5105 2E55 no.269 cop.2

Reconnaissance Soil Survey of the Willamette Basin, Oregon

Map Juppl. filed in Oversize.

Segment III: Uplands Outside National Forests

Special Report 269 March 1969

Agricultural Experiment Station Oregon State University Corvallis

Table of Contents

		Page
I.	Introduction	1
TT.	Nature and Distribution of the Soils	3
	Xeric-Mesic Zone	4
	Moist-Mesic Zone	6
	Moist-Frigid Zone	8
	MUISL-FIIgiu Zone	.
TTT.	Methods and Use of the Report	9
	Man Preparation	9
	Man Areas and Soil Symbols	9
	Slope Phases	10
	Description of Soil Series	11
	Descriptions of Manning Units	11
	Acreage Figures	11
	Interpretations	12
	How to lise the Man	12
	now to obt the hap	- <u>-</u>
IV.	Estimated Acreage of Each Soil Series and Slope Phase	14
۷.	Key to the Soil Series	28
171	Coil Classification	31
VI.		71
VIT	Interpretations	33
VILI	Stability of the Distrubed Regolith	33
	Soil Properties Qualities and Interpretations	36
	Drainage	36
	Bun-off	36
	Infiltration	37
	Pormoability	37
	Available Water Holding Canacity	37
	Effortive Poot Zapa	38
	Shrink-Supli Potontial	38
	Undrologia Croups	38
	Reginoaring Interpretations	46
	Mankability	46
	WORKADIILLY Switzshility for Hoaring Surfaces	46
	Suitability for Composted Forth Lining for Water Storage	46
	Suitability for Compacted Earth Eining for water Storage	46
	Sultability for brain rields	46
	Glassification Example J Deed Construction Method	40
	Expected Road Construction Method	47
	Compaction nazard for whiter fractor logging	50
	Engineering Laboratory Data	55
	Froductivity	
	Description of the Soil Series and ManDing Units	57
V 1 1 1 +	Alphabetical Index to Descriptions of the Soil Series and	
	Manning Units.	58
	Man Incent	59
	map Legend	

Symbol	Name		Page
1	Mixed Alluvial Land		61
10	Blachly		61
11	Marty		62
12 & 12x	Jory		63
14 & 14x	Honeygrove		65
15	Hullt		67
16	Olvic		68
17	Cazadero		70
19	Cruiser (proposed name)		71
20 & 20x	Peavine		72
21	Unnamed		74
23 & 23x	Nekia		75
24	Ritner		77
25	Whetstone		78
26	Divorville		79
20 27 8 27n	Hambre		80
21 0 211	Klickitat		82
273	Kilchie		84
305	Mitchits Witchits		85
303	WILZEI Ant		87
50	Apt		07
51	ASTORIA		00
52	Fendall		09
535	Unnamed		90
54	SLICKTOCK		91
55	Laurelwood		92
56	Cascade		93
57	Preacher		94
58	Kinton		95
60	Melby		97
61	Ead		98
62	Keel (proposed name)		99
65	Steiwer		100
66	Digger		101
67	Willakenzie		102
69S	Unnamed		104
70S	Unnamed		105
75S	Unnamed		106
111	McCully		107
156	Horeb		109
157	Kinney		110
158	Bull Run		112
1595	Aschoff		113
1695	Henline		 114
175S	Unnamed		116
256	Unnamed		117
258	Goble		118
2595	Goodlow		120
R	Rockland		121
Detailed De	scriptions of the Unname	ed Soil Series	122
Bibliography			128
Index to Map	Sheets		130
Maps			

IX.

X.

List of Tables

Table	<u>Title</u>	Page
1	Segment III Acreage of Each Soils Series and Phase by Subbasin and County (in Thousands of Acres)	16
2	Key to the Soil Series	30
3	Placement of Soil Series in Classification System (with map symbols listed alphabetically by series)	32
4	Disturbed Regolith Relative Stability Classes	34
5	Interpretive Ratings for Selected Soil Properties and Qualities	40
6	Engineering Interpretations and Estimated Classification	48
7	Engineering Laboratory Data for Selected Soil Series	53
8	Site Class Ratings by Soil Series for Various Areas	56
9	Map Symbol Identification Legend Shown in Numerical Order	60

List of Figures

No.	<u>Title</u>		Page
1	Location of Segment III of the Soil Map	e Willamette Basin General	1
2	Location of the Counties and S Willamette Basin	Subbasins within the	15
Э	Index to map sheets		130
4	General Soil Map (40 sheets)		131

RECONNAISSANCE SOIL SURVEY OF THE WILLAMETTE BASIN, OREGON

SEGMENT III: UPLANDS OUTSIDE NATIONAL FORESTS

Byron R. Thomas, James A. Pomerening, and Gerald H. Simonson $\frac{1}{2}$

I. Introduction

This report consists of general soil maps, acreage data, and supporting descriptive and interpretive information for Segment III of the Willamette River Basin (Fig. 1).

Fig. 1. Location of Segment III of the Willamette Basin General Soil Map.

Segment III comprises the forested uplands extending around the periphery of the lowlands and foothills (Segment I) of the basin, but excluding the National Forests (Segment II). The area includes about two million acres consisting primarily of commercial timber lands in private ownership or public ownership under federal and state control.

 $\frac{1}{2}$ Soil Scientist, Oregon State University; Associate Professor, California State Polytechnical College, Pomona; and Associate Professor of Soils, Oregon State University, respectively.

The compilation of this report was undertaken to obtain an initial broad inventory and description of the soil resources. Detailed soil survey information is presently available only for small parts of the forested uplands in the Willamette Basin. This report, while quite general and brief, constitutes the first systematic examination of the soils throughout this important timber-producing area. The map provides soil information basic to a general natural resource inventory and is useful for broad planning of resource management. It shows the general extent and geographic distribution of soils in Segment III. This information facilitates planning of research on important soils and the extrapolation of research and management data throughout the area.

The report describes the methods used in map compilation and explains how to use the map and report. A general section on the nature and distribution of soils is included to give a broad perspective of the different soils and their landscape relationships. Each kind of soil and mapping unit is further described in a later section of the report. Other sections give soil acreages and certain forestry-oriented interpretations of the soils. One interpretation is the relative stability of the regolith once the soil mantle and landscape is disturbed by roads. Another is the relative timber productivity of the soils, based on a summary of available site-index data.

Information in the report is based on reconnaissance field observations, and unpublished data from detailed soil survey work of the cooperative soil survey in Oregon, (4) (7) (13) (19). The report was compiled by the Oregon Agricultural Experiment Station with the assistance of the United States Soil Conservation Service. Financial support for the project was through the Bureau of Land Management, United States Department of the Interior.

II. Nature and Distribution of the Soils

This section relates some of the major differences and similarities among the soils to the major soil forming factors and processes. It supplements the soils map, which shows the location and extent of the soils. Other portions of this report contain the soil use interpretations and more detailed descriptions for individual soils. This section is an attempt to give a broad perspective of all the soils in the survey area.

The nature and distribution of soils is closely related to the natural environmental and physical soil-forming factors; namely, climate, living organisms (primarily vegetation), geologic parent material, topography, and time or age of landform. A fundamental principle of soil classification and the related applied art of soil survey is that soils are natural threedimensional bodies on the earth's surface, each of which possesses a unique set of characteristics that result from interactions among soil-forming factors (11). If all conditions are similar, as they are in the vicinities of Sweet Home and Cottage Grove, then the soils will be similar in their characteristics. If one or more soil-forming factors are different, as is the case with climate, topography, age, and parent material between Sweet Home and the 4,500 foot high Green Mountain, then the soils will be different in many respects, including their suitabilities and limitations for applied use objectives.

Discussion of genetic relationships of the soils is organized under three soil moisture-soil temperature zones. These are: <u>xeric-mesic</u>, <u>moist-mesic</u>, and <u>moist-frigid</u>. Note that these terms refer to <u>soil</u> characteristics rather than climate. However, these zones are closely related to seasonal precipitation and air temperature. Soils within any one zone may have many properties in common; however, it should be emphasized that there are also great differences between individual soils of a zone, and management practices suited for one may not be the best for the others.

The zones are defined, for soil classification purposes, by precise, quantitative limits (12). Obviously the limits between zones in nature will be more gradational than the written definitions imply. Also, empirical data on soil moisture and soil temperature is too limited to firmly fix the boundaries between zones in the field, so users of the map should consider the plotted boundaries between xeric-mesic soils and between moist-mesic and moist-frigid soils as approximations only.

Soils of the xeric-mesic zone have a prolonged moisture deficit during the dry summer period. In precise terms, the moisture content of the soil between depths of 7 and 20 inches is below the permanent wilting point for at least 60 consecutive days in at least 7 out of 10 years if the soil is typically xeric, and at least 4 or 5 out of 10 years if the soil is an intergrade between the xeric and moist or non-xeric zone. Most of the soils in this zone occur in areas receiving less than 55 inches of rainfall per year and some near the Columbia River are only considered xeric if they receive less than 45 inches annually. Generally, the xeric-mesic soils are located on foothills and in valleys with elevations below 1,000 feet, and in some areas (again, near the Columbia River) below 500 feet. Most of the area covered in this survey is moist or non-xeric.

The term mesic refers to the soil temperature and means temperate, with winter soil temperatures significantly colder than the summer soil temperatures. Quantitatively, mesic means that the mean annual soil temperature is between $47^{\circ}F$ and $59^{\circ}F$ and that the winter soil temperature is at least $9^{\circ}F$ colder than the summer soil temperature. Except for the ridges and peaks at elevations above 3,000 to 4,000 feet, most of this survey area is considered moist-mesic.

Moist-frigid soils have mean annual soil temperatures that are less than $47^{\circ}F$ and the winter temperatures are at least $9^{\circ}F$ colder than the summer temperatures. Moist-frigid soils are found on the higher mountains in this survey.

The three climatic-soil zones are discussed separately below. The general environment and physiography of the zone are described first, followed by brief mention of the nature and occurrence of each soil in the zone. Table 2 presents a summary of the soil groupings and their main characteristics.

Xeric-Mesic Zone

The xeric-mesic zone seldom occurs at elevations higher than 1,500 feet and is usually at elevations below 1,000 feet. A few side slopes facing south or southwest are in this zone at elevations in excess of 2,000 feet. This zone occurs in foothills at the margins of the Willamette Valley Low-lands physiographic province (17) and up to 1,500 feet in the southern portion of Lane County.

Most soils in this zone receive less than 55 inches of precipitation per year. In Columbia County, the upper limit for the xeric-mesic zone appears to be about 45 inches of precipitation. The zone has the wet winters and dry summers characteristic of the Pacific Northwest (16). Mean temperatures of $38-40^{\circ}$ F in January, about 65° F in July, and about 54° F for the year are typical.

The native vegetation has been referred to as that of the "valley zone" (6) and represents the driest and warmest climate in the Willamette Basin. Douglas-fir occupies much of the area. Some areas support stands of Oregon white oak intermingled with Douglas-fir (14). Poison oak, madrone, and incense cedar were used as indicator plants for separating this zone from the moist-mesic zone. Other common shrubs include ocean spray, serviceberry, hazel, wild cherry, wild rose and dewberry.

Soils of this zone occurring in the uplands of the Western Cascade Mountains are developed almost exclusively in material from basic volcanic rocks. The bedrock formations are basalt and andesite flow rocks and pyroclastic tuffs, breccias, and agglomerates, all of the Miocene Epoch (17). In the Coast Range, sedimentary rocks occupy a large portion of the area in association with basic rocks of volcanic and intrusive origin. Much of the sedimentary rock is tuffaceous sandstone and siltstone of Eocene Age. The major areas of igneous rocks are also mainly of Eocene Age. In the northern part of the Coast Range, there are areas of Oligocene and Miocene sedimentary and basic igneous rocks (17). A mantle of wind-deposited silt, of Pleistocene Age, covers ridges and footslopes in Columbia, Multnomah, and Washington counties (9).

Uplands of the xeric-mesic zone have relatively low relief and moderate slopes compared to the moist-mesic portions of the survey area. Surfaces on which many of the soils have formed are quite old and stable. Degree of soil development, as evidenced by intensity of weathering and extent of horizon differentiation is generally greater than it is in the moist-mesic and moistfrigid zones. The pronounced wet-dry seasonal precipitation pattern, characteristic of the xeric zone, apparently has enhanced horizon differentiation in these soils (12). Soils on steeper side slopes of the foothills commonly show only moderate horizon differentiation because erosional losses are more nearly keeping pace with weathering. In general, the soils of the xericmesic zone are less acid than those of the moist-mesic zones due to less intense leaching of bases. Some of the soils developed under grass or the open type oak vegetation tend to be very dark brown to considerable depths, whereas those developed under Dougals-fir frequently have lighter colored and thinner surface horizons.

A brief account of occurrence of the major soils of this zone follows. The survey area excludes the valley lowlands and parts of the foothills. Additional information about soils of the lowlands and foothills of the Willamette Basin and surrounding areas is presented in other reports (8, 10, 14, 15).

The <u>dominant</u> soils of the gently to moderately steep foothills are Jory, Nekia, and Willakenzie. Jory soils are deeper than 40 inches to hard rock; Nekia soils are less than 40 inches deep and generally more stony. Soils of both series are reddish, clayey, strongly developed and moderately to strongly acid. The Willakenzie soils are moderately deep and not as clayey as the Jory and Nekia soils. Some ridges and steep slopes are occupied by Witzel soils which are shallow, skeletal (over 35% coarse fragments by volume) and moderately fine textured. They typically have a cover of grasses with scattered oak trees. Associated with Witzel soils are finertextured Dixonville soils on the lower, less sloping areas of the grass-oak openings.

Steeper side slopes below areas of Nekia and Jory soils often have weakly developed Hullt or Ritner soils. Hullt soils are less clayey and less red than Nekia soils. Ritner soils are more stony than Hullt or Nekia soils, but as clayey as Nekia.

Steiwer soils commonly occur on the lowest foothills adjacent to the valley floor. Steiwer soils are formed under oak-grass vegetation and are dark brown, moderately deep, slightly to moderately acid, and well drained.

The wind-deposited silty mantles on the Tualatin Hills and other ridges and footslopes in Columbia and Washington counties give rise to silty textured soils. These include the well-drained Laurelwood, the moderately well-drained Kinton and somewhat poorly drained 256 (unnamed) series. 256 soils have a very firm, brittle subsoil.

Soils of the Cazadero series occur on dissected terraces along the Sandy and Bull Run River in Clackamas County. These soils are deep, well drained, red, moderately fine textured and strongly developed.

Moist-Mesic Zone

The moist-mesic zone encompasses most of the area in this survey. It occurs between the xeric-mesic zone and the moist-frigid zone. Lower elevations generally range from 600 to 1,200 feet and the upper elevations range from 3,000 to 4,000 feet. In general, the zone is at lower elevations near the Columbia River and gradually rises towards the south.

The mean annual precipitation is generally over 45 inches in the vicinity of the Tualatin Hills and over 55 inches in other parts of the Basin. The annual precipitation increases with elevation, approaching 200 inches in the Coast Range and 140 inches in the western Cascade Mountains (6, 16). About 60 percent of the precipitation falls in the period between November and February, and 10 percent in the period between June and September. Snow amounts to less than 10 percent of the precipitation at lower elevations, but nearly 50 percent at elevations of 4,000 feet in the Cascade Mountains. Snow accumulations are small in the Coast Range (17).

Air temperatures become colder with increasing elevation. Average January temperatures are 34 to $36^{\circ}F$ and average July temperatures are 62 to $64^{\circ}F$. Mean annual air temperatures range from almost 46 to $54^{\circ}F$.

The Douglas-fir vegetation zone (6, 13) encompasses this climatic region. Douglas-fir is the most abundant single species and occurs in pure stands over wide areas. On the more moist sites and at higher elevations, western redcedar, grand fir, and mountain hemlock are mixed with Douglas-fir. The understory includes vine maple and alder. The ground cover includes salal, red huckleberry, salmon berry, sword fern, and brackenfern.

The topography is mountainous with steep or very steep side slopes and irregular peaks and ridges. Relief and length of slope are generally greater at higher elevations (17). Broad ridges with moderate slopes and relief are common in eastern Multnomah and Clackamas counties.

Parent materials in the western Cascade Mountains are dominantly from basic rocks of volcanic origin as described for the xeric-mesic zone. Glacial deposits are apparently extensive but differ little from associated colluvial materials. The aeolian silt mantle extends into this zone in Multnomah and northern Clackamas counties. The Coast Range is composed largely of weakly consolidated sedimentary bedrock with lesser amounts of basic volcanic and intrusive rocks (9, 17). Slopes are often unstable and mass movement is common, especially in areas with sedimentary rocks. In the northern part of the Coast Range, aeolian silt mantles the ridges and some side slopes.

Distribution of the major soils of the moist-mesic zone is discussed in the following paragraphs. Several of the soils were not known prior to this reconnaissance survey and are unnamed. They are identified by field numbers in the discussion.

The more stable landscape positions in lower portions of this zone have soils with strongly developed horizons. These include deep, red, clayey Honeygrove soils and moderately deep clayey Peavine soils. Apt soils are brown but otherwise are similar to the Honeygrove series. Olyic soils are brown, with moderately fine texture and strong profile differentiation. The following series, associated with Honeygrove and Apt soils on steeper side slopes, are less strongly developed and moderately deep. Digger soils are brown and have light colored surface layers. The unnamed 69S soils are brown and are very gravelly or cobbly. Klickitat soils are reddish and are very gravelly or cobbly.

Areas capped with loess in the Coast Range contain moderately welldrained Goble and Cascade soils. Cascade soils have very firm, brittle subsoils below 18 inches. Bull Run soils occur in the loess mantled portion of the moist-mesic zone in the northern Cascade Mountains.

Red clayey soils without strong horizon differentiation and with dark surface layers are the McCully series in the Cascade Mountains and the Blachly series in the Coast Range. Deep, red soils less clayey than McCully or Blachly are the Hembre series if the surface soils are dark, or the Marty series if the surface soils are light colored. Unnamed soils of the 21 series are red, moderately deep, and moderately fine textured with light colored surface layers. Associated with the red soils on the steep to very steep side slopes and canyon walls are soils of the very gravelly or cobbly, moderately deep, Klickitat and shallow Kilchis series.

Vast areas of brown or yellowish brown soils occur in the moist-mesic zone. These are commonly associated with sedimentary rocks in the Coast Range and with high rainfall in both mountain ranges. Fine textured brownish soils are Astoria, Melby, and Ead. Astoria soils are deep and have a dark surface. Melby soils are deep and have a light surface. Ead soils are moderately deep and have a very thick dark surface layer. Medium to moderately fine textured, brownish soils include Bohannon, Horeb, Kinney, Preacher, and Slickrock. Bohannon soils are moderately deep to rock. The others are deep. The Slickrock series has a very thick dark surface layer. Horeb soils are medium textured. Preacher and Kinney soils are moderately fine textured.

Brownish or yellowish-brown skeletal soils (with over 35% coarse fragments) include the Aschoff, 69S, 175S, 53S and 70S series. Those with dark surfaces include the deep Damsite, the moderately deep 69S, and the shallow 175S series. Skeletal soils with light colored surfaces are the moderately deep 53S and shallow 70S series. Generally, skeletal and shallow soils are found on very steep slopes and canyon walls where the rate of geologic erosion is almost equal to the rate of soil formation.

Moist-Frigid Zone

The moist-frigid zone makes up a minor portion of the survey and is restricted to higher ridges and peaks of the Cascade Mountains and Coast Range. The lower limit of the zone ranges from about 3,000 feet in the northern part of the basin to nearly 4,000 feet at the Calapooya Divide. Most of this zone is in the Cascade Mountains. Rocky Top Mountain, located in Marion County, is the highest point in the survey and has an elevation of 5,015 feet. The tallest mountain in the Coast Range is Marys Peak with an elevation of 4,097 feet.

Very little meteorological data is available for the more mountainous parts of Oregon, but it is estimated that the mean air temperatures are about $32^{\circ}F$ in January, $62^{\circ}F$ in July, and $45^{\circ}F$ for the year (16). The mean annual precipitation ranges from 80 to 140 inches in the Cascade Mountains and from 100 to nearly 200 inches in the Coast Range. Nearly half of the precipitation occurs as snow in the Cascade Mountains, but winter accumulations of snow are small in the Coast Range.

The dominant tree species in this zone is western hemlock. Other species are noble fir, silver fir, Douglas-fir, western white pine, and western redcedar. Ground cover vegetation includes rhododendron, beargrass, and blue huckleberry (6, 13).

Most areas of this zone are located on narrow ridges with very steep slopes. Some saddles and ridges are only moderately sloping.

The soils are generally developed in materials derived from basic igenous rocks (17). The underlying rocks in the Cascade Mountains are mainly volcanic flows and associated pyroclastics. The highest peaks in the Coast Range are generally capped with intrusive, medium to coarse grained basic igneous rocks.

Most soils of the moist-frigid zone are brownish or yellowish skeletal soils. In the Cascade Mountains, the deep, loamy skeletal Goodlow soils and moderately deep Henline soils occupy most of the ridges and steep sideslopes. Associated with the Henline soils are smaller areas of shallow 75S soils. The craggy peaks and crests that are dominantly barren rock outcrop were mapped as the miscellaneous land type rockland. In Marion County, the moderately coarse textured, highly leached Whetstone soils are associated with Henline soils. In Linn County, the moderately deep, nonskeletal Keel² soils occupy some ridges.

Reddish soils occurring in the moist-frigid zone are the moderately fine textured, moderately deep Cruiser $\frac{2}{}$ series.

2/Proposed soil series.

III. Methods and Use of the Report

This section is intended to aid the reader in making use of the soil map and the related information about the soils. It provides an explanation of what the map shows and how the descriptive and interpretive information is related to it. Limitations inherent in any small scale portrayal of soil landscapes are also indicated.

The map shows the location and extent of the important soil series and the dominant slopes within each delineation. It does not identify the soil series or slope at any particular spot in the landscape. Detailed soil surveys made at scales of four inches per mile are customarily used for this purpose. Generalization of the soil pattern to the scale of one inch per mile on topographic maps was accomplished by delineating associations of intermingled soil series and slope classes.

Map Preparation

The map was made by a reconnaissance soil survey and by generalizing from existing detailed soil surveys.

Those portions of Polk, Washington, Columbia, Multnomah, Clackamas, Linn and Lane Counties²/within the Segment III area were mapped by field inspection during a reconnaissance soil survey. The map delineations were made on small scale aerial photographs (1:60,000) and transferred to USGS topographic quadrangle sheets (15 minute series), or made directly on the quadrangle sheets. The individual quadrangle sheets were reduced one-half to page size maps for inclusion in the back of this report.

Those portions of Yamhill, Marion and Benton Counties within the Segment III area were generalized from unpublished, detailed soil survey field sheets compiled by the Soil Conservation Service. The detailed patterns of soils on the detailed soil maps were abstracted to a level of detail suitable for the general map and transferred to the 15 guadrangle sheets. Areas of forested upland that were mapped as part of Segment I of the Willamette Basin (10) are included on the quadrangle maps, although shown as outside of the Segment III area.

Map Areas and Soil Symbols

The general soil map shows the location and extent of many soil areas. Each delineated area is identified by a map symbol and is called a mapping unit. The symbol includes one or a combination of numbers (14-20). The mapping unit identifies the one, two, or three dominant soil series, or miscellaneous land types, that occur within the delineated area. The soil series are indicated in order of their dominance. For example, a delineation with the symbol, 14-20, has 14 (Honeygrove series) as the primary soil and 20 (Peavine series) as the secondary soil. The approximate percentage of each

²[/]A portion of western Lane County was mapped by Joel A. Norgren, Oregon State Agricultural Experiment Station. soil in a mapping unit is given in the mapping unit descriptions found in the report under the soil description of the primary series. Soil series that comprise less than 20 percent of a delineation are not included in the symbol $\frac{4}{7}$

Slope Phases

The mapping unit symbol also contains capital letters V, W, X, or Y at the end which designates the slope phase or phases. For example, the symbol (14-20 W) indicates an area of Honeygrove and Peavine soils with slopes dominantly ranging from 10 to 35 percent. The symbol (14-20 X) indicates an area of Honeygrove and Peavine soils with slopes dominantly ranging from 35 to 60 percent. The symbol (14-20 WX) indicates an area of Honeygrove and Peavine soils with about seventy percent of the delineation having slopes in the W slope range (10 to 35 percent) and about thirty percent of the area in the X slope range (35 to 60 percent). The usual range in slope for the delineation for 14-20 WX would be 10-60 percent but small areas of other slopes may be included.

Detailed soil maps have separate delineations for each slope range of significance for soil use and management.

The five slope phases and their respective symbols used on the general soil map are given below, and also in the map legend.

Slope phase symbol	Dominant slope range	
no symbol	nearly level	0-3 percent
V	gently sloping to sloping	0-10 percent
W	sloping to steep	10-35 percent
X	steep	35-60 percent
Y	very steep	60-90+ percent

The nearly level (0-3%) slope phase is used with soil series of the few narrow stream valleys that extend into the forested uplands. The V, W, X and Y slope phases are similar in range of slope gradient to slope phases mapped in detailed surveys of forested uplands. However, they are used on the general map for a broader and less exact stratification of the soil landscapes where significant proportions of both slope phases occur in a pattern too small to delineate. The phase symbol which is listed first indicates that about seventy percent of the landscape has slope gradients defined by that symbol.

^{4/}It is important to note that other soils not recognized in the map symbol could comprise a minor but significant acreage within a delineation of contrasting soils with different management requirements. The more important likely inclusions of other soils are mentioned in the mapping unit descriptions. Detailed soil surveys or on the spot identification of soils are needed for appropriate soil information about specific areas within map delineations.

Descriptions of Soil Series

Map areas of this survey identify soils in terms of slope phases of soil series. Soil series are in the lowest category (most narrowly defined) of the national system of soil classification. Each series consists of soils essentially uniform in characteristics, including texture, structure, arrangement of horizons, and color. A map delineation may include two or three soil series with contrasting properties and subsequently, with contrasting suitabilities and management requirements. Meaningful interpretations of the soils information must therefore be made for the individual soil series, (or slope phase subdivisions of them) and not for the entire mapping unit of the general soil map.

Section VIII contains a description for each soil series and miscellaneous land type. Mapping units are listed and described under the dominant series in the unit. The soil series descriptions give a brief account of the setting, major soil profile features, topography, and limitations for timber production.

Soil series are named and defined in a National Cooperative Soil Survey program. Some of the series used in this report are established within this program. Established series are fairly stable, but some refinements in definitions may result from more detailed study. Other series are recognized in the national system but have only tentative status. They are more likely to be changed or dropped. Proposed series that are not yet recognized in the national system are treated in this report as unnamed series and referred to by map symbol. Classification of the soil series into higher categories of the national system is indicated in Table 3.

Descriptions of Mapping Units

All map delineations with identical symbols contain the same major soils and have similar relationships in the landscape. These delineations with identical symbols are called mapping units. Each mapping unit is described under its dominant soil in Section VIII. For example, the mapping unit 27-29S-35S Y is described under the Hembre series (27). The mapping unit description states the soils included, gives their average proportions and major slope gradients, and indicates the typical inclusions of other soils. The setting and typical landscape occurrence of the primary series of the mapping unit (first named in symbol) is given beneath the series descriptions and is not repeated for each mapping unit. The mapping unit descriptions do describe the landscape occurrence of the secondary associated soils.

Acreage Figures

The acreage of each delineation on the map was determined by means of a calibrated grid device. The acreage of each soil series was calculated on the basis of the average proportions of the components in the delineations as given in the mapping unit descriptions. Areas mapped in terms of one series were credited entirely to that series.

The acreage for each series, subdivided by slope phase, is listed in Table 1 by county and three subbasins for Segment III lands. Acreage figures in this report are only approximations because only the major soils in each delineation were accounted for. Inclusions of other soils amounting to less than 20 percent of a delineation were tabulated with the major soils. Moreover, the proportions of the major soils used in the calculation only approximate the real proportions.

Interpretations

After the soils were classified, mapped and characterized according to standard procedures (11, 12) they were interpreted for various forest land use objectives. One interpretation presented for each soil series and slope phase is the relative stability of the disturbed regolith. Engineering behavior of each soil is evaluated and relative productivity by site index class is summarized. The soils are also rated or put into groupings for certain qualities such as erosion hazard, available water-holding capacity, permeability and effective rooting depth. The interpretative information is given in Section VII. Additional soil data relative to reforestation success are currently being developed and summarized. These interpretations will be made available in a supplementary report. For arable land, the agricultural interpretations given in the report for Segment I of the Willamette Basin (10), apply for corresponding soils.

How to Use the Map

The map is useful to learn about the major soils of an area and where they generally occur with respect to each other in the landscape. An alphabetical index to series is on page 58.

For any particular map delineation, the soil series symbolized in order of dominance and the slope range can be quickly identified by using the map legend. Those already familiar with the nature and properties of the soil series will immediately know a great deal about the capabilities, limitations, and forest management requirements of the soils in that area. Those unfamiliar with the soils can learn about the general characteristics of each soil by reading the descriptions of the series in Section VIII. The estimated acreage of each series occurring within the boundaries of the map or within a particular county or subbasin can be found in Table 1. Interpretive ratings and selected soil properties and qualities are summarized in Table 5. The engineering behavior of each series is estimated in Table 6. These descriptions and Tables 1, 5, and 6 are arranged numerically by soil map symbol in the same order as the map legend (Table 9). Tables 3, 4, 7, and 8 are arranged alphabetically by soil series. The numerical map symbol for each series is included in Table 3 to provide a quick cross-reference to the symbol for each named series.

An evaluation of individual map delineations for a specific purpose can be made by consideration of the distribution, properties, and qualities of each soil within the delineation. Generally, the characteristics of the primary soil of the mapping unit are the most important. Sometimes the secondary soils will be similar enough to have the same interpretations as the primary soil. More often, they will differ in their behavior and management requirements. Each soil has particular capabilities and requirements and should be treated accordingly.

This general map and report shows the general distribution and predominance of the kinds of soils. The information about the landscape occurrence permits some prediction of where the individual soils might be found within delineations. Detailed soil surveys are needed to stratify the soil landscape into individual soil areas with particular management requirements. It should be noted that some associated soils have intricately intermingled patterns of distribution, and use of one soil may be influenced by characteristics of another soil. Detailed soil surveys or on-site examinations are needed to evaluate this situation in any particular area. Reference is made in the soil series descriptions to the soils that generally occur in areas too small to be managed separately.

In summary, the soil association map will serve as a tool for general planning and educational purposes. It should prove helpful in extending research results and knowledge of soils to portions of Segment III without soil surveys. The map is not designed or intended to substitute for detailed soil surveys, which are required for planning at the more intensive management level. IV. Estimated Acreage of Each Soil Series and Slope Phase

Table 1 shows the estimated acreage of each soil series, rockland, and mixed alluvial land. Acreages are tabulated by slope phases of the series. The acreages are given by subbasin and county for the entire area of Segment III. Figures are listed in thousands of acres.

Acreage figures for Segment I soil areas shown on the soils maps, but outside the Segment III survey area boundary, are not included in this report. The acreage for these lands are included in the Segment I report (10).

Figure 2 shows the location of the counties and subbasins within the Willamette Basin.

-14-

Fig. 2 Location of the Counties and Subbasins within the Willamette Basin

-15-

Table 1

Segment III

Acreage of Each Soil Series and Phase

by Subbasin and County

(in Thousands of Acres)

				<u>A</u>			B				
Phase Symbol	Soil Series or Land Type	Doug Las	Benton	Lane	Linn	T O T A L	Lincoln	Benton	Lane	Linn	
1	Mixed alluvial land	.1	_	8.4		8.5	.7	•5		2.7	
10 V 10 W 10 X 10 Y	Blachly							1.1			
11 V 11 W 11 X 11 Y	Marty							2.6 1.0 .4		.8	
12 12 V 12 W 12 X 12 X	Jory			1.0 8.3 36.7 6.9	.2	1.0 8.3 36.7 7.1		.8 .3	.2	13.0 23.7 1.2	
12x V 12x W 12x X 12x Y	Jory (sedimentary bedrock phase)			2.0		2. 0 .6		1.2 1.6			

SUBBASIN

SUBBASIN

				SUBBASIN C										
Clackamas	Marion	Polk	Yamhill	Tillamook	T O T A L	Washington	Columbia	Clackamas	Multnomeh	11îdaeY	Tillamook	T O T A L	Segment III T > I O I	
•5		2.1	1.6		8.1	2•4	2.2		•3		·	4.9	21.5	
		3.0 5.5 3.5 .6	•3		3.0 6.6 4.5 .6						х		3.0 6.6 4.5 .6	
		•9 •1			3.5 1.1 1.2	1.1 9.6 5.7	•2 •4					1.3 10.0 5.7	1.3 13.5 6.8 1.2	
•8		•7			13.0 25.5 2.2	•6 2•6 2•6	•8 3•3 •8			1•6 •2		1.4 7.5 3.6	1.0 22.7 69.7 12.9	
		•6 2•0	•4 •5		1.8 4.0 .5	.7 1.5 .2	•			•1		.7 1.6 .2	1.8 6.7 2.7 1.2	

-17-

			SUBI	BASIN A		SUBBASIN B					
Ph ase Symbol	Soil Series or Land Type	Douglas	Benton	Lane	Linn	T O T A L	Lincoln	Benton	Lane	Linn	
14 V 14 W 14 X 14 Y	Honeygrove			3•4 70•5 7•1	•8	3.4 71.3 7.1	1.8	3•4 3•9		6.9 32.4 12.2	
14x V 14x W 14x X 14x Y	Honeygrove (sedimentary bedrock phase			8.1 6.7 .7		8•1 6•7 •7		•7 2•7	•4 •3		
15 V 15 W 15 X 15 Y	Hullt			•3 1•9 1•2 •1		•3 1•9 1•2 •1					
16 W 16 X 16 Y	Olyic										
17 V 17 W 17 X	Cazadero										
19 V 19 W 19 X	Cruiser (proposed name)			•1		•1				•4 1•3 1•6	
20 V 20 W 20 X 20 Y	Peavine	1.2 .7 .1		1.9 64.0 70.5 9.4	•5 •1	1.9 65.7 71.3 9.5		•7		3.9 23.4 23.2 4.9	
20x W 20x X 20x Y	Peavine (sedimentary bedrock ohase)			•6 1•4		•6 1•4		•5	•1 •1		
21 W 21 X 21 Y	Unnamed										
23 23 V 23 W 23 X 23 Y	Nekia			2.4 2.1 16.8 22.3 .1	•6	2.4 2.1 16.8 22.9 .1		•7 •2	6.5 3.0 1.3	19•6 3•3 •3	

SU				
			_	

										<u> </u>			<u> </u>	
Clackamas		Marion	Polk	Yamhill	Tillamook	T O T A L	Washington	Columbia	Clackamas	Multnomah	Yamhill	Tillamook	T O T A L	Segment III 7 > 1 O L
			•3 •7	•5 •7	3' 11	7.2 7.0 8.6	1.6 10.1 8.0 .2	2•2 6•7 •7					3.8 16.8 8.7 .2	14•4 125•1 34•4 •2
			•1 3•8 •9 •5	1.9 1.4		•1 6•8 5•3 •5	1•2 2•7						1•2° 2•7	•1 16•1 14•7 1•2
1.	•3	•1				1.3 .7								•3 1•9 2•5 •8
				9.0 14.6 4.4	1	9.0 4.6 4.4	4.4 11.3 1.6				•2		4.6 11.3 1.6	13.6 25.9 6.0
									•1		•4 3•8		•4 •1 3•8	•4 •1 3•8
			1.7 .8 1.3			2•1 2•1 2•9		1.0					1-0	2.2 2.1 2.9
			•3	•9 1•4	29	3.9 5.3 4.6 4.9	1.1 1.7	4.1 1.7					5•2 3•4	96.2 99.3 14.4
			1.3 .3 .2	2•9 2•8		4.3 3.7 .2								4.9 5.1 .2
			•8 7•1 •9			•8 7•1 •9		1.2 .2					1.2 .2	•6 8•3 1•1 2•4
	•5 •2		•4		•1 2	6.5 3.9 4.1 1.6	•4 •8 1•2	•2 1•2		•1	2≠5 •3		•4 3•5 2•8	9.0 44.2 29.8 1.7

TABLE 1 con't

SUBBASI	N
A	

SUBBASIN

				A					В		
Phase Symbol	Soil Series or Land Type	Douglas	Benton	Lane	Linn	T O T A L	Lincoln	Benton	Lane	Linn	
23x V 23x W 23x X 23x Y	Nekia (sedimentary bedrock phase)			•2 2•1 1•0		•2 2•1 1•0		•8 •3			
24 W 24 X	Ritner			1.0 1.6	•3	1.0 1.9				•1	
25 W 25 X 25 Y	Whetstone										
26 26 V 26 W 26 X 26 Y	Dixonville			•6 •3 3•6 •4 •1		•6 •3 3•6 •4 •1			•9 •1	•2 1•3 3•9 1•3	
27 V 27 W 27 X 27 X 27 Y	Hembre (basalt bedrock phase)									•3 6•9 3•7 1•4	
27n W 27n X 27n Y	Hembre (diorite bedrock						•2 1•2 •1			•7 •1	
295 W 295 X 295 Y	pnase) Klickitat	•9 1•6 3•8		5.3 62.0 44.7	•3 1•2 •1	6•5 64•8 48•6		7.2 2.8	•2	.8 10.9 29.3	
355 W 355 X 355 Y	Kilchi s	2.8		•4 23•2	•1	•4 26•1	•1	•2		•2 10•9	
365 V 365 W 365 X 365 Y	Witzel			•5 4•8 4•0 1•4		•5 4•8 4•0 1•4			•8 2•3	•6 4•1 1•7 •4	
50 V 50 W 50 X 50 Y	Apt			5•6 8•7 1•8		5.6 8.7 1.8		1.0 2.6	•4		

Clackamas	Marion	Polk	Yamhill	Tillamook	T O T A L	Washington	Columbia	Clackamas	Multnomah	Yamhill	Tillamook	T O T A L	Segment III T > I O I
		•4 1•3	•3 •3		1.2 1.9 .3	•1 •1				•1		•2 •1	1.4 4.0 1.5 .1
					•1								1.0 2.0
•1	•7 9•0 4•5				•8 9•0 4•5								•8 9•0 4•5
					•2 1•3 4•8 1•3 •1				•1			•1	.8 1.6 8.4 1.8 .2
		•2 12 •8			.3 7.1 3.7 14.2	1.3 •5						1.3 .5	•3 7•1 5•0 14•7
		6.3 25.2 4.2	6.3 13.8 2.6	1.3 1.4 1.2	14.1 42.3 8.2	1.9 15.0 .7					•1 •4	1.9 15.4 .7	16.0 57.7 8.9
•4 •6 •2		9.0	•4 4•4		1.4 19.1 45.7	1.3	•1 •9	1.1	•8			•1 •9 3•2	8.0 84.8 97.5
		9•2	•1		•2 •2 20•3	•4 2•0			1.3			•4 3•3	•2 1•0 49•7
					•6 4•9 1•7 2•7				· . ,				1•1 9•7 5•7 4•1
		•4			1•4 3•4	.3						•3	7.0 12.4 1.8

H

TABLE 1 con^{*}t

		SUBBASIN A					SUBBASIN B					
Phase Symbol	Soil Series or Land Type	Douglas	Benton	Iane	Linn	T O T A L	Lincoln	Benton	Lane	Linn		
51 W 51 X	Astori a					- <u>-</u> ,						
52 W 52 X	Fendal 1					· ·						
53S Y	Unnamed			9 •8		9 .8				15•4		
54 X	Slickrock					10 A		•5		•		
55 V 55 W 55 X	Laurelwood											
56 V 56 W	Cascade											
57 W 57 X 57 Y	Preacher						•5	4•6				
58 V 58 W 58 X	Kinton											
60 V 60 W 60 X 60 Y	Melby									•4		
61 W 61 X	Ead						а. 1					
62 W 62 X	Keel (proposed name)			•1		•1				1.3 3.9		
65 V 65 W 65 X 65 Y	Steiwer			•7 1•4 •1 •3		•7 1•4 •1 •3				•1		
66 W 66 X 66 Y	Digger			1.8 11.9 2.6		1.8 11.9 2.6	•3 4•2	•3 •7	•3			

-22-

ŝ	··· ,	-		ok	T	ton		S			<u> </u>	T	Нт
Clackam	Marion	Polk	Yamhill	Tillamo	O T A L	Washing	Columbia	Clackam	Multnom	Yamhill	Tillamo	O T A L	Segment T > I O
· · ·		4•5 3•1	9•3 7•4		13.8 10.5				· · ·				13 .8 10 . 5
			•8 4•2		•8 4•2								•8 4•2
					15.4								25•2
					•5								•5
			æ			.7 1.0 1.3						•7 1•0 1•3	•7 1•0 1•3
			· .			•6 •3						•6 •3	•6 •3
		1.4 .3 .1			1.4 5.4 .1	1.1 1.7	1•4 1•4					2•5 3•1	3.9 8.5 .1
	•2				•2	•5 1•4 3•0	3.1 8.6 1.9					3.6 10.0 4.9	3.8 10.0 4.9
		•2 1•3 •9	•2 •9 •2		•4 2•2 1•5	•1 •7 •5				•1	-	•1 •8 •5	•1 1•2 2•7 1•5
			1.0 2.3		1.0 2.3								1.0 2.3
					1.3 3.9	1							1.3 4.0
					•1						-		•7 1•4 •2 •3
		•2 •1			•8 5•3								2•6 17•2 2•6

SUBBASIN C

TABLE 1 con^{*}t

				A					B	
Phase Symbol	Soil Series or Land Type	Douglas	Benton	Lane	Linn	T O T A L	Lincoln	Benton	Lane	Linn
67 67 V 67 W 67 X 67 Y	Willakenzie			.2 1.9 13.3 4.2 .4		.2 1.9 13.3 4.2 .4				•1
69S V 69S W 69S X 69S Y	Unnamed	•3		5•8 9•4 10•0	•2 •4	6.0 10.1 10.0	•2	•5 4•6 1•2	•1	•1 10•4 15•0 7•5
705 X 705 Y	Unnamed			11.7		11.7		•.		14•6
755 W 755 X 755 Y	Unnamed	•3 •1		•1 •1		•4 •2				2•1
111 111 V 111 W 111 X 111 X 111 Y	McCully	•4		2.1 1.3 22.3 5.7	3•3	2.1 1.3 25.6 6.1			•5	•2 1•5 37•2 15•5 1•2
156 156 W 156 X	Horeb									
157 157 V 157 W 157 X 157 Y	Kinney	•3		11.6 12.5 5.3	•4 1•7	12.0 14.5 5.3			•2	.9 .8 21.3 28.4 4.2
158 V 158 W 158 X	Bull Run					X-				
159S W 159S X 159S Y	Aschoff			•4		•4				•1

-24-

SUBBASIN

SUBBASIN

	- ·			-		_					<u> </u>		. H
Clackames	Marion	Polk	Yamh111	Tillamook	T O T A L	Washington	Columbia	Clackama s	Multnomah	Yamhill	Tillamook	T O T A L	Segment II Segment II
								<u></u>					
													•2
						3.4						3.4	1.9
					•1	2.0						2.0	6.3
													•4
					•1								•1
•2 1.2		•5			11.7	•7	•6					1•3 2•4	33.7
1.0	•2	•4			9.9	••1	•7	•9				•9	20.8
					14•6								26.3
•3					•3								.3
1.0					1.0								1.4
3•6	•5				6.2								6.4
•	•												2.5
•1 3•7	•1 3•5				•4 8•7	2		4.2	9.7			13.9	23.9
17.6	11.3				66-6			15.2	4.2			19.4	111.6
9.6	2.4				27•5 211			2.7	1•4			401	3/./
•4	• '				2.+1								
	•7				•7							- 6	67
1.8	4•1 •9				4•/ 2•7		•0					•0	2.7
2.0	4.8				•9 7.6								7.6
21.7	9.1				52.3			6.3				6.3	70.6
12.9	6.0				47.3			1.3				1.3	63.1
1.1	•2				5.5			1.3				1.3	12.1
								2.2	2.1			4.3	4.3
								1.9	1.9 1.4			3•8 1•7	3.8
								•0	- * *				
	E											i.	.3
9 . 7	•5 •1				9.8								10.2

		SUBBASIN A						S	UBBASI B	IN	
Phase Symbol	Soil Series or Land Type	Douglas	Benton	Lane	Linn	T O T A L	Lincoln	Benton	Lane	Linn	
1695 W 1695 X 1695 Y	Henline	•5		1.2 .3 .7		1.2 .8 .9				1.2 5.0 2.4	
175S X 175S Y	Unn ame d										
256 V 256 W 256 X	Unnamed										
258 V 258 W 258 X 258 Y	Goble										
259S W 259S X 259S Y	Goodlow	•1		•5		•6				2.0 5.3 3.1	
R	Rockland			4•9	•1	5.0		.		3•5	
TOTAL	, <u>1997, 99, 99, 99</u>	14•9		682.4	10.3	707.6	9.3	50.3	18.1	460.3	

									С					_
Clackamas	Marion	Polk	Yamhi 11	Tillamook	T O T A L	Washington	Columbia	Clackamas	Multnomah	Yamhill	Tiiiamook	T O T A L	Segment III	
•5 6•3 1•5	1.3 2.0 6.0				3•0 13•3 9•9			<u>.</u>	-		· .		4. 14. 10.	2
7.5 21.5	•3 •3	s.			7.8 21.8								7. 21.	3 3
							1•2 1•2 •2					1.2 1.2 .2	1.	222
						4.5 18.7 9.6 .8	2.7 4.1 .3				- -	7.2 22.8 9.9	7. 22. 9.	2398
1.4 2.3	•5				3.4 8.1 3.1			1.0				1.0	4. 9. 3.	0 1 1
•5	•7				4.7		2.1	•				2.1	11.	8
) 71.5	122.0	97.8	4.0	977.3	152+1	58.2	38.9 2	:3•1	9.3	•5 2	82.1	1967.	0

Segment III Total

1,967,000 acres

SUBBASIN

V. Key to the Soil Series

The key shown in Table 2 was prepared so the major soil series may be quickly identified in the field. Seven steps are required to place a soil into the proper series. They are as follows:

1. Climatic zone: The observer must determine if the location is in the xeric-mesic zone, the moist-mesic zone, or the moist-frigid zone. These three zones are discussed in Section II, nature and distribution of the soils.

2. Color of the subsoil: Two general colors are listed, brown and red. Brown soils have hues of 10 YR, sometimes grading to 7.5 YR. Red soils have hues of 2.5 YR or 5 YR, sometimes grading to 7.5 YR. (Refers to Munsell color chart notations.) The moderately well drained soils have reddish, yellowish or grayish colored mottles in the lower portion of the subsoil. The somewhat poorly drained soils have reddish, yellowish, grayish or bluish colored mottles in the upper portion of the subsoil.

3. Soil depth: Depth of soil.

Very shallow and shallow	Less than 20"
Moderately deep	20 to 40"
Deep and very deep	40 to 60"+

4. Stone content: Soils which contain an average of over 35 percent gravel and stones in the subsoil by volume are classified as skeletal. The observer must determine if the soil is skeletal or non-skeletal.

5. Texture: The texture of the subsoil must be determined. The texture falls into a fine-silty, fine-loamy, coarse-silty, loamy skeletal, fine, coarseloamy or clayey classification. These are defined by proportions of sand, silt, clay and coarse fragment content.

6. Surface soil color. The surface soil is either light colored or dark colored. A light colored surface soil is lighter than a value of 3.5 moist, or 5.5 dry, or a chroma higher than 3.5 when moist. A dark colored surface soil has a value of 2 to 3.5 moist and less than 5.5 dry and a chroma of 1 to 3.5 moist. Soils with over 20 inches of dark surface are referred to as pachic.

7. Clay skins: The presence of numerous clay skins on the ped surfaces in the subsoil affects classification. The observer must determine if the peds in the subsoil are or are not coated with clay skins.

The characteristics listed in the key are observable. Other characteristics which are not observable also affect classification. The Suborders, by definition, indicate some of these unobservable characteristics (12). The key is not intended to indicate all the criteria or to place soils into a Suborder; however, some Suborder criteria are used in the key to place a soil into the proper series. TABLE 2

Key to the Soil Series

Suborder	Subsoil Color	Family Texture (subsoil zone)	Very Shallow and Shallow 0-20"	Moderately Deep 20-40"	Deep and Very Deep 40-60"+	Deep Moderately Well Drained	Deep Somewhat Poorly Drained
			Soil Series of	the Xeric-Mesic	Zone		
OchreptsUmbreptsXerollsXerollsXerollsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfsXeralfs	 brown. red. red. brown. brown. brown. red. red. red. red. red. red. red. 	<pre>. fine-silty fine-loamy loamy-skeletal fine-loamy fine fine-silty fine-loamy fine</pre>	• • • • • • • • • • • • • • • • • • •	Steiwer Dixonville Willakenzie . Nekia	. Hullt	Kinton	• •
, ,			Soil Series of	the Moist-Mesic	Zone	di s	
Ochrepts (Light colored surface, no clay skins)	 brown. brown. brown. brown. red. red. 	<pre> loamy-skeletal coarse-silty fine-loamy fine</pre>	70S	535	. Bull Run . . Melby . Marty	• •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Umbrepts (Dark colored surface, no clay skins)	 brown. brown. brown. brown. brown. brown. ced. ced. 	<pre>. loamy-skeletal fine-loamy fine-loamy fine-loamy fine-loamy fine-silty loamy-skeletal fine-loamy</pre>	. 175S	695 Bohannon. Ead (pachic)# Fendall Klickitat	Aschoff (pac Horeb	hic)*	
Humults (Clay skins)	red . brown red red	<pre>. fine</pre>		, Peavine	 McCully, Bla Apt Olyic Honeygrove. 	chly	• • • • • • • • • • • •
·			Soil Series of	f the Moist-Frig	id Zone		
Umbrepts (Dark colored surface, no clay skins)	brown brown red	 .loamy-skeletal .coarse-loamy .fine . 	• • 75S • • • •	Henline	• • Goodlow • • • • Keel (propos • • Cruiser (pro	ied name)	• • • • • • • • • • • • • • • • • • • •
Orthods	• • • • • • •	. coarse-loamy		Whetstone • •	• • • • • • • •		• • • • • • • • •

* Over 20 inches of dark soil surface.

-29-

VI. Soil Classification

Soil series are at the lowest level in the national system of soil classification (11). The system was adopted to help soil scientists and others remember and understand the many characteristics and relationships of the wide range of soils in the United States. The placement of established and tentative series as of January 30, 1968, is presented in Table 3 along with proposed placement of the unnamed series and the two locally proposed, named series. The other named series have tentative status except for Astoria, Cascade and Kilchis which are established series. Proposed and tentative series are subject to possible modification of concept or change of name before they are established in the system of classification. The status of each named series is indicated in the series description in Section VIII. Placement of Soil Series in Classification System

SeriesSymbolApt50Typic Haplohumultsclayey, mixed, mesicAschoff159SAndic Haplumbreptsloamy-skeletal, mixed, mesicBlachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystrochreptscoarse-silty, mixed, mesicCascade56Aquic Pragiumbreptsfine-loamy, mixed, mesicCascade56Aquic Cryumbreptsfine-loamy, mixed, mesicCascade56Aquic Cryumbreptsfine-loamy, mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicDisonville26Pachic Haplumbreptsfine, mixed, mesicGoble258Andic Cryumbreptsfine-loamy, mixed, mesicGoollow259STypic Haplumbreptsfine-loamy, mixed, mesicHenline169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHult15Typic Yupic Cryumbreptsclayey, mixed, mesicKinchis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsfine-silty, mixed, mesicKuickitat29STypic Fragiochreptsloamy-skeletal, mixed, mesicKuickitat29STypic Fragiochreptsfine-silty, mixed, mesicKuickitat29STypic Tryic Scochreptsfine-loamy, mixed, mesicKuickitat29STypic Haplohumultsclayey, mixed, mesicKinchis35SLithic Haplubrepts	Soil	Mapping	Subaroup	Family
Apt50Typic Haplohumultsclayey, mixed, mesicAschoff1595Andic Haplumbreptsloamy-skeletal, mixed, mesicAstoria51Andic Haplumbreptsfine, mixed, mesicBlachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystrochreptscoarse-silty, mixed, mesicCascader56Aquic Fragiumbreptsfine-loamy, mixed, mesicCascader19Typic Cryumbreptsfine-loamy, mixed, mesicCruiser19Typic Cryumbreptsfine-mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicGoble258Andic Fraglumbreptsfine-sity, mixed, mesicGoble258Andic Fraglumbreptsfine-loamy, mixedHenbre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Kaplumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplumbreptsfine-loamy, mixed, mesicKinton55Lith Haplumbreptsfine-loamy, mixed, mesicKinton56Typic Fragiochreptsfine-loamy, mixed, mesicMarty11Andic Haplumbreptsfine-loamy, mixed, mesicKintha23 & 23 xXeric Haplumbreptsfine-loamy, mixed, mesicKinton56Typic Cryumbreptsfine-loamy, mixed, mesicKintha23 & 23 xXeric Haplumbreptsfine-loamy, mixed, mesicKitkitat295	Series	Symbol		
Apt50Typic Haplohumultsclayey, mixed, mesicAschoff159SAndic Haplumbreptsloamy-skeletal, mixed, mesicBlachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystrochreptscoarse-silty, mixed, mesicCascade56Aquic Fragiumbreptsfine, mixed, mesicCascader17Utic Haploxeralfsfine, mixed, mesicCascader66Dystric Eutrochreptsfine-loamy, mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicBadl52Typic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-mixed, mesicGoolow259STypic Cryumbreptsloamy-skeletal, mixedHenbre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Karumbreptsfine-loamy, mixed, mesicJory_12 & 12xXeric Haplohumultsclayey, mixed, mesicKinchis355Lithic Haplumbreptsfine-loamy, mixed, mesicKintchis355Lithic Haplumbreptsfine-loamy, mixed, mesicKintel10Typic Karumbreptsfine-loamy, mixed, mesicKintat298Typic Cryumbreptsfine-loamy, mixed, mesicKinton55Utitic Haplowralfsfine-loamy, mixed, mesicKinton56Typic Haplumbreptsfine-loamy, mixed, mesicMetkit23 & 23xXeric Haplohumults<				
Aschoff159SAndic HaplumbreptsIoamy-skeletal, mixed, mesicAstoria51Andic Haplumbreptsfine, mixed, mesicBlachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystochreptscoarse-silty, mixed, mesicGascade56Aquic Fragiumbreptsfine-loamy, mixed, mesicCruiser19Typic Cryumbreptsfine-loamy, mixedDigger66Dystric Eutrochreptsfine-loamy, mixedDisonville26Pachic Ultic Argiverollsfine-loamy, mixed, mesicGoollow259STypic Cryumbreptsfine-loamy, mixed, mesicGoollow259STypic Haplumbreptsfine-loamy, mixed, mesicHenline169SEntic Cryumbreptsfine-loamy, mixed, mesicHoneygrove1414xTypic Kaplumbreptsfine-loamy, mixed, mesicJory1212xXeric Haplohumultsclayey, mixed, mesicKinney157Andic Haplumbreptsfine-loamy, mixed, mesicKinno58Typic Cryumbreptsfine-loamy, mixed, mesicKitchis355Lithic Haplumbreptsfine-silty, mixed, mesicKitchis29STypic Fragiochreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine-silty, mixed, mesicKitchis2323xXeric Haplohumultsclayey, mixed, mesicMelby60Typic Fragiochreptsfine-loamy, mixed, mesicMarty11Andic Dystrochreptsfine-loamy, mixed, mesic <td>Apt</td> <td>50</td> <td>Typic Haplohumults</td> <td>clavev. mixed. mesic</td>	Apt	50	Typic Haplohumults	clavev. mixed. mesic
Astoria51Andic Haplumbreptsfine, mixed, mesicBlachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystrochreptsfine, mixed, mesicCascader56Aquic Fragiumbreptsfine, mixed, mesicCazaderp17Ultic Haploxeralfsfine, mixed, mesicCascader17Ultic Haploxeralfsfine, mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoola259Typic Cryumbreptsfine, mixed, mesicGoolaw259STypic Cryumbreptsloamy-skeletal, mixedHembre278Z7nTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicVintonis355Lithic Haplumbreptsfine-loamy, mixed, mesicKinton50Typic Fragiochreptsfine-loamy, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKititat298Typic Haplumbreptsfine-silty, mixed, mesicKiton50Typic Haplumbreptsfine-silty, mixed, mesicKiton50Typic Fragiochreptsfine-silty, mixed, mesicKitotat298Typic Haplumbreptsfine-loamy, mixed, mesicKitotat298Typic Haplumbreptsfine-loamy, mixed, mesicKitotat298Typic Haplumbrept	Aschoff	159S	Andic Haplumbrepts	loamy-skeletal. mixed. mesic
Blachly10Typic Haplumbreptsfine, mixed, mesicBull Run158Andic Dystrochreptscoarse-silty, mixed, mesicGascade56Aquic Fragiumbreptsfine-silty, mixed, mesicCazadero17Uttic Haploxeralfsfine, mixed, mesicCruiser'19Typic Cryumbreptsfine, mixed, mesicDixonville26Pachic Utic Argiverollsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-silty, mixed, mesicGoble258Andic Cryumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Haplumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKinchis355Lithic Haplumbreptsfine-loamy, mixed, mesicKinton58Typic Haplumbreptsfine-loamy, mixed, mesicKaitai23 & 23xXeric Haplohumuttsclayey, mixed, mesicMaty11Andic Dystrochreptsfine-loamy, mixed, mesicMaty10Typic Haplumbreptsfine-loamy, mixed, mesicMaty11Typic Haplubreptsfine-loamy, mixed, mesicMaty11Typic Haplubreptsfine-loamy, mixed, mesicNekia23 & 23x </td <td>Astoria</td> <td>51</td> <td>Andic Haplumbrepts</td> <td>fine. mixed. mesic</td>	Astoria	51	Andic Haplumbrepts	fine. mixed. mesic
Bull Run158Andic Dystrochreptscoarse-silty, mixed, mesicCascader56Aquic Fragiumbreptsfine-silty, mixed, mesicCascader17Uitic Haploxeralfsfine-loamy, mixed, mesicCruiser19Typic Cryumbreptsfine-loamy, mixed, mesicDigger66Dystric Eutrochreptsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-silty, mixed, mesicGoolow259STypic Cryumbreptsloamy-skeletal, mixedGoolow259STypic Haplumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplubreptsfine-loamy, mixed, mesicHoreb156Typic Cryumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplubreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsfine-silty, mixed, mesicKinchis35Uithic Haploxeralfsfine-silty, mixed, mesicKinchis23 & 23xYpic Fragiochreptsfine-loamy, mixed, mesicKinchis23 & 23xYpic Haplumbreptsfine-loamy, mixed, mesicKinchis23 & 23xYpic Haplumbreptsfine-loamy, mixed, mesicMaty11Andic Dystrochreptsfine-loamy, mixed, mesicKinchis23 & 23xYpic Haplumbreptsfine-loamy, mixed, mesic <td>Blachly</td> <td>10</td> <td>Typic Haplumbrepts</td> <td>fine. mixed. mesic</td>	Blachly	10	Typic Haplumbrepts	fine. mixed. mesic
Gascade56Aquic Fraglumbreptsfine-silty, mixed, mesicCazadero17Uttic Haploxeralfsfine-loamy, mixedDigger66Dystric Eutrochreptsfine-loamy, mixedDigger66Dystric Eutrochreptsfine-mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoble258Andic Fraglumbreptsfine-mixed, mesicGoble258Andic Fraglumbreptsfine-mixed, mesicGoble258Andic Fraglumbreptsfine-mixed, mesicGoble258Andic Fraglumbreptsfine-mixed, mesicGoble258Andic Fraglumbreptsfine-mixed, mesicGoble258Andic Fraglumbreptsfine-silty, mixed, mesicHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Karumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKinton55Uitic Haploxeralfsfine-loamy, mixed, mesicMarty11Typic Haplumbreptsfine-loamy, mixed, mesicMelby60Typic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-l	Bull Run	158	Andic Dystrochrepts	coarse-silty, mixed, mesic
Gazadero17Uitic Haploxeralfsfine, mixed, mesicGruiser19Typic Cryumbreptsfine-loamy, mixedDigger66Dystric Eutrochreptsfine, mixed, mesicDixonville26Pachic Ultic Argixerollsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoodlow2598Andic Fragiumbreptsfine-loamy, mixed, mesicGoodlow2598Typic Cryumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHendine1695Entic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKinchis355Lithic Haplumbreptsfine-loamy, mixed, mesicKinchis355Lithic Haplumbreptsfine-silty, mixed, mesicKinton58Typic Fragicchreptsfine-silty, mixed, mesicKikitat295Typic Haplumbreptsfine-silty, mixed, mesicKikitat295Typic Haplumbreptsfine-silty, mixed, mesicKikitat295Typic Haplumbreptsfine-silty, mixed, mesicKinton58Typic Haplumbreptsfine-silty, mixed, mesicKinton50Ultic Haploxeralfsfine-silty, mixed, mesicKintat295Typic Hapluhumbreptsfine-silty, mixed, mesicKintat208 20xTypic Haplohumultsclayey, mixed, mesicOlyic16 <td>Cascade</td> <td>56</td> <td>Aquic Fragiumbrepts</td> <td>fine-silty, mixed, mesic</td>	Cascade	56	Aquic Fragiumbrepts	fine-silty, mixed, mesic
Cruiser119Typic Cryumbreptsfine-loamy, mixedDigger66Dystric Eutrochreptsfine-loamy, mixed, mesicEad61Pachic Ultic Argixerollsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine, mixed, mesicGoodlow259STypic Haplumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsloamy-skeletal, mixedHenner169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Karumbreptsfine-loamy, mixed, mesicHullt15Typic Xerumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinton56Typic Fragicchreptsfine-loamy, mixed, mesicKikikita29STypic Haplumbreptsloamy-skeletal, mixed, mesicKikikita29STypic Haplumbreptsfine-silty, mixed, mesicKikikita29STypic Haplumbreptsfine-loamy, mixed, mesicKikikita29STypic Haplumbreptsfine-silty, mixed, mesicKinton56Upic Dystrochreptsfine-silty, mixed, mesicKinton60Typic Dystrochreptsfine-loamy, mixed, mesicMarty11Andic Dystrochreptsfine-loamy, mixed, mesicNekia	Cazadero	17	Ultic Haploxeralfs	fine. mixed. mesic
Digger66Dystric Eutrochreptsfine-loamy, mixed, mesicDixonville26Pachic Ultic Argixerollsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicFendal152Typic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-loamy, mixed, mesicGoble258Andic Fragiumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Cryumbreptsloamy-skeletal, mixedHennine169SEntic Cryumbreptsfine-loamy, mixed, mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Haplumbreptsfine-loamy, mixed, mesicHult15Typic Cryumbreptsclayey, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKinton58Lithic Haplumbreptsloamy-skeletal, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKinton58Typic Haplumbreptsloamy-skeletal, mixed, mesicKittat29STypic Haplumbreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicNekia23 & 23xxeric Haplohumultsclayey, mixed, mesicClyic16Typic Haplumbreptsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haplumbreptsfine-loamy, mixed, mesicSlickrock54 <t< td=""><td>Cruiser¹</td><td>19</td><td>Typic Cryumbrepts</td><td>fine-loamy, mixed</td></t<>	Cruiser ¹	19	Typic Cryumbrepts	fine-loamy, mixed
Dixonville26Pachic Ultic Argiverollsfine, mixed, mesicEad61Pachic Haplumbreptsfine, mixed, mesicFendall52Typic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-silty, mixed, mesicGoodlow2595Typic Cryumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Haplumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Xerumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplumbreptsclayey, mixed, mesicJory12 & 12xXeric Haplumbreptsloamy-skeletal, mixedKinchis35sLithic Haplumbreptsloamy-skeletal, mixed, mesicKinney157Andic Haplumbreptsloamy-skeletal, mixed, mesicKinton58Typic Fragiochreptsfine-loamy, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Haplumbreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicPeavine20 & 20xTypic Haplumbreptsfine-loamy, mixed, mesicSickrock54Pachic Alpubreptsfine-loamy, mixed, mesicPreacher57Typic Haplumbreptsfine-loamy, mixed, mesicSickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicUnnamed <td>Digger</td> <td>66</td> <td>Dystric Eutrochrepts</td> <td>fine-loamy, mixed, mesic</td>	Digger	66	Dystric Eutrochrepts	fine-loamy, mixed, mesic
Ead61Pachic Haplumbreptsfine, mixed, mesicFendal152Typic Haplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-silty, mixed, mesicGodlow259STypic Cryumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHennine169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Haplumbreptsfine-loamy, mixed, mesicHult15Typic Cryumbreptsclayey, mixed, mesicYory12 & 12xXeric Haplumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchis35SLithic Haplumbreptsfine-silty, mixed, mesicKinchis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinchis29STypic Haplumbreptsfine-loamy, mixed, mesicKickitat29STypic Haplumbreptsfine-loamy, mixed, mesicKatel23 & 23xXeric Haplohumultsfine-loamy, mixed, mesicClyic16Typic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplohumultsclayey, mixed, mesicSlickrock <t< td=""><td>Dixonville</td><td>26</td><td>Pachic Ultic Argizerolls</td><td>fine, mixed, mesic</td></t<>	Dixonville	26	Pachic Ultic Argizerolls	fine, mixed, mesic
Fendal152TypicHaplumbreptsfine, mixed, mesicGoble258Andic Fragiumbreptsfine-loamy, mixed, mesicGoble258Typic Haplumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Haplumbreptsloamy-skeletal, mixedHenline169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHulit15Typic Karumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultscoarse-loamy, mixedJory12 & 12xXeric Haplohumutscoarse-loamy, mixedKilchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKikikita29STypic Haplumbreptsloamy-skeletal, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumutsclayey, mixed, mesicSteiwer65Ultic Haploxerolisfine-loamy, mixed, mesicSteiwer65Ultic Haploxerolisfine-loamy, mixed, mesicSteiwer65Ultic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsfine-loamy, mixed, mesicUnnamed75SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75	Ead	61	Pachic Haplumbrents	fine, mixed, mesic
Goble258Andic Fragiumbreptsfine-silty, mixed, mesicGoodlow259STypic Cryumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHembre27 & 27nTypic Haplumbreptsloamy-skeletal, mixedHenline169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Xerumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicJory12 & 12xXeric Haplubreptsfine-loamy, mixed, mesicKichis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKinton58Typic Haplumbreptsfine-silty, mixed, mesicKickitat29STypic Haplumbreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicSlickrock54Pachic Haplohumultsfine-loamy, mixed, mesicSlickrock54Pachic Haplohumultsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicU	Fendall	52	Typic Haplumbrepts	fine, mixed, mesic
Goodlow259STypic Cryumbreptsloamy-skeletal, mixedHembre27 & 27nTypic Haplumbreptsfine-loamy, mixed, mesicHemline169SEntic Cryumbreptsloamy-skeletal, mixedHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed, mesicHoreb156Typic Haplumbreptsfine-loamy, mixed, mesicHullt15Typic Cryumbreptsclayey, mixed, mesicJory12 & 12xXeric Haplumbreptscoarse-loamy, mixed, mesicKilchis35SLithic Haplumbreptsloamy-skeletal, mixedKinchi35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchi29STypic Fragiochreptsfine-loamy, mixed, mesicKinton58Typic Cryumbreptsloamy-skeletal, mixed, mesicLaurelwood55Ultic Haplumbreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMeLby60Typic Haplumbreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplumbreptsfine-loamy, mixed, mesicNither24Dystric Xerochreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicSteiwer65Ultic Haplumbreptsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed23STypic Dystrochreptsloamy-skeletal, mixedUnnamed<	Goble	258	Andic Fragiumbrents	fine-silty, mixed, mesic
Hembre27 & 27 nTypic Haplumbreptsfine-loamy, mixed; mesicHenline169SEntic Cryumbreptsfine-loamy, mixed; mesicHoneygrove14 & 14xTypic Haplumbreptsfine-loamy, mixed; mesicHoreb156Typic Haplumbreptsfine-loamy, mixed; mesicHullt15Typic Kaplumbreptsfine-loamy, mixed; mesicHullt15Typic Kaplumbreptsfine-loamy, mixed; mesicJory,12 & 12xXeric Haplumbreptsclayey, mixed; mesicKichis35SLithic Haplumbreptsfine-silty, mixed; mesicKinchis35STypic Fragiochreptsfine-silty, mixed; mesicKinchis29STypic Haplumbreptsfine-silty, mixed; mesicKitckitat29STypic Haplumbreptsfine-silty, mixed; mesicMarty11Andic Dystrochreptsfine, mixed; mesicMarty11Andic Dystrochreptsfine, mixed; mesicNekia23 & 23xXeric Haplohumultsclayey, mixed; mesicOlyic16Typic Haplohumultsfine-loamy, mixed; mesicPeavine20 & 20xTypic Haplumbreptsfine-loamy, mixed, mesicStelwer65Ultic Haploxerollsfine-loamy, mixed, mesicStelwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnam	Goodlow	2595	Typic Cryumbrents	loamy-skeletal, mixed
Henline169SEntic CryumbreptsIoamy-skeletal, mixedHoneygrove14 & 14xTypic Haplohumultsclayey, mixed, mesicHoreb156Typic Haplohumultsclayey, mixed, mesicHult15Typic Xerumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKeell62Typic Cryumbreptsclayey, mixed, mesicKinchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchis35SLithic Haplumbreptsfine-loamy, mixed, mesicKinchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchis35SUtic Haplumbreptsfine-silty, mixed, mesicKinchis29STypic Haplumbreptsloamy-skeletal, mixed, mesicKitickitat29STypic Haplumbreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Dystrochreptsfine, mixed, mesicMelby60Typic Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haplohumultsfine-loamy, mixed, mesicSteiwer65Ultic Haploxeraltsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed70sLithic Dystrochreptsloamy-skeletal, mixedUnnamed70sLithic Dystrochreptsloamy-skeletal, mixedUnnamed70s<	Hembre	27 & 27n	Typic Haplumbrents	fine loamy, mixed, mesic
Honeygrove14 & 14xTypic HaplohumultsClayey, mixed, mesicHoreb156Typic HaplohumultsClayey, mixed, mesicHoreb156Typic Xerumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKilchis355Lithic Haplumbreptscoarse-loamy, mixed, mesicKinney157Andic Haplumbreptsfine-silty, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKlickitat29STypic Haplumbreptsloamy-skeletal, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Haplumbreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed70sLithic Dystrochreptsloamy-skeletal, mixedUnnamed70sLithic Cryumbreptsloamy-skeletal, mixedUnnamed70sLithic Cryumbreptsloamy-skeletal, mixedUnnamed755Lithic Haplumbreptsloamy-skeletal, mixedUnnamed755Lithic Cryumbr	Henline	1695	Entic Cryumbrents	loamy-skeletal, mixed
Horeb156Typic Haplumbreptsfine-loamy, mixed, mesicHullt15Typic Haplumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplumbreptsclayey, mixed, mesicKeel62Typic Cryumbreptscoarse-loamy, mixed, mesicKilchis355Lithic Haplumbreptsloamy-skeletal, mixed, mesicKinney157Andic Haplumbreptsloamy-skeletal, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKitckitat29STypic Haplumbreptsloamy-skeletal, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMelby60Typic Haplumbreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed70sLithic Dystrochreptsloamy-skeletal, mixedUnnamed70sLithic Dystrochreptsloamy-skeletal, mixedUnnamed70sLithic Cryumbreptsloamy-skeletal, mixedUnnamed70sLithic Haplumbreptsloamy-skeletal, mixedUnnamed755Lithi	Honevarove	14 & 14x	Typic Haplobumults	clavev, mixed, mesic
Hult15Typic Xerumbreptsfine-loamy, mixed, mesicJory12 & 12xXeric Haplohumultsclayey, mixed, mesicKeell62Typic Cryumbreptscoarse-loamy, mixedKilchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinney157Andic Haplumbreptsfine-silty, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKitckitat29STypic Haplumbreptsloamy-skeletal, mixed, mesicLaurelwood55Ultic Haploxeralfsfine, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMecUly111Typic Haplumbreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPeacher57Typic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicUnnamed20STypic Dystrochreptsfine-loamy, mixed, mesicUnnamed69STypic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLi	Horeb	156	Typic Haplumbrents	fine loamy, mixed, mesic
Jory12 & 12xXeric HaplohumultsClayey, mixed, mesicKeell62Typic Cryumbreptsclayey, mixed, mesicKilchis35SLithic Haplumbreptsloamy-skeletal, mixed, mesicKinchi58Typic Fragiochreptsfine-silty, mixed, mesicKiickitat29STypic Haplumbreptsloamy-skeletal, mixed, mesicKarty11Andic Dystrochreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine-loamy, mixed, mesicMelby60Typic Haplumbreptsfine, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplohumultsfine-loamy, mixed, mesicSlickrock54Pachic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed75SLithic Haplumbreptsloamy-skeletal, mixedUnnamed25	Hulit	15	Typic Xerumbrents	fine-loamy, mixed, mesic
Keell62Typic Reprint ProductionClarge (mark), markedKilchis355Lithic Haplumbreptscoarse-loamy, mixedKinney157Andic Haplumbreptsfine-loamy, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKlickitat295Typic Haplumbreptsloamy-skeletal, mixed, mesicKarty11Andic Dystrochreptsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine-silty, mixed, mesicMcCully111Typic Haplohumultsfine, mixed, mesicMcCully111Typic Haplohumultsclayey, mixed, mesicMelby60Typic Haplohumultsfine-loamy, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Tryumbreptsloamy-skeletal, mixedUnnamed755Lithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnnamed255Typic Cryorthodcoarse-loamy, mixed, orsteinUnnamed256<	Jory ,	12 & 12x	Xeric Haplohumults	clavev, mixed, mesic
Kilchis35SLithic HaplumbreptsIoamy-skeletal, mixedKinchi157Andic HaplumbreptsIoamy-skeletal, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKilckitat29STypic HaplumbreptsIoamy-skeletal, mixed, mesicLaurelwood55Ultic Haploxeralfsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine-loamy, mixed, mesicMcCully111Typic Haplumbreptsfine, mixed, mesicMelby60Typic Dystrochreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey, mixed, mesicStickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Dystrochreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnhamed25Typic Cryorthodcoarse-loamy, mixed, mesicWetstone25 <td>Keel</td> <td>62</td> <td>Typic Cryumbrents</td> <td>coarse loamy, mixed</td>	Keel	62	Typic Cryumbrents	coarse loamy, mixed
Kinney157Andic Haplumbreptsfine-loamy, mixed, mesicKinton58Typic Fragiochreptsfine-silty, mixed, mesicKinton58Typic Haplumbreptsloamy-skeletal, mixed, mesicKlickitat29STypic Haplumbreptsloamy-skeletal, mixed, mesicLaurelwood55Ultic Haploxeralfsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine, mixed, mesicMcCully111Typic Haplumbreptsfine, mixed, mesicMeLby60Typic Dystrochreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplumbreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Dystrochreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnnamed255Typic Cryorthodcoarse-loamy, mixed, mesicWetstone25Typic Cryorthodcoarse-loamy, mixed, mesic	Kilchis	355	Lithic Hanlumbrents	loamy-skeletal, mixed, mesic
Kinton 58 Typic Fragiochrepts Kinton 58 Typic Fragiochrepts Kinton 58 Typic Fragiochrepts Kinton 58 Typic Fragiochrepts Kinton 58 Typic Fragiochrepts Laurelwood 55 Ultic Haplumbrepts Marty 11 Andic Dystrochrepts Melby 60 Typic Dystrochrepts Nekia 23 & 23x Xeric Haplohumults Glyic 16 Typic Haplohumults Peavine 20 & 20x Typic Haplohumults Stickrock 54 Pachic Haplumbrepts Stickrock 54 Pachic Haplumbrepts Steiwer 65 Ultic Haploxerolls Unnamed 21 Typic Dystrochrepts Unnamed 70S Lithic Dystrochrepts Unnamed 175S Lithic Gryumbrepts Wetstone 25 Typic Cryorthod Willakenzie 67 Ultic Haploxerolfs Wetstone 25 Typic Cryorthod Willakenzie 67 Ultic Haploxerolfs Nice Compt State Fragiochrepts Fine-Silty, mixed, mesic Ioamy-skeletal, mixed, mesic Ioamy-skeletal, mixed, mesic Ioamy-skeletal, mixed, mesic Ioamy-skeletal, mixed, mesic State fragiochrepts State fragiochrepts Wetstone 25 Typic Cryorthod Willakenzie 67 Ultic Haploxerolfs Fine-Silty, mixed, mesic Tine-Ioamy, mixed, mesic Clayey, mixed, mesic Clayey-skeletal, mixed, mesic Clayey-skeletal, mixed, mesic State fragiochrepts State fragiochrepts Stat	Kinnev	157	Andic Haplumbrents	fine loamy, mixed, masic
Nickitat29STypic HagronheptsIne-Sifty, miked, mesicLaurelwood55Uitic Haploxeralfsfine-sifty, miked, mesicMarty11Andic Dystrochreptsfine-sifty, miked, mesicMarty11Andic Dystrochreptsfine-noamy, miked, mesicMcCully111Typic Haplombreptsfine, miked, mesicMelby60Typic Dystrochreptsfine, miked, mesicNekia23 & 23xXeric Haplohumultsclayey, miked, mesicOlyic16Typic Haplohumultsfine-loamy, miked, mesicPeavine20 & 20xTypic Haplohumultsclayey, miked, mesicPreacher57Typic Haplohumultsclayey, miked, mesicSlickrock54Pachic Haplumbreptsfine-loamy, miked, mesicSteiwer65Ultic Haploxerollsfine-loamy, miked, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mikedUnnamed70SLithic Dystrochreptsloamy-skeletal, mikedUnnamed70SLithic Cryumbreptsloamy-skeletal, mikedUnnamed175SLithic Haplumbreptsloamy-skeletal, mikedUnnamed175SLithic Haplumbreptsloamy-skeletal, mikedUnnamed256Xeric Fragiochreptsloamy-skeletal, miked, mesicWhetstone25Typic Cryorthodcoarse-loamy, miked, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, miked, mesic	Kinton	58	Typic Fragiochrepts	fine silty mixed mesic
Laurelwood55Ultic Haploxeralfsfine-silty, mixed, mesicMarty11Andic Dystrochreptsfine-silty, mixed, mesicMarty11Typic Haplombreptsfine-loamy, mixed, mesicMcCully111Typic Dystrochreptsfine, mixed, mesicMelby60Typic Dystrochreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsclayey, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplumbreptsfine-loamy, mixed, mesicRitner24Dystric Xerochreptsclayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed53STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Klickitat	295	Typic Haplumbrents	loamy-skeletal. mixed. mesic
Marty11Andic Dystrochreptsfine-loary, mixed, mesicMcCully111Typic Haplumbreptsfine, mixed, mesicMelby60Typic Dystrochreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsfine-loary, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loary, mixed, mesicSteiwer65Ultic Haploxerollsfine-loary, mixed, mesicUnnamed21Typic Dystrochreptsfine-loary, mixed, mesicUnnamed53STypic Dystrochreptsloary-skeletal, mixedUnnamed70sLithic Dystrochreptsloary-skeletal, mixedUnnamed75sLithic Cryumbreptsloary-skeletal, mixedUnnamed256Xeric Fragiochreptsloary-skeletal, mixedUnnamed256Typic Cryorthodcoarse-loary, mixed, mesicWhetstone25Typic Cryorthodcoarse-loary, mixed, mesic	Laurelwood	55	litic Haploxeralfs	fine-silty, mixed, mesic
McCully111Typic Haplumbreptsfine Todany, mixed, mesicMelby60Typic Dystrochreptsfine, mixed, mesicNekia23 & 23xXeric Haplohumultsclayey, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey, mixed, mesicSlickrock54Dystric Xerochreptsclayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed175SLithic Cryumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Marty	11	Andic Dystrochrepts	fine loamy, mixed, mesic
Melby60Typic haptemorepesfine, mixed, mesicNekia23 & 23xXeric Haptohumultsfine, mixed, mesicOlyic16Typic Haptohumultsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haptohumultsclayey, mixed, mesicPreacher57Typic Haptohumutsfine-loamy, mixed, mesicRitner24Dystric Xerochreptsfine-loamy, mixed, mesicSlickrock54Pachic Haptumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haptoxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Haptumbreptsloamy-skeletal, mixedUnnamed69STypic Haptumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed175SLithic Cryumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	McCully		Typic Haptumbrents	fine mixed mesic
Nekia23 & 23xXeric HaplohumultsClayey, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplohumultsclayey, mixed, mesicRitner24Dystric Xerochreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixedUnnamed256Typic Cryorthodcoarse-loamy, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesic	Melby	60	Typic Dystrochrents	fine, mixed, mesic
Notice16Typic HaplohumiltsClayey, mixed, mesicOlyic16Typic Haplohumultsfine-loamy, mixed, mesicPeavine20 & 20xTypic Haplohumultsclayey, mixed, mesicPreacher57Typic Haplumbreptsfine-loamy, mixed, mesicRitner24Dystric Xerochreptsclayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Nekia	23 8 23x	Xeric Hantohumults	Clavey mixed mesic
Peavine20 & 20xTypic HapfohumultsTime-foamy, mixed, mesicPreacher57Typic Hapfohumultsclayey, mixed, mesicRitner24Dystric Xerochreptsfine-loamy, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Olvic	16	Typic Haplohumults	fine-loamy mixed mesic
Preacher57Typic Haplumbreptsfine-loamy, mixed, mesicRitner24Dystric Xerochreptsclayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Peavine	20 & 20x	Typic Hapiohumults	clavey mixed mesic
Ritner24Dystric XerochreptsClayey-skeletal, mixed, mesicSlickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed75SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Preacher	57	Typic Haplumbrents	fine-loamy mixed, mesic
Slickrock54Pachic Haplumbreptsfine-loamy, mixed, mesicSteiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Gryumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsloamy-skeletal, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Ritner	24	Dystric Yerochrents	Clavev-skeletal mived mesic
Steiwer65Ultic Haploxerollsfine-loamy, mixed, mesicUnnamed21Typic Dystrochreptsfine-loamy, mixed, mesicUnnamed53STypic Dystrochreptsloamy-skeletal, mixedUnnamed69STypic Haplumbreptsloamy-skeletal, mixedUnnamed70SLithic Dystrochreptsloamy-skeletal, mixedUnnamed70SLithic Cryumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed175SLithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Slickrock	54	Pachic Hanlumbrents	fine loamy mixed mesic
Unnamed21Typic Dystrochreptsfine-Ioamy, mixed, mesicUnnamed53STypic DystrochreptsIoamy-skeletal, mixedUnnamed69STypic HaplumbreptsIoamy-skeletal, mixedUnnamed70SLithic DystrochreptsIoamy-skeletal, mixedUnnamed70SLithic CryumbreptsIoamy-skeletal, mixedUnnamed175SLithic CryumbreptsIoamy-skeletal, mixedUnnamed256Xeric FragiochreptsIoamy-skeletal, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Steiwer	65	Hitic Haploverolle	fine-loamy mixed mesic
Unnamed53STypic DystrochreptsTime-Toamy, mixed, mesicUnnamed53STypic DystrochreptsIoamy-skeletal, mixedUnnamed69STypic HaplumbreptsIoamy-skeletal, mixedUnnamed70SLithic DystrochreptsIoamy-skeletal, mixedUnnamed75SLithic CryumbreptsIoamy-skeletal, mixedUnnamed175SLithic HaplumbreptsIoamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-Ioamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	linnamed	21	Typic Dystrochrents	fine-loamy mixed, mesic
Unnamed69STypic DystrochreptsToamy-skeretar, mixedUnnamed69STypic HaprumbreptsIoamy-skeretar, mixed, mesicUnnamed70SLithic DystrochreptsIoamy-skeretar, mixedUnnamed75SLithic CryumbreptsIoamy-skeretar, mixedUnnamed175SLithic HaprumbreptsIoamy-skeretar, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-roamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	535	Typic Dyscrochrepts	loamy chalatal mixed
Unnamed705Lithic DystrochreptsIoamy-skeletal, mixed, mesicUnnamed705Lithic CryumbreptsIoamy-skeletal, mixedUnnamed755Lithic CryumbreptsIoamy-skeletal, mixedUnnamed1755Lithic HaplumbreptsIoamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-Ioamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	605	Typic Haplumbrents	loamy-skeletal mixed macic
Unnamed755Lithic DyscretenreptsToamy-skeretar, mixedUnnamed755Lithic Cryumbreptsloamy-skeretar, mixedUnnamed1755Lithic Haplumbreptsloamy-skeretar, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	70%	lithic Dystrochrapts	loamy-skeletal mixed, mesic
Unnamed1755Lithic GrydmbreptsIoamy-skeletal, mixedUnnamed1755Lithic Haplumbreptsloamy-skeletal, mixedUnnamed256Xeric Fragiochreptsfine-silty, mixed, mesicWhetstone25Typic Cryorthodcoarse-loamy, mixed, orsteinWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	765	Lithic Cryumbrante	loamy-skeletal, mixed
Unnamed256Xeric FragiochreptsToamy=skeletal, mixedWhetstone25Typic Cryorthodfine-silty, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	1759	Lithic Haplumbrents	loamy-skeletal, mixed
Whetstone25Typic Cryorthodcoarse-loamy, mixed, mesicWillakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Unnamed	256	Yanic Fragiochronts	fing cilty mixed madia
Willakenzie67Ultic Haploxeralfsfine-loamy, mixed, mesic	Whatstone	250	Typic Cryorthod	CORRECTION MIXED, MESIC
with the total and	Willakonzio	67	Hitic Hanlovenalfo	final loamy mixed masic
Witzel 365 Lithic Illtic Hanloverolle loams-ekeletal mixed medie	Wityal	365	lithic Illtic Hanloverolle	loamy-skoletal mixed mesic

1/Proposed name

VII. Interpretations

Interpretative Groups for Selected Objectives

Interpretive groups comprise soils that are similar with respect to a set of properties or qualities, or degree of limitations, that are important for some specific objective, usually some aspect of use and management. Properties not pertinent to the objective of the grouping may deviate widely among the soils in any particular group.

Interpretive groupings are useful for the stated objective. This can be misleading if used for a different objective. It is advisable to consider the differences that exist between soils in each group as well as the similarities that are the basis for the groups.

Stability of the Disturbed Regolith

Stability of the disturbed regolith is comparable to the United States Forest Service's Cutbank Stability rating (1, 2). There is a distinction between the Forest Service's stability classes and the stability classes for this report. The Forest Service defines each of the five stability classes as to the number of cutbank failures per mile for a geological unit. For this survey, three relative stability classes were made by comparing the frequency of cutbank failures for each soil phase. The stability classes used in this report are somewhat less quantitative than those of the Forest Service although they were derived in essentially the same manner. That is, the soils were rated by soils specialists who based their opinions on recorded and general field observation, as to the tendency of the soils to slump or slide after being disturbed by roads. The soils specialists also correlated soil and bedrock characteristics (such as soil texture, degree of rock weathering, and degree of rock fracturing) with stability of the disturbed regolith.

The following guide can be used to correlate the two systems:

Forest Service Cutbank Stability classes	Segment III Disturbed Regolith Stability classes
Very Stable Stable	Stable
Moderately Stable	Moderately Stable
Unstable Verv Unstable	Unstable

Table 4 gives the stability ratings for each slope phase of each upland soil type.
TABLE 4

Disturbed Regolith Relative Stability Classes

Soil Series	0-10% . /	10-35%	35-60%	60-90%+ v
	slope V	slope	slope	slope Y
Apt	Stable	Mod. Stable	Unstable	Unstable
Aschoff	Stable	Stable	Stable	Mod. Stable
Astoria	Stable	Mod. Stable	Unstable	
Blachly	Stable	Stable	Mod. Stable	Unstable
Bull Run	Stable	Stable	Mod. Stable	
Cascade	Stable	Stable	Mod. Stable	
Cazadero	Stable	Stable		
Cruiser	Stable	Stable	Stable	Mo. Stable
Digger	Stable	Mod. Stable	Unstable	Unstable
Dixonville	Stable	Stable	Mod. Stable	Unstable
Fad	Stable	Mod. Stable	Unstable	
Goble	Stable	Stable	Mod. Stable	
Goodlow	Stable	Stable	Stable	Mod. Stable
Fendall	Stable	Mod. Stable	Unstable	Unstable
Hembre (basalt)	Stable	Stable	Stable	Mod. Stable
(bedrock)	OUUDIC	000010		
Hembre (diorite)	Stable	Stable	Stable	Mod. Stable
(bedrock)	000010	004510	000010	
Henline	Stable	Stable	Stable	Mod. Stable
Honeygrove	Stable	Stable	Mod. Stable	Unstable
Honeygrove (sedi-	Stable	Mod. Stable	Unstable	Unstable
mentary bedrock)	otable			
Horeb	Stable	Stable	Mod. Stable	Mod. Stable
	Stable	Stable	Stable	Mod. Stable
Tory	Stable	Stable	Mod. Stable	Unstable
Jory (sedimentary	Stable	Mod. Stable	Unstable	Unstable
bedrock)	OLGDIC	MAR OCANTO		
Keel	Ctable	Stable	Mod. Stahle	Unstable
Kilchie	Stable	Stable	Stahle	Mod. Stable
Kippey	Stable	Stable ⁶	Mod. Stable	Mod. Stable
Kinton	Stable	Stable	Mod. Stable	
	Stable	Stable	Stable	Mod. Stable
KIICKILGL Loumolwood	Stable	Stable	Mod. Stable	
Manterwood	Stable	Stable	Stable	Mod. Stable
Marty	Stable	Stable	Mod. Stable	linstable
MCCUITY	Stable	Nod Stable	inctable	linetable
Melby	Stable	Stable	Mod. Stable	linetable
Nekia (codimentery	Stable	Ned Ctaple	instable	linetable
bedrock)	Stable	MOG. STADIE	OIISCADIE	UNSCODIE
Olyic	Stable	Stable	Mod. Stable	Unstable
Peavine	Stable	Stable	Mod. Stable	Unstable
Peavine (sedimentary	Stable	Mod. Stable	Unstable	Unstable
bedrock)			·	
Preacher	Stable	Mod. Stable	Unstable	Unstable
Slickrock	Stable	Stable	Mod. Stable	Mod. Stable
Steiwer	Stable	Stable	Stable	Mod. Stable

Soil Series	0-10%	10-35%	35-60%	60-99%+
	slope	slope	slope	slope
Whetstone	Stable	Stable	Stable	Mod. Stable
Willakenzie	Stable	Stable	Mod. Stable	Unstable
Witzel	Stable	Stable	Stable	Mod. Stable
21	Stable	Mod. Stable	Unstable	Unstable
53S			Unstable	Unstable
69S	Stable	Stable	Mod. Stable	Unstable
70S		and the second	Unstable	Unstable
755	Stable	Stable	Stable	Mod. Stable
1755	Stable	Stable	Stable	Mod. Stable
256	Stable	Stable	Mod. Stable	

Soil Properties, Qualities, and Interpretations

Table 5 is a numerical listing of the soils with a summary of certain properties and qualities considered important for the use and management of the soils. Most of the properties and qualities are given as relative ratings such as good, fair, and poor; or slow, medium, and rapid. These ratings represent ranges with quantitative limits for the soil properties, such as infiltration rate and available water holding capacity; but are only qualitative relative ratings for the soil qualities such as drainage class and workability for tilth. The qualities are inferred from observable or measurable properties. Most of the ratings for soil properties appearing in Table 6, however, are only estimations. They have been arrived at by comparing the observable properties of the soils in the survey area with the properties of selected bench mark soils for which such things as infiltration rate and water holding capacity have been determined. The ratings are described in the following paragraphs.

Drainage

Four classes of drainage were used. Drainage classes are influenced by run-off, permeability, and internal soil drainage. Definitions of the four classes are as follows:

Somewhat poor: Water is removed from the soil slowly enough to keep it wet for significant periods but not all the time.

Moderately good: Water is removed from the soil somewhat slowly, so that the profile is wet for a small but significant part of the time.

Good: Water is removed from the soil readily but not rapidly.

Excessive: Water is removed from the soil very rapidly.

<u>Run-off</u>

Five classes of run-off are recognized on the basis of the relative rate at which water is removed from the soil by flow over the surface. Run-off rates are dependent upon soil slope, texture, infiltration rate, plant cover, and intensity of rainfall. Definitions of the five classes are as follows:

Very slow: Surface water flows away very slowly and free water either covers the surface for long periods of time or enters almost immediately into the soil. Most of the water either passes through the soil or evaporates from the surface. Soils with very slow run-off rates are usually nearly level to slightly concave or have rapid infiltration rates.

Slow: Surface water flows away so slowly that free water covers the surface for a significant period of time or enters quite rapidly into the soil. Much of the water either passes through the soil or evaporates from the surface. Soils with slow rates of surface run-off are usually nearly level or have moderate to rapid infiltration rates. Medium: Surface water flows away at such a rate that a moderate amount of the water falling on the surface enters the soil profile and free water covers the soil surface only for short periods. Sufficient water enters the profile to saturate it.

Rapid: Surface water flows rapidly over the soil surface and a small amount enters the soil and moves through the profile. Soils with rapid rates of run-off are usually moderately steep or have moderate to slow infiltration rates.

Very rapid: Surface water flows over the soil surface and only a very small amount enters and moves through the soil. Surface water runs off as fast as it falls on the soil. Soils with very rapid rates of run-off are either very steep or have slow to very slow infiltration rates or both.

Infiltration

The ratings for infiltration indicate the comparative rates at which water will enter the soil surface when the profile is unsaturated. In general, infiltration is a function of soil texture, soil structure, compaction, slope and vegetation cover. Under saturated conditions the infiltration rate is limited by the rate that water moves through the least permeable layer of soil. Infiltration ratings are very slow, slow, moderately slow, moderate, moderately rapid and rapid. Quantitative limits for the classes are essentially the same as those for the permeability classes which are discussed below.

Permeability

Soil permeability is that quality of soil that enables it to transmit water or air. It is measured in terms of rate of movement of water through a unit cross-section of saturated soil per unit of time. Six classes of permeability are recognized. Permeability for the whole soil is determined by the least permeable layer.

<u>Rate in inches per hour</u>
Less than 0.06
0.06 to 0.20
0.20 to 0.63
0.63 to 2.00
2.00 to 6.30
6.30 to 10.00 +

Available Water Holding Capacity (A.W.H.C.)

Available water holding capacity refers to the total quantity of water available for plant growth that is stored in the effective root zone or the upper 60 inches of the soil profile at field capacity. It is largely dependent upon the effective depth, texture, structure, porosity, organic matter content, and coarse fragment content. In general, profiles that contain 50 percent coarse fragments by volume will only have one-half the moisture holding capacity of a comparable soil that is free of coarse fragments. The following four classes are recognized.

Descr	<u>iptive</u>	term
-------	---------------	------

Available water in inches

High	9 or	more
Moderate	6 to	9
Low	3 to	6
Very low	Less	than 3

Effective Root Zone

The effective root zone consists of either the upper 60 inches of soil or the usable soil above a layer that restricts root growth and water movement that is less than 60 inches deep. It is the part of the soil that is favorable for root growth because it retains moisture, is well aerated and does not mechanically restrict root development. The effective root zone may be thinner than the soil profile and should not be confused with depth of the soil profile as used in the soil series descriptions. A soil profile can be described as being very deep and having an effective root zone of 24 inches because of a dense clay pan occurring at that depth. A layer of gravel may restrict root growth because of lack of available water. Some of the common kinds of limiting layers that occur in soil profiles are consolidated bedrock, fractured bedrock, very slowly permeable clay layers, rapidly permeable sand and gravel layers, and hard pans. Effective root zone is expressed in inches in Table 12. Recognized class names for segments of the depth range are as follows:

Descriptive term	Depth in inches
Shallow	0 to 20
Moderately deep	20 to 40
Deep	40 to 60

Shrink-Swell Potential

The ratings for shrink-swell potential indicate in relative terms the soil volume change to be expected with changes in moisture content of the soil. Ratings are low, medium, and high. In general, soils that contain large amounts of sand and silt and small amounts of plastic clay have a low shrinkswell potential. Shrink-swell potential is an important consideration when using the soil for construction sites and as fill material (5). A single rating is given for the whole soil.

Hydrologic Groups

Soils are placed in hydrologic groups according to their potential to yield run-off. This information is used in watershed planning. Various hydrologic groups range from (A), that shed almost no precipitation to (D), that shed nearly all the precipitation.

The four hydrologic groups are defined as follows:

A: Very deep, coarse and moderately coarse textured soils that transmit water through their profile and substratum at a high rate. These soils have the lowest run-off potential.

B: Medium to fine-textured, moderately deep to very deep soils having a moderate rate of water transmission through the profile.

C: Fine-textured, deep and very deep soils that have a slow rate of water transmission through the subsoil.

D: Fine-textured, deep soils, and impervious material exposed or covered by a thin mantle of soil. These soils have the highest run-off potential.

Pha	S e	Soil Series	Slope	Drainage	Bunoff	Infiltration
Sym	001	or Land Type	Percent	Drainage		THEFT FERGERAL
10	W	Blachly	10-35	Good	Slow	Moderate
	X		35-60	Good	SLOW	Moderate
11	V	Martv	0-10	Good	Slow	Mod. Rapid
	W		10-35	Good	Slow	Mod. Rapid
	X		35-60	Good	Slow	Mod. Rapid
	Ŷ		60-90+	Good	Slow	Mod. Rapid
12	v	Jorv	0-10	Good	Slow	Moderate
	W		10-35	Good	Medium	Moderate
	X		35-60	Good	Rapid	Moderate
12x	v	Jory (sedimentary	0-10	Mod. Good	Medium	Moderate
	W	bedrock)	10-35	Mod. Good	Medium	Moderate
14	v	Honevarove	0-10	Good	Slow	Moderate
- •	Ŵ		10-35	Good	Slow	Moderate
	x		35-60	Good	Rapid	Moderate
1 4 x	W	Honevarove (sedi-	10-35	Mod. Good	Slow	Moderate
	X	mentary bedrock)	35-60	Mod. Good	Medium	Moderate
	Ŷ		60-90+	Mod. Good	Rapid	Moderate
15	x	Hullt	35-60	Good	Medium	Moderate
	Ŷ		60-90+	Good	Rapid	Moderate
16	W	Olvic	10-35	Good	Slow	Mod. Rapid
-0	x		35-60	Good	Slow	Mod. Rapid
	Ŷ		60-90+	Good	Medium	Mod. Rapid
17	v	Cazadero	0-10	Good	Slow	Mod. Rapid
	W		10-35	Good	Medium	Mod. Rapid
19	v	Crui ser	0-10	Good	Slow	Mod. Rapid
	Ŵ		10-35	Good	Slow	Mod. Rapid
	x		35-60	Good	Medium	Mod. Rapid
20	v	Peavine	0-10	Good	Slow	Moderate
	Ŵ		10-35	Good	Medium	Moderate
	x		35-60	Good	Rapid	Moderate
	Ŷ		60-90+	Good	Very Rapid	Moderate
20x	W	Peavine (sedi-	10-35	Good	Medium	Moderate
	x	mentary bedrock	35-60	Good	Rapid	Moderate
21	W	Unnamed	10-35	Good	Slow	Moderate
	X		35-60	Good	Medium	Moderate
	Ŷ		60-90+	Good	Rapid	Moderate
23	v	Nekia (basalt	0-10	Good	Slow	Moderate
	W	bedrock)	10-35	Good	Medium	Moderate
	X		35-60	Good	Rapid	Moderate
23x	W	Nekia (sedimentary	10-35	Good	Medium	Moderate
	X	bedrock)	35-60	Good	Rapid	Moderate
25	W	Whetstone	10-35	Good	Slow	Mod. Rapid
	X		35-60	Good	Medium	Mod. Rapid
	Ŷ		60-90+	Good	Rapid	Mod. Rapid
26	v	Dixonville	0-10	Good	SLOW	Moderate
-0	Ŵ		10-35	Good	Medium	Moderate
	Х		35-60	Good	Rapid	Moderate
	Y		60-90+	Good	Very Rapid	Moderate

TABLE 5Interpretive Ratings for Selected Soil Properties and Qualities

-40-

Permeability	A.W.H.C.	Effective Root Zone (inches)	Shrink- swell Potential	Erosion Hazard (Bare Soil Surface)	Hydrologic Group
Moderate	High	40-60+	Medium	Medium	C
Moderate	High	40-60+	Medium	High	C
Moderate	Mod. to High	40-60	Low	Low	B
Moderate	Mod. to High	40-60	Low	Low	B
Moderate	Mod. to High	40-60	Low	Medium	В
Moderate	Mod. to High	40-60	Low	High	В
Mod. Slow	High	40-60+	Medium	Low	C
Mod. Slow	High	40-60+	Medium	Medium	C
Mod . Slow	High	40-60+	Medium	High	C
Mod. Slow	High	40-60+	Medium	Low	C
Mod. Slow	High	40-60+	Medium	Medium	C
Mod. Slow	High	40-60+	Medium	Low	C
Mod. Slow	High	40 - 60+	Medium	Low	C
Mod. Slow	High	40-60+	Medium	Medium	C ·
Mod. Slow	High	40-60+	Medium	Low	С
Mod. Slow	High	40-60+	Medium	Medium	C
Mod. Slow	High	40-60+	Medium	High	C
Moderate	Moderate	40-60+	Low	Medium	B
Moderate	Moderate	40-60+	Low	High	B
Moderate	High	40-60+	Low	High	C
Moderate	High	40-60+	Low	High	C
Moderate	High	40-60+	Low	High	C
Moderate	High	40-60+	Low	Low	B
Moderate	High	40-60+	Low	Medium	. B
Moderate	Moderate	40-60	Low	Low	B
Moderate	Moderate	40-60	Low	Low	B
Moderate	Moderate	40-60	Low	Medium	B
Mod. Slow	Moderate	20-40	Medium	Low	C
Mod. Slow	Moderate	20-40	Medium	Medium	C
Mod. Slow	Moderate	20-40	Medium	High	C
Mod. Slow	Moderate	20-40	Medium	High	C
Mod. Slow	Moderate	20-40	Medium	Medium	C
Mod. Slow	Moderate	20-40	Medium	High	C
Moderate	Moderate	20-40	Low	Medium	B
Moderate	Moderate	20-40	Low	Medium	В
Moderate	Moderate	20-40	Low	High	B
Mod . Slow	Moderate	20-40	Medium	Low	В
Mod . Slow	Moderate	20-40	Medium	Medium	C
-Mod Slow	Moderate	20-40	Medium	High	C
Mod. Slow	Moderate	20-40	Medium	Medium	C
Mod. Slow	Moderate	20-40	Medium	High	C
Moderate	Moderate	20-40	Low	Low	C
Moderate	Moderate	20-40	Low	Medium	C
Moderate	Moderate	20-40	Low	Medium	C .
Mod. Slow	Moderate	20-40	Medium	Low	C
Mod. Slow	Moderate	20-40	Medium	Medium	C
Mod. Slow	Moderate	20-40	Medium	High	C
Mod. Slow	Moderate	20-40	Medium	High	С

TABLE 5 con't

Phase	Soil Series	Slope			
Symbol	or Land Type	Percent	Drainage	Run-off	Infiltration
27 V	Hembre (basalt	0-10	Good	SLOW	Mod. Rapid
W	bedrock)	1 0-3 5	Good	Slow	Mod. Rapid
Х		35 -6 0	Good	Medium	Mod. Rapid
Y		60-90+	Good	Ra pid	Mod. Rapid
27n W	Hembre (diorite	10-35	Good	Slow	Mod. Rapid
X	bedrock)	35-60	Good	Medium	Mod. Rapid
Y		60-90+	Good	Rapid	Mod. Rapid
29 W	K ickitat	10-35	Good	SLOW	Mod. Rapid
Х		35-60	Good	Medium	Mod. Rapid
Y		60-90+	Good	Rapid	Mod. Rapid
355 W	Kilchis	10-35	Excessive	Medium	Mod. Rapid
X		35-60	Excessive	Rapid	Mod. Rapid
Ŷ		60-90+	Excessi ve	Very Rapid	Mod. Rapid
365 V	Witzel	0-10	Good	Medium	Moderate
W		10-35	Good	Rapid	Moderate
X		35-60	Good	Very Rapid	Moderate
Ŷ		60-90+	Good	Very Rapid	Moderate
50 W	Apt	10-35	Good	Slow	Moderate
X		35-60	Good	Rapid	Moderate
51 W	Astoria	10-35	Good	Slow	Moderate
Y		35-60	Good	Medium	Moderate
52 W	Fendall	10-35	Good	Medium	Moderate
22 II Y	1 CHART 1	35-60	Good	Rapid	Moderate
525 V	Unnamed	K0-90+	Excessive	Rapid	Mod. Rapid
500 I	Slickrock	35-60	Good	Medium	Moderate
55 V	Laurelwood	0-10	Good	Slow	Moderate
U W	Lagie 1wood	10-35	Good	Medium	Moderate
Y Y		35-60	Good	Rapid	Moderate
54 V	Cascade		Smult Poor	Slow	Moderate
	Cascade	10-35	Smuht Poor	Medium	Moderate
Y Y		35-60	Smuht Poor	Ranid	Moderate
57 W	Dreacher	10-35	Good	Slow	Moderate
JI W	Flegenei	35-60	Good	Medium	Moderate
v v		<u> </u>	Good	Rapid	Moderate
5.Q V	Kinton	0-10	Mode Good	Slow	Moderate
JU V W	KINCON	10-25	Mode Good	Medium	Moderate
v v		35-60	Mode Good	Ranid	Moderate
40 V	Malby	0-10	Good	Slow	Moderate
00 V W	MEIDy	10-25	Good	Medium	Moderate
W V		25-20	Good	Ranid	Moderate
× v		60-00+	Good	Very Ranid	Moderate
	Fad	10-25	Good	Madium	Moderate
OT M	Edu	25-20	Good	Panid	Moderate
۸ ۲. ۲.	Keel	10-25	Good	Slow	Mod. Ranid
04 W V	NGAT .	25-20	Good	Medium	Mod. Ranid
R A	Rockland	35+	Excessive	Very Rapid	Slow to Rapid
	*** *** * *****			· · · · · · · · · · · · · · · ·	• •

Permeability	A.W.H.C.	Effective Root Zone (inches)	Shrink- swell Potential	Erosion Hazard (Bare Soil Surface)	Hydrologic Group
Moderate	High	40-60	Low	Low	B
Moderate	High	40-60	Low	Low	B
Moderate	High	40-60	Low	Medium	B
Moderate	High	40-60	Low	High	В
Mod. Rapid	High	40-60	Low	Low	B
Mod. Rapid	High	40-60	Low	Medium	В
Mod. Rapid	High	40-60	Low	High	B
Mod. Rapid	Moderate	20-40	Low	Low	B
Mod. Rapid	Moderate	20-40	Low	Low	B
Mod. Rapid	Moderate	20-40	Low	High	В
Mod. Rapid	Very Low	10-20	Low	Low	D
Mod. Rapid	Very Low	10-20	Low	Low	D
Mod. Rapid	Very Low	10-20	Low	High	D
Moderate	Very Low	10-20	Low	Low	D
Moderate	Very Low	10-20	Low	Medium	D
Moderate	Very Low	10-20	Low	High	D
Moderate	Very Low	10-20	Low	High	D
Mod. Slow	Moderate	40-60+	Medium	Medium	С
Mod. Slow	Moderate	40-60+	Medium	High	C
Moderate	High	60+	Medium	High	B
Moderate	High	60+	Medium	Very High	B
Moderate	Moderate	20-40	Medium	Low	C
Moderate	Moderate	20-40	Medium	Medium	C
Rapid	Low	20-40	Low	High	В
Moderate	Moderate	40-60	Low	Medium	В
Moderate	High	60+	Low	Medium	B
Moderate	High	60+	Low	High	В
Moderate	High	60+	Low	Very High	В
Mod. Slow	High	60+	Low	Low	С
Mod. Slow	High	60+	Low	Low	C
Mod. Slow	High	60+	Low	Medium	C
Moderate	Low	40-60	Low	Low	В
Moderate	Low	40-60	Low	Medium	B
Moderate	Low	40-60	Low	High	B
Mod. Slow	High	40-60	Low	Low	C
Mod. Slow	High	40-60	Low	Medium	C
Mod. Slow	High	40-60	Low	High	C
Moderate	Moderate	40-60	Medium	Low	C
Moderate	Moderate	40-60	Medium	Medium	С
Moderate	Moderate	40-60	Medium	High	С
Moderate	Moderate	40-60	Medium	Very High	C
Moderate	Moderate	20-40	Medium	Medium	C
Moderate	Moderate	20-40	Medium	High	С
Mod. Rapid	Moderate	40-60	Low	Medium	. В . к. е
Mod. Rapid	Moderate	40-60	Low	High	В
Slow to Rapid	Very Low	0-20	Low	Low to High	a D

Phase	Soil Series	Slope			
Symbol	or Land Type	Percent	Drainage	Run-off	Infiltration
65 W	Steiwer	1 03 5	Good	Medium	Moderate
Σ X		35-60	Good	Rapid	Moderate
66 W	Digger	10-35	Good	Slow	Mod. Rapid
X		35-60	Good	Medium	Mod. Rapid
Y		60-90+	Good	Rapid	Mod. Rapid
67 V	Willakenzie	0-10	Good	Slow	Moderate
Ŵ		10-35	Good	Medium	Moderate
Х		35-60	Good	Rapid	Moderate
Y		60-90+	Good	Very Rapid	Moderate
69S V	Unnamed	0-10	Good	SLOW	Mod. Rapid
W		10-35	Good	Slow	Mod. Rapid
Х		35-60	Good	Medium	Mod. Rapid
Y		60-90+	Good	Rapid	Mod. Rapid
70S Y	Unnamed	60-90+	Good	Very Rapid	Mod. Rapid
75S X	Unnamed	35-60	Good	Rapid	Mod. Rapid
Y		60-90+	Good	Very Rapid	Mod. Rapid
111 V	McCuliy	0-10	Good	Slow	Moderate
W	•	10-35	Good	Medium	Moderate
X		35-60	Good	Rapid	Moderate
Y		60-90+	Good	Rapid	Moderate
156 V	Horeb	0-10	Good	Slow	Moderate
W		10-35	Good	Slow	Moderate
X		35-60	Good	Medium	Moderate
Y		60-90+	Good	Rapid	Moderate
157 V	Kinney	0-10	Good	Slow	Moderate
Ŵ	· ·	10-35	Good	Medium	Moderate
X	· · · · · · · · · · · · · · · · · · ·	35-60	Good	Rapid	Moderate
Ý	,	60-90+	Good	Rapid	Moderate
158 V	Bull Run	0-10	Good	Slow	Moderate
W		10-35	Good	Medium	Moderate
Х		35-60	Good	Rapid	Moderate
159S X	Aschoff	35-60	Good	Medium	Mod. Rapid
Ý		60-90+	Good	Rapid	Mod. Rapid
169S W	Henline	10-35	Excessive	Slow	Mod. Rapid
Х		35-60	Excessive	Medium	Mod. Rapid
Y		60-90+	Excessive	Rapid	Mod. Rapid
175S X	Unnamed	35-60	Good	Rapid	Mod. Rapid
Y		60-90+	Good	Very Rapid	Mod. Rapid
256 V	Unnamed	0-10	Smwht Poor	Slow	Moderate
W		10-35	Smwht Poor	Medium	Moderate
X		35-60	Smwht Poor	Rapid	Moderate
258 V	Goble	0-10	Mod. Good	Slow	Moderate
W		10-35	Mod. Good	Medium	Moderate
Х		35-60	Mod. Good	Rapid	Moderate
259S V	Goodlow	0-10	Good	Slow	Moderate
W		10-35	Good	Slow	Moderate
Х		35-60	Good	Medium	Moderate

	Permeability	A.W.H.C.	Effective Root Zone (inches)	Shrink- swell Potential	Erosion Hazard (Bare Soil Surface)	Hydro1ogic Group
	Moderate	Low	20-40	Low	High	C
	Moderate	Low	20-40	Low	Very High	С
	Mod. Rapid	Low	20-40	Low	Low	B
	Mod. Rapid	Low	20-40	Low	Medium	B
	Mod. Rapid	Low	20-40	Low	High	В
9 - 2 - P	Mod. Slow	Moderate	20-40	Low	Medium	C
	Mod. Slow	Moderate	20-40	Low	High	C
	Mod. Slow	Moderate	20-40	Low	Very High	C
	Mod. Slow	Moderate	20-40	Low	Very High	С
	Mod. Rapid	Low	20-40	Low	Low	B
	Mod. Rapid	Low	20-40	Low	Low	B
	Mod. Rapid	Low	20-40	Low	Medium	В
	Mod. Rapid	Low	20-4 0	Low	High	· B
	Mod. Rapid	Very Low	10-20	Low	High	D
	Mod. Rapid	Very Low	10-20	Low	Medium	D
	Mod. Rapid	Very Low	10-20	Low	High	D
	Moderate	Moderate	40-60+	Medium	Medium	B B
	Moderate	Moderate	40-60+	Medium	High	В
	Moderate	Moderate	40-60+	Medium	Very High	· B ·
	Moderate	Moderate	40-60+	Medium	Very High	B
	Moderate	Moderate	40-60	Low	Low	B
	Moderate	Moderate	40-60	Low	Medium	В
	Moderate	Moderate	40-60	Low	Medium	B
	Moderate	Moderate	40-60	Low	High	В
	Moderate	Moderate	40-60	Low	Low	B
	Moderate	Moderate	40-60	Lw	Medium	B B
	Moderate	Moderate	40-60	Low	High	B
	Moderate	Moderate	40-60	Low	High	В
	Moderate	High	60+	Low	Low	B
	Moderate	High	60+	Low	Low	В
	Moderate	High	60+	Low	Medium	В
	Moderate	Moderate	40-60	Low	Medium	В
	Moderate	Moderate	40-60	Low	High	B
	Mod. Rapid	Moderate	20-40	Low	Low	В
	Mod. Rapid	Moderate	20-40	Low	Medium	В
	Mod. Rapid	Moderate	20-40	Low	High	а ^{на} В и
	Mod. Rapid	Very Low	10-20	Low	Medium	D
	Mod. Rapid	Very Low	10-20	Low	High	D
	Mod. Slow	High	60+	Low	Low	С
	Mod. Slow	High	60+	Low	Low	С
	Mod. Slow	High	60+	Low	Medium	С
	Mod. Slow	High	40-60	Low	Low	С
	Mod. Slow	High	40-60	Low	Medium	С
	Mod. Slow	High	40-60	Low	High	С
	Moderate	Moderate	40-60	Low	Low	B
	Moderate	Moderate	40-60	Low	Low	В
	Moderate	Moderate	40-60	Low	Medium	В

Engineering Interpretations

Engineering interpretations and estimated classification are shown in Table 6. They are listed in order of their map symbol. For the hydrological soil properties see Table 5.

Workability

The ratings for workability indicate the comparative ease of performing tillage operations on the soil without respect to soil slope. The terms used are good, fair, and poor. Workability depends primarily upon the amount and nature of the clay portions of soil and upon the coarse fragment content. Soils very high in plastic clay are rated as having poor workability. They can only be effectively tilled over a narrow range of soil moisture conditions and tend to become hard when too dry and very sticky when too wet.

Suitability for Wearing Surfaces. (Untreated) (5)

Ratings are for wearing surfaces on unsurfaced roads. The ratings are good, fair, and poor. The good rating is for roads that can withstand traffic during wet periods with a minimum of damage. The fair rating is for roads that are damaged by traffic during wet periods but are usually passable. The poor rating is for roads that are excessively damaged by traffic during wet periods and are usually unpassable.

Suitability for Compacted Earth Lining for Water Storage (5)

Ratings are good, fair or poor. Ratings are based on permeability and resistance to erosion. A good rating is the most stable and least permeable. A fair rating is either unstable or is permeable. A poor rating is for soils which are unstable and permeable. One may use a combination for effective linings. A soil which is impermeable and erosive could be covered by a soil which is permeable but not erosive.

Suitability for Drain Fields (5)

Ratings are good, fair, or poor. Soils listed with good ratings have high permeabilities. They present no problems for drainfields. Soils rated fair have moderate permeabilities. Soils rated poor are fine textured and have slow permeabilities or are shallow. Ratings apply for low slopes. Steeper slopes would be rated more severely. Slopes over 12 percent generally have severe limitations.

Classification

The AASHO classification is listed only for those soils which have had laboratory analysis. The soils under the unified classification marked with an asterisk were classified from the laboratory analysis. Those not marked with an asterisk were classified by using soil descriptions and Table 1 in the "Guide for Interpreting Engineering Uses of Soils" (18).

Expected Road Construction Method

The expected methods are blade, rip or blast. The ratings are based on the depth to bedrock, slope and whether the bedrock is fractured, partially decomposed, or solid. A road may be built entirely with a blade on deep soils overlying decomposed or very soft rock. A ripper is required on shallow soils overlying fractured bedrock. Extensive blasting is required on shallow soils overlying solid bedrock, or deep soils on steeper slopes overlying solid bedrock. There may be local intrusions of hard diorite rock in areas which could otherwise be excavated with a blade.

Compaction Hazard for Winter Tractor Logging

Ratings are based on soil texture and coarse fragment content. Fine textured soils with few coarse fragments have the highest hazard. Medium and moderately fine textured soils without appreciable coarse fragments have a medium hazard. Loam textured soils with a high percentage of coarse fragments have a low hazard.

Engineering Interpretations and Estimated Classification

		t	Suitat	bility for:
		{	Wearing	Compacted Earth
		Workability	Surface	Lining for Water
Symbol	Soil Series	(Surface Soil)	(Untreated)	Storage (subsoil)
10	Blachiy	Poor	Poor	Poor
11	Marty	Good	Fair	Fair
12	Jory	Fair	Poor	Poor
12x	Jory (sedimentary rock phase)	Fair	Poor	Poor
14	Honeygrove	Fair	Poor	Poor
14x	Honeygrove (sedimentary rock phase)	Fair	Poor	Poor
15	Hullt	Fair	Poor	Fair
16	Olyic	Good	Poor	Fair
17	Cazadero	Good	Poor	Poor
19	Cruiser	Good	Fair	Fair
20	Peavine	Fair	Poor	Poor
20x	Peavine (sedimentary rock phase)	Fair	Poor	Poor
21	Unnamed	Fair	Poor	Fair
23	Nekia	Fair	Poor	Poor
23x	Nekia (sedimentary rock phase)	F a ir	Poor	Poor
24	Ritner	Fair	Fair	Good
25	Whetstone	Fair	Fair	Fair
26	Dixonville	Fair	Low	Poor
27	Hembre (basalt rock	Good	Fair	Fair
27n	Hembre (diorite rock phase)	Fair	Fair	Fair
295	Klickitat	Poor	Good	Fair
35S	Kilchis	Poor	Good	Fair
36S	Witzel	Poor	Good	Good
50	Apt	Fair	Poor	Fair
51	Astoria	Good	Poor	Poor
52	Fendall	Good	Poor	Good
53S	Unnamed	Poor	Good	F a ir
54	Slickrock	Fair	Poor	Fair
55	Laureiwood	Good	Poor	Fair
56	Cascade	Good	Poor	Fair
57	Preacher	Fair	Fair	Poor
58	Kinton	Good	Poor	Fair
60	Melby	Good	Poor	Poor
61	Ead	Poor	Poor	Fair
62	Keei	Good	Fair	Fair
65	Steiwer	Fair	Poor	Fair
66	Digger	Fair	Fair	Fair
67	Willakenzie	Fair	Poor	Fair
69S	Unnamed	Poor	Good	Fair

Suita bility for:	AASHO	Unified	Expected Road	Compaction Hazard for					
Drain Fields	Classification (Subsoil)	Classification (Subsoil)	Construction <u>Method</u>	Winter Tractor Logging					
Fair	A-5 (8) *	MH ¥	Blade	High					
Good		ML.	Blade	Medium					
Poor	A-7-6 (10) *	ML-MH *	Blade	High					
Poor		MH	Blade	High					
Poor		MH	Blade	High					
Poor	A-5 (10) *	MH +	Blade	High					
Fair	A-5	MT.	Blade	Medium					
Fair	A=5 (8) +	ML *	Blade	Medium					
Fair		MH	Blade	High					
Good		ML	Rip-Blade	Low to Medium					
Poor		MH	Rip-Blade	High					
Poor	4-7-6 (20) *	MH *	Blade	High					
Fair		MT.	Blade	Low					
Poor	A=5 (8) *	ML *	Rip-Blade	High					
Poor		MH	Rip-Blade	High					
Poor		æ	Blade	High					
Fair	A-2-A	GM	Rin-Blade	Low					
Poor	·····	MH	Blade	High					
Good	A-1-6 (0) *	ML	Blade-Blast	Low to Medium					
Good	A-1-6 (0)	ML	Blade-Blast	Low to Medium					
Good		SM	Blade-Blast	Low					
Poor		GM	Blast	Low					
Poor		CC S	Blade-Blast	Low					
Poor	A-5 (3) *	SM *	Blade	High					
Fair	A-7-5 (11) *	MH ¥	Blade	High					
Poor		CL	Blade	High					
Good		SM	Rip-Blast	Low					
Fair	A-5 (1)	SM	Blade	Medium					
Fair	A-7-6 (11) *	ML-CL *	Blade	Medium to High					
Poor		ML-CL	Blade	Medium to High					
Good	A-7-5 (7) *	MH	Blade-Blast	Medium					
Poor		ML-CL	Blade	Medium to High					
Fair		MH	Blade	High					
Poor		ML	Blade	High					
Good	. 7	SM	Blade	LOW					
rair Foto		ML	Blade	Medium					
rair	A#=4 (2) ★ A=7_5 (10) =		Blade	Medium					
rair Foi-	* (UI) C=1 =			Medium					
Lail 1			utb=ptgde=prg st i	Megitur					

			Suitability for:						
Symbol	Soil Series	Workability (Surface Soil)	Wearing Surface (Untreated)	Compacted Earth Lining for Water Storage (Subsoil)					
709	linnamod	Boon	Good	Fain					
755	linnamed	Poor	Good	Fair					
111	McCully	Fair	Poor	Fair					
156	Horeb	Fair	Fair	Good					
157	Kinnev	Fair	Fair	Fair					
158	Bull Run	Good	Poor	Fair					
159S	Aschoff	Poor	Fair	Fair					
169S	Henline	Poor	Fair	Fair					
175S	Unnamed	Poor	Good	Fair					
256	Unnamed	Good	Poor	Fair					
258	Goble	Good	Poor	Fair					
259S	Goodlow	Poor	l Fair	Fair					

Suitibility for:	A	ASHO		Uni	fied	Expected Road	Comp Haga	action rd for
Drain Fields	Classi (Su	ficat <u>ubsoil</u>	ion)	Classif (Sub	ication soil)	Construction Method	Winter Lo	Tractor aging
Poor				GM (ove	ersize)	Blast	Low	
Poor				GM (ove	ersize)	Blast	Low	
Fair	A-5	(7)	¥	ML	*	Blade	High	
Good	4-2-5	• •	¥	SC	*	Blade	Low	
Good	A-5	(4)	*	SM	*	Blade	Low to	Medium
Fair	A-4	(0)	*	SM	*	Blade	Medium	
Good	A-2-5	(0)	*	GM (ove	ersize)*	Blade-Blast	Low	
Good	A-1	(6)		GM	· · I	Blade-Blast	Low	
Poor		• - •		GM (ove	ersize)	Blast	Low	
Poor				ML-CL		Blade	Medium	to High
Poor				ML-CL	}	Blade	Medium	to High
Good				GM	- 1	Blade-Blast	Low	

* Classification obtained from laboratory tests. See Table 7.

Engineering Laboratory Data

Table 7 shows the engineering laboratory data for selected soil series.

The soil series selected for engineering analysis have extensive coverage in the soil survey area from which they were collected. The soils listed in Table 7 were compiled from the Tillamook Soil Survey Report (3) and unpublished manuscripts from the Alsea (4), Yamhill (7), Marion (19), and Bull Run-Sandy (13) areas. The samples were collected by the Soil Conservation Service or the U.S. Forest Service in cooperation with the Oregon Agricultural Experiment Station. The samples were run by the Engineering Experiment Station, Oregon State University.

TABLE 7 con't

T		t	Moisture - Density						
	l	I	Maximum	0-+	l l				
Coll News	ł	l	density	moi sture	Large				Percen
and	Lab	Depth	1b. per	per	Stones	3"	12"	3/4"	3/81
Location	No.	Inches	cu. ft.	cu. ft.	Percent				
Jory SW1 SW1 Sec.25 T.8S,R.3W	240-138 240-139 240-140	0-5 28-35 50-78 /	89 99 95	30 24 28	0 0 0				-
Kinney NWł SEł NEł Sec.35,T.8S R.1E	240-105 240-106 240-107	0-4 18-28 4 9/	66 77 68	44 33 16	0 0 0		- 100	100 100 99	99 98 97
Laurelwood SW1 NW1 SE1 Sec.27,T.1S R.3W	240-48 240-49R 240-50	0-11 32-43 62-72 / ·	98 103 95	22 20 20	0 0 0	- - -	- - -		100
McCully SW1 NE1 NW1 Sec.26,T.8S R.1E	240-108 240-109 240-110	0-7 22-40 82-108+	68 90 81	14 28 10	0 0 0	-	-	-	- 100
Nekia N W‡ SW‡ NW‡ Sec.17,T.8S R.1W	240-120 240-121 240-122	0-6 26-47 56-74	89 92 86	29 28 34	0 0 0				- 1 - 1 - 1
Olyic NE‡ SE‡ Sec.9,T.5N,R.3W	240-46 240-47	0-11 38-53	93 100	25 23	0 0	-		-	-
Preacher N ¹ NW ¹ NW ¹ SW ¹ Sec.24,T.15S,R.10W	1667 1669	6-14 28-42	79 83	36 33	0 5	-	-100	99 100	99 99
Peavine on Sediments SW1 SW1 SE1 Sec.10,T.3S,R.5W	240-229 240-230 240-231	4- 10 15 - 26 6 4- 84	87 75 76	29 36 41	0 0 0				
Slickrock W2 SW2 NW2 NW2 Sec.4,T.15S,R.9W	1711 1725	7-14 23-47	82 94	34 26	0 30	100	100 98	99 93	97 91
Willakenzie SEł NWł SWł Sec.24,T.3S R.5W	240-226 240-227 240-228	4-12 18-26 36-54/	90 93 71	28 27 52	0 0 0				

	Mech	anica lvsis	1		-							
+ 2 1 4	Dace	ing S	ieve		Percentage Smaller Than					Closeff		
#4	#10	#40	#60	#200	0.05	0.02	0.005	0.002	Liquid Limit	Plasticity Index	AASHO	Unified
-	100	69	62	52	39	24	10	6	49	15	A-7-5(6)	ML
	100	90	84	76	72	60	44	37	42	13	A-7-6(10)	ML
	100	81	75	68	66	56	44	33	46	12	A-7-5(8)	ML
97	90	63	55	41	38	25	8	2	63	3	A-5(2)	SM
98	97	82	76	53	46	30	12	6	49	NP	A-5(4)	ML
97	95	69	61	45	41	26	5	1	54	NP	A-5(3)	SM
99 	97 100 100	91 98 97	89 97 96	86 94 95	74 91 91	44 60 88	23 37 58	12 27 50	34 41 47	2 16 11	A-4(8) A-7-6 (11) A-7-5 (10)	ML MLC1 ML
100	89	56	46	32	26	16	7	2	65	NP	A-2- 5(0)	SM
100	99	85	78	63	59	50	36	26	48	6	A- 5(7)	ML
99	92	61	54	42	39	30	12	7	46	NP	A- 5(2)	SM
- 100	100	93	90	80	76	63	30	19	40	12	A-6(9)	ML
	100	90	85	73	68	57	39	29	41	8	A-5(8)	ML
	99	84	78	66	42	51	34	27	53	77	A-5(8)	MH
100	99	81	76	69	66	46	18	14	39	2	♣4(7)	ML
-	100	96	94	88	82	63	38	28	42	8	♣5(8)	ML
99	99	82	72	47	42	32	17	13	52	7	A-5(3)	SM
99	99	95	87	60	51	35	20	13	51	12	A-7-5(7)	MH
-	100	87	83	78	74	58	34	21	49	18	♣7-5(13)	ML
	100	86	81	76	73	63	45	33	84	42	♣7-6(20)	Mh
	100	64	55	39	37	32	17	11	67	16	♣7-5(3)	Sm
95	91	79	67	37	28	18	8	5	48	8	A-5(1)	SM
91	89	81	72	46	42	34	22	15	42	10	A-5(1)	SM
-	100	90	85	76	69	56	29	13	41	10	A-5(8)	ML
	100	98	96	89	85	71	44	27	42	14	A-7-5(10)	ML
	100	67	57	42	42	38	24	16	68	16	A-7-5(4)	MH

. ~

Productivity

Productivity ratings for the various soil series are listed in Table 8. These data were made available by the Soil Conservation Service, U.S. Forest Service, and Oregon State University. Table 8 was prepared by compiling site data from soil survey areas in Lane, Lincoln, Benton, Yamhill, Marion, Multnomah, Clackamas, Linn, and Washington Counties.

Site data for each soil series from each survey area were averaged together and placed in the appropriate site class. Soil aspect phases were used only in the Lane County area. Site data on soils from the counties lying north of Lane County do not seem to show differences due to aspect.

Site class is defined by the range in site indices* as follows:

Site Class	Range in Site Indices
I	Higher than 185
II	156 to 185
III	126 to 155
IV	96 to 125
V	Less than 96

A + or - sign indicates the average of the site indices is at the upper or lower limits of that class respectively. A site class without a + or - sign indicates the average of the site indices is in about the middle of the class range.

* Site indices based on curves from Technical Bulletin No. 201, U. S. Department of Agriculture, 1949.

TABLE 8

Site Class Ratings by Soil Series for Various Areas

	Мар	ping	Lan	e Cou	nty	Area	<u>A1</u>	sea Linco	Area oln-											Bull Sand	Ru ly A	n rea			-					-			•	
Soil	Un	it	Sou	th	No	rth	-	Bent	ton		Yar	nhil	1	Mar	ion		Bent	on		Clac	:kam	85		Li	nn		Was	shir	gtor	n Ma	iltno	omah	1	
Series	Num	ber	Slo	pes	S1	opes	(Count	ties		Cou	inty		Cou	nty		Coun	ty		Coun	tie	S		Cou	nty		(Cour	τţ		Cou	nty		
Apt		50.		• •				• • I	[•11			• •														
Aschoff		159S							•••		•••									• • I	ī.													
Astoria		51.									• •	II.							•															
Blachly		10.							τ																									
Bohannon		••••	TTT						T								•••																	
Cascade		56.												•••	•••	•••	•••																	
Cazadero		17.					•••		•••		•••	•••	•	•••	•••	•••	•. •																•••	•••
Cruiser		19.					•••		•••	•	•••	•••	•	•••	•••	•••	••							TT	T.						•••			•••
Digger		66.		•••	•••	••	•••		г	•	••	••	•	• •	••	••	• •		•			•		• • • •				•••	•••	••••	• •	•	••	••
Divopville		26.	•••	•••	•••	TV.	••	• 11.	L	•	• •	• •	•	• •	• •	• •	•••			•••	•••	•••	••	•••	•	••	•	••	•••	•••	• •	••	•••	••
Fad		61.	• • •	•••	•••	T A 4	••	•••	• •	•	• •	• • • •	•	• •	• •	•••	• T 4		•	•••	• •	•••		•••		••	•	••	• •	•••		• •	•••	••
Fendall		52.	•••	•••	•••	•••	••	••• דד	• •	•	• •	11.	•	• •	• . •	• •	• •		•				••	•••	•		•	••	•••	•••	• •	• •	•••	•••
Goble		258.	• • •	• •	• •	• •	••	• 11.	1	•	••	• •	•	• •	• •	• •	• •	•••	•	• •	•••	• •	•	• •	•	••	•	• • • • •	• •	• •	• • • •	••	• •	• •
Goodlow		2500	• • •	• •	• •	• •	• •	• • •	• •	•	• •	••	•	• •	• •	• •	• •	•••	•	•••	•• v	• •	•	•••	•	• •	• .	111	• •	• •	111	•	• •	• •
Verbre	97 8	2393 27n	••••	• •	••	••	• •	• • •	• •	•	• •	• ••	•	• •	• •	• •	• •	• •	•	• •1	v •	• •	•	• •	•	• •	•	• •	••	• •	• •	•	•••	• •
Venline	210	1200	• • • TTT	• •	••	• •	• •	• • •	• •	•	• •	11.	•	• •	••	• •	• •	••	•	• •	• •	• •	•	• •	•	• •	• •	• •	• •	• •	• •	•	• •	• •
Nentine	149	1092	111	ESt •	•	• •	• •	• • •	••	•	• •	• •	•	• 11	1.	• •	•	••	•	• •	• •	• •	•	• •	т е (• •	• •	•	• •	• •		• •	• •	• •
Honeygrove	14 @	14X	11	• •	• •	• •	• •	• 1	1	• •	• •	• •	•	••_	••	• •	•11	• •	•	• •	• •	• •	•	• 1	1. (T	• •	• •	• •	• •	• •	• •	• •	• •	• •
Nored		130.	• • •	• •	• •	• •	• •	• • •	• •	•	• •	• •	•	• • ‡	÷.	• •	• •	• •	•	• •	• •	• •	• •	• •	1.	• •	• •	•	• •	• •	• •	• •	• •	• •
HUIIC	10.0	15	111	• •	••	•••	• •	• • •	• •	•	••	• •	•	• 11	1 •	• •	• •	••	.•	• •	•.•	• •	•	• ÷	_• '	• •	• •	•	• •	• •	• •	• •	• •	• •
Jory	12 &	12X	• • •	• •	• • •	11-	• . •	• .• •	• •	• •	• 1	11+	•	• 11	1.	• •	111	• •	•	• •	• •	• •	•	• Ť	1 • '	••	• •	•	• •	• •	• •	•	• •	• •
Keel		62.	• • •	• •	• •	• •	• •	••••		•	• •	• •	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• 1	1+ (• •	• •	•	• •	• •	• •	•	• •	• •
Kilchis		355	• • •	• •	••	•••	• •	• •1/	V• •	•	• •	14.	.•	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	• •
Kinney		157	111	• •	•. • ·	11-	• •	• • •	• •	•. •	• . •	• •	•	• .11	I .	• •	• •	• •	•	• •	• •	• •	•	• 1	1.	• •	• •	• •	• •	• •	• •	. •	• •	• •
Kinton		58.	• • •	• •	••_	• • `	• •	• • •	• •	•	••	• •	•	• •	• •	• •	• •	••	•.	• •	• •	• •	• .•	• •	• •	• •	• • •	• •	• •	• •	• •	•	••	• •
Klickitat		295	10-	+•••	••1	II•	• •	• III	[••	•	••]	II.	•	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•11	I• 4	• •	• •	•	• •	• •	• •	•	• •	• •
Laurelwood		55.	• • •	• •	• •	• •	• •	• • •	• •	•	• •	II.	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	•	• •	• •	• •	• •	• •	• •	•	• •	• •
Marty		11.	• • •	• •	••_	• •	• •	• • •	• •	•	• •	• •	•	• •	•. •	• •	III	: • •	•	• •	• •	• •	•	• •	. •	• •	• •	• •	• •	• •	• •	•	• •	• •
McCully		111	III	• •	• •I	II+	• •	• • •	• •	•	• •	• •	•	• •I	Ι.	• •		·••	•	• •	• •	• •	•	• I	I.	•, •	• •	• •	• •	• •	• •	•	• •	• •
Melby		60.	• • •	• •	• •	• •	• •	• • •	• •	•	• •	II-	.•	• •	• •	• •	• •	:• •	•	• •	• •	• •	•	• •	•	• •	•	III	+ •	• •	• •	• •	• •	• •
Nekia	23 &	23x	• • •	• •	• •I	II.	• •	• • •	• •	• .	• •	• •	•	• II	Ι.	• •	• •	••	•	• •	• •	• •	• •	•II	I.	• •	.	• •	• •	• •	• •	•	• •	• •
Olyic		16.		• •	• •	• •	• •	• • •	• •	•	• •	II.	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	•	• •	•	•	• •	• •	• •	•	• •	• •
Peavine	20 &	20x	II	• • •	• •	II.	• •	• • •	• •	•	• •	II.	•	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• · I	I. (• •	•	•	• •		• •	•	• •	• •
Preacher		57.	• • •	• •,	• •	• •	• •	••I]	[••	•	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	• • •	• •	•	• •	• •	• •	• •	•	• •	• •
Ritner		24	III	Est.	I	II.	• •	• • *	• •	•	• •	• •	•	• •	• •	• •	III	• •	•	• •	• •	• •	•	•II	I.	• •	•	•	• •	• •	• •	•	• •	• •
Slickrock		54.	• • •	• •	• •	• •	• •	• •I	Ι	• .	•. •			• •	• •	• •	• •	• •	• •	• •	• •	• •	•	• •	•		•	•	• •	• •	• •	•	• •	• •
Steiwer		65.	• • •	•	• •	• •	• •	• • •	• •	•	•••]	III .		• •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	•	• •	• •	•	• •	• •	· • •	•	• •	• •
Unnamed		21																																
Unnamed		53S																																
Unnamed		695																																
Unnamed		70S																																
Unnamed		75S																																
Unnamed		175S																																
Unnamed		256																1																
Whetstone		25.		• •	• •	• •			• •	•			•	. II	Ι.				•	• •	• •		•	• •	•	• •	•		• •	• •	• •	• •		• •
Willakenzie		67.		• •	• •	II-				•	• •	II.	•	••				• •	•	• •		• •	•		•	• •	•	• •	• •		• •	• •	• •	• •
Witzel		36S		• •	• •	• •	• •	• • •	• •	•	• •	•	•	• •	• •				•	• •			• •	• •	•	• •	•	• •	• •	•••	• •	•	• •	• •

-56-

VIII. Description of the Soil Series and Mapping Units

A brief, general profile description is given for each soil series. The soil depth, drainage, acidity, parent material, use, and limitations for Douglas-fir production are indicated.

Detailed profile descriptions of the unnamed series follow the general descriptions. These unnamed soils have not been mapped prior to this reconnaissance survey. Detailed descriptions of the other series are on file with the Soil Conservation Service or the Oregon Agricultural Experiment Station.

The pH ranges for acidity classes are defined as follows:

Extremely acid	Less than 4.5
Very strongly acid	4.5 - 5.0
Strongly acid	5.1 - 5.5
Medium acid	5.6 - 6.0
Slightly acid	6.1 - 6.5
Neutral	6.6 - 7.3

The setting includes the topography as it appears when viewed on aerial photographs with a stereoscope, the geographic occurrence, and average precipitation.

Soils are listed in mapping units alone, as an association, or as an undifferentiated unit. A soil association is two or more soil series which are geographically associated and are not mappable separately at the scale used. The different soil series generally occur in a predictable pattern and their position on the landscape is given. Undifferentiated units in this report contain two or more soil series which are geographically associated but do not occur on the landscape in a predictable pattern. Their position on the landscape is not given. The total acreage of each mapping unit is given.

The symbols for soil series and slope phases in the mapping units are shown in order of their dominance in map delineations. The average proportions of the series are indicated in the description. In mapping units with two slope symbols, the first slope symbol indicates the dominant slope phase in the delineated areas. The second symbol indicates the slope phase in the remaining twenty to forty percent of each delineation. The slope range and dominant slope phase are given in the mapping unit descriptions.

Alphabetical Index to	Descriptions of	the Soil So	eries and	Mapping	Units

Soil Series ¹	Symbol	Page
Apt	50	-87
Aschoff ,	159S	113
Astoria ³ /	51	ÂÂ
Blachly	10	61
Bull Run	158	112
Cascade	56	112
Cazadero	17	70
Cruiser ² /	10	70
Digger		101
Dixonville		70
Fad	20	00
Fendall	6 2	90
Goble	02 050	09
Goodlaw	200	100
Hembre		120
Henline		114
Hopewarove	1042	114
Honeb	14 & 14X	60
	100	109
Tony	10	16
Kee12/	12 8 12X	63
Kilchie ³	62	99
Kinney	305	04
Kinton	157	110
	00	95
	295	82
Leurerwood	55	92
Machilly		,62
Malby		107
Netio	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97
	23 & 23X	/5
Device	16	68
	20 & 20x	12
	5/	94
	24	77
SIICKFOCK	54	91
Steiwer	65	100
Unnamed	21	74
Unnamed	53S	90
Unnamed	69S	104
Unnamed	70S	105
Unnamed	75S	106
Unnamed	1755	116
Unnamed	256	117
Whetstone	25	78
Willakenzie	67	102
Witzel	36S	85

 $\frac{1}{2}$ Soil Series are tentative except as indicated. $\frac{2}{3}$ Proposed name. $\frac{3}{2}$ Established series.

Map Legend

Table 9 relates the map symbols to soil series and slope ranges. The soil series symbols are given in numerical order.

An alphabetical listing of soil series with their corresponding numerical symbols is given in Table 3.

Series and slope symbols in map delineations are shown in order of dominance. The mapping units are described in the report under the dominant series.

Using the legend, one can identify the major and secondary series and slope phases in the mapping units. The series are described in numerical order of map symbols in Section VIII and the characteristics, properties, and qualities of each series and phase are summarized in Table 5. The acreage of each soil can be obtained in Table 1, and estimates of engineering behavior for each soil are listed in Table 6. All of the above tables are arranged numerically by symbol.

The key to soil series (Table 2), classification of the soils (Table 3), relative stability of the disturbed regolith (Table 4), engineering laboratory data, and timber site-class rating (Table 8) are arranged alphabetically.

Ť	Δ	R	1	F	Q
τ.	ዔ	D.	ᄂ	<u> </u>	- 7

Map Symbol Identification Legend Shown in Numerical Order

SymbolSoil Series1Mixed alluvial land50Apt10Blachly51Astoria211Marty52Fendall12Jory535Unnamed soil12xJory (sedimentary54Slickrockbedrock phase)55Laurelwood14Honeygrove56Cascade214xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel219Cruiser265Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)695Unnamed soil21Unnamed soil705Unnamed soil23Nekia (sedimentary11McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville1595Aschoff27Hembre (basalt bedrock1695Henlinephase)258Goble295Klickitat2595Goodlow355Kilchis2RRockland	Мар	······································	Map	
1 Mixed alluvial land 50 Apt 10 Blachly 51 Astorial 11 Marty 52 Fendall 12 Jory 53S Unnamed soil 12x Jory (sedimentary 54 Slickrock bedrock phase) 55 Laurelwood 14 Honeygrove 56 Cascade2 14x Honeygrove (sedimentary 57 Preacher bedrock phase) 58 Kinton 15 Hullt 60 Melby 16 Olyic 61 Ead 2/ 17 Cazadero 62 Keel2/ 19 Cruiser2/ 65 Steiwer 20 Peavine (sedimentary 67 Willakenzie bedrock phase) 69S Unnamed soil 23 Nekia 75S Unnamed soil 23 Nekia (sedimentary 111 McCully bedrock phase) 156 Horeb 24 Ritner 157 Kinney 25 Whetstone 158	Symbol	Soil Series1/	Symbol .	Soil Series
1Mixed alluvial land50Apt10Blachly51Astoria311Marty52Fendall12Jory53SUnnamed soil12xJory (sedimentary54Slickrockbedrock phase)55Laurelwood14Honeygrove56Cascade314xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead 2/17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27nHembre (diorite bedrock256Unnamed soil27nHembre (diorite bedrock256Unnamed soil27nHembre (diorite bedrock258Goble29SKlickitat259SGoodlow35SKilchis2/RRockland	,	Manad allowed land	50	
10Blachly51Astoria=J11Marty52Fendall12Jory53SUnnamed soil12xJory (sedimentary54Slickrockbedrock phase)55Laurelwood14Honeygrove56Gascade214xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil24Ritner156Horeb25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (diorite bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soil27nHembre (diorite bedrock256Unnamed soil27nRRockland88Goble29SKlickitat259SGoodlow35SKilchisRRockland	10	Mixed alluvial land	50	Apt 3/
11Marty52Fendall12JoryJory53SUnnamed soil12xJory (sedimentary54Slickrockbedrock phase)55Laurelwood14Honeygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel ² /19Cruiser ² /65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)256Unnamed soil27nHembre (diorite bedrock256Unnamed soil27nHembre (diorite bedrock256Unnamed soil27nRickiat258Goble29SKlickiat259SGoodlow355Kilchis ¹ /2RRockland	10	Blachly	51	Astoria
12Jory53SUnnamed soil12xJory (sedimentary54Slickrockbedrock phase)55Laurelwood14Honeygrove56Cascade214xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil24Ritner156Horeb25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)258Goble29SKlickitat259SGoodlow35SKilchis ² //RRcckland	11	Marty	52	Fendall
12xJory (sedimentary bedrock phase)54Slickrock Laurelwood14Honeygrove56Cascade214xHoneygrove (sedimentary bedrock phase)57Preacher bedrock phase)15Hullt60Melby16Olyic61Ead 2/17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary bedrock phase)67Willakenzie bedrock phase)21Unnamed soil70SUnnamed soil23Nekia bedrock phase)756Horeb24Ritner157Kinney bedrock phase)25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock phase)165Unnamed soil27nHembre (diorite bedrock phase)258Goble29SKlickitat phase)259SGoodlow R29SKlickitat kiteil8R29SKlickitat kiteil8R	12	Jory	53S	Unnamed soil
bedrock phase)55Laurelwood14Honeygrove56Cascade314xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary11McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27nHembre (diorite bedrock256Unnamed soil27nHembre (diorite bedrock256Unnamed soil27nKilckitat259SGoodlow255Klickitat259SGoodlow256Kilckitat259SGoodlow257Klickitat259SGoodlow	1 2 x	Jory (sedimentary	54	Slickrock
14Honeygrove56Cascade314xHoneygrove (sedimentary57Preacherbedrock phase)58Kinton15Hullt60Melby16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)258Goble29SKlickitat259SGoodlow35SKilchis3/RRcckland		bedrock phase)	55	Laurelwood
14xHoneygrove (sedimentary bedrock phase)57Preacher bedrock phase)15Hullt60Melby16Olyic61Ead 2/17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary bedrock phase)67Willakenzie bedrock phase)21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary bedrock phase)11McCully bedrock phase)24Ritner158Bull Run25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock phase)175SUnnamed soil27nHembre (diorite bedrock phase)258Goble29SKlickitat witheal259SGoodlow R26SWithealRRcckland	14	Honeygrove	56	Cascade ³
bedrock phase)58Kinton15Hullt60Melby16Olyic61Ead 2/17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil24Ritner156Horeb25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soil28Klickitat258Goble29SKlickitat259SGoodlow35SKilchis2/RRockland	14x	Honeygrove (sedimentary	57	Preacher
15Hullt60Melby16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil24Ritner156Horeb25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soil27nKlickitat258Goble29SKlickitat259SGoodlow35SKilchis3/RRockland		bedrock phase)	58	Kinton
16Olyic61Ead17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Goble29SKlickitat259SGoodlow35SKilchis2/RR Cockland	15	Hullt	60	Melby
17Cazadero62Keel2/19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Goble29SKlickitat259SGoodlow35SKilchis3/RRockland	16	Olyic	61	Ead
19Cruiser2/65Steiwer20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary11McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis2RRockland	17	Cazadero,	62	Keel ²
20Peavine66Digger20xPeavine (sedimentary67Willakenziebedrock phase)695Unnamed soil21Unnamed soil705Unnamed soil23Nekia755Unnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville1595Aschoff27Hembre (basalt bedrock1695Henlinephase)1755Unnamed soil27nHembre (diorite bedrock256Goble295Klickitat2595Goodlow355Kilchis ³⁻¹ RRockland	19	Crui ser ² /	65	Steiwer
20xPeavine (sedimentary bedrock phase)67Willakenzie bedrock phase)21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary bedrock phase)111McCully bedrock phase)24Ritner156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenline phase)27nHembre (diorite bedrock256Unnamed soil29SKlickitat259SGoolew35SKilchisRRockland	20	Peavine	66	Digger
bedrock phase)69SUnnamed soil21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soil29SKlickitat259SGoodlow35SKilchis ³ RRockland	20x	Peavine (sedimentary	67	Willakenzie
21Unnamed soil70SUnnamed soil23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchisRRockland		bedrock phase)	69S	Unnamed soil
23Nekia75SUnnamed soil23xNekia (sedimentary111McCullybedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchisRRockland	21	Unnamed soil	70 S	Unnamed soil
23xNekia (sedimentary bedrock phase)111McCully bedrock24Ritner156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland	23	Nekia	7 5S	Unnamed soil
bedrock phase)156Horeb24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland	23x	Nekia (sedimentary	111	McCully
24Ritner157Kinney25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland		bedrock phase)	156	Horeb
25Whetstone158Bull Run26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland	24	Ritner	157	Kinney
26Dixonville159SAschoff27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchisRRockland	25	Whetstone	158	Bull Run
27Hembre (basalt bedrock169SHenlinephase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland	26	Dixonville	1595	Aschoff
27nphase)175SUnnamed soil27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ² RRockland	27	Hembre (basalt bedrock	1695	Henline
27nHembre (diorite bedrock256Unnamed soilphase)258Goble29SKlickitat259SGoodlow35SKilchis ³ RRockland		phase)	1755	Innamed soil
2111Heinble (diffice bedicek250Officialphase)258Goble29SKlickitat259SGoodlow35SKilchis ³ RRockland24SWitzalRRockland	27n	Hembre (diorite bedrock	256	Unnamed soil
29SKlickitat250Goodlew35SKilchis ³ RRockland		nhace)	250	Goble
35S Kilchis ² R Rockland	295	Klickitat	250	Goodlow
	250	Kilchic	4 ,070	Bockland
	365	Wi+701	π	RUCKIANU

<u>S1</u>	lope Symbol	Dominant Slope Range
	No Symbol	O to 3% slopes
	V	O to 10% slopes
	W	10 to 35% slopes
	X	35 to 60% slopes
	$\mathbf{Y}_{\mathbf{r}} = \mathbf{Y}_{\mathbf{r}}$, where $\mathbf{r}_{\mathbf{r}}$	60 to 90+% slopes

1/ Soil Series are tentative except as indicated. 2/ Proposed name. 3/ Established series.

-60-

Mixed Alluvial Land (1)

This mapping unit includes all the floodplains within the mapping area. For soils information in these areas consult the Willamette Basin General Soil Association Map and Report. Segment I (10).

Blachly (10) (tentative series)

The Blachly series consists of deep, well drained soils formed in colluvium and/or residuum. The Blachly soils occur on gently sloping to steep mountainous topography.

The Blachly soils are used for timber production and some gently sloping areas are used for pasture. These soils have a high erosion hazard if the surface cover is destroyed. They are very good for timber production.

Profile Description: Blachly clay loam

Surface soil: 0-10	Dark brown clay loam, friable, medium acid. Ten
	to 12 inches thick.
Subsoil: 10-94	Dark red clay, friable, medium acid. Fifty-three to 108 inches thick.
Substrata: 94	+ Bedrock.

Setting:

The topography on which the Blachly soils occur is represented by broad ridges, long uniform slopes, and a low density dissection pattern lacking sharp draws and ridges. Many areas are relatively smooth, gently sloping to sloping and occur at the same elevation (800-1200 ft.). These "old surfaces" are adjacent to the bottomlands or are on the lower 1/3 of the mountain slopes. Some areas of these soils almost resemble the Astoria soil series. These areas are easily separated from adjacent, steeper areas that have sharper ridges and a more dense dissection pattern. These soils are located in the Coast Range portion of the survey area. Annual precipitation ranges from 80 to 100 inches.

10 W	4,700 acres, 10 to 35% slopes.
10 X	3,600 acres, 35 to 60% slopes.
10 W	4,600 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. Predominantly deep Blachly soils. Minor inclusions of
	moderately deep Peavine soils occur at random. Small areas of Hembre soils are found on some of the ridges. About ten percent inclusions of deep, fine textured Honeygrove soils occur at random.

<u>Marty (11)</u> (tentative series)

The Marty series consists of deep, well drained soils formed in colluvium. The Marty soils are on gently sloping to steep ridges and smooth slopes.

The Marty soils are used for timber production and have no serious limitations.

Profile Description: Marty gravelly loam

Surface soil:	0-11"	Dark	brown	grave	elly lo	oam, fria	ble,	strongly	acid.
Subsoil:	11-42"	Dark	brown	clay	loam,	friable,	very	strongly	acid.
Substrata:	42-60"+	Dark	brown	loam.	•				

Setting:

The topography on which the Marty soil occurs is represented by broad ridges, long uniform slopes, and a sparse dissection pattern which lacks sharp draws and ridges. Many areas are relatively smooth, gently sloping to sloping. Annual precipitation ranges from 60 to 100 inches. The Marty soils occur in the Coast Range portion of the survey area.

11 W	5,200 acres, 10 to 35% slopes.
11 X	4,900 acres, 35 to 60% slopes•
11 WV	4,100 acres, 0 to 35% slopes. Mostly 10 to 35% slopes.
11 WX	4,900 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
	Predominantly deep Marty soils. Minor inclusions of deep
	Blachly or Honeygrove soils occur on the rounded ridges
	running parallel to the dissections. Inclusions of Hembre
	soils occur on the dissection escarpments.

<u>Jory (12)</u> Over basic igneous rock (tentative series) <u>Jory (12x)</u> Over sedimentary rock

The Jory series consists of very deep, well drained soils formed in colluvium from basic igneous and sedimentary rocks. The Jory soils are on sloping to steep foothills.**

The Jory soils are used for orchards and timber production. The main limitation for timber production is the dry summer period.

Profile Descriptions: Jory silty clay

Surface soil:	0-19"	Dark reddish brown silty clay, friable, medium
Subsoil:	19-100"+	acid. Sixteen to 26 inches thick. Dark reddish brown clay, very firm, strongly acid.

Setting:

The topography on which the Jory soils occur is represented by broad ridge tops, rounded ridge noses and long sideslopes having a moderately dense dissection pattern. Jory soils occur on the footslopes of the Coast Range and Cascade Mountains. Annual precipitation ranges from 40 to 60 inches. These soils are distributed throughout the survey area.

12-23 W 12-23 X 12-23 VW 12-23 XW	76,800 acres, 10 to 35% slopes. 3,100 acres, 35 to 60% slopes. 29,800 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. 3,900 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Associations of about sixty percent deep Jory soils with about forty percent moderately deep Nekia soils. Nekia soils occur on the ridge tops and the ridge noses. Inclusions of the deep skeletal Ritner soils occur at random. Inclusions of moderately deep Dixonville soils are located on the slopes at lower elevations.
12-58 W	1,400 acres, 10 to 35% slopes. 2,300 acres, 0 to 35% slopes. Mostly 10 to 35% slopes. Undifferentiated units containing about sixty percent deep Jory soils and about forty percent deep <u>Kinton</u> soils. These soils are intermingled and have no predictable pattern. Inclusions are of the Laurelwood and Nekia soils.
12-23-15 W 12-23-15 XW	5,700 acres, 10 to 35% slopes. 1,700 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Associations containing about forty percent deep Jory soils, about thirty percent moderately deep Nekia soils and about thirty percent deep Hullt soils. The Nekia soils occur on the rounded ridge noses. The Hullt soils occur in slumps on the broad ridge tops. Inclusions of Steiwer and Willakenzie may be expected in the unit. The Steiwer and Willakenzie soils occur on low rolling hills adjacent to the valley terraces.

12-23-55 W

12x-23x W

12x-23x WV

2,000 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. An association of about fifty percent deep Jory soils, about thirty percent moderately deep <u>Nekia</u> soils and about twenty percent deep <u>Laurelwood</u> soils. Nekia soils occur on the ridge tops and on the ridge noses and on the short, steep escarpments. The Laurelwood soils occur on long convex slopes. The complex slope pattern consists of low mounds with about twenty feet of relief and covers 3 to 10 acres.

- 12-23-26 W 2,500 acres, 10 to 35% slopes. An association of about forty percent deep Jory soils, about thirty percent moderately deep <u>Nekia</u> soils and about thirty percent moderately deep <u>Dixonville</u> soils. Nekia soils occur on the ridge tops and the ridge noses and on the steeper sideslopes. The Dixonville soils occur on the broad convex slopes at lower elevations. Inclusions of Ritner soils occur on steep escarpments.
- 12-24-23 W 900 acres, 10 to 35% slopes. An association of about forty percent deep Jory soils, about thirty percent deep skeletal Ritner soils and about thirty percent moderately deep <u>Nekia</u> soils. Ritner soils occur on the short, steep escarpment slopes and in areas with large slumps. The Nekia soils occur on the broad ridge noses and ridge tops.
- 12x W 1,100 acres, 10 to 35% slopes. Predominantly deep Jory soils derived from sedimentary rocks. Inclusions of moderately deep Nekia soils are intermingled.

12x-23x W 4,800 acres, 35 to 60% slopes.

- 12x-23x X 1,700 acres, 35 to 60% slopes.
 - 3,000 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. 3,000 acres, 0 to 35% slopes. Mostly 10 to 35% slopes. Associations of about sixty percent deep Jory soils with about forty percent moderately deep <u>Nekia</u> soils. Nekia soils occur on the ridge tops and the ridge noses. Both soils were derived from sedimentary rocks. Small inclusions of skeletal Ritner soils may occur on the steep, short sideslopes adjacent to the drainages.
- 12x-23x-67 W 800 acres, 10 to 35% slopes. An association containing about forty percent deep Jory soils, about thirty percent moderately deep Nekia soils and about thirty percent moderately deep Willakenzie soils. Nekia soils occur predominantly on the ridge tops and the ridge noses. The Willakenzie soils occur on rolling hills adjacent to the valley terraces.

Honeygrove (14) Over basic igneous rock (tentative series) Honeygrove (14x) Over sedimentary rock

The Honeygrove series consists of deep, well drained soils formed in colluvium from basic igneous and sedimentary rock. The Honeygrove soils are on sloping to very steep mountainous slopes.

The Honeygrove soils are used for timber and orchards. The Honeygrove soils have no serious limitations except in local areas which have a dense subsoil that limits root penetration.

Profile Description: Honeygrove clay (14x)

occur at random.

Surface soil: 0-12" Dark reddish brown clay, friable, slightly acid. Subsoil: 12-105"Dark red clay, friable, strongly acid. Substrata: 105"+ Variegated brown and yellow shale fragments.

Setting:

The topography on which the Honeygrove soils occur is represented by broad ridges, rounded ridge noses and sideslopes with a moderately dense dissection pattern. The Honeygrove series occur higher in elevation than the Jory soils and are distributed throughout the survey area. Annual precipitation ranges from 60 to 90 inches.

Mapping Units:

14 W	4,800 acres, 10 to 35% slopes.
14 X	6,800 acres, 35 to 60% slopes.
14 VW	4,000 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
14 WV	1.800 acres. 0 to 35% slopes. Mostly 10 to 35% slopes.
	Predominantly deep Honeygrove soils. Minor inclusions of
	moderately deep Peavine soils occur throughout the unit.
14-20 W	152,700 acres, 10 to 35% slopes.
14-20 X	5,600 acres, 35 to 60% slopes.
14-20 VW	18,600 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
14-20 WV	7,100 acres, 0 to 35% slopes. Mostly 10 to 35% slopes.
14-20 WX	9,300 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
14-20 XW	4,000 acres, 10 to 60% slopes. Mostly 35 to 60% slopes.
	Associations of about seventy percent deep Honeygrove soils
	with about thirty percent moderately deep Peavine soils.
	The Peavine soils occur at the crests of the rolling hills
	and at random. Inclusions of Jory and Nekia soils may be
	expected at lower elevations.
14-50 X	700 acres. 35 to 60% slopes. An undifferentiated unit
	containing about seventy percent deep Honevorove soils and
	about thirty percent deep Apt soils. The overall
	topography of the mapping unit is gently sloping to steep.
	A few areas have very steep escarpments. Minor inclusions
	of deep Hullt soils occur at random. Inclusions of Marty
	or Hembre soils occur on the ridge noses and the very steen
	escarpments. Small areas of moderately deen Deavine soils
	- COARTNMENTOL ANGIT GIAGO AT MANGIGICIL AREA LEGATHE DATIO

-65-

14-258 WV 14-258 WX	6,100 acres, 0 to 35% slop 1,100 acres, 10 to 60% slop sixty percent deep Honeygro	6,100 acres, 0 to 35% slopes. 1,100 acres, 10 to 60% slopes. Associations of about sixty percent deep Honeygrove soils with about forty						
	percent deep Kinton soils. rounded ridges.	The Kinton soils occur on	the					

14x W2,800 acres, 10 to 35% slopes.14x X2,900 acres, 35 to 60% slopes. Predominantly deep
Honeygrove soils which were derived from sedimentary
rocks. Minor inclusions of moderately deep Peavine soils
occur on some of the ridge noses.

14x-20x W 4,300 acres, 10 to 35% slopes. 14x-20x X 1,200 acres, 35 to 60% slopes. Associations of about sixty percent deep <u>Honeygrove</u> soils, which were derived from sedimentary rocks, with about forty percent moderately deep Peavine soils, which were derived from sedimentary rocks. The Peavine soils occur on the ridge tops and the ridge noses. Also, areas of Peavine soils may be found on the steeper sideslopes. Inclusions of the McCully soils may occur at higher elevations.

14x-50 W 10,000 acres, 10 to 35% slopes. An undifferentiated unit containing about sixty percent deep <u>Honeygrove</u> soils, which were derived from sedimentary rocks, and about forty percent deep <u>Apt</u> soils. Inclusions of deep Marty soils may be expected on the long convex ridge noses.

14x-50-66 W 1,400 acres, 10 to 35% slopes. An undifferentiated unit containing about forty percent deep Honeygrove soils which were derived from sedimentary rocks, about thirty percent deep Apt soils, and about thirty percent deep Digger soils.

Hullt (15) (tentative series)

The Hullt series consists of deep well drained soils formed in colluvium from basic igneous and sedimentary rocks. The Hullt soils are on sloping to very steep mountainous slopes.

The Hullt soils are used for timber production. The dry summer period is the most serious limitation.

Profile Description: Hullt clay loam

Surface soil	: 0-15"	Dark brown clay loam, friable, medium acid. Twelve to 18 inches thick.
Subsoil:	15-55"	Reddish brown silty clay loam, firm, very strongly
Substrata:	55-65"	acid. Forty to 58 inches thick. Variegated strong brown and pinkish gray weathered
		sandstone.

Setting:

The topography upon which the Hullt series occur is represented by moderately sharp ridges and ridge noses with a dense, shallow dissection pattern. Annual precipitation ranges from 45 to 60 inches.

Mapping Units:

15 X 15 Y	1,000 acres, 35 to 60% slopes. 600 acres, 60 to 90%+ slopes. Predominantly deep Hullt soils. Inclusions of deep Jory soils and moderately deep
	Nekia soils occur at random.
15 00 V	000 serves 25 to 60% closes. An acception of about

15-23 X 900 acres, 35 to 60% slopes. An association of about seventy percent deep Hullt soils with about thirty percent moderately deep <u>Nekia</u> soils. Nekia soils occur on the ridge noses at lower elevations.

- 15-23-12XY 2,700 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes. An undifferentiated unit containing about forty percent deep Hullt soils, about thirty percent moderately deep Nekia soils, and about thirty percent deep Jory soils. Inclusions of Klickitat soils may be expected on the steep escarpments.
- 15-67 Y 1,300 acres, 60 to 90% slopes. An undifferentiated unit containing about 70 percent deep Hullt soils with about thirty percent moderately deep Willakenzie soils.

Olyic (16) (tentative series)

The Olyic series consists of deep, well-drained soils formed in colluvium. The Olyic soils are on sloping to very steep mountainous slopes.

The Olyic soils are used for timber with the more gentle slopes adjacent to bottomlands used for pasture and orchards. The Olyic soils have no serious limitations for timber production.

Profile Description: Olyic silt loam.

Surface soil:	0-15"	Dark reddish brown silt loam, friable, medium
		acid. Eleven to 15 inches thick.
Subsoil:	15-44"	Reddish brown silty clay loam, firm, very strongly acid. Twenty-four to 33 inches thick.
Substrata:	44-59**	Dark brown gravelly clay loam, very firm, very strongly acid.

Setting:

The topography on which the Olyic soils occur is represented by rolling hills with rounded ridge tops and strongly sloping to steep sideslopes. Annual precipitation ranges from 60 to 80 inches. The distribution of the Olyic series is confined to the north portion of the Coast Range.

16 W 16 X 16 Y	9,800 acres, 10 to 35% slopes. 13,300 acres, 35 to 60% slopes. 5,200 acres, 60 to 90%+ slopes. Predominantly deep Olyic
	soils. Inclusions of Honeygrove soils occur at random.
16-14 W	700 acres, 10 to 35% slopes.
16-14 X	4,800 acres, 35 to 60% slopes. Associations of about sixty percent deep <u>Olyic</u> soils with about forty percent deep <u>Honey-</u> <u>grove</u> soils. Honeygrove soils occur on the steep sideslopes adjacent to the deep dissections. Inclusions of Peavine soils occur on the ridge tops and the ridge noses. Inclusions of Klickitat soils occur on the steep sideslopes.
16-14x W 16-14x X	3,000 acres, 10 to 35% slopes. 6,700 acres, 35 to 60% slopes. Associations of about sixty percent deep <u>Olyic</u> soils with about forty percent deep <u>Honeygrove</u> soils which were derived from sedimentary rocks. Inclusions of Apt soils occur on the slumps. Inclusions of Klickitat soils occur on the steeper sideslopes.

16-60 W 16-60 X	2,700 acres, 10 to 35% slopes. 3,300 acres, 35 to 60% slopes. Association of about
	seventy percent deep <u>Olyic</u> soils with about thirty per- cent moderately deep <u>Melby</u> soils. The Melby soils are
	on the lower sloping footslopes. Inclusions of Honey- grove soils occur on the steeper dissected sideslopes.
16-258 XY	5,400 acres, 35 to 90%+ slopes. Mostly 35 to 60%

5,400 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes. An association of about sixty percent deep <u>Olyic</u> soils with about forty percent deep <u>Goble</u> soils. The Goble soils occur on long broad gentle ridges and and on ridge noses. Inclusions of Marty soils occur at random.
<u>Cazadero (17)</u> (tentative series)

The Cazadero series consists of deep, well drained soils formed in old alluvium.

The Cazadero soils are used for timber production and cropland. Dry summers are the limiting factor for tree growth.

Profile Description: Cazadero silt loam

Surface soil:	0-8"	Dark brown silt loam, friable, medium acid.
Subsoll: Substrata:	8 75" 75"+	Variegated brown, red, and yellow silt loam, firm,
		strongly acid.

Setting:

The topography on which the Cazadero soils occur is represented by gently sloping terraces and rolling hills. Annual precipitation ranges from 60 to 80 inches. These soils occur in the northern portion of the Willamette Valley.

Mapping Units:

Soils of the Cazadero series are not dominant in any of the mapping units and occur as secondary soils in units of the <u>Bull Run</u> Series.

<u>Cruiser (19)</u> (proposed series)

The Cruiser series consists of deep, well drained soils formed in colluvium from basic igneous rock. The Cruiser soils are on moderately steep mountain slopes.

The Cruiser soils are used for timber production. The limiting factor for timber production is cold temperatures at high elevations.

Profile Description: Cruiser stony loam

Surface soil:	0-16"	Dark reddish brown stony loam, friable, very	
		strongly acid. Eight to 16 inches thick.	
Subsoil:	16-43"	Dark reddish brown stony clay loam, friable, very	
		strongly acid. Fourteen to 22 inches thick.	
Substrata:	43"+	Partially weathered rock.	

Setting:

The topography on which Cruiser soils occur is represented by broad undulating ridges with steep sideslopes. The mean annual precipitation ranges from 100 to 120 inches. The distribution is mainly on the Cascade Mountains with a small portion occurring on the Laurel Mountain area.

19	VW	3,700 acres, 0 to 35% slopes.
19	Х	1,300 acres, 35 to 60% slopes.
19	XW	2,000 acres, 10 to 60% slopes. Mostly 35 to 60% slopes.
		Predominantly deep, stony Cruiser soils. Inclusions of
		75S soils occur on the steeper sideslopes.

<u>Peavine (20)</u> Over basic igneous rock (tentative series) <u>Peavine (20x)</u> Over sedimentary rock

The Peavine series consists of moderately deep well drained soils formed in colluvium from basic igneous and sedimentary rocks. The Peavine soils are on sloping to very steep mountainous uplands.

The Peavine soils are used for timber, orchards, small grain, and pasture production. The only limitation for timber production is depth to bedrock.

Profile Description: Peavine silty clay loam

Surface soil:	0-10"	Dark brown silty clay loam, friable, medium acid.
		Six to 15 inches thick.
Subsoil:	10-36"	Yellowish red silty clay, firm, very strongly
		acid. Twelve to 23 inches thick.
Substrata:	3 6- 64"	Yellowish red and light yellowish brown silty clay loam, firm, very strongly acid, 80% shale fragments.

Setting:

The topography upon which the Peavine soils occur is represented by broad, rounded ridge tops and ridge noses and on short, steep sideslopes. The dissection pattern is moderately dense. These soils are usually on the moderately steep areas between the sloping Jory and Nekia soil associations and the steep topography which occurs at higher elevations. Mean annual precipitation ranges from 55 to 70 inches. These soils are distributed throughout the survey area.

Mapping Units:

800 acres, 10 to 35% slopes.
600 acres, 35 to 60% slopes. Predominantly moderately deep
Peavine soils. Inclusions of Honeygrove soils occur in
concave positions.
30,500 acres, 10 to 35% slopes.
1,100 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
38,100 acres, 35 to 60% slopes.
1,300 acres, 10 to 60% slopes. Mostly 35 to 10% slopes.
Associations of about sixty percent moderately deep Peavine
soils with about forty percent deep Honeygrove soils.
Honeygrove soils occur on the uniform sideslopes.
Inclusions of the McCully soils occur at higher elevations.
Inclusions of the Klickitat soils occur on the steeper
sideslopes and the escarpments.
2,000 acres, 35 to 60% slopes. An association containing
about seventy percent moderately deep Peavine soils with
about thirty percent deep Hullt soils. The Hullt soils
occur at higher elevations on the uniform or concave

steeper sideslopes and the escarpments.

sideslopes. Inclusions of Klickitat soils occur on the

20-57 W

1,400 acres, 10 to 35% slopes. An association of about seventy percent moderately deep <u>Peavine</u> soils with about thirty percent deep <u>Preacher</u> soils. Preacher soils occur on the slump escarpments and on the gently sloping convex ridges. Inclusions of 69S soils occur at random.

20-295 W	4,400 acres, 10 to 35% slopes.
20-295 X	77,700 acres, 35 to 60% slopes.
20-295 WX	2,300 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
20-295 XY	15,700 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
20-295 Y	5,800 acres, 60 to 90%+ slopes. Associations of about
	sixty percent moderately deep Peavine soils with about
	forty percent moderately deep Klickitat soils. Klickitat
	soils occur on the steeper sideslopes. On some ridge noses
	and on the escarpments. Inclusions of the Honevgrove soils
	occur on the concave sideslopes.

20x-14x W 20x-14x X 5,300 acres, 10 to 35% slopes. 7,700 acres, 35 to 60% slopes. Associations containing about seventy percent moderately deep <u>Peavine</u> soils, which were derived from sedimentary rock, with about thirty percent deep <u>Honeygrove</u> soils which were derived from sedimentary rock. Honeygrove soils occur on the uniform sideslopes. Inclusions of Jory and Nekia soils occur at

at higher elevations.

lower elevations and inclusions of the Blachly soils occur

-73-

Unnamed (21)

This series consists of moderately deep, well drained soils formed in colluvium. These soils are on sloping to very steep mountain slopes.

These soils are used for timber production. The main limitation for timber production is depth of rock.

Profile Description:

Surface soil:	0-11"	Dark brown silt loam, friable.	
Subsoil:	11-31"	Reddish brown silty clay loam, firm.	
Substrata:	31-39"	Reddish brown very shaley clay loam grading t	;0
		bedrock.	

Setting:

The topography on which unit 21 soils occur is represented by sharp ridges, sharp finger ridges, moderately dense dissection pattern, and numerous slumps. Areas of unit 21 soils occur adjacent to Hembre soils. Unit 21 soils are distinguished from Hembre (basalt bedrock) soils by having numerous slumps. They are distinguished from Hembre (diorite bedrock) soils by having sharp ridges and finger ridges. Annual precipitation ranges from 60 to 100 inches. The distribution is limited to Polk County.

Mapping Units:

21 X	6,600 acres, 35 to 60% slopes.
21 Y	800 acres, 60 to 90%+ slopes. Predominantly moderately
	deep unit 21 soils. Inclusions of Kilchis soils occur on
	the ridge noses and steep sideslopes.

21-14x Y 500 acres, 60 to 90%+ slopes. An association of about sixty percent moderately deep unit <u>21</u> soils with about forty percent deep <u>Honeygrove</u> soils which were derived from sedimentary rock. Honeygrove soils occur on the steep uniform sideslopes. Inclusions of Klickitat and Kilchis soils occur on the ridge noses and the very steep excarpments.

21-27n XW 3,200 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. An undifferentiated unit containing about fifty percent moderately deep unit 21 soils and about fifty percent deep <u>Hembre</u> soils. Inclusions of the Kilchis and Klickitat soils occur on the ridge tops, the ridge noses, and the steeper sideslopes. <u>Nekia (23)</u> Over basic igneous rock (tentative series) Nekia (23x) Over segimentary rock

The Nekia series consists of moderately deep, well drained soils formed in colluvium. The Nekia soils are on sloping to very steep mountainous slopes.

The Nekia soils are used for timber, orchards, and grass seed production. Bare Nekia soils have a high erosion hazard. The limiting factors for timber production are the dry summer months and depth to bedrock.

Profile Description:

Surface soil:	0-18*	Dark reddish brown clay, friable, strongly acid.
		Twelve to 18 inches thick.
Subsoil:	18-36"	Dark reddish brown clay, firm, strongly acid.
		Seventeen to 25 inches thick.
Substrata:	36-45"	Yellowish red very stony clay, firm strongly acid.

Setting:

The topography upon which the Nekia soils occur is represented by gently sloping long, broad ridges and finger ridge noses with a sparse dissection pattern. On the steeper slopes the ridge noses are rounded and drainages are very steep. Annual precipitation ranges from 40 to 60 inches. These soils are distributed throughout the survey area.

23 W 23 X	l,400 acres, 10 to 35% slope. l,100 acres, 35 to 60% slope. Predominantly moderately deep Nekia soils. Inclusions of Jory soils occur on the concave sideslopes.
23-12 W 23-12 X	23,700 acres, 10 to 35% slope. 20,600 acres, 35 to 60% slope. Associations containing about sixty percent moderately deep <u>Nekia</u> soils with about forty percent deep <u>Jory</u> soils. Jory soils occur on the concave sideslopes. Inclusions of Ritner soils occur on the ridge noses and ridge tops. Inclusions of the Willakenzie soils occur at random.
23-365 W 23-365 X 23-365 WX	3,400 acres, 10 to 35% slopes. 1,100 acres, 35 to 60% slopes. 1,800 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. Associations containing about seventy percent moderately deep <u>Nekia</u> soils with about thirty percent shallow <u>Witzel</u> soils. Witzel soils occur on the rige tops, the ridge noses, and adjacent to the drainages. Inclusions of the Jory soils occur on the concave sideslopes. Inclusions of the Ritner soils occur at random.

23-365-26 W	1,100 acres, 10 to 35% slopes. An association containing about forty percent moderately deep <u>Nekia</u> soils, about thirty percent shallow <u>Witzel</u> soils and about thirty percent moderately deep <u>Dixonville</u> soils. Witzel soils occur on the ridge tops and the ridge noses. The Dixonville soils occur on the lower, rounded footslopes. Inclusions of Willakenzie occur at random.
23-26 W	1,200 acres, 10 to 35% slopes.
23 - 26 X	1,200 acres, 35 to 60% slopes. Associations containing about sixty percent moderately deep <u>Nekia</u> soils with about forty percent moderately deep <u>Dixonville</u> soils. Dixonville soils occur at lower elevations on the rounded footslopes.
23-24 W	1.400 acres. 10 to 35% slopes.
23-24 X	5,200 acres, 35 to 60% slopes. Undifferentiated units containing approximately sixty percent moderately deep <u>Nekia</u> soils with about forty percent deep skeletal <u>Ritner</u> soils. Inclusions of Jory occur on the concave sideslopes.
23-295 WX	600 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. An association containing about sixty percent moderately deep <u>Nekia</u> soils with about forty percent moderately deep <u>Klickitat</u> soils. Klickitat soils occur on the steeper

moist slopes. This unit occurs on the steepest slopes adjacent to the head of streams and tributaries cutting up into large areas of Jory and Nekia soils which occur above. Inclusions of Kinton and Cascade soils are located adjacent to the large areas of Kinton and Cascade soils.

23x-12x-67 X

2,000 acres, 35 to 60% slopes. An undifferentiated unit containing approximately forty percent moderately deep <u>Nekia</u> soils; approximately thirty percent deep Jory soils, and approximately thirty percent moderately deep <u>Willakenzie</u> soils.

<u>Ritner (24)</u> (tentative series)

The Ritner series consists of deep soils derived from colluvium. Ritner soils are on moderately steep or very steep slopes.

The Ritner soils are used for timber production. The limiting factors for timber production are the stone content and low summer precipitation.

Profile Description: Ritner gravelly silty clay loam

Surface soil:	0-12"	Dark reddish brown gravelly silty clay, friable, medium acid. Nine to 17 inches thick.
Subsoil:	1 2 42"	Dark reddish brown very gravelly clay, firm, 60 percent gravel and rocks, strongly acid. Twenty
Substrata:		Bedrock.

Setting:

The topography on which the Ritner soils occur is represented by steep sideslopes. Annual precipitation ranges from 40 to 60 inches.

Mapping Units:

Soils of the <u>Ritner</u> series are not dominant in any of the mapping units and occur as secondary soils in mapping units of the <u>Jory</u> and <u>Nekia</u> series.

<u>Whetstone (25)</u> (tentative series)

The Whetstone series consists of moderately deep soils derived from colluvium. The Whetstone soils are on moderately steep to very steep slopes.

The Whetstone soils are used for timber production. Cold climate is the main limitation for timber production.

Profile Description: Whetstone stony loam

Surface soil:	1-5"	Dark reddish brown loam, firm, weakly cemented,
		extremely acid. Three to 6 inches thick.
Subsoil:	5-19"	Dark brown stony loam, friable, very strongly
		acid. Twelve to 16 inches thick.
Substrata:	19-48"+	Dark yellowish brown stony loam, friable, very strongly acid. Several feet thick.

Setting:

The topography upon which the Whetstone soils occur is represented by even, steep sideslopes. Annual precipitation ranges from 70 to 90 inches. These soils are located in Marion County.

	deep Whetstone soils.	
25 Y	4,500 acres, 60 to 90%+ slopes.	Predominantly moderately
25 X	9,000 acres, 35 to 60% slopes.	•
25 W	800 acres, 10 to 35% slopes.	

<u>Dixonville (26)</u> (tentative series)

The Dixonville series consists of moderately deep, well drained soils derived from Colluvium.

The Dixonville soils are used for pasture and timber production. Dry summers and a firm subsoil limits these soils for timber production.

Profile Description: Dixonville silty clay loam

Surface soil:	4-12"	Very dark brown silty clay loam, friable, medium
		acid. Ten to 16 inches thick.
Subsoil:	12-34"	Dark reddish brown clay, very firm, slightly acid.
		Fourteen to 30 inches thick.
Substrata:	24-40"+	Decomposed rock.

Setting:

The topography upon which the Dixonville soils occur is represented by steep foothills, rounded ridge noses and rounded hill tops. Annual precipitation ranges from 35 to 60 inches. These soils are distributed throughout the survey area at lower elevations.

Mapping Units:

Soils of the <u>Dixonville</u> series are not dominant in any mapping unit and occur as secondary soils in mapping units of the <u>Jory</u>, <u>Nekia</u>, <u>Witzel</u> and Steiwer series.

<u>Hembre (27)</u> (tentative series) <u>Hembre (27n)</u>

The Hembre series consists of deep, well drained soils derived from colluvium. The Hembre soils are on sloping to very steep mountainous slopes.

The Hembre soils are used for timber production. They have no serious limitations for timber production.

Profile Description: Hembre loam

Surface soil:	0-12"	Dark brown loam, friable, strongly acid. Ten to 14 inches thick.
Subsoil:	12-44"	Reddish brown clay loam, friable, very strongly acid. Thirty-two to 42 inches thick.
Substrata:	44"+	Basalt bedrock.

Setting: (27n)

A. The Hembre soils designated (27n) are formed on igneous intrusive rocks. These intrusive rocks occur as broad caps with varying degrees of thickness over sedimentary rocks, as stringers along ridges or as vertical columns penetrating through the sedimentary rocks. In all cases, the underlying sedimentary materials weather, slump, and erode away leaving the more resistant intrusive rocks to shape the main ridges and mountains.

The topography on which the Hembre (27n) soils occur is represented by broad, rounded ridges and rounded finger ridges with a noticeable number of large slumps on the sideslopes. The overall landscape is generally unstable due to the sedimentary rock eroding away from under the intrusive cap. The dissection pattern is sparse. Hembre (27n) soils occur mainly in the Coast Range portion of the survey area.

Setting: (27)

B. The Hembre soils designated (27) are formed on basic igneous extrusive rocks. The topography on which the Hembre (27) soils occur is represented by sharp ridges, numerous sharp finger ridges and numerous sharp draws which are perpendicular to the stream valleys and steep sideslopes. The area is almost entirely free of slumps. The overall landscape is quite stable.

7,700 acres, 10 to 35% slopes.
2,600 acres, 35 to 60% slopes. Predominantly deep Hembre
soils. Inclusions of Klickitat soils occur on the ridge
tops and the ridge noses.
1,000 acres, 35 to 60% slopes.
1,400 acres, 60 to 90%+ slopes. Associations containing
about sixty percent deep <u>Hembre</u> soils with about thirty
percent shallow Kilchis soils. Kilchis soils occur on the
ridge tops and ridge noses. Inclusions of Klickitat soils

occur adjacent to the Kilchis soils and at random on the sideslopes.

27n Y 27n XW 8,500 acres, 60 to 90%⁺ slopes. 8,400 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Predominantly deep <u>Hembre</u> soils. Inclusions of the Klickitat and Kilchis soils occur on the ridge tops and ridge noses.

27n-35S Y 1,700 acres, 60 to 90%+ slopes. An association of about sixty percent deep <u>Hembre</u> soils with about forty percent shallow <u>Kilchis</u> soils. The Kilchis soils occur on the ridge noses. Inclusions of Klickitat soils occur at random.

27-29S X

3,000 acres, 35 to 60% slopes. An undifferentiated unit containing about sixty percent deep <u>Hembre</u> soils with about forty percent moderately deep <u>Klickitat</u> soils. Inclusions of the Kilchis soils occur mostly on the ridge tops and the ridge noses.

27-295-355 Y

30,200 acres, 60 to 90%⁺ slopes. An association containing thirty-five percent deep <u>Hembre</u> soils, thirty percent moderately deep <u>Klickitat</u> soils, twenty-five percent shallow <u>Kilchis</u> soils, and ten percent rock outcrop. Hembre soils dominantly occur on the lower 1/3 of the slope. Small bodies of Hembre soils my be expected to to occur at random on the upper 2/3 of the slope. The moderately deep Klickitat soil dominantly occurs on the upper 2/3 of the slope. The Kilchis soil dominantly occurs on the upper 1/3 of the slope, the ridge noses, and the ridge tops.

27n Y 27n X

13, 000 acres, 10 to 35% slopes. 50,000 acres, 35 to 60% slopes. This mapping unit is composed of deep <u>Hembre</u> soils. Inclusions of Klickitat and Kilchis soils occur on the ridge tops and the ridge noses.

<u>Klickitat (295)</u> (tentative series)

The Klickitat series consists of moderately deep, well drained soils formed in colluvium. The Klickitat soils are on moderately steep to very steep mountainous slopes.

The Klickitat soils are used for timber production. The limiting features for timber production are depth to bedrock and high stone content.

Profile Description: Klickitat gravelly clay loam

Surface soil:	0-15"	Dark reddish brown very gravelly clay loam,
		friable, strongly acid. Eleven to 22 inches thick.
Subsoil:	29- 47"	Dark brown very gravelly loam, very friable, very strongly acid, 70% coarse fragments. Fifteen to 20 inches thick.

Setting:

The topography upon which the Klickitat soils occur is represented by sharp ridge tops and ridge noses and on steep or very steep sideslopes adjacent to the drainages. The dissection pattern is moderately sparse. There are few slumps. Annual precipitation ranges from 80 to 120 inches. These soils are distributed throughout the survey area.

29S X 29S Y 29S WX 29S XY	<pre>17,500 acres, 35 to 60% slopes. 22,700 acres, 60 to 90%+ slopes. 1,600 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. 2,400 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes. Predominantly moderately deep <u>Klickitat</u> soils. Inclusions of Hembre soils occur on the uniform sideslopes.</pre>
	Inclusions of the Kilchis soils occur on the ridge tops and the ridge noses.
295-20 X 295-20 Y 295-20 XY	21,800 acres, 35 to 60% slopes. 4,200 acres, 60 to 90%+ slopes. 18,900 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes. Associations containing about sixty percent moderately deep <u>Klickitat</u> soils with about forty percent moderately deep <u>Peavine</u> soils. Peavine soils occur on the broad rounded ridge noses at lower elevations. Inclusions of the Kilchis soils occur at random.
295 - 27 Y	3,200 acres, 60 to 90%+ slopes. An association containing approximately seventy percent moderately deep <u>Klickitat</u> soils with about thirty percent deep <u>Hembre</u> soils. Hembre soils occur on the sideslopes between the ridge noses and the draws. Inclusions of the Kilchis soils occur on the ridge tops and the ridge noses.

295–27n X	1,000 acres, 35 to 60% slopes. An association containing about fifty percent moderately deep <u>Klickitat</u> soils with about forty percent deep <u>Hembre</u> soils. Hembre soils occur on the uniform or concave sideslopes. Inclusions of the Kilchis soils occur on the ridge tops and the ridge noses. Inclusions of the moderately deep Hembre variant soils occur at random.
295-355 X 295-355 Y	1,600 acres, 35 to 60% slopes. 69,800 acres, 60 to 90%+ slopes. Undifferentiated units containing approximately sixty percent moderately deep <u>Klickitat</u> soils with about forty percent shallow <u>Kilchis</u> soils. Inclusions of rock outcrop occur on ridge noses.
295-60 Y	1,000 acres, 60 to 90%+ slopes. An association containing approximately sixty percent moderately deep <u>Klickitat</u> soils, with about forty percent deep <u>Melby</u> soils. Melby soils occur on the rounded or convex sideslopes. Inclusions of the Kilchis soils occur on the ridge tops.
295-695 Y	1,000 acres, 60 to 90%* slopes. An association containing approximately sixty percent moderately deep <u>Klickitat</u> soils, with about forty percent moderately deep unit <u>69S</u> soils. Unit 69S soils occur on the escarpments and at random.
295-111 W 295-111 X	500 acres, 10 to 35% slopes. 6,100 acres, 35 to 60% slopes. Associations of about sixty percent moderately deep <u>Klickitat</u> soils with about forty percent deep <u>McCully</u> soils. McCully soils occur on the broad smooth sideslopes while the Klickitat soils occur on the steeper escarpments. Inclusions of the Kilchis soils occur on the steeper escarpments. Inclusions of the Kilchis soils occur on convex sideslopes and the sharper ridge noses.
000 157 V	$1 100$ error 25 ± 600 clones

295-157 X 295-157 Y 1,100 acres, 35 to 60% slopes. 6,800 acres, 60 to 90% slopes. Undifferentiated units containing about sixty percent moderately deep <u>Klickitat</u> soils with about forty percent deep <u>Kinney</u> soils. Inclusions of Kilchis soils occur on ridge tops, ridge noses, and at random on the sideslopes.

29S-69S-157 X 29S-69S-157 WX 2,100 acres, 35 to 60% slopes. Associations containing about forty percent moderately deep unit <u>69S</u> soils, about thirty percent deep <u>Kinney</u> soils. Unit 69S soils occur on escarpments. Kinney soils occur on the broad, rounded ridge noses and on the concave sideslopes. Inclusions of Kilchis soils occur on ridge tops.

<u>Kilchis (355)</u> (established series)

The Kilchis series consists of stony, shallow, well drained soils formed in colluvium. The Kilchis soils are on steep to very steep mountainous slopes.

The Kilchis soils are used for timber production. The shallow depth and stone content are serious limitations for timber production.

Profile Description: Kilchis stony loam

Surface soil:	0-5"	Dark reddish brown stony loam, friable, strongly, acid. Four to 8 inches thick.
Subsoil:	5-12"	Dark reddish brown, very gravelly silt loam, friable, very strongly acid, 65% coarse fragments.
Substrata:	12-20"	Dark reddish brown very gravelly silt loam, friable, very strongly acid, 85% coarse fragments. Three to 10 inches thick.

Setting:

A. Associated with intrusive bedrock. The topography on which the Kilchis soils occur is represented by broad ridge tops and rounded ridge noses. The dissection pattern is relatively sparse. The Kilchis soils occur on the apex of the ridges and ridge noses, adjacent to rock outcroppings and on very steep escarpments.

B. Associated with extrusive bedrock. The topography on which the Kilchis soils occur is represented by sharp ridge tops, numerous sharp bottoms, and plentiful rock outcroppings. The Kilchis soil is dominant on the upper 1/3 of the slope, especially on, and adjacent to, the ridge tops. Annual precipitation ranges from 80 to 120 inches. These soils are distributed throughout the survey area.

Mapping Units:

35 5-39 5 Y	6,400 acres, 60 to 90% slopes. An undifferentiated unit containing approximately sixty percent shallow <u>Kilchis</u> soils with about forty percent moderately deep <u>Klickitat</u> soils. Inclusions of rock outcrop occur on the ridge tops and the ridge noses and at random on the sideslopes. Inclusions of Hembre soils occur on small concave positions on sideslopes. This unit generally occurs on drainage escarpments.
355-695 Y	2,900 acres, 60 to 90%+ slopes. An undifferentiated unit containing about sixty percent shallow <u>Kilchis</u> soil with about forty percent moderately deep unit <u>695</u> soils. Inclusions of Klickitat soils occur at random.
355-R Y	10,400 acres, 60 to 90% + slopes. An undifferentiated unit containing about fifty percent shallow <u>Kilchis</u> soils with about fifty percent rock outcrop. Major inclusions of the

shallow Kilchis soils.

moderately deep Klickitat soils occur intermingled with

<u>Witzel (36S)</u> (tentative series)

The Witzel series consists of shallow, stony, well drained soils formed in colluvium. The Witzel soils are on gently sloping, to steep foothills.

The Witzel soils are used for pasture. Dry summers, shallow depth and stone content are serious limitations for timber production.

Profile Description: Witzel very stony silty clay loam

Surface soil:	0-4"	Dark brown very stony silty clay loam, friable,
		medium acid. Two to 6 inches thick.
Subsoil:	4-19"	Dark reddish brown very stony silty clay loam, firm, medium acid. Eleven to 19 inches thick.
Substrata:	19"+	Bedrock.

Setting:

The topography upon which the Witzel soils occur is represented by low rolling foothills with rounded ridge noses. Annual precipitation ranges from 40 to 60 inches. These soils occur throughout the survey area.

Mapping Units:

36S W	500 acres, 10 to 35% slopes.
365 X	1,200 acres, 35 to 60% slopes.
365 WX	1,100 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
36S XY	1,900 acres, 35 to 90% + slopes. Mostly 35 to 60% slopes.
	Predominantly shallow Witzel soils.
365-26 W	5,200 acres, 10 to 35% slopes.
365 -2 6 X	1,700 acres, 35 to 60% slopes.
365-26 Y	600 acres, 60 to 90% + slopes.
365-26 VW	1,200 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
	Associations containing about sixty percent shallow Witzel soils with about forty percent moderately deep Dixonville soils. Dixonville soils occur on the uniform sideslopes and the broad rounded ridge noses. Inclusions of rock outcrop occur at random.
365-23 W	1.300 acres. 10 to 35% slopes.
365-23 X	1.000 acres. 35 to 60% slopes.
365-23 Y	4.000 acres. 60 to 90%+ slopes. Undifferentiated units
	containing about fifty percent Nekia soils. Inclusions of rock outcrop occur intermingled with Witzel soils.
365-26-23 W	6,300 acres, 10 to 35% slopes. An undifferentiated unit

365-26-23 W 6,300 acres, 10 to 35% slopes. An undifferentiated unit containing approximately forty percent shallow Witzel soils, about thirty percent moderately deep Dixonville soils and about thirty percent moderately deep Nekia soils.

-85-

36S-23x X

600 acres, 35 to 60% slopes. An undifferentiated unit containing about sixty percent shallow <u>Witzel</u> soils with about forty percent moderately deep <u>Nekia</u> soils, which were derived from sedimentary rocks. Inclusions of rock outcrop occur at random.

365-23-26 X 1,400 acres, 35 to 60% slopes. An undifferentiated unit containing about forty percent shallow <u>Witzel</u> soils, about thirty percent moderately deep <u>Nekia</u> soils, and about thirty percent moderately deep <u>Dixonville</u> soils. Inclusions of rock outcrop occur at random.

<u>Apt (50)</u> (tentative series)

The Apt series consists of deep, well and moderately well drained soils formed in colluvium. The Apt soils are on gently sloping to steep mountain sideslopes.

The Apt soils are used for timber production. The dense subsoil and unstable topography are limiting factors for timber production.

Profile Description: Apt clay

Surface soil:	0-8"	Dark brown clay, friable, strongly acid. Seven to 12 inches thick.
Subsoil:	8-49"	Brown silty clay, firm, very strongly acid. Thirty- four to 50 inches thick.
Substrata:	49-63"+	Yellowish brown silty clay loam, slightly firm, very strongly acid.

Setting:

The topography on which the Apt soils occur is represented by broad ridges, rounded ridge noses and a dense dissection pattern. Annual precipitation ranges from 60 to 80 inches. These soils are confined to the Coast Range portion of the survey area.

Mapping Units:

50	W	1,000 acres, 10 to 35% slopes.		
50	X	3,000 acres, 35 to 60% slopes. Predominantly deep	Apt	
		soils. Inclusions of Honeygrove and Peavine soils	; occur	at
		rancom		

50-14x W 1,100 acres, 10 to 35% slopes. An undifferentiated unit containing approximately sixty percent deep <u>Apt</u> soils with about forty percent deep <u>Honeygrove</u> soils which were derived from sedimentary rocks. Inclusions of Peavine soils occur at random.

50-66-14x X 1,000 acres, 35 to 60% slopes. An undifferentiated unit containing about forty percent deep <u>Apt</u> soils, about thirty percent deep <u>Digger</u> soils and about thirty percent deep Honeygrove soils which were derived from sedimentary rock.

<u>Astoria (51)</u> (established series)

The Astoria series consists of deep, well drained soils formed in colluvium. The Astoria soils are on gently sloping to very steep mountainous slopes.

The Astoria soils are used for timber production and pasture on the more gently sloping areas. There are no limiting features for timber production.

Profile Description: Astoria silt loam

Surface soil:	0-19"	Very dark grayish brown silt loam, friable, very
		strongly acid. Ten to 22 inches thick.
Subsoil:	19-50"	Dark yellowish brown silty clay, firm, very
		strongly acid. Twenty-six to 42 inches thick.
Substrata:	50-68"	Yellowish brown silty clay loam, firm very strongly acid. Fourteen to 22 inches thick.

Setting:

The topography on which the Astoria soils occur is represented by broad ridges, rounded ridge noses, and uniform sideslopes with a moderate amount of dissection. Contrasting, adjacent soils derived from basalt are differentiated by steeper slopes, sharper ridges, and a less dense dissection pattern. Annual precipitation ranges from 80 to 120 inches. These soils are located in the Coast Range portion of the survey area.

Mapping Units:

W			
X			
	W	W X	W X

14,700 acres, 10 to 35% slopes. 14,600 acres, 35 to 60% slopes. Predominantly deep <u>Astoria</u> soils. Minor inclusions of Ead soils occur on ridge noses. Inclusions of Hembre, Klickitat or Kilchis soils occur where intrusive rocks protrude.

<u>Fendall (52)</u> (tentatives series)

The Fendall series consists of moderately deep, well drained soils formed in colluvium. The Fendall soils are on sloping to steep mountainous slopes.

The Fendall soils are used for timber production. A dense subsoil limits Douglas-fir growth by restricting rooting depth.

Profile Description: Fendall gravelly clay loam

Surface soil:	0-13"	Black very gravelly clay loam, friable, very strongly acid. Eleven to 17 inches thick.
Subsoil:	13-31"	Yellowish brown clay, firm, extremely acid.
Substrata:	31"+	Fractured and weathered shale.

Setting:

The topography on which the Fendall soils occur is represented by rounded ridges and ridge noses and deep dissections. These soils occur in the Coast Range portion of the survey area. Average annual precipitation ranges from 80 to 120 inches.

52 W	800 acres,	10 to 35% slopes.	
52 X	4,200 acres,	35 to 60% slopes.	Predominantly moderately
	deep Fendall	gravelly clay loam	soils.

Unnamed (53S)

Unit 53S soils consists of moderately deep, stony soils formed in colluvium. Unit 53S soils are on very steep mountain slopes.

Unit 53S soils are used for timber production. Depth to bedrock and stone content are limiting factors for timber production.

Profile Description: Unit 53S very gravelly loam

Surface soil:	0-13"	Dark yellowish brown very gravelly loam, very friable, very strongly acid.	,
Subsoil:	13-39"	Dark brown very gravelly clay loam, friable, v strongly acid.	ery
Substrata:	39"+	Bedrock.	

Setting:

The topography on which unit 53S soils occur is represented by sharp ridges, sharp draws, sharp finger ridges, and a dense dissection pattern. The slopes are long and very steep. Annual precipitation ranges from 60 to 90 inches. These soils are located on the Cascade Mountains.

Mapping Units:

53S-70S Y

13,500 acres, 60 to 90%+ slopes. An association containing about fifty-five percent moderately deep unit <u>53S</u> soils with about forty-five percent shallow unit <u>70S</u> soils. Unit 70S soils occur on the sharp ridge tops and the sharp ridge noses and at random on the steep sideslopes. There are large major inclusions of the Marty soils occurring on the lower 1/3 of the slope on the rounded ridge noses. Overall topography of this unit has very sharp ridges, sharp ridge noses and sharp V bottoms. The drainage pattern is moderately dense. There is an absence of large landslide or mass flows. However, there are numerous shallow slips which are small. Roads and lack of vegetation accelerate these shallow slips which usually terminate at the bottom of the draws. Bedrock is quite fractured and often falls from the cut slopes on the road.

53S-70S-20 Y 22,200 acres, 60 to 90%+ slopes. An association containing about fifty percent moderately deep unit <u>53S</u> soils, about thirty percent shallow unit <u>70S</u> soils and about twenty percent moderately deep <u>Peavine</u> soils. Unit 70S soils occur predominantly on the ridge tops and the ridge noses and adjacent to the drainages. Peavine soils occur on the lower 1/3 of the slope on the rounded ridge noses. The overall topography resembles the unit listed above.

<u>Slickrock (54)</u> (tentative series)

The Slickrock series consists of deep, well drained soils formed in colluvium. The Slickrock soils are on sloping to very steep uneven mountainous slopes.

The Slickrock soils are used for timber production. Sometimes drainage is a limiting factor for timber production.

Profile Description: Slickrock gravelly loam

Surface soil:	0-7"	Very dark brown gravelly loam, friable, very strongly acid. Six to 13 inches thick.
Subsoil:	7– 55"	Dark brown stony clay loam, friable, very strongly acid, 45% coarse fragments. Thirty-seven to 55
Substrata:	55"+	inches thick. Weathered sandstone.

Setting:

The topography upon which the Slickrock soils occur is represented by uneven, dissected slumps or sideslopes. Annual precipitation ranges from 80 to 120 inches. These soils occur in the Coast Range portion of the survey area.

Mapping Units:

54 X

506 acres, 35 to 60% slopes. Predominantly deep <u>Slickrock</u> soils.

<u>Laurelwood (55)</u> (tentative series)

The Laurelwood series consists of deep, well drained soils formed in loess. The Laurelwood soils occur on the low lying uplands on long, convex slopes that are gently sloping to steep.

The Laurelwood soils are used for orchard, berry, grain, pasture and timber production. The dry summer season is the limiting factor in the soils.

Profile Description: Laurelwood silt loam

Surface soil:	0-23"	Dark brown silt loam, friable, medium acid.		
		Twenty to 26 inches thick.		
Subsoil:	23-52"	Yellowish brown silty clay loam, firm, medium acid. Twenty-five to 38 inches thick.		
Substrata:	52 - 72"+	Reddish brown silty clay, black mottles, strongly acid.		

Setting:

The Laurelwood soils occur on long, convex slopes that are gently sloping to steep. Annual precipitation ranges from 45 to 50 inches. These soils are limited to the northern portion of the survey area.

Mapping Units:

55-58-12 W 700 acres, 10 to 35% slopes. An undifferentiated unit containing about forty percent deep Laurelwood soils, about thirty percent deep Kinton soils, and about thirty percent deep Jory soils. The Jory soils usually occur adjacent to the drainage ways.

Cascade (56) (established series)

The Cascade series consists of very deep, somewhat poorly drained soils derived from loess over old, red clayey materials. The Cascade soils are on 0 to 35 percent slopes and occur on smooth to rolling broad ridges.

The Cascade soils are used for timber, small grain, orchards, and some rowcrops, such as strawberries. Drainage and a fragipan are the limiting factors for timber production.

Profile Description: Cascade silt loam

Surface soil:	0-8"	Very dark grayish brown silt loam, friable.
Subsoil:	8 - 94"	Dark yellowish brown clay loam, mixed brown and
		white soil materials, very firm, many coarse
		distinct yellowish brown mottles.
Substrata:	94 " +	Weathered basalt or old, red clayey materials.

Setting:

The topography on which the Cascade soils occur is represented by gently sloping to sloping, broad ridge tops, and finger ridges on low rolling hills. Annual precipitation ranges from 50 to 70 inches. These soils are restricted to the northern portion of the survey area.

Mapping Units:

Soils of the <u>Cascade</u> series are not dominant in any mapping unit and occur as secondary soils or inclusions in mapping of the <u>Goble</u> series.

<u>Preacher (57)</u> (tentatives series)

The Preacher series consists of deep, well drained soils formed in colluvium. The Preacher soils are on nearly level to steep slopes in mountainous terrain.

The Preacher soils are used for timber production.

Profile Description: Preacher clay loam

Surface soil:	0-14"	Dark brown clay loam, friable, very strongly acid.
		Nine to to inches thick.
Subsoil:	14-42"	Dark yellowish brown clay loam, friable, very strongly acid.
Substrata:	42 - 70"+	Yellowish brown clay loam grading into weathered sandstone.

Setting:

The topography on which the Preacher soils occur is represented by slumps, slump escarpments, and gently sloping convex ridges and smooth sideslopes. Annual precipitation ranges from 80 to 120 inches. These soils occur mainly on the Coast Range.

57 X	4,200 acres, 35 to 60% slopes. Predominantly deep <u>Preacher</u> soils. Inclusions of unit 69S soils occur on the ridge tops and the ridge noses.
57-695 W	1,100 acres, 10 to 35% slopes.
57-69S X	3,900 acres, 35 to 60% slopes.
5 7-69 5 WX	3,800 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
57 -69 s XW	2,900 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Associations containing about sixty percent deep <u>Preacher</u> soils with about forty percent moderately deep unit <u>69S</u> soils. Unit 69S soils occur on the ridge noses, the slump escarpments, and adjacent to the drainage ways. Inclusions of 175S soils occur on the ridge tops and the ridge noses.

<u>Kinton (58)</u> (tentative series)

The Kinton series consists of deep, moderately well drained soils derived from loess. The Kinton soils are on 3 to 20% slopes and occur on rolling uplands having long interfluvial slopes.

The Kinton soils are used for cultivated row crops, orchards, and timber production. A fragipan at 24 inches and dry summers are the limiting factors for timber production.

Profile Description: Kinton silt loam

Surface soil:	0-17"	Dark brown silt loam, friable, medium acid. Ten
		to 26 inches thick.
Subsoil:	17-30"	Dark yellowish brown silty clay loam, few faint
		mottles, firm. Nineteen to 42 inches thick.
Substrata:	30"+	Dark yellowish brown silt loam, cemented layer at
		top. Common reddish brown mottles, strongly acid.

Setting: (Columbia County)

The topography on which the Kinton soils occur is represented by long, broad, gentle ridges and finger ridge noses. These soils are on rolling hills which occur in northern Washington County and central Columbia County. Annual precipitation ranges from 42 to 46 inches. The distribution of these soils is limited to the northern portion of the survey area.

58 W	1,500 acres, 10 to 35% slopes.
58 X	1,900 acres, 35 to 60% slopes.
58 VW	1.300 acres. 0 to 35% slopes. Mostly 0 to 10% slopes.
58 WY	
JU WA	No acres, To to good stopes. Mostly To to sold stopes.
	Predominantly deep <u>Kinton</u> solls. Inclusions of Cascade
	soils occur at random. Inclusions of alluvium undifferen-
	tiated soils occur in the vally bottoms.
58-12 W	3.900 acres. 10 to 35% slopes.
59-12 WV	2,300 acres 0 to 35% slopes. Mostly 10 to 35% slopes.
JU-12 WV	2,500 acles, 0 to 500 sidpese mostly 10 to 500 sidpese
	Associations containing about seventy percent deep kincon
	soils with about thirty percent deep Jory soils. Jory
	soils occur on the sideslopes. Inclusions of 25 soils
	occur at random.
58-22 Y	1.200 acres. 35 to 60% slopes. An association of about
JU-20 A	sixty percent deen Vinter soils with shout forty percent
	sixty percent deep <u>kinton</u> soirs with about forty percent
	moderately deep Nekla solls. Nekla solls occur on the
	steeper sideslopes adjacent to the drainage ways.
	Inclusions of Cascade and Jory soils occur at random.
5 8 55 V	800 acres. O to 10% slopes.
58-55 WX	1.200 acres. 10 to 60% slopes. Mostly 10 to 35% slopes.
	Associations containing about seventy percent deep Kinton
	neile Lewelwood soils occur on the sideslones
	Solis. Laureiwood Solis occur on the sidestopes,
	especially at the lower one-third of the slope. Inclusions

of Cascade soils occur at random.

58-55-12 W 58-55-12 X 1,300 acres, 10 to 35% slopes. 3,800 acres, 35 to 60% slopes. Associations containing about forty percent deep <u>Kinton</u> soils with about thirty percent deep <u>Laurelwood</u> soils and about thirty percent deep <u>Jory</u> soils. Laurelwood soils occur on the sideslopes and Jory soils occur on the steeper slopes adjacent to the drainages.

58-256 VW 58-256 WV 58-256 WX 3,000 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. 1,700 acres, 0 to 35% slopes. Mostly 10 to 35% slopes. 1,400 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Associations of about sixty percent deep <u>Kinton</u> soils with about forty percent deep unit <u>256</u> soils. Unit 256 soils occur mostly on the gentle sloping ridge tops. Kinton soils occur mainly on the sideslopes. Inclusions of Nekia soils occur on the steepest slopes along the stream inclusions. Minor inclusions of undifferentiated alluvium occur on the floodplains.

<u>Melby (60)</u> (tentative series)

The Melby series consists of deep, well drained soils formed in colluvium. The Melby soils are on sloping to steep footslopes.

The Melby soils are used for timber and small grain production. The dense subsoil is the limiting factor for root growth.

Profile Description: Melby silty clay loam

Surface soil:	0-13"	Dark brown silty clay loam, friable, medium acid. Eleven to 15 inches thick.
Subsoil:	13-34"	Dark brown silty clay, firm, strongly acid. Eighteen to 26 inches thick.
Substrata:	34-63"	Yellowish brown silty clay, firm, strongly acid.

Setting:

The topography upon which the Melby soils occur is represented by rolling hills that are gently sloping to steep. Annual precipitation ranges from 60 to 70 inches. These soils occur on the Coast Range portion of the survey area.

60-10 W	400 acres, 10 to 35% slopes.
60-10 X	2,100 acres, 35 to 60% slopes.
60 - 10 Y	1,500 acres, 60 to 90%+ slopes. Undifferentiated units containing about sixty percent deep Melby soils with about
	forty percent deep Blachly soils.

<u>Ead (61)</u> (tentative series)

The Ead series consists of moderately deep, well drained soils formed in colluvium. The Ead soils are on gently sloping to steep, convex mountainous slopes.

The Ead soils are used for timber production.

Profile Description: Ead silty clay loam

Surface soil:	0-7"	Very dark brown silty clay loam, friable, very
Subsoil:	7-22"	Dark brown silty clay, firm, very strongly acid
Substrata:	22-33"	(pH 4.6). Thirteen to 19 inches thick. Strong brown silty clay, firm, extremely acid
		(pH 4.4). Nine to 16 inches thick.

Setting:

The topography upon which the Ead soils occur is represented by smooth, convex sideslopes. Annual precipitation ranges from 60 to 70 inches. The distribution of these soils is limited to the Coast Range area.

61 W	1,000 acres, 10 to 35% slopes.	
61 X	2,300 acres, 35 to 60% slopes.	Predominantly moderately
	deep Ead soils.	

Keel (62) (proposed series)

The Keel series consists of deep, well drained soils formed in colluvium. The Keel are on hilly to very steep slopes.

The Keel soils are used for timber production. Cold temperatures and stone content are the limiting factors for tree growth.

Profile Description: Keel loam

Surface soil:	0-15"	Dark brown loam, friable, very strongly acid.	Ten
		to 17 inches thick.	
Subsoil:	15-55"	Dark yellowish brown clay loam, friable, very strongly acid. Nineteen to 36 inches thick.	
Substrata:	55"+	Bedrock.	

Setting:

The topography on which the Keel soils occur is represented by broad, rounded ridges and uneven sideslopes at higher elevations. Annual precipitation ranges from 80 to 120 inches. The distribution of these soils is limited to the Cascade Mountains.

Mapping Units:

62 W	1.300 acres. 10 to 35	% slopes.	
62 X	3,200 acres, 35 to 60	% slopes. Predominantly deep Ke	el
	soils.		

62-19 X 600 acres, 35 to 60% slopes. An association containing about sixty percent deep Keel soils with about forty percent deep <u>Cruiser</u> soils. Cruiser soils occur on the broad ridge noses. Steiwer (65) (tentative series)

The Steiwer series consists of moderately deep, well drained soils formed in colluvium. The Steiwer soils are on 0 to 30 percent slopes.

The Steiwer soils are used for general crop production. Dry summer conditions are the limiting factor for tree growth.

Profile Description: Steiwer silty clay loam

Surface soil:	: 0–19"	Dark brown silty clay loam, friable, medium acid
Subsoil:	19-27"	Dark yellowish brown silty clay loam, firm,
Substrata:	27-40"+	Bedrock.

Setting:

The Steiwer soils occur on low rolling hills that are adjacent to the valley terraces. They are usually on the steeper slopes with southerly aspects. Annual precipitation ranges from 42 to 45 inches. These soils are distributed throughout the survey area at low elevations.

Mapping Units:

65-67 WX

1,100 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. An association containing about forty percent moderately deep <u>Willakenzie</u> soils. Willakenzie soils occur on slumpy topography and on slopes with a northerly aspect.

65-23x-67 W

67 W 600 acres, 10 to 35% slopes. An association containing about forty percent moderately deep <u>Steiwer</u> soils, about thirty percent moderately deep <u>Peavine</u> soils, which were derived from sedimentary rocks, and about thirty percent moderately deep <u>Willakenzie</u> soils. Peavine soils occur in the lower foot slopes adjacent to the valley floor. Willakenzie soils occur on the hummocky topography and on gently sloping northerly slopes.

65-26 VW 600 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. An association containing about seventy percent <u>Steiwer</u> soils with about thirty percent moderately deep Dixonville soils.

Digger (66) (tentative series)

The Digger series consists of moderately deep, well drained soils formed in colluvium. The Digger soils are on sloping to very steep mountainous slopes.

The Digger soils are used for timber production. Depth to bedrock and stone content are limiting factors for timber production.

Profile Description: Digger gravelly loam

Surface soil: 0-4" Dar str		ark grayish brown gravelly loam, friable, trongly acid. Four to 7 inches thick.	
Subsoil:	4- 30"	Brown gravelly loam, friable, very strongly acid. Twenty-two to 29 inches thick.	
Substrata:	30"+	Fractured sandstone.	

Setting:

The topography on which the Digger soils occur is represented by convex sideslopes and ridge noses. In high areas, Digger soils occur on recent slump escarpments. Annual precipitation ranges from 60 to 80 inches. Distribution of the Digger soils is limited to the Coast Range portion of the survey area.

66 W	800 acres, 10 to 35% slopes.
66 X	2,400 acres, 35 to 60% slopes. Predominantly moderately
	deep Digger soils. Inclusions of an unnamed shallow soil
· •	occur on the ridge tops and the ridge noses. Small
	inclusions of Melby soils occur on colluvial footslopes.
66-14 X	4,500 acres, 35 to 60% slopes. An association of about
	sixty percent moderately deep Digger soils with about forty
	forty percent deep Honeygrove soils. Honeygrove soils
	occur on the concave sideslopes. Minor inclusions of Apt
	soils occur on the slumps.
66-50 W	700 acres, 10 to 35% slopes.
66-50 X	1,900 acres, 35 to 60% slopes.
66-50 XY	9,600 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
	Associations of about sixty percent moderately deep Digger
	soils with about forty percent deep Apt soils. Apt soils
	occur on the rounded ridge noses and the concave side-
	slopes. Inclusions of Honeygrove and Peavine soils occur
	at random.
66-50-14x W	2,300 acres, 10 to 35% slopes.
66-50-14x X	10,600 acres, 35 to 60% slopes.
66-50-14x XW	1,000 acres, 10 to 60% slopes. Mostly 35 to 60% slopes.
66-50-14x XY	7,300 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
	Undifferentiated units containing about forty percent
	moderately deep Digger soils, about thirty percent deep Apt
	soils, and about thirty percent deep Honeygrove soils which
	were derived from sedimentary rocks. Inclusions of Peavine
	solls occur intermingled with the noneygrove solls.

<u>Willakenzie (67)</u> (tentative series)

The Willakenzie series consists of moderately deep well drained soils formed in colluvium. The Willakenzie soils are on gently sloping to steep foothills.

The Willakenzie soils are used for orchard, small grain, pasture and timber production. Dry summer conditions are the limiting factor for tree production.

Profile Description: Willakenzie silty clay loam

Surface soil:	0-12"	Dark brown silty clay loam, friable, medium acid.	
Subsoil:	12-32"	Ten to 19 inches thick. Dark brown silty clay loam, firm, medium acid.	
Substrata:	32-54"+	Sixteen to 27 inches thick. Yellowish red silty clay loam with 80% coarse fragments grading into bedrock.	

Setting:

The Willakenzie soils occur on smooth, convex uplands that may be slightly hummocky due to slumps. These soils are usually on the gentle slopes with a northerly aspect. Annual precipitation ranges from 40 to 50 inches.

Mapping Units:

67 V 67 W 67 X	<pre>1,300 acres, 0 to 10% slopes. 13,400 acres, 10 to 35% slopes. 3,600 acres, 35 to 60% slopes. Predominantly moderately deep <u>Willakenzie</u> soils. Inclusions of Steiwer soils occur on the southerly slopes. Inclusions of Nekia soils occur on the steeper lower sideslopes.</pre>		
67-12x W 67-12x X	2,200 acres, 10 to 35% slopes. 3,300 acres, 35 to 60% slopes. Associations containing about sixty percent moderately deep <u>Willakenzie</u> soils with about forty percent deep <u>Jory</u> soils, which were derived from sedimentary rocks. Jory soils occur on the lower slopes and on the broad ridge noses.		
67-23x W	1,300 acres, 10 to 35% slopes. An association of about sixty percent moderately deep <u>Willakenzie</u> soils with about forty percent moderately deep <u>Nekia</u> soils which were derived from sedimentary rocks. Nekia soils occur on the ridge noses and the steeper slopes adjacent to the drainage ways. Inclusions of Steiwer and Jory soils occur at random.		
67-65 VW 67-65 Y	<pre>1,200 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. 900 acres, 60 to 90%+ slopes. Associations containing about sixty percent moderately deep Willakenzie soils with about forty percent moderately deep</pre>		

Steiwer soils. Steiwer soils occur on slopes with a

67-65-23x VW

900 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. An association containing about forty percent moderately deep <u>Willakenzie</u> soils, about thirty percent moderately deep <u>Steiwer</u> soils, and about thirty percent moderately deep <u>Nekia</u> soils, which were derived from sedimentary rocks. Steiwer soils occur on the steeper slopes with a southerly aspect. Nekia soils occur on the lower slopes adjacent to the valley floor. Inclusions of Witzel soils occur on the ridge noses.

Unnameu (69S)

Unit 69S soils consist of moderately deep, stony, well drained soils formed in colluvium. Unit 69S soils are on sloping to very steep mountainous slopes.

Unit 69S soils are used for timber production. Depth and stone content are limiting factors for tree growth.

Profile Description: Unit 69S gravelly loam

Surface soil:	0-11"	Dark brown gravelly loam, friable, strongly acid.
Subsoil:	11-24"	e to 12 inches thick. k brown gravelly loam, friable, extremely acid.
Substrata:	24-58"	Nine to 14 inches thick. Dark yellowish brown, very stony loam, friable, extremely acid.

Setting:

The topography on which the unit 69S soils occur is represented by rounded ridges and ridge noses, smooth sideslopes with a moderate dissection pattern and on steep to very steep headwalls above slumps. These soils are distributed throughout the survey area.

69S W 69S X 69S Y	1,200 acres, 10 to 35% slopes. 5,200 acres, 35 to 60% slopes. 9,400 acres, 60 to 90%+ slopes. Predominantly moderately deep unit <u>69S</u> soils. Inclusions of Kinney soils occur on the sideslopes. Inclusions of Preacher soils occur at random.		
695-157 W 695-157 X 695-157 Y 695-157 XY	<pre>1,700 acres, 10 to 35% slopes. 14,400 acres, 35 to 60% slopes. 4,400 acres, 60 to 90%+ slopes. 7,900 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes. Associations containing about sixty percent moderately deep unit 69S soils with about forty percent deep Kinney soils. Kinney soils occur predominantly on the smooth sideslopes. Inclusions of unit 75S occur on the ridge tops at the higher elevations. Inclusions of Kilchis soils occur on the steep sideslopes adjacent to the drainages.</pre>		
695-159S Y	1,300 acres, 60 to 90% + slopes. An undifferentiated unit containing about sixty percent moderately deep unit <u>69S</u> soils with about forty percent <u>Aschoff</u> soils. Aschoff soils occur on the more rounded ridge noses and on the uniform sideslopes.		

Unnamed (70S)

Unit 70S consists of shallow, stony, well drained soils formed in colluvium. Unit 70S soils are on ridges and very steep sideslopes.

Unit 70S soils are used for timber production. The shallow depth and stone content are serious limitations for timber production.

Profile Description: Unit 70S gravelly sand loam

Surface soil:	0-9"	Dark yellowish brown gravelly sand loam, very friable, very strongly acid.
Subsoil:	9-18"	Dark yellowish brown very gravelly loam, friable,
		very strongly acid.
Substrata:	18"+	Bedrock.

Setting:

The topography on which unit 70S soils occur is represented by sharp ridges, sharp draws, sharp finger ridges, and a dense dissection pattern. The slopes are long and very steep. Unit 70S soils occur on the ridge tops, the ridge noses, and the convex sideslopes. Annual precipitation ranges from 60 to 90 inches. These soils are confined to the Cascade Mountains.

Mapping Units:

70S-53S Y 19,300 acres, 60 to 90%+ slopes. An association of about seventy percent shallow unit 70S soils with about thirty percent moderately deep unit 53S soils. Unit 53S soils occur on the concave sideslopes. This unit occurs on topography that has sharp ridges and sharp draws and sharp ridge noses. There is an absence of large land slide or large slips; however, there are numerous shallow small slips. A very dense dissection pattern distinguishes this unit from the unit 53S-70S which has a moderately dense dissection pattern.

70S-53S-111 Y 2,600 acres, 60 to 90%+ slopes. An association of about forty percent shallow unit <u>70S</u> soils, about thirty percent moderately deep unit <u>53S</u> soils and about thirty percent deep <u>McCully</u> soils. Unit 53S soils usually occur on the rounded ridge noses on the lower 1/3 of the slopes. McCully soils occur on the toeslopes. Overall topography for this unit has sharp ridges and sharp draws. There is an absence of large land slides; however, there are numerous shallow small slips. These areas have a very dense drainage pattern. Dense drainage patterns distinguish this unit from 53S-70S which has a moderately dense dissection pattern.
<u>Unnamed (758)</u>

Unit 75S consists of shallow, stony, well drained soils formed in colluvium. Unit 75S soils are on ridges, ridge noses and very steep sideslopes.

Unit 75S soils are used for timber production. Shallow depths, stone content, and cold climate are very serious limitations for timber production.

Profile Description: Unit 75S very gravelly loam

Surface soil:	0-7"	Black very gravelly loam, friable, strongly acid.
Subsoil:	7– 15"	Very dark grayish brown very gravelly loam, friable, strongly acid.
Substrata:	15"+	Fractured bedrock.

Setting:

The topography on which unit 75S soils occur is represented by sharp to slightly rounded tops and ridge noses, and very steep sideslopes at higher elevations. The dissection pattern is dense in areas that are primarily 75S soils. Annual precipitation ranges from 70 to 100 inches. These soils occur at higher elevations in the Cascade Mountains.

Mapping Units:

755-1695 Y 5,600 acres, 60 to 90%+ slopes. An association containing about seventy percent shallow unit 755 soils with about thirty percent moderately deep <u>Henline</u> soils. Henline soils dominantly occur at higher elevations. Inclusions of Preacher soils occur on the higher ridge tops and ridge noses.

<u>McCully (111)</u> (tentative series)

The McCully series consists of deep well drained soils formed in colluvium. The McCully soils are on gently sloping to very steep uplands.

The McCully soils are used for timber production. The McCully soils have no serious limitations for timber production.

Profile Description: McCully clay

Surface soil:	0-12"	Dark reddish brown clay, friable, strongly acid.
Cubaail.	10_58#	Ten to 14 inches thick. Reddich brown clay, firm, very strongly acid.
505011+	12-50	Thirty-eight to 51 inches thick.
Substrata:	58-108"+	Variegated dark yellowish brown, dark brown and very dark gray brown gravelly loam, very strongly acid.

Setting:

The topography on which the McCully soils occur is represented by rolling and/or moderately steep slopes. The dissection pattern is sparse but the drainages are usually deep with very steep sideslopes. The overall topography is quite gentle compared to the steep adjacent areas. Annual precipitation ranges from 60 to 80 inches. These soils are located in the Cascade Mountains.

Mapping Units:

111 V	10,200 acres, 0 to 10% slopes.
111 W	94,700 acres, 10 to 35% slopes.
111 X	27,500 acres, 35 to 60% slopes.
111 VW	23,900 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
111 WX	4,000 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
111 XY	1,400 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
	Predominantly deep McCully soils. Inclusions of Honeygrove
	soils occur at lower elevations. Inclusions of Kinney
	soils occur at higher elevations.
111-295 W	6,200 acres, 10 to 35% slopes.
111-295 X	6,300 acres, 35 to 60% slopes.
111 - 295 Y	2,000 acres, 60 to 90%+ slopes.
111-29S WX	2,400 acres, 10 to 60% slopes. Mostly 35 to 60% slopes.

2,400 acres, 10 to 60% slopes. Mostly 35 to 60% slopes. Associations containing about sixty percent deep <u>McCully</u> soils with about forty percent moderately deep <u>Klickitat</u> soils. Klickitat soils occur on the sideslopes adjacent to the drainage ways and on the sharper ridge noses. Inclusions of Kilchis soils occur intermingled with the Klickitat soils. 3,600 acres, 10 to 35% slopes. 3,000 acres, 35 to 60% slopes. Associations containing about sixty percent deep <u>McCuily</u> soils with about forty percent deep <u>Kinney</u> soils. Kinney soils occur on the steeper sideslopes and the sharper ridge noses. Inclusions of Klickitat soils occur on the steeper slopes adjacent to the drainage ways and intermingled with Kinney soils on the sharper ridge noses.

Horeb (156) (tentative series)

The Horeb series consists of deep well drained soils formed in colluvium. The Horeb soils are on gently to moderately sloping footslopes.

The Horeb soils are used for timber production. These soils have no serious limitations for timber production.

Profile Description: Horeb loam

Surface soil:	0-14"	Very dark brown loam, friable, strongly acid. Ten to 19 inches thick.
Subsoil:	14-36"	Dark yellowish brown gravelly loam, friable, very strongly acid.
Substrata:	36-60"+	Dark grayish brown cobbly loam firm, very strongly acid.

Setting:

The topography on which the Horeb soils occur is represented by gently to moderately sloping footslopes. Annual precipitation ranges from 70 to 90 inches. The distribution for these soils is limited to the Cascade Mountains.

Mapping Units:

156 V	r í	700 acres,	0 to .	10% slopes.		
156 W		5,300 acres,	10 to :	35% slopes.		
156 X		2,700 acres,	35 to	60% slopes.	Predominantly deep	Horeb
		soils.				

<u>Kinney (157)</u> (tentative series)

The Kinney series consists of deep, well drained soils formed in colluvium. The Kinney soils are on gently sloping to steep sideslopes.

The Kinney soils are used for timber production. The Kinney soils have no serious limitations for timber production.

Profile Description: Kinney cobbly loam

Surface soil:	0-10"	Very dark brown cobbly loam, friable, strongly acid. Fight to 12 inches thick.	
Subsoil:	10-53"	Dark brown cobbly clay loam, friable, very stron acid. Twenty-seven to 40 inches thick.	gly
Substrata:	53"+	Weathered bedrock.	

Setting:

The topography on which the Kinney soils occur is represented by hilly to steep slopes that have broad, rounded ridge tops and broad finger ridge noses. The sideslopes are relatively smooth and free from numerous, deep dissections. The annual precipitation ranges from 60 to 90 inches. These soils are distributed in the Cascade Mountains.

Mapping Units:

157 V	6,100 acres, 0 to 10% slopes.
157 W	38,300 acres, 10 to 35% slopes.
157 X	24,000 acres, 35 to 60% slopes.
157 VW	3,500 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
157 WX	7,600 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
157 XY	5,900 acres, 35 to 90%+ slopes. Mostly 35 to 69% slopes.
	Predominantly deep Kinney soils. Inclusions of Unit 60S
t	soils occur on the ridge noses and on the steep sideslopes
	adjacent to the drainages. Inclusions of 175S soils occur
	on high ridges. Small areas of rock outcrop mainly occur
	on the ridge tops.
157-69S W	30,800 acres, 10 to 35% slopes.
157 -6 95 X	27,800 acres, 35 to 60% slopes.
157-69S Y	6,800 acres, 60 to 90%+ slopes.
157 -6 9S WX	8,800 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
157 - 69S XY	3,300 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
	Associations containing about sixty percent deep Kinney
	soils with about forty percent moderately deep unit 695
	soils. Unit 69S soils occur on the steeper sideslopes,
	adjacent to the drainages, and on some ridge noses.
	Inclusions of 175S soils occur on the ridge tops. Small
	inclusions of the Aschoff soils occur on the concave
	sideslopes.
157-205 Y	3 900 acres. 35 to 60% slopes.
107-290 A	1 200 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
10/ - 242 MV	Associations containing about seventy percent deep Kinney

-110-

soils with about thirty percent moderately deep <u>Klickitat</u> soils. Klickitat soils occur on the steeper slopes adjacent to the drainage ways, on the ridge tops, and on the ridge moses. Inclusions of the Kilchis soils occur intermingled with the Klickitat soils. Inclusions of the McCully soils occur on the rounded ridge moses at lower elevations. Small areas of unit 69S soils occur at random.

157-159 S

900 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. An undifferentiated unit of about sixty percent deep Kinney soils with about forty percent deep <u>Aschoff</u> soils. Inclusions of unit 69S soils occur at random. Inclusions of unit 175S soils occur on higher ridge tops.

<u>Bull Run (158)</u> (tentative series)

The Bull Run series consists of deep, well drained soils formed in loess. The Bull Run soils are on sloping or rolling to steep slopes in the lower valleys and footslopes of the northern Oregon Cascade Mountains.

Bull Run soils are used for timber, pasture, and grain production. These soils have no limitations for timber production.

Profile Description: Bull Run silt loam

Surface soil:	0-7"	Very dark brown silt loam, friable, medium acid.
		Four to 18 inches thick.
Subsoil:	7-54"	Dark yellowish brown silt loam, friable, medium
		acid. Ten to 72 inches thick.
Substrata:	54"+	Dark yellowish brown silt loam, friable, medium
		acid. One foot to many feet thick.

Setting:

The topography on which the Bull Run soils occur is represented by broad, nearly level "Plateaus" surrounded by steep sideslopes. The primary drainage pattern is represented by sparse, deep drainage ways. Annual precipitation ranges from 65 to 105 inches. The distribution of these soils is limited to the northeast portion of the survey area.

Mapping Units:

158	V	2,500 acres, 0 to 10% slopes.	
158	W	1,900 acres, 10 to 35% slopes.	
158	X	1,300 acres, 35 to 60% slopes.	
158	Vw	2,700 acres, 0 to 35% slopes. Mostly 0 to 10%	slopes.
158	WX	1,500 acres, 10 to 60% slopes. Mostly 10 to 35	% slopes.
		Predominantly deep Bull Run soils. Inclusions	of Cazadero
		soils occur at lower elevations.	

<u>Aschoff (159S)</u> (tentative series)

The Aschoff series consists of deep, well drained soils formed in colluvium. The Aschoff soils are on sloping to very steep mountain slopes.

Aschoff soils are used for timber production. Stone content is a limiting factor for timber production.

Profile Description: Aschoff gravelly loam

Surface soil	: 0-12"	Very dark brown gravelly loam, friable, medium
~		acid. Three to 21 inches thick.
Subsoil:	12-34"	Dark brown stony heavy loam, friable, medium acid.
		Twelve to 36 inches thick.
Substrata:	34"+	Brown stony silt loam, friable, slightly acid.
		Three to many feet thick.

Setting:

The topography on which the Aschoff soils occur is represented by rounded ridges, rounded finger ridge noses, uniform steep sideslopes, and a moderately dense dissection pattern. Annual precipitation ranges from 85 to 115 inches. The distribution of these soils is limited to the Cascade Mountains.

Mapping Units:

159S-175S X 19,600 acres, 35 to 60% slopes. An association of about sixty percent deep <u>Aschoff</u> soils with about forty percent shallow unit <u>175S</u> soils. The 175S soils occur on the ridge tops, the ridge noses, and on the steeper sideslopes. Inclusions of rock outcrop occur on the ridge noses.

<u>Henline (1695)</u> (tentative series)

The Henline series consists of moderately deep, stony, well drained soils formed in colluvium. Henline soils are on steep to very steep mountainous slopes and ridges.

The Henline soils are used for timber production. Stone content, depth, and cold temperatures are limiting factors for timber production.

Profile Description: Henline very stony sandy loam

Surface soil: 0-10"		Very dark brown very stony loam, very friable, slightly acid. Five to 15 inches thick.
Subsoil:	10-30"	Dark brown very stony sandy loam, very friable, slightly acid. Eighteen to 22 inches thick.
Substrata:	30"+	Fractured bedrock.

Setting:

The topography on which the Henline soils occur is represented by rounded ridges, rounded finger ridge noses, uniform steep sideslopes and a moderately dense dissection pattern. Annual precipitation ranges from 70 to 90 inches. Distribution of these soils is limited to the Cascade Mountains.

Mapping Units:

1695 W	2,000 acres, 10 to 35% slopes.
1695 X	4,100 acres, 35 to 60% slopes.
169S Y	7,400 acres, 60 to 90%+ slopes. Predominantly moderately deep <u>Henline</u> soils. Inclusions of 75S soils occur on the ridge tops and the ridge noses. Inclusions of Goodlow soils occur on the uniform sideslopes.

1695-755 X	2,800 acres, 35 to 60% slopes.
1695-755 WX	1,200 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
1695-75S XY	1,600 acres, 35 to 90%+ slopes. Mostly 35 to 60% slopes.
	Associations of about sixty percent moderately deep Henline
	soils with about forty percent shallow unit 75S soils. The
	75S soils occur on the ridge tops and on the ridge noses
	and on the steep sideslopes adjacent to the drainages.
	Inclusions of rock outcrops occur on the ridge tops and
	ridge noses. Inclusions of Goodlow soils occur on the
	concave sideslopes.

1695-1595 Y	1,100 acres. An association containing about seventy
	percent moderately deep <u>Henline</u> soils with about forty
	percent deep Aschoff soils, 60%+ slopes. The Aschoff soils
	occur on the lower 1/3 of the uniform sideslopes.
	Inclusions of 75S soils occur on the high ridge tops.

1695-2595 W 1695-2595 X 1695-2595 Wx 1,900 acres, 10 to 35% slopes. 11,400 acres, 35 to 60% slopes. 2,000 acres, 10 to 60% slopes. Mostly 10 to 35% slopes. Associations of about sixty percent moderately deep <u>Henline</u> soils with about forty percent deep <u>Goodlow</u> soils. Goodlow soils occur on the uniform sideslopes. Inclusions of 75S soils occur on the ridge tops and on the ridge noses.

<u>Unnamed (1755)</u>

Unit 175S consists of shallow, stony, well drained soils formed in colluvium. Unit 175S soils are on ridges, ridge noses, and very steep sideslopes.

Unit 175S soils are used for timber production. Shallow depth and stone content are serious limitations for timber production.

Profile Description: Unit 175S very gravelly loam

Surface soil:	0-7"	Black very gravelly loam, friable, strongly	acid.
Subsoil:	7–15"	Very dark grayish brown very gravelly loam,	
		friable, strongly acid.	
Substrata:	15"+	Fractured bedrock.	

Setting:

The topography on which unit 175S soils occur is represented by sharp to slightly rounded ridge tops and ridge noses and very steep sideslopes. The dissection pattern is dense in areas that are primarily 175S soils. The dissection pattern is sparse in areas where 175S is the secondary soils (see 159S). Annual precipitation ranges from 70 to 90 inches. The distribution of these soils is limited to the Cascade Mountains.

Mapping Units:

175S-159S Y

31,000 acres, 60 to 90%+ slopes. An association containing about seventy percent shallow unit <u>175S</u> soils with about thirty percent deep <u>Aschoff</u> soils. Aschoff soils occur on the uniform sideslopes. Inclusions of 69S soils occur on the ridge noses. Inclusions of rock outcrop occur on the ridge tops. Areas that are predominantly Aschoff soils have a moderately dense dissection pattern. Areas that are predominantly 175S soils have a dense dissection pattern.

Unnamed (256)

Unit 256 consists of very deep, somewhat poorly drained soils formed in loess over old, red clayey materials. Unit 256 soils are sloping to moderately steep areas.

Unit 256 soils are used for timber, small grain, orchards, and some rowcrops, such as strawberries. The long, dry summer periods are a limiting factor for timber production.

Profile Description: Unit 256 silt loam

Surface soil:	0-8"	Very dark grayish brown silt loam. friable.
Subsoil:	8-94"	Dark yellowish brown clay loam, mixed brown
		and white soil materials, very firm, many
		coarse distinct yellowish brown mottles.
Substrata:	94"+	Weathered basalt or old red clayey materials.

Setting:

The topography on which the 256 soils occur is represented by gently sloping to sloping, broad ridge tops and rounded finger ridge noses. Annual precipitation ranges from 45 to 50 inches. The distribution of these soils is limited to the north portion of the survey area.

Mapping Units:

Soils of the <u>256</u> unit are not dominant in any of the mapping units and occur as secondary soils or inclusions in mapping units of the <u>Kinton</u> series.

<u>Goble (258)</u> (tentative series)

The Goble series consists of deep, moderately well drained soils derived from loess. The Goble soils are on rolling to moderately steep hills.

The Goble soils are used for cultivated row crops, orchards, and timber production. Goble series is equivalent to a non-xeric Kinton series. These soils have no serious limitations for timber productions.

Profile Description: Goble silt loam

Surface soil:	0-17"	Dark brown silty loam, friable, medium acid. Ten
Subsoil:	17-30"	Dark yellowish brown silty clay loam, firm, few
Substrata:	30"+	Dark yellowish brown silt loam, cemented layer at top, common reddish brown mottles, strongly acid.

Setting:

The topography on which the Goble soils occur is represented by long, broad, gentle ridges and finger ridge noses. These soils are on rolling hills. Annual precipitation ranges from 60 to 75 inches. Distribution of these soils is limited to the north portion of the survey area.

Mapping Units:

258 W	7,000 acres, 10 to 35% slopes.
258 X	3,900 acres, 35 to 60% slopes.
258 VW	5,600 acres, 0 to 35% slopes. Mostly 0 to 10% slopes.
258 WV	1,600 acres, 0 to 35% slopes. Mostly 10 to 35% slopes.
258 WX	6,800 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
	Predominantly deep Goble soils. Inclusions of Cascade
	soils occur at random. Inclusions of Honevorove or Peavine
	soils occur on the sideslopes adjacent to the drainages.
258-14 W	2,700 acres, 10 to 35% slopes.
258-14 X	2,100 acres, 35 to 60% slopes.
258-14 WV	6,800 acres, 0 to 35% slopes. Mostly 10 to 35% slopes.
258-14 WX	3,200 acres, 10 to 60% slopes. Mostly 10 to 35% slopes.
	Associations of about sixty percent deep Goble soils with
	forty percent deep Honeygrove soils. Honeygrove soils occur
	on the sideslopes. Inclusions of Peavine soils occur on
	the steeper slopes adjacent to the drainages. Inclusions
	of Cascade soils occur intermingled with the Goble soils.
258-20 X	1,000 acres, 35 to 60% slopes. An association containing
	about seventy percent deep Goble soils with about thirty
	percent moderately deep Peavine soils. Peavine soils occur
	on ridge noses and on steeper sideslopes adjacent to the
	drainage ways. Inclusions of Honeygrove soils occur on the
	uniform sideslopes.

2,000 acres, 0 to 35% slopes. Mostly 0 to 10% slopes. An undifferentiated unit containing about sixty percent deep <u>Goble</u> soils with about forty percent deep <u>Cascade</u> soils. Inclusions of Peavine soils occur on slopes adjacent to the drainages.

<u>Goodlow (2595)</u> (tentative series)

The Goodlow series consists of deep, stony, well drained soils formed in colluvium. The Goodlow soils are sloping to very steep mountain slopes.

The Goodlow soils are used for timber production. Stone content and cold temperatures are limiting factors for timber production.

Profile Description: Goodlow gravelly silt loam

Surface soil:	0-10"	Dark brown gravelly silt loam, friable, strongly acid. Six to 19 inches thick.
Subsoil:	10-40"+	Brown to dark brown stony clay loam, friable, strongly acid.
Substrata:		Fractured bedrock.

Setting:

The topography on which the Goodlow soils occur is represented by hilly to very steep sideslopes, sloping to steep rounded ridge tops and a moderately dense shallow dissection pattern. Annual precipitation ranges from 70 to 90 inches. These soils are distributed at higher elevations in the Cascade Mountains.

Mapping Units:

259S W	2,600 acres, 10 to 35% slopes
259S X	3,600 acres, 35 to 60% slopes.
259S Y	1,900 acres, 60 to 90%+ slopes. Predominantly deep <u>Goodlow</u> soils. Inclusions of Henline soils occur on the sideslopes adjacent to the drainages. Inclusions of 75S soils occur on the ridge tops and the ridge noses.
2595-62 X	1,200 acres, 35 to 60% slopes. An undifferentiated unit containing about sixty percent deep <u>Goodlow</u> soils with about forty percent deep <u>Keel</u> soils. Inclusions of Henline soils occur at random.
2595-1695 Y	2,100 acres, 60 to 90%+ slopes. An association containing about sixty percent deep <u>Goodlow</u> soils with about forty percent <u>Henline</u> soils. The Henline soils occur on ridge noses and on sideslopes adjacent to the drainages. Inclusions of unit 75S soils and rock outcrop occur on

ridge tops and on ridge noses.

<u>Rockland (R)</u>

A miscellaneous land type that contains about fifty percent rock outcrop and about fifty percent shallow, stony, or moderately deep soils which are associated with the adjacent soil types.

Mapping Units:

R

4,900 acres. A miscellaneous land type that contains about fifty percent solid rock outcrop and about fifty percent shallow soils which are associated with the surrounding soil types.

R-755-1695 Y 7,200 acres, 60 to 90%+ slopes. An undifferentiated unit containing about forty percent rock outcrop, about thirty percent shallow 75S, soils with about thirty percent moderately deep <u>Henline</u> soils. There are inclusions of Kinney occurring on the concave sideslopes.

R-365 Y 1,000 acres, 60 to 90%+ slopes. An undifferentiated unit containing about sixty percent <u>Rockland</u> with about forty percent shallow <u>Witzel</u> soils.

Detailed Descriptions of the Unnamed Soil Series

Unit 21

01 0-1" Leaves, twigs and mosses.

Al 0-7" Dark brown (7.5 YR 4/2) gravelly loam, pinkish gray (7.5 YR 6/2) dry; strong fine and meaium granular structure; slightly hard, friable; abundant fine and meaium roots; abrupt smooth boundary.

- A3 7-11" Dark brown (7.5 YR 4/3) gravelly clay loam, pinkish gray (7.5 YR 6/3) dry; weak fine subangular blocky structure; slightly hard; friable, slightly sticky, slightly plastic; plentiful roots; few fine concretions; clear smooth boundary.
- Bl 11-19" Brown (7.5 YR 4/4) heavy clay loam, light brown (7.5 YR 6/4) dry; weak medium and coarse, subangular blocky structure; slightly hard, friable, sticky, plastic; 13% gravel; plentiful roots; clear wavy boundary.
- B2 19-31" Reddish brown (5 YR 4/4) silty clay loam, light brown (7.5 YR 6/4) dry; moderate fine and medium subangular blocky structure; hard, firm, sticky, plastic; 13% gravel; few roots; clear wavy boundary.
- Cl 31-39" Reddish brown (5 YR 4/4) very shaly, clay loam; weak fine subangular blocky structure, hard, firm, sticky, plastic; 65% shale fragments; few roots.
- R 39"+ Weathered shale.
- Location: Polk County. On Columbia River Paper Co. road between Pedee and Valsetz. NE¹/₄, Sec. 27, T.9S, R7W

Vegetation: Salal, ocean spray, vine maple, alder, Oregon grape and brackenfern with a Douglas-fir overstory.

1/ Colors are for moist soils unless stated otherwise.

-122-

Unit 53S

01 & 02 2-0"	Leaves,	twigs,	and	partiall	y decomposed	organic	material.
--------------	---------	--------	-----	----------	--------------	---------	-----------

- Al 0-4" Dark yellowish brown (10 YR 3/4) very gravelly loam; weak fine granular structure; very friable; 55% gravel; very strongly acid; clear smooth boundary.
- A3 4-13" Dark yellowish brown (10 YR 3/4) very gravelly loam, moderate medium and coarse granular structure; friable; 55% gravel; plentiful roots; strongly acid (pH 5.4); clear wavy boundary.
- Bl 13-22" Brown (10 YR 4/3) very gravelly clay loam; weak fine subangular blocky structure; friable, slightly sticky, slightly plastic; 55% gravel, plentiful roots; strongly acid (pH 5.4); clear smooth boundary.
- B2 22-33" Dark yellowish brown (10 YR 4/4) very gravelly clay loam; weak fine and medium subangular blocky structure; friable, slightly sticky, slightly plastic; 75% gravel, few roots; very strongly acid (pH 5.0); clear smooth boundary.
- B3 33-39" Yellowish brown (10 YR 5/6) very gravelly loam; weak fine subangular blocky structure; friable; 80% gravel; few roots; strongly acid (pH 5.5).
- R 39"+ Paralithic contact.
- Location: Linn County SE $\frac{1}{4}$ SE $\frac{1}{4}$, S.17, T.11S, R.4E
- Vegetation: Salal, sword fern, Oregon grape, and rhododendron with an overstory of Douglas-fir and hemlock.

Unit 69S

01 &	02 1-0"	Moss, needles, leaves, twigs, and decomposed organic material.
A11	0-5"	Very dark grayish brown (10 YR 3/2) gravelly loam; weak fine granular structure; very friable; 30% gravel and stone, abundant roots; very strongly acid (pH 5.0); clear smooth boundary.
A12	5-12"	Dark brown (10 YR 3/3) gravelly loam, moderate fine and medium granular structure; friable, slightly sticky, slightly plastic; 25% gravel and stone; plentiful roots; very strongly acid (pH 5.0); clear smooth boundary.
B2	12–23"	Dark yellowish brown (10 YR 4/4) gravelly loam; weak fine subangular blocky structure; friable, slightly sticky, slightly plastic; 40% gravel and stone; few roots; very strongly acid; clear smooth boundary.
B3	23-33"	Yellowish brown (10 YR 5/4); very gravelly loam; massive; 80% gravel and stone; few roots; extremely acid (pH 4.4); abrupt wavy boundary.
R	33"+	Fractured andesite.
_		

- Location: Clackamas County. $NE\frac{1}{4}$ SW $\frac{1}{4}$, S.12, T.6S, R.3E
- Vegetation: Huckleberry, Oregon grape, and beargrass with a Douglas-fir overstory.

Unit 70S

- 01 & 02 2-0" Needles, leaves, twigs and partially decomposed organic material.
- Al 0-12" Dark yellowish brown (10 YR 3/4); very gravelly sandy loam; yellowish brown (10 YR 5/6) dry; weak fine granular structure; loose, very friable; 60% gravel and stone; abundant roots; very strongly acid (pH 4.6); abrupt wavy boundary.
- Bl 12-9" Dark yellowish brown (10 YR 4/4) very gravelly sandy loam; weak fine granular structure; loose, very friable; 65% gravel and stone; abundant roots; very strongly acid (pH 4.7); clear smooth boundary.
- B2 9-18" Dark yellowish brown (10 YR 3/4) very gravelly loam; weak fine subangular blocky structure; slightly hard, friable, slightly sticky, slightly plastic; 70% gravel and stone; very strongly acid (pH 4.9); abrupt wavy boundary.
- R 18"+ Hard andesite.
- Location: Linn County NW $\frac{1}{4}$ SW $\frac{1}{4}$, S. 16, T.11S, R.4E
- Vegetation: Red Huckleberry, vine maple, and sword fern with a hemlock overstory.

Unit 75S

01	2 µ= 3 °	Leaves and Dranches.
02	3-0"	Partially decomposed organic material.
A11	0–7"	Black (10 YR 2/1) very gravelly loam; moderate fine and medium granular structure; friable, slightly sticky; 55% gravel and stone; abundant roots; strongly acid (pH 5.1); clear smooth boundary.
A12	7-15"	Very dark brown (10 YR 3/2) very gravelly loam; weak fine and

was and husehas

- Al2 7-15" Very dark brown (10 YR 3/2) very gravelly loam; weak fine and medium granular structure, friable; 65% gravel and stone; abundant roots; strongly acid (pH 5.5).
- R 15"+ Fractured andesite.

~ 1

Location: NE corner of SE¹/₄ of NW¹/₄, Sec. 35, T.6S, R.4E

Vegetation: Huckleberry, vine maple, rhododendron, twin flower, and thimble berry with an overstory of hemlock, Douglas-fir and noble fir.

Unit 175S

Same type of soil as Unit 75S soil except it occurs in the moist-mesic zone instead of the moist-frigid zone.

Unit 256

Same type of soil as the Cascade series except it occurs in the xeriomesic zone instead of the moist-mesic zone.

IX. Bibliography

- Alvis, Richard J. Cutbank Stability Reconnaissance Survey Information, Siskiyou National Forest. USDA, Forest Service, "In Service" Report. Portland, Oregon.
- Alvis, Richard J., and Herman, L.D. Cutbank Stability Reconnaissance Survey Information, Willamette National Forest. USDA, Forest Service, "In Service" Report. Portland, Oregon.
- 3. Bowlsby, Clyde C. and Swanson, Richard C. 1964. Soil Survey Tillamook Area, Oregon. USDA, Soil Conservation Service. US Government Printing Office, Wash., D.C.
- 4. Corliss, John F. Soil and Vegetation Survey, Alsea Area, Oregon. USDA, Forest Service, Unpublished manuscript, 730 pp.
- 5. Federal Housing Administration. Revised 1961. Engineering Soil Classification for Residential Development. FHA No. 373. U.S. Government Printing Office, Wash., D.C.
- 6. Highsmith, Richard M., Jr. Atlas of the Pacific Northwest. Resources and Development. 1962. 3rd Edition. Oregon State Univ. Press, Corvallis 168 pp.
- 7. Otte, George E. Soil Survey of Yamhill Area, Oregon. USDA, Soil Conservation Service. Unpublished manuscript.
- 8. Pomerening, J.H., Paeth, R. C., Knox, E.G. and Simonson, G.H.. Umpqua Drainage Basin General Soil Map Report with Irrigable Areas. Oregon Agricultural Experiment Station. Unpublished manuscript.
- Schlicker, H. G. and Deacon, Robert J. 1967. Engineering Geology of the Tualatin Valley Region, Oregon. Oregon Department of Geology and Mineral Industrial Bull. 60. Portland, Oregon. 103 pp.
- Simonson, G.H., Norgren J.A., Paeth, R.C. and Knox E.G., Willamette Drainage Basin, Segment I: Lowlands and Foothills, General Soil Map Report. Oregon Agricultural Experiment Station. Unpublished manuscript.
- 11. Soil Survey Staff. 1960. Soil Classification-A comprehensive system: 7th Approximation. U.S. Government Printing Office, Wash., D.C.
- 12. Soil Survey Staff. March 1967. Supplement to Soil Classification-A comprehensive system: 7th Approximation. U.S. Government Printing Office, Wash., D.C.
- 13. Stephens, F. R. Soil Survey, Bull Run-Sandy Area, Oregon. USDA, Forest Service. Unpublished manuscript. 447 pp.
- 14. Thilenius, John F. 1963. Synecology of the White Oak (<u>Quercus Garryana</u> <u>Douglas</u>) Woodlands of the Willamette Valley, Oregon State University, Corvallis, Ph.D. thesis.
- 15. Thomas, Byron R. and Simonson, G.H. North, Mid, and South Coast Drainage Basin General Soil Map Report with Irrigable Areas. Oregon Agricultural Experiment Station. Unpublished manuscript.

Bibliography

۰.

- 16. USDA. 1941. Climate and Man, Yearbook of Agriculture. U.S. Government Printing Office, Wash., D.C.
- USDA. 1964. Interim Report. Willamette River Basin, Oregon. Prepared by Economic Research Service. U.S. Forest Service, Soil Conservation Service.
- USDA. 1967. Guide for Interpreting Engineering Uses of Soils. USDA, Soil Conservation Service.
- 19. Williams, Lynn H. Soil Survey of Marion Area, Oregon. USDA, Soil Conservation Service. Unpublished manuscript. 545 pp.