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THE OFEVALUATION OF COMPETITIVE STRESS INDEX AS A MEASURE
STAND DENSITY FOR YOUNG GROWTH DOUGLAS-FIR

INTRODUCT ION

The current trend of forest management research has focused on the

individual tree and its environment. Inter-tree competition is an im-

portant component in the analysis of tree and stand growth relationships.

New measures of stand density are needed to evaluate the relative level

of inter-tree competition in the stand. Competitive stress index (CSI)

is a measure of stand density which expresses the relative level of

competition between trees for growing space. It is a quantitative mea-

sure of the relative stress exerted on a tree by its neighbors. This

study examines the applications of the CSI model as a dynamic measure

of stand density.

The primary objectives of this study are two-fold. First, the

study attempts to evaluate the competitive stress model (CSI) as a

measure of stand density in young growth Douglas-fir stands. Second,

the study develops methodologies for operational application of the CSI

model. In accomplishing these objectives, the sensitivity of the index

in regulating thinning intensity, in predicting growth response of

trees and in determining a tree's competitive status will be examined.

In addition, procedures for deriving stocking and spacing guidelines,

sampling for competitive stress and predicting future mortality based

on the CSI model are also developed.
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The scope of this study is limited to young growth Douglas-fir

staids. Although the study results represent localized stand condi-

tions, application of the methodologies employed are unrestricted.

Hopefully, this study will provide new insights into the application of

the CSI model to growth and yield forecasting for Douglas-fir in the

Pacific Northwest.

THE STUDY AREA

The basic data used in the study were obtained from the Hoskins

levels of growing stock study plots located approximately 22 miles West

of Corvallis, near Hoskins, Oregon. The study area was established in

a 20 year old, pure, even-aged stand of Douglas-fir. The stand was of

natural origin. The study area had uniform soil and site conditions

(approximately Site Class II). The Hoskins study plots are a part of

a regional cooperative levels of growing stock study designed to examine

the effects of various thinning regimes on stand growth and development.

The Hoskins study consists of eight thinning treatments plus control

replicated three times in a completely randomized design. Bell (1972)

describes the Hoskins study and results in detail. Thinning treatments

ranging from heavy to light in intensity were examined.

Since establishment, three thinning periods have occurred, at the

end of 1966, 1970, and 1973 growing seasons, respectively. In this

study, only data from treatments 1, 3, 5, 7, and control were analyzed.

Table (1-1) gives the level of growing stock treatment schedule as the

percent of the gross basal area increment of the control plot to be

retained in growing stock.
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Note the decrease in thinning intensity from treatment one to

treatment seven. The thinning intensity by period depends upon the

gross basal area increment of the control. Initial stand density for

all treatments 1-7 were reduced to a prescribed level of about 50 sq.

ft. BA/ACRE at the end of the 1963 growing season (Bell, 1972). Sub-

sequent thinnings in 1966, 1970, and 1973 removed the prescribed per-

centage of the basal area for each treatment (see Chapter 3). Tables

(1-2, 1-3, 1-4, and 1-5) give the stand data by treatment and measure-

ment period.

DATA

The basic data for the study represented a ten year accumulation

of individual tree measurements from 15 square, one-fifth acre, stem-

mapped study plots. Detailed measurements of all trees were recorded

Table (1-1): Percent bf gross basal area
increment retained as growing
stock

Thinning Period

Treatment 1966 1970 1973

1 10 10 10

3 30 30 30

5 50 50 50

7 70 70 70

Control
(unthinned)

100 100 100
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Table (1-3):

Treatment

Mean DBH by treatment 1963-1973 (inches)

1966 1970 1973
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 4.9 6.5 6.7 9.0 9,5 11.3 11.8

3 5.0 6.6 6.6 8.8 9.0 10.6 10.8

5 4.8 6.4 6.5 8.4 8.4 9.8 10.0

7 5.1 6.8 6.8 8.7 8.7 9.9 10.0

Control
(unthinned)

3.6 4.3 4.3 5.5 5.5 6.3 6.3

Table (1-2): Total basal area CIBA) by treatment 1963-1973
(square feet)

Treatment 1966 1970 1973
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 49.4 85.5 55.1 99.5 60.4 85.1 64.4

3 49.0 85.0 64.2 111.5 81.6 111.3 85.9

5 49.2 86.0 74.9 126.5 103.6 137.6 121.1

7 50.1 85.9 84.9 139.4 124.5 161.8 150.2

Control
(unthinned)

138.1 185.7 185.7 228.6 228.6 256.3 256.3
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Table (1-4):

Treatment

Average spacing by treatment 1963-1973 (feet)

1966 1970 1973
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 10.6 12.3 13.2 15.7 17.4 18.6 19.9

3 10.6 12.6 13.0 15.2 15.9 17.1 18.0

5 10.6 12.3 12.5 14.6 14.8 16.2 16.6

7 10.9 12.8 12.8 14.9 15.0 16.3 16.6

Control
(unthinned)

8.2 9.0 9.0 10.4 10.4 11.5 11.5

Table (1-5):

Treatment

Number of trees per acre by treatment 1963-1973

1966 1970 1q73
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 353 352 215 215 118 118 83

3 343 342 252 252 175 175 130

5 365 363 312 312 250 248 213

7 328 328 323 323 287 287 262

Control
(unthinned)

1727 1640 1640 1272 1272 1087 1087
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for each measurement period before and after thinning. These data in-

clude: plot number, tree number, x-y stem coordinates, diameter at

breast height (nearest tenth inch), and tree status codes (dead, alive,

cut). The basic computational procedures for determining a treets

competitive stress status using the CSI model are outlined below. Using

the Hoskins Study data, individual plot records were sorted and stored

on a permanent data file. Each fifth-acre plot served as the primary

unit of interest. All trees contained within the plot were designated

subject trees. Potential competitors were obtained by mirroring the

original plot. Eight identical simulated plots were established by

translating the original plot boundaries in cardinal directions (see

Appendix E). The CSI model was fit to all subject trees by selecting

simulated competitors from the nine nested plots (see Chapter 2).

The following data were generated and recorded for each subject

tree: plot number, tree number, diameter, height, CSI, number of

competitors, open grown crown area, average DBH of competitors, and

average distance to competitors. These data were tabulated for each

measurement period before and after thinning in 1963, 1966, 1970, and

1973. Collectively, these data comprised the basic data used in the

study.

All analyses in the study were performed on the Oregon State

University CDC 3300 computer facilities. Computer programs written in

Fortran IV were developed to manipulate the data.



LITERATURE REVIEW

INTRODUCT ION

Competition indices are measures of stand density that reflect the

relative level of competition between trees for growing space. They are

based on the hypothesis that the level of inter-tree competition is

proportional to the size and spatial arrangements of trees in the stand.

Relative competition for growing space can be expressed as a function of

the area available to the tree relative to the area available to its

neighbors.

The development of inter-tree competition indices has closely

paralleled the development of stand simulation models. The higher

degree of sophistication and improved methodologies associated with

growth and yield forecasting has resulted in construction of more

flexible and rigorous inter-tree competition models. The following

sections describe six distinct types of competition models which have

been developed to evaluate inter-tree competition. The format of pres-

entation for each model focuses on how inter-tree competition is defined

for individual trees in the stand. The order of presentation corres-

ponds roughly to the level of sophistication of each competition model.

Before the competition models are presented, however, it is essential

that the terms inter-tree competition and stand density be fully under-

stood.

The term competition is defined as the active demand by two or

more organisms for a common vital resource (Wilson, 1971). The use of
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the resource by one or more individuals reduces the amount available to

other individuals in the population. The growth and survival of all in-

dividuals may be affected by a shortage of the resources (Whittaker,

1970).

Biological competition can be subdivided into interspecific and

intraspecific competition. Interspecific competition is the competition

which occurs between individuals belonging to different species. Intra-

specific competition occurs between individuals which belong to the same

species. Intraspecific competition in a single species forest stand is

the most keen, since the niche requirements of each tree are identical

to those of the other trees in the stand (Kormondy, 1969).

Inter-tree competition in a pure, even-aged Douglas-fir stand is a

type of intraspecific competition. The growth of the individual tree is

directly related to the proportion of the total resources available to

it (Adlard, 1973). Inter-tree competition exists if these resources are

reduced and subsequent growth of an individual tree is impaired by the

presence of other trees in the stand. Inter-tree competition can be

further subdivided into absolute and relative levels of biological inter-

action. Absolute competition refers to the amount and source of the

interaction between two or more trees in the stand for the resources of

the site, including: light, moisture, and nutrients. Trees compete

aerially with their crowns and in the subsurface with their root sys-

tems. The absolute level of competitive interaction between two trees

is difficult to assess. Relative competition expresses the interaction

between trees for growing space. The growing space or influence zone
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of a tree is the area in which it competes for the resources of the

site necessary to sustain growth. Relative inter-tree competition does

not describe the source or amount of the interaction between trees, but

only quantifies the growing space requirement of the tree.

Measures of stand density or stocking are used to depict the degree

to which the productive capacity of the site is being utilized by the

stand (Husch, 1972). Although the two terms are often used interchange-

ably, a distinction between stand density and stocking is usually made.

Standard definitions for stand density and stocking are given below.

Stocking is a relative term used to indicate the number of trees in the

stand as compared to the desirable number for best growth and management

(Curtis, 1970). A stand may be under-stocked, over-stocked, or fully

stocked, depending on what management objective is considered adequate

for the given level of stand density (Gingrich, 1967). Stand density,

on the other hand, is a quantitative expression of the number of trees,

basal area, volume, or other criteria per unit area occupied by the

stand (Bickford, 1957). Curtis (1970) states that "stocking is a com-

parison with current management objectives and stand density is almost

any numerical quantity obtainable by measurement of the stand on an area

basis."

In this paper the term stand density is defined as the degree of

crowding of stems on an area occupied by trees without reference to any

management objective. This definition is consistent with the common

usage of the term (Curtis, 1970). Measures of stand density are quanti-

tative variables which utilize the measurable characteristics of the
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stand to describe the level of density or degree of inter-tree competi-

tion. They are generally independent of age and site index and directly

interpretable in biologically meaningful terms (Curtis, 1970).

The following chapter reviews various measures of inter-tree com-

petition including whole stand models, point density models, tree size

and distance dependent models, growing space polygon models, miscellane-

ous competition models, and influence zone overlap models. The distinc-

tion between the general types of competition models and the classifica-

tion of particular indices was subject to the discretion of the author.

Unless a competition index is commonly referred to in the literature by

a special acronym, the general acronym, CI (formed from competition

index) was assigned to all indices.

WHOLE STAND MODELS

Measures of stand density which are based on the average area oc-

cupied or available area per tree relative to some standard density

condition are collectively referred to as whole stand models. Such

density measures provide the means of comparing actual stocking condi-

tions in a stand with the stocking of similar stands grown under optimal

or standard conditions. Two standard density conditions are commonly

used as baseline references: the open-grown condition and the so-called

ttnorma] or average maximum level of competition. These standard con-

ditions represent the biological limits to growth in a natural stand.

Whole stand models are relative measures of density which express an

observed stand parameter as a percentage of the normal, fully stocked,
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or open-grown stand density. Curtis (1970) has pointed out the

similarities between a number of whole stand models commonly used to

express relative stand density. Such measures of stand density are

interpretable as expressions of the cumulative degree of crowding or

competitive effects on the development of the "average" trees in closed

stands.

Basal area is frequently referred to as a measure of stand density

(Bickford, 1957). The ratio of the stand's basal area per acre to the

normal basal area per acre for stands of the same age and site index or

average stand diameter is a relative measure of stand density (Husch,

1972). The ratio of observed basal area to the normal basal area ex-

presses the total area available in a normal stand to the trees in the

observed stand per unit area. Similarly, stand volume can be used as a

relative expression of stand density (Husch, 1972). Density is deter-

mined by comparing the volume of the observed stand with the volume of

the standard stand of the same age and site quality.

The number of individuals per unit area is typically used in eco-

logical studies to describe population density. In forest stands,

however, the number of stems per unit area is an imperfect expression

of stand density because of the wide variation in tree sizes (Husch,

1972; Curtis, 1970). A fully stocked stand may contain fewer stems per

unit area than an understocked stand with many smaller individuals

(Loetsch, 1973). For this reason, the number of trees per unit area

conveys a measure of stand density only if it is qualified by some

measure of tree size (Husch, 1972). A measure of stand density based



on the number of trees per unit area and average stand diameter is

Reineke's (1933) stand density index.

Stand Density Index (SDI) expresses the number of trees per unit

area as a percentage of the number of trees per unit area for a fully

stocked stand of the same average diameter.

N
SDI

= N
(2-1)

Where:

N0 = the observed number of trees per unit area in the stand

Ne = the normal number of trees per unit area

The expected or normal number of trees per unit area for a speci-

Lied average stand diameter is given by:

N = ai5b (2-2)

Where:

the quadratic mean diameter of the stand (i.e., the diameter

of the tree of mean basal area)

a,b = constants

A least squares solution to Equation (2-2) would fit:

log Ne = a + b log (2-3)

Reineke (1933) found that the constant b was -1.605 for several

species. It is assumed that SDI is not strongly correlated with age or

site index but according to some investigators this is not always the

12
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case (Bickford, 1957; Loetsch, 1973; Paine, 1976). Curtis (1970) showed

that the ratio of N0 to Ne in Equation (2-1) can be interpreted as the

ratio of the total area occupied by the observed number of trees in the

normal stand to the unit area available to trees in the observed stand

with the same average diameter.

S.F. Gingrich (1967) used the basal area and number of trees per

acre to derive a relative density measure, the stocking percent. He

derived a stocking chart for hardwood stands in the central U.S. which

gives the stocking percent as a function of the number of trees and

basal area in relation to a normal stand condition. A stocking chart

indicates whether or not the stand is fully stocked, overstocked, or

understocked. Gingrich's stocking chart is based on the premise that

all tree heights have the same stocking percent for a given number of

trees and basal area (Loetsch, 1973).

The Tree Area Ratio (TAR) proposed by Chisman and Schumacher (1940)

is a relative measure of stand density which is independent of age and

site quality. It is based on the hypothesis that the growing space area

of a tree is a function of tree diameter.

TA = b0 + b D. + b2j

Where:

(2-4)

TA = the tree area occupied by the jth tree in the stand (j = 1,N)

D. = the diameter at breast height of the jth tree

b0, b1, b2 = constants
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The total area of growing space occupied by the N trees in the

stand is represented by summing over all the j tree areas on the unit

area occupied by the stand.

N
TTA= TA. (2-5)

j=l

Where:

TTA = the total tree area of the stand

Substituting Equation (2-4) for the tree area of the jth tree into

Equation (2-5) and simplifying gives:

N

N+bD +bD2TTA= (b0bD.+bD2)=b0
1 j 2, jlj 2j

j=l

The tree area ratio for the stand is the ratio of the total tree

area to the area occupied by the stand:

(b0N + b D.

TAR =3i: l
'r

C C

Where:

TAR = tree area ratio

A = ground area occupied by the stand

For a normal stand of unit area the TAR in Equation (2-7) is equal

to 1.0. The constants b0, b1, and b2 can be estimated from a sample of

normal stands adjusted to a unit area basis, using least squares esti-

mators. Once these constants have been determined for normal stands,

Equation (2-7) can be applied to non-normal stand conditions. The TAR

14

(2-6)

(2-7)



for a stand expresses the proportion of the unit area which would be

occupied by the stand if each tree has the area occupied by a tree of

the same diameter in a normal stand (Curtis, 1970). If the constants

in Equation (2-7) were derived from data collected in normal or fully

stocked stands, the TAR for an observed stand will reflect the propor-

tion of full stocking (i.e., TAR = 1.0) represented by the stand (Husch,

1972).

Crown Competition Factor (CCF) developed by Krajicek et al. (1961)

is a measure of stand density based on open-grown crown areas. CCF es-

tiniates the average growing space area available to trees in the stand

relative to the maximum growing space available to open growing trees

of similar diameter. The CCF for a stand occupying a unit area is:

Where:

the maximum crown area of the jth tree in the stand

N the number of trees in the unit area

A the ground area occupied by the stand

The maximum growing space area (As) for a tree of specified dia-

meter is represented by the vertical projection of the crown area of an

open-grown tree of the same diameter. This maximum growing space area

is assumed to be a circular area with radius, CR. The relationship

between open-grown crown width or crown radius is often expressed as a

function of tree diameter (Arney, 1973):

N

CCF = (100)
j=l
A

C

15

(2-8)
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The percentage of an acre occupied by the open-grown crown area is

obtained by dividing A by the area of an acre in square feet.

100 A.A- 3

- 43560

Summing over all Q values for the stand gives an alternative ex-

pression of CCF per acre as:

N Q.
CCF = (2-12)

j=l c

CCF differs from the Tree Area Ratio in that the growing space areas

for open grown trees are used as the baseline reference rather than the

16

CW = b b1D + b2D2 (2-9)

Where:

CW = open grown crown width of the tree

D = the diameter of the tree at breast height

b0, b1, b2 = coefficients

The coefficients in Equation (2-9) are estimated using the method of

least squares from measurement of a satisfactory number of open-grown

trees.

The maximum crown area A. is expressed using Equation (2-9) to

define open-grown crown width as:

(2-10)
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average areas occupied by trees in a normal stand. Krajicek (1961)

states, "CCF estimates the area available to the average tree in the

stand in relation to the maximum area it could use if it were open-

grown." CCF values less than 100 indicate that the sum of the open

grown crown areas in Equation (2-12) are less than the ground area oc-

cupied by the stand. In this case, the growing space available is not

being fully utilized. CCF values greater than 100 indicate that the

trees in the stand more than fully cover the ground area occupied by the

stand. For example, a CCF = 200 represents the condition where the sum

of the maximum crown areas are 2 times the ground area occupied by the

stand. A CCF = 100 represents full occupancy of the site for a uni-

formly spaced stand. Note that in this case, not all the trees in the

stand are necessarily open-grown. The growing space of maximum crown

areas of an individual tree is assumed to be circular. An open-grown

tree's growing space area is not overlapped by another tree's growing

space circle. En a uniformly spaced stand, all of the ground area can-

not be fully occupied by non-overlapping circles. The truly open-grown

condition has a CCF value of less than 100. Krajicek (1961) states that

CCF is not a measure of crown closure, as complete crown closure can

occur from CCF = 100 to the maximum for the species.

CCF has proved to be a useful measure of stand density that is in-

dependent of age and site quality. Several investigators have fit the

CCF model to a variety of species (Vezina, 1962; Dahms, 1966; Alexander

1967; Paine, 1976).

The whole stand models described previously offer only crude esti-

mates of inter-tree competition in the stand. The degree of competition
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experienced by individual trees in the stand are based on the average

tree. Whole stand models are insensitive to the competitive relation-

ships between individual trees. Spatial relationships in the stand are

ignored in estimating stand density. Conventional measures of stand

density are expressions of cumulative crowding or competition effects

in the development of average trees only when the stand is reasonably

uniform and fully closed (Curtis, 1970). Aggregate competitive effects

are derived on a whole stand basis, relative to some standard density

condition. Such standard density conditions as normal or fully stocked

are not easily defined and application of these standard density condi-

tions to managed stands is questionable. A major limitation of whole

stand models is that stand density is used to describe individual tree

competition. The use of average tree conditions obscures the causal

relationship between inter-tree competition and individual tree growth

(Bella, 1970).

POINT DENSITY MODELS

Point density models use measures of stand density around indivi-

dual trees to express the intensity of inter-tree competition. Point

density models are based on sample plot, angle count or angle summation

measurement techniques. Inter-tree competition is assumed to be pro-

portional to the basal area per acre observed at a sample point in the

stand. If the point is centered on an individual tree, the observed

density is an expression of the relative amount of inter-tree competi-

tion the tree experiences. In general, the higher the point density,



the greater the degree of competition the tree receives. Point density

models only indirectly utilize the size and spatial relationships be-

tween trees in the stand. The growing space for an individual tree is

poorly defined by point density models. The growing space of a tree is

typically arbitrarily assigned proportional to tree DBH. The greatest

limitation of point density models is that stand density is used to

express individual tree competition. Basal area per acre is an absolute

measure of stand density that has no direct interpretation in terms of

the competitive influence exerted by competing neighbors. The generali-

zation that the higher the stand density the less the expected growth of

the trees tends to obscure the cause and effect relationship between

competition and tree growth (Bella, 1970).

Steneker and Jarvis (1963) centered a sample plot of fixed radius

around individual subject trees in the stand. The competition index or

point density for a tree was defined as the sum of the basal areas of

all the trees on the plot expressed on a per acre basis. In general:

Where:

Cl the point density observed for the jth sample tree's plot

BA the basal area of the ith competitor tree in the plot at

breast height

the number of competitors in the jth tree's plot

n
CI. = BA.

J . 1
1=1
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The growing space of a tree was assumed to be equal to the area of

a circular plot of fixed radius centered around the tree. The competi-

tors of the subject tree were those trees which were contained within

the sample plot's boundaries.

Spurr (1962) and Opie (1968) criticized the sample plot method of

evaluating point density. The size and shape of the sample plot effect

the point density estimates. Different basal area estimates will be ob-

tained for different sized plots centered on the same tree. The index

in Equation (2-13) does not distinguish between degrees of competitive

influence. Trees located near the sample point should exert a greater

competitive influence than competing trees further away. In the sample

plot method, all competitors contribute equally to the point density

index without regard to the spatial distribution around the subject

tree.

Leminon and Schumacher (1962) developed a point density index based

on angle count summation for individual trees in the stand. They as-

sumed that basal area measurements with an appropriate angle gauge

reflected the stocking density around an individual tree. A sample

point was centered on a subject tree. The number of overlapping circles

or "in" trees at the point were used to estimate the stocking density

for the tree. It was assumed that the basal area per acre density ob-

served at the point indicated the relative level of competition ex-

perienced by the tree.

CI. = BAF t.
:1 3

(2-14)
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there:

CI. the point density index for the jth tree (expressed as basal

area per acre)

BAF basal area factor used in sampling

t. the tree count or angle count for the jth tree

The potential competitors of a subject tree are defined as those

trees which subtended the critical angle of the BAF used to measure

point density. One of the weaknesses of the angle count model is its

definition of growing space. The model assumes that the growing space

of a tree is a function of the BAF selected. The larger the BAF, the

smaller the growing space of a given size tree. Lemmon and Schumacher

(1962) discuss the problems of spatial distribution and irregularities

associated with selecting a BAF relative to defining a tree's growing

space. However, their best results were obtained using a 10 BAF angle

gauge.

Although the model in Equation (2-14) eliminated some of the ques-

tions raised by fixed radius model in Equation (2-13), several limita-

tions are apparent. Spurr (1962) criticized the-angle count summation

model because only the total number of trees subtending the critical

angle are counted at a given point. The precision of a single point

density estimate is therefore only as small as the contribution of each

tree. For example, using 10 BAF, each tree tallied contributes 10

square feet per acre, while using 30 BAF angle gauge, each "in" tree

contributes 30 square feet of basal area. The angle count model only

indirectly uses the spatial relationships of the surrounding trees in



n D 2

CI. (k - 1/2) (...!)

3 k=l Lk

Where:

CI = the point density estimate for the jth tree expressed in terms

of basal area per acre

n = the number of trees selected

Dk = the diameter at breast height of the kth competitor (in

inches)

= the distance from the kth competitor to the sampling point

(in feet)

The angle summation method is based upon the same principles used

to derive the Angle Count Model in Equation (2-14). The Angle Summation

Model is more precise in that tree size and relative position with res-

pect to the sample point determines the contribution to the point den-

sity estimate (Spurr, 1962). Competitor trees are sequentially selected
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measuring the point density of the subject tree. Any tallied tree

contributes equally to the estimate regardless of its size of proximity

to the subject tree (Opie, 1968).

Spurr (1962) developed a measure of point density based on angle

sununation similar to Bitterlich's angle count method. He proposed an

index which involved the measurement of the actual angles subtended by

trees around a given point by stems of surrounding trees in sequence,

rather than using a fixed angle gauge which was arbitrarily chosen.

Spurr's index is defined as:

(2-15)
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and ranked by their (D/L)2 ratio. A limiting angle is chosen so as to

cause the kth competitor to be exactly subtended. The progressive sum-

mation of the basal area estimates for all n competitors gives the mean

area for the point, adjusted for the spatial distribution of the sur-

rounding trees.

A serious limitation of Spurr's Point Density Index is its failure

to identify which trees qualify as competitors. In addition, Spurrts

index in Equation (2-15) is tedious to apply, although it is an improve-

ment over the Angle Count Method discussed earlier.

TREE SIZE AND DISTANCE DEPENDENT MODELS

Competition indices which express the interdependence of individual

trees in the stand only as a function of their physical size and spatial

location relative to the size and location of their competitors are

collectively referred to as tree size and distance dependent models

(Ek, 1975). This type of competition model is a direct outgrowth of

the distance measuring techniques used in ecological sampling. A number

of such methods are available which describe the distance to the nearest

neighbor as a function of the spatial relationships of the population

(Clark, 1954; Laylock, 1975). These methods provide estimates of

population density based on the spatial distribution of individuals.

Tree size and distance dependent models combine the spatial relation-

ships between individual trees in the stand and tree size in assessing

relative competitive status.

The amount of competition a tree experiences is assumed to be pro-

portional to the relative size, location, and number of its competitors.
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Tree size is usually some measurable characteristic of the tree (e.g.,

DBH, crown dimensions, height). Tree size and distance dependent

models are one of the simplest forms of expressing inter-tree competi-

tion in the stand. They played an integral part in the development of

early individual tree simulation models (Ek, 1975). The available

growing space of the tree is not clearly defined by the model. Usually

the growing space of a tree is assumed to be a circular plot of fixed

radius centered on the tree. The size of the plot is proportional to

the size of the tree. Newnham (1966) calculated the competition radius

of a tree using open grown crown width as a function of tree diameter.

He also used various BAF (40 and 80) to arbitrarily define the growing

space radius of a tree as the limiting distance for a given critical

angle.

All trees within the growing space of a subject tree can poten-

tially contribute to the level of stress exerted on the subject tree.

A competitor's contribution is usually assumed to be directly related

to its size and inversely related to the distance from the subject tree.

Tree size and distance dependent models offer a mathematical des-

cription of stand structure. Their chief advantage is their simplicity

in assessing inter-tree competition in the stand. The most serious

limitation in application of the models is their relative nature. Tree

size and spatial location are only empirically related to tree growth

and are not biologically interpretable as measures of inter-tree compe-

tition. A large number of competition indices based on tree size and

distance relationships can potentially be formulated. Their validity

as true measures of inter-tree competition is questionable.
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Where:

Cl3 the competition index of the jth subject tree

the diameter of the subject tree at breast height

D the diameter of the ith competitor at breast height

L. the distance between the jth subject tree and the ith

competitor

n = the number of competitors within a circle of fixed radius

Hegyi states, "the rationale for the CI lies in the assumption that

a tree may be subjected to competition even in the absence of crown

overlaps." Species which naturally exhibit wide spacings or irregular

crown relationships can be evaluated using this relative measure of

competition.

The index in Equation (2-16) uses a weighting factor based on the

ratio of the diameter of the competitor to the diameter of the subject

tree to adjust the contribution of the ith competitor; the larger the

size of the subject tree, the smaller the contribution. In general,

the higher the index, the greater the relative level of competition

the tree experiences. [f the growing space radius of the tree is ex-

pressed as a function of maximum crown expansion, a CI = 0 indicates

an open grown tree (i.e., no competition). The expression in Equation

Hegyi (1974) defined a relative measure of inter-tree competition

each tree as:

CI. =
3

25

(2-16)
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(2-16) is not directly interpretable in terms of the amount of competi-

tion a tree experiences, but only as a relative ranking of the treets

competitive status.

Quenet (1976) defines a competition index using only the size of

the competition and its distance from a subject tree (or sample point:

2
n D.

ci. =
3 . L..

1=1 13

(2-17)

Inter-tree competition in Equation (2-17) is assumed to be directly

proportional to the diameter squared (basal area) of the ith competitor

and inversely to the distance from the subject tree. Unless a growing

space area is defined for the subject tree, all trees in the stand are

potential competitors since L1 can be defined for each tree. Quenet's

index does not account for a differential weighting between the ith

competitor and the subject tree. In fact, the index in Equation (2-17)

is completely independent of the size of the subject tree.

Newnham (1966) tested various expressions of tree size as indicators

of growth in red spruce stands. He found certain crown and crown related

measures can be used to estimate growth increment over short periods.

Functions of tree diameter and distance, similar to those discussed

earlier, provide the highest correlation with growth, although not as

effectively as the more sophisticated competition indices tested.

Mendiboure (1974) analyzed the growth increment in three red spruce

stands which were geometrically thinned. Inter-tree competition was

evaluated using functions of tree height, diameter, and basal area.
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A general competition index was formulated as:

n

ci. = (2-18)

i=l

Where:

= the size of the jth subject tree (e.g., height, DBH, basal

area)

= the size of the ith competitor

The competition experienced by the jth subject tree is expressed

as the difference in the size of the subject tree and the ith competitor

divided by the distance between the tree. Equation (2-18) had the

highest correlation when basal area was used as the measure of tree size

to predict annual growth increment.

GROWING SPACE POLYGON MODELS

Growing space polygon models describe the primary influence zone of

an individual tree as an irregular closed polygonal area surrounding the

tree. The boundaries of the polygon are formed by intersecting lines

between and perpendicular to the tree of interest and each of its compe-

titors (Moore, 1973). The area of the polygon reflects the competitive

status of the tree relative to its neighbors. The larger the area of

the polygon, the greater the influence zone of the tree. As the compe-

titive stresses exerted by neighboring trees increase, the influence

zone or area potentially available to the tree is reduced. Competition

for growing space is a fucntion of tree size; the larger the tree,

27
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the greater the competitive influence it exerts on its neighbors.

Polygon based models are geometric models that take into account the

irregularity in the spatial and competitive relationships in the stand

(Adlard, 1973). Aerial and root competition effects are expressed by

the non-symmetrical development of a tree's growing space area with

respect to time. Each tree is assigned a mutually exclusive growing

space area. Competing neighbors are defined automatically in the con-

struction of the growing space polygon for each tree.

Brown (1965) advocated that the growing space area of a tree could

be quantified by constructing a polygon around each tree in the stand.

The area of each polygon would approximate the area potentially avail-

able to each tree. The growing space area for the stand could then be

partitioned into a closed network of interlocking polygons. The area of

each polygon would reflect the competitive status of the tree. Brown

assumed that the boundary of the area was located half way between two

competing trees and perpendicular to the line between their centers.

By connecting these boundary lines for all pairs of neighbors in the

stand, a closed network of non-overlapping polygons is formed. The area

potentially available to an individual tree in the stand is approximated

by the area of the polygon which surrounds it.

Using Brown's concepts, Moore (1973) developed a modified competi-

tion index called Area Potentially Available (APA). The index uses the

area of the polygon enclosing each tree as the relative measure of its

competitive status:

APA. = A . (2-19)
J pJ
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Where:

APAJ = the Area Potentially Available competition index value for

the jth tree in the stand

= the polygon area enclosing the jth tree in the stand

The APA index is quantified by constructing an irregular polygon

around each tree in the stand. Brown's method of defining polygon boun-

daries was independent of tree size. Moore (1973) assumed that the

competitive influence of a tree is proportional to tree size: the area

between two competing trees is divided in proportion to the relative

size of the competitors. The position of the boundary line is:

(2-20)

Where:

DISTB = the distance from the subject tree to the boundary line for

the jth competitor

the diameter at breast height of the subject tree

the diameter at breast height of the ith competitor

the distance between the centers of subject tree's bole

the ith competitor's bole

The polygon boundaries are formed perpendicular to the lines connect-

ing the subject tree to each of its neighbors. The individual polygons

do not overlap. Moore (1973) states that approximately seven percent

of the total stand area is not assigned to any treets growing space and

represent areas where no single tree dominates.

29
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Ad].ard (1973) also used growing space polygons to quantify the

potential resource available to individual trees. He used a more sophis-

ticated version of the growing space polygons by defining twice as many

polygon sides as Moore's APA index.

Primary limitations in the use of growing space polygon models are

the excessive search and computation time required to define individual

polygons. Each polygon is defined from a set of intersected points.

All potential neighbors must be examined with respect to their size,

distance, and location, and appropriate computations made to determine

their contribution to the polygon's construction. In addition, some

sort of graphical or analytical method of determining the area of the

polygons must be employed. A second limitation in the use of polygon

models is their application to managed stand conditions. Wide or irregu-

lar spacings may cause the polygons to assume unreasonable sizes and

shapes.

MISCELLANEOUS COMPETITION MODELS

Not all competition indices can be neatly classified into a general

type of inter-tree competition model. The following competition indices

are unique with respect to their evaluation of a tree's competitive

status.

Hatch (1975) developed a mathematical index which reflected an in-

dividual tree's growth potential based on its exposed crown surface

area (ECSA). The index directly incorporates the size and spatial posi-

tion of the crowns of surrounding trees in determining the level of corn-

petition for a tree.
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the competition index for the jth tree in the stand

the exposed crown surface area of the jth subject tree

when restricted by the ith competitor

the length of the bole from the crown to breast height

for the jth subject tree

the basal area of the jth subject tree at breast height

the basal area of the ith competitor

the number of competing neighbors
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(2-21)

The index in Equation (2-21) utilizes a tree's effective crown

size and the distance with respect to DBH to express its growth poten-

tial. Hatch (1975) notes that the greater the distance between the

crown and the breast height point the less the diameter growth. The

weighting factor BA5./BA1 adjusts for a non-linear competitive interac-

tion based on relative tree size. The weighting factor assumes that the

larger the tree the greater its competitive influence relative to its

neighbors. The interaction between two trees is assumed to be propor-

tional to their respective basal areas.

In general, the larger the magnitude of the competition index in

Equation (2-21), the greater a tree's relative growth potential. An

implicit assumption of the model is that competition for light is more

limiting than competition for nutrients or soil moisture (Hatch, 1975).
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The potential competitors for a subject tree are defined by dividing the

area surrounding the tree into 16 equal sections. The tree nearest the

subject tree in each section is selected as a potential competitor. The

growing space area of a subject tree is not defined since the index is

an absolute rather than a relative measure of the interaction.

ESCA is unique in that a vertical component is recognized in the

determination of a tree's competitive status. Application of the index

on an operational basis is limited by the complexity of the computations

involved. The use of bole lengths require additional data not commonly

measured on an individual tree basis. The identification of 16 compe-

titors systematically around each subject tree involves considerable

computation time. Hatch (1975) also notes that the use of the ESCA

index may be limited to species which are intolerant or moderately

intolerant to light.

Mitchel (1975) also used measurement of tree crowns to develop a

competition index. He expressed the level of competition as the ratio

of a tree's actual volume of foliage to the maximum foliar volume ob-

tained under an open-grown condition.

cli = 9,,n
Fv
max

Where:

FV the foliar volume of the jth subject tree

FVmax the maximum volume of foliage achieved in an isolated

condition

(2-22)
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The index in Equation (2-22) is biologically meaningful in that it

expresses the proportion cf the utilizable growing space of a tree not

relinquished to its competitors (Mitchel, 1975). Maximum volume of

foliage for a tree is defined as a function of tree height, distance

from leader and age of the leaves when the horizontal expansion of the

crown is not restricted by competing neighbors. Grier (1974) presents

empirical relationships for determining foliar mass as a function of

sapwood basal area.

Bella (1970) points out that competition indices based on inte-

grated expressions of actual crown dimensions reflect only past cumula-

tive effects of competition and not a tree's current competitive status.

Two trees of the same size may have equal volume of foliage, but not

the same competitive status due to differences in the size and proximity

of their respective competitors (Ek, 1975). Mitchel's index in Equation

(2-22), therefore, is not applicable in a practical sense as a measure

of inter-tree competition.

Lin (1973) developed a competition index which evaluated the rela-

tive space or resources available to a tree for growth. It is a quanti-

tative expression of the growing space available to a tree relative to

the growing space of open grown and extremely suppressed trees of the

same diameter. Linear relationships between crown width and stem diame-

ter were determined for the two extreme growing space conditions. Com-

petitive angles corresponding to these limiting conditions determine

the maximum and minimum distances to potential competitors as a function

of tree size. If a tree subtends a critical angle which is less than



Where:

GSIJ the growing space index for the jth tree

the observed subtended angle of the competition in the ith

quadrant

emax = maximum competition angle indicating complete suppression

®min = minimum competition angle indicating an open grown condition

D1 = the DBH of the competition selected in the ith quadrant

D5. = the DBH of the jth subject tree

A subject tree's hypothetical growing space is divided into four

quadrants. Each quadrant is assigned 25 GSI units. An open grown tree

has a GSI = 100, since no competitors subtend an angle larger than the

minimum competition angle. A completely suppressed tree has a GSI = 0,

since all of the available growing space is occupied by competing neigh-

bors in close proximity to the tree. In this case, the angle subtended

by the competitors in each quadrant is larger than maximum competition

angel. Trees with intermediate available growing space conditions have

a GSI between 0 and 100, depending on the size and distance of their

GSI = 25
25

) (e - °mii)1=1 max mm
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the mininum competition angle when viewed from the subject tree, it is

not in competition with the subject tree. If a competitor subtends an

angle which is greater than the maximum competition angle, its competi-

tive influence is so great that no growing space is available to the

subject tree. Lin's growing space index (GSI) is defined as:

(2-23)
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competitors. The growing space index for a subject tree is the sum of

the GSI for each quadrant. Within each quadrant, the tree which sub-

tends the largest angle is selected as the competitor for the quad-

rant. The weighting factor (D. + D5.)/2 D5. is used to weigh the contri-

bution of the competitor in each quadrant proportional to tree size.

Lin's GSI incorporates the spatial arrangements and size of compe-

tition into a single expression of a tree's available growing space.

The index uses the empirical relationships for expressing growing space

for open-grown and suppressed individuals to establish the total range

of growing space available. The index selects representative competi-

tors based on their size and proximity to the subject tree in each

quadrant. The index assumes that the space available between the

selected competitor and the subject tree is occupied proportional to

tree size. Since only one competitor is identified in each quadrant,

the GSI may under or overestimate the actual competition, depending on

the uniformity of spacing in the stand.

INFLUENCE ZONE OVERLAP MODEL

The influence zone overlap model is based on the hypothesis that

the level of competitive stress sustained by a tree is proportional to

the area of overlap of its growing space by the growing space areas of

its neighbors. A tree's growing space or influence zone is that area

in which it competes for the resources of the site (Bella, L971). Each

tree in the stand interacts with the environment that surrounds it.

The area that a tree occupies when unrestricted by competition is
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termed its influence zone. Influence zone models assume that optimal

growing space area can be approximated as a circular area surrounding

the tree. Competition occurs between two trees when their growing space

areas overlap. The degree of competition for a tree is assumed to be

proportional to the area of overlap or the amount of intrusion on its

growing space by the influence zones of competing neighbors. The con-

tribution of each competitor is separately identifiable and additive.

The amount of overlap depends upon the size and proximity of the com-

peting trees. The number of competitors and their competitive influence

is clearly defined.

Figure (2-1) shows the overlap and influence zones of a hypothetical

stand. Several investigators have proposed competition indices which

can be classified as influence zone models. The differences between

the indices are mainly due to their definition of growing space area

and the level of complexity in determining the actual area of overlap.

The determination of the radius of the competition circle is an

important component in the influence zone model. The radius of growing

space area is usually assumed to be proportional to tree size. Compe-

tition radius can be expressed as a simple function of tree diameter.

Newnhani (1966) and Opie (1968) used various basal area factors to derive

the competition radius for a tree. Bella (1971), Arney (1973), and

Newnham (1966) used the relationship between tree diameters and open

grown crown width to define the maximum radius of influence under

no competition. Bella (1971) also incorporated a radius expansion

factor to adjust for competition beyond the open grown crown width.



Figure (2-1): The overlap areas and influence
zones for a hypothetical stand



38

Keister (1971) used actual tree measurements to determine the radius

of influence as a function of tree height and crown dimensions.

The competitive radius will vary with species and tree size. The

area of growing space is defined as the circular area with a competition

radius proportional to tree size.

A. = (2-24)
1 3

Where:

A. = the area of the influence zone or growing space for the jth

tree

CR = the competition radius for the jth tree

Various expressions of inter-tree competition have been proposed

which reflect the overlap of the growing space of a tree.

Staebler (1951) was one of the first to describe inter-tree compe-

tition with an influence zone model. He reasoned that the actual area

of overlap of a tree's competitive circle indicated the intensity of

competition experienced by the tree. The competition index is defined

as the sum of the radial width of the overlap region for all competitors:

Where:

LO = the linear overlap or radial width of the ith competitor's

growing space circle with the growing space of the jth

subject tree

n
CI. = LO..

3 .
13

1=1

(2-25)



Staèbler recognized that the actual area of overlap provided a

direct measure of competition. Lacking modern computer facilities

necessary for repeatedly determining this area mathematically, he as-

sumed the linear overlap of the competitor's competition circle would

approximate the actual competition relationship.

Newnham (1966) used an angular measure to define inter-tree compe-

tition. He assumed that the proportion of the circumference of the

subject tree's growing space circle overlapped by those of adjacent

trees reflected the intensity of competition exerted on the tree.

Where:

0. = the interior angle subtended for jth tree's circle by the

ith competitor's overlap zone (in radians)

The interior angle is formed by the chords connecting the center of

the jth subject tree and the points of intersection of the ith competi-

tor's overlap region. Newnham's index in Equation (2-26) assumes that

the greater the interior angle subtended the greater the influence of

the competitor on the subject tree. The actual area of overlap is only

indirectly related to the size of the interior angle.

Opie (1968) attempted to quantify the overlap area using angle

gauges. He delineated the overlap zones of the tree and expressed the

total area of overlap of the relative growing space area of the tree as

a measure of density.

ci. 0..
j 2i1.1 13
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Where:

OA = the area occupied by the ith overlap zone

i = the number of overlaps

Opie's model in Equation (2-27) actually is a sophisticated point

density model. The level of inter-tree competition is assumed to be

proportional to the point density observed at the sample point. The

CI in Equation (2-27) is expressed in terms of basal area per acre.

The model is classified as an influence zone model because the actual

area of overlap by competing neighbors is considered.

The models proposed by Staebler, Newnham, and Opie in Equations

C2-25, 2-26, and 2-27) are crude forms of the influence zone model.

Although each of these competition indices recognizes the importance of

the relative area of overlap of growing spaces, they do not mathemati-

cally calculate it directly.

Gerrard (1969) was one of the first to propose an index which

mathematically quantified the area of overlap between two competing

trees. Using geometrical relationships based on the tree size and

spatial location, Gerrard formulated a modified competition index as:

40
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Where:

AO.. = the area of overlap of the ith competitor's growing space

with the area of the jth subject tree

the area of the growing space of the jth subject tree

Equation (2-28) states that the competition stress sustained by a

tree is directly proportional to the sum of the overlaps of its growing

space by competition circles of its neighbors, and inversely propor-

tional to the area of its growing space. Notice the similarity between

Opie's competition index in Equation (2-27) and Gerrard's competition

index in Equation (2-28). In both cases, the competitive effect is

evaluated directly as the sum of the areas of overlap relative to the

area of the growing space or influence zone of the tree. Opie used

angle gauges and dot counts to determine the area of overlaps, while

Gerrard used mathematical expressions based on geometrical relation-

ships. Gerrard also assumed that the radius of the growing space circle

was proportional to the DBH of the tree.

Keister (1971) developed an index identical to Gerrard's CI with

the exception of how a tree's growing space area-is defined. Instead

of assuming the maximum radius of a tree's influence zone was propor-

tional to tree diameter, Keister used a function of tree height, crown

width, and dead limb length.

Bella (1970) developed a competition index which incorporated an

exponential type of competitive effect based on tree size. He hypothe-

sized that the larger the size of the tree, the greater the degree of
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its competitive influence on neighboring trees. Larger trees are able

to more fully exploit the resources of the site than smaller trees.

Instead of assuming that the area of overlap of a tree's growing space

is linearly additive, Bella's index gives greater competitive weight

to larger trees than smaller ones.

(2-29)

Where:

CIO = the competitive influence-zone overlap index for the jth

tree

D5 the DBH of the jth subject tree

the DBH of the ith competitor

a competition parameter

The weighting factor (D./D.) allows for a differential weighting

of the competitive influence of the ith competitor based on its size

relative to the size of the subject tree. Bella's index requires cali-

bration by species to determine the most appropriate exponent.

Ek (1974) also used a differential weighting factor to account for

non-linear competitive influence based on relative tree size. A tree's

competitive status is calculated as:

(2-30)
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Where:

Si = the size of the ith competitor (height x crown radius)

S = the size of the jth subject tree

In Equation (2-30) the influence zone overlap of the ith competi-

tor is weighted by the relative ratio of tree size.

Both Bella's and Ek's competition indices use relative weighting

factors to adjust for tree size. These models allow for great flexi-

bility in describing inter-tree competition. However, with their

level of sophistication, computational and calibration time becomes

excessive. It is not clear whether or not the use of these arbitrary

weighting factors is justified. Influence zone models are relative

measures of inter-tree competition. The gains made by the addition of

such complexity to an abstract measure is questionable.

Arney (1973) developed a competition index for Douglas-fir which

evaluated the relative level of inter-tree competition as the percent

overlap of growing space.

(2-31)

Where:

CSI the competitive stress index of the jth subject tree

AOL. the area of overlap of the ith competitor's growing space

with the jth subject tree's growing space

A3 the growing space area of the jth tree
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If a tree has no competitors (i.e., it is open grown) then t has

a CSI = 100, since 0. As the suni of the area of overlaps in-

crease, the level of competitive stress also increases. Arney's CSI

model eliminates tree size by computing the percent overlap of growing

space. Although larger trees have larger growing space areas than

smaller trees, their competitive stress index values are comparable on

a relative basis. Table (2-1) gives the ranges of CSI typically en-

countered in forest stands.

Arney used the relationship between open-grown crown width and DBH

to determine the maximum growing space area required by a tree. The

model in Equation (2-31) assumes that the open grown tree of a given

size exhibits the maximum expansion of crown dimensions. For Douglas-

fir, the width of the crown approximates the extent of the root system

(Smith, J.H.G., 1964). The maximum growing space area for a tree is

assumed to be the vertical projection of the open-grown crown area into

the x-y plane. Figure (2-2) shows the relationship between open grown

crown radius and diameter. Two trees compete if their growing space

circles overlap. Using Figure (2-2) the radius of competition can be

defined as a function of tree size.

The primary limitations of the model are the requirements of de-

tailed stem coordinates and diameter measurements on an individual tree

basis. In addition, some of the model assumptions may be restrictive.

The competitive effect of neighboring trees is assumed to be linearly

additive. No differential weighting between the relative size of com-

petitors is included, which may not be realistic. Another assumption
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is that growing space is approximated by the open-grown crown width.

This does not allow for certain biological phenomena such as root

grafting, and does not include a vertical component of competition.

The model also assumes that competition is uniformly distributed over

the zone of overlap. These limitations may be minimized by the rela-

tive nature of the index.

CSI is a quantitative expression of inter-tree competition. Using

tree diameter and x-y stem coordinate data, CSI can be routinely calcu-

lated (see Appendix B).

Table (2-1): Range in CSI values normally
found in forest stands

CSI Level Condition

100 Open grown

250-350 Average value for managed stands

350-450 Average value for normal stands

200-300 Dominant crown class

300-450 Co-dominant crown class

450-550 Intermediate crown class

550+ Suppressed crown class



STAND DENSITY

INTRODUCT ION

Measures of stand density are used to depict the degree to which

the resources of the site are being utilized by trees in a stand (Husch,

1972). As defined previously, stand density is a measure of the degree

of crowding of trees on an area without reference to a specific manage-

ment objective.

The following chapter evaluates CSI as a dynamic measure of stand

density and inter-tree competition. CSI is used to quantitatively des-

cribe the degree of thinning intensity. The index is tested as an in-

dependent variable in describing tree growth response following thinning.

Spacing and stocking guidelines based on CSI are also developed. The

results of these analyses indicated CSI is an effective measure of

stand density.

THINN 11'4G INT ENS ITY

The usefulness of stand density in expressing the effect of inter-

tree competition is important in the analysis of tree and stand growth

relationships. Whole stand measures of density conceal the causal

relationships between stand density and tree growth by averaging out

the competitive effect on the individual tree. Basal area per acre is

commonly used to reflect stand density. The degree of thinning inten-

sity can be measured by the amount of reduction in initial stand basal

area due to thinning. Basal area measures assume that the greater the
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amount of basal area removed, the heavier the thinning intensity and

the greater the reduction in the average competitive stress levels for

trees in the stand. However, basal area per acre only indirectly re-

flects the competitive relationships between individual trees. It is

an aggregate measure of stand density which expresses the relative

degree of competition exerted on the average tree, independent of the

spatial relationships in the stand. Reduction in stand basal area by

thinning does not necessarily reduce the level of competitive stress

uniformly for all trees in the stand. Basal area per acre is also

dependent upon the age and site quality of the stand.

CSI is a quantitative measure of the inter-tree competition. It

can be objectively applied to individual trees in the stand. Average

CSI for the stand reflects the average level of competition for all

trees. The degree of thinning can be objectively measured as a reduc-

tion in the competitive stress due to thinning. Average CSI for the

stand is biologically interpretable as a measure of stand density. It

is independent of age and site conditions. Reduction in CSI by thinning

reflects the reduction in the level of inter-tree competition in the

stand, relative to tree size and spatial arrangements. The following

section compares CSI and basal area per acre as measures of stand

density.

CSI data for each of the four thinning treatments and control for

the Hoskins study plots were tabulated by measurement period from 1963-

1973. Table (3-1) gives the average CSI by treatment for each period.

In 1963 all study plots except the control plots were thinned. The
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average CSI for all treatments in 1963 reflects the uniformity in the

calibration thinning. Subsequent thinnings occurred at the end of the

1966, 1970, and 1973 growing seasons. Figure (3-1) depicts the change

in CSI with respect to period for each treatment. Reductions in CSI

due to thinning are indicated by the dashed lines. Notice that the

intensity of thinning decreases from Treatment 1 to 7.

The 1966 thinning did not markedly affect the average CSI for

Treatments 5 and 7. Even though a portion of the stand basal area was

removed, the competitive status of trees in these plots were not af-

fected. The 1970 and 1973 thinnings were more affective in reducing

the level of competition across the range of treatments. Comparison of

the unthinned control with the thinned treatments indicates the dif-

ferences between managed and natural stand conditions.

Table (3-2) compares the reduction in average CSI with reduction in

stand basal area by treatment and thinning period. The change in CSI is

Table (3-1):

Treatment

Average competitive stress index by treatment 1963-
1973 (CSI units)

1966 1970 1973
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 178 233 162 218 149 176 144

3 169 222 177 237 189 222 185

5 177 233 210 282 237 277 249

7 173 227 225 298 271 316 295

Control
(unthinned)

532 591 591 612 612 614 614



Table (3-2): Change in CSI and BA by treatment and

50

thinning period

1966

Thinning
1970

Thinning
1973

Thinning

Treatment 1 SCSI 71 69 32

% 30.5 31.7 18.2

tBA 30.4 39.1 20.7

% 35.6 39.3 24.3

Treatment 3 LCSI 45 48 37

20.3 20.3 16.7

tBA 20.8 29.9 25.4

24.5 26.8 22.8

Treatment 5 SCSI 23 45 28

% 9.9 16.0 10.1

1BA 11.1 22.9 16.5

% 12.9 18.1 12.0

Treatment 7 tCSI 2 27 21

% .9 9.1 6.6

tBA 1.0 14.9 11.6

% 1.2 10.7 7.2
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closely related to change in basal area in all cases. The change in

CSI can be interpreted as a reduction in the level of inter-tree compe-

tition, while change in basal area per acre cannot be directly related

to the competitive status of the stand.

A direct comparison of CSI and basal area per acre as measures of

stand density were made using 1963-1973 thinning data. Using basal

area per acre as a measure of stand density, each treatment was thinned

to a specified level. Reduction in stand density was assumed to be

uniformly representative of the degree of release experience by all

trees within a treatment. The coefficient of variation for stand basal

area estimates per acre ranged from 2-5 percent for all treatments,

indicating a highly uniform stand condition. Table (3-3) gives the

coefficient of variation for the CSI by treatment. The coefficient of

variation ranges from 16-20 percent, indicating moderately variable

stand density conditions exist. The basal area per acre density indi-

cates all of the treatments are uniform with respect to stand density.

CSI density for the same treatments indicate that inter-tree competi-

tion is variable within each treatment. Clearly, CSI is a more sensi-

tive measure of inter-tree competition within a treatment. High co-

efficients of variation for CSI density indicate that there is a lack

of uniforniity in competitive stress levels between trees within a

treatment. Although stand basal area estimates indicate the treatment

densities are uniform, individual trees within the treatments are sub-

ject to different degrees of competition. The variation in the compe-

titive status of trees within a treatment confounds thinning study
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Table (3-4): Range in CSI by treatment 1963-1973

1966 1970 1973
Treatment 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 224 252 151 182 127 146 95

3 174 242 141 194 195 228 155

5 174 220 220 271 200 221 207

7 212 258 258 248 259 272 258

Control 568 539 539 566 566 448 448

Table (3-3):

Treatment

Coefficient of variation of CSI in % by treatment
1963-1973

1966 1970 1973
Number 1963 1966 Thinning 1970 Thinning 1973 Thinning

1 .205 .176 .201 .165 .172 .161 .171

3 .197 .182 .179 .148 .207 .195 .182

5 .191 .178 .192 .174 .243 .148 .169

7 .203 .183 .186 .159 .176 .160 .156

Control
(unthinned)

.207 .181 .181 .183 .183 .166 .166
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results. Treatments with a heavy thinning intensity may have trees

with CSI levels comparable to trees in treatments with lighter thinning

intensities.

Table (3-4) gives the range of CSI for each treatment as the dif-

ference between the maximum CSI and the minimum CSI observed. The uni-

formity of density within a treatment is reflected by the range of CSI

observed. The range of CSI should be reduced following thinning. The

data in Table (3-4) indicate that the use of basal area per acre density

does not result in uniform levels of inter-tree competition.

Future thinning studies should adopt CSI as a measure of a stand

density. If CSI is used to control stand density, more uniformity

between trees within a treatment can be achieved.

GROWTH RESPONSE EQUATIONS

A measure of stand density is dependent upon its ability to des-

cribe the growth and development of trees in the stand. Measures of

stand density are useful only to the extent that they are related to

tree growth. Gingrich (1969) states, "the forester must be able to pre-

dict how future growth might be redistributed by management action."

The following procedures were adopted to examine the influence of the

level of inter-tree competition for growing space on individual tree

growth. It was hypothesized that if CSI is a biologically meaningful

expression of inter-tree competition in the stand, then the growth res-

ponse of individual trees should be related to their level of CSI before

thinning and to their reduction in CSI following thinning. The amount
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of release from competition is reflected by the amount of reduction of

their CSI levels due to thinning.

tCSI = CSI - CSIT (3-1)

Where:

tCSI = the reduction in CSI due to removal of competing neighbors

by thinning

CSIB the level of competitive stress before thinning

CSIT the level of competitive stress after thinning,

Three independent variables were used to predict periodic diameter in-

crement for a tree including the tree's DBH, its initial level of CSI

before thinning, and its change in CSI due to thinning.

Data from 59 sample trees systematically selected from all four

thinning treatments described earlier were used to evaluate the predic-

tive ability of the independent variables in accounting for the observed

variation in tree DBH growth response following thinning. Border effect

was eliminated by careful selection of subject trees from the 12 study

plots using a 30 foot edge buffer zone (see Appendix E). Two growth

periods were used in the study: a four year growth period from 1966-

1970 and a three year growth period from 1970-1973. Table (3-5) gives

a description of the average subject tree data by measurement period.

Periodic diameter growth was expressed as a function of initial

diameter, initial CSI, and change in CSI due to thinning as follows:

= f(DBH ) (3-2)0
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AG = f(ACSI ) (3-3)0

AG = f(CSI ) (3-4)0

AG = f (CSI , ACSI ) (3-5)o 0

AG = f(DBH, ACSI , CSI ) (3-6)0 0

Where:

AG = the dependent variable, periodic diameter growth

DBHØ = initial tree DBH at the beginning of the period

CSI0 = initial CSI at the beginning of the period

ACSI0 = the change in CSI due to thinning

XN = the average number of competitors

S = average spacing

Table (3-5): Subject tree data by measurement period

1966 1970
1963 1966 Thin 1970 Thin 1973

N 59 59 59 59 59 59

DBH 5.15 6.78 6.78 8.86 8.86 10.29

CSI 166 219 194 260 215 254

XN 4.4 6.8 5.2 8.3 6.2 7,7

S 10.8 12.7 13.0 15.2 15.8 17.1

Where:



Equation (3-2) expresses periodic diameter increment as a function

of initial diameter alone. Equations (3-3 and 3-4) express periodic

diameter increment as a function of ACSI0 and CSI0, respectively. Equa-

tion (3-5) combines CSI0 and ACSI into a single form which expresses

the contribution of the competitive stress variable alone. Equation

(3-6) adds tree size and expresses the total contribution of all three

independent variables combined.

Two models were used to describe the growth relationships above.

Model I assumed AG was a linear function of the independent variables.

Model II assumed that AG was a non-linear function of the independent

variables.

Model I:

where

CI, = random error terms

In Equation (3-7) AG = ADBH, where ADBH is the periodic diameter

increment for the tree. In Equation (3-8), AG is transformed by taking

the natural logarithm and becomes AG = ln (ADBH). Model I and Model II

were used to fit the data for each growth period and for each functional

form of the independent variables given in Equations (5-2 through 5-6).

AG=b0+b1X+b2X2+ ... +bX
nfl

Model II:

(b0+b1X+b2X2+ ... bX)+cnn II
AG = e

57
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Four transformations of each independent variable were tested, including

linear and quadratic terms and their respective inverses.

f(I) = i, i2, I_1, i2 (3-9)

Where:

I = the independent variable tested (i.e., DBH0, CSI0, iCSI0)

Stepwise regression procedures were used in selection of signifi-

cant independent variables for each equation. Standard t-tests of

significance and minimum residual mean square criteria were used to

determine which independent variable entered the model. A 10 percent

probability level was used to test the significance of each 'able in

the model.

Table (3-6) gives the multiple coefficient of determination (R2)

for various combinations of DBH , CSI , and ACSI for Models I and II

using 4 year and 3 year growth data. °The R2 for°functions of DBH alone

(Column 1) accounted for 51.6 to 73.7 percent of the variation in

periodic diameter growth. Functions of CSI0 and ACSI0 (Column 4) ac-

counted for 36.3 to 55.1 percent of the variation. Functions of CSI

or CSI0 alone (Columns 2 and 3) did not explain much of the variation

associated with periodic diameter growth. Tree size, level of competi-

tive stress and change of competitive stress variables accounted for the

most variation in diameter growth. Functions of DBH0, CSI0, and ACSI0

explained from 63.9 to 86.8 percent of the variation in periodic DBH

growth columns (column 5). The contribution of the CSI variables can be



Where:

MSE(1) - MSE(5)
LXMSE =

MSE
(1)

expressed on a relative basis as:

R2 -R2
tR

(5) (1)

R1)

Where:

ER the contribution of the CSI variables expressed as a

percent change in

R1) multiple coefficient of determination using DBH alone in

reduced model (Column 1)

R5) multiple coefficient of determination using full model

(Column 5)

The tR values in Column 6 indicate that the addition of CSI van-

ables (CSI0, CSI0) cause an increase in of approximately 18 to 29

percent.

Table (3-7) gives the mean square error for each Equation tested.

Column 6 gives a relative measure of the percent reduction in MSE when

the CSI variables are added to the model.

EMSE = the percent reduction in MSE for full model relative to DBH

alone

The addition of tCSI0 and CSI0 as independent variables cause a

reduction in MSE of approximately 23 to 40 percent for the full model.
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Table (3-6): Multiple coefficient of determination for various
combinations of diameter, CSI, and tCSI

DBH tCSI CSI SCSI, CSI DBH, LCSI, CSI
(1) (2) (3) (4) (5)

ADBH .524 .274 .091 .398 .674 +.286
1966-1970

Ln (ADBH) .516 .226 .112 .363 .639 +,238
1966-1970

LDBH .666 .127 .367 .551 .808 +.2l3
1970-1973

Ln (LCBH) .737 .098 .339 .489 .868 +.l79
1970-1973

Table (3-7): Mean square error for various combinations of diameter,
CSI, and tCSI

DBH ACSI CSI iCSI, CSI DBH, SCSI, CSI MSE
(1) (2) (3) (4) (5) (6)

EDBH .130 .202 .248 .167 .094 -.277
1966-1970

£n (DBH) .044 .072 .080 .059 .034 -.227
1966-19 70

tDBH .069 .181 .131 .096 .042 -.391
1970-1973

2,n (1DBH) .052 .197 .144 .115 .031 -.414
1970-1973
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These results indicate that functions of CSI0 and ,CSI0 are impor-

tant variables in explaining periodic diameter growth. Tree size alone

accounts for a large portion of the variation in diameter growth. Addi-

tion of CSI variables increase the predictive power of the model and

also reduce the variability of the estimate. These results imply that

functions of CSI are important variables in the assessment of tree

growth and development and should be considered by the forester in

managing forest stands.

STOCKING AND SPACING GUIDES

Spacing and stocking guidelines are extremely useful to the forest

manager in the manipulation of the stand. Thinning can be viewed as a

temporary reduction of stand density in order to achieve a specific

management objective. Spacing and stocking guidelines provide some

means of controlling how the thinning is to be performed relative to

given stand conditions. For useful field guides it is convenient to

express spacing and stocking in terms of tree size and residual stand

density. The following section presents theoretical and empirical

stocking and spacing guidelines for a managed stand. Stand density is

expressed as the average CSI for the stand. A reduction in stand den-

sity following thinning reflects a corresponding reduction in the level

of inter-tree competition in the stand. Theoretical stocking and spac-

ing guidelines can be developed for a uniform stand with regular spacing

as follows. Suppose the stand consists of trees with uniform DBH = k.

The area available to the open grown tree of DBH = k is given as a



function of its open grown crown width:

lr(CWk)2

4

Where:

Ak = the open grown crown area of a tree with DBH = k

CWk = the open grown crown width of a tree with DBH = k (see

Equation (3-22)

The number of open grown trees per acre of uniform DBH = k is cal-

culated as:

Where:

TPA(k100) = the number of uniformly spaced open grown trees

(i.e., CSI = 100) per acre with DBH = k

Equation (3-13) gives the expected number of open grown trees per

acre spaced at the corners of squares of equal size. The number of

trees per acre corresponding to an average stand density of CSI0 is

equal to:

43560
TPA(k100)

- Ak
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Cs' 0
TPA(k CSI) = TPA(klOO) 100

(3-14)

(3-12)

(3-13)

(3-14)

Equation (3-14) states that the number of trees per acre of DBH =

k with stand density equal to CSI0 is the product of the number of open



grown trees per acre of same diameter and the ratio CSI0/lOO. Theo-

retically, a stand with CSI = 200 has twice the area of overlap as a

stand with density CSI = 100 and hence has twice as many uniformly

spaced trees per acre.

The average area available per tree assuming uniformly square

spacing of the trees in the stand is:

Where:

SP(k = average square spacing for trees with DBH = k and

stand density = CSI0

Equation (3-16) states that the trees in the stand are distributed

at the corners of equal sized squares with sides of length SP,.k
0

and area A(k
.

(Note that there is a slight bias since the area
'., 0

of a square with sides X only approximately equals the area of a circle

with radius X).

In Equation (3-16), the average open grown area per tree is reduced

by a factor of lOO/CSI0 as CSI0 increases from CSI0 = 100. A stand with

CSI0 = 200 has only one-half the area per tree as a stand with CSI0 =

100.

43560
A
(k,CSI0) TPA(k CSI)

The distance between trees in the stand of uniform DBH = k, and

stand density = CSI, is equal to the square root of A(k
1

Cs'0.'
SP(kCs,) = I = / Ak/(lOO J
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(3-15)

(3-16)



CSI(kSP) = Ak(lOO)/SP0
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Tables (3-8) and (3-9) give the theoretical stocking and square

spacing guides for a uniform stand of DBH = k and density = CSI0. Given

the desired stand density level and stand diameter the expected spacing

and stocking guidelines can be determined (see Figure 3-2). Suppose a

stand had a uniform DBH = 10 and a thinning is proposed which will

cause the residual stand density to have an average CSI0 = 250. The

theoretical spacing required between trees is 12.9 by 12.9 and the cor-

responding number of trees per acre is 262 (see Tables 3-8 and 3-9).

Solving Equation (3-16) for CSI gives the expected stand density

as a function of spacing and stand DBH (see Table 3-9b).

(3-17)

Equation (3-17) expresses the expected stand density of CSI when a

square spacing of SP0 is used as a field guideline to thin a stanti with

DBH = k. For example, if DBH = 10 and SP0 = 12, thinning all trees to

a 12x12 square spacing will result in a residual stand with an expected

stand density of CSI(1012) = 289.

Tables (3-8 and 3-9) are only useful for hypothetical stands of

uniform DBH and square spacing. Except in plantations, these special

conditions are not generally applicable to forest stands.

The previous discussion has focused on the development of theoreti-

cal stocking and spacing guidelines based on hypothetical stand condi-

tions. A study was performed to develop empirical relationships between

spacing and stand density in a managed stand. The average distance

between a subject tree and its competitors is an estimate of its spacing.



0
0 I0 30

40 COMPETITIVE
STRESS INDEX

I-
Id

30

0z
0
4
0.
U)

-J
20

&I

0
ILl

I-

I0

20 40
DBH, N.

Figure (3-2): Theoretical spacing by stand
CSI and DBH

65



Table (3-8): Theoretical stocking levels based on stand DBH
and CSI (nunther of trees per acre)

Stand CSI

66

DBH 100 150 200 250 300 350 400 450 500 550 600

1 1234 1850 2467 3084 3701 4317 4934 5551 6168 6785 7401

2 738 1108 1477 1846 2215 2585 2954 3323 3692 4062 4431

3 495 742 989 1236 1484 1731 1978 2225 2473 2720 2967
4 356 534 713 891 1069 1247 1425 1603 1781 1960 2138

5 270 405 540 676 811 946 1081 1216 1351 1486 1621

6 213 319 426 532 639 745 852 958 1065 1171 1278

7 173 259 346 432 519 605 691 778 864 951 1037
8 144 215 287 359 431 503 574 646 718 790 862

9 122 182 243 304 365 426 487 547 608 669 730

10 105 157 209 262 314 366 419 471 524 576 628

11 91 137 183 228 274 320 365 411 457 502 548

12 81 121 161 202 242 282 322 363 403 443 484

13 72 108 144 180 216 251 287 323 359 395 431

14 65 97 129 162 194 226 258 291 323 355 388

15 59 88 117 146 176 205 234 264 293 322 351

16 53 80 107 134 160 187 214 240 267 294 321

17 49 74 98 123 147 172 196 221 245 270 294

18 45 68 91 113 136 159 181 204 227 249 272

19 42 63 84 105 126 147 168 189 210 231 252

20 39 59 78 98 118 137 157 177 196 216 235

21 37 55 73 92 110 129 147 165 184 202 220

22 35 52 69 86 104 121 138 155 173 190 207

23 33 49 65 81 98 114 130 147 163 179 196

24 31 46 62 77 93 108 123 139 154 170 185

25 29 44 59 73 88 103 117 132 147 161 176

26 28 42 56 70 84 98 112 126 140 154 168

27 27 40 53 67 80 93 107 120 133 147 160

28 26 38 51 64 77 89 102 115 128 141 153

29 25 37 49 61 74 86 98 110 123 135 147

30 24 35 47 59 71 83 94 106 118 130 142

31 23 34 46 57 68 80 91 102 114 125 137

32 22 33 44 55 66 77 88 99 110 121 132

33 21 32 43 53 64 75 85 96 107 117 128

34 21 31 41 52 62 72 83 93 103 114 124

35 20 30 40 50 60 70 80 91 101 111 121
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Table (3-9): Theoretical square spacing based on stand DBH and
CSI (in feet)

Stand CSI

DBH 100 150 200 250 300 350 400 450 500 550 600

1 5.9 4.9 4.2 3.8 3.4 3.2 3.0 2.8 2.7 2.5 2.4

2 7.7 6.3 5.4 4.9 4.4 4.1 3.8 3.6 3.4 3.3 3.1

3 9.4 7.7 6.6 5.9 5.4 5.0 4.7 4.4 4.2 4.0 3.8

4 11.1 9.0 7.8 7.0 6.4 5.9 5.5 5.2 4.9 4.7 4.5

5 12.7 10.4 9.0 8.0 7.3 6.8 6.3 6.0 5.7 5.4 5.2

6 14.3 11.7 10.1 9.0 8.3 7.6 7.2 6.7 6.4 6.1 5.8

7 15.9 13.0 11.2 10.0 9.2 8.5 7.9 7.5 7.1 6.8 6.5

8 17.4 14.2 12.3 11.0 10.1 9.3 8.7 8.2 7.8 7.4 7.1
9 18.9 15.5 13.4 12.0 10.9 10.1 9.5 8.9 8.5 8.1 7.7

10 20,4 16.7 14.4 12.9 11.8 10.9 10.2 9.6 9.1 8.7 8.3

11 21.8 17.8 15.4 13.8 12.6 11.7 10.9 10.3 9.8 9.3 8.9
12 23.2 19.0 16.4 14.7 13.4 12.4 11.6 11.0 10.4 9.9 9.5

13 24.6 20.1 17.4 15.6 14.2 13.2 12.3 11.6 11.0 10.5 10.1
14 26.0 21.2 18.4 16.4 15.0 13.9 13.0 12.2 11.6 11.1 10.6

15 27.3 22.3 19.3 17.2 15.7 14.6 13.6 12.9 12.2 11.6 11.1
16 28.5 23.3 20.2 18.1 16.5 15.3 14.3 13.5 12.8 12.2 11.7
17 29.8 24.3 21.1 18.8 17.2 15.9 14.9 14.0 13.3 12.7 12.2
18 31.0 25.3 21.9 19.6 17.9 16.6 15.5 14.6 13.9 13.2 12.7
19 32.2 26.3 22.8 20.4 18.6 17.2 16.1 15.2 14.4 13.7 l3.1

20 33.3 27.2 23.6 21.1 19.2 17.8 16.7 15.7 14.9 1.2 13.6

21 34.4 28.1 24.4 21.8 19.9 18.4 17.2 16.2 15.4 14.7 14.1

22 35.5 29.0 25.1 22.5 20.5 19.0 17.8 16.7 15.9 15.1 14.5

23 36.6 29.9 25.9 23.1 21.1 19.5 18.3 17.2 16.4 15.6 14.9
24 37.6 30.7 26.6 23.8 21.7 20.1 18.8 17.7 16.8 16.0 15.3
25 38.6 31.5 27.3 24.4 22.3 20.6 19.3 18.2 17.2 16.4 15.7
26 39.5 32.3 27.9 25.0 22.8 21.1 19.7 18.6 17.7 16.8 16.1
27 40.4 33.0 28.6 25.6 23.3 21.6 20.2 19.1 18.1 17.2 16.5
28 41.3 33.7 29.2 26.1 23.8 22.1 20.6 19.5 18.5 17.6 16.9
29 42.1 34.4 29.8 26.7 24.3 22.5 21.1 19.9 18.8 18.0 17.2

30 43.0 35.1 30.4 27.2 24.8 23.0 21.5 20.2 19.2 18.3 17.5

31 43.7 35.7 30.9 27.7 25.3 23.4 21.9 20.6 19.6 18.7 17.9
32 44.5 36.3 31.5 28.1 25.7 23.8 22.2 21.0 19.9 19.0 18.2

33 45.2 36.9 32.0 28.6 26.1 24.2 22.6 21.3 20.2 19.3 18.5

34 45.9 37.5 32.4 29.0 26.5 24.5 22.9 21.6 20.5 19.6 18.7
35 46.5 38.0 32.9 29.4 26.9 24.9 23.3 21.9 20.8 19.8 19.0
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Table (3-9b):

DBH 3 6

The expected stand density as a function of
density and stand DBH

Spacing (in feet)

12 15 18 21 27 30

1 392 100 100 100 100 100 100 100 100 100
2 655 164 100 100 100 100 100 100 100 100
3 979 245 109 100 100 100 100 100 100 100
4 0 340 151 100 100 100 100 100 100 100
5 0 448 199 112 100 100 100 100 100 100
6 0 568 253 142 100 100 100 100 100 100

7 0 700 311 175 112 100 100 100 100 100

8 0 842 374 211 135 100 100 100 100 100
9 0 995 442 249 159 111 100 100 100 100

10 0 0 514 289 185 128 100 100 100 100
11 0 0 589 331 212 147 108 100 100 100
12 0 0 667 375 240 167 123 100 100 100

13 0 0 748 421 269 187 137 105 100 100
14 0 0 832 468 300 208 153 117 100 100
15 0 0 918 517 331 230 169 129 102 100

16 0 0 1006 566 362 252 185 142 112 100

17 0 0 1096 616 394 274 201 154 122 100
18 0 0 0 667 427 297 218 167 132 107

19 0 0 0 719 460 320 235 180 142 115
20 0 0 0 771 494 343 252 193 152 123
21 0 0 0 824 527 366 269 206 163 132

22 0 0 0 876 561 389 286 219 173 140
23 0 0 0 928 594 413 303 232 183 149
24 0 0 0 980 627 436 320 245 194 157
25 0 0 0 1032 661 459 337 258 204 165

26 0 0 0 1083 693 482 354 271 214 173
27 0 0 0 0 726 504 370 284 224 181

28 0 0 0 0 758 526 387 296 234 189
29 0 0 0 0 789 548 403 308 244 197
30 0 0 0 0 820 570 418 320 253 205

31 0 0 0 0 850 590 434 332 262 213
32 0 0 0 0 880 611 449 344 271 220
33 0 0 0 0 908 631 463 355 280 227
34 0 0 0 0 936 650 477 366 289 234
35 0 0 0 0 962 668 491 376 297 241
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Average spacing was expressed as a function of tree size and level of

CSI for 177 subject trees. The functional form of the relationship

used is:

S = b0 + b1D + b2CSI + [b3D2 + b4CSI2 + b5(D)(CSI)] (3-18)

where

Se = the empirical spacing in feet

A first order equation was fit using D and CSI as independent vari-

ables. Second order terms were then added to the model and found to be

significant (at the 1% significance level). The resulting equation was:

S = 9.8473 + .92849D - .011585CSI (3-19)

Table (3-10) expresses spacing as a function of tree diameter and CSI

level. Thinning the stand using these spacing guidelines will reduce

the stand density to a specified level for each diameter class. Figure

(3-3) depicts the relationship between spacing and the diameter for

various levels of CSI. Note as the residual stand density increases,

the average distance between trees decreases proportionally.

Table (3-10) expresses spacing guidelines in terms of residual

stand density independent of the stand condition prior to thinning. The

reduction in CSI due to thinning can be measured as the difference be-

tween the initial stand density before thinning and the residual stand

density following thinning. An empirical relationship between the

average distance between trees following thinning and the stand condi-

tion prior to thinning was developed as follows. Spacing following
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Figure (3-3): Average spacing as a function
of CSI and DBH
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thinning was expressed as a function of tree size, initial CSI before

thinning and change in CSI due to thinning.

STk = b0 + blDk + b2CSI + b3zCSI (3-20)

Where:

STk = the average spacing for a tree of DBH = k based on initial

stand density and degree of thinning

The coefficients for Equation (3-19) were estimated as:

STk = 10.602 + .8977D - 0.10684CS1 + .02379ACS1 (3-21)

Specifying the initial CSI of the stand or tree and the degree of

thinning proposed, Equation (3-21) gives empirical spacing for each DBH

class. Thinning the stand using these guidelines will result in the

reduction of initial CSI by tCSI units to the desired residual level.

Equations (3-19) and (3-21) give the forest manager the means of

controlling stand density relative to the specific management objec-

tives. The spacing guides developed regulate the level of stand density

as a function of tree size. Arney (1973) suggests that the range of CSI

are generally applicable to a managed stand is 250-350 CSI units. Fully

stocked natural stands typically have stand densities ranging from 400-

500 CSI units.

A field guide for determining when two trees in the area are com-

peting based on their respective diameter can be derived from the open

grown crown width relationship (Arney, 1973):



Where:

CW = the open grown crown width of the ith tree

D1 = the DBH of the ith tree

The open grown crown radius is equal to:

cW.

CR = -.-- - 2.3535 + 1.008 D. - .0096 D
2

1
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(3-23)

Table (3-10): Average spacing as a function of tree diameter
and CSI level (in feet)

Tree CSI

DBH 100 150 200 250 300 350 400 450 500 550 600

1 9.6 9.0 8.5 7.9 7.3 6.7 6.1 5.6 5.0 4.4 3.8

2 10.5 10.0 9.4 8.8 8.2 7,7 7.1 6.5 5.9 5.3 4.8

3 11.5 10.9 10.3 9.7 9,2 8.6 8.0 7.4 6.8 6.3 5.7

4 12.4 11.8 11.2 10.7 10.1 9.5 8.9 8.3 7.8 7.2 6.6

5 13,3 12.8 12.2 11.6 11.0 10.4 9.9 9.3 8.7 8.1 7.5

6 14.3 13.7 13.1 12.5 11.9 11.4 10.8 10.2 9.6 9.0 8.5

7 15.2 14.6 14.0 13.5 12.9 12.3 11.7 11.1 10.6 10.0 9.4

8 16.1 15.5 15.0 14.4 13.8 13.2 12.6 12.1 11.5 10.9 10.3

9 17.0 16.5 15.9 15.3 14.7 14.1 13.6 13.0 12.4 11.8 11.3

10 18.0 17.4 16.8 16.2 15.7 15.1 14.5 13.9 13.3 12.8 12.2

11 18.9 18.3 17.7 17.2 16.6 16.0 15.4 14.8 14.3 13.7 13.1

12 19.8 19.3 18.7 18.1 17.5 16.9 16.4 15.8 15.2 14.6 14.0

13 20.8 20.2 19.6 19.0 18.4 17.9 17.3 16.7 16.1 15.5 15.0

14 21.7 21.,1 20.5 19.9 19.4 18,8 18.2 17.6 17.1 16.5 15.9
15 22.6 22.0 21.5 20.9 20.3 19.7 19.1 18.6 18.0 17.4 16.8

16 23.5 23.0 22.4 21.8 21.2 20.6 20.1 19.5 18.9 18.3 17.8

17 24.5 23.9 23.3 22.7 22.2 21.6 21.0 20.4 19.8 19.3 18.7

18 25.4 24.8 24.2 23.7 23.1 22.5 21.9 21.3 20.8 20.2 19.6

19 26.3 25.7 25.2 24.6 24.0 23.4 22.9 22.3 21.7 21.1 20.5
20 27.3 26.7 26.1 25.5 24.9 24.4 23.8 23.2 22.6 22.0 21.5

CW. = 4.7071 + 2.01680 D. - .0186 (3-22)
1 1



Dropping the D12 term from Equation (3-23) gives:

CR. = 2.3535 + 1.008 D.
1 1
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(3-24)

Two trees compete (i.e., their competition circles overlap) if the

sum of their open grown crown radii is greater than the distance between

their centers. Using Equation (3-24):

R = CR1 + CR2 = 4.7070 + 1.008 (D1 + D2) (3-25)

Where:

R = the suni of the open grown crown radii for trees 1 and 2

Equation (3-25) can be used as a convenient "diameter plus" rule

of thumb. The two trees are competing if the sum of their diameters

at breast height plus 4.7 is greater than the distance between them.

One major limitation to the diameter plus rule of thumb as a field guide

is that the degree of competition between the two trees is not speci-

fied. To solve this problem, an alternative spacing guide can be de-

fined as follows. Using the data presented in Table (3-10), a field

guide based on diameter and level of CSI can be derived for individual

trees. The average spacing for a tree is expressed as a function of

its diameter and CSI as:

S = 9. 84730 + .92849 D - .011585 CSI (3-26)

For a uniform level of stand density (i.e., CSI = CSI), Se in

Equation (3-26) becomes a function of tree diameter alone.



S = (9.84730 - .011585 CSI) + .92849 D
e
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(3-27)

Solving the above Equation (3-27) for Se under various density

conditions (assuming .92849 1.0) gives an approximate diameter plus

spacing guide. Table (3-11) gives the appropriate diameter plus rule

of thumb for various levels of CSI.

The appropriate diameter plus constant for a given stand density

specifies the average spacing required based on tree size. Thinning to

these guidelines will reduce the average CSI in the stand to the de-

sired level. Since these guides are based on empirical results, cau-

tion should be exercised in their application to other stands.

Table (3-il): D-plus rule of thumb for various
stand densities

Stand Density CSI D Plus Spacing Rule

100 8.69

150 811

200 7.53

250 6.95

300 6.37

350 5.79



SAMPLING FOR COMPETITIVE STRESS

INTRODUCT ION

Inter-tree competition is an important component in the analysis of

tree and stand growth relationships. Competition indices are measures

of stand density which express the relative level of competition be-

tween trees for growing space. Several indices have been proposed as

suitable measures of inter-tree competition. The primary emphasis of

this thesis has been on the evaluation of competitive stress index as a

measure of inter-tree competition. It is obvious that inter-tree com-

petition indices are primarily research tools. Application of the

indices require specialized data sets including: tree identification

codes, stem coordinates, and accurate diameter measurements. Such data

sets are expensive to obtain and are not generally available on a large

scale. In addition, the complexity of the computations associated with

using the various competition indices require that some sort of com-

puter processing procedures be adopted. These requirements seem very

restrictive in the application of the indices on an operational basis.

In the future, one would expect that the ability to estimate the level

of competition in a stand would be as necessary as obtaining estimates

of basal area per acre, volume per acre, or average stand diameter.

Hopefully, this will provide some insight into assessing inter-tree

competition on an operational level using the CSI model.
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The objectives of this chapter are to develop the theory and pro-

cedures of sampling for CSI in a forest stand. A sampling scheme is

proposed which will provide estimates of CSI for a stand or for indi-

vidual trees within the stand. Results of simulated field samples are

also presented.

Before the theory of sampling for CSI is presented, it is informa-

tive to briefly reexamine the CSI model in the whole stand and in single

tree cases.

The CSI for a single tree is given by (Arney, 1973):

(AO.. + A.)
CSI. = 100

1 13 3

:1 A.

A.
3

= P0.
3

Where:

CSI the competitive stress level for the jth tree in the stand

AO the area of overlap of growing space of the ith competitor

and the jth tree

the growing space area of the jth tree defined as the open

grown crown area of the tree

TAOJ = the total area of overlap of growing space of the jth tree

(including the area of overlap of the jth tree itself)

P0 = the percent overlap of growing space for the jth tree.
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Equation (4-1) states that the CSI for a single tree can be ex-

pressed as the percent overlap of its growing space by the growing

space circles of competing neighbors.

The average CSI level for the stand can be expressed in two forms:

as a ratio of the means or as the mean of the ratios of the total area

of overlap to the area of growing space.

Mean of the ratio form:

Where:

CSI = the mean of the ratio form of expressing the average CSI

of the stand

N the number of trees in the stand

the average percent overlap of growing space per tree in

the stand

CSIR = the ratio of the means form of expressing the average CSI

of the stand

TAO. = the total area of overlap of growing space for all N trees

in the stand

N CSI. N
r= N'0°j=l j=l

Ratio of the means form:

N
100 TAO.

R
= 100

TAO. j=l

A.

j=l

N P0.
V J_

N
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the total area of growing space for all N trees in the

St and

= the average percent overlap of growing space for the N

trees in the stand based on the ratio of the means estimator

Using either form, the average CSI level for the stand can be expressed

as the average percent overlap of growing space.

It will be shown that when sampling for the average CSI for the

stand, an unbiased estimate of crown competition factor (CCF) can also

be obtained. In fact, the CCF and CSI models are closely related on a

whole stand basis. CCF is a measure of stand density based on the po-

tential open grown crown areas or growing space of the stand relative

to the ground area occupied by the stand. The CCF for a closed stand

occupying one acre of ground area is given as:

N A. N
CCF = 100 = Q. (4-4)

j=l j=l

where:

CCF the crown competition factor for the stand

the open grown crown area or growing space of the jth tree

in the stand

= the ground area occupied by the stand (in this case Ac =

93560 sq. ft.)

Q = the open grown crown area or growing space of the jth tree

expressed as a percent of an acre
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N
Q. = the percent of an acre occupied by the total crown areas

j=l

or total growing space of the stand.

EVALUATION OF ARNEYS SAMPLING ESTIMATOR

Arney (1973) developed a sampling estimator for estimating average

CSI or CCF in a closed stand based on Bitterlich's point sample design.

The sampling procedure is as follows: n sample points are systemati-

cally established in the stand. At each sample point a tally of "in"

trees is made by one-inch diameter classes, using an appropriate basal

area factor (BAF). The BAF is selected so as to give an average tree

count of 7-10 trees per sample point (Arney, 1973). The CSI or CCF

estimator for the jth sample point is:

k y.. k
UA. = BAF --- TC. - = BAF R..

3 X.. 13 131=1 ij

Where:

(4-5)

IJA = Arney's estimator of average CSI or CCF for the jth sample

point

BAF = the basal area factor used in sampling

yjj = the open grown crown area or growing space of the ith DBH

class expressed as a percent of an acre at the jth sample

point

x.. = the basal area in square feet of the ith DElI class at the1)

jth sample point
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Where:

UA = Arney's estimator of average CSI or CCF for a closed stand

based on n sample points

= the average ratio weighting factor for all DBH classes

The sample variance of the estimator in equation (4-6) is:

V(UA) = V(BAF.) = BAF2V()

But:

k the number of DBH classes tallied

R. . = the sum of the y. /x.. ratio for all trees in the ith DBH13 13 13

class at the jth point

TC.. = the tree count observed for the ith DBH class at the jth13

point

The estimator for a sample of n points in the stand is:

n UA. n k y.. TC..
u =

13 13
A . n n . . x..jl 1l 13

n k n
R.. R..

= BAF -
- BAF _______ - BAF i
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2
n (R.. - R)

V() = (n)(n-l)

Therefore:

j=i

n (R..

V(UA) = BAFL
(n) (n-i)

j=i

(4-6)

(4-7)



Where:

V(UA) = the sample variance of Arney's estimator UA

V() = the sample variance of the average ratio weighting factor

R

R.3 = the weighting factor for the jth sample point summed over

all DBH classes

Arney (1973) states that UA is a valid estimator of average CSI

or CCF in a closed stand. It is assumed that a "closed stand" is one

that fully occupies the available growing space of the site. In a

closed stand, the average CSI and CCF values are highly correlated, but

are not necessarily the same value. The average CSI for a stand is

always greater than the corresponding CCF value. Arney's estimator in

Equation (4-6) does not distinguish between the average CSI and the CCF

for a stand.

Using the terminology presented by Husch (1972) for polyareal plot

sampling, Arney's estimator for CSI or CCF in a closed stand can be

viewed from a different perspective. Husch uses the term "factor" to

specify the number of units per acre that are represented by each tree

tallied in the sampling process for any tree characteristic. A "tree

factor" is the per acre conversion factor which specifies the number of

trees per acre represented by each tree tallied. A "volume factor"

represents the number of units per acre represented by each tree tallied.

In general, a "tree characteristic factor" specifies the number of units

of the particular tree characteristic per acre which are represented
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by each tree tallied. In horizontal point sampling the "tree factor"

is:

Where:

STF1 = the tree factor or stand table factor for the ith DBH class

BAF = the basal area factor used in the sampling process

BA. = the basal area of the ith diameter class

In general, for any tree characteristic Y.., corresponding to a

tree in the ith DBH class, the "characteristic factor" can be expressed

as (Husch, 1972):

STF.
1 BA.

1

Where:

F.
y1

yi

BAF
F . = (y. ) (
yl . ir - (yi) (STF.)

1
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(4-8)

(4-9)

the "tree characteristic factor" for the ith DBH class

the tree characteristic of interest (e.g., volume, diameter,

percent growing space)

Equation (4-9) expressed the "tree characteristic factor," for the

ith DBH class, as the product of the characteristic of interest and the

tree factor for the ith DBH class.

An estimate of the per acre characteristic yj at the jth sample

point is the product of the tree characteristic factor and the tree

count of the ith DBH class observed at the jth sample point.



k

I
j=1

n

n k
=

j=1 1=1

F .TC..
yl iJ

n

n 11

y. = (F .) (TC. .)13 yl 13

Where:

TC.. = the observed tree count of the ith DBH class at the jth

sample point

The estimate of the characteristic per acre for all DBH classes at the

jth sample point is:

k

y.. = F .TC.
i=l y1 13

Where:

y.3 = the per acre estimate of the tree characteristic y at the

jth sample point summed over all DBH classes

= the number of DBH classes tallied

M average per acre estimate for the tree characteristic y1 obtained

from n sample points in the stand is calculated by dividing the sum of

the n per acre estimates y.. by n, using Equations (4-9) and (4-10).

= (4-11)

Substituting for Fyi in Equation (4-il) using Equation (4-8) gives:

n k
BAF

.
. Yi TC

- j-1 i-1 1

n k y..

BAF -- TC
j=l i=l 1

83

(4-10)

(4-12)
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Let y equal the growing space area of the ith DBH class as a per-

cent of one acre. Then equation (4-12) states that the average per acre

estimate of the tree characteristic of interest is given by y. Here,

is the average growing space area per acre expressed as percent of an

acre. In other words, 5 is the percent of an acre occupied by the

growing space area of the stand or the CCF value for the stand (see

Equation 4-4). Substituting xj = BA.. in Equation (4-6) and comparing

this result with Equation (4-12) shows that Arney's estimator is equal

to 5. Thus, Arney's estimator for CSI or CCF in a closed stand is, in

fact, an estimator of CCF in a closed stand and not average CSI, al-

though as stated previously, the average CSI and CCF values for a stand

are generally highly correlated.

Arney's estimator for the average CSI or CCF for a stand was

evaluated under a variety of stand conditions using natural and hypo-

thetical populations. The results of these simulated field samples

confirm the theoretical analysis presented above. Arney's estimator

consistently underestimated the CSI value of the stand but was an ex-

cellent estimator of the CCF value of the stand.

Arney's estimator can be decomposed into its basic components under

the following special conditions. Suppose the stand consists of N trees

of a uniform diameter k. The y/x ratio for all the trees in the stand

is therefore equal to a constant, C, since all the trees have the same

diameter. Arney's estimator UA in Equation (4-5) can be simplified to:



Where:

C = the constant ratio y/x. or the ratio of the growing space

of the ith DBH class as a percent of an acre to its basal

area

TC = the tree count at the jth point

TC = the average tree count per point for the n sample points

Equation (4-13) states that the estimator of competitive stress in

a uniform stand of DBH = k can be expressed as the product of the

constant weighting factor C corresponding to the stand DBH = k and the

average tree count per point. If C and T are known, and an approxi-

mate CCF level is estimated for the stand, the appropriate BAF can be

determined by solving Equation (4-13) for BAF.

Where:

BAF the appropriate BAF for the stand

the estimated CCF for the stand (e.g., low = 150, medium =

300, high = 450)

Table (4-1) gives the appropriate BAF for a uniform stand with a

constant DBH = k corresponding to an estimated CCF level. An average

tree count of 5 trees per point is assumed.

n R.. n CTC.
U = BAF - BAF = BAF C TC = BAF RA . n n

j=l
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(4-13)

U
BAF =

TC C (4-14)
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When sampling in a uniform stand of diameter k, the critical corn-

-ponent of Arney's estimator is the average tree count per point. When

sampling under conditions in which the stand is not closed, Arney's

estimator underestimates the CCF for the stand because the average TC

falls below a minimum level. Table (4-2) gives the minimum tree count

required when using a given BAF for various uniform stand diameters.

The CCF value for an open grown stand that fully occupies the site is

100. CCF values less than 100 indicate that the stand is not fully

utilizing all the growing space available to it.

DERIVATION OF CSI ESTIMATORS

The following sections presents the theory used to develop esti-

mators of CSI for a whole stand or for individual trees within the

stand. Derivations of the expected values and variances of the esti-

mators are presented in detail in Appendix A. Since the estimator

Table (4-1):

St and

The appropriate BAF corresponding to
a uniform stand DBU = k and various
CCF values using Equation (4-14)

Stand CCF

Diameter 100 300 400

5 7.6 15.2 22.8 30.4 38.0

10 11.3 22.6 33.9 45.2 56.5

15 14.3 28.6 42.9 57.2 71.5

20 17.1 34.2 51.3 68.4 85.5
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developed for the single tree case is a special form of a whole stand

estimator, the single tree case will be presented first.

Figures (4-1) and (4-2) illustrate a hypothetical stand consist-

ing of three trees. Figure (4-1) depicts the overlap zones of the

trees relative to their growing space areas. The variable i indicates

the number of times that a particular area has been overlapped by

competing neighbors. Figure (4-1) is representative of the overlap

zones which might typically be encountered in a natural stand. Figure

(4-2) depicts each of the trees and their corresponding overlap zones

individually.

Table (4-2): Minimum tree count required for
a given basal area factor

Stand CCF = 100

Average Stand DBH

BAF 5" 10" 15"

15 2.54 3.79 4.76 5.70

20 1.91 2.84 3.57 4.27

25 1,53 2.27 2.86 3.42

30 1.27 1.89 2.38 2.85

40 0.95 1.42 1.79 2.14

60 0.64 0.95 1.19 1.42

80 0.48 0.71 0.89 1.07
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Figure (4-1): Overlap conditions in a
hypothetical stand
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Figure (4-2): Individual overlap zones
by tree
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It was shown earlier that the CSI for a tree is equivalent to its

percent overlap of growing space (see Equation 4-1). An open grown

tree has a CSI of 100 units or has 100 percent of its growing space

occupied. A tree with a CSI of 200 units has 200 percent of its grow-

ing space occupied or overlapped by competitors' growing space circles.

Sampling for CSI for a single tree is equivalent to sampling for its

percent overlap of growing space.

An expression of the CSI for a single tree was given in Equation

(4-1). An alternative expression of a tree's CSI is derived from the

notation presented in Figure (4-3). The growing space area for the jth

tree equals the sum of the areas occupied by the i overlap zones of the

tree. The total area of overlap for the jth tree equals the area oc-

cupied by the ith tree count zone times the number of times the zone

has been overlapped, summed over all i overlap zones. The CSI level

for the jth tree can be expressed as (see Figure 4-3):

TAO.

CSI = 100
A =

(4-15)

3

Where:

the growing space for the jth tree

TAOJ the total area of overlap of the jth tree

i the overlap condition of tree count value (i = 1, 2, 3)

OA the area occupied by the ith tree count or overlap zone in

the jth tree's growing space
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100 TAO. 100 (AO . + AO . + A.)
cs. 2j 3

j A. A.
:3

But:

AO.=OA. +OA.2j 2j 3j
a

A0.=OA. +OA
33 2b 3j

A. = OA . + OA . + 0A2. + 0A3.
3 1) 2j 3 3a b

TAO. = OA . + 2(OA .
+

0A2.) + 3(OA3)
3 1) 23 a

Substituting these expressions into (4-17) gives:

100 (OA1 + 2 (0A2.) + 3 (0A3.))
(4-18)cSI.- OA.+OA.+0A3.3 ii 2j

which is identical to the CSI computed in Equation (4-16).
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For example, the CSI for tree j in Figure (4-3) is computed as

follows:

(TAO) 100 (OA1 (1) + 0A2. (2) + OA . (3))3j (4-16)CSI = (100)
A. OA . + 0A2. + OA

3 lj 3 3j

Where:

OA.=OA. +OA.2j 2)
a

This derivative of CSI for a single tree is equal to the expression

given in Equation (4.4). The CSI for tree j in Figure (4-4) using

Equation (4-1) is:

(4-17)
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::::;

Figure (4-4): Overlap of tree j by its
competitors
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The percent overlap value for a single tree can be estimated from

a sample of points located within the tree's hypothetical growing space

area. The systematic grid of sample points in Figure (4-3) illustrates

how the percent overlap value for the ith tree can be estimated. Con-

sider the set of m sample points which fall into the jth tree's growing

space circle. The probability that the observed tree count at the kth

sample point will fall into the ith overlap zone equals the area oc-

cupied by the ith overlap zone divided by the area of the growing space

for the jth tree. Synibolically:

OA..

C-
= A.

(4-19)

3

Where:

Ci) = the actual probability that the observed tree count at a

given sample point will fall into the ith tree count zone

for a given tree

Referring to Figure (4-3), note as the area occupied by the ith

tree count zone increases (OA) the greater the probability a sample

point will fall into that zone (see Equation 4-19). A sample point

falling into a tree count zone equal to 1 is equivalent to a percent

overlap condition of 100. An observed tree count equal to 3 corres-

ponds to a percent overlap of 300. The average tree count or overlap

condition of the m sample points for the jth tree reflect the average

overlap percentage of growing space or P0 value for the tree.

The percent overlap value for a single tree can be estimated using

the following estimator:



in

is:

2 (t.k
V(T.) = 100 k=1 3

m-4

Where:

V(T) = the sample variance of the T. estimator for the jth tree

Two estimators are proposed for estimating the average CSI level

for the whole stand. The first whole stand estimator can be derived

using the single tree estimator presented above. Since T is an un-

biased estimator of the CSI for the jth tree in the stand, it is

intuitive that the mean of a sample of n individual trees would be an

m
100 t.k

T. = k=l = t. (100) (4-20)

Where:

T. = an unbiased estimator of the percent overlap of growing space

for the jth tree

tik = the number of trees which overlap the kth sample point or

the overlap condition observed at the kth sample point

(k = 1,m)

= the average tree count or overlap condition for the jth tree

m = the number of sample points taken in the jth tree's growing

space area

It can be shown that T. is an unbiased estimator of P0. or the CSI for
3 3

the jth tree (see Appendix A). The corresponding sample variance of T
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unbiased estimator of the average CSI of the stand.

m. t.

100 (n T. n in.

T5= k=l j

j=l :1=1

Where:

T5 the estimator for the average CSI for the whole stand

n = the number of trees in the sample

= the number of sample points observed for the jth tree

If the number of sample points observed per tree is the same for all n

trees in the sample, Equation (4-22) can be simplified by substituting

in = in. to:
:1

Where:

t = the average percent overlap of growing space of average tree

count of all sample points

is the mean of the ratio estimator for the average CSI given in

Equation (4-2). It is based on the mean of the individual tree CSI es-

timates for the n sample trees selected in the stand. The sample

variance associated with the estimator given in Equation (4-23) is:

n m
t.

-1 k-i
jk =

T =lOO - -t
S fin

n
V( T )

V(T) = j n V(T.)

2j=l n

2
n m

= ioo2 (tjk -

j=l k=i (n)2(m-l)
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(4-22)

(4-23)

(4-24)



Where:

V(T5) = the sample variance of the whole stand estimator

The whole stand estimator T estimates the average percent overlap

of growing space per tree in the stand. The primary limitation in using

the estimator on an operational basis is the total number of sample

points required. In order to adequately sample for average CSI in the

stand, a reasonable sample size of individual trees is necessary. In

addition, the critical factor in estimating a single tree's CSI is the

number of sample points selected per tree. As a result, as n becomes

large enough to reasonably estimate the average CSI in the stand, the

total number of sample points becomes excessive. Let M equal the total

number of sample points required. Then:

M = (m) (n) (4-25)

For n = 30 sample trees, and m = 4 sample points per tree, M = 120 total

sample points required. An excessive number of total sample points

causes the estimator in Equation (4-23) to be less than desirable on a

whole stand basis.

A second and more realistic approach to estimating the average CSI

level in the stand is to develop an estimator based on a sample of

points rather than on a sample of individual trees within the stand.

The second proposed whole stand estimator is based on a random or sys-

tematic sample of points within the stand without regard to individual

trees. A weighted average tree count or percent overlap estimator can

be derived to estimate the average CSI for the stand. Figure (4-5)
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shows the overlap zones of a hypothetical stand of three trees. Super-

imposed is a systematic grid of points. The circled points indicate

the sample points randomly selected for observation. Notice that a

sample point may be overlapped by more than one tree's growing space

circle. In deriving the whole stand estimator based on a sample of

points rather than individual trees within the stand, a weighting

factor must be employed to adjust for multiple overlaps. Figure (4-6)

shows the individual tree case described earlier. The selected sample

points for the whole stand estimator are indicated for each tree. A

whole stand estimator based on individual trees can be computed from

the overlap conditions indicated by Figure (4-5). A single sample

point falling into an overlap zone of 2 in Figure (4-5) is represented

by two sample points in Figure (4-6), one for each sample tree that

overlaps it.

The weighting factor for the second whole stand estimator must

account for the multiple overlap of a given sample point. A weighted

average tree count or percent overlap for the stand depicted in Figure

(4-5) can be constructed as:

(4-25)

Where:

S = the weighted average tree count adjusted for multiple overlaps

tk = the tree count or overlap of the kth sample point (k = 1,1)
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Figure (4-5): Overlap zones of a hypothetical
stand
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Figure (4-6): Overlap zones for each
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s=
100 t t 100k kk=1 k=1

i
tk tk

k=1

Wk = the weighting factor used at the kth sample point

k = the sample point number

= the sample size

The weighting factor wk depends upon the tree count tk observed at

the kth sample point. If the tree count at the kth point equals 1, then

the point is overlapped by one tree and Wk = 1. If tk = 2, then the kth

sample point is contained within two treest growing space circles and

the weighting factor wk = 2. In general, if the tree count at the kth

point tk = i, then the weighting factor Wk = i or Wk = tk Substituting

this relationship between tk and Wk into Equation (4-25) yields:

(4-26)

The whole stand estimator S represents the weighted average tree

count or percent overlap of growing space for the stand, based on a

.sample of £. points. The sample variance of S is approximately (Cochran,

1963):

V(S) = 100 (4-27)

c= 1

Where:

V(S) = the approximate standard error of the estimator S.

The probability that a sample point falls into the ith overlap

zone is equal to the area occupied by the ith overlap zone divided by
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the area occupied by the stand. Symbolically:

OA. OA.
= - (4-28)

Where:

= the probability that the kth sample point falls into the

ith overlap zone of the stand

0A the area occupied by the ith overlap zone in the stand

the ground area occupied by the stand

It can be shown that for a reasonable size 2.(2.>lO), the expected

value of S is equal to the average CSI for the stand. The whole stand

estimator S in Equation (4-26) corresponds to the ratio of the means

estimator of the average CSI given in Equation (4-3).

Equation (4-26) states that a whole stand estimator of the average

CSI level in the stand can be expressed as the weighted average tree

count of 2. sample points in the stand. If no weighting factor is used

in Equation (4-25), S becomes the unweighted average tree count for

the 9. sample points. The expected value of this unweighted estimator

can be shown to be equal to the CCF value for the stand (see Appendix

A). An estimator for average CSI or for CCF for the stand can be ob-

tained from the sample of 2. points depending upon the weighting factor

used to derive the estimator S. If the weighting factor in Equation

(4-25) is unity, S becomes:
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k= 1

ere:

= the unweighted average tree count or overlap condition of the

2. sample points

The whole stand estimator T derived from individual tree estimates

of CSI is identical to the whole stand estimator S if the number of

sample points per tree is constant for all trees sampled.

In order to fully understand the differences between the two whole

stand estimators S and T the following example is given. Figure (4-5)

depicts the whole stand case used to derive the estimator S. The figure

shown 2. = 7 sample points randomly selected in the stand. At each point

the overlap or tree count condition is tallied. Substituting the ob-

served tree count or overlap values into Equation (4-26) gives S as:

2
24i2 + 22 +

32 + 22 + 22 + 1
(100) = u (100) = 200S=( 1+2+1+3+2+2 +1

Figure (4-6) depicts the individual trees represented in the stand.

The sample points used to estimate S are given for each sample tree.

The whole stand estimator T can be derived for the M = (n) (m) = (3) (4)

12 total sample points. By substituting the actual tree counts for

each tree into Equation (4-23):

Tree 1 Tree 2 Tree 3

T
[(11-2+3+2) + (2+1+3+2) + (2+3+2+l)

100
24(100)

= 200
s 3(4) 12

S = 100 100 = 100 t
k=1 k=1

U
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In the example, notice that the whole stand estimator S requires 7

sample points to estimate the average CSI of the stand while the whole

stand estimator T5 requires 12 total sample points.

SAMPLING PROCEDURES FOR THE SINGLE TREE CASE

The sampling procedures for estimating the competitive stress

index for an individual tree within a stand are described as follows:

First, identify the tree of interest and establish m sample points

within its growing circle. At each sample point, a tally of "in" trees

is made, using an appropriate basal area factor, from the surrounding

trees in the stand. Each potential competitor is observed at breast

height (BH). The tally of "in" trees represents the number of times

the sample point has been overlapped by the hypothetical growing space

circles of the trees in the stand. The CSI estimate and sample vari-

ance of the CSI for the subject tree are given as:

(4-30)

(4-31)

The establishment of the sample points within the subject tree's

hypothetical growing space circle can theoretically be randomly or sys-

tematically located. However, in order to maintain uniformity from

tree to tree, it is recommended that the m sample points be located at

an equal distance from the tree's bole. If a tree's growing space

circle is divided into circular sections, the centroid or geometric
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center of each section can be used to locate the m sample points. The

centroid radius or the distance from the center of the tree to the

centroid of each section can be mathematically derived (see Appendix

C). The centroid radius SR, for any circular section, can be expressed

as a function of the circular radius. In the case of a tree, the

centroid radius is a function of the competition radius of the tree's

growing space area. Figure (4-7) shows the geometrical relationships

involved between the centroid radius, SR, and the competition radius,

CR, for a circular section with an interior angle of 2 0.

The desired sample size in determines the size of the circular sec-

tion and the functional relationship between the centroid radius and the

competition radius for the tree. Table (4-3) gives the relationship

between SR and CR for various sample sizes in. A detailed examination

of the geometrical relationships presented in Figure (4-7) is given in

Appendix C.

The establishment of the sample points within the tree's growing

space circle is critical. The location of the sample points at the

geometrical center of each circular section assumes a uniform distri-

bution of sample points within the tree's growing space circle. Random

or other systematic locations of the m sample points are also possible,

but were not field tested.

Figure (4-8) depicts a hypothetical stand consisting of five trees.

Suppose an estimate of CSI is desired for tree 3. Four sample points

are located at the centroid of each quadrant. At each sample point,

the number of trees overlapping the point are tallied. Figure (4-9)
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Figure (4-7): Determination of the centroid
radius of a circular section
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Figure (4-8): Sampling for CSI in the
single tree case
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OBSERVATION POINT
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Figure (4-9): Tree count zones for tree



Sample Size

m

2

4
6
8

10

Table (4-3): Relationship between centroid
radius and competition radius
for a given sample size

Centroid Radius

(.42441) (CR)

(.60021) (CR)

(.63662) (CR)

(.64966) (CR)

(. 65575) (CR)

shows the tree count or overlap condition observed for each sample

point. Three of the points fall into an- area with only one tree over-

lapping (e.g., the subject tree). The fourth point falls into an

overlap area where two trees overlap the point. The estimate of CSI

for tree 3 can be computed as:

4t
T3= 100 = 100(1 + 1 + 1 + 2)

k=l

2 E(tk
VCT3) = 100

3
- (100)2 (.25) = 2500

- 100 (i-) = 125
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The estimated CSI level for tree 3 is 125. The actual CSI level for

tree 3 is 121.

SAMPLING PROCEDURES FOR THE WHOLE STAND CASE

If the sampling objective is to estimate the average competitive

stress level for the whole stand either of the whole stand estimators

described earlier can be used. If the whole stand estimator T5 is used,



1OO tk
s

k= 1
tk
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individual tree estimates will be obtained for the n sample trees as

discussed above. If the whole stand estimators is used, the sampling

procedure would be as follows:

Using either a random or systematic sampling scheme, . sample

points are selected in the stand. Each of the sample points is located

independently of individual trees in the stand. At each sample point,

a tally of "jn" trees is made using an appropriate BAF, from the sur-

rounding trees in the stand. Each potential competitor is observed

at breast height. The tally of ltjtt trees represents the number of

times the point has been overlapped by the hypothetical growing space

circles of trees in the stand. The average CSI for the stand can be

estimated as weighted average of observed tree counts using Equation

(4-25) as:

(4-32)

Figure (4-10) depicts a hypothetical stand consisting of five

trees. The growing space circle for each tree is represented. Super-

imposed is a systematic grid of 16 sample points. At each sample

point, tree count is observed using an appropriate BAF. Sample points

with tree counts equal to zero are not contained within any trees

growing space circle. A tree count of zero is not defined since the

CSI value for an open grown tree of 100 corresponds to tree count of

overlap equal to one. Also, CSI is a characteristic associated with a

given tree. A tree count of zero does not provide any information
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Figure (4-10): Sampling for CSI in the whole
stand case
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about the CSI or percent overlap for a tree since it falls outside of

any growing space circle. Using the weighted whole stand estimator S,

a tree count of zero has no effect on the estimator. A tree count of

zero is not possible in estimating the CSI of a single tree since all

m sample points are located within the sample tree's growing space.

The minimum tree count for the single tree case is therefore equal to

1. In this case, only the subject tree overlaps the sample point. To

maintain consistency in sampling for CSI all sample points with a tree

count or overlap condition equal to zero should be ignored. Figure

(4-11) shows the overlap condition observed at each sample point.

Sample point (1,2) falls into a tree count zone = 1. Point (3,2) lies

in a tree count zone = 3. Point (3,4) has a tree count = 0 and is

discarded from the sample. The average CSI estimate for the stand can

be computed as:

100 = 177

The whole stand estimate for the stand is 177 units. The actual CSI

for the hypothetical stand is 198 units.

The number of sample points selected in the stand is dependent upon

the objectives of the sampler. A rule of thumb suggested by Beers

(1964) is 40 points per 40 acres or one point per acre. The simulated

samples drawn from field plots used 50 points per acre or 10 points per

1/5 acre plot.
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Figure (4-11): Overlap zones for the stand
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SELECTING THE BASAL AREA FACTOR

The primary objective of selecting the appropriate BAF is to ap-

proximate the growing space circle with the variable plot circle for a

given size tree. If each tree's growing space area is blown up propor-

tionately, then tree size and spatial arrangement relationships in the

stand can be used to estimate the average CSI.

Suppose the stand to be sampled consists of N trees of some uniform

diameter k. Under this assumption, all the trees in the stand have the

same size "growing space," since growing space is a function of diameter

in the CSI model. The criteria used to select the basal area factor

CBAF) to be used in the sampling process is as follows. Select a BAF

such that the variable plot area equals the growing space area for a

tree of diameter k. An equivalent expression is to select a BAF such

that:

Plot radius Competition radius (433)
R CR

for a tree of diameter k. From variable plot theory, BAF can be ex-

pressed as a function of tree diameter and plot radius (Beers, 1964),

where

(4-34)

Let CR = R and k = DBH. Substituting into the above equation gives
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Where:

BAFk = the basal area factor which has a plot radius R equal to

the competition radius CR for a tree of diameter k

PRFk = the plot radius factor corresponding to BAFk

Thus for any tree diameter k, the basal area factor which has a variable

plot area equal to the growing space area can be determined.

Figure (4-12) compares the variable plot area for three basal area

factors with the actual growing space area for a five inch tree. A

20 BAF has a plot radius which overestimates the actual competition

radius of the tree. A 50 BAF has a plot radius which is smaller than

the competition radius for the tree. A 36 BAF has a plot radius equal

to the competition radius for a five inch DBH tree.

Figure (4-13) shows the relationship between competition radius and

various BAFs over a range of diameters. The appropriate BAF corres-

ponding to a given tree diameter can readily be interpolated. As tree

diameter increases, the required BAF also increased. For trees less

than 5 inches DBH, most of the BAFs underestimate the competition radius

of the tree. This underestimation of competition radius for smaller

diameter trees is a source of bias in sampling for CSI. Similarly,

the use of small BAFs in stands with a large DBH will radically overes-

timate the competition radius and result in an inflated CSI estimate.

Table (4-4) gives the appropriate BAF corresponding to a given diameter

tree. For operational use, these BAFs should be rounded to the nearest

5 units.
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Figure (4-12): Comparison of plot radii for
various BAFs
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Figure (4-13): Relationship between competition
radius and BAF for various DBH
trees
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It has been assumed that the stand consists of N trees of uniform

diameter k. In general, DBH1 DBH k. The implication of this more

general case considerably alters the selection of an appropriate BAF

based on tree size. A different BAF must be selected for each size

class in the stand in order to preserve the relationship between plot

radius and competition radius for a given size tree. This requirement

is restrictive in an operational setting for the following reasons:

Table (4-4):

DBH

Appropriate basal area
factors for given diameters

BAF PRF

1 6.73 3.3526
2 16.11 2.1666
3 24.28 1.7650
4 31.09 1.5596
5 36.85 1.4326
6 41.81 1.3449
7 46.19 1.2795
8 50.13 1.2282
9 53.75 1.1862

10 57.11 1.1508
11 60.28 1.1201
12 63.31 1.0929
13 66.23 1.0685
14 69.08 1.0463
15 71.87 1.0258
16 74.62 1.0067
17 77.36 .9887
18 80.09 .9718
19 82.82 .9556
20 85.57 .9401
21 88.35 .9252
22 91.17 .8968
23 94.03 .8968
24 96.94 .8833
25 99.90 .8700
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It involves a potentially large number of BAFs (one for each

class)

The availability of appropriate BAFs not commonly used is

questionable

It introduces additional personal bias in matching BAF to

tree size

Three alternatives are proposed for selecting a BAF to be used in

sampling for CSI. The first alternative is to partition the N trees in

the stand into DBH classes and use the BAF corresponding to the midpoint

of each DBH class in sampling for CSI. Within a DBH class the selected

BAF will approximate the plot radius-competition radius relationship

for the trees in the stand. Using BAFs corresponding to various DBH

classes reduces the number of different BAFs required. However, the DBH

of every potential competitor must be estimated prior to sampling with

an appropriate BAF. If the DBH classes are large enough, the variation

associated with estimating individual tree diameter classes is reduced.

The personal error associated with selecting potential competitors

based on tree size is difficult to assess. The decision to examine an

individual tree prior to selection of the BAF is an example of a poten-

tial personal error. Borderline trees may not be included in the sample

if their diameters are incorrectly estimated or if the wrong BAF is

used. Examination of a large number of trees to determine their status

is tedious and time consuming, lending itself to additional personal

error.

The second alternative in selecting an appropriate BAF is to use

the BAF which corresponds to the average DBH of the stand to be sampled.
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This alternatiave requires the use of only one BAF in the sampling

process. The need to estimate tree diameters is also eliminated. The

tree counts at each sample point are the only data needed to derive the

average CSI estimate for the stand. When using average stand DBH to

select the appropriate BAF, the relationship between plot and radius

and competition radius associated with each tree size is no longer pre-

served. For trees with diameters smaller than the average diameter of

the stand, the BAF will underestimate their competition radius and fewer

smaller trees will be included in the sample. Trees larger than the

average stand DBH will have a plot radius which overestimates their

actual competition radius and more larger trees will be included in the

sample than if a larger BAF had been used. A compensation in tree count

between larger and smaller size classes will occur. The distribution

of trees by DBH classes in even-aged stands of young growth Douglas-fir

is generally normally distributed (Assmann, 1970). Consequently, the

compensation in tree counts will probably not significantly alter the

CSI estimate for the stand. The inclusion of more trees of larger DBH

will be offset by the exclusion of smaller trees. One major problem

arises when using average stand DBH to select the BAF. Estimates of

average stand DBFI are required prior to sampling to determine the

appropriate BAF. Sampling bias will occur if the estimated stand DBH

used to select the BAF is significantly different than the actual

stand DBH.

The third alternative proposed in selecting an appropriate BAF is

the most feasible on an operational basis. A BAF is selected which is

most convenient to the sampler. In traditional variable plot cruising,
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a BAF which gives an average of 4-7 trees per sample point is recom-

mended to minimize sampling error and personal error (Dilworth, 1974).

The selected BAF is used to obtain an uncorrected estimate of average

CSI in the stand. This uncorrected estimate is then adjusted using a

correction factor based on stand DBH. This alternative in selecting

the BAF offers the greatest flexibility in sampling for CSI. No prior

estimates of stand characteristics are required. Only one BAF is used

in the sampling process, and this BAF is commonly available. In addi-

tion, there exists the possibility of combining sampling for CSI with

sampling for volume of basal area per acre.

In the three proposed alternatives, after selection of the BAF has

been made, any measuring device can be used in the sampling process.

Wedge prisms or relascopes or other devices are available with a wide

variety of BAFs. Wedge prisms ground to the selected BAF might be dif-

ficult to obtain, especially if the selected BAF is not commonly used.

The relascopes offer a variety of BAF on both the American and inter-

national scale (see Appendix D).

DERIVATION OF THE STAND CORRECTION FACTOR

It can be shown that the estimate of CSI obtained when using the

BAP corresponding to the average diameter of the stand correctly pre-

dicts the actual stand CSI level. A stand correction factor has been

derived to adjust the CSI estimate obtained when using any BAF as a

function of stand DBH. The correction factor uses the ratio of the

BAF used in sampling to the BAF corresponding to the average DBH of
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the stand to adjust the uncorrected estimate, Su The adjusted esti-

mate SA is calculated as.

SA = (Ck) (Suk) (4-36)

IVher e:

SA the adjusted estimate of CSI for the stand

Ck the correction factor corresponding to the estimated average

stand diameter k

= the unadjusted estimate of CSI for the stand when using a

BAF corresponding to an estimated average stand BDH = k

k the estimated stand diameter

a the actual stand diameter

Note that if Ck > 1 then the adjusted estimate is greater than the un-

adjusted estimate. If Ck < 1 then the adjusted estimate is less than

the unadjusted estimate. The stand correction factor standardizes the

unadjusted estimate for any BAF used in sampling for CSI.

The basis for deriving the stand correction factor from variable

plot theory is as follows:

Let:

ik = the probability of observing a tree of diameter i when using

a BAF corresponding to some estimated stand diameter k to

determine tree overlap status

1'ia = the probability of observing a tree of diameter i when using

a BAF corresponding to the actual stand diameter to determine

tree overlap status



Then:

t\kp
(4-37)

Where:

ik
= the percent of the correct probability of observing a tree

of diameter i when a BAF corresponding to an estimated stand

diameter k is used to deteriiine tree count, instead of the

BAF represented by the actual stand diameter.

From variable plot theory, the probability of observing a tree of

diameter i can be expressed as (Beers, 1964):

Where:

= the probability of observing a tree of diameter i when

using the jth BAF

STFJ = the stand table factor or per acre conversion factor for a

tree of diameter i using the jth BAF

BAF. = the jth basal area factor used in sampling

BA. = the basal area in square feet for a tree of diameter i at

breast height

Equation (4-38) states that the probability of observing a tree of

diameter i, when using the jth basal area factor, is the ratio of the

basal area factor to the basal area of the ith diameter class. Sub-

stituting this result into Equation (4-37) using the previous notation

gives:
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BA.
1 1

ij STF.. BAF./BA. - BAF.
3

(4-38)



ik BAi/BAFk BAFa
Aik = P. = BA /BAF BAF.

ia I a K

The expression given in the above equation is independent of tree size.

Let Ck equal:

Where:

Ck = the stand correction factor for BAFk

Equation (4-40) states that the stand correction factor for the

BAFk is the ratio of the BAF used in sampling to the BAF corresponding

to the average stand diameter. Ck is also independent of tree size.

The following relationships between the estimated stand DBH = k and the

actual stand DBH are evident. If the estimated stand diameter k is

greater than the actual stand diameter implies:

1 BAFk
Ck = - BAF

a

BAF >BAF and C >1.0k a k

Conversely, if k < a, then:

BAFk < BAF and Ck < 1.0

124

(4-39)

(4-40)

(4-41)

(4-42)

Equation (4-41) states that if the estimated stand diameter k used

to select BAFk is greater than the actual stand DBH, then Ck is greater

than 1.0. If the estimated stand diameter used to select BAFk is less

than or equal to the stand DBH, then the stand correction factor is

less than or equal to one (Equation (4-42).



In general, the stand correction factor can be applied to any es-

timate obtained when using the jth BAF.

Where:

BAF.

C-j - BAF
a
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C = the stand correction factor corresponding to the jth basal

area factor

BAF. = any desired basal area factor used in sampling for CSI

BAFa = the BAF corresponding to the actual average stand DBH = a

Equation (4-43) states that the stand correction factor can be

applied to any basal area factor BAF. used in sampling for CSI in the

stand. The BAFJ does not necessarily have to be selected with respect

to average stand diameter as discussed earlier. BAF can be any BAF

desired. The BAF most commonly used in volume sampling is probably the

best choice.

The stand correction factor for the generalized case in Equation

(4-43) is the ratio of the BAF corresponding to the average stand DBH

and the basal area factor used to estimate average CSI in the stand.

The basal area factor corresponding to an average stand DBH = a is

given as:

(4-43)

BAF = 75.625 (a)2CR (4-44)

75.625 (a)2

2.35355 + 1.60930 (a) - .00930 a2



Where:

a average stand diameter

CRa the competition radius for a tree of DBH = a

Substituting various values of a into Equation (4-44) gives the basal

area factor corresponding to average diameter of the stand. If the

average stand DBH is not known prior to sampling, the following modified

sampling procedure can be used. Select any desired BAF for sampling for

CSI in the stand. At each sample point, observe tree count as usual.

Tally "in" trees by appropriate DBI-I classes (e.g., 1", 2", 4" classes)

using the selected BAF. Construct a stand table from the average tree

count for each diameter class as:

= STP = c) crc) (4-45)

Where:

the frequency of trees per acre in the ith DBH class

STF. the stand table factor for the ith DBH class
1

the average tree count per point for the ith DBH class

BAF the selected BAF used in sampling for CSI

BA1 the basal area in square feet for the ith DBH class

i the ith diameter class (i = l,k)

Using the frequency of trees by diameter class per acre given in Equa-

tion (4-45), estimate the average tree stand diameter as:
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f1 DBH.

ADBH
i=1

k

i= 1
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(4-46)

Where:

ADBH the weighted average DBH of the stand

DBH the midpoint of the ith DBH class

Substituting the average stand diameter estimated in Equation (4-46)

into Equation (4-44) gives the appropriate BAF corresponding to the

average diameter of the stand. The appropriate correction factor is

the ratio of the BAF used in sampling to the basal area factor calcu-

lated in Equation (4-44). The adjusted estimate of CSI is equal to

the product of the correction factor and the unadjusted estimate where:

SA = CjSuj (4-47)



MORTALITY ESTIMATION

INTRODUCTION

Two types of mortality typically occur in even-aged stands: regular

mortality and irregular mortality (Staebler, 1955). Regular mortality is

characterized by the overtopping and suppression of trees in the smallest

diameter classes (Lin, 1973). Irregular mortality in an even-aged stand

is generally associated with some catastrophic or random event such as

windthrow, fire, insect or disease epidemic, or snowbreak. Consequently,

irregular mortality is difficult to predict (Lin, 1973). In this chap-

ter, the regular mortality which has occurred in an even-aged stand of

young growth Douglas-fir over a ten year period will be examined.

When two trees of different sizes compete, they do not affect each

other equally (Keister, 1972). The larger tree will exploit the re-

sources of the site to a greater degree than will the smaller tree

(Bella, 1970). Environmental stresses induced by severe competition

will result in a general reduction of growth of the smaller tree

(Bormann, 1960). Eventually, the reduction in photosynthetic rate

below a threshold level will cause the tree to experience a net loss

of photosynthate and growth will cease. At this level, the photosyn-

thetic processes of the tree are incapable of supporting growth and

unable to meet the demands of respiration (Mitchel, 1972). If these

conditions exist for an extended period, the tree will die. Regular

mortality is a dynamic process which occurs continually in the natural

development of the stand. It is a steady, progressive selection of
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those individual trees which are most vigorous or best adapted to the

environmental stresses (Smith, D.M., 1962).

Regular mortality in an even-aged stand generally occurs in the

intermediate or suppressed crown classes (Smith, D.M., 1962). Assman

(1970) states that:

The typical social differences which are particularly promi-
nent in regular, closed stands without any human interference
are mainly the results of a merciless struggle for light and
growing space.

These "social differences" have given rise to a ranking of trees into

natural classes, according to their appropriate standing in the commu-

nity. Dominant, co-dominant, intermediate, and suppressed individuals

in the stand can be identified. Individuals are placed into an appro-

priate "social class" using such criteria as crown development, vigor,

or tree size. All natural classification schemes are based on the

premise that the observable characteristics used to establish a tree's

"social ranking" indicate its future status as well (Assman, 1970).

Future regular mortality in a stand, using natural classification

schemes, would be expected to occur primarily in the present inter-

mediate and suppressed classes which contain the weakest, least vigo-

rous individuals. Such natural classification schemes for predicting

future mortality are qualitative in nature and subject to personal

judgment. It is desirable to develop a more objective means of pre-

dicting future regular mortality in the stand. The following sections

present a detailed examination of the quantitative prediction of future

mortality in a natural stand. A derivation of a mortality index based

on Arney's competitive stress index is presented. Comparisons of
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those individual trees which are most vigorous or best adapted to the

environmental stresses (Smith, D.M., 1962).

Regular mortality in an even-aged stand generally occurs in the

intermediate or suppressed crown classes (Smith, D.M., 1962). Assman

(1970) states that:

The typical social differences which are particularly promi-
nent in regular, closed stands without any human interference
are mainly the results of a merciless struggle for light and
growing space.

These "social differencest have given rise to a ranking of trees into

natural classes, according to their appropriate standing in the commu-

nity. Dominant, co-dominant, intermediate, and suppressed individuals

in the stand can be identified. Individuals are placed into an appro-

priate "social class" using such criteria as crown development, vigor,

or tree size. All natural classification schemes are based on the

premise that the observable characteristics used to establish a tree's

"social ranking" indicate its future status as well (Assman, 1970).

Future regular mortality in a stand, using natural classification

schemes, would be expected to occur primarily in the present inter-

mediate and suppressed classes which contain the weakest, least vigo-

rous individuals. Such natural classification schemes for predicting

future mortality are qualitative in nature and subject to personal

judgment. It is desirable to develop a more objective means of pre-

dicting future regular mortality in the stand. The following sections

present a detailed examination of the quantitative prediction of future

mortality in a natural stand. A derivation of a mortality index based



on Arneyts competitive stress index is presented. Comparisons of

three variables for predicting future regular mortality are also made.

DERIVATION OF A MORTALI]Y INDEX BASED ON CSI

Keister (1972) developed a method for mathematically identifying

suppression mortality in southern pine plantations. The risk of future

suppression mortality was predicted using a mortality index based on

Keister's inter-tree competition index (Keister, 1971). The mortality

index value for a tree was defined as the ratio of its competitive

stress level and number of competitors. Using the index, Keister

determined high and low risk classes for predicting which trees have a

high probability of becoming future suppression mortality. Keister's

mortality index is a dynamic variable in predicting regular mortality

in simulated southern pine plantations. The objective of this chapter

is to extend Keister's concept to the Competitive Stress Index model

for Douglas-fir developed by Arney (1973).

Keister's mortality index for a single tree is defined as:

Where:

MIk the mortality index for the tree

I Keister's inter-tree competition index

xnk the number of competitors for the tree using Keister's index

A mortality index based on Arney's CSI model can similarly be de-

rived for a tree as:

MI
k Xflk
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Cs'
(100) (xnk)

Where:

MIA = the mortality index based on Arney's competitive stress index

for the tree

CSI the competitive stress index value for the tree

the number of competitors based on Arney's CSI model for the

tree

Equation (5-2) states that the mortality index for a tree is equal

to the ratio of its CSI level and the number of competing neighbors. The

mortality index value indicates the average proportion of the relative

competition contributed by a competitor. High mortality index values

are associated with trees with a high risk of future mortality, while

low index values are associated with trees of higher vigor. Notice the

expression given in Equation (5-2) is independent of tree size.

Assuming that the definition of tree growing space is the same for

both Keister's index I and Arney's CSI model, the indices are linearly

related as follows:

M
1

'A
A

'00
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(5-2)

csI
100

Keister's mortality index given in Equation (5-1) is therefore

related to the mortality index based on Arney's CSI model given in

Equation. (5-2) as:

csI
MI _L_T 1.)

kxnk Xflk -;

(5-3)

(5-4)
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Substituting the expression for MIA in Equation (5-2), and assuming

= A
gives:

MI =MI
k A xn

(5-5)

Keister's mortality index MIk in Equation (5-5) is expressed as a

function of the mortality index MIA and the number of competitors XnA,

based on Arney's CSI model. Keister (1972) found that an MIk = .5 was

the critical value in defining the "high risk" mortality class in

southern pine. Trees with MIk values greater than .5 exhibited a high

probability of suppression mortality over a 5 year period.

Figure (5-1) shows the critical value for MIA, corresponding to

Keister's MIk = .5 as a function of the number of competitors. A tree

falls into a "high" risk category if the tree's MIA value and number

of competitors XflA are greater than the critical value given in Figure

(5-1). If a tree's mortality index and number of competitors plot

below the critical MIA value, the tree is in a "low" risk mortality

class.

Two important points need to be clarified. First, the definition

of risk classes given in Figure (5-1) is based on the critical mortality

index value developed for southern pine. The critical mortality risk

value for Douglas-fir is undoubtedly different. The critical mortality

risk value is assumed to be species dependent and should be expected to

vary with species tolerance and geographical region. Second, the defi-

nition of growing space or influence zone has been assumed to be the

same for both Keister's index and Arney's CSI model. In general, this
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assumption is not valid. Keister (1971) defines the growing space

radius of a tree as a function of tree height, actual crown width, and

live crown length using the measured dimensions of the tree. Arney

(1973) defines the competition radius of a tree as a function of tree

size, using the crown radius of open grown trees as a measure of maxi-

mum crown extension. These two approaches in defining the growing

space of a tree are fundamentally different. Arney's definition of

growing space for Douglas-fir is larger than Keister's growing space

for southern pine for the same sized tree. As a result, the competi-

tion indices and corresponding mortality indices are not comparable.

In general, the larger the growing space the greater the number of

competitors and the smaller the mortality index for a given level of

competition. Clearly, the critical value for Keister's mortality

index is not necessarily the critical value for an even-aged Douglas-

fir stand.

The above discussion suggests that there is a need to define the

critical mortality index value for MIA. A preliminary study was under-

taken to determine the critical value of the mortality index for di-

chotomizing a stand into high and low mortality risk classes. A sample

of 133 trees was selected from the interior of three one-fifth acre,

unthinned control plots established in a 20 year old Douglas-fir stand.

Using the 1963 stem data, a mortality index was computed for each tree

based on the ratio of its 1963 CSI level and the number of its competi-

tors (see Equation 5-2). In addition, the status of each tree at the

end of the 1973 growing season was tablulated as dead or alive. All
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of the 133 sample trees were alive in 1963. All mortality occurring

in the stand during the 1963-1973 study period was assumed to be regu-

lar suppression mortality.

Table (5-1) gives the retrospective cross-classification of the 133

sample trees by tree status in 1973 and by mortality index class in 1963.

Of the 133 sample trees, 52 died during the 1963-1973 period (39.1%),

while 81 of the trees (60.9%) survived. The mortality index classifica-

tion indicates that only 13 of the 52 trees (25.0%) that died had a 1963

mortality index value of MIA < .35, while 68 of the 81 survivors in 1973

(84.0%) had a 1963 mortality index of MIA < .35. The data in Table (5-1)

were used to test the independence of tree status in 1973 and mortality

index class in 1963, using the standard chi-square test statistic

(Snedecor, 1967). The null hypothesis is that future tree status is

independent of mortality risk class (i.e., there is no association be-

tween a treets status in 1973 and its mortality risk index in 1963). The

chi-square test statistic is:
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2

v=
: (5-6)

i= 1

Where:

V = the chi-square test statistic with 6 d.f.

O. = the observed frequency in the ith row and jth colunrn of

Table (5-1)

= the expected frequency in the ith row and jth column of

Table (5-1)
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1

2

4 5

2

1973 Status

Mortality

Survivor

Total

Class boundary .20 .25 .30 .35 .40 .45 .50

V = 60. 8382 .001

1
The expected frequency in cell (i,j) is:

E
(Total i Row) (Total j Column)

ii Grand Total

Chi-square test statistic value (see Equation 5-6).
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Table (5-1): Retrospective classification of sample trees by 1963
mortality index and 1973 tree status

1963 Mortality Index Class

1973 Status2 1 2 3 4 5 7 Total

Mortality 0 0 2 11 12 1]. 16 52
.000 .000 .015 .083 .090 .083 .120 .391

Survivor 8 24 22 14 5 6 2 81
.060 .180 .165 .105 .038 .045 .015 .609

Total 8 24 24 25 17 17 18 133
.060 .180 .180 .188 .129 .128 .135

Class boundary1 .20 .25 .30 .35 .40 .45 .50

The upper boundary for each class is indicated (i.e., MI < UB <
MIj+l).

The sample proportions are indicated below the observed frequency in
each class.

Table (5-2): Expected frequencies under the null hypothesis of
independence1

Expected Frequencies Under H0

1 2 3 6 7 Total

3.128 9.383 5.810 9.774 6.647 6.647 7.038 52

4.872 14.617 14.617 15.226 10.353 10.353 10.962 81

8.000 24.000 24.000 25.000 17.000 17.000 18.000 133
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Tible (5-2) gives the expected frequencies under the null hypo-

thesis of independence. Note the high expected frequencies in the

smaller 1963 mortality index classes for the mortality trees compared

with tht observed frequencies given in Table (5-1). The null hypothesis

was rejocted with a P-value < .001, indicating a highly significant

U9I1ship between future tree status and 1963 mortality index

classi±':ftation. The future status of a tree at the end of a 10 year

period is dependent upon its mortality index value at the beginning of

the perjod. Trees that died during the 1963-1973 period tended to have

higher 1963 mortality index values than survivor trees. This result

supports Keister's conclusion: a tree's mortality index at the be-

ginning of a period is useful in identifying individuals with a high

risk of becoming future suppression mortality.

Thu primary objective of this study is to determine the critical

mortality index value most sensitive in predicting the future status of

individual trees. This critical value can be used to define "high" and

'!lowt' mortality risk classes based on the mortality index values of the

trees in a stand. Future tree status at the end of a period can be pre-

¶licted Lit the beginning of the period with a specified level of confi-.

dence.

Six mortality index values were tested as possible critical levels.

The 133 sample trees discussed earlier were cross-classified into one

of six x2 contingency tables using future tree status in 1973 (dead

or alivu) and 1963 mortality risk class (low, high). Figure (5-2)

gives the generalized 2x2 contingency tables for observed frequency
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and sample proportions and their respective marginal totals for a

sample of n individuals.

In Figure (5-2), the 1973 tree status is dichotomized as dead (B)

or alive (i). Similarly, the 1963 mortality risk class is tabulated as

low () or high (A). The risk classification indicates the likelihood

that suppression mortality will occur during the 1963-1973 period. The

mortality risk classes are defined using a critical value for the

mortality index denoted by CMIA. The cell frequencies (nU) represent

the number of individuals which belong to the ith status class (B or B)

and the jth risk class ( or A). The corresponding sample proportions

(p1.) indicate the proportion of the total sample n which have the

characteristics (A or X) and (B or ). The marginal totals for each

row and column represent the total number or total proportion of indi-

viduals in a given row or column. For example, p1. denotes the propor-

tion of the 133 sample trees which died during the 1963-1973 period.

'2 represents the proportion of the 133 sample trees which survived

the 1963-1973 period. The proportion of the 133 trees which are in the

low risk of mortality class in 1963 are denoted by p.1, while p.2 indi-

cates the proportion of the total sample which have a high risk of mor-

tality based on their 1963 mortality index value. Notice that in a 2x2

table the following relationship exists:

p1. = 1 - p2. (5-7)

p.1 = 1 - p.2



Figure (5-2): The generalized 2x2 contingency tables for observed
frequency and sample proportions

Where:

= the observed frequency of the cell in the ith row and jth

column of the 2x2 table (i = 1,2; j = 1,3)

the marginal total of the ith row i = 1,2

fl.3 the marginal total of the jth column j = 1,2

n.. the total sample size

the sample proportion in the ith row and jth column of the

table (Pj = n131n..)

p1. the marginal proportion in the ith row (p1.
=

p.3 the marginal proportion in the jth column (p.3 = n.3/n..)
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1973 Risk Class 1963 Risk Class

1973 Low High 1973 Low High
Status A A Total Status A A Total

Dead B fill fl12 n1. Dead B p11 p12 p1.

Alive B n21 n22 fl2 Alive p21 p22 p21

Total n.1 fl.2 n.. Total p.1 p.2 1.0



Where:

V = the chi-square test statistic with 1 d.f.

V
= (n.l)(n.)(n1.T(n2.)
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A different critical CMIA value was assigned to each of the six 2x2

tables and used to define the high and low risk classes. If a sample

tree's MIA value was greater than the assigned critical value, the tree

was classified into the "high" risk category. The critical values

tested in the study were mortality index values equal to CMIA = .25,

CMIA = .30, CMIA = .35, CM5 = .40, CMIA = .45, CMI = .50.

Table (5-3) gives the six 2x2 contingency tables developed. Each

table specifies the critical mortality index value used to define the

high and low risk classes. The 133 sample trees were classified into

one of four cells depending on their MIA index in 1963 (low, high) and

their status at the end of the 1973 growing season (mortality, survivor)

for each 2x2 table.

The independence of future status and risk class was tested for

each 2x2 contingency table. The null hypothesis for the test was that

future tree status and initial mortality risk classification are inde-

pendent (i.e., the probability that a tree dies over the 10 year period

being independent of the risk class it belonged to at the beginning of

the period). The significance of the association between future status

and mortality risk class can be assessed using the following standard

chi-square test statistics (Fleiss, 1973) (see Figure 5-2):

2fl( n11n22 - fl]2T12] -



Table (5-3): 2x2 contingency tables for each critical value

Critical MIA = .25 Critical MIA = .40

1963 Risk 1963 Risk

1973 Low High 1973 Low High
Status A A Total Status A A Total

Dead B 0 52 52 Dead B 25 27 52

Alive 32 49 81 Alive 73 8 81

Total 32 101 133 Total 98 35 133
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Critical MIA =

1963 Risk

Critical MIA = .50

1963 Risk

1973 Low High 1973 Low High
Status A A Total Status A A Total

Dead B 13 39 52 Dead B 48 4 52

Alive 68 13 81 Alive 80 1 81

Total 81 52 133 Total 128 5 133

Critical MIA = .30

1963 Risk

Critical MIA =

1963 Risk

1973 Low High 1973 Low High
Status A A Total Status A A Total

Dead B 2 50 52 Dead B 36 16 52

Alive B 54 27 81 Alive B 79 2 81

Total 56 77 133 Total 115 18 133
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The chi-square test of independence is an excellent measure of the

significance of the association between future status and mortality

risk, but is not a useful measure of the degree of association between

the two characteristics (Fliess, 1973). To estimate the degree of

association between future tree status and mortality risk class the

following notation is presented, There are a variety of measures of

association for 2x2 tables which estimate the degree of association

between two characteristics A and B (Fliess, 1973; Snedecor, 1967).

One such measure is the odds ratio. Fliess (1973) suggests that, in

general, when one characteristic is antecedent to another, the "risk"

of experiencing outcome B when antecedent factor A is present is given

by the odds (see Figure 5-2):

Where:

the odds outcome B will occur when A is present

P(B\A) the conditional probability that outcome B will occur

given that A is present

P\A) = the conditional probability that outcome (not B) will

occur given that A is present

Similarly, when A is absent, the odds of factor B occurring are:

O
P(B\A) P12IP'2 p12 n12

A
P(\A) P22P2 p22 n22
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(5-8)

ph/p.1 pll nil

p2l"l P21 i21
(5-9)
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Where:

the odds of outcome B occuring when factor A (not A) is

present

P(B\A) = the conditional probability of outcome B occurring given

has occurred

= the conditional probability of outcome (not B) oc-

curring given X has occurred

The odds
°A

and O- given in Equations (5-8) and (5-9) can be com-

bined into a single expression of relative odds. The odds ratio 0, is

a measure of association between factors A and B.

If the conditional probabilities P(B\A) and P(B\) are equal then

the two odds 0A and O are also equal and the odds ratio 0 equals 1.0.

This result indicates the independence or lack of association between

A and B. Note that in Equation (5-10), if either n11 or n22 is equal

to zero, 0 is not defined. An improvement using a modified estimate

is (Fliess, 1973):

(n12 + .5)(n21 + .5)

C (n + .5)(n11 + .5)

Where:

= the odds ratio corrected for nil or n22 equal to zero.

The standard error of O is given as (Fliess, 1973):

o =

n12/n22

O;:
n11/n21 n22n11
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a

Where:

P(B\A)
°Ac P(\A)

/ 1 1S.E.(O ) = 0
C C fl11+.5 n225 n125 n21+.5
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A tree's mortality index value in 1963 is antecedent to its future

status in 1973. Large MIA values in 1963 identify individuals with a

high probability of future suppression mortality. Using the generalized

notation presented above, let:

A = the event that a tree's 1963 mortality index falls into a

high risk class (i.e., MIA
.

A= the event that a trees 1963 mortality index falls into a low

risk class (i.e., MIA < CMIA)

B = the event that a tree dies during the 1963-1973 period (i.e.,

1963 status = dead)

= the event that a tree survives the 1963-1973 period (i.e.,

1973 status = alive)

The odds of future mortality (B) occurring given that a tree has

high risk mortality index value () from Equations (5-11) are:

(n12+.5)

(n22-i-. 5)

(5-12)

(5-13)

°A the odds that suppression mortality will occur over the

period 1963-1973 given that the tree is in the high risk

mortality index class in 1963 (Adjusted for continuity,

see Equation 5-8)
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P(B\A) = the conditional probability that suppression mortality

will occur given that the tree's 1963 risk class is "high"

P(\A) = the conditional probability that the tree will survive the

1963-1973 period given that its risk class in 1963 is

"high"

Similarly, when the mortality risk class is 'tlow", the odds that

suppression mortality will occur are (see Equation 5-9):

Where:

the odds that suppression mortality will occur during the
c

1963-1973 period, given that the tree's 1963 mortality

risk is low (Adjusted for continuity, see Equation 5-li)

P(B\) = the conditional probability that suppression mortality

will occur given that the 1963 risk class is low

P(\) = the conditional probability that suppression mortality

will not occur (i.e., the tree survives the 1963-1973

period) given that the mortality risk class is low

The odds ratio °c gives the relative odds or association between

future status in 1963 and initial mortality risk class in 1973.

Where:

°A (n12+.5)(n21.5)

C - Oç (n22+.5)(n11+.5)
(5-15)

o= (5-14)
C
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= the odds of suppression mortality occurring over the 1963-

1973 period when the 1963 mortality risk class is high rela-

tive to the odds of suppression mortality occurring when the

risk is low (Adjusted for continuity, see Equation 5-11)

The odds ratio in Equation (5-15) can be interpreted as: the odds

suppression mortality occurs when the risk is high are times those

for the low risk class. The odds ratio provides a quantitative measure

of the sensitivity of a given critical value in partitioning the stand

into mortality risk classes. The ideal critical value would have the

following properties. The probability of future suppression mortality

(B) would be small when the risk class was low (A):

P(B\) -3 0 (5-16)

The probability of survival () when the initial risk class is

low () would be large:

P(B\A) 1.0 (5-17)

The resulting odds of future mortality occurring when the initial

risk was low would be small since P(B ) in Equation 5-16 is small:

P(B\)
(5-18)

P(B\A)

Similarly, the probability that suppression mortality (B) occurs

when the initial risk is high (A) ideally is large, since the initial

risk classification is antecedent to future mortality:



P( A) - 0 implies 0
P(B A)

A P(A)
(5-20)

The ideal odds ratios O would tend to be large since
°A

in Equa-

tion (5-20) is large and O in Equation (5-18) is small.

o
C 0-

(5-2 1)

These ideal properties for a theoretical critical value provide

an objective means of empirically evaluating the six critical values

tested. The sensitivity of a given critical value can be judged by

how well it corresponds to the theoretical properties presented above

in Equations 5-16 through 5-21.

Table (5-4) presents the data from the analysis of the six 2x2 con-

tingency tables given in Table (5-3). Columns 1-li give the chi-square

test statistic, the conditional probabilities of mortality and survival

for a given risk class, the odds of future mortality occurring for a

given risk class, the odds ratio and its standard errors, and the pro-

portion of trees in the high risk class in 1963 for each critical

value.

All of the critical values except CMI = .50 had a highly signifi-

cant chi-square test statistic (Column 1), indicating a significant

148

P(B A) - 1.0 (5-19)

The resulting odds of future mortality occurring when the mortality

risk class is high would also be large since the probability of survival

when the risk is high goes to zero.



68.90

40.00

14.84

9.32

14.37

4.979

1 2 3 4 5 6 7 8 9

High Risk
=

OAc

Class

Table (5-4): Summary of the 2x2 contingency analysis

P(B\) P(V) 0
P(B\A) P(\A) °Ac SE (Oc) SE (Oc) % P (A)

CMIA = .25 24.93 .015 .985 .015 .517 .483 1.061 99.22 143.87 .759

= .30 48.72 .044 .956 .046 .652 .348 1.836 27.57 68.88 .574

CMIA = .35 43.77 .166 .834 .197 .752 .248 2.926 6.438 43.36 .391

CMIA = .40 26.74 .259 .741 .347 .775 .225 3.235 4.241 45.47 .263

CMIA = .45 19.31 .316 .684 .459 .892 .108 6.600 10.171 70.75 .135

CMIA = .50 2.080 .377 .623 .602 .818 .182 3.000 4.781 96.01 .038

Column 10 11
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relationship exists between future status and 1963 mortality risk

classifications. The degree of association as measured by the odds

ratio is given in Column 8.

Comparing the data in Table (5-4) with the ideal properties of a

critical value discussed previously reveals the following generaliza-

tions. As the critical value is increased, the P(B A) in Column 2 in-

creases, the P(A) decreases, (Column 3) and O. increases (Column 4),

contrary to the properties of the hypothetical critical value given in

Equation (5-20). The odds that future suppression mortality will occur

when the 1963 risk is low increases significantly as the critical value

increases. The higher the 1963 critical value the less sensitive it is

in distinguishing between which trees will live and which trees will die

during the 1963-1973 period.

An opposite trend occurs in Columns 5-7. As the critical value

increases from CMIA = .25 to CMIA = .50 the probability of suppression

mortality occurring when the risk is high (Column 5) increases, while

the probability of survival when the risk is high (Column 6) decreases.

The odds that suppression mortality will occur (Column 7) increase

slightly as the critical value increases. These results compare favor-

ably with the properties outlined for the optimal critical value des-

cribed earlier (see Equation 5-18). The larger the critical value

CMIA, the greater the differentiation between the probabilities of

future mortality and future survival when the 1963 risk is high. For

example, when CMIA = .45, the odds of suppression mortality occurring

(Column 7) when the risk is high are six times those of surviving. Only
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10.8 percent of the survivor trees that ultimately die are in the 1963

high risk class, while 89.2 percent of the trees that ultimately die are

in the 1963 high risk class. When the critical value CMIA = .25 is used

to define the risk classes, only 51.7 percent of the future mortality

trees fall into the high risk class in 1963, while 48.3 percent of the

1973 survivors have a high risk in 1963. The odds that a tree dies

when the risk is high are only 1.06 times the odds of surviving when

cMI = .25 is used to define the high and low mortality risk classes.

The odds ratio in Column 8 combines the odds of mortality occurring

in the high and low risk classes into a single expression of relative

odds for each critical value. As stated previously, the ideal critical

value would have a large odds ratio. As the critical value increases,

the odds ratio in Column 8 decreases significantly. The odds that sup-

pression mortality will occur during the 1963-1973 period when the 1963

mortality index risk class is high are 68.9 times as large as those when

the risk class is low, when CMIA = .25 is used to define the risk

classes. Clearly, the larger the odds ratio in Column 8 the more sensi-

tive the critical value is in predicting the future status of indivi-

dual trees based on their 1963 mortality index. Figure (5-3) depicts

the odds ratio in Column 8 of Table (5-4) for each of the critical

values tested. Note that as the critical value increases, the odds

ratio falls significantly.

The standard error of the odds ratio and the standard error of the

odds ratio in percent are given in Columns 9-10, respectively, in Table

(5-4). Figure (5-4) shows the relationship between the standard error
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of the odds ratio as a function of the critical values used to define

the risk classes. The high variability of the odds ratio estimate for

small critical values is caused by small observed cell frequencies (see

Equation 5-12). Figure (5-5) shows the standard error of the odds

ratio in percent. The minimum S.E.% occurs at a critical value CMIA =

.35.

Based on the discussion of the data presented in Table (5-4) and

Figures (5-3 through 5-5), the critical value of CMIA = .35 was selec-

ted as the most sensitive critical value for identifying high and low

mortality risk individuals. The odds that a tree will die when the

risk is high (i.e., MIA > .35) are roughly 15 times those when the risk

is low (i.e., MIA < .35). Over 75 percent of the trees in the high

1963 mortality risk class died during the following 10 year period,

while only 17 percent of the trees that died had a low mortality index

in 1963. Using the critical value CMIA > .35, individuals with a high

probability of becoming future suppression mortality can be identified.

Approximately 40 percent of the 133 sample trees were in the high risk

class in 1963.

The previous discussion has shown that 1963 mortality risk classi-

fication is a useful prediction of future tree status. Expanding upon

this conclusion, a test was performed to examine the effectiveness of

the 1963 risk classification in predicting which period a tree would

die.

Using the 1963-1973 stem data, the 52 mortality trees were re-

classified according to the period in which they died. The status of
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each tree was retrospectively classified as dead or alive at the end of

1966, 1970, and 1973 growing seasons and grouped by mortality period.

Using the critical value CMIA = .35, the 52 sample trees were cross-

classified into low and high 1963 mortality risk classes. The data in

Table (5-5) show the tabulation of the 52 mortality trees by period and

risk class. The significance of the association between the two cri-

teria was tested using the standard chi-square test statistic given in

Equation (5-6). The null hypothesis is that the proportion of indivi-

duals in the high risk class is the same for each mortality period.

Symbolically:

H : p1 = p2 = p3 = p

Where:

= the true portion of individuals in the high risk class for the

ith mortality period k = (1,2,3)

p = the true proportion of individuals in the high risk class for

the population

Table (5-6) gives the expected frequencies under the null hypo-

thesis of independence (i.e., H0 p = .750). The null hypothesis was

not rejected (p-value = .50), indicating that the 1963 mortality risk

classification was independent of the period in which the mortality oc-

curred. Although the 1963 mortality risk classification of the 133

sample trees was strongly associated with future suppression mortality,

it apparently is unable to distinguish in which period the mortality is

to occur.



Table (5-5): Tabulation of mortality trees
by risk class and period

1963 Risk Class

Table (5-6): Expected frequencies under the
null hypothesis

1963 Risk Class

V = 2.916
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Low
MI < .35

High
MI .35 Total

Periodl 1 8 9

.111 .889 .173

Period 2 6 22 28

.214 .786 .538

Period 3 6 9 15

.400 .600 .288

Total 13 39 52

.250 .750 1.00

Low
MI < .35

High
MI .35 Total

Period 1 2.255 6.750 9

Period 2 7.000 21.000 28

Period 3 3.750 11.250 15

Total 13 39 52



COMPARISONS OF MORTALITY PREDICTORS

A previous section introduced the processes associated with regu-

lar mortality in an even-aged Douglas-fir stand. Natural classification

schemes can be used to qualitatively determine a social ranking of

trees in the stand. Future status can also be predicted using quantita-

tive variables. Individuals with a high risk of becoming future sup-

pression mortality can be identified prior to their actual mortality.

Three quantitative variables were tested as predictors of future

mortality: tree DBH, CSI, and mortality risk index. Each of these

variables are susceptible to measurement at the beginning of a growth

period. They are dynamic variables which are biologically oriented to

the growth and development of the tree. To test the ability of each

variable to differentiate between trees with high and low probability

of becoming future mortality, the following strategy was adopted.

The 133 sample trees described earlier were retrospectively clas-

sified as dead or alive at the end of the 1966, 1970, and 1973 growing

seasons. Trees were grouped into four status classes as follows: dead

1963-1966, dead 1966-1970, dead 1970-1973, alive 1973. Three cumula-

tive mortality classes representing 3, 7, and 10 year periods were

developed from the status classes above as: cumulative mortality 1963-

1966, cumulative mortality 1963-1970, cumulative mortality 1963-1973.

In addition, each tree was crossclassified into their respective DBH

(1"), CSI (50 unit), and MI (05 unit) classes. Using these data,

average DBH, CSI, and MI were computed in 1963 by mortality, cumulative

mortality and survivor classes, and for all trees combined. Comparison
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of the three variables by future status classification demonstrates

their relative predictive abilities based on measurement at the beginning

of the period.

Table (5-7) gives the 1963 data for each mortality prediction by

future status classification. Columns 1-3 give the 1963 mean values of

DBH, CSI, and MI for trees that died during 1963-1966, 1963-1970, and

1963-1973 periods, respectively. Column 4 gives the mean values for

trees which were alive in 1973. Column 5 gives the combined data for

all trees in 1963. The difference between the average DBH of survivors

and the average DBH of mortality trees is highly significant. Future

survivors had a 1963 DBH of 4.47 inches compared to an average DBH of

2.37 inches for all mortality trees. CSI in 1963 does not differenti-

ate strongly between future survivors and mortality trees. Mortality

index in 1963 appears to be significantly different for survivors and

mortality trees. Mortality trees had 1963 MI values greater than .40

while 1973 survivors had MI values less than .30.

Figures (5-6, 5-7, and 5-8) compare the frequency of trees by DBH

class, CSI class, and MI class, respectively. Note how 1963 DBH and

1963 MI partition the total stand into distinct classes. Future sur-

vivors tend to have a much larger DBH and smaller MI than mortality

trees. CSI in Figure (5-7) does not sharply distinguish between future

status classes. The distribution of trees by 1963 class is roughly

identical for each status group.

Tables (5-8, 5-9, and 5-10) give stand tables based on diameter

class, CSI class, and MI class. Note that in Table (5-9), tree DBH

and tree MI in 1963 are independent of CSI class.
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Table (5-7): Average DBH, CSI, and Ml in 1963 by future status
classes

1963 Data

N

Cumulative
Mortality
1963-1966

9

Cumulative
Mortality
1963-1970

37

Cumulative
Mortality
1963-1973

52

Survivors
1973

81

All
Trees

133

DBH average 2.00 2.28 2.37 4.47 3.65
median 1.80 2.20 2.30 4.20 3.20
SD .636 .612 .590 1.631 1.67

CSI average 593.7 554.7 548.0 522.6 532.50
median 557.0 543.0 548.5 514.0 531.00
SD 109.3 101.6 109.6 110.4 110.38

MIA average .426 .417 .406 .281 .329
median .414 .425 .407 .272 .324
SD .075 .066 .068 .078 .096
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Table (5-8): Frequency of trees by future status and DBH class in 1963 (in inches)

Mortality
CSI 560.3 546.5 432.0
MI .4387 .3960 .3323
N 14 37 1 0 0 0

Survivor
CSI 535.5 532.0 444.0 433.0 463.0
MI .3366 .2537 .2001 .1515 .1129
N 0 35 36 7 2 1

Total
CSI 560.3 541.1 529.3 444.0 433.0 463.0
MI .4387 .3671 .2559 .2001 .1515 .1129
N 14 72 37 7 2 1



Table (5-9): Frequency of trees by future status and CSI
class in 1963

300 400 500 600 700 800 Average

165

Mortality
DBH 2.27 2.33 2.48 2.16 2.43 2.37
MI .4077 .4123 .4031 .3967 .4168 .4060

N 0 4 13 21 8 6 (52)

Survivor
DBH 5.00 4.61 4.84 4.38 3.92 4.27 4.47
MI .2938 .3001 .2467 .2990 .2903 .3128 .2810
N 1 8 29 23 16 3 (81)

Total
DBH 5.00 3.83 4.07 3.47 3.33 3.04 3.65
MI .2938 .3360 .2979 .3487 .3258 .3821 .3290
N 1 12 42 44 24 9 (133)
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Table (5-10): Frequency of trees

.15 .20 .25

by future status and mortality index class in 1963

Avg

Mortality
DBH 2.37
CSI 548.0
XN 0 0 0 52

Survivors

DBH 10.55 6.73 5.10 4.01 3.47 3.20 3.25 2.70 3.00 -- 4.47
CSI 455.5 432.7 513.0 504.3 581.4 616.2 549.5 531.0 372.0 -- 522.6
XN 2 6 24 22 14 5 6 1 1 0 81

Total

DBH 10.55 6.73 5.10 3.90 3.16 2.59 2.65 2.23 2.33 2.05 3.65
CSI 455.5 432.7 513.0 500.5 564.9 591.9 546.3 519.9 474.3 671.0 532.5
XN 2 6 24 24 25 17 17 13 3 2 13



SUMMARY

Competitive stress index (CSI) is a quantitative measure of inter-

tree competition developed by Arney (1973). It is an expression of the

relative stress placed on an individual tree by its neighbors. The

index does not attempt to describe the source of competition (i.e.,

light, nutrients, moisture) but only to quantify relative levels of

competition for growing space based on the overlap of open crowns. The

underlying assumption of the index is that the open grown tree, which

developed under conditions of no competitive stress, represents the

maximum development in stem dimensions and growth response for a tree

of given size.

The degree of competition exerted on a tree is assumed to be dir-

ectly proportional to the sum of the area of overlap of its growing

space by neighboring trees and inversely proportional to the size of

its growing space area. The computational requirements of the index

are diameter measurements and x-y stem coordinates of all trees in the

stand. The CSI model was fitted to 10 years of thinning data from the

Hoskins study plots. The basic data were summarized by measurement

period before and after thinning.

A review of the literature was undertaken to provide a background

of the historical development of inter-tree competition models. Appli-

cations of CSI to specific aspects of the study were then considered.

Average CSI and basal area per acre were compared as measures of

thinning intensity. Based on results from this study, while both

basal area per acre and CSI are effective measures of density, CSI is
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more sensitive in evaluating the uniformity of stand density. This is

evidentially due to the ability of CSI to accurately measure competitive

status of individual trees, in comparison with the general averaging of

competition involved in basal area per acre measures.

CSI was also found to be related to periodic diameter growth.

Functions of CSI and ECSI explained up to 40 percent of variation found

in periodic DBH growth. Functions of DBH, CSI, and CSI explained 80

percent of the variation of periodic DBH growth. In the full model,

CSI variables were found to increase the predictive power and decrease

the standard mean square error.

Spacing and stocking guidelines were developed as functions of CSI.

K diameter plus spacing rule was derived as a field guide to control

stand density for achieving specific CSI levels.

Sampling procedures were developed to estimate CSI on a whole

stand or single tree basis. Procedures for sampling for CSI in the

field were outlined in detail. Sampling estimators were based on func-

tions of observed tree count using an appropriate basal area factor.

Special consideration for selecting an appropriate basal factor were

discussed. A correction factor was derived as a function of stand

diameter to improve the accuracy of the stand estimates. These tech-

niques can be retrospectively applied to conventional cruise data with-

out additional modification or data collection. The proposed sampling

scheme makes CSI available to the forest manager on an operational

basis. examples of simulated samples for the single tree and whole

stand estimators are also given.
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In the final section of the study a mortality index was developed

using a ratio of a tree's CSI level and the number of its competitors.

This mortality index was found to be highly associated with future tree

status. An evaluation of mortality index revealed that MI = .35 was

the critical level in determining the high and low risk classification

of trees. Seventy-five percent of the 1963 high risk mortality trees

examined died during the subsequent 10 year period. Tree diameter,

CSI, and mortality index (MI) were compared as possible predictors of

future suppression mortality. Study results indicated that a tree's

initial DBH and MI could be used to predict its future status, while

CSI did not distinguish between future mortality and survivor trees.

CSI appears to have tremendous potential for applicat± in re-

search and operational areas. This study indicates that CSI is an

effective measure of stand density and can be used as a predictive tool.
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APPENDIX A

The expected value of a discrete random variable X is defined as

(Mood, 1974):

E(X) = X p(X) = (A- 1)

Where:

E(X) = the expected value of X

= the first moment of X

p(X) = the probability of observing X

Using the definition of expected value in Equation (A-l), the ex-

pected value of the sampling estimators for CSI can be derived. The

expected value of T in Equation (4-20) is:

in t.k

E[T.] = E[lOO = E (tk)
m m

The expected value of tk is:

in in iOA.. TAO. CSI.
E(t.k) = =

A. - A. = 100
:1 J

Substituting the results in (A-3) into (A-2) gives:

E(T.) = CSI = CSI = CSI
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Equation (A-4) states that the expected value of T is an unbiased

estimator of CSI for the jth tree.
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The expected value for T can be routinely derived using Equation

(A-4) as:

E[T] = E
[T]

E(T.) = Cs' (A-5)

Equation (A-5) states that T is an unbiased estimate of the stand's

CSI level. The expected value of S is more difficult to derive.

Let y - and X=tk.

Then S = y/X.

Mood (1974) gives that the approximated expected value of y/X as:

E[y/X] _i. ...L. cov(X,y) + - VAR [X[ (A-6)

Where:

1_tx = l
= first moment of t

=
= second moment of t.

The expected value of y/X is approximately equal to - [bias

term]. But:

= [t2] and = E[t].

Using Equation (A-i) and (4-28):

iOA.

E[t] = iP5(i) =
A1 - =

(A- 7)



.2

E[t2] = 2Pr) =
TAO.

=

Using these results and Equations (A-6) and (4-3):

TAO.

E[t] A.
1 TAO.

E[S] = E[y/X]
" E[t] - A. - A. - CSIR

A.
1
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Equation (A-9) states that the expected value of S, ignoring the

bias term which is a function of 2, is CSIR.



L

(L)
1

C
+

2

Where:

AO = area of overlap between larger tree and sma. tree

L = distance between tree centers in feet

R1 = competition radius for larger tree (open grown crown radius)

CASE (5)

APPENDIX B

Arney (1973) presents the formulas for mathematically determining

the areas of overlap between two competing trees. Five distinct condi-

tions are recognized based on the size and spatial relationships of the

competitors. The formulas below can be routinely derived using calculus.

CASE (1) + R2>L (B-i)

AO = 0 (no overlap between trees)

CASE (2) R1>L (B-2)

AO = (complete overlap of smaller tree)

CASE (3) Xl < (B -3)

AO = R sin (L)(C)

CASE (4) X1 = L
R

2 2 -i 2
AO = + sin (v-) - (D)(R2)

X1 > L

AO = irR - R sin X2(C) + sin

C
(ç.) - (X1) (C)
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(B-4)

(B-5)



L - X1
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= competition radius for smaller tree (open grown crown radius)

S = (R1 + + L)/2

C = i/ S(S-R1) (S - R2) (S-L)



Where:

= the x coordinate of the centroid of the plane area

y = the y coordinate of the centroid of the plane area

My = the first moment of the plane area with respect to the y axis

= the first moment of the plane area with respect to the x axis

A = the area of the section

The centroid coordinates of a circular section of radius r and in-

terior angle 20 can be derived as follows (see Figure C-l). Center the

circular section so that the centroid lies on the x axis. The x

coordinate of the centroid can be calculated as the quotient of the

M

A y

M
x

A

APPENDIX C

The objective of the following appendix is to derive the relation-

ship between the centroid radius and the competition radius for various

sample sizes when sampling for CSI in the single tree case. The desired

sample sized per tree determines the number of circular sections into

which the sample tree's hypothetical growing space circle must be par-

titioned. The centroid of a circular section is derived in general for

any desired sample size m.

The centroid of a homogeneous area is located at its geometric

center or center of mass. The coordinates of the centroid of a plane

area are:
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(C-l)

first moment with respect to the y axis (Mi) and the area of the section



Figure

SR-.

(rcos9, rsin9)

1/2 ('+ YCOTO, y)

(C-i): Geometry of determining the
centroid of a circular section
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0

0

J

- M 1/3 r2sinO 2rsin®
2 30

ttu 1/2r0

rs

lying above tie x axis (An) using Equation (C-i) where:

M=
y

rsin®

A =
(1r - - ycotO)dyU J

0

in®

,2 2 2.-ly 2 2

= 1/2 y yr - y + 1/2 r sin () - 1/2 y cot® = 1/2 r 0
r

rsin0

r - y + ycot®) (1r2 - - ycot®)dy1/2(12 2

rsin0

J2 2_ 2
20)dy1/2 (r -y ycot

rsin®

= 1/2 (r2y - 1/3 y3 - 1/3 y3cot2® = 1/3 r3sin®

0

Therefore:

A = 1/2 r2® M = 1.3 r3sin®
U y

The x coordinate of the upper area A using Equation (C-2) is:

By symmetry, the coordinates of the centroid of the circular sec-

tion with interior angle 20 are:

(C-2)

- 2rsii& - 0 (C-3)
x

30 y



Where:

r = radius of the circular section

0 = half of the interior angle of the circular section (in radians)

The radius of the centrojd SR is related to the radius of the circle

r as follows. FromEquation (C-3):

SR
2sinG

r
(C-.4)

Where:

SR = the centrojd radius or the distance from the center of the

circular Section to the centrojd of the section

r = the radius of the circle.

The centroid radius for any circular section with interior angle

20 can be calculated by evaluating the expression in Equation (C-4) for

various values of 0.

When sampling for CSI for a single tree, the number of sample points

m desired determine the appropriate 20 value to use in calculating the

centroid radius SR. The interior angle 20 corresponding to a given in

is:

Where:

20
in in

Solving Equation (C-5) for 0 gives

In m

18

(C-5)



0m = the critical angle corresponding to a desired number of

sample points m

m = the desired number of sample points per tree

Table (C-i) expresses the centroid radius SR as a function of the

competition radius CR for various sample sizes m for sampling for CSI

in the single tree case.

Figure (C-2) shows the sample point location for various sample

sizes and corresponding interior angles in degrees. For a given sample

size m, the sample points are systematically located at the centroid of

each circular section.

Table (C-i): Centroid radius for various sample sizes

184

Interior Interior
Sample Angie Angie Centroid
Size (Degrees) (Radians) (Radians) Radius

m 20 20 0 SR

2 180 w/2 (.42441) (CR)

4 90 iT/2 ir/4 (.60021) (CR)

6 60 ir/3 n/6 (.63662) (CR)

8 45 11/4 11/8 (.64966) (CR)

10 36 11/5 w/10 (.65575) (CR)



SAMPLE POINT LOCATION
SR. CENTROID RADIUS
CR. COMPETITION RADIUS
28 INTERIOR ANGLE

Figure (C-2): Sample point locations for
various sample sizes
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APPENDIX D

Various basal area factors can be derived using the wide scale

relascope. The number of full and quarter bars can be converted into

appropriate basal area factors.

BAF = 4.3561 (U2) CD-i)

Where:

BAF = basal area factor

U = number of full and quarter bars used

Table (D-l) gives the basal area factor associated with a given

U value.

Table CD-i): Relationship
between
U and BAF

BAF

2.00 17.42
2.25 22.05
2 50 27.23
2.75 32.94
3.00 39.20
3.50 53.56
4.00 69.70



APPENDIX E

Each of the Hoskins study plots had an x-y coordinate axis. In-

dividual tree stem coordinates were located with respect to this

reference axis. To generate CSI data for trees on the edge of the

plot a simulated stand condition was used. Each tree's stem coordi-

nates were mirrored into eight identical plots by tranlation of their

x-y stem coordinates. Potential competitors were then selected from

all nine nested plots. The difference in tree characteristics due to

an edge effect was assumed to be negligible. Figure (E-l) depicts the

simulated coordinates of a tree on the original study plot.
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IV\ STUDY PLOT BOUNDARY

Figure CE-i): Nested arrangement of trans-
lated plots




