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Abstract

Optimal well placement and optimal well control are two important areas of study in

oilfield development. Although the two problems differ in several respects, both are impor-

tant considerations in optimizing total oilfield production, and so recent work in the field

has considered the problem of addressing both problems jointly. Two general approaches

to addressing the joint problem are a simultaneous approach, where all parameters are op-

timized at the same time, or a sequential approach, where a distinction between placement

and control parameters is maintained by separating the optimization problem into two (or

more) stages, some of which consider only a subset of the total number of variables. This

latter approach divides the problem into smaller ones which are easier to solve, but may not

explore search space as fully as a simultaneous approach.

In this paper we combine a stochastic global algorithm (Particle Swarm Optimization)

and a local search (Mesh Adaptive Direct Search) to compare several simultaneous and se-

quential approaches to the joint placement and control problem. In particular, we study

how increasing the complexity of well models (requiring more variables to describe the well’s

location and path) affects the respective performances of the two approaches. The results of

several experiments with synthetic reservoir models suggest that the sequential approaches

are better able to deal with increasingly complex well parameterizations than the simulta-

neous approaches.
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1. Introduction

Maximizing oilfield production is a problem of considerable economic importance, which

has received attention from both the industrial and academic communities. Given a com-

putational model of the reservoir, one typically considers drilling and operating two types

of well. Production wells (or producers) withdraw fluid from the reservoir, while injection

wells (injectors) pump either water or gas into the reservoir, to drive oil towards producers

once the incipient pressure in the reservoir has dissipated. The pumping rates of these wells

can be either controlled directly, or indirectly by prescribing a bottom hole pressure (BHP)

at each well. By holding injectors at a higher BHP than producers, fluid is driven from

the former to the latter; the actual flow rate achieved depends on the size of the pressure

gradient that is created, as well as the reservoir geology.

In the context of optimization, the relevant decision variables may include the number

and type of wells to drill, the order in which to drill them, their positions and orientations,

and the control parameters (pumping rates or BHPs) for each well. Until recently, most

work on production optimization has focused on optimizing only a subset of these variables

at one time. The two most frequently studied problems are determining optimal well lo-

cations (well placement), and determining optimal control parameters for wells already in

place. In both cases, the optimization problem is challenging for several reasons: evaluating

the objective function requires computationally expensive reservoir simulations; gradient in-

formation about the objective function is often unavailable (or expensive to approximate);

and the function is generally nonconvex and may include many local optima. Depending on

the problem being considered, the number of variables may range from less than ten to more

than one hundred.

A typical objective function used in production optimization problems is the net present

value (NPV) of produced oil. Let x denote the vector of parameters being optimized (well
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positions, controls, etc.). A standard formula for NPV (used in this paper) is

NPV (x) = C(x) +

∫ T

0

{ ∑
n∈prod

[
coq

−
n,o(x, t)− cw,dispq

−
n,w(x, t)

]
−

∑
n∈inj

cw,injq
+
n,w(x, t)

}
(1 + r)−t dt, (1)

where t ∈ [0, T ] represents time over the production period of T years. The parameters co,

cw,disp and cw,inj represent the price per barrel of produced oil, disposal cost per barrel of

produced water, and cost per barrel of injected water, respectively, and the annual interest

rate is specified by r. The functions q−n,o(x, t) and q−n,w(x, t) are the production rates (bar-

rels/day) of oil and water, respectively, at well n, while q+n,w(x, t) is the water injection rate

at well n; n must be a member of either the set of producers (prod) or injectors (inj). The

rates are determined from a reservoir simulation under the operating parameters described

by x. C(x) represents capital expenditures such as drilling costs, and may be omitted if these

costs are constant with respect to the optimization parameters. Although the NPV formula

prioritizes producing more oil early in the production period (for r > 0), other considerations

exist as well. For example, once the water front from an injector arrives (breaks through) at

a producer, the well is flooded and begins producing large amounts of water. In a reservoir

with multiple water injectors and producers, one typically tries to delay breakthrough of a

water front at a producer until fronts from other nearby injectors have also arrived, thus

increasing the amount of oil that the well produces prior to being flooded.

Well placement problems involve optimizing over parameters corresponding to the po-

sitions and orientations of the injection and production wells. Typically these problems

assume a simple reactive control scheme, where injectors and producers are held at fixed

BHPs during the entire production period, and producers are eventually shut in once the

ratio of water to oil produced exceeds a profitable threshold. Optimal well placement de-

pends in large part on the permeability field of the reservoir, which tends to be highly

heterogeneous; as a result, the objective function surface in well placement problems is fairly

rough, and may include many local optima (Echeverŕıa Ciaurri et al., 2011; Onwunalu and

Durlofsky, 2010). Approaches based strictly on following the gradient of the objective func-
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tion will typically converge to the closest local optimum without fully exploring the solution

space; for this reason, studies on optimal well placement have tended to focus on stochastic,

heuristic approaches aimed at exploring the solution space globally. Historically, genetic

algorithms (GAs) have received the widest use (Bittencourt and Horne, 1997; Yeten et al.,

2003; Güyagüler and Horne, 2004; Artus et al., 2006; Emerick et al., 2009). More recently,

other stochastic approaches such as simultaneous perturbation stochastic approximation

(SPSA) (Bangerth et al., 2006), covariance matrix adaptation (Bouzarkouna et al., 2012),

particle swarm optimization (PSO) (Onwunalu and Durlofsky, 2010, 2011; Ding et al., 2014)

and differential evolution (DE) (Nwankwor et al., 2013) have also been applied successfully

to the problem. Gradient-based optimization approaches have been successfully adapted to

the well placement problem in some cases as well (Zandvliet et al., 2008; Zhang et al., 2010).

In well control optimization problems, the decision variables usually consist of pumping

rates or BHPs. One often assumes that these parameters are held constant during several

time intervals of fixed length, between which they can altered (e.g. every two years). Thus

the total number of control parameters to be determined is the product of the number of

wells and the number of time intervals. In comparison with the well placement problem,

the NPV function varies much more smoothly when control parameters are altered. Thus,

optimization approaches which are based on approximating the gradient using the adjoint

method have been the most popular approach to this problem (see Jansen (2011) for a recent

review). One drawback of adjoint approaches is that the reservoir simulator must provide

adjoint information, which is not always available. For this reason, we will consider only

black box optimization algorithms, which are based entirely on simulator output and do not

require an explicit gradient calculation. Examples of black-box algorithms that have been

applied to the well control problem include SPSA (Wang et al., 2009; Do and Reynolds,

2013), methods based on quadratic models and trust regions (Horowitz et al., 2013; Zhao

et al., 2013), genetic algorithms (Yasari et al., 2013), augmented Lagrangian methods (Chen

et al., 2010), and generalized pattern search (GPS) approaches (Echeverŕıa Ciaurri et al.,

2010, 2011; Asadollahi et al., 2014).
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In general, the optimal positioning of wells depends to some extent on the control scheme

that is employed. Thus, recent work has considered jointly optimizing well placement and

well control, with the expectation that one can find better solutions than by a purely

placement-based approach. One proposed method (Forouzanfar et al., 2010; Forouzanfar

and Reynolds, 2013) places a large number of injectors and producers in the reservoir ini-

tially, and then uses an adjoint method to determine optimal well controls. Wells with low

flowrates are removed from the simulation, thereby determining optimal positions as well.

A second approach (Bellout et al., 2012) uses a combination of GPS and adjoint methods

in a nested optimization procedure. The outer iteration consists of using GPS to determine

optimal well positions, where the objective function involves performing an inner optimiza-

tion using the adjoint method to determine the best control strategy. The SPSA algorithm

has also been applied to problems involving both well placement and well control in Li and

Jafarpour (2012); Li et al. (2013). Other papers have considered more specialized procedures

such as determining optimal well positions using a heuristic screening process and then opti-

mizing control (Xu et al., 2013), and using a MINLP approach that is fully integrated with

the reservoir simulator (Tavallali et al., 2013). Finally, the use of PSO and pattern search in

tandem has been investigated in Isebor et al. (2013, 2014), and by the authors of this paper

in Humphries et al. (2013); the first two papers used a variant of pattern search known as

Mesh Adaptive Direct Search (MADS).

The wide variety of algorithms that have been applied to different production optimiza-

tion problems is reflective of the characteristics of the objective function in these different

problems. Local searching methods based on adjoint gradients or quadratic models are able

to exploit smooth features of the objective function, and converge rapidly to a local optimum.

Stochastic approaches such as GAs, PSO and DE converge more slowly, but their focus on

global searching is well-suited to highly multimodal objective functions. Methods such as

GPS and MADS perform some degree of global and local searching, without requiring any

gradient approximations. Thus it is natural that approaches to the joint problem, where the

objective function has smooth behaviour with respect to some variables and rough behaviour
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with respect to others, tend to combine several of these algorithms.

An important question in the context of the joint problem is whether it is preferable to

optimize over all parameters simultaneously, or to use a sequential approach that divides the

problem into smaller subproblems. Optimizing over all variables simultaneously ensures that

the best possible solution exists somewhere in the search space. This search space may be

very large, however, and given the highly nonconvex nature of the optimization problem, it

may be difficult to find the global optimum. One can instead consider a sequential procedure;

for example, determining optimal well positions first while assuming some simple control

scheme, and then using the best solution found as an initial guess for the full problem.

The first subproblem involves fewer variables than the full problem and should therefore

be easier to solve; however, it is possible that the configuration of wells found by solving

the first subproblem (which will depend on the assumed control scheme) is not close to the

global optimum of the full problem. Thus the second step of the optimization may not be

able to find the global optimum.

Several of the aforementioned papers addressing the joint problem (Li et al., 2013; Bellout

et al., 2012; Isebor et al., 2013) have found that the solutions found by optimizing over all

variables simultaneously are superior to those that can be found by sequential approaches.

In Humphries et al. (2013), however, we found that a sequential approach (denoted as the

“decoupled” approach in that paper) was competitive with the studied simultaneous ap-

proach, and was even preferable in some test cases. Thus, we wish to further investigate the

effectiveness of these two approaches under different experimental conditions. In particular,

most papers on the topic have considered only drilling vertical wells, which are parameter-

ized simply by their (x, y) co-ordinates. In many applications, however, it is of interest to

consider drilling wells with more complex parameterizations, such as horizontal or arbitrar-

ily oriented (deviated) wells (Yeten et al., 2003; Onwunalu and Durlofsky, 2010). In these

cases it may be more difficult to determine the optimal positioning of wells, meaning that

focusing on well placement before considering the joint placement and control problem could

be advantageous.

6



The paper is organized as follows. In Section 2 we describe the primary optimization

algorithms that are used (Mesh Adaptive Direct Search and Particle Swarm Optimization,

as well as a hybridization of the two), and how they are applied to the problem. The

optimization framework is implemented using the NOMAD black-box software (Le Digabel,

2011; Abramson et al., 2011). In Section 3 we describe our numerical experiments. Results

are presented in Section 4 and discussed in Section 5. We finish with concluding remarks

in Section 6. Overall the results of our experiments suggest that our sequential approach is

more robust than a fully simultaneous approach in cases where well parameterizations are

more complex.

2. Methodology

In this section we briefly describe the optimization approaches used in our experiments.

These algorithms are well-suited to the production optimization problem because they re-

quire no gradient information and are easily parallelizable, which helps offset the high cost

of function evaluations. We also briefly discuss handling of nonlinear constraints which arise

in production optimization problems.

2.1. Mesh Adaptive Direct Search

Mesh Adaptive Direct Search (MADS) (Audet and Dennis, 2006) is a pattern search

algorithm which extends the earlier class of Generalized Pattern Search (GPS) algorithms

(e.g. Lewis and Torczon, 1999; Audet and Dennis, 2002). A GPS algorithm is an iterative

algorithm consisting of a series of search and poll steps. Let N denote the number of opti-

mization variables. At every iteration k, a discrete mesh, centred at the current incumbent

point x(k) ∈ RN , is defined by:

M (k) =
{
x(k) +∆m

k Dz : z ∈ NnD
}
,

where ∆m
k controls the resolution of the mesh at iteration k, D is a matrix whose columns

consist of the polling directions, N is the set of natural numbers, and nD is the number

of polling directions. The polling directions must form a positive spanning set in solution
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space; i.e., one must be able to specify any point in solution space by adding together only

positive scalar multiples of these directions. A common choice of directions is

D = {e1, e2, . . . , eN ,−e1,−e2, . . . ,−eN} ,

where the en are the canonical basis vectors (1, 0, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , etc. Here D

refers to the set of polling directions, which form the columns of the matrix D.

The search step is a generic optimization step in which the objective function is evaluated

at some finite number of points on M (k). The number of points and their co-ordinates can

be chosen according to any desired strategy; the only requirements are that the points lie on

the mesh and can be computed in a finite amount of time. If the best point found overall

is an improvement on x(k), then it becomes the new incumbent; otherwise, the algorithm

proceeds to the poll step. The poll step consists of evaluating the objective function at all

the points that are immediate neighbours of the incumbent point on the mesh M (k). These

points are given by {
y
(k)
j

}
=

{
x(k) +∆m

k dj| ∀ dj ∈ D
}
. (2)

If the best point found overall by polling is an improvement, then it becomes the new

incumbent. ∆m
k may then be increased for the next iteration. If the poll step is unsuccessful,

then ∆m
k is reduced and another iteration begins, using the same incumbent point as before.

The algorithm is considered to have converged once ∆m
k is reduced beyond some minimum

threshold, which indicates that the current point is at least close to a local optimum. In

fact, provided that the objective function is continuously differentiable, GPS is guaranteed

to converge to a local optimum, at least to mesh precision (Lewis and Torczon, 1999).

The key distinction between GPS and MADS is that MADS introduces a second param-

eter ∆p
k, which controls the polling size and is required to be larger than the mesh size ∆m

k ,

for all k. Thus the size of the underlying mesh M (k) shrinks more quickly than the size of

the polling stencil as the algorithm proceeds. This allows MADS to select the set of polling

directions, dj ∈ D, on a finer grid than GPS does, and thereby generate an asymptotically

dense set of polling directions as ∆m
k and ∆p

k decrease (Audet and Dennis, 2006). Unlike in

GPS, D can be changed with every MADS iteration, and thus MADS is not limited to a
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finite number of polling directions as the mesh size decreases. MADS was found to provide

superior results for several test problems in Audet and Dennis (2006) as a result. There

are several strategies for generating D; we use OrthoMADS (Abramson et al., 2009), which

deterministically generates a set of 2N orthogonal polling directions at every iteration.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Clerc, 2006) is an

iterative heuristic algorithm based on collective intelligence. The swarm consists of some

number of particles (typically 20–50), with the ith particle being characterized by its position

x
(k)
i and velocity v

(k)
i at every iteration k. Both x

(k)
i and v

(k)
i are vectors of size N . The

position corresponds to a vector in search space, with an associated objective function value

f(x). Every particle retains memory of the best position it has found so far, denoted p
(k)
i ,

and communicates with other particles in some neighbourhood to determine the best position

found among all of them, denoted g
(k)
i . Following initialization, the algorithm proceeds as

follows:

x
(k+1)
i = x

(k)
i + v

(k+1)
i , (3)

v
(k+1)
i = ιv

(k)
i + µr

(k)
1 ⊗

(
p
(k)
i − x

(k)
i

)
+ νr

(k)
2 ⊗

(
g
(k)
i − x

(k)
i

)
. (4)

The velocity update (4) combines three terms; a tendency to continue moving in the

direction given by the particle’s current velocity, v
(k)
i , a tendency to be drawn towards the

best position the particle has found so far, p
(k)
i , and a tendency to be drawn towards the

best position found by all particles in its neighbourhood, g
(k)
i . The constants ι, µ and ν are

weighting parameters. The N -vectors r
(k)
1 and r

(k)
2 are randomly generated from the uniform

distribution on (0, 1) at every iteration, with ⊗ denoting componentwise multiplication.

This multiplication adds a stochastic component to the algorithm and helps avoid early

convergence to a local minimum. PSO is typically run for some fixed number of iterations or

until some convergence criterion has been satisfied, e.g., until the particle velocities are close

to zero. In general, there is no guarantee that PSO converges to a global or even a local
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optimum; however, in practice it has proved to be effective for a wide variety of optimization

problems (Poli, 2008).

Following Clerc (2006), our implementation of PSO uses standard weighting parameters

of ι = 0.721, and µ = ν = 1.193 and a population size of 50 particles. We use a global

best neighbourhood topology, meaning that every particle communicates with every other

particle in the swarm, and thus g
(k)
i can be replaced by a single vector g(k), representing

the best solution found so far. Although it has been observed that this choice of neighbour-

hood may cause PSO to converge to a local optimum before thoroughly exploring search

space (Clerc, 2006), we found that other choices of neighbourhood caused the algorithm

to converge too slowly for our purposes. Our implementation of PSO also includes some

heuristics for handling nonlinear constraints, which are discussed in Section 2.5.

2.3. MADS-PSO

Generally speaking, stochastic approaches such as PSO are well-suited to problems where

the objective function surface is rough, while MADS is better-suited to problems where

the objective function varies more smoothly. Since the joint well placement and control

optimization problem features both types of behaviour, one expects that combining the two

algorithms could be beneficial. This has been shown to be true in previous studies (Isebor

et al., 2013; Humphries et al., 2013). The two algorithms can be readily hybridized by

implementing PSO as the search step within the GPS framework, as was first proposed

in Vaz and Vicente (2007, 2009). During this search step, the particles move according

to the update formulas (3) and (4), and are then projected onto the mesh. If the search

step fails to improve on the incumbent solution, polling takes place around the current best

position found, as per (2). If the poll step finds a better solution, the current best position

is updated and a new iteration begins; otherwise, the polling stencil size is reduced.

2.4. Sequential approaches

The MADS, PSO, and MADS-PSO approaches described previously can all be applied to

the joint problem by optimizing over all control and placement parameters simultaneously. In
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contrast, our sequential approach to the joint optimization problem splits it into a two-step

procedure:

1. Optimize well positions using PSO, assuming some simple control scheme for injectors

and producers.

2. Use the best position found during Step 1 as the initial incumbent solution for opti-

mizing over placement and control simultaneously using MADS.

We note that our approach differs from the sequential approaches studied elsewhere in the

literature (e.g. Bellout et al., 2012; Isebor et al., 2013) where well positions are held fixed

during the second step, and only well controls are optimized. There is no drawback to allow-

ing well positions to be further optimized during the second step, aside from some increased

computational cost due to the higher dimensionality of the problem. In our experiments we

have found that the increased cost is justified, as it is possible to find significantly better so-

lutions during the second step of optimization if one allows the positional parameters to vary

in addition to the control parameters. In essence, then, the second step of our sequential ap-

proach consists of optimizing over all variables simultaneously using MADS, starting from a

good initial guess which has been provided by solving a smaller well placement optimization

problem in the first step.

The choice of control scheme for Step 1 has some bearing on the performance of this

approach, as previously shown in Humphries et al. (2013). We will therefore study two

variants:

• Sequential-I: Injectors are held at the maximum allowable BHP during the entire pro-

duction period, while producers are held at the minimum allowable BHP. This control

scheme is a common choice for well placement problems, and generates the highest

flow rates possible for a given configuration of injectors and producers.

• Sequential-II: Injectors are held at 10-20% below the maximum BHP, while producers

are held 10-20% above the minimum BHP. The idea is that this choice of controls

might better approximate the average BHP of a well over the whole production period
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when the controls can be altered. Thus, the well positions found during the first step

of optimization may be closer to the optimal configuration for the full problem, which

could improve the odds of finding a globally optimal solution in the second step.

2.5. Constraint handling

Well placement and control optimization problems always include bound constraints,

since wells must lie within the boundaries of the reservoir, and are subject to operating

constraints that restrict the values of the control parameters. General constraints are often

present as well. A common example is a limit on fluid injection and production rates for wells

controlled by BHP. In this case the well flow rates, which may have minimum and maximum

values depending on operating constraints, have a complicated nonlinear dependence on the

reservoir geology and positions of the various wells, in addition to the prescribed BHPs. A

violation of one of these constraints can be quantified using a constraint violation function;

for instance, if there are maximum flowrates for injectors and producers (denoted qmax
inj and

qmax
prod, respectively), then one can use

h(x) =
∑

n∈prod

{∫ T

0

max
(
q−n,o(x, t) + q−n,w(x, t)− qmax

prod, 0
)
dt

}

+
∑
n∈inj

{∫ T

0

max
(
q+n,w(x, t)− qmax

inj , 0
)
dt

}
, (5)

Thus h = 0 if a solution completely satisfies the constraints, and is positive otherwise; a

point that violates the constraints is infeasible.

Both the PSO and MADS components of our optimization approaches must therefore

include some method of dealing with bound and general constraints. For MADS, we use

default options that are provided with NOMAD. Points that violate bound constraints are

projected back onto the boundary of search space, while general constraint violations are

handled using the progressive barrier approach (Audet et al., 2010). This approach permits

infeasible points to be considered as incumbents, provided that the constraint violation is

below some threshold hmax, which decreases as the iteration proceeds.
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For PSO, particles that travel outside the boundaries of search space are also brought back

to the boundary, and have their velocities altered to avoid traveling outside the boundary

again at the next iteration (Clerc, 2006). To handle general constraints, we establish the

following ranking system for determining each particle’s personal best position as well as the

global best:

1. Between any two infeasible solution, the one with the smaller h value is best,

2. Any feasible solution is better than an infeasible solution, and

3. Between two feasible solutions, the one with the better objective function value is best.

This approach, which was proposed in Cagnina et al. (2008), has the advantage of being

simple to implement and not requiring any parameter tuning (unlike penalty function based

approaches), while also allowing particles to be initialized to infeasible positions.

Other general constraints that arise in the production optimization problem include the

following:

1. Two wells must not intersect the same grid cell,

2. The well path should not intersect with inactive grid cells, and

3. Wells should be separated from one another by some minimum distance.

All of these conditions can be checked prior to running a reservoir simulation. Points which

violate the first two conditions are usually treated as invalid input and are not considered

as potential solutions. The well distance constraint can be treated similarly, although it

may be advantageous to instead assign it a numerical penalty based on the extent of the

constraint violation, as in Equation (5). The latter approach would allow searching around

promising infeasible solutions which only violate the distance constraint to a small extent.

We did not include a well distance constraint in any of our experiments, as the optimal

solutions found by our algorithm generally featured adequately-spaced wells, even without

any explicit constraint.

Finally, some trial points may cause a reservoir simulation job to fail; for instance, if

the numerical solver does not converge for a given set of well positions and controls. The
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NOMAD optimization software which was used to implement our optimization approach is

capable of catching failed jobs and ensuring that the optimization run itself does not hang or

crash. A set of parameters that causes the simulator to fail is essentially treated as invalid

input, and thus not considered as a potential solution.

3. Experiments

3.1. Optimization framework

The optimization approaches studied in this paper have been implemented using NO-

MAD (Le Digabel, 2011; Abramson et al., 2011). This black-box optimization package

includes an implementation of MADS, and also provides users with the ability to implement

their own custom approaches to be used as a Search component. We have therefore written

an implementation of PSO that can be used in conjunction with MADS (for the MADS-PSO

algorithm), and also run as a straightforward PSO algorithm, for the purposes of compari-

son. The IMEX Advanced Oil/Gas Reservoir Simulator (Computational Modelling Group

Ltd., 2011) has been used as the reservoir simulator, with interfacing between NOMAD and

IMEX handled by custom code written in Python. We have also taken advantage of NO-

MAD’s MPI-based implementation to evaluate the objective function at multiple trial points

in parallel, by running the software on a computational cluster consisting of 48 nodes.

3.2. Experiment 1

Our first test case consists of placing six vertical wells (two injectors and four producers) in

a single-layer synthetic reservoir consisting of 60 × 80 cells, assuming a two-phase oil/water

fluid component model. The initial saturation is 80% oil to 20% water. The reservoir

permeability and porosity fields are shown in Fig. 1 and are taken from the SPE Comparative

Solution Project (2001). The production period consists of ten years with a control interval

of two years. Thus each well has two positional parameters (its (x, y) co-ordinates) and five

control parameters, for a total of 42 variables. The (x, y) co-ordinates correspond to grid

indices, and each vertical well is assumed to be drilled in the centre of the cell. Even if one

disregards the control parameters, there are
(
4800
6

)
≈ 1.7 × 1019 possible ways to position
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Figure 1: Permeability (left) and porosity (right) fields used for Experiments 1 and 2. Permeability is shown

in millidarcy (mD), on a logarithmic scale.

the six wells, so an exhaustive search is out of the question. The simulation parameters are

summarized in Tables 1 and 2, and the economic parameters used to compute NPV are given

in Table 3. We considered two cases: Case 1A has no constraints on production, while Case

1B incorporates a nonlinear constraint by imposing a maximum flowrate of 1500 m3/day on

injectors and 750 m3/day on producers. Equations (1) and (5) are used to compute the NPV

and constraint violation h, respectively. We consider solutions with h values slightly larger

than zero to be feasible, to account for the fact that well flow rates may spike momentarily

when bottom hole pressures are instantaneously changed from one value to another. We

view this as an artifact of the simulation and not a true constraint violation.

3.3. Experiment 2

This experiment uses the same reservoir model, fluid properties, production period, BHP

bounds and economic parameters as Experiment 1. As before, we consider a case with

no production constraints (Case 2A) and one with maximum flowrate constraints (Case
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Table 1: Parameters for the three experiments considered.

Experiment 1 Experiment 2 Experiment 3

Reservoir grid (cells) 60 × 80 × 1 60 × 80 × 1 60 × 50 × 3

Reservoir size (m) 2400 × 3200 × 10 2400 × 3200 × 10 2400 × 2000 × 75

Reservoir depth (m) 2000 2000 2000

Oil-water contact (m) 2008 2008 2060

Number of wells 2 inj, 4 prod 2 inj, 2 prod 2 inj, 2 prod

Injector BHP bounds (bar) 300 – 450 300 – 450 300 – 450

Producers BHP bounds (bar) 125 – 260 125 – 260 125 – 260

Production period (years) 10 10 15

Control interval (years) 2 2 3

Positional parameters per well 2 4 6

Control parameters per well 5 5 5

Total number of parameters 42 36 44

Table 2: Fluid properties used for all three experiments.

Property Value

Water and oil density ρw, ρo 1000 and 860 kg/m3

Water and oil viscosity µw, µo 0.32 and 0.53 cp at 280 bars

Water and oil compressibility cw, co 5× 10−5 and 4.35× 10−5 bar−1

Relative permeability See curves below
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Table 3: Economic parameters used for all three experiments.

Parameter Values

Value of produced oil, co $80/barrel

Cost of injecting water, cw,inj $8/barrel

Cost of disposing of water, cw,disp $12/barrel

Interest rate, r 10% per annum

Base drilling cost $25M per well

Drilling cost per unit length
$50K per metre

(Experiments 2 and 3 only)

Vertical well Horizontal well Inclined well

Figure 2: Types of well and parameterizations used in Experiments 1, 2 and 3, respectively. Left: vertical

well parameterized by (x, y); centre: arbitrarily oriented horizontal well parameterized by (x, y, l, θ); right:

inclined well parameterized by (x, y, z, l, θ, ϕ). Main well bore is shown as a solid line, while the cross denotes

the well heel.

2B); in this case, 1500 m3/day for both injectors and producers. The key difference from

Experiment 1 is that instead of drilling six vertical wells, we drill four arbitrarily oriented

horizontal wells; two injectors and two producers. The positions of each of these wells are

parameterized by four variables; x, y, l, and θ. The co-ordinates of the well heel are given by

x and y, l is the length of the well, and θ is the angle of the well in the x-y plane, where an

angle of zero corresponds to being oriented in the positive x direction. This parameterization

is illustrated in Fig. 2 (middle image).

The well length l has a minimum value of 100 m and a maximum value of 320 m. The

cost of drilling a longer well is incorporated into the NPV calculation by including a drilling

cost of $50,000 per metre of length, in addition to the base cost of $25M per well. Thus

a horizontal well may cost anywhere from $30M to $41M to drill. Given that the angle θ
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can take any value between 0 to 360◦, the horizontal wells will not, in general, be aligned

with the grid, and so the well bores will not pass through the centres of the grid cells. As

such, it makes sense for x and y to be specified in terms of the position of the well heel in

metres, rather than as grid indices. One can then determine the length of intersection of

the well bore with each cell through which it passes, which is used by IMEX to compute an

appropriate well index for each segment.

3.4. Experiment 3

In this experiment, we consider the problem of drilling inclined wells in three dimensions.

Each well’s position can now be parameterized by six variables; the same x, y, l and θ as in

Experiment 2, as well as z (the depth of the well heel) and ϕ (angle the well makes with the

horizontal plane). We use a production period of 15 years, with well control periods of 3 years.

Thus each well is parameterized by six positional parameters and five control parameters,

for a total of eleven variables. The same bounds on BHP for injectors and producers are

used as in the previous two experiments, as well as the same economic parameters. The

synthetic reservoir is a 60×50×3-cell grid with cell dimensions 40×40×25 m (total field size:

2400×2000×75 m) and a depth of 2000 m. The permeability field of the reservoir (shown

in Fig. 3) is isotropic in the x and y directions, with a much lower average permeability in

the z direction. The depth to water-oil contact is 2060 m, and so the top two layers of the

reservoir initially contain mostly oil, and the bottom layer mostly water.

We consider the problem of placing two injection and two production wells (44 variables

total). The same NPV calculation is used as in Experiment 2, including the additional

drilling cost per unit length. The length of each well must be at least 100 m and at most

400 m. To reduce the number of infeasible points in solution space, we place the following

restrictions on the positional parameters:

1. The angle with the vertical, ϕ, of each well must lie between 0 and 10 degrees. Given

that the minimum well length is 100 m, steeper drilling angles will tend produce wells

with toes that lie below the bottom layer of the reservoir, which correspond to invalid

input.
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Figure 3: Permeability field for the three-layer reservoir used in Experiment 3. Top row shows permeability

(mD, log scale) in the x-y directions, bottom row in the z direction. Taken from the SPE Comparative

Solution Project (2001).

2. The z value of the well heel for injectors must lie between 25 to 50 m, while for

producers it must lie between 0 to 50 m. This means that the heel of an injection well

must lie in the middle layer of the reservoir, while that of a producer well can lie in

the top or middle layer. As with the first restriction, this helps to limit the number of

well configurations that are invalid due to the well toe position. It is also a sensible

constraint since good solutions typically involve drilling producers in upper layers of

the reservoir and injectors in lower layers.

As before, we consider two cases: one with no production constraints (Case 3A) and one

with maximum fluid injection and production constraints of 5000 m3/day at each well (Case

3B).

4. Results

For each experiment, we tested five optimization approaches. The first three are simulta-

neous approaches (approaches which act on a vector of all parameters simultaneously), while

the last two are sequential approaches, which consist of two optimization steps.
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1. The MADS algorithm as described in Section 2.1, applied to all variables simultane-

ously. The algorithm was initialized by evaluating the objective function at 60 points

using a Latin Hypercube search that is built in to NOMAD. The best point of these

was selected as the initial incumbent point. The algorithm was run up to a maximum

of 12,000 function evaluations, or until the mesh reached a specified minimum size.

2. The PSO algorithm as described in Section 2.2, implemented as a search class in

NOMAD, with polling disabled. We ran the algorithm up to a maximum of 12,000

function evaluations, or until 100 consecutive iterations failed to improve the solution.

3. The MADS-PSO algorithm as described in Section 2.3. The algorithm was run up

to a maximum of 12,000 function evaluations, or until the mesh reached a specified

minimum size.

4. The Sequential-I approach as described in Section 2.4. In Experiments 1 and 2, the

first step consisted of running PSO for up to 4,000 function evaluations on the well

placement optimization problem, and the second step then consisted of running MADS

on the full problem for up to 8,000 function evaluations. In Experiment 3, we allocated

4,800 function evaluations to the first step and 7,200 to the second step, owing to the

increased number of variables involved in Step 1. In all cases, injectors were held at

their maximum BHP of 450 bar, and producers at the minimum BHP of 125 bar,

during Step 1.

5. The Sequential-II approach as described in Section 2.4. The procedure was the same

as for Sequential-I, except that during Step 1, injectors were held at 425 bar, and

producers at 150 bar.

Every one of these approaches is nondeterministic, either as a result of the initialization

procedure (for MADS) or the inclusion of a PSO component. Thus, to assess the overall

performances of these algorithms, we ran each of them 10 times for every experiment. The

results are summarized in Table 4, which shows the best, worst, mean and standard deviation

of the 10 runs for each algorithm. The best overall value for each experiment is highlighted

in bold font. Convergence plots showing the NPV averaged over all 10 runs of each method
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Figure 4: Convergence plots for all experiments, showing NPV averaged over all 10 runs of each method, as

a function of the number of simulations (fevals). Note that the y-axis scale for Cases 3A and 3B is different.

as a function of the number of objective function evaluations (fevals) are shown in Fig. 4.

5. Discussion

We first comment on some trends that are apparent across all (or nearly all) of the

experiments. With respect to the three simultaneous approaches, one clearly sees a benefit

in hybridizing PSO and MADS for this problem, as compared to applying only MADS or only

PSO. The average performance of MADS-PSO was better in all six experiments, although

it did not always find the best solution overall between the three. The convergence plots in

Fig. 4 indicate that MADS-PSO generally found good solutions more quickly than the other

two simultaneous approaches as well.

Additionally, we note that for the unconstrained problems (Cases 1A, 2A and 3A), PSO

generally performed better than MADS on average, while in the constrained problems MADS

performed just as well in Cases 1B and 2B, and significantly better in Case 3B. This may
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Table 4: Results for all experiments. Values shown are NPV in $×108. Best values for each case are

highlighted in bold.

.

Case Algorithm Best Worst Mean St. Dev

1A MADS 10.53 9.185 10.05 0.548

PSO 10.61 9.316 10.22 0.418

MADS-PSO 10.97 9.277 10.39 0.534

Sequential-I 10.77 9.969 10.33 0.306

Sequential-II 10.99 9.003 10.25 0.556

1B MADS 9.945 8.241 9.179 0.517

PSO 9.927 8.109 9.143 0.552

MADS-PSO 10.36 8.768 9.603 0.528

Sequential-I 10.24 8.160 9.336 0.574

Sequential-II 10.12 7.413 9.251 0.844

2A MADS 10.51 7.974 9.623 0.783

PSO 10.70 9.406 10.22 0.538

MADS-PSO 10.80 9.652 10.25 0.439

Sequential-I 10.47 9.620 10.04 0.316

Sequential-II 10.83 9.981 10.36 0.287

2B MADS 10.20 8.861 9.282 0.441

PSO 9.963 8.198 9.342 0.475

MADS-PSO 10.16 8.217 9.390 0.597

Sequential-I 9.864 7.505 8.920 0.701

Sequential-II 10.32 8.410 9.345 0.668

3A MADS 46.03 34.03 41.34 4.69

PSO 46.20 32.69 41.55 4.47

MADS-PSO 45.42 33.83 41.69 3.62

Sequential-I 48.50 42.13 45.60 2.40

Sequential-II 47.42 43.94 45.19 1.00

3B MADS 45.50 30.70 37.33 5.43

PSO 41.83 26.97 35.53 5.32

MADS-PSO 45.19 30.64 39.15 4.82

Sequential-I 46.14 31.57 40.84 5.31

Sequential-II 44.46 38.16 41.13 2.04

22



indicate that the nonlinear constraint handling strategy for PSO described in Section 2.5 is

less effective than the strategy used by MADS, and could be improved upon. Ranking any

feasible particle ahead of any infeasible particle drives the search towards feasible regions

quickly and thus may disregard some promising infeasible solutions in other regions of the

search space. Thus it may be worth considering more sophisticated constraint-handling

methods that have been proposed for PSO (e.g. He and Wang, 2007; Kou et al., 2009).

The performance of Sequential-I versus Sequential-II appears to be somewhat context-

specific. In Experiments 1 and 3, the average performance of both approaches was compara-

ble (less than 1% difference in mean NPV in all four cases). In Experiment 2, however, the

Sequential-II technique provided results that were 4-5% better than those of Sequential-I,

on average, for both test cases. In Fig. 5, we show a scatter plot of the results of these two

approaches for Cases 2A and 2B, in which the NPV found after Step 1 of the approach is

plotted against the (final) NPV found after Step 2, for all 10 runs of each approach. All the

points lie above the line y = x since the second step cannot produce a solution with a lower

NPV. It is clear from the plot that there were many instances where the best solution found

by Step 1 of Sequential-I was not significantly improved by Step 2 (i.e., the points lying close

to the line y = x). This suggests that the first step of Sequential-I tended to find a well

configuration that was nearly optimal for the assumed control scheme (maximum/minimum

BHP values at injectors and producers, respectively), and that it was difficult to improve on

this solution in Step 2. The first step of Sequential-II, on the other hand, found solutions

that were significantly improved during the second step, which eventually produced better

results overall in this experiment. These results suggest that the Sequential-II approach is

more robust than Sequential-I.

Of particular interest is the performance of the simultaneous MADS-PSO approach versus

the two sequential approaches. In Case 1A, the performance of MADS-PSO was fairly

comparable to that of Sequential-I on average (within 1%), but in Case 1B, MADS-PSO

outperformed both sequential approaches by roughly 3% on average. In Experiment 2,

Sequential-II and MADS-PSO had comparable average performances for both test cases. In
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Figure 5: Scatter plot showing results of Sequential-I and Sequential-II approaches for Cases 2A and 2B.

Dashed line is the line y = x.
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Experiment 3, both sequential approaches provided much better results than MADS-PSO.

The NPV of solutions found by Sequential-II, for instance, was 9% higher on average in

Case 3A, and 7% higher in Case 3B. Thus, there appears to be a trend – as the number of

variables parameterizing each well’s position increased (from two in Experiment 1 to six in

Experiment 3), the performance of the sequential approaches relative to the simultaneous

approaches improved.

We focus on the two cases where we observed the largest disparities in performance be-

tween simultaneous MADS-PSO and the sequential approaches. In Case 1B, where MADS-

PSO gave better results, the goal was to place six vertical wells under the production con-

straints described in Section 3.2. In Fig. 6 we show the well positions corresponding to the

best solution found by each of the 10 runs of the MADS-PSO (left figure) and Sequential-I

(right figure) algorithms. We note that the solutions found by Sequential-I tend to place more

wells towards the edges of the field and fewer towards the centre, compared to the solutions

found by MADS-PSO. This occurs as a consequence of the control scheme used in the first

step of Sequential-I. Holding injectors and producers at their maximum and minimum BHP

values (respectively) generates high flow rates if wells are placed close together or in regions

of high permeability, which result in constraint violations and lowered NPV due to premature

waterflooding. Indeed, the overall best configuration of wells found by MADS-PSO (shown

as thick black symbols in the left image of Fig. 6) produces a constraint violation under the

control schemes assumed in Step 1 of both the Sequential-I and Sequential-II approaches.

The control scheme corresponding to this solution is shown in Fig. 7. It is clear that satis-

fying the constraints on maximum flowrate (1500 m3/day for injectors and 750 m3/day for

producers) requires raising and/or lowering well BHPs several times (e.g. for the injector

labeled I1 and producer labeled P2 after two years). Thus the first step of the two sequential

approaches is not able to find some of the promising well configurations identified by the si-

multaneous approach. Although the second step of the sequential approaches allows the well

positions to be altered in addition to the controls, it is primarily a local search and therefore

is not likely to find a well configuration that is significantly different from the starting point
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Figure 6: Well positions corresponding to optimal solutions found at the end of each of the 10 runs of

MADS-PSO (left) and Sequential-I (right), for Case 1B. Placement of injectors (×) and producers (◦) are

overlaid on the permeability field (log scale, cf. Fig. 1). The positions corresponding to the best overall

solution found by each approach are highlighted with thick black symbols.

provided by Step 1.

We note that Fig. 6 indicates that there is a great deal of variance in terms of the best

positions found after each run. This is typical of problems involving well placement, since

the objective function tends to contain many local optima with similar NPVs. Although

this makes it harder to find the overall global optimum, it can be advantageous to have

multiple different solutions with nearly optimal values, since some “optimal” solutions may

be impractical for logistical reasons that are difficult to incorporate into the optimization

algorithm (e.g. unsafe drilling conditions).

In Case 3A, where the two sequential approaches gave better results than MADS-PSO,

the problem involved placing four inclined wells without any production constraints. The

convergence plot (Fig. 4, top right) shows that even the solutions found during Step 1 of the

Sequential-I approach, when well controls were held fixed, were better on average than those

found by MADS-PSO. Thus, by focusing only on the 24 positional variables (rather than
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Figure 7: BHP controls and corresponding flow rates for the best solution found by MADS-PSO for Case

1B, with an NPV of $1.036×109. BHP controls for each injector and producer are shown in top row. Fluid

production rates for each producer are shown in bottom left plot and water injection rates for each injector

in bottom right. The solid lines in the bottom left plot indicate oil production; dashed lines indicate water

production. The horizontal dashed lines indicate the maximum rate constraints for production and injection.
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the 44 variables involved in the full placement-control problem), the first step of Sequential-I

was quickly able to determine good well configurations. The solutions were then significantly

improved during the second step, as is evident from the distinct bump in the convergence

plots that occurs after 4800 fevals. In principle, the simultaneous MADS-PSO algorithm

should be able to find these solutions as well, since the search space explored by the first

step of Sequential-I is contained within the search space of the full simultaneous problem.

However the convergence results would seem to indicate that the inclusion of the control

variables along with the positional variables makes it more difficult for the simultaneous

algorithm to determine optimal positional parameters, which play the most crucial role in

the quality of the solution.

To gain further insight, we examine the best solutions found by the Sequential-I and

simultaneous MADS-PSO approaches for Case 3A, which we will denote as Solution 1 and

Solution 2, respectively. Fig. 8 shows Solution 1 (NPV of $4.850×109), which was 6.8% better

than Solution 2, shown in Fig. 9. The top row of both figures shows the x-y permeability

field for each layer of the reservoir, with cells perforated by each well indicated by black

boxes. The bottom row of each figure shows the optimized BHP controls for each injector

and producer, as well as the cumulative fluid production and cumulative water injection

curves. We see from the top row of both figures that injectors and producers were placed in

roughly the same area of the reservoir in both solutions, with the location and orientation

of the injector labeled I2 being virtually the same in both solutions. The numerical results

of the simulation, however, indicate that roughly 9.4% more oil was produced in Solution 1

than in Solution 2, as well as nearly 25% less water, which accounts for the discrepancy in

NPV. This is also observable from the cumulative production curves shown in Fig. 8 and

Fig. 9. The amount of water injected was roughly the same in both simulations. The primary

difference is that the injector labeled I1 and the producer labeled P2 in both figures are not

placed as optimally in Solution 2. In particular, in Solution 1, I1 and P2 are oriented such

that I1 drives oil towards P2, while in Solution 2, most of the injected water from I1 drives

oil to P1. This results in less oil production at P2 and a greater amount of water production
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Top Layer Middle Layer Bottom Layer

Figure 8: Best solution found by Sequential-I for Case 3A, with NPV of $4.850×109. Top row: permeability

field (log scale) with well locations indicated. Bottom row: BHP controls for each injector and producer (left

and centre-left plots), cumulative fluid production for each producer (centre-right) and cumulative water

injection for each injector (right). The solid lines in the cumulative production plot indicate oil production;

dashed lines indicate water production.

at P1, thereby reducing the NPV. We note that the control scheme determined in Solution 2

attempts to mitigate this effect by raising the BHP of P1 after only 3 years to reduce the

flowrate. Since the wells are not optimally positioned, however, the control scheme only

compensates to a limited extent.

6. Conclusions

In this paper we have considered two approaches to the joint well placement and con-

trol optimization problem. The first approach optimizes over all well placement parameters

and well control parameters simultaneously, while the second approach consists of a first

step that determines optimal well positionings subject to a simple control strategy, and a

second step that uses the first solution as a starting point to optimize over all parameters.
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Figure 9: Best solution found by MADS-PSO for Case 3A, with NPV of $4.542×109. Plot and symbol

meanings are the same as in Fig. 8.

In our numerical experiments we gradually increase the number of parameters required to

describe each well’s position, while holding the number of control parameters fixed. Thus,

in Experiments 1, 2 and 3, the positional parameters make up 28%, 44%, and 55% of the

total number of variables under consideration, respectively. We observe that in Experiment

1, the simultaneous approach provided significantly better results in one of two test cases; in

Experiment 2, one of the two sequential approaches considered was able to provide compara-

ble results to the simultaneous approach, and in Experiment 3, both sequential approaches

significantly outperformed the fully simultaneous approach.

Although these results are empirical, they suggest that as the well placement compo-

nent of the joint optimization problem becomes more challenging, the sequential approach

benefits from devoting more attention to that subproblem. While the fully simultaneous ap-

proach is, in principle, capable of finding any of the optimal solutions found by the sequential

approaches, it appears that the inclusion of control parameters along with positional param-

eters in a single stage of optimization makes it more difficult to find these solutions. This

30



finding may be broadly applicable to other applied optimization problems as well. If one is

aware that certain variables are more crucial to the quality of a solution than others (as is

the case with positional parameters in this problem), then there may be an advantage in

devoting more attention to those variables, by splitting the optimization routine into stages.

One caveat is that the choice of values for the other parameters which are held fixed during

any stage of the optimization may be important. For example, in Experiment 2 of this paper

we observed that the choice of fixed control scheme for the sequential approach (Sequential-I

versus Sequential-II) had a significant impact on the effectiveness of the approach.

There are many possible avenues for future work. With respect to the optimization al-

gorithms used, it is clear from the work presented that combining a stochastic algorithm

such as PSO with the deterministic search provided by MADS is an effective strategy. Some

potential areas of investigation are the use of other stochastic approaches such as differential

evolution or covariance matrix adaptation to see if they offer any improvement in perfor-

mance, as well as improved methods for handling nonlinear constraints. With respect to the

production optimization problem, one can consider including additional decision parameters

such as the number and type of well to drill, in addition to the scheduling of drilling opera-

tions (e.g. Isebor et al., 2014; Isebor and Durlofsky, 2014). It is likely that introducing these

variables will necessitate further development of the optimization approach, since some of

them are categorical in nature. Along the lines of the work presented here, it will be par-

ticularly interesting to see whether dividing the optimization into several stages is still an

effective strategy.
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