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Abstract—Several efforts have recently been made to relate
the displacement of swimming three-link systems over strokes
to geometric quantities of the strokes. In doing so, they provide
powerful, intuitive representations of the bounds on a system’s lo-
comotion capabilities and the forms of its optimal strokes or gaits.
While this approach has been successful for finding net rotations,
noncommutativity concerns have prevented it from working for
net translations. Our recent results on other locomoting systems
have shown that the degree of this noncommutativity is dependent
on the coordinates used to describe the problem, and that it can
be greatly mitigated by an optimal choice of coordinates. Here,
we extend the benefits of this optimal-coordinate approach to the
analysis of swimming at the extremes of low and high Reynolds
numbers.

Index Terms—locomotion, swimming, geometric mechanics,
coordinate choice, Lie brackets.

I. INTRODUCTION

SWIMMING has received attention in fields ranging from
robotics to fluid mechanics to biology. The physics of

self-propulsion through a surrounding fluid have long driven
new results in these areas and led to insightful observations
regarding the behavior of swimming organisms [1], [2], [3];
in robotics these observations serve as guides for the design
and control of micro-swimmers and novel aquatic systems [4],
[5]. A particularly interesting observation is that the swim-
ming motions that optimally convert joint motion into net
displacement are essentially the same for systems at both low
and high Reynolds numbers, even though the fluid forces are
dominated by viscous drag at low Reynolds numbers and by
inertial accelerations at high Reynolds numbers [6].

Historically, swimming dynamics have been investigated
by applying a stroke pattern (taken from nature or intuition)
to a model of the swimming system and then analyzing the
resulting forces and displacements. More recently, the strokes
themselves have been the focus of attention, with optimal
patterns found at low [7] and high [8] Reynolds numbers.
Whilst these optimizations have primarily been achieved by
parameterizing a stroke primitive and then applying standard
optimization techniques find the parameters which give the
best performance, a second research thrust has applied curva-
ture techniques based on Lie brackets to differential geometric
formulations of the system models to directly find useful
strokes [6], [9], [10], [5], [11], [12]. These curvature ap-
proaches successfully capture the net displacements resulting
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from small-amplitude strokes, but due to noncommutativity,1

provide only the net rotations and coarse approximation of the
net translations resulting from finite changes in shape.

The development of the geometric models for swimming
has been paralleled by the development of similar models in
robotics for nonholonomically constrained systems [13], [14],
[15], [16], [17]; this line of research has included similar
Lie bracket approaches to those developed in the swimming
community. The parallel developments are unsurprising, as
both branches of inquiry are based on the same underlying
body of theory, with roots in [18].

Working within the context of nonholonomic mechanics,
we have recently developed a set of mathematical tools for
manipulating the geometric models. The first of these, the
connection vector field [19], provides a visual representation
of the kinematics of locomoting systems. Our second devel-
opment, optimized coordinate choice [20], [21], reduces the
noncommutativity of the systems and expands the benefit of
the Lie bracket techniques, providing close approximations of
the net translations over finite strokes.

The primary goal of this paper is to demonstrate the appli-
cability of these tools, particularly the coordinate optimization
process, to swimming systems at low and high Reynolds
numbers; this purpose is achieved in §§3-5. In §6, we then
use these tools to examine the phenomena underlying previous
numerical results for optimized swimming. Preparatory to this
analysis, we offer in §2 a brief review of the previously
developed geometric swimming models. Our intention in pre-
senting these models is to provide an intuitive understanding
of their derivation to a reader familiar with vector calculus
but not differential geometry; accordingly, we have limited
the presence of geometric terminology in the text and moved
it into the footnotes. It is our hope that these notes will serve
as a starting point for the reader who wishes to dig deeper
into the literature on the underlying mathematical structures.

An earlier version of this paper appeared in the proceedings
of the ASME 2010 Dynamic Systems & Control Confer-
ence [22]. The present work includes an expanded discussion
of the role of Lie brackets in defining the area integration
rules and corrects an implementation error in optimizing the
xy coordinates of the body frame. This correction enables
considerably stronger claims in §VI as to the correspondence
between stroke performance and features in the curvature
plots.

1The net displacement over a trajectory depends on the order of inter-
mediate translations and rotations, and the curvature techniques discard all or
some of this ordering information.
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(a) Three-link swimmer geometry (b) Body velocity

Fig. 1: Model coordinates

II. SYSTEM MODELS

In this paper, we analyze the motion of three-link systems
of the form illustrated in Fig. 1(a), swimming at the extremes
of low and high Reynolds numbers.2. This three-link model
was proposed by Purcell [2] as the simplest system capable of
swimming at low Reynolds numbers, and similar reasoning [9]
suggests the use of this model for the high Reynolds number
case. The motion of the swimmers as they interact with their
surroundings is dictated by the reconstruction equation, which
encodes constraint forces and momentum conservation rules
as functions of the system shape and shape velocity. At both
low and high Reynolds numbers, the reconstruction equation
simplifies to a kinematic form, generated respectively from
the drag forces on the swimmer or the net conservation of
momentum between the swimmer and the surrounding fluid.

A. The Reconstruction Equation and the Local Connection

When analyzing a multi-body locomoting system, it is
convenient to separate its configuration space Q (i.e., the space
of its generalized coordinates q) into a position space G and
a shape space M , such that the position g ∈ G locates the
system in the world, and the shape r ∈ M gives the relative
arrangements of its bodies.3 For example, the position of the
three-link system in Fig. 1(a) is the location and orientation
of the middle link, g = (x, y, θ) ∈ SE(2),4 and its shape is
parameterized by the two joint angles, r = (α1, α2).5

With this separation, locomotion is readily seen as the
means by which changes in shape (such as strokes, gaits,
or wingbeats) affect the position. Members of the geometric
mechanics community[14], [15], [16], [17] have addressed this
problem with the development of the reconstruction equation
and the local connection, tools for relating the body velocity
of the system, ξ, i.e., its longitudinal, lateral, and rotational
velocity as depicted in Fig. 1(b), to its shape velocity ṙ, and
accumulated momentum p.

2Low and high Reynolds number respectively identify fluid regimes
dominated by viscosity and inertia. Micro-swimmers, to whom even water
is high-viscosity, are typically modeled using low Reynolds number physics;
the high Reynolds number model we use here is an idealization of the fluid
flow around a meso- or macro-scale swimmer such as a fish.

3In the parlance of geometric mechanics, this assigns Q the structure of a
(trivial, principle) fiber bundle, with G the fiber space and M the base space.

4SE(2) is the set of all translations and rotations in the plane.
5This model is adaptable to systems with continuous curvature by treating

the shape parameters as the amplitudes of curvature modes [23].

The general reconstruction equation is of the form

ξ = −A(r)ṙ + Γ(r)p, (1)

where A(r) is the local connection, a matrix which relates
joint to body velocity, Γ(r) is the momentum distribution
function, and p is the generalized nonholonomic momentum,
which captures how much the system is “coasting” at any
given time [15].

For systems that are sufficiently constrained or uncon-
strained, such as at the extremes of very low and very high
Reynolds numbers, the generalized momentum drops out and
the system behavior is dictated by the kinematic reconstruction
equation,

ξ = −A(r)ṙ, (2)

in which the local connection thus acts as a kind of Jacobian,
mapping from velocities in the shape space to the correspond-
ing body velocity. For the rest of this paper, we will focus
our attention on exploiting the structure of this kinematic
reconstruction equation.

B. Low Reynolds Number Swimmer

At very low Reynolds numbers, viscous drag forces domi-
nate the fluid dynamics of swimming and any inertial effects
are immediately damped out.6 This effect has two conse-
quences, whose combination [6], [11] results in the equations
of motion for this system taking on the form of a kinematic
reconstruction equation as in (2). First, the drag forces on
the swimmer are linear functions of the body and shape
velocities. Second, the net drag forces and moments on an
isolated system interacting with the surrounding fluid go to
zero: if the swimmer were to move with any velocity other
than that dictated by force equilibrium, the large viscous forces
would almost instantaneously remove this “excess” velocity,
returning the system to the equilibrium velocity.

For an illustration of the first consequence, consider a
three-link swimmer with links modeled as slender members
according to Cox theory [24]. For simplicity here, we regard
the flows around each link as independent, per resistive force
theory [7].7 The drag forces and moments on the ith link are
based on a principle of lateral drag coefficients being larger
than those in the longitudinal direction [24], with a maximum
ratio of 2 : 1 in the limit of an infinitesimally thin member.
The moment around the center of the link is found by taking
the lateral drag forces as linearly distributed along the link
according to its rotational velocity, i.e.,

Fi,x =

∫ L

−L

1

2
kξi,xd` = kLξi,x (3)

Fi,y =

∫ L

−L
kξi,yd` = 2kLξi,y (4)

Mi =

∫ L

−L
k`(`ξi,θ)d` =

2

3
kL3ξi,θ, . (5)

6This characterization of course assumes that there are no nearby objects
to reflect momentum, etc.

7The solution for coupled flows is of the same form, but has additional
shape-dependent terms in the forces on each link.
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where Fi,x and Fi,y are respectively the longitudinal and
lateral forces, Mi the moment, k the differential viscous drag
constant, and ξi = [ξi,x, ξi,y, ξi,θ]

T is the body velocity of the
center of the ith link.8 The link body velocities are readily
calculated from the system body and shape velocities as

ξ1 =

 cos(α1)ξx − sin(α1)ξy + sin(α1)Lξθ
sin(α1)ξx + cos(α1)ξy − (cos(α1) + 1)Lξθ + Lα̇1

ξθ − α̇1


(6)

ξ2 = ξ (7)

ξ3 =

 cos(α2)ξx + sin(α2)ξy + sin(α2)Lξθ
− sin(α2)ξx + cos(α2)ξy + (cos(α2) + 1)Lξθ + Lα̇2

ξθ + α̇2

 ,
(8)

where the velocity of the second link is identified with the
body velocity of the system, and all are clearly linear functions
of ξ and α̇ and nonlinear functions of α. By extension, the
forces in (3)–(5), which are linearly dependent on the link
body velocities, are also linear functions of ξ and α̇ and
nonlinear functions of α. Summing these forces into the net
force and moment on the system (as measured in the system’s
body frame),FxFy

M

 =

 cosα1 sinα1 0
− sinα1 cosα1 0
L sinα1 − L(1 + cosα1) 1

F1,x

F1,y

M1


+

F2,x

F2,y

M2

+

 cosα2 − sinα2 0
sinα2 cosα2 0
L sinα2 L(1 + cosα2) 1

F3,x

F3,y

M3

 , (9)

preserves the linear relationship with the velocity terms while
only adding further nonlinear dependence on α, such that the
net forces F = [Fx, Fy,M ]T can be expressed with respect
to the velocities as

F = ω(α)

[
ξ
α̇

]
, (10)

where ω is a 3× 5 matrix.
We now turn to the second consequence of being at low

Reynolds number, that the net forces and moments on an
isolated system should be zero, i.e., F = [0, 0, 0]T . Applying
this rule and separating ω into two sub-blocks gives0

0
0

 =
[
ω3×3

1 ω3×2
2

] [ξ
α̇

]
, (11)

and thus ω1ξ = −ω2α̇ and

ξ = −ω−1
1 ω2α̇. (12)

Finally, setting A = ω−1
1 ω2 puts (12) into the form of (2), with

the viscous drag forces thus generating the local connection
for the low Reynolds number system. In the hydrodynamically
coupled case, the viscous flows around the links that produce
the drag forces in (3)–(5) additionally depend on the relative

8Note that by “body velocity”, we mean the longitudinal, lateral, and
rotational velocity of the link, and not its velocity with respect to the body
frame of the system.

positions and velocities of the links (i.e., the shape and shape
velocity of the system), but retain the linear relationships with
ξ and α̇ that produce (10) and its sequels [6].

C. High Reynolds Number Swimmer

At very large Reynolds numbers, viscous drag is negligible
and inertial effects dominate the swimming dynamics. While
these conditions appear to be the direct opposite of those in
the low Reynolds number case, they also result in the system
equations of motion forming a kinematic reconstruction equa-
tion.9 This fact can be demonstrated via several approaches
of varying technical depth [6], [9], [10], but to maximize the
physical intuition associated with this derivation, we give here
a novel presentation based on the Lagrangian approach for the
planar skater used in [16], [17].

The heart of this approach is the recognition that for a
system whose Lagrangian is equal to its kinetic energy (i.e., it
has no means of storing potential energy), that is isolated from
external forces (i.e., energy can only be added or removed
from the system through generalized forces applied to the
“internal” shape variables), and whose kinetic energy can be
expressed as

KE =
1

2

[
ξ ṙ

]
M(r)

[
ξ
ṙ

]
, (13)

the mass matrix M contains within itself the local connec-
tion [17]. Specifically, M is of the form

M =

[
I(r) I(r)A(r)

(I(r)A(r))T m(r)

]
, (14)

from which A is easily extracted.10 If such a system starts
at rest, the generalized momentum p in (1) remains zero for
all time, and the system’s equations of motion take the form
of (2).

Given this formula for the local connection, it just remains
to be shown that the three-link swimmer at high Reynolds
number meets the afore-mentioned Lagrangian conditions. The
first condition, that the Lagrangian equal the kinetic energy,
can be easily seen by observing that for a planar system
with no gravity effects in the plane, there is no mechanism
for storing potential energy, leaving only the kinetic term
in the Lagrangian. The second condition, that the system
is isolated from external forces, follows from the lack of
dissipative forces in the high Reynolds number regime. The
third condition, on the form of the swimmer’s kinetic energy,
is more subtle, and as above, we will use a hydrodynamically
decoupled example while noting the existence of an equivalent
coupled solution.

9Note that in this section, we follow the example of [9], [10] and neglect
the contribution of vortex shedding to swimming. Models of swimming that
do include vortex shedding can be found in works such as [25], [26], [8]

10In the works from which this derivation was inspired, I(r) appears as
the locked inertia tensor of an articulated body on a frictionless plane (i.e.,
its mass and rotational inertia with its joints locked in a given position).
In the present fluid example, I has a similar interpretation, except that its
product with velocity produces the Kelvin impulse of the combined fluid/rigid
system rather than the momentum [10]. The Kelvin impulse is a momentum-
like quantity, measuring the impulse required to halt a moving system; its
advantage here is that it allows for a fluid field of infinite extent (and hence
infinite mass), for which momentum is an ill-defined quantity.
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An object immersed in a fluid displaces this fluid as it
moves. In an ideal inviscid fluid, the drag forces on the object
are entirely due to this displacement, and act as directional
added massesM on the object that sum with the actual inertia
of the object to produce the effective inertia of the combined
system. The added masses of single rigid bodies (and elements
of articulated bodies when the inter-body fluid interactions are
neglected) are solely functions of the geometries of the bodies.
For example, the added mass tensor of an ellipse with semi-
major axis a and semi-minor axis b in a fluid of density ρ
is

M =

Mx 0 0
0 My 0
0 0 Mθ

 =

ρπb2 0 0
0 ρπa2 0
0 0 ρ(a2 − b2)2

 ,
(15)

with Mx, My , and Mθ respectively corresponding to the
added mass for longitudinal, lateral, and rotational motion.

Returning to the three-link swimmer, the kinetic energy
associated with motion of the ith link through the fluid is

KEi =
1

2
ξTi (Ii +Mi)ξi, (16)

where Ii is the link’s inertia tensor,Mi its added mass, and ξi
is its body velocity, as calculated in (6)–(8). Using the same
linear dependence of ξi on ξ and ṙ as we exploited in the low
Reynolds number case, it is relatively straightforward to trans-
form (16), and thus KE =

∑
KEi, into the form of (13), and

from there to extract the local connection A. The derivation
for the hydrodynamically coupled case is essentially similar,
with the chief difference being the additional dependence of
M on r, which captures the distortion of the flow around each
link caused by the proximity of the other links [6].

D. Similarity to Nonholonomic Systems

While the swimming systems described above seem sig-
nificantly different from the nonholonomically constrained
systems we have examined in our previous work [27], there
are some strong underlying similarities. The ω matrix for
the low Reynolds number system in (11) acts as a Pfaffian
constraint on the system, multiplying the body and shape
velocities to produce a zero vector. This Pfaffian constraint
form also appears in the case of systems with nonholonomic
constraints, such as wheels that can roll but not slip sideways.
In fact, with just two small changes, we can convert the
low Reynolds number swimmer into the three-link kinematic
snake [17], [20] which has a nonholonomic constraint (such as
a passive wheelset) at the center of each link, preventing lateral
motion but freely allowing longitudinal and rotational motion.
First, concentrating the lateral force at the link center, rather
than distributing it along the link, replaces (5) with Mi = 0
for each link, allowing free rotation. Second, increasing the
lateral/longitudinal drag ratio from its value of 2 in (3)
and (4) makes it increasingly difficult for the links to move
sideways. In the limit that this ratio approaches ∞, these
drag forces behave like the ideal nonholonomic constraints
on the kinematic snake, preventing lateral motion while freely
allowing longitudinal motion.

Fig. 2: Connection vector fields for the low and high Reynolds
number swimmers.

Likewise, the high Reynolds number swimmer bears a
strong resemblance to the three-link floating snake [14], [17],
[19], which consists of three links resting on a frictionless
plane. In this case, the parallel is even easier to draw, as the
floating snake is simply a high Reynolds number swimmer in
which the added mass in (16) goes to zero, leaving only the
actual inertias of the links. An interesting difference between
these two systems is that while the high Reynolds number
swimmer can both translate and rotate, the floating snake can
only rotate. This property highlights the importance of direc-
tionality in locomotion: the added mass on the swimmer is
orientation-dependent, allowing it to push its leading surfaces
forward at low inertia, then increase their inertia to draw in
the tail, but the floating snake’s mass is fixed, so pushing
one segment forward always generates an equal and opposite
reaction in the other segments.

III. CONNECTION VECTOR FIELDS

The expressions for A are somewhat complicated, and
provide no particular insight as to the behavior of the sys-
tem. Geometrically plotting them, however, does provide this
insight and we have developed several tools for visualizing
the local connection. The first of these tools is the connection
vector field [19].

Each row of the local connection A(r) can be considered
as defining a vector field ~Ai on the shape space whose dot
product with the shape velocity produces the corresponding
component of the body velocity,

ξi = ~Ai(r) · ṙ (17)
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where, for convenience, we wrap the negative sign into the
vector field definition.11 These connection vector fields encode
the (local) gradients of the position variables with respect to
the shape variables, highlighting how the position changes in
response to a given shape change: A shape change that follows
a connection vector field moves the system positively along
the corresponding body direction, while one that is orthogonal
to the field produces no motion in the corresponding body
direction.

The connection vector fields for the (hydrodynamically
decoupled) swimming models described above are shown in
Fig. 2, with the low Reynolds model at the ideal infinitesimally
thin limit and an aspect ratio of a/b = 10 for the elliptical links
of the high Reynolds number model. The strong resemblance
between the two sets of fields is immediately apparent, and
underscores the physical similarities between the two systems:
although the fluid forces on the links are viscous at low
Reynolds numbers and inertial at high Reynolds numbers, they
both resist lateral motion significantly more strongly than they
do longitudinal motion, forcing the swimmers into trajectories
that minimize lateral motion of their links.

We can also build physical intuition for the systems by
observing the individual structures of the fields. For instance,
both ~Aθ fields have a general heading in the +α1,−α2 direc-
tion. Returning to the geometry of the swimmer in Fig. 1(a),
we see that this heading encodes a tendency for the center link
to counter-rotate with respect to the outer links. Physically, this
makes sense, as rotating an outer link towards the center link
generates opposite reaction forces on the center link. Similar
intuition applies to other features of the vector fields, such as
how the ~Ax and ~Ay fields approach zero magnitude in the
vicinity of α = (0, 0) for ~Ax and α = (±π/2,±π/2) for
~Ay: In these shapes the outer links are respectively aligned or
perpendicular to the center link, and lateral reaction forces on
them project into pure lateral or pure longitudinal forces on
the center link.

IV. CONSTRAINT CURVATURE FUNCTIONS

Connection vector fields illustrate the instantaneous rela-
tionship between shape and position changes, but do not
directly convey information about the net change in position
over a sequence of shape motions. Knowledge about such net
motion plays a key part in understanding and controlling their
behavior, as the joint limits force the systems to use cyclic
motions that include both forward and backward segments.
The curvature of the local connection encodes useful informa-
tion about this net displacement [18], which can be visually
represented as a set of constraint curvature functions (CCFs)
over the shape space [10], [11], which have also been referred
to (for two-dimensional shape spaces) as height functions [17].

At an intuitive level, the CCFs are closely related to the
curls of the rows of the local connection. By Green’s form of
Stokes’ theorem [28], the line integral on a vector field along a
closed loop is equal to the area integral of the field’s curl over
the interior of the loop. Plotting the curl of ~Aθ as a function on

11In strict differential geometric language, each row Ai of A is a one-
form over M acting on ṙ, and ~Ai is the negative dual of that one-form.

(a) (b)

Fig. 3: θ Curls of the local connection for the (a) low and (b)
high Reynolds number swimmers. Because the θ component
of the Lie bracket is 0, these curls are also the θ CCFs for
their respective sytems.

the shape space, as in Fig. 3, allows intuitive identification of
cyclic strokes that produce desired net rotations: For positive
net rotation (positive value of ∆θ =

∫
ξθ dt), the most

effective strokes are those that positively (counterlockwise)
encircle regions of the shape space where curl~Aθ > 0 or
negatively (clockwise) encircle regions where curl~Aθ < 0.
Conversely, when zero net rotation is desired (such as when the
system should move in a straight line over repeated iterations
of a stroke), the stroke should encircle regions from the second
or fourth quadrants, or explicitly balance negative and positive
regions in its encirclements.

More precisely, the relationship between curlAθ and net
rotation is a special case of an identity between the exponential
coordinates12 [10] z(φ) of the net displacement over a stroke φ
(a closed trajectory in the shape space) and a series whose first
two terms correspond to the integral of the abstract curvature
of the constraints over a region of the shape space bounded by
φ [29]. This curvature is measured by the Lie bracket of the
local connection, which measures the net translation induced
by a differential oscillation in the system’s shape. For two
shape dimensions, the identity appears as

z(φ) =

∫∫
φ

CCFs (full Lie bracket)︷ ︸︸ ︷
−curlA +

[
A1,A2

]
dr + higher-order terms, (18)︸ ︷︷ ︸

nonconservativity
︸ ︷︷ ︸

noncommutativity

where the curl operator is applied individually to each row of
A, and [A1,A2] is the local Lie bracket of the columns of A

12The exponential coordinates of a position are the components of
the constant body velocity required to reach that position in unit time,
starting from the origin. A mapping between exponential coordinates and
displacements is provided in [10], but for the purposes of this paper, it is
sufficient to note that on SE(2) this mapping is an identity mapping for pure
translation, i.e., exp ([zx, zy , 0]T ) = (zx, zy , 0), and in the θ component,
i.e., exp ([a, b, zθ]

T ) = (c, d, zθ).
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(taken as if A did not depend on the shape).13,14 On SE(2),
this local Lie bracket evaluates as

[
A1,A2

]
=

Ay
1Aθ

2 −Ay
2Aθ

1

Ax
2Aθ

1 −Ax
1Aθ

2

0

 . (19)

The integrand in (18) is the (negative) curvature of the local
connection, whose components are the system CCFs in much
the same way that the negative components of A form the
connection vector fields. Within this curvature, the curl term
measures the nonconservativity of the local connection, or
how the constraints change over the shape space, preventing
antipodal segments of a stroke from pushing or pulling the
system equally. The local Lie bracket and higher order terms
correspond to the noncommutativity of the system’s position
space, i.e., the extent to which translations with intermediate
rotations do not commute, as in parallel parking maneuvers.

For motions over which a system experiences little non-
commutativity, the higher-order terms are small and the net
displacement is closely approximated by the area integral of
the first two terms in the equation (the system’s CCFs).15 This
makes it easy to characterize the locomotive capabilities of
the system, in terms of the maximum displacement possible
over any gait, and, as we discuss in the §VI, to design useful
gaits by simply encircling appropriate regions of the shape
space. Historically, this condition of low noncommutativity
was considered as only applying to small-amplitude gaits
or certain special cases [10]. In our recent work [21], [27],
however, we have demonstrated a means for optimizing the
coordinates to minimize the overall system noncommutativity
and apply the CCF area rules to large-amplitude motion.

V. MINIMUM-PERTURBATION COORDINATES

An interesting property of (18) is that the noncommutativity
captured in the higher-order terms does not directly scale with
the magnitude of the input stroke φ. Instead, it scales with
the intermediate rotations (and, to a lesser extent, translations)
the system experiences as it executes the stroke. This is a
subtle distinction—increasing the stroke amplitude in general
increases the intermediate motion—and the noncommutative
limitations on integrating displacement via the area rule were
long viewed as limitations on the admissible stroke size [10].
In our work on nonholonomic systems, however, we observed
that in many instances the noncommutativity can be alleviated
by an appropriate choice of coordinates for the system’s

13In general, a Lie bracket of two actions a and b identifies the difference
between doing “a then b” and “b then a,” which is equivalent to taking the
action “a then b then the opposite of a then the opposite of b.” For the
swimmer, the full Lie bracket corresponds to assigning the actions as “increase
α1 and displace by A1 · dα1” and “increase α2 and displace by A2 · dα2.”
The local connection is re-evaluated at each new shape in the cycle, and so the
net displacement incorporates both changes in A and any noncommutativity
in moving along A1 and A2. The local Lie bracket takes the actions as
“displace by A1 ·dα1” and “displace by A2 ·dα2,” and so misses any shape
dependency of the local connection; these effects appear as the curl of A.
Further discussion of this difference appears in [30].

14This identity generalizes to higher dimensions with flux-like integrals
replacing the area integration, but here we restrict our attention to two shape
variables.

15Rotational motion always commutes on SE(2), producing the special
case that net rotation is exactly equal to the area integral of the curl.

(a) Original (b) Optimized

Fig. 4: Configuration of the swimmer in the original and
optimized coordinates.

body frame [20]. In these choices of coordinates, the body
frame (i.e. the point we track on the system) rotates and
translates very little as the swimmer moves in response to
changes in shape, much as the center of mass of an isolated
system remains stationary even if its individual components
are moving over complex trajectories. Reducing this tracked
motion (which does not alter the actual motion of the system)
minimizes the noncommutative influence of the higher order
terms.

As described in [21], [27], we find these minimum-
perturbation coordinates by first defining the location of their
corresponding body frame with respect to the original body
frame as β(r) = (βx, βy, βθ) ∈ SE(2). The gradients of
β with respect to the shape give the relative velocity of the
original and new body frames as the shape changes. Because
the rotational velocity of the new frame is equal to that of the
original frame plus the relative velocity, the rotational part of
the new connection can be expressed as

ξnewθ = −Aθ
new(r)ṙ =

(
−Aθ(r) +∇rβθ(r)

)
ṙ. (20)

To minimize the observed rotational velocity for arbitrary
shape velocities, averaged over a region Ω of the shape space,
we solve for the βθ(r) that minimizes the norm of this new
connection row, i.e. minimizes an objective function Dθ for

Dθ =

∫∫
Ω

‖−Aθ +∇rβθ‖2 dΩ. (21)

This minimization corresponds to performing a Hodge-
Helmholtz decomposition on Aθ, which can be solved via
finite element methods as described in [31]. Minimizing
translation of the new body frame follows a similar procedure,
except that a cross-product term couples the optimal βx and
βy to each other and to the original Aθ, so that the objective
function becomes

Dxy =

∫∫
Ω

‖−Ax +∇rβx − (−Aθβy)‖2

+ ‖−Ay +∇rβy + (−Aθβx)‖2 dΩ. (22)

We present a finite element algorithm for solving this equation
(which is the generalization of Hodge-Helmholtz decomposi-
tion to SE(2)) in [27].

The optimal choices of body frame for both three-link
swimmers under this criterion are approximately the mean
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orientation of the three individual links and the center of
mass location, with small, shape-dependent weightings of the
contribution of each link to the averages.16 Figure 4 shows
how these new coordinates affect our representation, with
the swimmer shown in five shapes with orientation θ = 0.
Using the coordinates from Fig. 1(a), the center links of the
swimmer are aligned across the different shapes, but in the new
coordinates, the dotted lines representing the mean orientation
are now aligned.

The connection vector fields and CCFs for the two swim-
mers in the optimized coordinates are shown in Figs. 5(a)
and 5(b). These plots highlight several interesting features
of the coordinate optimization process and the differences
between the motions of the low and high Reynolds number
swimmers. First, the CCFs for θ are unchanged in the new
coordinates, even though their respective connection vector
fields have clearly been modified. As explained in [21], θ is op-
timized by applying the Hodge-Helmholtz decomposition [32]
to the original ~Aθ field to separate it into its gradient and
rotational components; the gradient component encodes the
relationship between the original and optimized measures of
θ, and the rotational component is the new ~Aθ. As the gradient
component of a vector field by definition does not contribute to
its curl, removing it from ~Aθ does not modify the associated
CCF.

Second, symmetries in the motion of the swimmer are
immediately apparent, suggesting locations for single-loop and
figure-eight strokes that produce displacements in specific
directions [17]. Third, the magnitudes of the connection vector
fields and CCFs are significantly larger for the high Reynolds
number swimmer. Going back to the derivations in §2, we
observe that the ratio of lateral to longitudinal drag on the
low Reynolds number swimmer is 2 : 1, while the added
masses at high Reynolds number are based on the 10 : 1
aspect ratio of the links; we hypothesize that the high Reynolds
number swimmer is thus able to gain a greater difference from
“pushing” links longitudinally and “pulling” them laterally
than is the low Reynolds number system, and thus achieve
greater velocities and displacements over comparable strokes.

VI. ANALYSIS

Using the CCFs in optimized coordinates, we can now start
to answer some previously posed questions about swimming,
and to explain prior result about optimal strokes that had
been reached only by numerically integrating the swimmers’
motions over a wide array of candidate strokes.

A. Purcell’s Swimmer

The three-link swimmer was introduced by E. M. Purcell
as an example in his lecture “Life at Low Reynolds Num-
bers” [2]. He also assigned to it the simplest possible stroke,
in which the joints move individually and sweep through equal
positive and negative angles, and used symmetry arguments to

16Systems with different geometries (e.g. unequal link lengths) will of
course have different minimum-perturbation coordinates, corresponding to
their dynamics as expressed in the values of their A matrices.

(a) Low Reynolds number

(b) High Reynolds number

Fig. 5: Connection vector fields and CCFs in optimized
coordinates.
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Fig. 6: Purcell strokes (a) and resulting displacements (b).
Scale is for a unit total swimmer length with equal link lengths.

show that the stroke moves the swimmer forward. More re-
cently, Becker et al. [33] demonstrated that a sufficiently large-
amplitude Purcell stroke moves the swimmer backward. Using
the CCFs in minimum-perturbation coordinates, we can now
extend the qualitative geometric explanation for this change
in direction provided in [11] to a quantitative description that
captures the amplitudes at which forward displacement ceases
to increase and at which it becomes negative.

Purcell strokes trace out squares on the shape space as
shown in Fig. 6(a). At small amplitudes, the x CCF is entirely
negative in the region bounded by the square, so following
the square clockwise produces a net positive displacement in
the x direction (all the squares symmetrically enclose positive
and negative regions of the y and θ CCFs, so we focus
our attention on the x direction). As the amplitudes grow
larger, they first expand the negative region they enclose, then
start incorporating positive area, reducing the magnitude of
displacement and eventually changing its sign. Figure 6(b)
demonstrates that the approximation on which this CCF expla-
nation rests is essentially exact for Purcell magnitudes up to at
least 2 radians, predicting the net displacement with negligible
error. By contrast, curvature predictions that used un-optimized
coordinates (such as the similar analysis presented in [11])
diverge from the correct solution for gaits larger than 1 radian,
and predicts a continued increase in positive net displacement
at the magnitude where the true displacement passes through
zero.

We should note that as the quality of the Lie bracket
approximation is related to the magnitude of the connection
vector fields, the swimmer’s geometry (and thus its dynamics)
affects how accurate the approximation is in the un-optimized
coordinates. For example, Fig. 7 shows how the original and
optimized Lie brackets agree with the net displacement for a
swimmer with a middle link that is longer [11] or shorter [7]
than the outer links. Comparing these plots with Fig. 6(b), the
Lie bracket of the system considered in [11] (whose short arms
propel the middle link less for a given change in joint angle,
and thus induce naturally-smaller connection vector fields)
provides a much better approximation of the optimal Purcell
amplitude than in the equal-link-lengths case, but still does
not capture the change in sign (direction) of the net motion.
Conversely, un-optimized application of the Lie bracket to the
long-armed system in [7] (which was determined to be the
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�
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Fig. 7: Approximate and actual displacements for the Purcell
swimmer with a middle link that is (a) 1.5 the length of an
outer link, as in [11], and (b) 0.75 the length of an outer link,
as in [7]. Scale is for a unit total swimmer length.

most efficient link length ratio [7]) does not even capture the
approach of an optimal amplitude.

B. Optimal Stroke at Low Reynolds Number

Recognizing that the square Purcell stroke is not the most
efficient choice for locomotion, Tam and Hosoi [7] investigated
optimal stroke patterns. Their basic finding was that optimal
gaits tend to be rounded oblongs; this makes sense from
our CCF standpoint, as rounded curves have larger area-to-
perimeter ratios than do curves with sharp angles, and the non-
uniformity of the CCFs can be expected to bias the optimal
curves away from simple circles.17 A second, more striking,
result was that the maximum-displacement-per-cycle stroke is
pinched in at the center, rather than being convex. This “peanut
shape” was presented as the result of direct optimization over
the space of strokes parameterized by Fourier series, but with
the aid of the CCFs, we can see why it was the result: by
following the zero-contour of the x CCF (Fig. 8(a)), such
strokes enclose as much negative area as possible, while
avoiding positive areas that would reduce the magnitude of
the total integral.

Note that in describing this optimal stroke, we are focusing
only on strokes that form simple loops around the origin, and
not including other optimizers, such as those that encircle the
large positive regions in the corners of the plot as discussed
in [34]. This focus derives from our interest in maximum
displacement strokes as seeds in the search for maximum-
efficiency strokes [11], [23]; as pointed out in [35], strokes in
the corners are unlikely to be feasible for realistic systems,
engender some ambiguity as to what makes up a single stroke
cycle, and contain “unproductive” motions that reduce the
overall efficiency.

C. Optimal Stroke at High Reynolds Number

Kanso [8] used a similar direct optimization approach to find
good gaits for the high Reynolds number swimmer. While the
set of candidate gaits was restricted to simple ellipses, limiting
our ability to comment here on any commonalities between the

17We examine the relationship between perimeter length and stroke effort
in [23].
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(a) (b)

Fig. 8: Maximum-displacement strokes for low (a) and high (b)
swimmers follow the zero-contours of their respective CCFs.

optimal stroke shape and CCF contours, the optimal ellipses
were shown to have major axes aligned with the α1 = α2

direction in the shape space. As shown in Fig. 8(b), such
ellipses closely approximate the zero contours of the x CCF,
encircling the central well and avoiding the surrounding peaks.

VII. CONCLUSIONS

In this paper, we present a novel perspective for modeling
articulated swimmers, which in turn improves upon existing
methods for prescribing strokes. The connection vector fields,
which we originally developed for mechanical systems, pro-
vide a concise visualization of the swimmers’ dynamics. They
naturally induce the constraint curvature functions, which
geometrically capture the effect of oscillatory strokes. Our
coordinate optimization approach makes these CCFs signif-
icantly more accurate than similar CCFs considered by others
in the swimming community, especially when analyzing large-
amplitude (and hence generally more efficient) strokes.

As extensions of the principles outlined here, we have
demonstrated the usefulness of these tools in analyzing swim-
mers with a finite number of parameters controlling continu-
ous deformation [23] and underactuated systems with elastic
“shape” modes [36]. Our present work is examining the
feasibility of using the CCFs to identify good regions of the
stroke-function space in which to look for optimal strokes. We
will also generate connection vector fields and CCFs for the
hydrodynamically coupled swimming models, for comparison
with the first-order models. Finally, we are in the process of
generalizing our approach to include both visualization of the
Lie bracket for more than two shape parameters and systems
with fully three-dimensional translation and rotation.
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