center get added to these rules regardless of the status of nodes farther

away. Clearly, in this domain, generalization based on policy irrelevance is more appro-

priate than value irrelevance. Finally we see that as the time limit increases there is

a small improvement in performance for most algorithms. It is clear that the increase

in performance due to larger time limits is not as significant as using the appropriate

generalization mechanism, in this case policy irrelevance.

Crossing Traffic Problem: This IPPC 2014 domain models the arcade game Frog-

ger, where the agent moves in a 2-D grid to cross a road to reach a goal location, while

avoiding right-to-left moving cars that enter the road randomly from the rightmost col-

umn. The reward is -1 for each move and -40 for collision.

The boolean encoding of this domain has |S| = O(22(n2)) for an n×n grid, with two

bits per cell for the presence of the agent and car respectively. However, depending on

the current location of the agent, many of these bits can be ignored for predicting the

optimal value and action.

Figure 4.5 shows the results for different time limits and problem instances involving

3x3, 4x4, and 5x5 grids. There is larger variance in this domain, compared to the others,

due to collisions. We see that sRTDP performs well in the first three instances and is able

to improve with more time per decision. However, in instances 4 and 5 sRTDP exceeds

memory limits when given more time. PDP-V and PDP-π scale to these instances and
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Figure 4.5: Performance vs. Time for 6, 12 and 18 seconds per decision in the Crossing
Traffic Problem : The odd numbered instances have grids of size 3× 3, 4× 4, and 5× 5
and arrival probability of 30%. The even numbered instances have the same grid sizes
but with arrival probability of 60%. Error bars show 95% confidence intervals.

times without EML. PDP-π performs better than PDP-V initially but PDP-V is able to

improve more than PDP-π with more time per decision. We see that these algorithms

outperform RTDP(ADD), showing that generalization is clearly useful in this domain.

Again we see that generalizing appropriately is the dominating factor toward performance

compared to increasing the time limit. pPDP never performs worse than the flat search

methods RTDP(Table) and RTDP(ADD), and outperforms them in some cases. Its less

aggressive generalization, however, leads to overall worse performance compared to our

other algorithms.

Large instances : The preprocessing of translating RDDL to propositional logic

does not scale for the large instances from the IPPC. For the purpose of showing the

scaling of our algorithms, we refactored the RDDL domain - by decomposing the “robot-

at(x,y)” propositions into two independent propositions “robot-at(x)” and “robot-at(y)”

because the actions’ effects are independent along x and y dimensions. Figure 4.6 shows

the performance of PDP, PDP-π, pPDP and sRTDP for grids of sizes 6× 6 and 7× 7.

The algorithms are given much more time per decision to demonstrate the compara-

tive scaling. The charts show the percentage out of 30 trials that the agent reached the

goal. We see that in the 6x6 grid (left panel) PDP-V outperforms sRTDP by a large

amount. sRTDP is able to scale with time without EML and slowly converges to optimal

performance. By comparison, sRTDP does not perform well in the 7 by 7 problem (right

panel) whereas PDP-V is able to make progress. PDP-π performs worse (better) than

sRTDP in the former (latter) instance. The flat search methods are not able to make

any progress in this problem due to the large stochastic branching factor. pPDP is able

to improve on the flat search in the first instance but falls back to the flat method in the
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Figure 4.6: Crossing Traffic (large instances) : Performance vs. Time with 30, 60, 90
and 120 seconds per decision. Error bars show 95% confidence intervals.

Figure 4.7: Some generalized states discovered by PDP-V in the Crossing Traffic problem.
The grid denotes a flat state s0 and the tiles in blue denote the generalized state Φ(V0, s0).
The presence of cars outside of these tiles is irrelevant to value prediction.

larger problem.

Finally, we present a generalized state found by PDP-V to illustrate the effectiveness

of generalization in these problems. Figure 4.7 shows an instance of the Crossing Traffic

problem. All the cells in the grid, including the location of the agent and each car,

constitute a flat state. The cells within blue denote the cells that appear in the path

formula Φ(V0, s0) after running PDP-V from s0. We see that PDP-V is able to ignore

the assignments to many cells that are irrelevant for optimal online planning.

4.6 Discussion

We presented the first fully symbolic anytime planning algorithms for factored MDPs

that generalize simulated experience soundly and efficiently. There were several obser-

vations from our experimental results. First, in all domains, we saw that using the

appropriate form of generalization was the dominating factor towards good performance
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compared to increasing the time-limit for algorithms without state generalization. Sec-

ond, we saw that the most appropriate form of generalization can differ across domains

and sometimes problem instances within a domain. This suggests that it is fruitful to

investigate mechanisms for tuning or selecting among generalization methods. Third,

pPDP never exceeded memory limits, while other generalization approaches did occa-

sionally. Further, previous versions of sRTDP very frequently exceeded memory limits.

This suggests that pPDP is perhaps the safest choice for generalization, especially for

large problems and short time limits.

Our experiments on the academic advising problem are remarkable in that with the

help of generalization, our approach is able to reach the goal state even in the largest

problem instance which consists 260 flat states. In the recent IPPC, every domain-

independent planner was unable to reach the goal leading to concerns about the correct-

ness of the domain description and problem specification. We showed that the bottle-

necks of large flat state space and concurrent actions [56] are the bottlenecks that are

successfully alleviated by our approach.

The most successful anytime planners in these competitions work by generating

domain-independent heuristics using flat MDP relaxations of the factored MDP, e.g.

using determinization [87], domain analysis [80] along with a gamut of heuristics for

focussing the search near the root node under tight time constraints. Although these

techniques improve the empirical anytime performance on the benchmarks, they are

heuristic in the sense that they do not provide explicit generalization in a sound manner.

This work is orthogonal to research on improving the anytime performance of RTDP

algorithms via labelling [15], smart sampling [104, 145] and heuristics [86, 81]. All of

these can benefit from using our new operators as generalization is expected to benefit

the rate of convergence. Finally, this work can benefit prior work on symbolic online

planning for POMDPs using heuristic search [135].

This work is also related to the problem of state abstraction in MDPs that is the

problem of finding equivalence relations between states. Indeed, it has been noted in

[92] that the optimal SDP algorithms that use Algebraic Decision Diagrams covers the

well-known bisimilarity relationship [36, 53] - an optimal notion of equivalence between

MDP states. Our generalization operators in Section 4.3.2 implement a restricted version

of value and policy irrelevance abstractions of [92] for the purpose of asychronous DP

updates. A promising direction for future work is to incorporate bisimilarity metrics [47,
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49, 48] into the online algorithm similar to the work of [127, 67] for incrementally refining

the state abstraction using simulated trajectories. In contrast to [127, 67], symbolic

methods are unique in that they allow abstract states to be merged and split efficiently

in an online fashion.

In our experiments we used replanning at every state to output one action. Our

approach paves the way for speedup learning for the purpose of generalizing the online

search across different initial states i.e. intra-problem generalization. For the case of

learning from policies, our approach outputs a set of BDDs that represent the (partial)

policy at each time step. The crucial improvement over traditional learning approaches

is that the examples, that are paths of the BDD, are generalized and succinct. One

potential is merging the BDDs across different runs (different initial states). It is clear

that an exact merging of these BDD policies (union over BDDs) would not be scalable,

but some alternatives are available. In the work of [117], pruning functions are learned

that are partial policies subscribing some set of actions including the optimal action.

That is, it learns a policy that subsumes the actions selected by the anytime planner – a

well-studied problem in BDDs and logical functions in general. For example, one might

use the affine approximation of BDDs [65, 155], or use Horn approximations [133, 42]

or any class of boolean functions with known closure operators for BDDs [131] from the

knowledge compilation [31, 41, 43]. The DAGGER trick [126] could be employed into

the learning algorithm.
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Chapter 5: Online Action Selection using Hindsight Optimization

5.1 Introduction and Related Work

Many real-world decision-theoretic planning problems are naturally modeled using con-

current, hybrid (discrete and continuous) state and action (HSA) MDPs. Examples

include reservoir control under rainfall uncertainty [124] and the unit commitment prob-

lem of power generation subject to demand uncertainty [114]. Existing approaches to

solving expressive HSA-MDPs largely fall into two categories: dynamic programming for

special restricted classes of HSA-MDPs, and approximate optimization of restricted value

function or policy representations. Unfortunately, each category has critical limitations

discussed next.

For the case of exact or bounded approximate solutions, numerous (symbolic) dy-

namic programming approaches have been proposed for restricted classes of HSA-MDPs

ranging from the univariate continuous state setting for time-dependent MDPs [20] to

piecewise value representations [45, 91, 130, 154] and phase-type transition approxima-

tions [97]. Later work introduced real-time dynamic programming extensions yielding

more compact value functions [107, 143]. Sample average approximations (SAA) [83]

of dynamic programming can be used for value approximation in an initial state [106].

Unfortunately, all these dynamic programming approaches for HSA-MDPs are either too

restrictive or computationally intractable for the state-action dependent stochastic, 100-

dimensional hybrid state, 50-dimensional hybrid action, and moderate horizon domains

we experiment with in this chapter.

A different line of research directly optimizes a restricted class of value functions or

policies. For value approximation, such methods are exemplified by Hybrid Approximate

Linear Programming (HALP) [89], which sought to approximate expressive HSA-MDP

value functions via a weighted basis function representation. On the policy approxi-

mation side, approaches like Pegasus [113] sought to optimize restricted parameterized

policy classes subject to trajectories sampled in an SAA setting. All of these methods

assume a priori knowledge of a good value or policy representation, which is typically
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difficult to have in advance.

In this work, we explore a qualitatively different approach to solving a wide class of

HSA-MDPs that does not require domain-specific assumptions on the value function or

policy representation. Our approach is based on developing the framework of hindsight

optimization (HOP) [25, 26] for HSA-MDPs. HOP provides an upper bound on the

finite-horizon action values in the current state, which can be used for action selection.

But the challenge is to compute this bound efficiently.

In particular our contributions are as follows: (i) We develop a generic linear space

and time compilation of an expressive fragment of the RDDL [128] HSA-MDP represen-

tation to a mixed integer linear program (MILP). This compilation is augmented with

action constraints to yield different algorithmic variations. (ii) Our contribution is the

hindsight optimization variant. This generalizes previous work on HOP [72] to handle

both continuous random variables and state-action dependent stochasticity. (iii) We de-

velop a second variant based on straight line plans which is complementary in that it

provides a lower bound on action values. (iv) Empirical results show that HSA-HOP

scales to HSA-MDPs with moderate horizons and high-dimensional state and action

spaces and generally outperforms baselines that are capable of scaling to such large hy-

brid MDPs. In a concluding case study in Chapter 6, we cast the real-time dispatch

optimization problem faced by the Corvallis Fire Department as an HSA-MDP with

factored actions. We show that our domain-independent planner significantly improves

upon the responsiveness of the baseline that dispatches the nearest responders.

5.2 Hybrid State and Action MDPs

A discrete-time MDP is a tuple (S,A, T,R) where S is a state set, A is an action set,

T : S × A × S → [0, 1] denotes the stochastic transition function for time t + 1 such

that T (st, at, st+1) = P (st+1|st, at), and R : S× A→ R denotes the state-action reward

function. In this chapter we focus on finite horizon planning for a specified horizon h

with the objective of maximizing the expected total reward accumulated over h steps.

Factored state and action MDPs [18, 120] extend the basic setting by specifying the

state and action spaces as products of discrete variables. Hybrid State and Action MDP

(HSA-MDP) [89, 130] keep the factored structure but provide a significant extension by

allowing for both continuous and discrete state and action variables. The state space S
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and action space A are represented by finite sets of state variables X = {X1, . . . , Xl} and

action variables A = {A1, . . . , Am}, where both X and A can contain both continuous

and discrete random variables.

The transition function of the MDP is factored over the state variables, ie. P (s′|s, a)

is represented as a product of conditional probability distributions Pi(qi) = P (X ′i|qi) for

i = 1, . . . , l. Each Pi(qi) is a function of a (typically small) subset qi ⊆ {X,A,X′} where

X′ are the next state variables and the set of dependencies is acyclic. At any time t and

state variable Xi ∈ X, X
(t+1)
i ∼ Pi(q(t)

i ).

5.2.1 RDDL Representation of Reward and Dynamics

Following recent work on HSA-MDPs [130, 154, 143], we use the description language

RDDL [128] to specify HSA-MDPs. RDDL allows for relational templates to specify

random variables which are instantiated via a set of objects. As a preprocessing step,

we ground the templates with a concrete set of objects and expand relational quantifiers

over their finite domains to obtain a propositional HSA-MDP as defined above. We note

that the RDDL simply provides a convenient interface and our approach is not restricted

to this language.

The RDDL source code specifies the factored transition and reward functions through

a sequence of assignment and sampling statements that define intermediate variables and

next state variables, using algebraic expressions in these definitions. The crucial point

for a well-defined RDDL model is that the dependence among variables arising from the

sequence of statements is acyclic.

HSA-MDPs with Piecewise Linear (PWL) dynamics have received significant atten-

tion due to their simplicity and expressivity [45, 91, 107, 154]. Whereas exact Dynamic

Programming (DP) approaches for HSA-MDPs with PWL rewards and piecewise con-

stant transition probabilities have been explored [45, 154], these cannot handle probabil-

ity distributions whose parameters are continuous functions of state and action variables.

In this case the optimal value function need not be PWL as required by previous work,

making exact DP impossible. In contrast, our definition allows for a general form of

stochasticity which we define next as the stochasticPWL class.

Definition 4. An expression for state variable X (or reward variable R) is a stochas-

ticPWL expression if it is built recursively using the following 3 cases:
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(a) A deterministic PWL expression containing (1) scalars, current state, current ac-

tion, defined intermediate variables and next state variables, (2) boolean operations

∧,∨,¬,≥, (3) linear combination with constant coefficients, and (4) multiplication

with a boolean predicate. The syntactic structure of each of these cases is shown

in Table 5.1.

(b) If X a discrete random variable with support {1, . . . , n}, its probability mass func-

tion is parametrized as (E1, . . . , En) where each of E1, . . . , En is a stochasticPWL

expression.

(c) If X is a continuous random variable in the location-scale family of distribu-

tions [109], it is parameterized with a PWL transformation X = E1 +E2Z, where

E1 (aka location) and E2 (aka scale) are stochasticPWL expressions, and Z is a

random variable for the standardized form of the distribution with known Cumu-

lative Distribution Function (CDF).

The location-scale family includes many distributions of practical use such as the

uniform, gaussian, exponential, logistic, beta, gamma distributions [109]. For example,

the following RDDL expressions are valid according to Definition 4, where xt is a state

variable, at is an action variable, and zt is an intermediate variable used in calculating

rt the reward.

xt+1 = max(1,min(0, 0.2xt + 0.7at)) (5.1)

zt+1 = Normal(xt, at), at > 0 (5.2)

rt+1 = if (xt < zt+1) then xt+1 else 1− xt+1 (5.3)

These illustrate the recursive structure of expressions, the limitation to PWL, and state-

action dependent parameters of random variables. We emphasize that both state vari-

ables and action variables can be either discrete or continuous.

While PWL is a practical restriction, PWL functions [79] are an arbitrarily good

approximation for higher order transition functions [39]. As will be clear below, the re-

striction to PWL is due to translating the RDDL code into mixed integer linear programs
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Deterministic PWL Condition MILP Constraints
E → k k is a constant vE = k
Eb → true vEb = 1.0
Eb → false vEb = 0.0
E → p p is a state or action

variable
vE = vp

E → ∧ni=1E
i
b ≡ ∀iEi

b Ei
b is a boolean ex-

pression
nvE ≤

∑n
i=1 vEi

b
≤ (n− 1) + vE

E → ∨ni=1E
i
b ≡ ∃iEi

b vE ≤
∑n

i=1 vEi
b
≤ nvE

E → ¬Eb vE = 1− vEb

vE = 0 or 1. Each vEi
b

= 0 or 1

E → kE1 k is a constant vE = kvE1

E → E1 op E2 op = + or − vE = vE1 op vE2

E → EbE1 Eb is a boolean ex-
pression

Same as E → if Eb then E1 else 0

Eb → E1 ≥ E2 −M(1− vEb
) ≤ vE1 − vE2 ≤MvEb

vEb
= 0 or 1, M is large e.g. M = 106

E → if Eb then E1 else E2

Eb is a boolean ex-
pression

vE1
−M(1− vEb

) ≤ vE ≤ vE1
+M(1− vEb

)

vE2 −MvEb
≤ vE ≤ vE2 +MvEb

vEb
= 0 or 1, M is large e.g. M = 106

Table 5.1: The syntax of Deterministic PWL statements and their MILP encoding. In
each case E1 and E2 belong to the same language as E without cycles. The function
represented by the expression E is equivalent to the free variable vE in MILP.
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(MILP) and using MILP solvers. By using more powerful solvers one can expand this

approach.

5.3 Hindsight Optimization (HOP) for HSA-MDPs

HOP [25, 26] is a computationally attractive heuristic for online action selection. HOP

approximates the optimal value function by optimally solving different realizations of

the MDP called futures or determinizations and aggregating their values. While it

is easy to construct domains where the HOP heuristic fails, previous work has shown

that it performs well in many benchmark probabilistic planning problems [151]. Recent

work has shown how to apply HOP in discrete factored MDPs through a translation to

Integer Linear programs [72]. In this chapter, we show how these ideas can be extended

in two respects in order to handle HSA-MDPs: First, we allow the more general state-

action dependent stochasticity of Definition 4 (previous work restricted stochasticity to a

small number of state-independent cases). Second, we allow for continuous and discrete

variables.

The notion of a random future is central to the idea of HOP. Given a fixed policy,

the MDP model induces a distribution over length-h trajectories. Viewing the choice

of policy, and the random choices of the MDP as separate processes, we can make the

random choices in advance (e.g., fixing the seed for the random number generator). This

selection which, conditioned on any policy, produces a random trajectory for the policy

is known as a random future.

HOP requires sampling random futures and once the random choices are fixed, a

future represents a deterministic planning problem. The optimal value of any state

in the MDP is V ∗h (s0) = maxπ Ef [
∑h

t=0R(stf , π
t
f )], which is the maximum expected

value over random futures f of length h. In contrast, the hindsight value V hop
h (s0) =

Ef [maxa0f ,...,a
h
f

∑h
t=0R(stf , a

t
f )] is the expected value of the optimal values of each future,

where the inner maximization optimizes a plan (instead of a policy) for each future.

Observe that the maximizing values of actions atf are future-dependent, i.e., “in

hindsight” assuming a particular outcome of st+1
f . Due to swapping expectation and

maximization and Jensen’s inequality the function V hop is an upper bound on V ∗ [105].

Action selection in HOP uses one-step lookahead using V hop so that the outcome of

the first action is not assumed. For each action a, the next states s1 . . . sF are sampled
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and their V hop value is used. The HOP algorithm picks arg maxaQ
hop
h (s0, a) with

Qhoph (s0, a) ≈ R(s0, a) +
1

F

F∑
f=1

V hop
h−1(sf ) . (5.4)

5.3.1 Reduction of Deterministic HSA-MDPs to MILP

In this section we show how to translate a deterministic HSA-MDP, for example as

generated by the determinization process of the next section. After determinization

each Pi and R will be Deterministic PWL as given by Definition 1(a). The optimal plan

is the solution to the following Mixed Integer Linear Program (MILP):

max
h∑
t=0

R(Xt,At) (5.5)

s.t. Xt
i = Pi(q

t−1
i ), i = 1, . . . , l; t = 1, . . . , h; (5.6)

where X0 = s0 is a given initial state and Xt = (Xt
1, . . . , X

t
l ) and At = (At1, . . . , A

t
m) are

the optimization variables for each t = 0, . . . , h− 1.

The translation of deterministic Pi() to a set of MILP constraints is done recursively

using the syntax in Definition 1(a). We formalize the syntax in the form of a recursive

grammar in Table 5.1. The translation to MILP constraints is given in the third column

and is standard for most cases. The encoding of if-then-else expressions requires the use

of a large constant (i.e., “big-M trick”) that can be chosen generically. Let the size of

an expression be characterized by the size of the abstract syntax tree that produces the

expression.

Proposition 14. (Linear-time Reduction) Given a deterministic HSA-MDP specified

in the language of Definition 1(a), the MILP in Equations 5.5-5.6 is such that (1) the

compilation is produced in linear-time w.r.t. the number of constraints, the size of each

PWL expression, the number of state variables and the planning horizon, and (2) an

optimal solution of the MILP is an optimal plan for the deterministic HSA-MDP.
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5.3.2 Determinization of HSA-MDPs

Next we consider the determinization of HSA-MDPs by determinizing stochasticPWL

expressions. The key question is how to sample a random future when the parameters of

the random variables are not completely known at compile time, and are dependent on

the states within a trajectory. We propose to encode random futures in a MILP using

inverse transform sampling. Intuitively, we first sample a u ∼ Uniform(0, 1) and encode

the quantile of order u as a set of MILP constraints. More precisely for any u ∈ [0, 1],

1. IfX is a discrete variable, its cumulative distribution function is (E1, E1+E2, . . . ,
∑n

i=1Ei)

and is PWL. The u-quantile is encoded in the PWL constraints: (1) Sj =
∑j

i=1Ej

for j = 1, . . . , n, (2) x =
∑n

i=1 i× [(Si ≥ u)∧ (Si−1 < u)], and (3) x ∈ {1, 2, . . . , n}.

2. IfX is a continuous variable as in Definition 4, its quantile function is F−1
X (u;E1, E2) =

E1 + E2F
−1
Z (u) and is PWL. The u-quantile is encoded in the MILP constraint

x = E1 + E2 × F−1
Z (u), where F−1

Z (u) is a constant.

Proposition 15. (Correctness for single variable sampling) Let Xi be a state variable

whose transition function is given by a stochasticPWL expression as in Definition 4.

Then, the MILP variable x produced by the above procedure encodes a random future for

Xi given its parents qi.

Note that u and F−1
Z (u) are constants that are known at compile time. Yet the

corresponding deterministic expressions for X yield a sample from the state dependent

distribution which is not known at compile time. Consider for example the variables in

Equation 5.2 and a pre-determined u = 0.23. The constraint zt+1 = xt+0.23at produced

by the above procedure encodes the 0.23-quantile outcome for every value of xt and at.

The overall determinization algorithm applies the above procedure recursively on the

syntactic structure of each Xt+1
i , using the corresponding deterministic or probabilistic

MILP translation. By using Proposition 15 inductively over the acyclic structure of the

dependencies in the RDDL code:

Proposition 16. (Correctness of future generation) The MILP constructed using the

overall determinization procedure is a random future from the distribution induced by the

RDDL source code.
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5.3.3 HOP for HSA-MDPs

We next describe the overall MILP using multiple sampled determinizations. For a

given HSA-MDP we produce copies of the state and action variables, annotated with

superscripts f, t, where f is the future index, t the time step, and the optimization

variables are Xf,t
i and Af,tj . We generate F futures using the determinization procedure

above. The objective function of the MILP is the h-step accumulated reward averaged

over F futures. This objective and the first set of constraints is used by all of our

algorithms:

max
1

F

F∑
f=1

h∑
t=0

R(Xf,t,Af,t) (5.7)

s.t. Xf,t
i = Determinization of Pi(q

f,t−1
i ) (5.8)

i = 1, . . . , l; f = 1, . . . , F ; t = 1, . . . , h (5.9)

Xf,0 = s0, f = 1, . . . , F (5.10)

The HSA-HOP algorithm uses one additional set of constraints restricting the action

variables at time step t = 0 to be identical across futures:

Af,0j = A0,0
j , j = 1, . . . ,m; f = 1, . . . , F (5.11)

Observe that the MILP in Equations 5.7-5.10 solves all futures independently. When the

constraint in Equation 5.11 is added, the MILP implements a one-step lookahead where

the solutions are coupled by requiring the first action to be the same.

Proposition 17. (Equivalence to HOP) [72] The MILP in Equations 5.7-5.11 identifies

the same solutions as the explicit HOP construction in Equation 5.4.

Proof. The proof is due to the first term of the objective function being identical across

futures for any fixed s0 and any feasible solution to A0,0
j , resulting in Equation 5.4.

This construction identifies the HOP solutions in factored spaces without state and

action enumeration and without the additional enumeration or continuous maximization

implicit when using Equation 5.4 for action selection.
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5.3.4 Algorithmic Baselines and Variations

As a baseline we use the simple idea that determinizes the problem using the most likely

outcome determinization (for discrete variables) and the expected outcome determiniza-

tion (for continuous variables). We use this baseline in our experiments denoting it as

Mean. This idea is not new but the challenge is to encode it without enumeration of

state-action dependent parameters of random variables. This can be done using Defini-

tion 4 with the MILP encoding: (1) If X is a discrete stochasticPWL variable, its most

likely determinization max(E1, . . . , En) is PWL and equivalent to a MILP constraint (Ta-

ble 5.1). (2) If X is a continuous state variable, its expected outcome determinization

E(X) = E1 + E2E(Z) is PWL because E(Z) is known.

We also consider two alternative formulations to HSA-HOP. The first is based on the

idea of a straight line plan also known as an open loop policy or conformant plan.

In this case we commit to a sequence of future actions regardless of the probabilistic

outcomes of earlier actions. We can achieve this in the MILP formulation by replacing

the constraint in Equation 5.11 with

Af,tj =A0,t
j , j=1, . . . ,m; f=1, . . . , F ; t=0, . . . , h− 1 (5.12)

The straight line value converges to the optimal value of the best open loop policy as

the number of futures increases. Since in this case we are limiting the set of policies,

the value of the optimal straight line plan is a lower bound on the optimal value of any

state. The gap between the optimal HOP and straight line value can be used in various

ways, e.g., to guide the generation of futures, to detect convergence, and to calculate

approximation guarantees. Although this formulation commits to an entire plan, in our

evaluation at each step we only use the first action from that plan, exactly like the other

algorithms, and then replan for the next step.

The second variant is Consensus: determinizations are sampled exactly as in HSA-

HOP, but solved independently of other determinizations. An action is selected by

majority vote (ties broken randomly) among the A0,f
j across the futures. This trades

off the monolithic MILP of HSA-HOP with several independent MILPs (one for each

future) and aggregates their solutions heuristically.



73

5.4 Experimental Evaluation

As previously mentioned, we use the description language RDDL [128] to specify the

domain dynamics. In all experiments we use the Gurobi optimizer [61] for optimizing

the MILPs. The implementation used in our experiments is available as a domain inde-

pendent tool for RDDL to MILP translation of HOP. We compare our algorithms HOP

and Straight Line to the baselines of Mean and Consensus. When applicable we

show the performance of Noop, Random and hand-coded policies.

The different algorithms are evaluated in an online replanning mode, i.e., planning is

repeated at every world state and one action is output. The average accumulated reward

over a horizon of 20 steps is measured (averaged over 30 trials) and a 95% confidence

interval is shown. Each evaluation has three experimental parameters : (1) Time limit t

per decision in minutes, (2) Lookahead L, the length of sampled futures and, (3) Number

of sampled futures F per decision. We evaluated the algorithms by setting a reasonable

value for t keeping in mind the runtime, then increasing L and F for best performance,

until the MILP solver throws a memory error caused by an excessively large MILP. We

use the best feasible solution found for any MILP after t minutes.

5.4.1 Domains

Power Generation [114, 2]: This domain concerns the unit commitment problem for

a set of independent power plants represented as a Factored MDP. Each plant i has

a current reserve of stocki (stocki ≥ 0) and observes fluctuations in temperaturei

with a uniform distribution as temperaturet+1
i ∼ Uniform(µi − δi, µi + δi). The fluc-

tuations in temperature create a demandi for heating as well as cooling demandt+1
i =

µi|temperaturet+1
i − µi|. In this simple example, we assume µi and δi are constant,

so this domain has state-independent continuous stochasticity. The demand is always

positive with a V-shape centered at zero when temperaturei = µi. The objective is

to optimize orderi, the real-valued units of power to be generated at plant i within a

prespecified budget
∑

i orderi ≤ B (B constant), produced at a cost of $0.5 per unit

and consumed at $1 per unit rewardt+1 =
∑

i[min(demandt+1
i , stockti) − 0.5orderti]. Uncon-

sumed power is carried over as stockt+1
i = if (stockti < demandt+1

i ) then (orderti)

else (stockti − demandt+1
i + orderti). This domain consists of a hybrid state space and
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continuous action space.

The mean temperature is µi and the demand for the mean temperature is zero. Thus,

the Noop policy is optimal with respect to the Mean determinization. The maximum

demand is µiδi per time step and expected demand is µiδi
2

1.

Reservoirs problem [124]: This problem consists of hybrid states with state-dependent

noise in the transitions. The problem consists of a set of reservoirs connected by a set of

2-ended bidirectional pipes. Although any topology can be encoded, we demonstrate a

linear topology of reservoirs and say that each reservoir i is downstream of reservoir i−1

and connected by pipe i. An MDP state is a list of positive current water levels rleveli

and raini for each reservoir i. An MDP action is a list of real-valued flows flowi, one

for each pipe i connecting reservoirs i − 1 and i. The sign of flowi determines direc-

tion of flow (positive for downstream). The rain level is stochastic as a zero truncated

Gaussian distribution raint+1
i = max[0, Normal(rainti, σ)], and the flow is deterministic

as rlevelt+1
i = rlevelti + rainti − flowti + (flowti−1 > 0)flowti−1 + (flowti+1 < 0)flowti+1.

Each reservoir has a preset minimum αi and maximum βi water level. The objective

is to minimize overflow and underflow of the reservoirs outside the prespecified limits,

encoded by the reward function rewardt+1 = −5
∑

i |max(0, αi−rlevelti, rlevelti−βi)|−∑
i |(flowti < 0)flowti|.
The second term penalizes upstream flow (checked via the sign of flowi) by the

magnitude of the flow. PWL constraints are included in the RDDL to enforce (1) total

outflow does not exceed current water level and (2) non-negativity of rain and water

levels in each reservoir. In addition, each reservoir has a maximum capacity.

Icetrack : We illustrate a stochastic version of the classical Racetrack problem

[8]. In contrast to the previous domains which have an optimization flavor, Icetrack

is goal based and requires a large lookahead. Icetrack consists of real valued states

of the form (x, y, vx, vy) where (x, y) is the real-valued position of a car on ice, and

(vx, vy) are its velocities in the x and y directions respectively. The control inputs are

the accelerations (ax, ay) in the two directions. The actions are susceptible to failure

with a fixed probability θ with vx = if Bernoulli(1− θ) then vx +ax else vx. The

transition for vy is analogous. So this domain demonstrates state-independent discrete

noise. We specify a goal state and measure the negative of the number of steps to reach

1E[demandi]=
µi
2δi

[
∫ µi

x=µi−δi
(µi−xi)dx+

∫ µi+δi
x=µi

(xi−µi)dx]
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it. Any collision makes the car unable to move for the rest of the episode. Icetrack shows

two limitations of our PWL modeling restriction viz. we cannot use polar form (v, θ)

as the state updates would require non-PWL functions, and in our discrete time model,

collisions between (xt, yt) and (xt+1, yt+1) are given a bilinear function. So we restrict

the track to be rectilinear (axis-parallel walls) to allow PWL collision detection (omitted

due to space constraints).

5.4.2 Instances

In the Power Generation domain, we varied the number of plants between 10 and 50.

All the plants start with 0 stock, the demand constants are set µi = 10 and each δi is a

fixed integer sampled uniformly between δi = 3 and δi = 8. In the Reservoirs problem,

we varied the number of reservoirs between 10 and 50 but only show the three largest

instances due to space constraints. We set αi = 1000, βi = 8000 and capacity to 40000

for all reservoirs. All reservoirs are empty in the initial world state and σ = 1024. In the

Icetrack problem, we tested with a 1 cell thick track along the edges of a 10X10 grid,

initial position set to (5, 1) and goal (5, 9). The acceleration is restricted ax, ay ∈ [−4, 4],

and the slippage θ is varied from 0% to 20%.

5.4.3 Results

The results are shown in Figure 5.1 for Power Generation, Table 5.2 for Reservoirs and

Figure 5.2 for Icetrack. Overall, we see that HSA-HOP (denoted as HOP) performs the

best across our three evaluation domains and Straight Line performs equally well in two

of them.

Sampled vs. static determinization: In Power Generation, Mean is equivalent

to Noop and achieves a total reward of zero, whereas HOP and Straight Line achieve

much higher rewards. In the Reservoirs problem (Table 5.2), we see that the performance

of Mean degrades as the number of reservoirs increases in comparison with HOP and

Straight Line. Further, Mean has a higher variance and wider confidence interval across

episodes whereas HOP appears more stable. Finally in Icetrack, determinization assumes

that the actions always succeed. Even though the assumption is true in the first instance

(Figure 5.2), we see that the performance of Mean is suboptimal, whereas using multiple
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Figure 5.1: Results in the Power Generation problem with settings L = 4, t = 0.5 (mins),
F = 5.

futures (as in HOP) leads to optimality. We found that this suboptimality is caused by

numerical instabilities in the output of Gurobi across runs. As the noise increases in

Figure 5.2, the performance of Mean is never better than HOP, because HOP accounts

for the failure of actions.

Action Selection: The algorithms HOP, Straight Line and Consensus differ only

in their action selection via the constraints they impose on action variables. Our HOP

algorithm performs the best in this regard, and performance of Straight Line and Con-

sensus vary. Our Straight Line algorithm performs surprisingly well in Power Generation

and Reservoirs, and the small gap from the performance of HOP suggests the existence

of high quality open-loop policies. In Icetrack, the strong action constraints of Straight

Line, and the large lookahead of the domain, make the MILP significantly harder and

leads to poor performance. The poor performance of Consensus is not surprising when

continuous stochasticity is presented. We found that the average consensus among root

actions went from as low as 20% in Power Generation, to 55% in Reservoirs, to 95% in

the discrete noise case of Icetrack. Overall, HOP strikes a balance between optimality

and hardness of the MILP, and gives the best performance over other action selection

methods.
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Reward ( ×105 ) # Reservoirs
Algorithms 30 40 50

HOP -2.4 (0.22) -1.51 (0.02) -2.27 (0.01)
Mean −2.42(0.22) −1.57(0.15) −2.32(0.21)

Straight Line −2.51(0.22) −1.56(0.01) −2.29(0.01)
Consensus −2.78(0.21) −1.78(0.05) −2.61(0.04)

NoOp −2.76(0.25) −3.71(0.14) −4.378(0.13)
Random −2.76(0.25) −6.41(0.17) −7.94(0.19)

Table 5.2: Average Accumulated Reward (×105) and 95% Confidence Intervals with
increasing reservoirs (columns), setting L = 4 lookahead steps, t = 2 (mins) and F = 5
futures per decision.

Figure 5.2: Results in Icetrack with settings L = 20, t = 1(mins) and F = 5.

5.5 Literature on HSA-MDPs

HSA-MDPs have received some attention in the literature (see Table 5.6). A naive ap-

proach is first discretizing the HSA-MDP [110] and using a discrete MDP solver. But

this approach can lead to poor performance in practice [116] and is not considered here.

Existing approaches to solving expressive HSA-MDPs largely fall into two categories: dy-

namic programming (DP) for special restricted classes of HSA-MDPs, and approximate

optimization of restricted value or policy representations. Unfortunately, each category

has critical limitations discussed next.

For the case of exact or bounded approximate solutions, numerous (symbolic) dy-

namic programming approaches have been proposed for restricted classes of HSA-MDPs

ranging from seminal univariate continuous state settings for time-dependent MDPs [20]
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to piecewise value representations [45, 91, 130, 154] and phase-type transition approxi-

mations [97] for multivariate state and action HSA-MDPs.

The obstacle for DP-based algorithms is the integration over continuous state vari-

ables, thus prior work has focussed on restrictions that lead to closed form solutions.

When the number of outcomes of a state variable is finite, the integration is only a sum-

mation as in [107]. In addition, if the reward function is also PWL, then the optimal

value function is also PWL [45]. Equivalently, when the transitions are deterministic

expressions, the integration is a substitution operation, thus closed form analytical VI

is possible in deterministic HSA-MDPs [130, 154, 143]. Despite the restricted scope of

the MDPs, the number of pieces required to represent the optimal PWL value function

grows rapidly with the planning horizon. The limitations of determinism and restricted

scalability are overcome in this work.

Some prior work addresses the scalability issue via approximation, by interleaving

steps of DP with value function approximation. The value function is approximated

as a PWC function in [91], as a Piecewise Gamma (PW Gamma) in [97], and as a

PWL function in [144]. An analytical DP update is possible in the PW Gamma case

[97], whereas the complexity of the value function is the motivation in [91, 144]. Our

approach is significantly different in terms of the quantity being approximated (Section

5.3) and allows strictly more general probability distributions.

Sample average approximations (SAA) [83] of dynamic programming can be used

for value approximation in an initial state [106], but this is only tractable in restricted

settings. Like our HOP approach, the SAA solution samples multiple deterministic

futures, but, unlike HOP, SAA does not allow for independent solutions of those futures.

As a result SAA is more demanding computationally, but converges to the optimal policy

under some assumptions.

A different vein of research has chosen to directly optimize a restricted class of value

functions or policies. On the value approximation side, such methods are exemplified by

Hybrid Approximate Linear Programming (HALP) [89], which sought to approximate

expressive HSA-MDP value functions via a weighted basis function representation. The

key idea in HALP [89] is the use of conjugate families to approximate the transitions and

value functions respectively, so that the expectation over continuous state variables has

a closed form solution. The resulting LP has an infinite constraint space, so HALP uses

discretization, an additional limitation for scalability and performance, in addition to the
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drawback of designing basis functions to approximate optimal value functions. On the

policy approximation side, approaches like Pegasus [113] sought to optimize restricted

parameterized policy classes subject to trajectories sampled in an SAA setting. All of

these methods assume a priori knowledge of a good value or policy representation, which

is typically difficult to have in advance.

Finite horizon planning for MDPs is related to multi-stage stochastic programming

(SP) [55]. SP solvers use algebraic modelling languages, such as SAMPL [139], the

stochastic extension to the popular AMPL modelling language, thus similar to our rep-

resentation of HSA-MDPs using RDDL expressions. SP solvers (e.g. [106]) typically

assume that the number of possible state-action outcomes is finite [35]. Another typical

assumption is that the stochasticity is independent of the actions (aka exogenous). We

tackle both issues of infinite state-action outcomes and state-action dependent stochas-

ticity.

5.6 Discussion

We explore a qualitatively different approach to solving a wide class of HSA-MDPs that

does not require domain-specific assumptions on the value function or policy representa-

tion. Our online approach is based on developing the framework of HOP for HSA-MDPs

that (i) introduces a linear space and time compilation of an expressive fragment of

the RDDL [128] HSA-MDP representation to a mixed integer linear program (MILP),

(ii) contributes a novel hindsight optimization (HOP) compilation generalizing previous

work [72] to both continuous stochastic variables and state-action dependent stochastic-

ity, and (iii) provides both upper and lower bound (stochastic) approximations of the

optimal value differing on how the policy space is constrained in the MILP encoding.

The expressive class of HSA-MDPs consists of location-scale probability distributions

for the transitions of each state variable. The importance of location-scale distributions

is that they allow a compile-time encoding of the sampled next states at some time step

in the future, even though the parameters of the corresponding density function involves

state and action variables that are unknown at compile time. In our instantiation of

this approach, the MILP solver then maximizes over the unknown policy over multiple

sampled futures. This instantiation assumes that the parameters are piecewise linear

functions of state and action variables, or location-scale distributions over them. To
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the best of our knowledge, this is the first characterization of a subset of HSA-MDPs,

and corresponding fragment of the RDDL planning domain description language, that

have a linear time compilation to an MILP of linear size. The general approach is more

broadly applicable by using a more complex solver that matches the function space of

the parameters, e.g. using an MIQP solver when a quadratic function is the appropriate

reward function.

Our reduction approach for optimizing futures is motivated by a history of good scal-

ability, e.g. planning by reduction to satisfiability (SAT) [78], to maxSAT for cost optimal

planning [125, 32], stochastic satisfiability for probabilistic planning [95], stochastic CSPs

for factored POMDPs [69], and weighted model counting [38], and more recently, reduc-

tion to Integer Linear Programs (ILP) for discrete factored action MDPs [72]. HSA-HOP

contributes a novel and compact MILP encoding for HSA-MDPs to this line of reasearch

that handles the additional concerns mentioned above. of factored actions.

The key idea in [72] is reduction to Integer Linear Programming (ILP) for factored

MDPs with boolean state and action variables. It is clear that hybrid state-action

variables can be handled with a simple extension to Mixed ILP (MILP). The key question

that we answer is the encoding of state-action dependent stochasticity for continuous

variables, whereas [72] assumes discrete state variables with state independent noise ie.

PWC functions. In the tradition of reduction based approaches, we show that our MILP

encoding is compact.

Our main algorithm HSA-HOP significantly improves on the scalability of previous

domain-independent approaches by leveraging state-of-the-art MILP solvers, scaling to

MDPs with 100 continuous state dimensions and 50 continuous action dimensions. The

alternative algorithm using straight line plans provides a complementary heuristic based

on a lower bound approximation. This is found to be competitive in some cases but

overall less robust (cf. Icetrack) than our novel contribution of HSA-HOP, which shows

uniformly strong performance over diverse domains.

Future work is needed in the algorithm space because HSA-HOP is an unsound and

heuristic algorithm by nature of the HOP approximation because it allows identical states

to have different future-dependent optimal actions. Future work must alleviate this and

formulate sound (e.g. RTDP) and sample-efficient algorithms (e.g. Sparse Sampling) for

HSA-MDPs. The challenge is to retain the scalability of the HOP approach that is able

to scale to truly massive HSA-MDPs. However, for the time being HSA-HOP serves as
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Transitions Reward Factored States Actions
Dynamic Programming (DP)

[20] Discrete PWL Hybrid Discrete
[107] Discrete - Hybrid Discrete

Symbolic DP (SDP)
[45] Rectilinear PWC Rectilinear PWL Continuous Discrete
[130] Deterministic - Hybrid Discrete
[154] Determinstic PWL PWL Hybrid Continuous
[143] Deterministic PWP PWP Hybrid Hybrid

Approximate DP
[91] PWL PWC Hybrid Discrete
[97] Exponential PW Gamma Discrete Discrete
[144] Deterministic PWL PWL Hybrid Continuous

Approximate Linear Programming (ALP)
[64] Beta distributions Polynomial Bases Continuous Discrete
[58] Beta distribution Polynomial Bases Hybrid Hybrid
[88] Exponential family Exponential family Hybrid Hybrid
[89] Beta distribution PWL Hybrid Hybrid

Hindsight Optimization (HOP)
[72] Rectilinear PWC Rectilinear PWC Discrete Discrete

This work Stochastic PWL (Definition 4) PWL Hybrid Hybrid

Table 5.3: Summary of related work to hybrid state-action MDPs (PWC=Piecewise con-
stant, PWP=Polynomial, PWL=Linear). Our domain-independent work generalizes to
the fully hybrid setting with a more general model of state-action dependent stochasticity
(Definition 4).

a baseline for these MDPs.

Another potential direction for future work is the learning of models within this

general subset of factored state and action MDPs. Recent advances in learning bayesian

networks and learning of multi-layered neural networks can be tapped. In fact, the

commonly used convolutional neural network with rectified linear activations, if used

to model the one step dynamics, is exactly equivalent to the deterministic PWL class.

While HSA-HOP can take these expressive models as input in principle to derive model

predictive controllers, the neural models are significantly larger in terms of the number

of neurons compared vs the number of state and action variables.
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Chapter 6: Application to Response Optimization of Fire and

Emergency Services in Corvallis

6.1 Introduction and Literature Review

The emergency response problem has been well studied over the past five decades in

the planning and operations research communites, for example see the comprehensive

surveys of [54, 136, 1, 11, 3, 27]. The critical goal is to improve the performance of

existing emergency response services, by providing decision support tools that are based

on automated planning and decision making. The performance is typically measured by

the precious minutes elapsed between the reported time of the emergency and the time

of the arrival of responders. This domain has attracted the attention of many cities in

order to counteract the effects of urban sprawl (leading to larger service regions) alongside

limited budgets (leading to few available responders). Some examples include Melbourne

[100], London [102], Utrecht [75], Vienna [132], and in this work the city of Corvallis

following the earlier work of [14]. Our domain-independent online planning approach

coupled with a parametrized (relational) domain description provides a powerful tool

that can easily be modified to fit the needs of some different service region.

Broadly, prior research in this domain is traditionally categorized into static and

dynamic approaches. Static approaches concern one-shot (time-invariant) decisions, ex-

emplified by ambulance location and coverage problems studied at length in operations

research [22, 70, 153, 52]. These concern the optimal location of responders under some

fixed dispatch policy that assigns responders to any given emergency.

The most commonly used dispatch policy is to dispatch the nearest responders in

terms of travel-time [73, see Table 2]. Many static approaches as well as simulation

models developed for this domain [134] heuristically use this policy as the basis of their

study. It is well-known that the dispatch policy has significant impact on the response

time, and in turn on the patient survivability in the EMS setting [149] because of the

highly random and time-dependent nature of the demand. For example, [63, 33, 93] show

that none of the commonly used fixed dispatch policies dominate the performance over
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heterogenous types of emergencies. Consequently, we also find that the performance of

HSA-HOP dominates the aforementioned baseline on real-world emergency sequences.

Dynamic approaches can potentially account for real-time concerns such as the road

network, weather conditions and real-time traffic information [4]. Although dynamic

approaches typically optimize the dispatching policy while assuming a fixed location for

responders’ stations, they can potentially include the relocation decisions considered in

static approaches as well. The modification is similar to [153], where the additional MDP

actions of relocation are available at a coarser time scale than the dispatching actions.

In this context, two-stage algorithms have been used to jointly address the location

and dispatching problems as well. The work of [112] use a two-stage stochastic program

to minimize the number of relocations, whereas [14] use a two-phase hill-climbing search

that alternates regionalized policy optimization with relocation of reponders under a

fixed dispatch policy. We follow [14] in many aspects but restrict to the latter part of

dispatch optimization with fixed base stations for responders. However, in contrast to

both [112] and [14], we allow a novel form of re-deployement at every time step that

allows responders to be redirected from the location of a prior emergency to a new one.

We show that the emergency domain is naturally formulated as a Hybrid State and

Action Markov Decision Process (HSA-MDP, [89]). The state space consists of both

continuous and discrete random variables that encode the status of all responders and

details of the current emergency. Our dynamic approach is online replanining using HSA-

HOP that uses the HSA-MDP model to output the action for the current world state.

Online action selection offers a scalable alternative to global dispatch policy optimization

and removes the need for human effort in engineeringn a policy space. It allows quick

and near-optimal responses for any given emergency taking into account the subsequent

emergencies that may arise in the near future.

The first challenge in the straightforward application of MDP solvers is the hybrid

state space, causing algorithms based on Dynamic Programming to be intractable in

general. The second challenge of the online formulation is the factored action space

that is the cross product of assignments to individual responders. As shown in this

thesis, existing MDP solvers scale poorly with the number of actions in general, that is

exponential in the number of responders in this domain. The domain-independent HSA-

HOP algorithm [123] is the current state-of-the-art for hybrid and factored state and

action MDPs with state-action dependent stochastic transitions and rewards. We show
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that HSA-HOP is able to handle the multidimensional hybrid state and action space

of this domain, due to its compact and factored MILP encoding of multiple futures

spanning multiple time steps.

We leverage an expressive continuous space and time model, whereas prior MDP

based approaches to this domain must resort to discretization of the continuous locations

(e.g. [62, 73, 27, 74]) and time [74, 112]. Due to the computational obstacle of the

continuous state space formulation, the basic approach is to approximate the service

region using a fine-grained graph [74, 27, 93]) or as a grid (as in [132, 112]), and use

existing solvers based on exact (e.g. Value Iteration in [74]) or approximate dynamic

programming (ADP) (e.g. [101, 132, 14]) respectively.

The ADP approach optimizes the dispatching policy within some restricted space of

policies (or value functions) spanned by prespecified basis functions. For example, the

works of [14, 132] consider “regionalized” policies based on some discretization of the

continuous grid and the use an engineered approximation space. The work of [101] learn

a type of re-deployement policy, that maps a free ambulance (that has completed its

assignment) to its next standby (or base) location.

These algorithms are based on approximating the value function in terms of prespec-

ified basis functions. In follow up work, [99] showed a potential pitfall of the approach in

simple example MDPs where ADP fails to find the optimal dispatch policy despite using

sufficiently expressive basis functions. The authors propose a direct policy search method

in order to circumvent this issue, but the depedence on hand-coded basis functions still

exists.

The sequence of papers [140, 142, 141] refer to these policies as compliance tables

and give several heuristic algorithms that use a finite graph to approximate the region

and time. In contrast to these, we note that our action space allows re-deployement but

does not impose that the nearest responder must respond. Secondly, their focus is on

minimizing the number of re-deployements and not the raw response time. The table is

computed using only one-step of lookahead over all possible next-states in [9, 140, 10].

Following recent work on HSA-MDPs [130, 154, 143], HSA-HOP takes as input the

reward and dynamics of the MDP specified in the RDDL domain description language

[128]. We argue that a high-level domain description language such as RDDL is suitable

for developing decision support tools for the emergency domain for the following reasons.

(1) RDDL allows for relational templates to specify random variables which are instan-
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tiated via a set of objects. This parametrized encoding provides a unified framework

for much of the prior research in this domain. For example, we test the performance

with varying number of responders under varying objectives by viewing them as different

instantiations of the relational RDDL domain description. (2) RDDL provides a concise

and interpretable encoding of the probability distributions of discrete and continuous

random variables. We demonstrate some basic machine learning models learned in the

form of RDDL expressions from real-world emergency data. (3) RDDL allows general

state-action constraints to be specified that are considered necessary by prior research

from the standpoint of overall system architecture, e.g. enforcing load balancing over

responders, upper limit on the response time, tiered priority depending on the nature of

the emergency etc.

In the context of the vast literature in this domain, our first contribution is an RDDL

encoding of the emergency domain (annotated in typefont) that can be handled by HSA-

HOP. We first describe the hybrid state space that captures the effects of dispatching

actions on the future availability of a responder. In order for HSA-HOP to be applicable,

the RDDL encoding must satisfy the requirements of Definition 4, in order for which we

must make piecewise linearity assumptions on the travel time and service time of a

responder.

In order to complete our domain encoding, we need to specify an RDDL model for the

arrival of emergencies. In our second contribution, we show that HSA-HOP can overcome

this with a minor modification, that allows randomly sampling futures (sequence of 9-1-1

calls) directly from a corpus of real world emergencies. Historical data was used in the

prior work of [112], but their underlying algorithm optimizes the assignments in multiple

futures independently of one another. HSA-HOP incorporates a one-step lookahead by

coupling the futures via the first state-action pair, and thus algorithmically differs from

their approach.

As our third contribution, we illustrate the supervised learning of a hybrid prob-

abilistic model. Our modelling assumptions are common to many prior works on the

emergency domain from the operations research community. Rather, our illustration

tests two potential limitations of HSA-HOP namely (1) the expressivity of Definition 4

with respect to basic probabilistic models, and (2) the effect of overfitting during model

learning on the computational complexity of the planning algorithm. Section 6.3 con-

tains experiments that illustrate the performance of our approach in comparison to the
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dispatch-closest policy.

6.2 HSA-MDP Formulation

The state space of our formulation is based on keeping track of the current time. In

our formulation, each state presents a new emergency and the action consists of the

set of responders to dispatch. We do not allow deferring the response to the future,

therefore we do not maintain a history of previous emergencies. The forward flow of

time is determined by the arrival of emergencies. The state space consists of :

• Emergency state : (x, y, t, code) : denoting the x, y coordinates in miles, the current

time and the nature of the emergency. The continuous variable t > 0 is a floating-

point representation of time. The nature of the emergency, denoted by code, is a

discrete random variable that can take one of 15 distinct values. Different codes

represent the severity of the emergency and the number of responders required to

fully service the call.

• Responder state : (x(r), y(r), tin(r), tout(r), thome(r)) for each responder r, where

(x, y) are the coordinate of the responder’s last known location and tin is the

absolute time of arrival at the scene of the emergency last serviced by responder

r. Similarly, tout and thome are the expected time of completion of its previous

assignment and time of return to its home base respectively.

Action Space : In our simplified presentation, each responder can fill exactly one of

four roles namely Engine, Ambulance, Ladder and Command. Each MDP action is an

assignment to boolean action variables of the form dispatch(responder,role). The

size of the action space is O(2n) for n responders, the exponential size of the action

space is caused by the factored action space. In practice, the action space is even larger

because responding units are formed on the fly using available personnel and ground

vehicles.

When a unit is dispatched, the responder travels from (x(r), y(r)) to (x, y) at a con-

stant speed. Upon arrival, the responder spends a constant amount of time at the scene

that is determined by code (denoted by stay(code)). Note that the model for the
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service time can be easily extended (cf. scale family) to the more commonly used expo-

nentially distributed service times. Depending on code, the responder must additionally

proceed to one of two special locations (hospital or transfer) before the assignment is

considered complete (denoted by destx and desty).

After a mandatory waiting period (denoted by wait(code)) at the end point of

the assignment, it returns to its appointed (fixed) home base (denoted by homex and

homey). We allow a novel type of redeployement than prior work, specifically we allow a

responder to be directly dispatched to a new emergency during this waiting period.

We follow the Code3Sim simulator [90] in assuming that wait(code) and stay(code)

are constants for any given code. As mentioned above, these timings are typically

modelled using exponential distributions that are well within the scope of our planning

algorithm. The update equations for the responders’ state variables are specified as a

PWL function of the travel time.

Travel Time : Following [73], we assume that the travel time of a responder is a

deterministic function of the distance between any two points. Following [90], we use the

manhattan distance (d = |x1 − x2| + |y1 − y2| between any two points (x1, y1), (x2, y2))

because it naturally fits the PWL requirement of Definition 4. This assumption may be

valid in many urban regions. Similar to the service times, our assumption that the travel

time is deterministic can be easily extended via Definition 4. For example, the travel

time based on the manhattan distance may represent the mean of a normal distribution

whose variance may reflect the effect of the time of the day.

In prior work, [90] also approximated the speed of responders based on the road

network and the availability of highways in Corvallis. The mapping is a piecewise con-

stant function with 10 pieces, e.g. for distances under 5 miles, we use a constant travel

speed of 38 mph where for distances between 5 and 7 miles we use a speed of 42 mph
1. Combining these leads to a PWL model of the travel time as shown in the following

equations.

1The mapping is (5,7,12,15,17.5,20,25,28.5,41,70,500 miles) to (38,42,40,48,56,52,50,54,49,70,70 mph,
respectively).
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1.

d(r) = |x(r)− x|+ |y(r)− y|

Travel Time : t(r) =
d(r)

38
(d(r) ≤ 5) +

d(r)

42
(d(r) > 5 ∧ d(r) ≤ 7) + . . .

t′in(r) = if (∃s:roledispatch(r, s))

then t+ t(r) else tin(r)

2.

d2(r) = |destx(x,code)− x|+ |desty(y,code)− y|

t2(r) = //Similar to t(r) but using d2(r)

t′out(r) = if (∃s:roledispatch(r, s))

then t′in(r) + stay(code) + t2(r) else tout(r)

3.

d3(r) = |homex(r)-destx(x,code)|+ |homey(r)-desty(y,code)|

t3(r) = //Similar to t(r) but using d3(r)

t′home(r) = if (∃s:roledispatch(r, s))

then t′out(r) + wait(code) + t3(r) else thome(r)

Depending on the nature of the emergency, the function destx(x,code) (desty(y,code),

respectively) returns the x-coordinate (y-coordinate, respectively) of the hospital, trans-

fer location or simply returns x (y, respectively). The transition for x(r) and y(r) are
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analogous.

x′(r) = if (∃s:roledispatch(r, s))

then destx(x,code)

else if (t > thome(r))

then homex(r)

else x(r)

Response Time : The performance of responders is evaluated in terms of first

response and full response. The first response δ1 is the time elapsed between the reporting

of the emergency and the arrival of the first responder.

The full response is measured with respect to predefined requirements, specified as

a mapping from code to the number of required responders of each role and denoted

as required. For example, a Structure Fire requires a total of four responders viz.

two engines and one ladder and command each, whereas a Code-1 Medical emergency

requires only one ambulance. The specific constants we use are based on the Code3Sim

simulator [90].

We define the intermediate boolean variable overwhelm to check if the requirement

of full response is not met. In the event of an overwhelm, the full response time is set

to the maximum possible response time ∆. The full response δ2 is then defined as the

supremum of the time of arrival of all responders. Since the travel times of individual

responders satisfies Definition 4, so does the minimum and maximum over them.

1.

δ1 = min
r

[if (∃s:roledispatch(r, s))

then t(r) else ∆]
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2.

overwhelm = ∃s:role(required(code, s) >
∑
r

dispatch(r, s))

δ2 = if (overwhelm) then ∆

else max
r

[(∃s:roledispatch(r, s))× t(r)]

Emergency state : It is far more challenging to specify the dynamics for the ex-

ogenous part of the state space. Recall that the HSA-HOP algorithm works by sampling

random futures i.e. a relaxation of the MDP such that the sequence of states with fixed

initial state is a function of the policy alone. As observed by prior works, note the prop-

erty that the factored transition of the emergency state is conditionally independent of

the transition of the responder’s state.

We sample futures from historical data that consists of the logs of emergencies across

days. Given an emergency state with time t, we identify the closest emergency for each

day that is the first emergency that occurs after time (t%24) on that day. This results

in a number of candidates equal to the number of days in the dataset. We select one of

these at random and return (x′, y′, code′, t′) such that t′ occurs after the original time

t. In Section 6.3, we sampled futures from a dataset of 30 days collected in the month

of January 2011, that corresponds to a sample space of O(30h) outcomes for length

h futures. This approach allows incorporating real world data without the need for

modelling effort expended by the human. On the other hand, the sampled futures do

not generalize or present novel events beyond those in the dataset (Section 6.4).

This corresponds to a point estimate of the interarrival gap δ(t) and we set t′ =

t+ δ(t), assuming that δ is IID for different days. This discrete-time MDP formulation

simulates only the arrival of emergencies. A slightly more complex model defined as

t′ = t+min(δ(t),minr tout(r),minr thome(r)) simulates the change in status of responders.

This more complex model can allow responses to be delayed but it is still within the scope

of deterministic PWL (satisfies Definition 4).

Constraints : The following RDDL constraints enfores the availability of resources

and forward flow of time. These deterministic expressions satisfy Definition 4 and are
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translated to MILP constraints for each time step as well as each future.

∀r:responder∀s:role[dispatch(r, s)⇒

[(t ≥ tout(r)) ∧ (t ≤ tout(r) + wait(code))] ∨ (t ≥ thome(r))]

∀r:responder
∑
s:role

dispatch(r, s) ≤ 1

∀r:responder0 ≥ tin(r) ≥ tout(r) ≥ tfree(r)

The first constraint is an action precondition to ensure that the responder is either at the

scene after completion of the previous assignment (tarry) or idling at the base station.

The second constraint ensures that each responder is assigned at most one role and is

also an action precondition. The third one is an integrity constraint that ensures the

validity of the timers for each responder.

6.3 Experiments

Baseline : As mentioned earlier, there are no domain-independent MDP algorithms

that scale to hybrid state and action spaces of high dimensions. Our reference baseline

will be the dispatch-closest policy (denoted closest for short) that is used extensively in

the literature. In Corvallis, the current operations and the simulator software used to

study the performance is based on the dispatch-closest policy.

The policy works as follows : it iterates through the roles of Engine, Ambulance, Lad-

der, Command, and for each role dispatches the k-closest available responders, where k

is the minimum of the number of available responders and the required number (speci-

fied by required(code, role)) of responders. The closest responders are identified using

the travel time. Intuitively, it is easy to see that the dispatch-closest policy is not op-

timal when the density of emergencies is non-uniform (in space) and the locations of

responders also changes over time. In addition, this policy does not optimize the first

response, which often requires a responder to be dispatched immediately even if their

type is non-essential for the nature of the current emergency.

Setup : Our experimental setup is similar to Section 5.4. The evaluation is in online

replanning mode, i.e., planning is repeated at every world state and one action is output.

Each evaluation has three experimental parameters : (1) Time limit t per decision in
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minutes, (2) Lookahead h, the length of sampled futures and, (3) Number of sampled

futures F per decision.

In practice, the time limit must be small. In Corvallis, the dispatch must be within

two minutes of the received call. We note that our implementation of the MILP transla-

tion is not optimized for speed. We found that for small values of h and F , Gurobi solves

the resulting MILPs optimally for many states in under two minutes. HSA-HOP is not

able handle large values of h, and to a lesser extent large values of F . For a fixed value

of t, this is seen via the degradation of the accumulated reward with increasing h or F .

We attribute this issue to the monolithic MILP solved by HSA-HOP that simultaneously

solves for all futures, whereas their solutions are only loosely coupled via the action at

the root state. While Gurobi and many modern MILP solvers may automatically identify

and decompose the MILPs, we think that a significantly more scalable implementation

is possible via the dual decomposition method of [150].

6.3.1 Multiple Objectives

Regarding the reward function of the HSA-MDP, we minimize the average response

time of responders. We follow [14] in exploring linear combinations of δ1 and δ2 as

reward = θδ1 + (1 − θ)δ2, for 0 ≤ θ ≤ 1. These two objectives basically oppose each

other because they are coupled via resource constraints. Focussing on the full response

δ2 keeps fewer vehicles in reserve, fewer available to serve future calls causing a higher

value of δ1 in the future. On the other hand, focussing on δ1 (i.e. sending only one

responder and keeping rest as reserve) leads to a poor value of δ2 per state.

Figure 6.1 shows the performance of HSA-HOP and our baseline evaluated on a fixed

test set (240 calls between Jan 1-15, 2011). The training data for HSA-HOP also consists

of 240 calls (between Jan 15-31, 2011). HSA-HOP randomly samples futures from the

training data, so we average its performance over 30 trials and show the 95% confidence

interval (from a Normal distribution).

The figure shows that as θ increases the average first response time of HSA-HOP is

significantly smaller (by about 1 min) than the baseline. We see that the first response

of HSA-HOP dominates the baseline for all values except θ = 0. On the other hand, we

see that the full responpse time HSA-HOP is slightly higher than the baseline.

In order to get a clearer understanding, the right panel of Figure 6.1 shows the fraction
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Figure 6.1: Performance of HSA-HOP with five responders under different reward func-
tions of the form θδ1 + (1− θ)δ2. Training data for HSA-HOP is randomly sampled from
240 calls in Jan 15-31, 2011. Testing data is a fixed sequence of 240 emergencies between
Jan 1-15, 2011.

of calls left unanswered. The figure denotes complete overwhelms whenever δ1 = ∆ (this

implies δ2 = ∆) i.e. no responders dispatched, in contrast to a partial overhwelm when

δ2 = ∆. We observe that the number of unanswered calls is significantly smaller than

the baseline, from about 22% of calls to less than 10% with HSA-HOP. The fraction of

partial overwhelms is only slightly higher than the baseline. This is acceptable because

partial overwhelms are less severe by nature.

For this illustration, we used a lookahead h = 4 and F = 30 futures. We set t = 10

minutes but we found that the average optimization time was less than two minutes

(about 1.6 minutes) averaged across states. We used five responders for this experiment,

namely a Command, Engine, Ladder and two Ambulances. The next experiment varies

the number of responders with a fixed reward function.

6.3.2 Fleet Size

In this experiment we set the reward function to be the average of the first response and

the full response namely reward = 0.5δ1 + 0.5δ2. We show the relative performance of

HSA-HOP and our baseline in terms of this reward function as well as the first and full

response times. The training and test datasets are the same as the previous experiments.

In contrast to the previous experiment, here we test the scalability of HSA-HOP

on problem instances of increasing state and action space. We show the details of the
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# Responders # State vars. # Action vars.

4 38 16
5 43 20
6 48 24
7 53 28
8 58 32
9 63 36

Table 6.1: Size of problem instances vs. number of responders. The number of legal
actions is exponential in the number of responders. The action space is boolean and the
state space is hybrid.

problem instances in Table 6.1. We start with four responders namely one each of Com-

mand, Ambulance, Engine and Ladder. Each subsequent instance adds one responder in

cyclic fashion i.e. add an Ambulance for the fifth instance, then an Engine for the sixth

instance and so on. We do not add additional Command responders. One must note the

high dimensional state and action spaces.

The left panel of Figure 6.2 shows the scalability of HSA-HOP and the effect of

the fleet size on the response time. As expected, both the first and full response times

decrease as more units are recruited. We observe that HSA-HOP has a clear advantage

over the baseline in terms of first response time. For example, we see that HSA-HOP

with five units has lower response time than the baseline using seven units. On the

largest instance, HSA-HOP has a first response of 5.4 minutes, whereas the baseline

policy has a first response of 6.2 minutes. The chart shows that the gain from planning

with HSA-HOP is larger when few responders are available.

This lower first response time seems to come at the cost of slightly higher full response

times. Intuitively, it makes sense to keep at least one Ambulance in reserve accounting

for future emergencies that may arise before any busy responders become available again.

As shown in the figure, the full response time of HSA-HOP is slightly higher than the

baseline.

The right panel of Figure 6.2 shows the significance of the observed gains by showing

the fraction of unanswered calls. The fraction decreases with more responders as one

would expect. However, HSA-HOP drops only about 2% of calls on the largest problem

instance, whereas the greedy baseline drops 7.5% of calls. This difference is exacerbated

when fewer units are available, with HSA-HOP dropping about 8% with five units,
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Figure 6.2: Performance of HSA-HOP under different number of responders. Training
data for HSA-HOP is randomly sampled from 240 calls in Jan 15-31, 2011. Testing data
is a fixed sequence of 240 emergencies between Jan 1-15, 2011.

whereas the baseline drops 22.5% of calls. Planning as in HSA-HOP is able to use

additional responders effectively to improve the performance.

Table 6.2 shows the average reward and real time performance of HSA-HOP with

varying parameters. In each case, the average reward of the baseline policy is dominated

by HSA-HOP with some parametrization. In the smallest instance, we see that increasing

the number of futures results in better performance with a narrower standard deviation

when h = 2 as well as h = 4. This is the pattern we expect to see when the MILPs

are optimally solved for each state. But, as the problem size increases we see that

increasing the lookahead can often decrease the performance when the number of futures

is fixed. Correspondingly, we see an order of magnitude increase in the translation and

optimization time. HSA-HOP shows promise of scaling to these massive HSA-MDPs

while providing some improvement over the baseline, but the scalability of the current

implementation needs to be improved further.

6.4 Learning an RDDL Model

The experiments in the previous section show that the performance of the dispatcher

can be improved using online planning as in HSA-HOP. We showed that with a minor

modification to HSA-HOP, one can incorporate real-world data and circumvent the model

specification for emergencies. Whereas this approach increases the applicability of HSA-
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Responders h F Avg. Reward
(Std. Err.)

Opt.
Time
(mins)

Trans.
Time
(mins)

MILP
Vars.

MILP
Con-
straints

closest -804.874

4
2

5 -567.606 (13.811) 0.006 0.006 11996 24836
50 -564.037 (7.325) 0.137 0.138 119137 247537

4
5 -601.396 (14.752) 0.027 0.027 25047 52277
50 -563.287 (13.878) 1.197 1.234 249531 521831

closest -460.246

5

2 5 -356.865 (12.269) 0.009 0.01 14093 29238

4
5 -414.204 (20.283) 0.058 0.06 29531 61756
30 -379.95 (14.201) 1.849 1.786 176658 370008

closest -364.725

6
2

5 -285.501 (12.867) 0.025 0.018 16298 33828
50 -270.976 (8.256) 2.723 2.618 162147 337447

4
5 -317.655 (18.427) 0.209 0.187 34214 71594
50 -331.109 (17.969) 4.747 4.615 341132 714932

closest -185.935

8
2

5 -146.015 (7.547) 1.216 1.181 20505 42645
30 -146.579 (5.79) 6.142 5.756 122543 255383

4 5 -193.427 (15.118) 4.417 4.228 43172 90542

closest -154.586

9 2
5 -127.71 (7.15) 2.169 2.089 22604 47049
30 -128.966 (7.998) 6.746 6.602 135141 281811

4 5 -162.699 (15.303) 5.401 5.178 47663 100028
4 30 -302.514 (28.385) 2.71 2.667 285415 599605

Table 6.2: Average reward of the dispatch-closest policy and HSA-HOP with standard
deviation over 30 repetitions in paranthesis. We vary the number of responders, looka-
head (h) i.e. the number of actions to lookahead and the number of futures (F ). Training
data : 240 calls between January 15-31, 2011. Testing data : 240 calls between January
1-15,2011. The timing information is averaged over the test states with a per state time
limit of 10 minutes imposed on the MILP solver.
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Figure 6.3: DBN representation of the model learned for the emergency domain.

HOP and avoids issues with model misspecification, the approach may be considered a

bit adhoc. One possible issue is the inability to include novel emergencies in the planning

algorithm when limited training data is available. In contrast to the previous section,

we used five years of data consisting of 35122 calls for learning.

Our motivation is to evaluate HSA-HOP in comparison to the previous section.

Firstly, we test the impact of generalization on its performance compared to the previ-

ous experiment. Secondly, we test the impact of overfitting on scalability in terms of

translation and optimization time. The complexity of the learned model has an adverse

effect on the planning time. In particular, overfitting in the PWL model space leads to

a larger number of pieces, whereas the planning time grows with the number of pieces.

Model learning as in supervised machine learning is the standard way of dealing with

this issue. For our purposes, the learned model must be in the form of RDDL expressions,

and in particular must satisfy the requirements of Definition 4. Accordingly, we illustrate

some fundamental models used in supervised learning for the purpose of modelling the

emergency state. The distributional assumptions of our model for the forecasting of

emergencies follows many prior works in operations research, in the context of which

online action selection using such expressive models is a novel approach.

The target distribution is P (x′, y′, t′, code′|s, a) where s, a are the current state and

action respectively. We assume that this conditional distribution only depends on one

part of the current state as in P (x′, y′, t′, code′|s, a) = P (x′, y′, t′, code′|x, y, t). Further-

more, we factorize this as shown in Figure 6.3.
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P (x′, y′, t′, code′|x, y, t) = P (t′|x, y, t)× P (x′|t′)× P (y′|x′, t′)× P (code′|x′, y′, t′)

As alluded above, we assumed the existence of an interarrival distribution δ(x, y, t)

that affects t′ through t. We assume that (x′, y′) is independent of (x, y), but depends on

t via t′. Although the target distribution can be factorized in different ways, we found

that code is a strong function of (x, y, t). For example, when the call originates from a

hospital, the nature code is always ‘Transport’ (a patient).

1. Interarrival Time P (t′−t|t) : The natural choice for this positive valued random

variable is the exponential distribution. The underlying assumption is that the

emergencies occur IID and without memory and the number of calls form a poisson

process as a result. Figure 6.4 shows the histogram of Gap (interarrival time).

Our initial guess seems accurate by the shape of the empirical distribution. We

observe that the mode is not zero, motivating the use of the more general Gamma

distribution. The standard exploratory analysis for the gamma regression model

is shown in Figure 6.5, showing the presence of a linear relationship between the

inverse of the gap and Time. In addition, the deviations from the linear trend

appears to be non-constant and multiplicative.

In order to satisfy Defintion 4, we must assume that the rate parameter is a PWL

function of the time of the day. The model is of the form δ = t′−t ∼ Gamma( 1
φ , θ

TΦ)

where Φ are basis functions dependent on time. In the HSA-MDP case, Φ(t) may

be continuous (e.g. t itself) or discrete (e.g. 1(t > 5)). A constant dispersion pa-

rameter φ is estimated from the data and so the shape parameter of the underlying

distribution is assumed to be independent of time. Thus, the mean and variance

of δ are E[δ] = 1
φ

1
θTΦ

and V [δ] = 1
φ

1
(θTΦ)2

.

We use the approach of Multivariate Adaptive Regression Splines [50] to estimate

the parameters as well as to find good basis functions. This is similar to decision

tree regression consisting of two phases namely, the forward phase of building a

fixed depth tree wrt the training data, and the backward phase of pruning wrt a

separate validation set. The leaf nodes of the tree are Gamma distributions with

the canonical link function whose parameters are estimated using the theory of
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Figure 6.5: Linear relationship between
the inverse of the interarrival gap and the
time of the day.

Generalized Linear Models (GLM) [103]. We used an existing statistical package

earth [108] which is based on the mars package. The parameters of the learner

are the maximum number of basis functions and a threshold value for pruning.

For the purpose of illustration, we used the default settings for earth but using

“exhaustive” pruning, we arrived upon the model given below.

Figure 6.6 illustrates the model fit on the observed training data and testing data.

The figures show a kernel density plot of the number of calls as a function of time

of the day. The curve denoted “observed” corresponds to the training and testing

data of the true t′ in the respective figures. The curve denoted “predicted” is the

kernel density plot of the t′ predicted using the previous time t as t′ = t+ δ.

GLM g: null.deviance 23362.88 (17560 dof) deviance 21888.09 (17554

dof) iters 7

Call:

glm(formula = yarg ~ ., family = family , data = bx.data.frame ,

weights = weights , na.action = na.action , control = control ,

model = TRUE , method = "glm.fit", x = TRUE , y = TRUE , contrasts =

NULL ,

trace = (trace >= 2))

Deviance Residuals:
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Figure 6.6: Kernel density plot of the piece-gamma fit for the interarrival gap (minutes)
as a function of the time of the day. The left and right panels show the fit for the
training and testing datasets respectively. The curve denoted “observed” corresponds to
the training (left) and testing (right) data of the true t′ in the respective figures. The
curve denoted “predicted” is the kernel density plot of the t′ predicted using the previous
time t as t′ = t+ δ.

Min 1Q Median 3Q Max

-3.7612 -1.0973 -0.3869 0.3356 4.9446

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.335299 0.009796 34.228 < 2e-16 ***

‘h(t -16.7833) ‘ -0.058277 0.004481 -13.006 < 2e-16 ***

‘h(t -9.01667) ‘ -0.070491 0.004898 -14.392 < 2e-16 ***

‘h(y -65.7576) ‘ 0.070939 0.016222 4.373 1.23e-05 ***

‘h(t -3.6)‘ 0.070466 0.002866 24.585 < 2e-16 ***

‘h(y -64.5834) ‘ -0.130102 0.035653 -3.649 0.000263 ***

‘h(y -64.0341) ‘ 0.071717 0.025193 2.847 0.004417 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

0.1 1

(Dispersion parameter for Gamma family taken to be 1.070864)

Null deviance: 23363 on 17560 degrees of freedom

Residual deviance: 21888 on 17554 degrees of freedom

AIC: 54671
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Number of Fisher Scoring iterations: 7

Note that the hinge functions learnt by mars of the form h(ax+b) = max[0, ax+b]

are PWL and allowed by Definition 4. In order to sample futures, one only needs to

know that the Gamma distribtion is a scale family. Since the dispersion parameter

is close to one, we used an exponential distribution because of its closed form CDF.

A sample is drawn as − log(u) ∗ (θTΦ) where − log(u) is the inverse CDF of the

standard exponential distribution and u ∼ U(0, 1).

2. Location P (x′, y′|t′) : The two-dimensional location of emergencies follows a dis-

tribution similar to the density of population in different neighborhoods and the

major roads of Corvallis. The distribution of emergencies consists of distinct clus-

ters of calls separated by regions of low or no call density. For example, the West

Hills Assisted Living center in the southwest part of town is a region with a high

frequency of emergencies separate from the other modes near the center of the city

as well as another cluster seen in the south part of town.

We use a gaussian mixture model as the continuous state space model. One signif-

icant obstacle is that the current language specification of RDDL does not allow

any multivariate state variable. This prevents us in modelling the locations as a

mixture of bivariate gaussian distributions. The only workaround is to factorize

P (x′, y′|t′) using the marginal distribution of x′ ie. P (x′|t′) and the conditional

distribution of y′ conditioned on x′ ie. P (y′|x′, t′). The former is modeled as a

univaritate gaussian mixture model (GMM) whose mean is assumed to be a linear

function of time. The latter is also modeled as a GMM whose mean is aassumed

to be linear function of x and time. These assumptions are necessary to satisfy

Definition 4.

The GMM can be encoded using the PWL machinery as below. Let θi ∈ [0, 1]

denote the mixture probability, µi(t) denote the mean and, σi > 0 denote the

constant variance of the ith component of the GMM with n components. As before,

let u ∼ U(0, 1), then a random future is sampled by first sampling the discrete

random variable corresponding to the component index, followed by sampling from

the corresponding gaussian distribution. We note the necessity for discrete and
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Components LogLik BIC training.error testing.error

1 -42826.10 85691.30 2.856958 2.836998
2 -35214.71 70507.60 2.429330 2.395086
3 -34417.74 68952.75 2.385163 2.319646
4 -34250.94 68658.25 2.376528 2.360736
5 -33891.41 67978.29 2.350192 2.343996

Table 6.3: Training and Testing error (in miles) vs. the number of GMM components
for x locations.

continuous random variables. The piecewise functions covered by Definition 4

easily permit the GMM model.

Sj =
i∑

j=1

θj ;S0 = 0

x =

n∑
j=1

(u ≤ Sj ∧ u > Sj−1)xj

xj ∼ N(µj(t), σj) using Proposition 15

Note that the model does not have knowledge of the geography near Corvallis.

The model may predict emergencies near rivers or sparsely populated regions.

However, for the purpose of planning of dispatch actions, the model is sufficient

if the predictions have a similar manhattan distance as observed emergencies. As

mentioned above, it is possible to encode a more complex model including the real

road network.

Table 6.3 (Table 6.4) shows the model fit with varying number of components

for the x component (y component, respectively). We found that increasing the

number of components to five reduces both the training and testing error, as well as

the BIC. The error is measured in terms of euclidean distance between the observed

and predicted (x, y) locations. The parameters of the GMM were optimized using

the existing mixtools package [12] that uses the EM algorithm. Increasing the

number of components would lead to better fits to the training data.
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Components LogLik BIC training.error testing.error

1 -46277.17 92603.22 3.456872 3.502303
2 -36035.41 72168.56 2.756012 2.857903
3 -35479.95 71106.49 2.775615 2.867790
4 -35579.51 71354.49 2.741688 2.834325
5 -33621.00 67486.34 2.862767 2.884020

Table 6.4: Training and Testing error (in miles) vs. the number of GMM components
for y locations.

However, we found that HSA-HOP is not able to handle more than three com-

ponents, in terms of the size of the MILP produced under a given memory limit,

as well as their translation and optimization timings. We were able to evaluate

HSA-HOP with the following GMM with three components, where λ denotes the

mixing proportions, σ denote the standard deviation, β1 is the intercept, β2 is the

coefficient corresponding to t and β3 corresponds to x. Figure 6.7 illustrates the

model fit for x and y locations.

number of iterations= 239

summary of regmixEM object:

comp 1 comp 2 comp 3

lambda 3.29666e-02 4.02628e-01 5.64406e-01

sigma 5.98178e+00 2.34516e+00 6.87869e-01

beta1 1.40558e+03 1.41578e+03 1.41693e+03

beta2 1.31019e-02 -2.18833e-03 4.53499e-03

loglik at estimate: -34417.74

number of iterations= 420

summary of regmixEM object:

comp 1 comp 2 comp 3

lambda 0.1321839 0.000420624 8.67395e-01

sigma 8.0110470 0.009319536 1.15126e+00

beta1 -429.0252604 91.940029476 -8.96243e+02

beta2 -0.0229183 0.006408035 -2.55224e-03

beta3 0.3461729 -0.018789849 6.78642e-01

loglik at estimate: -36031.5

3. Nature Code : The nature code is a discrete random variable. Nature codes can

be broadly categorized into medical causes, such as Code-1, Code-3, Code3Trauma,
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Figure 6.7: Kernel Density plot of the x (left) and y (right) locations predicted by the
Gaussian Mixture Model with three (top) and five (bottom) components. The histogram
represents the true and observed locations.
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EMS, and fire related causes, such as Hazmat, MVA, StructureFire, VehicleFire,

WildlandFire and so on, for a total of 16 nature codes. The basic model for such a

random variable is multinomial regression, which works by modelling the log-odds

ratio as a linear model.

πx = log(
px
pref

) = α1x+ α2y + α3t

where px is the PMF for outcome x, and ref denotes an arbitrary category that

is chosen as the reference. We used the existing multinom package to estimate the

coefficients. The linearity assumption made above is justified below.

The criterion of Definition 4 for discrete random variables requires the PMF to

be a linear function, whereas the PMF of the multinomial model is the softmax

function which is an exponential function of the parameters. Intuitively, we can

use the monotonicity of the transformation to sample directly in the log-odds space

in order for Definition 4 to hold. For example, the RDDL expression maxx πx is

also PWL if each log-odds ratio πx is PWL. But, this expression only returns the

most likely outcome which is not the same as the softmax.

The correct way to sample from the PMF is to compare the log-odds ratios to

random samples from the Gumbel distribution [60]. In our model, we used a

separate binary variable 1(x) for the indicator that code=x then the following

RDDL expression sets exactly one 1(x) to true.

1(x) = ∀y:cause;y 6=x(πx − πy ≥ ηx − ηy)

where, πx − πy captures the log-odds of outcome x vs. outcome y, and is PWL

whenever πi is PWL for all i.

The random variables ηi are IID distributed as a standard Gumbel distribution.

The difference of the random variables ηx − ηy then follows a standard logistic

distribution [60]. Thus, the inner expression is true with probability equal to the

lower-tail of the logistic distribution P (ηx − ηy ≤ πx − πy). The outer universal

quantification ensures that only outcome is set and corresponds to an argmax.

Finally, the known inverse CDF for the Gumbel distribution is − log(− log(u)) for
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h F δ1 (mins) Compl.
Ov.

δ2 (mins) Partial
Ov.

Opt.
Time

Trans.
Time

closest 7.11 (1.898) 12.5 9.20 (2.721) 20
HSA-HOP 3 3 6.15 (0.251) 4.21 10.80 (0.534) 27.5 0.02 0.02
HSA-HOP∗ 3 3 5.79 (0.256) 2.8 11.13 (0.528) 27.92 6.727 0.125

HSA-HOP∗ 3 5 5.99 (0.261) 3.17 11.39 (0.525) 28.42 4.76 0.464
HSA-HOP∗ 3 10 7.38 (0.337) 12.42 12.73 (0.549) 35.5 3.46 3.765

HSA-HOP∗ 4 3 6.84 (0.315) 8.42 12.15 (0.539) 32.25 8.96 0.144
HSA-HOP∗ 5 3 8.57 (0.385) 20.17 13.94 (0.559) 41.17 8.947 0.364

Table 6.5: Impact of generalization on one problem instance consisting of five responders
evaluated against the first 40 emergencies in January 2011. A 95% confidence interval
is shown for the average response times δ1 and δ2. The columns denoting partial and
complete overwhelms are the fraction out of 40 calls (%). All times are shown in minutes.

u ∼ U(0, 1).

Impact of Generalization : Two versions of HSA-HOP are shown in Table 6.5.

The algorithm denoted HSA-HOP is the version presented in the earlier experiments

that samples futures from the dataset. The version denoted HSA-HOP∗ is HSA-HOP

that samples futures from the learned model presented above. We immediately see the

impact of generalization on the first response time and the fraction of unanswered calls.

HSA-HOP∗ shows that the first response can be reduced even further, while at the same

time reducing the fraction of complete overwhelms of HSA-HOP.

The improved performance is achieved at the cost of significantly higher optimization

time. HSA-HOP∗ uses a significantly larger problem description consisting of the learned

RDDL model for the emergencies, in addition to the action model used by HSA-HOP,

that leads to larger MILPs solved at each state. These timings give context on our

earlier remark about planning with a higher number of components in our mixture model.

Finally, similar to HSA-HOP, we see that increasing the lookahead and number of futures

causes problems in terms of overall performance that is exacerbated by the significantly

larger problem description in HSA-HOP∗.
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Chapter 7: Concluding Remarks

It is well known that the planning problem in MDPs is very hard in theory, and it

is challenging to design algorithms whose performance scales well with the size of the

MDP. From a practitioner’s point of view, an algorithm is more likely to be useful when

a compact description of the problem can be given as input, and it is used to efficiently

select actions from a large and potentially infinite action space.

Our contributions take a step in this direction inspired by many real-world applica-

tions with natural factored action spaces, and further motivated by the recent interna-

tional planning competition benchmarks where factored action MDPs are increasingly

seen. In these benchmarks, existing MDP and factored MDP planners show inferior

performance when the number of factored actions is increased. Across our algorithms,

the recurring message is the use of expressive and compact symbolic representations for

computing action values in a factored manner, which in turn lead to significantly bet-

ter scalability and improved performance than treating each of the exponentially many

actions as atomic.

The most successful anytime planners in planning competitions work by generating

domain-independent heuristics using flat MDP relaxations of the factored MDP, e.g.

using determinization [87], domain analysis [80] along with a gamut of heuristics for

focussing the search under tight time constraints. Although these techniques improve

the empirical anytime performance on the benchmarks, they are heuristic in the sense

that they do not provide explicit generalization in a sound manner. Symbolic Real-Time

Dynamic Programming (sRTDP) [44, 46] aims to combine the benefits of the symbolic

methods and online planning by incorporating symbolic state generalization into the

computation of the online planner. However, sRTDP is a general framework, and its

performance is sensitive to the definition of generalized states. Existing definitions in

prior work lead to algorithms that exceed memory limits in many cases. Despite the aim

for generalization, the resulting planner is often inferior to the corresponding algorithms

working in the flat state space (e.g. RTDP). We presented the first fully symbolic anytime

planning algorithms for factored MDPs that generalize simulated experience soundly
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and efficiently. We observed that using the appropriate form of generalization was the

dominating factor towards good performance compared to increasing the time-limit for

algorithms without state generalization. We also saw that the most appropriate form

of generalization can differ across domains and sometimes problem instances within a

domain. This suggests that it is fruitful to investigate mechanisms for tuning or selecting

among generalization methods.

This work is related to the problem of state abstraction in MDPs that is the problem

of finding equivalence relations between states. Our generalization operators in Chapter

4 are able to discover restricted versions of value and policy irrelevance abstractions of

[92], and exploits them in asychronous DP updates. A promising direction for future

work is to incorporate bisimilarity metrics [47, 48, 48] into the online algorithm similar

to the work of [127, 67]. In contrast to [127, 67], symbolic methods are unique in that

they allow abstract states to be merged and split efficiently in an online fashion.

In our experiments we used replanning at every state to output one action. Our

approach paves the way for speedup learning for the purpose of generalizing the online

search across different initial states i.e. intra-problem generalization. The crucial differ-

ence over traditional learning approaches is that the symbolic examples are generalized

and succinct. It is clear that an exact merging of these BDD policies (union over BDDs)

would not be scalable, but some alternatives are available. Following the work of [117],

pruning functions can be learned that are partial policies subscribing some set of actions

including the optimal action. This is a well-studied problem in BDDs and one might use

the affine BDD approximation [65, 155], Horn approximations [133, 42] or any class of

boolean functions with known closure operators for BDDs [131].

Approaches based on Value Function Approximation [138] have been extended to han-

dle factored state spaces [85, 59] and factored actions [57, 58, 89], but their performance

crucially depends on domain specific basis functions that must be engineered extensively

in practice. The work of [57] motivated a factored action space for modelling fully coop-

erative multiagent problems with centralized controls, and give approximate algorithms

using factored basis functions within this framework. These methods are generalized

to the hybrid setting by Hybrid Approximate Linear Programming (HALP) [89], which

seek to approximate value functions via a weighted basis function representation. On the

policy approximation side, approaches like Pegasus [113] seek to optimize restricted pa-

rameterized policy classes subject to sampled trajectories. All of these methods assume
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a priori knowledge of a good value or policy representation, which is typically difficult

to have in advance.

Further afield, Monte Carlo Tree Search (MCTS) [23] is a popular framework for ac-

tion selection in MDPs. In contrast to the above approaches, as well as our contributions,

MCTS is a different approach by nature that works by sampling action outcomes from

a generative model of the MDP. Their performance is also adversely affected by large

action spaces, which can be alleviated by heuristics [51] and action pruning [96, 117].

Due to the generative model assumption, a large portion of prior work on MCTS ig-

nores any declarative factored structure, with recent exceptions of [80] and [29, 28].

The recent works of [29, 28] on Factored MCTS only produce optimal policies under

strong assumptions whereas we explore both optimal and anytime optimal factored al-

gorithms under common setting that the state and action variables are discrete valued.

Chapter 5 extends to the more general hybrid setting where we contribute a factored

implementation of Hindsight Optimization. The HOP approach is related to MCTS in

that it approximates the tree search problem with a set of determinsitic trees that are

loosely-coupled.

The expressive subset of HSA-MDPs consists of location-scale probability distribu-

tions for the transitions of each state variable. The importance of location-scale distribu-

tions is that they allow a compile-time encoding of the sampled next states at some time

step in the future, even though the parameters of the corresponding density function

involves state and action variables that are unknown at compile time. In our instanti-

ation of this approach, the MILP solver then maximizes over the unknown policy over

multiple sampled futures when the parameters are piecewise linear functions of state

and action variables, or location-scale distributions over them. The general approach

is more broadly applicable by using a more complex solver that matches the function

space of the parameters. To the best of our knowledge, this is the first characterization

of a subset of HSA-MDPs, and corresponding fragment of the RDDL planning domain

description language, that have a linear time compilation to an MILP of linear size.

Future work is needed in the algorithm space for HSA-MDPs because HSA-HOP is

a heuristic algorithm by nature of the HOP approximation. Future work must alleviate

this and explore MILP reductions of sound (e.g. RTDP) and sample-efficient algorithms

(e.g. Sparse Sampling) for HSA-MDPs. The challenge is to retain the scalability of the

HOP approach that is able to scale to truly massive HSA-MDPs. However, for the time
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being HSA-HOP serves as a baseline for these MDPs.

Another potential direction for future work is the learning of models within the

stochastic PWL fragment. Recent advances in learning bayesian networks and learning of

multi-layered neural networks can be tapped. In fact, the commonly used convolutional

neural network with rectified linear activations, if used to model the one step dynamics,

is exactly equivalent to the deterministic PWL class. While HSA-HOP can take these

expressive models as input to derive model predictive controllers, the neural models are

significantly larger in terms of the number of neurons compared vs the number of state

and action variables.

We considered the dispatch optimization problem faced by responders of 9-1-1 emer-

gencies by casting it as an HSA-MDP. We adapted the HSA-HOP algorithm to work with

real world data directly. The generality of our HSA-MDP formulation, specifically the

stochastic PWL fragment, is demonstrated in the learning experiments. We found that

HSA-HOP compares favorably to the baseline policy commonly used by the dispatcher.

Our experiments showed significant improvement in the response time to emergencies

that occured in Corvallis.
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