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DERIVATION AND AUTOMATIC GENERATION
OF KANE’S DYNAMICAL EQUATIONS

FOR MECHANICAL MANIPULATORS

I. INTRODUCTION

Development of an efficient mathematical representation
of manipulator dynamics is essential for the advanced
control and design of manipulator systems. In robot
control, dynamical equations are frequently used to compute
the forces and torques needed to drive the system to achieve
desired motions, a task that may be performed repeatedly
and, in most cases, rapidly. As regards manipulator design,
dynamical equations are employed to carry out simulations
for the purpose of testing the performance of a manipulator.
Consequently, constructing the most efficient computational
algorithm and finding the most efficient way to approach
dynamic equations of motion are of the first importance in
the field of robotics. The purpose of the present work is
to show how this can be accomplished by using Kane’s
dynamical equations and to develop a computational algorithm
to automatically generate such equations.

Two methods are widely used in deriving the equations
of motion for mechanical manipulators, namely, the Newton-
Euler formulation and the Lagrangian formulation. The
Newton-Euler formulation is derived by direct interpretation

of Newton’s second law of motion, which describes dynamic



systems in terms of force and momentum. The equations
incorporate all the forces and moments acting on an
individual arm link, including the coupling torques, forces
and moments between adjacent links. In the Lagrangian
formulation, on the other hand, the system’s dynamic
behavior is described in terms of work and energy using
generalized coordinates. Much effort has been devoted to
developing effective procedures to obtain the equations of
motion in the fields of spacecraft and robotics by using
these two methods.

In 1965, Hooker and Margulies [1l] presented an
algorithm, based on the Newton-Euler formulation, to derive
the dynamical equations for an n-body satellite. This paper
is considered to be the first paper describing a quite
general derivation and computational algorithm in the field
of spacecraft. In the same year, Uicker [2] derived the
exact equations of motion for rigid-link spatial mechanical
systems, using 4X4 displacement matrices. The results were
specially written for open kinematic chains, the most common
manipulator configuration, by Kahn in 1969 [3]. The
following year, Keat [4] reported on the derivation of
dynamical equations of nonrigid satellites by using the
Lagrangian formulation. Woo and Freudenstein [5], Yang [6]
investigated the use of screw calculus in deriving the
equations of motion for spatial mechanisms. The basic
objective of these works was to provide a programmable,

analytical formulation for studying the dynamics of general,



rigid link mechanical systems. A host of additional papers
[e.g. 7-20] soon followed during the late of 1960’s and the
early of 1970’s.

The derivations cited above provided a theoretical
framework for the study of what is called multibody
dynamics. The results were too complicated and the
computations too time-consuming to be practical for design
or real-time control in the robotic field. In 1974, Bejczy
[21] presented an approach to the equations of motion of a
robot arm and showed some simplifications of the basic
equations. In parallel efforts, to reduce the computation
time for evaluating the generalized actuator torques,
Whitney [22], Raibert [23], Raibert and Horn [24] considered
replacing some calculations by table look-up schemes. This
straightforward method, however, requires a very large
memory space and is difficult to modify when the mass
properties are changed.

The relatively promising methods for solving this
analysis task in real-time are the recursive formulation
presented in the 1last few years since Stepanenko and
Vukobratovic published their paper [25] in 1976. Orin [26],
Luh, Walker and Paul [27] devised the recursive Newton-Euler
dynamics computation. The method is recursive in the sense
that velocities and accelerations are found sequentially
starting from the fixed base 1link. Then, force or torque
balances at each successive joint, starting at the free end

of the arm, determine the actuator torques due to the.



inertial and applied loads. Paul and Luh [28] also gave a
more efficient implementation of this method, while
Hollerbach [29] developed independently the recursive
relations based on the Lagrangian formulation. Hollerbach
[30] and Kanade ([31] further improved the computation
efficiency by customizing the dynamic computations to
particular robot structures. These recursive methods form a
computationally faster algorithm for calculating the
kinematic terms and for constructing the equations of
motion. However, they provide no information about the
overall structure of the dynamic system needed for analyzing
its dynamic behavior.

Derivation of dynamic equations of motion for
manipulators is a time-consuming and error-prone process.
Awareness of this problem comes into evidence in nearly
every paper dealing with the robotic dynamics. In the mid--
1970’s, dynamicists began to think about what is now called
automatic generation, which means computer programs intended
to simultaneously generate and integrate the equations of
motion numerically for user specified arrangements of
connected bodies or mechanical manipulators. As early as in
1973, Dillon ([32] presented a program to generate the
equations of motion for 1linkage mechanisms based on the
Lagrangian technique. This program was then used to check
the correctness of certain derived equations of motion. Two
Years later, Langrana and Bartel [33] reported an automated

method for dynamic analysis of spatial 1linkages for



biomedical application. These early works seem too tedious
to be practical if the algorithm was used for six-link
robots. Research on this field had been silent for few
years until 1981 when ILuh and Lin [34] developed an
algorithm to automatically simplify the dynamic equations of
motion fbr a manipulator. This algorithm is based on the
combination of the Newton-Euler and the Lagrangian
formulations. The following year, Thomas and Tesar [35]
presented a numerical simulation algorithm and announced
that a general computer package based on this algorithm had
been written for the static and the dynamic analysis of six-
joint manipulators.

All of the works cited above are based on either the
Newton-Euler’s method, the Lagrangian method, or a
combination of these two. The resulting procedures have
serious difficulties. The equations obtained from the
Newton-Euler’s method include the constraint forces acting
between two adjacent 1links. Therefore, additional
arithmetic operations are required to eliminate these
nonworking terms and to obtain the explicit relation between
the joint torqﬁes and the resultant motion in terms of joint
displacements. The Lagrangian formulation, providing relief
of this burden, suffers new problems. The manual labor
needed to derive and differentiate the kinetic energy
expression can be time-consuming and difficult to accomplish
without error. The resulting equations are very difficult

to modify after they have been developed, and the



significance of individual terms in these expressions is
often obscure. Both methods are quite laborious, and, when
one attempts to save manual labor by resorting to the use of
a computer, one finds frequently that intermediate
computations need such large memory spaces that the storage
requirements exceed the capacities of the largest available
computers, even when the manipulator being analyzed
possesses only a modest number of links. Therefore, there
is a need to find a new method that is minimally laborious
and leads directly to the simplest possible computational
algorithm.

In the early 1960’s, T. R. Kane developed an approach
[36] that reduces the formulation of dynamical equations to
a straightforward, deductive procedure instead of the
classical formulations. The formulation was called
"Lagrangian form of D’Alembert’s principle" at that time.
In this formulation, the concept of partial velocity was
introduced. In accordance with Newton’s second law, the
formulation was founded by dot-multiplying the active forces
and the inertia forces with the partial velocities. In
deriving the equations of motion, this method significantly
reduces the amount of hand 1labor, as stated by Peter
Radetsky ([37], "a growing army of disciples claims that
Kane’s dynamical equations are so far the most efficient
method in dynamics -- and the more difficult the problem,
the more valuable it is." In connection with spacecraft

dynamics, Kane and Levinson ([38] further showed that this



method enables one to work systematically with fairly
complicated multibody dynamics, to eliminate effortlessly
forces and torques that are of no interest, and to produce
straightforwardly explicit equations of motion having a
computationally sound form. This formulation was formally
called Kane’s dynamical equations when Kane, Likins and
Levinson published the book "Spacecraft Dynamics" [39] in
1983.

The first paper regarding Kane’s dynamical equations in
the field of robotic dynamics was published by Huston and
Kelly [40,41] in 1982. In the next year, Kane and Levinson
presented a detailed formulation procedure using Kane’s
dynamical equations for the Stanford Arm [42]. Simulation
results based on the derived equations were reported. A
detailed comparison of Kane’s dynamical equations with the
Lagrangian formulation was given in reference [43]. 1In this
paper, the authors focused their attention on the labor that
must be expended in formulating the equations of motion and
on the form assumed by these equations, which determines the
number of operations required for a numerical solution of
the equations. Following this, Kane and Fassler [44]
further investigated the derivation of closed-form of
dynamic equations for robots and manipulators with the same
algorithm, and concluded that the Kane’s dynamical equations
provided the best basis for the solution of multibody

dynamics.



However, since Kane’s dynamical equations have been
introduced only since 1968, unlike those of classical
methods, the literature about it, especially in the robotic
field, is sparse, consisting only of the few references
cited above. In other words, the theoretical framework is
available, but the details of the computational algorithm
needs further development, and some aspects need to be
further discussed. First, the references do not present a
general guiding idea on how to construct the generalized
speeds, without which one may not know how to start his
work. Another problem is the elimination of the nonworking
contact forces. Rather than considering a specific robot, a
general expression that fits all robots needs to be derived
to provide a better basis for automatic generation. For
automatic generation, references [36, 38-44] provide a good
basis for constructing the equations of motion, but what
they have done so far is primarily based on hand-derived
equations rather than letting a computer do it. The
procedure described in the most recent paper [45] (Fall,
1986) regarding automatic generation of Kane’s dynamical
equations avoids writing explicitly the expressions of
accelerations and generalized inertia forces, but with this
algorithm, one must spend almost the same amount of labor on
creating "inertia coefficients" and their derivatives. In
general, the algorithms of automatic generation by Kane’s
formulation reported so far can only avoid writing

explicitly the equations of motion, all other ingredients,



including kinematic and kinetic quantities and generalized
inertia and active forces, are still derived by hand. Thus,
the procedure is still very burdensome for the manipulators
with six-degrees of freedom. Indeed, when one’s ultimate
goal is the numerical solution of the equations of motion,
one may employ computer codes to handle the derivation of
velocities, angular velocities and other Kkinematic and
kinetic ingredients, and to write the dynamical equations.
One may then proceed directly to the creation of a computer
program that yields simulation results.

To show how these deficiencies may be overcome, the
present work derives the dynamic equations for the
Intelledex 605 Robot Arm by employing Kane’s dynamical
equations. The formulation procedure is general for all
serial robot arms with detailed discussions on how to select
the generalized speeds and how to eliminate the nonworking
forces for the general six-link robots. Based on the
formulation procedure, an algorithm for automatic generation
of Kane’s dynamical equations for manipulators is then
derived. This algorithm requires analysts to provide only
the geometric configuration data of the manipulator being
analyzed, i.e., the elements of a set of transformation
matrices between links, the derivation of all kinematic and
kinetic ingredients and formulation of the equations of
motion being left for a computer. Computer programs based
on both the hand-derived equations and the automatic

algorithm are presented.



The remaining chapters of this work are arranged as
follows.

Chapter II mainly deals with the manual derivation of
Kane’s dynamical equations. The sequel begins with
coordinate assignations and transformations for the
Intelledex 605 Robot Arm. Then, guidance on how to define
generalized speeds is given. Next, the kinematic and
kinetic ingredients needed for constructing Kane’s dynamical
equations are worked out. Thereafter, the equations of
motion for the example robot arm are established. Finally,
simulation results based on the equations are reported. 1In
Chapter III, the algorithm of automatic generation of Kane’s
dynamical equations is derived. The symmetry property of
the inertia matrix of the system equations is proved. This
property is then used in constructing the algorithm to
reduce the arithmetic operation in the computer programs.
Simulation results based on this algorithm are also reported
and compared with those from the hand-derived equations.
Discussions and conclusions are presented in the last

chapter.
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II. DERIVATION

II.1 SPECIFICATIONS AND TRANSFORMATIONS

Figure 2.1 1is a schematic representation of the
Intelledex 605 Robot Arm, which consists of six 1links
designated by A, B, ..., F. Link A can be rotated in a
Newtonian reference frame N about axis 2z, fixed in N. A
supports B, which can be made to rotate relative A about the
axis Z, fixed in A and B. C is connected to B, D to C and
so on in such way that the members of each pair can be made
to undergo relative rotation about their common axis, as
indicated in Figure 2.1. The quantities q;, 45, ..., gg are
radian measures of the angles of these six relative
rotations, which are defined as generalized coordinates.
For the configuration depicted in Figure 2.1, q;, dp, ..,
dg are regarded as being equal to zero. A*, B*, eeey F* are
the mass centers of the links A, B, ..., F respectively.
Ly, Ly, Lyqs cew, Lg3 are linear measures used to specify

the coordinate components of the mass centers A*, B*, ceey

F*.

The coordinate frame assigned to each link is shown in
Figure 3.2. Namely, axes x5, Yo, 29 are fixed in the
reference frame N with a set of mutually perpendicular unit
vectors n,, n,, n; in the directions corresponding to xg,
Yor 2o respectively. Axes X,, Yy,, 23 are fixed in link A

with the unit vectors a;, a5, az in the direction of each of
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Figure 2.1. Schematic representation of the Intelledex 605
robot, shown for 93+ .-, dg = O.
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the axes respectively, and x,, y,, 25 with by, b,, b, are
fixed in B, xj, Y3, 23 with ¢;, ¢,, e; fixed in C, and so on
through F.

Once the coordinate frames have been assigned, one can
begin to establish the transformation matrix A; (i=1, 2,
.++, 6) relating the coordinate frame of 1link 1 to the
coordinate frame i-1, as described in reference [46].
Specifically, the transformations between adjoining bodies

are:

{cl 0 sq ]
Al = Sl 0 -Cl
0 1 o0 |
CZ 0 -52 ]
L0 -1 o |
C3 _53 0
o o0 1 |
r C4 -54 0 ]
o o 1 _
CS 0 -55 ]
Lo -1 o0 |
Lo o 1 |
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and c:

where s; i

i are the abbreviations of the sine and cosine

of angle qj, that is

sy sin(q;)
Ccj = cos(qj)

The abbreviations such as
Sjy = sin(qi+qj)

C

ij = cos(gqj+qy)
Sijk = sin(qi+qj+qk)
Cijk = cos(qi+qj+qk)
will also be used in the later part of this work.
The next step to be undertaken is to evaluate the
products of the above transformation matrices. These
products relate each coordinate frame towards the base

coordinate frame N and are historically called T matrices.

Tg = AjA,A3A,A-AL
These in turn give
{N} = [Ty]1{a} = [Th]{(b} = ...... = [Tgl{£f}
Therefore, the unit vectors of the base coordinate frame can
be expressed in each coordinate frame by the following
transformation relations.
n, c, O Sq a,

n2 = Sl o _Cl az (2.1)

14



€12 ~S; ~¢15;7 (b,
S1C»p €1 =S1S, b, (2.2)

Sy 0 Cy b3

i

S1C3C3+C 83 -S,C583+CC3 =SS, c5 (2.3)

S3C34 ~SyS3 Co C3

C1C2C34-S1S3, —C1C2834~S1C34 €182 (9,

[c1c2c3-sls3 -C1C583-S1C3 =CySy cq

S3C345 -S3S34 -Cy d;

=] B =
w N =

n) C1C2C3457S18345 ©1Sy ~C1C2S3457S1C345 e
DyP= | S1C2C345%7C 18345 S18S; —S51C3S345+C1C3y5 ey (2.5)
nj S2C345 —Cy ~S3S345 e3

n3) [(€162C345-515345)Ce+C 15285 ~(C1C2C345-S1S345) Sg+C15,C¢

D20 = |(S12C345%C15345)Ce*S15256¢ ~(51C2C3457C15345) S6+5152C%

nj S2C345C67C25¢ ~82C345%567C2Cs
=C1€25345-51C345 £1
—S,C5S345+C1C3y5 f2 (2.6)
=S2S345 ;3

For the reason that will be seen later, the expressions
of each set of unit vectors n’s, a’s, ...,f’s in terms of
unit vectors €1, €5, €3 will also be needed. these are:

(n] = [A;]1[AZ][A3][¢c]

15



[a] = [A;][A5][c]

[b] = [A3][ec]

(4] = [A4] 7 (e]

[£] = [A5]1"1[a 07 e)

[£] = [2g)" (Aag) " (A 17 [e)

nl clczc3-sls3 -010253-51C3 -0152 cl
nyp»= | S1CyC3+CqS3 -S1C5S3+CyC3 —S3S, c, (2.7)
n3 5203 -5253 02 C3

al 0203 -0253 -52 cl
= | s5C4 -S,S, c, c, (2.8)

-53 "C3 0 33

C3 =Sy 0 e,
S3 Cs3 0 c, (2.9)
0 0 1 c3
a, Cyq Sy 0 cq
d2€= {-54 Cy 0 c, (2.10)
4, 0 0 1] (e3

v b v
W %4 = :
L e e
]

e C45 S4s 0] (e



£, C45C¢ S45C6 “Sg| (€1
f3 =S45 Cy45 0 c3

II.2 GENERALIZED SPEEDS
For a simple nonholonomic - system S possessing n-m
degrees of freedom, the n-m quantities u,, u,,..., Up_pn/

called generalized speeds, are defined [36] as 1linear

combinations of 4,, 45, ..., Qn-p by means of equations of
the form
n-m_ .,
Up = E Upglg + Up, (r=1, 2, ..., n-m) (2.13)

where U, and U, are functions of the coordinates gq,, d,
«+«y 9, and t, and these quantities are chosen in such a
way that equations (2.13) can be solved uniquely for q,, 4d,,
ceer Gpop-
It then follows that the velocity VvV of a typical
particle P of S can be expressed uniquely as
n-m

v = rElvrur + Vi (2.14)

Similarly, the angular velocity of a rigid body of S can be

written as

n-m
W= I Wl +w (2.15)
Where v,., Wy, vi and w; are functions of q;, ..., 4., and

t, and the v,, w,. are called the rth partial velocity and
the rth partial angular velocity, respectively.
By the definition (2.13), it 1is evident that

generalized speeds are used to specify the motion of a

17



system, rather than its configuration. Generalized speeds
can be any linear combinations of &q;, ..., Gn-m (subject to
the invertability mentioned above). They are not
necessarily time derivatives of any functions [(36].
Therefore, there is actually an unlimited number of ways to
define generalized speeds for a given system. It then comes
to the question that what definition provides the best basis
for deriving dynamical equations for a manipulator? To help
answer this question, a few points are to be discussed.

First, the guiding idea in introducing generalized
speeds is to reduce the labor required to derive dynamical
equations. To this end, selection of definitions for
generalized speeds should be made such that corresponding
expressions for partial velocities and partial angular
velocities, which are to be dot multiplied with active and
inertia forces, be as simple as possible. Thus, with proper
selection, simpler expressions of these ingredients can
lead to a noticeable simplification of the derivation
process and of the resulting equations.

In practice, most six-link manipulators have three or
more revolute jbints. The velocity of a point P fixed in one
of the links is usually found by the following equation.

vVP=v s+ wxr
This indicates that simpler expressions of angular
velocities can lead to simpler expressions of velocities,
and thus simpler partial velocities. However, simple forms

of velocities cannot usually lead to simple expressions of

18



angular velocities; in fact, they may be even more
complicated. Therefore, in selecting the forms of
generalized speeds, one should ©preferably make the
expressions of angular velocities as simple as possible.

The next point to be discussed is the choice of the
link relative to whose angular velocity the generalized
speeds are defined. Consider, first, the manipulators
having three or five revolute joints. As shown in Figure
2.2, for the system having three revolute joints, if each of
the three components of the angular velocity of the third
link is defined as a generalized speed, the angular
velocities for 1link 1, link 2 and link 3, respectively, can

be written as

Wl = (u1C3/52 - u283/52)az

=
N
]

(u1c3-uzs3)b1+(uls3+u2c3)b2+(u1c3-uzs3)t2b3

w3 = ujeytujcy+tusc,
where t, stands for tan(q,). In these expressions, there
are 11 multiplications and 4 additions. On the other hand,
if the first link is chosen as the base, then,

wl = ua,

w2 = uys,b; - u,b, + u,cyb,

w3 = (u152c3-u253)cl-(ulszs3+u2c3)c2+(u1c2+u3)c3
There are 9 multiplications and 3 additions in these
equations. However, if the second link is chosen as the
base, then,

wl = s u;a,

w2

u1b1+u2b2+u3b3

19



Figure 2.2.
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W = (u1c3+uzs3)c1+(-uls3+u2c3)c2+(ult2+u3)c3
These expressions only need 7 multiplications and 3
additions. Especially, for the manipulators having five
revolute joints, choosing the middle link as the base can
significantly reduce the number of arithmetical operations.
This is because the number of matrix transformations from
the middle 1link to other 1links is 2X(1+2)=6, while the
number from the first link or from the last one to others is
1+2+3+4+5=15. For manipulators having six revolute joints,
either the third 1link or the fourth link can be defined as
the base. However, since the kinematic ingredients of the
former 1link are more frequently used than those of the
latter, it is better to make the angular velocity of the
third link have the simplest form, that is, the third 1link
is taken as the base. For the same reason, the second link
is taken as the base for a manipulators having four revolute
joints.

In summary, the guiding idea for introducing
generalized speeds is to simplify the expressions of angular
velocities, velocities, partial angular velocities and
partial velocities, more importantly to obtain the simplest
forms of angular velocities. For the manipulators having
three or four revolute joints, it is best to choose the
second link as the base. For five or six revolute joint
manipulators, the third links should be chosen as the bases.

Once the base is chosen, define each of three mutually
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perpendicular components of its angular velocity as a
generalized speed.

For the Intelledex 605 Robot, link C is taken as the
base, the angular velocity of which can be found by

wC = q;n, + dpa; + dzbsy
In terms of unit vectors ¢,, ¢, and e¢3 (refer to equations

(2.7-9)), this can be expressed as

W = (556347 -83d;) €1 - (5,830 +C3d,) €+ (Cd  +d3) €3 (2.17)

The generalized speeds u,;, ..., ug are defined as
u; = Weeey (i=1, 2, 3)
u; = (.11 (i=4, 5, 6)

That is,

u; = $,C34;-S34,

Uy = -S383d)-C39;

uy _ c2q1+q3 (2.18)
uy = g

Us = ds

Ue = dg

If the Intelledex 605 Robot Arm is not operated in the
vicinity of g,=0° or d,=180°, equations (2.18) can be solved
uniquely for

d; = (c3up-sjuy)/s,

4, = -sju;-cau,

43 = uj+(sjuy-cyuy)cy/s, (2.19)
a4 = Uy

45 = ug
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For convenience, define
22 T 9 T TS3u;-C3u;

Z3 = 3 =uj+(sjuy-ciuy)cy/s;

II.3 KINEMATIC INGREDIENTS

Angular velocities and velocities are to be expressed
in two different forms, one involving the generalized speeds
explicitly, another implicitly. The explicit form must be
used when one tries to find partial velocities and partial
angular velocities by inspecting the coefficients of the
generalized speeds and to form expressions of accelerations
(partly) and angular accelerations by differentiating the
available velocities or angular velocities. On the other
hand, when one tries to determine the cross products or dot
products of angular velocities, velocities with some other
vectors, the implicit forms should be used for this can
considerably save hand labor.

Wiht reference to Figure 2.1, the angular velocity of
link A in the base reference frame can be expressed in form
of

wh = d,n,
In terms of the vector basis fixed in link A, this can also

be written as

wh = §a,
In view of equation(2.20), in the implicit form,

A _
WA = 2,a,



Alternatively, in the explicit form,
WA = (Zguq+Zguy)a,
where
Zy=c3/5,
Zg=-s3/S,
For the angular velocity of link B in N, one finds,
wB = w24 q,a;
In terms of the vector basis fixed in the link B,
WP = 2.b,+2.b,+2, 3b, (2.21)

wB = (u1c3-uzs3)b1+(uls3+u2c3)b2+(28u1+zgu2)b3

Z10=2gU1+29Y)
The angular velocity of link C can be directly found from
equations (2.17) and (2.18) to be

W€ = uje;+u,c,tuge, (2.22)
Based on wc, one can express wD, the angular velocity of
link D, as

wP = w€ + g,c,

In terms of the vector basis that is fixed on 1link D,

=
o
I

= 27147+2,,d,+2, 34,

le=u1c4+uzs4
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Z12=-uls4+u2c4

Z13=u3+u4

Similarly, the angular velocities of link E and 1link F are

found to be,

wE

wE

where

and

with

214=%45

215=S45
216="215
217=U1214%U32,5
218="213"U5

219=U12161u3Z 4

F _
F _ -
W = (250u)+259Uy+21gSg) £1-(255u1+253U-21gC¢) £

220=214%¢
221215%¢
222521486
223=215%¢
224=Z20U1+221U212 1 gSg
Z25="232U1-Z53Uy+Z1gCq

2562160112 4uxtug



As for the velocities of links A, B and C,

that point O is fixed in the base reference frame N.

26

one notices

With

the vector from the point O to the mass center of a 1link

denoted as r,
w,

V=WXTr
For 1link A,

r = OA* = -L;,a,+L;42a,

Substitution of r and W® into

introduction of
Z237=L132,
Z2y8=L13Z5

Z2y9=Zy7uq+Z5gu,

lead to

Ax _

vA* = 2393,
Similarly,

C are found to be

vB*

B*

where
Z230=L322g
231=Lp229
Z32="Ly2C;3
Z233=Ly38;
234=230u1%2314;

Z235=233uy+Z33u,

= (239u1+Z37u5) b+ (255U +Z54u;) by

the angular velocity of this 1link denoted as

(2.26)

equation (2.26) and

(2.27)

the velocities of the mass centers of link B and

(2.28)



and
vC* =
= Ljzujey+(Lyjuz-Lijuq)cy-Lijuses
c* _
V™ = 236°1%23762%235%3
where
Z236=L33u;

Z37=L3ju3=L33uy

Z3g="L33u;
The velocity of the mass center of link D is determined by
applying the following equation

* = vPiwDPxpp* (2.30)

vD
where VP stands for the velocity of point P which is fixed
in link ¢. VP can be obtained by simply replacing L3 u,Cj3
in thé expression of vC* with Lyuye4; that is,

VF T Lyjuzep+(Lyyuz-Lagup) o5-Lyupey
Notice that

PD*= L, d;+L,3d,

Substituting these expressions and wP into equation(2.30),

one obtains

D*=
VT (=239uy+Z4qupt249u3) A+ (=2 U ~Z39Uy+Z,5ustZ, Uy ) dy

+(2Z43u1-24495)dy
VD* = 7,5d,+2,,4,+2,,4, (2.31)
with

239=(L33+Ly3) sy

Z40=(L33+Ly3)cy

24171184

Z42=L1C4+Ly,

Z243=L418,
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Z44=L1+141Cy

245==23901+Z qup+ZyU;
2467240817 239U2%2 U3ty uy
2472430172440,

Following exactly the same procedure, vE* and vF* are found

to be
E* _ -
+(=Z55u)+Z5 uy+Z5gustZgguy) @g
E* _
V" = Zeo®1tZ61%2%Z6293
with

Z4g=L1Cy+L,

Z49=Losy

Z50=L1*Lpcy

251=L33%Ly3-Ls;

252=239C5%2 4S5
Z53=240%5~23955
254=215%251" 252
Z55=2537214%25]
256=241C5%%48S5

Z57=LyS5

258=248C5~24155

Z59=LyC5
Z60=254U1+ 255U+ 256Ut 257Uy
261="249u1+Z50u,
Z62="Z55U1+254 U+ 25gustZ5quy

and



F* _ -
V' = (ZgguytZgguytZggus+Zgou,-LgaUs) @+ (ZgguytZgouy) e,

*(~Zg5U 264U+ 255U+ 259uy) €3
VY = 27001+2718,%2 50, (2.32)
with

Z63=L33%Ly3

Z64=215263Z52

Z65=253214%63

Z66=Z56"Lg3

Z67=Z57Le3

Z6g="249"Lg3214

Z69=250"Le3215

Z70=264"1*Z26542% 26643+ 26714 Lg3Us

Z71=Z6gU1+269Y3

Z72="Z265U1% 26412+ 2583+ 259Uy

The partial velocities and the partial angular
velocities can be obtained by simply inspecting the
coefficients of the generalized speeds in the expressions of
velocities and angular velocities. For the robot under
consideration, the partial angular velocities and the
partial velocities are 1listed in Table 1 and Table 2
respectively. In the tables, the capital letters of the
first columns identify the link or point in question and the
number of the first rows stand for the generalized speed in
question. For example, w3D, the third partial angular
velocity of link D can be found by checking the element on
the third column and row D in Table 1, i.e.

D _
w3© = dy
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TABLE 1. PARTIAL ANGULAR VELOCITIES (er)

1 2 3 4 5 6
A z,a, Zga, 0 0 0 0
+Z8 3 +Z9 3
o e e, c3 0 0 0
E  Z254e1-2;4e3 Z15@1+Z21483 -, -e, -e, 0
F Zonf1=Z0ofy Zorfi-Znaf, =-s-f -s f -s f £
20 2f2 Zaf 3 2 6f1 61 6f1 3
TABLE 2. PARTIAL VELOCITIES (er)
1 2 3 3 5 6
e
A* z,5a; Z,523, 0 0 0 0
*
B Z30b1+Zglb3 Z31b1+zg3b3 0 0 0 0
*
*
+7
4292
*
E Z5431’24932 Z55°1+Zsoez Z5¢®1 Zg7e; 0 0
=Zg5e; +tZg4@3  tiggey +iggey
*
F' Zg4e1tZgge; Zgs@1tZggey Zgg®y Zg7®1  ~Lgzey O

~Zgse; +2g4e3  tigge; +tiggey




Next, the angular acceleration for each 1link can be
obtained by differentiating the corresponding angular
velocity with respect to time t. It should be noted that,
in these expressions, the derivatives of the generalized
speeds should be brought into evidence explicitly. For
example, aA, the angular acceleration of 1link A, can be
found by differentiating equation (2.21),

o® = (Z4ﬁ1+24u1+25ﬁ2+25u2)a2
With Z93, 294 and Z,5 defined as in Appendix 1, this can be

written as

o® = (2,0,+Z50,+2,5)a,
Similarly, differentiation of equations (2.22-2.26) and
introduction of the quantities Z,4,...,295 as defined in

Appendix 1, lead to
B

+(2gU1+ZgU,+2Zg4) b5 (2.34)
oC = ﬁlcl+ﬁ2c2+ﬁ3c3 (2.35)
D — *, ) - » .
+(5+i,)d, (2.36)
E » - . . »
+(21601+27,0,+2Zg4) €4 (2.37)
F — - kJ U » A\l - A\l LA
fcs(ﬁ3+ﬁ4+ﬁ5))f2 +(s30 +Cc3Uy+249) by (2.38)

The 1last group of kinematic ingredients, the
accelerations of the mass centers for each 1link, can be

found by employing the following equation
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RgNyP
alv
+ NgR x NyP

dt

As with angular accelerations, the time derivatives of the
generalized speeds should be brought into evidence in the
expressions of the accelerations. Therefore, the explicit
forms of velocities should be used in determining the first
term of the above equation, and the implicit forms for both
the velocities and the angular velocities are to be used to
carry out the second term in the equation. For example, to
evaluate aA*, the acceleration of the mass center of link A,
one can first differentiate equation (2.28),

avA*/dt = (Z,,0,+Z,g0s+E,7u +5,qu,) 2y,
then determine the cross product

wWAXVAY = -7.7,5a,,
add them together and define 294 and Zgg as in Appendix 1.
The result is
aB* = (2,,0,+42,50,+29,) 2 +Zg5a, (2.40)
Similarly, aB*, ey aF* are found to be

aB*=(2500,+2310,+21 0g) B1+21 g1 Pa+ (Z3501+2330,+81 g5) by (2.41)

C*_ : : ) o
a” =(L33Uy+2793) €1+ (~L330y+L31U3+2g4) So+ ( L31u1+zlo?é°22)

D*_,_ ., - . .
A" =(=Z239U1+Z4quy+2 qU3+Z945) 4

+(‘Z4ou1‘239ﬁ2+z42ﬁ3+L41ﬁ4+2113)dz+(z43u1‘z44u2+z}%4lg§

E%_ . . . . _ . .

A" =(254U1*t255Uyt256U3+257U4+2 1 55) €1+ (=2 49U +25qUp+275¢) €5
Fx_ . . . - .

A" =(Zgqu1*t2g5uy+tZggUus+lgUy~Le3ug+2135) @

+(Zesﬁ1+259u2+zl35)ez*(‘265ﬁ1+z54ﬁ2+258u3+259u4+z%%7ig§
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IT.4 GENERALIZED INERTIA FORCES

Based on the kinematic analysis performed in the
previous section, generalized inertia forces are now to be
determined. The definition for the generalized inertia
forces can be found in references [36,39] as follows.

If S is a simple nonholonomic system possessing n-m

degrees of freedom in a reference frame N, n-m quantities

*

ki, «ee, k called generalized inertia forces for S in

*
n-m '’
N, are defined as

*= By

Pl.g;* (r=1, 2, ..., n-m) (2.46)

where n is the number of particles comprising S, P; is a
Pi

typical particle, Vo

is the rth partial velocity of P; and

Ri*, the inertia force for P; in N, is given by

*

R;" = -m

i a

i%i (2.47)

Furthermore, the contribution to the rth generalized inertia
force made by the particles of a rigid body R belonging to
S, denoted by (kr*)R, is given by

(kp")g = W T + v R (r=1,2,...,n) (2.48)

where w, and v, are, respectively, the rth partial angular

velocity and the rth partial velocity of mass center of R in

N, and

* = -I'q - WXI'W (2.49)
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For the example robot in discussion, assume that the
unit vectors a,, a,, a; are parallel to central principal
axes of inertia of link A, and A,, A,, A3 are the central
principal moments of the inertia, so that IA, the central
inertia dyadic of A, can be expressed as

IA = Ajaja +RA5a,2a,+R 252,

Similarly, the central inertia dyadic of the links B,C,...,F
are respectively defined as

IB = B b b, +B,b,yb,+B;bsb,y

C _
I~ = Clclcl+czc2<:2+c3c3c3

D _
10 = p,4,4,+D,4,4,+D;d,4,
E _
F _
I" = F1ff+Fff,+F 451,

where B,, B,, ..., F,, F, denote the central principal
moments of inertia of the links B, C, ..., F respectively.
In accordance with equation (2.47), the inertia force
of 1link A, can be written
Rp" = -mp (270 +2,5+29,) a1 MpZg53,
where m, is the mass of link A. Meanwhile, equation (2.49)

indicates that the inertia torque of A, is given by

%*

TA - _IAmaA - WAXIA.WA

This gives
* A .
TA = -AZ(Z4u1+Z5u2+Z75)32
On the other hand, equation (2.48) gives

* * *
(ke )p = wremy* + v A%R, (r=1, 2, ..., 6)



Substitution TA*, RA* and the corresponding partial angular

velocities er, partial velocities v A% (which can be found

r
from Table 1 and Table 2) into the above equation for r=1,
«ee, 6 results in
(k1*)a = -BpZ4(Z40)+250y+275) -MaZ,7 (Zp7U1+2pgUp+Zg4)
(k") a

(ky")a = 0 (r=3, ..., 6)

=Ry25 (240 +2505+275) “MpZg (Zp707+2, g+ 2Zg,)

After introducing the quantities 2,5, through 2Z,4,, as
defined in Appendix 1, the contributions to the generalized
inertia forces made by link A then turn out to be

(k1")a = 215401+21 550542156

(k2*)a = Z159U1+216005+2161

(ke)p = 0 (r=3, ..., 6)

The contributions to the generalized inertia forces
made by other 1links are determined in the same way as
indicated above. Quantities Z,g2 through Z,,,, involved in
the expressions of the contributions are as defined in
Appendix 1. The expressions for these contributions are
listed below.

Contributions made by link B:

(k1")p = Z165U1+21 66022167

(k2") B = Z168%1+2169U2+2170

(ky*)g = 0 (r=3, 4, ..., 6)

Contributions made by link C:

(k1™ ¢ = Z17401+217505+21 74

(k") = 217gU2+Z179

* _ . .
(k37 )¢ = Z1g9u1*Z21g105+21 g5
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(ky')o = 0 (r=4, 5, 6)

Contributions made by link F:

(X1 p
(k") p
(k3" p
(X, ") p

(ky")p

Z186U17Z187U+Z188U3+2194U4* 21389
Z18791%2189aU%21903+2195U4%2191
Z18891+%19003+2192U3+2196Us+ 2193
Z194U1+2195U5+2] 9603+2197Us+2 98
0 (r=5, 6)

Contributions made by link F:

(k1) g
(X, ") g
(X3") g
(X, ) g
(k5") g

(k™) g

Z202U1%Z203U2%2Z204U3+Z205%4% 2206
Z20391+220792%2208U3%209794+2210
Z204U1%2208U2+2211U3+2515U4 ExUs+2Z51 3
Z205U1+2209U+221203+2214U4~Exl5+2315
~E2(ﬁ3+ﬁ4+ﬁ5)+zzoo

0

Contributions made by link F:

(X, ") p
(X, ") p
(k3") p
(k") p
(ks™) g
(k") F

Finall

Y,

Z319U1+2220Up+2221U3+2555Us+ 255305+ 24062224
Z220U1+2225U5+222603+ 2527044222805+ 2241U6+ 2220
Z32191+2226U+2530U3+2231Us 22305+ 223y
Z222U1+2227U+2531 03+ 235U+ 2556U5%2237
Z323U1+232gUp+2535U3+2536Us+ 2380542539
2340917224105 F3l6+254

the generalized inertia forces are constructed

by summing the corresponding contributions of each 1ink,

o= (kr*)A+(kr*)B+"'+(kr*)F

(r=1, ..., 6) (2.50)



l.e.
kp* = X1107+%;50y+X) 3U3+X) 404X, 554X g6+ 2243
kop® = Xp101+X;5Un+Xy 3Us+Xy 4 Uy +Xp 5Us+Xo gl 2044
k3* = X311'11+X32(12+x33i13+x34i14+x351‘15+x361.‘16+2245 (2.51)
kg* = Xg107+X50p+X,303+K, 40, +X4 505+ X466+ 2246
ks* = X5107+X5,Uy+X53U3+X540,+X550U5+X5606+2247
k" = Xg1U1+XgaUp+Xg3U3+Xga U+ X505+ Xg6U6+ 2248

where Z,43, ..., Z94g and X;q, Xj,, through Xg, are listed

in Appendix 1.

IT.5. GENERALIZED ACTIVE FORCES AND DYNAMIC EQUATIONS

Introduction generalized active forces, according to
Kane’s method, results in considerable advantage over the
Newton-Euler’s formulation, because the process eliminates
nonworking contact forces. This occurs because many forces
that contribute to the resultant acting on a body make no
contributions to the generalized active forces.

If S is a simple nonholonomic system possessing n-m
degrees of freedom in a reference frame N, n-m quantities
Kise+.skp_ps called generalized active forces for S in N,
are defined as [36]

n
k.= Z.v

r~ 3% £ FRy (r=1, 2, ..., n-m) (2.53)

where n is the number of particles comprising S, P; is a

typical particle, v Pi is the rth partial velocity of P; in

r
N and Rj is the resultant of all contact and body forces
acting on P;. Furthermore, if a set of contact and body

forces acting on a rigid body B is equivalent to a couple of
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torque T together with a force R applied at a point Q of B,
then, (kp)g, the contribution of this set of forces to the
rth generalized active force ky, is given by [36]

(kp)g = W.°T + v, 2R (r=1, 2, ..., n) (2.54)
where w,. and vrQ are, respectively, the rth partial angular
velocity of B in N and the rth partial velocity of Q in N.

In the case of the Intelledex 605, there are two kinds
of forces that contribute to the generalized active forces,
namely, contact forces applied in order to drive the 1links
A,B,...,F, and gravitational forces exerted on each link by
the earth.

Consider first the gravitational forces denoted by Gp,
Gpr ey Gp, respectively. In the base coordinate frame,

these forces turn out to be

Gp = mpgn,
Gg = mpgn,
Gc = mcgn,
Gp = mpgn,
Gg = mgan,
Gp = mpgn,

Since Gp, Gg, ..., Gp are to be dot-multiplied by the
partial velocities vrA*, ooy er* respectively, it is
convenient to express each G in terms of the coordinate
vectors in which the corresponding partial velocities are
expressed. With reference to equations (2.1) to (2.6), one

can express these in the form

Gp =mpg(s;a;-cjaj)
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Gg =mBg(slc2bl+clb2-slszb3)

Ge =mcg{(slc2c3+cls3)cl+(clc3-slc2)c2-slszc2}

Gp =MpIl(S1C2C34%C834) d1+(C1C34-81C834) d3-815,d3)

O ~MEI((S1C2C345%C15345) @1+515,8,+(C1C345751C28345) €3)

Op =Mpd{(S1C2C345%C15345) @1+515,8,+(C1C345751C28345) €3)

Having accounted for the gravitational forces, contact
forces are now to be considered. The set of such forces
transmitted from the robot base to the first 1link A is
replaced with a couple of torque TN/A together with a force
rV/A applied to the link at the mass center A¥*. Similarly,
the set of contact forces applied to link A by link B can
also be replaced with a couple of torque rB/A together with
a force RB/A applied to A at g* which coincides with B* and
is fixed in 1ink A. By Newton’s Third Law, it is known that
the set of contact forces transmitted from A to B (and
likewise from B to C and so on) is equivalent to a couple of
torque -pB/A together with a force -rB/A applied to B at the
mass center B* of 1link B. Likewise, the set of contact
forces exerted on link B by link C is replaced with a couple
of torque vC/B together with a force RC/B applied to link B
at C* which coincides with Cc* and is fixed in B.
Consequently, the set of contact forces exerted on C by B is
equivalent to a couple of torque -pC/B together with a force
-rC/B applied to C at the mass center c*. Similarly, TD/C,
TE/D, oF/E ang RD/C, RE/D, RF/E and defined as the torques
and the forces in connection with the interactions of link C

and link D, link D and link E, link E and link F.
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In accordance with equation (2.54), the contributions
to the generalized active force k, of all forces acting on
each link can be expressed as

(kp)p = wele (TV/ALpB/R) 4y B*. (RN/ALg )4y B*.gB/A

(kp)e = w.Cr (=1C/BrpD/C) 4y C*+ (_RC/Byg,)+v D*-rD/C
(kp)p = wyD* (=FD/CiqE/Dy gy D*. (_gD/Cyg ) 4y E*-gE/D
(kp)g = wyE* (~PE/DyqF/E) 1y E*. (_RE/Dig )4y F*.gF/E
(kp)p = W.F o (-1F/B) 4y F*e (RF/Eyqp)
(r=1, 2, ..., 6)
The generalized active force ky is then formed by
summing its contributions, i.e.
kK = (kp)a+t(Kp)pt oo +(Kp)p  (r=1l, ..., 6)
Hence,
kp=w Ao rN/Ay (g Ay By -qB/A, (y By C).qC/By(y Coy D)-qD/C
+(er_er).TE/D+(er_wrF).TF/E+vrA*.GA
+v B¥eagiy C*gotv D*eqpiv E*gpiv F* gy
(r=1, 2, ..., 6) (2.55)
Notice that as the contributions made by different
links are summed together, all terms involving the
nonworking contact forces RB/A, RC/B, RD/C, RE/D, RF/E are
out, and the term vrA*'RN/A vanishes, but all the working
torques and the gravitational forces remain in evidence.
This feature facilitates the task of deriving the equations
of motion by Kane’s method for the contact forces making no
contributions to the generalized forces k,'s.

Next, define



— n.-pN/A
ny TN/

T1 =
Ty = -a3°TB/A
T4 = -b3°TC/B
Ty = -cs”.l‘D/C
Tg = -d3°TE/D
Tg = -e3°TF/E

To determine the first term of equation (2.55), one

notices that

so that
AemN/A _
wheaN/A = 7 o)
AcmN/A _
wyhepN/A = 7.
w RAepN/A _ ¢ (r=3, ..., 6)

As for the second term of the equation, first notice that
Then, with the introduction of

A B _

W1 -W" = s32,
A_, B _
Wy -Wy" = cj3ajg
er-er =0 (r=3, ..., 6)

there results

(w Bow By -rB/A o _ o

(wyBw, By -eB/A = o

(wP-w, By -B/A - ¢ (r=3, ..., 6)
Similarly, one obtains

(wlB-w1C)°TC/B = -1328

(wyB-w,C) «2C/B = -z

B_,, Cy.mC/B _
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(wB-w ) 1C/B = ¢ (r=4, 5, 6)
(w,C-w,D) 2P/C =
(w A-w B)-2D/C = ¢ (r=1, 2, 3, 5, 6)

(wgP-w E) -7E/D

s

(w,.P-w E)-2E/D _ ¢ (r=1, ..., 4, 6)
E_, F\.mE/F _
(w E-w F)-oB/F _ ¢ (r=1, ..., 5)

The last six terms in equation (2.55) are determined by
dot-multiplying each gravitational force with the partial
velocity of the corresponding mass center and introducing

the quantities 2,44, 2554+ -+++ Z5g0 as defined in Appendix

1. These turn out to be
v13% 6y = 92,5,
v,2%6y = gz,
v A%, = 0 (r=3, ..., 6)
v B¥r6p = 92,56
vyP 6 = 92,5,
v,.B*ep = 0 (r=3, ..., 6)
v15%16c = gZ,5
v "6c = 92560
V3 6e = 92,4,
v,.*6. = 0 (r=4, 5, 6)
v1P*rep = 92,45
v,P*rep = 92,66
v3P* 6p = 92,4,
v4P*r6p = 92,64
v,.P*ey = 0 (r=5, 6)



v B reg = 92,9,
v EY ey = 92,95
vyE*reg = 92,4,
V4" "G = 92575
er*'GE =0 (r=5, 6)
viF*ep = 92576
v F*ep = g2y,
vyF¥6p = 92545
vyF¥ e = 92,99
vsF* G = 92,5

veF**ap = 0
As this point, all the necessary ingredients for
equation (2.55) are at hand. Setting the subscript r in the
equation equal to 1, 2, ..., 6 respectively, one obtains six
equations. Substitution of each group of corresponding
ingredients into the equations results in the following
expressions for the generalized active forces
k1 = 2471783732573+ 228,
ky = Z5717CaTa~ZgT3+ 228
Ky = 13+Z,g5 (2.56)
kg = 714%Z284
ks = 15+2585
ke = 1¢
where Z;g9, Z3g5s+-+s Zyg5 are as defined in Appendix 1.
Now, one is in the position to write the equations of
motion for the Intelledex 605 Robot Arm by employing Kane'’s

dynamical equations
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k' + kp =0 (r=1, ..., 6) (2.57)

Substitution of equations (2.52) and (2.56) into the above

equations with r=1, 2, ..., 6 gives

sg‘lxlsus = "Z47ytS373%2g737228172243
1xzs s = “ZsT1%C372%2973722827 2244

6 .

B Xaoly = =T7-Z,g~-2

X, X3gUg 3 372245
s=1 28 (2.58)

E X4s s = “T4=Z384" 2346
g 1¥5s8s = “T5-2385-2247

§
<Z,X6sls = ~T6=Z241

These six equations together with equations(2.19)
constitute a set of twelve equations with twelve unknowns,

which are nonlinear. 1In matrix form, they can be written as

X1| o0 a T
R %% = %_E (2.59)
0, U q u

The matrix on the left side of this equation is called
inertia matrix. The inertia matrix derived by Kane’s method
is symmetric. This property will be proven in the next
section.

To test the validity of the underlying equations, two
programs in FORTRAN language are furnished. The first

program, called TORQUE (See Appendix 2.), is a



straightforward calculation routine. Taking a specified
motion as input, this program calculates the torques needed
for carrying out the specified motion. 1In the testing case,
the generalized coordinates are designated by the following
equations.

dy = m{t-(T/2r)sin(2rt/T)}/3T (r=1, 3, ..., 6)

dy = n/2=-n{t-(T/2x)sin(2xt/T) }/6T
where T is the time span for running the program. these
equations (i.e. the input) are plotted in Figure 2.3 and
Figure 2.4. The parameters used in connection with the
example robot are listed in Table 3. The output of the
program TORQUE, the torques needed to carry out the
designated motion, are plotted in Figures (2.5-2.10).

Another program ANGLE (Appendix 3) is used to solve the
twelve simultaneous, nonlinear differential equations to
give the coordinates as functions of time in terms of given
driving torques. The core of this program is the subroutine
QSOLVE, which is based on the quasi-Newton [47] method. The
major expense of this method is to derive an approximation
to the Jacobian of the system equations by evaluating the
equations of motion at two successive points of the
generalized coordinate (. The torques generated by the
first program TORQUE are the input and the generalized
coordinates are outputs. When the outputs are plotted
versus time t, it turns out that the resulting curves are

identical to those in Figure 2.3 and Figure 2.4
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respectively. This is a good indication that the derived

equations of motion are free of errors.
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TABLE 3. PARAMETERS CHARACTERIZING THE INTELLEDEX

605 ROBOT
Quantity Value Units

my 18.1440 kg

m; 12.2472 kg

m5 8.6184 kg

m, 4.9896 kg

mg 1.3608 kg

m 0.9072 kg

L, 0.2794 m

L, 0.3226 m

le 0.1397 m

L3 0.1588 m

L22 0.0127 m

L31 0.1880 m

Ly1 0.1727 m

Iil 0.1800 kg m2

112 0.0450 kg m2

123 0.1350 kg m?
121 0.0300 kg m?
122 0.0300 kg m2
133 0.0232 kg m2

131 0.1041 kg m2

132 0.1041 kg m2

I°, 0.0260 kg m2
4

1%, 0.0605 kg m2
4

14, 0.0605 kg m2
4

1%, 0.0260 kg m2
5

I°, 0.0048 kg m?
5

I°, 0.0048 kg m2
5

I°, 0.0035 kg m2
6

161 0.0040 kg m?
1°, 0.0040 kg m2

I8, 0.0030 kg m2
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Figure 2.5. Torque 7y vs time (output of TORQUE).
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Figure 2.9. Torque Tg Vs time (output of TORQUE).

4]



TORQUE (Nm)

s - et e e - -

0.03
0.02 —
o
# 5 |
0.01 - F/{Gﬂ\!\ |
T /¢ B w
—~0.01 - \ |
f‘i\
—~0.02 — 5
\
ISK ;
—0.03 g " - " . . e ——
0 0.2 0.4 0.6 0.8 1

Figure 2.10.

TIME (sec)

Torque rg vs time (output of TORQUE).

143



ROTATION ANGLE (rad)

1.2

1.1

0.9

0.8

0.7

0.6

0.5

TIME (sec)
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Figure 2.13.

Coordinate g3 vs time (output of ANGLE).
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Figure 2.15. Coordinate ds Vs time (output of ANGLE).
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III. AUTOMATIC GENERATION

III.1 GENERAL

It can be seen from the derivation procedure
demonstrated in the previous chapter that, although the
labor required to formulate the dynamic equations by Kane’s
method 1is significantly reduced from those based on
classical methods, it is still very burdensome when a system
consists of more than a few rigid bodies. For a six-link
manipulator, the derivation is difficult, time-consuming,
and error-prone; in fact, it may take even longer to locate
and remove errors in the derived equations than to derive
them.

As mentioned in Chapter I, the best way to avoid such
problems is to resort to computers to simultaneously
generate and integrate the equations of motion. This is
called automatic generation. There are, at present time,
two research directions in the field of automatic
generation. One is called computer symbolic manipulation;
another is recursive computation. For the first category,
Rosenthal and Sherman [48] reported a detailed computer code
manipulation procedure by using Kane’s formulation. The
idea used there is to divide the generation process into two
stages. First, the symbol-manipulation code is used along
with a general-purpose multibody program to create a
special-purpose simulation code for a particular

configuration. These simplified equations are then
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converted into a FORTRAN subroutine. In the second stage,
this subroutine is incorporated with a main simulation
program. The major advantage of this approach is that the
form of the equations of motion obtained by this method are
nearly the same as those derived by hand. However, the
discontinuity in the process will limit the efficiency of
the simulation. Each time the system configuration is
changed, one must begin with generating symbolic equations
and complete the interfacing of these equations with control
input and output files.

The algorithm being developed in this chapter belongs
to the second category, the recursive computation. Based on
Kane’s formulation, this algorithm enables one to bypass all
the manual derivations of the ingredients to formulate the
equations. It requires that one input only structural data
(describing component inertia properties, interconnections,
and so forth) and either driving forces or a specified
motion. Then, depending on which of the 1latter is
specified, the program generates the variation with time of
configuration and speed, or of required driving forces.

Kane’s Method allows one to form scalar expressions of
kinematic ingredients at a very early stage in the
formulation process. Instead of expressing the kinematic
and kinetic ingredients in vector forms, this paper
expresses all these ingredients into algebraic expressions
that only contain additions and multiplications of scalar

elements. This avoids repeatedly calling of subroutines to
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calculate dot products and cross products, thus saving
computation time.

The remainder of this chapter includes two sections.
Section III.2 is comprised of the derivations of the
algorithm. Section III.3 outlines two systematic procedures
for using the algorithm and discusses its validity by giving

the simulation results for the Intelledex 605 robot.

III.2 FORMULATION

Refer to Figure 3.1. To specify a general
configuration of a mechanical manipulator, a coordinate
frame is assigned to each 1link. In doing so, Paul’s
recommendation ([46] is employed in the present work, with
additional emphasis on the following points. First, for the
base coordinate frame, one of the three unit vectors must be
aligned with gravitational forces. For revolute joints, in
which the rotation angle qp is defined as a generalized
coordinate, the kth set of three mutually perpendicular unit
vectors (nlk, nzk, n3k) is fixed on the link k, and the axis
of the rotation is aligned with the unit vector n3k'1. The
origin of the coordinate frame k is set to be at the
intersection of the common normal between the axis of 1link
k-1 and 1link k and the axis of joint k. In the case of
intersecting joint axes, the origin is set at the point of
intersection of the joint axes. In the case of a prismatic

joint, the distance dx the 1link moves from its origin is
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Figure 3.1.

Numbering of coordinate frames.
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defined as the generalized coordinate. The direction of gy
must be aligned with the unit vector n3k'1.

Having assigned coordinate frames to all links, one can
establish transformation matrices. These transformation
matrices are 3X3 matrices and are historically called A
matrices. The matrix ak specifies the orientation of link k
with respect to 1link k-1. That is, the elements of the
matrix

Ak Ak, AN
Ak = Ak ARy, aky,
aky afy, kg,
are the direction cosines between the unit vectors attached

to the two links:
Akij = nki.nk-lj

The interested reader may refer to [46] for greater
detail.

Next, DK is defined as the vector from the origin of
the kth coordinate frame to the mass center of link k, and
1X as the vector from the same origin to the next coordinate
origin. These may be expressed as

DK = a¥ n,+a¥,n,+d%;n, (3.1)
LK = X n,+1%,n,+1%,n, (3.2)
In this formulation, the generalized speeds are simply

defined as

up = dp (for k=1,...,N) (3.3)
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where N 1is the number of 1links that constitute the
mechanism. The reason for defining the generalized speeds
in this way will be seen later.

Based on the scheme Jjust described, a set of
expressions of all kinematic and kinetic ingredients is to
be constructed. First, to derive a general expression for
angular velocities, consider the adjacent links k-1 and k.
The angular velocity of 1link k can be written as

wk = wk"1 4 g on k-1 (3.4)
or

Wk = Wk-l + ukn3k-1

1
+uk) n3
In the kth coordinate frame, this can be expressed as

k _ , 3 w k-1l.k k k
W= (I Wi TAT  tugATy )y

3 k-
G WK pruaks ) 0K

k=1,k k k
* (iélwi AT 3tuRAts3) 0
or

3
wk = 581G % ¥y e W +ukA3jk)njk (3.5)

On the other hand, since

k = 2 w.kp.k 6

w jgleknj , (3.6)
the component of WX in the direction of njk is
k= k-1 k k - =

W5 §1W1 Aj4 +uyhsg (j=1,2,3. k=1,...,N) (3.7)

Equation (3.7) is true for all 1links, including the
first rotational 1link. To verify this, observe first that

the angular velocities of all 1links up to the first
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rotational link are zero, so that if k designates the first
rotational link,

wjk-l =0 (j=1l 2, 3)

In this case, equation (3.7) reduces to

wjk = ukAk3j (3=1, 2, 3) (3.8)

On the other hand, the angular velocity of the first
rotational link can be expressed as

wk = qkn3k—l
= upn, X1 (3=1,2,3)
This can be written in terms of the unit vectors of the kth
coordinate frame as

WE = uy (A%31n, K eakpn, KAk 50 k)
which implies that

ij = ukAk3j
which is exactly the same as equation (3.8).

If the kth link is translational, its angular velocity

is equal to that of the preceding link, i.e.

In the kth coordinate frame, this can be expressed in the

form
kK _ 3 k-1, . .k, .k
v jgliélwl Bij™R;
So that,
wik = 2 wk-1a, .k (3=1, 2, 3) (3.9)

J i=1 1 17



On the other hand, if the kth link has no prescribed

motion, ij°1 can be expressed in the form

k-1 _ ksl k-1 .
Wj = rgler u, (3=1, 2, 3) (3.10)

where wjrk'l is the jth component of the rth partial angular

velocity of link k-1. Substitutions of equation (3.10) into

equations (3.7) and (3.9) give

iél téiwirk-lAijkur+A3jkuk (k is rotational)

k=
Wy (3.11)

3 k=1 - . .
121 r§lwirk lAijkur (k is translational)

Taking the partial derivative with respect to u, in the

r

above equation, one is left with the recursive expressions

for the jth component of the rth partial angular velocity

for link k
&
iélwirk-lAijk (for r=1,...,k=-1)
wjrk = A3jk (for r=k) (3.12)
0 (for r>k)
Then, *jrk' the time derivative of wjrk can be found by

simply taking the time derivative of both sides of the above

equations. That is,

3 o k-1p, kK, k-13 K _ )
121 (Wir "Ri5 Wi TRAj5T) (for r=1,...,k-1)
el AP (3.13)
Az (for r=k)
0 (for r>k)

For rotational 1links, the velocity vK of the kth mass

center and the velocity sK+tl of the k+1 th coordinate origin

are related by
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vk = gk 4+ wkypk (3.14)
sk+1 = gk 4 gkypk (3.15)
where DK and LX are as defined previously. Sk, the velocity
of the kth coordinate origin, may be expressed in the form
g¥ = s,Kn K"14g, kn k=15 kp k-1 (3.16)
Substituting equations (3.1), (3.6) and (3.16) into equation

(3.14) and rearranging it, one finds
v - (ig1SikAkil+W2kd3k'W3kd2k)nlk
+(iilsikAkiz+W3kd1k'W1kd3k)nzk
+(iilsikAki3+w1kd2k-w2kdlk)n3k (3.17)

so that the velocity components of the kth mass center in

the kth coordinate frame are found to be

k _ k ks k ki k

12171
k _ kak kg k kg k
k = k kg k kg k =

Similarly, the velocity components of the k+1 th coordinate

origin turn out to be

k+1
5,

X K K_iw Kr k
iglsi ATty Ly W5

k+1 _ kak ki k ki k

K+1 _ Kak k; k_w kKr k
S3 = iélsi ATi3+W "Ly =Wy Ly
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In the case when the kth 1link is translational, the
relationships that replace (3.14) and (3.15) are

vk = g% + wkxpX + upn k-1 (3.20)

gk*1 = gk + wkxrX + un X1 (3.21)

Notice that, in this case,
Dk

dlknlk+d2knzk+d3kn3k+qknk'1 (3.22)

A A I R L (3.23)
Substituting these expressions and the other corresponding
terms into equation (3.20) and (3.21), respectively,
resolving them into the kth coordinate frame and rearranging
them, one can find the follo&ing relationships that, for the

translational 1link, replace (3.18) and (3.19):

K = 3 g.kpk k kK, 3.k, ak K .3 K, ak
V1™ = (E,8i AT FAT U W, T (AT HAT 3 3qy) “W, T (AT HAT S5 ay)

[\ )

k -
V2 - S'

K. ..k K, q k,akK K g K,ak
12151 AT o AU W T (A THAT S ) =Wy T (3 THA T3 3Gk)

k _ k.k k k K.,k k K, ak

i=1
(k=1, ..., N) (3.24)
and

k+1 _ 3 q.kpk k K,r_kiak -w k(1 ki ak

S177 7 T (E S5 AT tAT U W, T (L AT 3 3qy) W3 T (Ly T +AT 35y )
k+1 _ 3 o.kpk k K1 _k,ak —w. K1 Kiak

S27 T = (B S AT o AT Ut (L THAT 3 Qg ) =Wy T (D3 THAT 33y )
k+1 _ 3 o . kak k kK, k. a2k —w K1 kiak

S37 T = jE 83 AT 3 AT 33Uty T (L tHAT 35 qy) W, T (L THAT 3 Q)

(k=0, ..., N-1) (3.25)

As with the angular velocities, if there is no
prescribed motion for the mechanism under consideration, the
velocities VK and 8K can be ‘expressed in terms of the

partial velocities and the generalized speeds. These are



Ko,

r—lvr
gk = I, rku
Alternatively,
vk = ril"jrk“r (3=1, 2, 3)
sjk = k_E_lsjrku (3=1, 2, 3)
where v]rk and s]rk are the jth component of the rth partial

velocity of, respectively, the kth mass center and the kth
coordinate origin. Substituting the above expressions into
equations (3.24), (3.25) respectively and performing the
same operations as those for the partial angular velocities,
one obtains, for rotational joints:

K _ KaK k3 k_., kg k
Vir _iélsir AT tWopdy oWy dy

k - 3 kak k4 k ky k

Ver TiZ

k - kak ki k ky k
Vir _iélsir ATj3tWyp dy mWor dy

k+1 _ Kpk kr k_, ki k

S1ir ‘iélsir AT 1tWor L3 Wi Ly
k+1 _ kak kr k_., kr k

Sopr —iélsir A otWa Ly =Wy Ly (r<k) (3.27)
k+1 _ 3 Kak ky k_, kp k

S3r T SiESir ATiztWip Ly -Wor Ly

and for translational joints:
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: k
Vi

k

3

r ~iZ,Sir

3
X

k _ 3
V3r _igls
k _ ,k
Vir = A73
k+1 _
Sir _ié
k+1 _ 3
Sor ‘iE
k+1 _
S3yp _ié
k+1 _
Sjr = A

ir

ir

3

lsir

1

lsir

k_.
3)

Kk
Kk

kpk

(for r<k)

(for r=k, j=1, 2, 3)

kpk

kak
(for r<k)

(for r=k, j=1, 2, 3)
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K, 1 K,ak o K,q Kuak
i1tWor (A3 +AT53qy) =W (dy " +AT35dy)
K, 1 Kiak K, 1 Koak
j2tW3p (A1 7+AT31qy) ~Wip (d37+AT33qK)

K, 1 Kynk X, 1 kiak
13tWip (G +AT3oqR) ~Wy e (A1 AT 31 Q)
(3.28)

i1+W2rk(L3k+Ak33qk)‘W3rk(sz+Ak32qk)
Kak K, K, ak kK, K,k
Sjp ATjotWay (L +AT31dy) ~Wyp (L3 7+AT334k)

K,r K.k K, K,k
i3*tWiy (LT +AT35Qy) ~Wop (L "+AT314g)

(3.29)

Taking the derivative with respect to time of each

member of the above equations, and defining

P-

k
jr

one is left with the following expressions,

joints:

- 3 (a. ka. Kk
_igl(sir AjyT 7

k; k
3 Siy Ai§)

ki k - ki k
d3™ - w3y dj

Yor
Wip
. kik _ . kik
Wiy dp" = Wpp dp

(xr>k, j=1, 2, 3)

- ke k _ -~ ke k
t Wop L37 = W3 Ly
ST PRI PP Sl

(r>k, j=1, 2, 3)

(3.30)

for rotational

(3.31)

(3.32)
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and for translational joints:
Vi = PRy K (@R eaR g ay) -vp N (AR 30 4K 5uy)
W3t (AR aR ) —wa K (AR gtk )
Vort = Poptia K (dy eaRy ) qp) -wa K (A8 0Kk )
= X (d3%4aR 5 ay) -y K (AR yagera¥ 50y (r<k)
Vart = Paprig K (dReaR ap) -y AR5 a,5 48R0y

o k.3 koak . k,ak K
Wor (d7+AT31Qy) -Wor (AT379x+AT 3 Uy)
k - 3k

Gjr = A%34 (r=k, j=1, 2, 3) (3.33)
10570 = Py iy K (L Keak say) vy K (3K 30, %4a% 5 5uy)
=3 X (L R4k ) —wg K (AR g a® s uy)
S5t = Py Ry K (L Keaky ) ap) v K (AR5 @R eaR 5 uy)
=01 (LR eaR g s qp) —wy K (AR 3 gtk guy) (r<k)
3571 = Py e K (L ReaR Hay) vy K (AR5 0, AR Huy)
=S (L K4k ) vy K (AR5 qgea® s uy)
éjrk = Ak3j (r=k, j=1, 2, 3) (3.34)

Next, the expressions for the generalized inertia
forces and the generalized active forces also need to be
carried out. For the system under consideration, the
acceleration of the kth mass center can be obtained by

k3uk
X _ dav

ak = + wk x vk (3.35)

dt

The first term of the right side of the above equation can

be proved to be

Kgvk
N

ku + v kur )n

at - (x21Y3r Ur

To obtain scalar expressions for the second term, define



BK = wK x vK

then,
B, X = wkv K - w kv K
B,K = wyXv, ¥ - wkv K (3.36)
ByX = w Kv,X - wykv K

So that the equation (3.35) can be rewritten

| k
ak =% 1(rzlvjrkur + ¥y Lu, + By )n

To further simplify the above expression, define

k _ k y= 3.37
Ds* = Jrku + By (3=1, 2, 3) (3.37)

Then the scalar expression of the acceleration for the kth

mass center turns out to be

%1< £ v ko + p;¥)nsk (3.38)

r=1 Jr °r

Now, let my be the mass of the kth link; then the inertia
force acting on the mass center is

R*k = -mkak
Substitution of the equation (3.38) into the above equation

gives

= - % X 51 Jrkur + Dy )mknjk (3.39)

The inertia torque of the kth 1link about its mass
center can be obtained from the following formula [36]
r*k = _xKegk - wkxrkewk (3.40)

where ak

is the angular acceleration of the link and can be
obtained by taking time derivative to each side of the

equation (3.10) and then summing the three components as
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oX 331 o (Wyp Koy + i rFup)ng® (3.41)
or

o —331 r}lfl(w Koy + E5¥)n K (3.42)
with Ejk defined as

Ejk =r]§<1‘;’jrkur (3.43)

1¥K is the central inertia dyadic of link k. 1In general, the
central principal axes of the inertia of the kth 1link are
not parallel to the kth set of coordinate vectors for an
arbitrary robot configuration. Therefore, the inertia
dyadic IX generally consists of nine elements including
three moments of inertia and six products of inertia. To
derive the expression of the generalized inertia torques for
the general cases, it is nothing more than just representing
the inertia dyadic with a double summation and plugging it
into the equation (3.40). However, in order to keep the
assumptions the same as those for the methods mentioned in
Chapter I so that the comparison can be based on the same
bases, it is simply assumed in the present work that the
three unit vectors nkl, nkz, nk3 fixed on 1link k are
parallel to the central principal axes of the inertia of the
link, so that IX can be expressed as
I = Ilk nlknlk + 12k nzknzk + I3k n3kn3k

k

Now, substituting o™, wX anda 1IX into equation (3.40), one

can obtain
K =

e

( %Ikw LR +Hk)n (3.44)

j=1" r=1"1J
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where
k _ ke k kep k k.t k
H K = 1,5, % + wyKuK(TX-1,%)
k _ ke k ke, k k k
k _ ke k ke, k k k

With R*k, T*k, Wk, and vk in hand, one is ready to
construct the expressions for generalized inertia forces.
The contribution from 1link k to the generalized inertia
force Kr* is denoted by (Kr*)k and can be evaluated from

(Kp*) g = wKer*k 4 ¢ Keg*k (3.46)
Substituting equations (3.39), (3.44) and

=% wi Xn K

~321Y3r

vk = 3 v Kak

321Vir ™

into equation (3.46) and rearranging one has

(Kr*)k = -jé E (I kW kW + mkV k-v k ){lm

jm Jr jm Yjr

k

- . . kn. Kk
jél(wlr HJ Ds

k
+ mkvjr 3 )

The generalized inertia force is the sum of contributions

evaluated as above:

*
Ky= kg (K rk

_ N 3 k .\
= ) 5E 2 1 (I3 kwjmkwJr + mkvjmkvjr )l

g % (w

kp.k )

+ M,V
kT a1, .., M) (3.47)

Jr j

In addition to the generalized inertia forces, the
expressions for the generalized active forces need to be
constructed. To this end, let FK=1/X pe the resultant of

forces from 1link k-1 acting on 1link Kk, rk~1/K pe the



resultant moment about the mass center of link k of these
forces, Gy be the gravitational force acting on the mass
center, and vi denote the velocity of the point of link k-1
coinciding with the mass center of the link k. Then, with
the same reasoning that led to equation (2.55) in Chapter
II, one can express the rth generalized active force as
Ky = (wl-w.0) 1%Ly (w 2w 1) 2l/24, ..
+(wrN_wrN-1).TN-1/N +(vrl_vr'i).1,.0/1+(vr2_vr§).,_,,1/2

+...+(er-er)'FN'l/N+vr1'Gl+vr2'Gz+...+er'GN

(3.48)
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Recalling the definitions of the generalized speeds and the.

angular velocities and the specifications for coordinate
frames, the differences of the angular velocities between

two adjacent links may be expressed simply as

K _ wk-1 _ k-1
W W = Upn,
that is

1 _ 0 _ 0
w W’ = u;n,

2 _ gl _ 1
) W = usn,

N _ gN-1 _ N-1
W W = Uy,

From thesev equations, the general expression for the
difference of the partial angular velocities between two
adjacent links follows as

§n3k'1 (for r=k)

0 (for r#k)



The same is true for the difference of the partial
velocities between two adjacent 1links with translational

connection, thus

- n3k'1 (for r=k)
v.ky. kK _
r r
0 (for r#k)
Consequently, equation (3.48) can be rewritten as
K, = (wrr_wrr-l).Tr-l/r + (vrr_vrr).Fr-l/r

1. 2. N.

+ VTG + VPG, + ...+ VLT Gy

or

_N k. r_y r-1l, emr-1/r Y_y Ty epr-1/r
Ke= 2, (Ve 6g) + (wF-w, 1) r /Ty (v, T-v, T) F (g.49)

Notice that, for the rth and r-1 th links, either

r

wrr_w r-1 _ n3r-1
(for the rotational joint)

or

w,Il-w.T1l =9

r r . C s

- (for the translational joint)

v.l-vy. T = p.r-1
3

r r

must be satisfied. Therefore, one can introduce f,. as

(wrr_wrr-l).Tr-l/r (when joint k is rotational)
fr = {(vrr-vrf)'rr'l/r (when joint k is translational)
i.e.
n3r-1.Tr-1/r (when joint k is rotational)
fr = §n3r-1.Fr-l/r (when joint k is translational)

Substituting this into equation (3.49) gives

N
K, = kgl(vrk-ck) + £, (3.50)

Now, consider Gy, the gravitational force. In the base

coordinate,
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Gy = mygn; 0 (3.51)

0 is the unit vector of the base coordinate frame

Where np
that coincides with the direction of the gravitational

force. 1In terms of the quantities

1 -

R (k=1)

Y5 = 3 3 . k-1.k (3.52)
iglyi A ij (k=2,3,...,N)

this may be expressed as ‘
0 _ 3 v. k-1 k. 3.53
LT 3EY TS (3.53)

so that

= k. Kk 3.54

Finally, the dynamical equations are given by substituting
the available expressions into the Kane’s dynamical

equations [36]

Kr + K.* =0 (r=1,...,N) (3.55)
That is
E 2 8 (r.key Yo K 4 mvs Kv. X )q = x -7 (3.56)
k=1 321 m=1'"3 Yim Wir kVim Vjr /Ym r-%r
(r=1,2,...,N)
where
7. = % % (ws XmX 4 moyv. Xp.K (3.57)
r k=1 j=1'3Jr 7] k¥3ir 73

(r=1,2,...,N)
These ekxpressions, together with
d, = u, (r=1,2,...,N),
furnish a set of 2N system equations. In matrix form, these
may be expressed as
U K-Z

| o
| - (3.58)
I q U

o |m
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where F is called the inertia matrix. Observe that the
element in the mth row and rth column of the inertia matrix

F, denoted by F

— is equal to the element in the rth row

and the mth column,

N k k k
Frm = y&; jgl m§1(Ijkwjmkwjr + mk"Jmk"Jr )

N k k
k21 jél mgl(ljkwjrkwjm + MV Vg )

(3.59)
This symmetry property enables one to reduce, from N2 to
N(N+1) /2, the number of the arithmetic operations for

calculating the coefficients.

ITII.3 COMPUTATIONAL PROCEDURE

The preceding algorithm is derived with dual purposes;
one is to determine the values of the generalized
coordinates (i.e. desired motions) with driving torques and
forces given; another involves determining the driving
torques and/or forces needed to carry out a user-specified
motion.

The first category involves integration of a set of
nonlinear differential equations. The generalized
coordinates are output. Users are to be asked to specify
driving torques and forces either in the form of a set of

numerical values or in the form of functions. Also, initial



values of the generalized coordinates and their time
derivatives must be provided.

In writing a computer program to integrate the set of
differential equations, one may reorder the calculation
procedure and modify some of the expressions derived in the
last section to reduce memory space and to avoid repeated
calculations. In summary, the following calculation
procedure is suggested.

(1) Calculate all partial angular velocities by
equation (3.12), carry out their time derivatives by
equation (3.13), then use the following equation to find all

the components of each angular velocity.

rglerkur (link k is rotational)

K =
Wy

téiwjrkur (link k is translational)

(2) Determine partial velocities for each mass center
and for each coordinate origin using equations (3.26) or
(3,.8) and (3.27) or (3.29) respectively, then calculate the

components of each velocity by

k. kK . B
Vj - rglvjrkur (3=1,2,3. k=1,...,N)

g.k+1 _ K k+1

3 r=1sjr u,. (j=1,2,3. k=0,...,N-1)

(3) Calculate Pjrk by equation (3.30), then determine
the time derivatives of each partial velocity by equations

(3.31) or (3.33) and (3.32) or (3.34).
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(4) Determine the intermediate variables in the order

equation (3.43), ij by equation (3.45) and Z, by equation
(3.57).

(5) Find ij by equation (3.52), then build N
generalized active forces by equation (3.54).

(6) Calculate inertia coefficients by the equation

N 3 k k k
Frm = 2 j§1 mgl(ljkwjmkwjr + mkVJmkVJr )

taking advantage of the symmetry property to reduce the
arithmetic operations.
(7) Substitute the expressions into Kane’s equations to

obtain

N .
n21Frninm = KeZy (r=1,...,N)

together with
dy = u, (r=1,...,N)

(8) Finally, with the given initial conditions and the
specified torques and/or forces for a particular system, one
can perform integration of the dynamic and kinematic
equations derived in step (7) to find the generalized
coordinates for each link at all time steps.

As for the second category, the dynamic inverse of the
first category, users are asked to specify a desired motion
for the system. In other words, a set of numerical values
or functions specifying generalized coordinates and their
derivatives are given as input, and the program provides

driving torques and forces. This is a straightforward
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calculation to evaluate the driving forces f,, which appear
in equation (3.54). For convenience, introduce K’, as

- § 3 13
K’y = 2 55,79 vy*vy, (3.60)

So that the equation (3.54) can be written as

14
Kp = £, +K (3.61)

Substituting of equation (3.61) into the Kane’s dynamical
equation and rearranging it give
*

f. = -K',. - K’

r r r (3.62)

A complete calculation procedure for the dynamic inverse is
outlined in the following

(1) Calculate all partial angular velocities by
equation (3.12), carry out their time derivatives by
equation (3.13), then use the following equation to find all
the components of each angular velocity.

£ vy ku

21"r (1ink k is rotational)

r
kK =
Wy

k=1 .
r§1wjrkur (1link k is translational)

(2) Determine partial velocities for each mass center
and for each coordinate origin using equations (3.26) or
(3.28) and (3.27) or (3.29) respectively, then calculate the

components of each velocity by

k [
ij B rglvjrkur (J=1,2,3. k=1,...,N)
k+1 - K | x+1 . _ _
S S3TTT = Eisypt up (3=1,2,3. k=0,...,N-1)



(3) calculate P; KX by equation (3.30), then determine

jr
the time derivatives of each partial velocity by equations
(3.31) or (3.33) and (3.32) or (3.34).

(4) Determine the intermediate variables in the order
jk by equation (3.37), Ejk by

jk by equation (3.45) and Z, by equation

of Bjk by equation (3.36), D
equation (3.43), H
(3.57).

(5) Find ij by equation (3.52), then evaluate quantity
K’,. by the equation (3.60)

(6) Calculate inertia coefficients by the equation

Fp = .8 g (I Koy Kul K4 omvs Kol

k=1 j= jm jr- im et

taking advantage of the symmetry property to reduce the
arithmetic operations.
(7) Determine the generalized inertia forces by

g Frmum + 2, (r=1,...,N)

(8) Finally, calculate the active forces and/or torques

by

*

£, = -K, - K',

In both cases, mass properties and structural data
describing the geometric relations between links must be
specified. For the structural data, users can use equation
(2.37) in reference ([36] to enlist a computer to
automatically generate each element of the N transformation
matrices and their derivatives; or, to save memory space

and computation time, one may simply write those elements

into a computer program.
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To test the validity of the underlying algorithm, two
programs, AUTOTF (Appendix 4) and AUTOQ (Appendix 5), have
been written in FORTRAN language. AUTOTF 1is to
automatically generate driving torques and/or forces with a
specified motion. AUTOQ is to simultaneously generate and
solve the equations of motion with driving torques and/or
forces given. The algorithm for numerically solving the
nonlinear differential equations is the same as that for the
the program ANGLE in Chapter II.

For comparison, the Intelledex 605 robot with the same
parameters used for programs TORQUE and ANGLE in Chapter II
is again simulated with both AUTOTF and AUTOQ. The
specifications of the coordinate frames are as shown in
Figure 3.2.

For the example use of AUTOTF, the rotation angles

di(t),...,gg(t) have been specified as

dy m(t-Tsin(2xt/T)/2x) /3T (r=1, 3, ..., 6)
dy = 7/2-w(t-Tsin(27t/T)/2x) /6T (60)

with T=2s, the same as that for program TORQUE plotted in
Figures 2.3 and 2.4. The outputs (see Appendix 4), driving
torques on each of the six links, are plotted in Figures
3.3-3.8. The values of these torques are precisely the same
as those generated by program TORQUE at every time step.
This is an indication that both the automatic generation
algorithm and the hand-derived equations are correct.

As an example inverse process use of the AUTOQ, the

output file of the above-described run of AUTOTF was used as
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input torques. The outputs, plotted in Figures 3.9-3.14,

are consistent with those shown in Figures 2.3-2.4.

further indicates the algorithm is correct.

This
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Figure 3.2. Coordinate frames for the Intelledex 605 arm.
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Figure 3.3. Torque 71 VS time (output of AUTOTF).
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Figure 3.7.
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Figure 3.8. Torque Tg VS time (output of AUTOTF).
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Figure 3.10. Coordinate d, vs time (output of AUTOQ).
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Figure 3.11. Coordinate g3 vs time (output of AUTOQ).
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Figure 3.12. Coordinate dy Vs time (output of AUTOQ).
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Figure 3.13. Coordinate ds vs time (output of AUTOQ).
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IV. DISCUSSIONS AND CONCLUSIONS

1. In the field of manipulator dynamics, one of the
principal concerns of dynamicists is computational
efficiency. The derivation procedure of Kane’s dynamical
equations presented in this work apparently avoids such
problems intrinsic to the use of Newton-Euler or Lagrange
equations as: (1) introducing and subsequently eliminating
large numbers of nonworking contact forces between rigid
bodies, as required in the Newton-Euler formulation; (2)
exteﬁsive effort required to differentiate the Kkinetic
expression and large number of unnecessary arithmetic
operations, which are inevitable in Lagrangian formulation;
(3) repeatedly evaluating N(N-1)/2 inertia coefficients
which are determined by symmetric property of the inertia
matrix. Accordingly, the use of Kane’s dynamical equations
proposed here may be expected to lead to computational
algorithms involving fewer arithmetic operations than
algorithms generated by employing the best available
Lagrangian and Newton-Euler approaches.

2. A comparison of the numbers of arithmetic
operations indicates a computational efficiency, for this
algorithm applied to the Intelledex 605, similar to that
shown by Kane and Levinson [42] for the Stanford arm, who
say,

"According to Hollerbach [29], when one resorts to the
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Lagrangian approach to determine quantities equivalent
to our 7y, ..., 75 and F¢ for an instant at which g4,
«e+y dgs 91+ +-+, dg, 97, ---, dg are specified, one
must perform 2195 multiplications and 1719 additions.
These numbers are reduced to 1541 and 1196,
respectively, if a Newton-Euler technique method
reported by walker and Orin [49] is employed, and they
become 852 and 738, respectively, when either the
Newton-Euler technique discussed by Hollerbach or
Silver’s Lagrangian formulation [50] is used.”
With Kane’s method, however, Kane and Levinson continue,
“one needs but 646 multiplications and 394 additions to
accomplish the same task."
In the present work, 672 multiplications and 404 additions
are needed. The difference between these numbers and those
stated by Kane and Levinson is because of different robot
configurations. The Intelledex 605 robot consists of six
rotational links, while the Stanford Arm discussed by Kane
and Levinson consists of five rotational links and one
translational link. Moreover, the numbers discussed in the
present work could be reduced if one is willing to spend
time on working with the trigonometric identities to find
the simplest expressions for the kinematic terms.
3. Based on Kane’s dynamical equations, a fully
automatic generation algorithm of the equations of motion
has been derived. This algorithm bypasses the manual

derivations of all kinematic and kinetic ingredients,



leading in a straightforward way to the equations of motion,
reducing the amount of hand labor to a minimum. The
equations of motion derived by this algorithm is "exact" and
explicit. The algorithm can furnish computer programs to
simultaneously generate and integrate the equations of
motion or to carry out the inverse dynamics. On an IBM AT
microcomputer, the program AUTOTF takes about 0.28 second on
average to compute six torques. Although this means that it
is not feasible to perform on-line computation on an IBM AT,
it would certainly be faster than that reported by Luh,
Walker and Paul [27] if the same computer (PDP11/45) were
used, since the number of arithmetic operations required by
Kane’s method is about 15% less than for Newton-Euler’s
method employed by Luh Walker and Paul.

4. The automatic generation algorithm presented in
this work can be used for any type of linkage mechanism.
This also implies that it is highly likely that a computer
can be employed to deal with any given multibody dynamics
problem. However, due to the fact that it is extremely
difficult for a computer to recognize algebraic
simplifications, such as trigonometric identities or terms
that cancel each other, it is by no means true that it is
always best to use a general purpose multibody computer
program to carry out the requisite calculations. Indeed,
when a particular multibody configuration is under
consideration and the on-line computational efficiency is

more important than amount of manual labor, the opposite is
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true: it is better to formulate the necessary expressions by
hand than to attempt to work with an available multibody
program. When more than a few multibody configurations are
to be investigated, it is definitely better to apply an
automatic generation method rather than to work with them by
hand for it can save considerable time for the analysts.

5. Generalized speeds play a central role in the
formulation procedure of Kane’s dynamical equations.
Properly choosing the forms of generalized speeds can
significantly reduce the number of arithmetic operations.
In doing so, selection of the definitions for generalized
speeds should be made such that corresponding expressions
for partial velocities and partial angular velocities be as
simple as possible. Human analysts can accomplish this by
following the guiding idea summarized in page 21. But for
automatic generation, selecting the definitions of
generalized speeds  in this way seems to make generalized
active forces appear in a more complicated set of equations,
thus additional arithmetic operations need to be
accommodated. In an effort to avoid such problems, the
first order time derivatives of the generalized cdordinates
are simply defined as the generalized speeds in the
automatic generation algorithm; this in turn brings more
arithmetic operations that the author would not 1like to
have. Further study on this aspect is therefore suggested.

6. In performing dynamic inverse or integrating the

equations of motion, the appropriate form of the dynamic
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equations should consist of equations described in terms of
all independent position variables and forces/torques that
are explicitly involved in the dynamic equations. In other
words, the dynamic equations are expected to have a closed-
form. Deriving explicit input-output dynamic equations is
very time-consuming if either the Newton-Euler or the
Lagrangian method is employed. By contrast, the use Kane’s
dynamical equations leads directly to explicit equations of
motion. Employing the automatic generation algorithm
presented in this work can bring position variables, input
forces and/or torques and inertia coefficients all in
evidence in the dynamic equations. Therefore, the dynamic
equations generated by this algorithm are particularly

useful for either integration or to perform dynamic inverse.
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APPENDIX 1. INTERMEDIATE VARIABLES

21=(uyc3-uys3)/s;
Z22=-upS3-uyC;
Zy=uy+ (uzs3—u1c3) c2/s2
Z24=C3/8;

Z5==83/8;
Zg=ujC3-Uys;
29==2,

28=24C;

29=25C5
Z10=2guy+Zgu,
Z2115u)C41uySy
Z12=—uls4+u2c4
Z13=u3+u4

214=Cy5

215845

21657215
217=U1274%U3255
218="2137ug
Z19=u1276%u3%214
220%14%¢
221%15%¢
222=2145¢
223=2155¢
2245220411231 Up%2 1 gS¢
225=7232U17233Uy+27gCq
22621641721 4Up+ug
227=L1324
Z228=L13Z5
229=Z37u1+Z3gu,
230=L322g
231503229
232="L2C;3
233=Ly38;
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234=23001+237p
235=233u1%2334;
Z236=L33u;
237=L3ju3-L33u,
Z23g=-L3j1u;
239=(L33+Ly3) s,
Z40=(L33+Ly3)cy
2415118,
Z42=L1C4+Ly,
243=Ly184
Z44=L1+Ly1C4

Z45="Z39U +Z 4 quy+Z 91U,
Z46="240U1"239UxtZous+ Ly Uy

2472430172441
Z48=L1C4+L,
Z49=Losy
Z50=L1tLycy
251=L33+Ly3~Ls;
252=239C5+24 0S5
253=240%5"239S5
254=215251"252
2552537214251
256=241C5%24855
Z2g7=Lyss
258=248%5724155
Zg9=Lycs

260=Z54U 1 255UntZ5gu3tZguy
2g1="Z49u tZgqu,
Z2ga="ZgguytZguy+tZggus+Zsguy

263=L33%Ly3
264=215%2¢3~252
265=253-214263
266=256~Le3
2¢7=257"Le3
Z26g="249"Lg3%214
269=250"Le3215
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270=26441%2g5U2+2ggU3t2Zg7uy~Lg3us
271=2ggu1*Zggu,
272="ZgsU1+ZgquptZsgus+Zsguy
Z73=-(szs3z3+c2c3zz)/sz2
Z74=(Cp8,22-85C323) /5,2
Z295=2731+27,4uy
276=273C27232,8,
297=274C2"23258,
Z78=-(uls3+u2c3)z3
Z79=(uy63-uy83) 25
2g0=Z76u1+2774;
Zg1=(cqup=s,uy)uy
282=-(c4ul+s4u2)u4
Z2g3="5y5 (uytug)
2g4=Cy5(uytug)
Zg5=2Zg3uytZgyu,
Zge="ZgaU1tZg3uy
287=283C¢~21486Y¢
288=284C¢~21556U¢g
289=2g3Sg+Z14C6Ug
290=28456%215%U¢
291=%2g7u3+Zgguy+Z;gCglg
292=7%ggU3tZgouytZ gSglg
Zg3==2g4uy+Zg3u,
Z94=L13(Z73u1+Z7,4u,)
Z295==21Z39

Z96=L2227¢

297=L32277

Z9g=L328323

Z99=L22C32;
2100=296W1%297U21Z27235
2101210234~ %6235
2102=%9gU1%299up"Z723,
2103=23842"Z237u3
2104=236U3"238u
2105=23741~Z236U;
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Z106=" (L33+Lgz)chuy

Z107=" (L33+Ls3) s4uy

Z108=L1C4u4

Z109="L1S4uy

2110"L41%44

2111="Lg184u4

21125%10641%210792%2108U3+ (21224772132 46)
211357210791%2106U2% 21093+ (213%457211247)
2114=2110917211192+(211246-212245)
2115284251~ (L33+Ly3) (Ugtug)cys
21167283251+ (2107-239U5) C5~ (=21 06+Z40U5) S5
Z117=L1C45 (ug+ug) +Lycgug

2118=LzCs5us

Z119=LpC4uy

Z120="Lysquy
2121="L184C5U4~24gS5U5~Z10gS5~ %41 55
2122="Lysgug
2125%2115U1%211642%2117U3%2118U4+218%627 219261
2126="2119U1+2120U2+219Z60"217%62
2127="211691%2115U2+2121U3+2122U4%217%61218%60
Z128=2g4263~ (L33+Ly3) (Ugtug)cyy
2120="283263%(Z2107-239U5) 5~ (~Z106+Z40Y5) S5
21302119 Le3Zg3

213152120 L3284

2132218272"21927;

2133%2192707217%272

2134=%217%2717218%70
2135=212gW1+2)59Up+2717U3+27 71Uyt 2137
213672130911 213192%2133
2137=72129U1%21 28U+ 2751 U3+ 2155472134
2152="B37,

Z153="MpZ37

2154=215224%%153227

2155=215225%2153Z28

2156=2152275%Z153294

2157="B3Z5
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Z2158="MpZyg

2159=215724%2158%227

2160=215725%2%1582%238

2161=2157275%2158%94

2162=(B3=By) 2521

Z163=(B1=B3)ZgZ1 g

Z164=(B3=B1)Zg2Z4

Z165=-(B1C32+B,5,2+B32g2+mpZ 442+ mpZ4,2)

Z166=- (-Blc3s3+B2c3s3+B3zszg+mBZ3oz3l+mBZ3ZZ33)

2167=-(Z1g,C3+21g353+%16425+B1C3%7g+B2S3279+B3Zg2g0
+mpZ302100*MpZ322102)

Z168=~ (~B183C3+ByC383+B32gZg+mpZ3gZ3)tMpZ3;233)

Z169=(B1S3°+ByC3?+B32g%+mpZy; 2 4mpZy3?)

2170="(=B153278-21653+B5C3279+27163C3+B3Z292gg+216429
+mpZ312100*MpZ332102)

2171=(C3-Cy)uzu,

2172=(C1=C3)uju,

2173=(C3=Cp)uju,

Z174=-C1-mcL33?

2175=mcl33L3;

2176="2171*Mcl332704

Z17g=-Cy-McLy; 2-mcLs 52

2179="2172"Mcl332103tMcl312105

2180=Mcl31l33

Z1g1=-C3-mcLl3;?

2182="2173"Mcl312104

2183=(D3~D3) 27523

2184=(D1~D3) 27123

2185=(D2-D1) 27112,

Z1g6== (D1¢42+Dy8,24mp (2392424 0%+243°))

2187=(Da=Dy)cysytmpZy3Zyy

2188=Mp239241+MpZy0242

Z189==C4(D12g1%21g3) +54(DyZgy+27184) +Mp(Z2392712%%40%2113
=2432114)

Z1g9a=-D1842-Dyc,%-mp (2492 +239%+244°)

2190="Mp(Z40%417239%42)



Z191=84(D12g1%21g3) =cy (DyZgo+Z g4 ) +MD(=240211 >

+2392113%2442714)
Z192=-D3-Mp(Z47°+24,2)
21932185 Mp(2412112%2422113)
2194=MpZg0Llyg1
Z195=MpZ3gly;
2196="D3~mply124,
Z197=-D3-mpL, ;>
Z198="Z185 ™plg1%2113
2199=(E3=E3) 218219
2200~ (E1-E3) 277219
2201=(E3~E1) 27721

__ 2_ _ 2 2 2
2202="E1214°-E32762-Mp(25,4“+Z49"+255")
2203="E1214215"E3294216 Mg (254255249250~ 254255)

2504=Mg(Z54256-255Z5g)
2205 Mg (254Z257-Z552Z59)

Z206="214(E12g5+2799) =21 6(E3286+Z201)
-mE(2242125-2492126-25521%7) ,
2507 E1215°"E327 4 Mg (Z55°+Z50"+25,")

2508 Mg(Z55256+254Z5g)
2209 Mg (Z255257%254259)

2210="215(E12g5+2199) =Z14(E32g6+2301)

Z311=-Ex~Tg (Z56°+Z5g°)
2212="Ex-Mg(Z56Z57+Z55259)
22132200 ME(Z562125%Z582127)
Z314=-Ex Mg (Z57°+Z59%)
22152200 Mg (2572125%2592127)
2216=(F3=F3)235Z5¢
2217=(F1-F3)Z3425¢
2218=(F3=F1)254255

Zy10== (F1220°+F 525, 24F32 62 4mp (26, 2+26g%+2657))
220" (F1220221%F3255253+F32142716+MpZggZeg)
2221"F122056"F2222C6 M (264266 265258)
2222=F122086-F22,5C6 Mp(Z64267-265Z59)

2923F125086"FZ;5CetmpZg Lg3
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2224="220(F1291+2316)+233 (-F3293%2317) =216(F3293+2Z3713g)
"M (2642135+2682136"2652137)

Z325=" (F12312+F 25324 F32)  24mp (265%+2692+2642) )

2226=F122156"F2233C6 M (Z652661264253)

2227"F12218¢-F2253c6 M (2526712592 64)

2228=F12315¢"F22,3Ce+tmpLlgsZgy

2229=7221(F1291%2316)+233(2317 Fp295) =214 (F3Z293+Z313)
“Np(Zg521351269%213612642137)

Z330=" (F186°+F 6% 4mp (2662 +2557) )

23317 (F186°+FCe%+np (26 6267+ 258259) )

Z332==(F186°+FCe%~mpLg3Zgeg)

2234=5¢(F1291%2216) *C(2317-F3293) “Mp(Z66Z135+2582137)

2335== (F186°+FCe%+mp (2g724259%) )

Z336=" (F186°+F5ce?-npLg3Zg7)

2237_56(F1291+Z216)-c6(F2292-2217)-mF(ZG7zl35+259 137)

Zp38=-F156°~FpCe2-mpLgs2

2239=S¢(F1291%2216) *C(2317-F2293) +MpLg3Z1 35

2240="F321¢

2241="F3274

2242="F3293-%333

2243=Z156%2167%721761%2189%220612%224

2244=Z161%2170%2179%2191%22101%229

2245=2182%2193%2313%2334

2246=%198%2215%2337

2247=2200%2239

2248=2242

Z2251=MpS]

2252=2251%27

22532351228

2254=MpS1C5

Z255="MpS]S;

2256=2302254%232Z255

2257=2312254%233Z355

2258=C1C3-Slcz S3

Z259="Mcl33235g

2260~Mc(L33(81CxC3+C83) +L315,S))



Z2617Mcl312258
2262=51C2C34+C 1S3,
2263=C1C34751C2834

Z264="S183

2265~ Mp(239%262%240%2632432264)
2266=Mp(Z402262"2392263"244%264)
2267 Mp(Z41%262%2422%263)
Z268=Mply12263
2269=51%2C345%C18345

2270=S183

22717C1C345751C28345
2272"Mg(254%269249%270"255%271)
2273=Mg(2552269%250%270%254%271)
2274~mg(Z56236912582271)

2275~ Mg (Z57236912592271)
2276r(Z642269%2682270265%271)
2277"mp(Zg52269%2692270%264%271)
Z278=Mr(ZgeZ269%7258%271)
Z279"Mp(Z6722691Z592271)
Z280="Mrlg3%2269
22819(Z252+23561 22591 2265122721 2276)
2282=9(2353%2357%2360%226612273%2277)
2283=9(Z261%226712274%2278)
Z284=9(Z268%257512279)

Z2859%280

X11=2154%2165%2174%2186%2202%2219
X12=2155%2166%2187t2203%2220
X13=2175%2188%2204%2221
X14=2194%2205%Z222

X15=Z323

X16=2240

X217X12
X22=2160%216972178%2189a%2207%2225
X23=2190%2208%%226
X24=2195%2209%Z2227
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X25=2328

X26=2241

X31=X13

X327X33
X33=2181%2192%2311%2230
X34=%2196%2212%223;
X35==Ex+Z33;
X36=0.0

X417X14

X42=X24

X43=X34
X44=2197%2214%2235
Xy45="Ex*Z233¢
X,6=0.0

X51=X15

X52=X35

X53=X35

X54=Xy5
X55="ExtZ538
X5g=0.0

X61=X16

Xg2=X26

X63=X63

Xe4=X46

Xe5=X56

Xe6="F3
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APPENDIX 2.
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PROGRAM TORQUE

.
.

.

.

* WRITTEN BY: TINGLIN NIE
. DATE WRITTEN: OCT. 1986
.
.
.
.
.
.

THIS PROGRAM IS TO CALCULATE THE TORQUES APPLIEO TO
EACH OF THE SIX LINKS OF INTELLEDEX 6@5 ROBOT THAT
ARE NEEDED TO CARRY OUT A SPECIFIEO MOTION.

-
»
-
»
.
»
»
»
»
*
.

R L L N N N N R N RN

PROGRAM TORQUE

IMPLICIT DOUBLE PRECISION (A-Z)

INTEGER I ,N,NPRINT

COMMOM/ TANDR/TIME , TSPAN
COMMON/COORD/Q1,Q2,03,04 ,Q5,Q6 ,QP 1,QP2,QP3 QP4 ,QPS ,QP6
COMMOM/ACCEL/QODP1 ,QDP2 ,QDP3,QDP4 ,Q0PS ,QDPE
COMMOM/GSPD/UY U2 ,U3,U4,U5 ,UB ,UP1 ,UP2Z ,UP3 UP4 ,UPS ,UPB
COMMON/STROT/L12,L 13,122,038 ,L33,L41 ,043,L52,L63,L1,L2
COMMON/IPTDT/AM,BM ,CM,OM ,EM ,FM ALY ,AI2 ,AI3,811,812,B13,
. cly,c12,c13,011,012,013 ,E11 ,EI2 ,EI3,FIt ,FI2,FI3
COMMOM/OUTT/T1,T2,7T3,74,75,T6

OPEN (5 ,FILE="O0ATAL ")

OPEMN (8 ,FILE="0UT1")

OPEN( 9 ,FILE='10UT1")

INPUT THE VALUES OF MASSES, INERTIAS, MASS CENTER COORDINATES

READ (5,180)AM,8M,CHM DM EM FH
100 FOKMAT (6F7.4)
READ (5,1008) Alt ,AI2 AI3 8I1t,812,813
READ (5,100) CIv,CI2,C13,001,012,013
READ (5,100) EIt ,EI2 EI3,FIV FI2 FI3
READ (5,110) L12,L13,122,L31,L33,L41,L43,L52,L63
118 FORMAT (9F7.4)
READ (5,120) Lt,L2
120 FORMAT (2F7.4)
KEAD (5,130) TSPAN
READ (5,130) TSTEP
130 FORMAT (F7.4)
READ (5,135) NPRINT
135 FORMAT (14

PRINT TITLE FOR THE OUTPUT

WRITE (0,140)
149 FORMAT (////,30X,t6EHTABLE OF TORQUES/20X,
. 3B8HNEEDEO TO CARRY-OUT A SPECIFIED MOTVION)
WRITE ¢8,15@)
tSQ FORMAT (///,1X ,19HTHE GIVEN DATA ARE:)
WRITE (08,160)
16@ FORMAT (//,3X ,23HMASS OF EACH LINK (Kg):)

PROGRAM TORQUE

WRITE (B8,178) AM,BM,CM DM EM FM

170 FORMAT (//,8X ,SHMA = ,F7.4/8X ,SHMB = ,F7.4/8x ,SHMC = ,F7.4/
, 08X ,5HMO = ,F7.4/8X,SHME = F7.4/8X ,SHMF = ,F7.4)
WRITE (8,180) AIt ,AI2,AI3,811 ,812,813,CIt,CI2,CI3,
. oIt ,0l2,013 ,EIt ,EI2 EI3,FII,FI2,FI3

180 FORMAT ¢(// ,3X,31HINERTIAS OF EACH LINK (Kg-m*2)://

8x ,GHAt ~ ,F7.4,08X ,SHAZ = F7.4,0X,SHA3 = ,F7.4/
, X ,SHB! = ,F7.4 ,8X,5HB2 = ,F7.4,8X ,6HB3 =~ ,F7.4/
, 8X ,5HCt = ,F7.4,8X ,SHC2 = ,F7.4,8X,5HC3 = F7.4/
. X ,5HD! = ,F7.4,8X,5HD2 = ,F7.4,8X ,5HD3 = ,F7.,4/
. X ,SHE1 = ,F7.4,8X ,SHE2 = F7.4,0X ,5HE3 = ,F7.4/
, 8X,SHF! = ,F7.4,08X,5HF2 = ,F7.4,0X ,5HF3 = ,F7.4)
WRITE (B6,190) L#2,L93,1L22,L31,033,141,L43,L52,L63

190 FORMAT (//,3X,40HTHE COORDINATES OF MASS CENTERS (meter)://
’ 68X ,6HL1Z = ,F7.4/08X ,6HL13 = ,F7.4/8X ,6HL22 F7.4/
. 68X ,6HL31 = ,F7.4/0X ,6HL33 = ,F7.4/8X,6HL4] JF7.4/7
. 68X ,6HL43 = ,F7.4/6X ,6HLS2 = ,F7.4/8X ,6HLE3 = ,F7.4)
WRITE (B8,200) v1,L2

200 FORMAT (8X,EBHLY = F7.4/8X ,6HLZ = ,F7.4)
WRITE (B8,210)TSPAN ,TSTEP

210 FORMAT (/73X ,V{HOTHER DATA://
) 08X ,12HTIME SPAN = ,FO.4,68X,

12HTIME STEP = ,FB.4)

WRITE (8,220)

220 FORMAT (// ,3X ,36HTHE TORQUES APPLIED TO EACH LINK (Nm):)
WRITE (8,230)

230 FORMAT (//,}X ,4HTIME 6X,2HTt ,9X,2HT2 ,9X ,ZHT3,9X ,2HT4,

*

. 9X ,2HTS ,9X ,2HTE//)
[
c MAIN PROGRAM TO CALL THREE OIFFERENT SUBROUTINES
[

TIME=0.0

N=IDINT(TSPAN/TSTEP)

N=N+2

00 250 I=1,N
c TO CALCULATE GENERALIZED COORDINATES
CALL GCOORD
c TO CALCULATE GENERAL IZED SPEEDS
CALL GSPEED
TO CALCULATE THE ACTIVE FORCES, INERTIA FORCES AND
FINALLY CALCULATE THE TORQUES
CALL CLCLTN
WRITE (9,240) TIME,T},72,73,74,75,T6
240 FORMAT (FS5.3,1X ,6G16.8)
IF(I.EQ.1 .OR. MOD(I ,NPRINT).EQ.Q) THEN
WRITE(B,235) TIME,Tt,¥2,73,74 75,76
235 FORMAT(FS.3,1X ,EFt1.5)
EMDIF
TIME=TIME+TSTEP
250 CONTINUE
STOP
END

oo

c
C THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED COOR-
c OINATES, ANGULAR VELOCITIES AND ANGULAR ACCELERATIONS

IRAN



UP6=QDPB

SUBROUTINE GCOORO c
IMPLICIT OOUBLE PRECISION (A-Z) RETURN
COMMON/ TANOR/ T IME ,TSPAN ENO
COMMON/COORO/Q1,02,03,04,05,06,0P1 ,0P2 ,QP3 QP4 ,0PS ,QP6 c
COMMON/ACCEL/QOP1 ,QOP2,Q0P3 ,Q0P4 ,Q0PS ,QOPE C THIS SUB ROUTINE IS TO CALCULATE THE ACTIVE FORCES,
C THE INERTIA FORCES, AND FINALLY CALCULATE THE TORQUES.

T=TIME c
TF=TSPAN SUBROUTINE CLCLTN
P1=DACOS(-1.000) IMPLICIT OOUBLE PRECISION (A-Z)
QQ=T-TF«DSIN(2+PIsT/TF)/(2eP1) COMMON/TANOR/T IME ,TSPAN
Q1=0Q+P1/(3.sTF) COMMON/COORD/QY ,02,03,Q4,05,Q6,0P1,QP2,QP3,Q0P4 ,QP5,0P6
Q2=P1/2.-QQ+PI1/(B.*TF) COMMON/ACCEL/QDP ,QDP2,QDP3,Q0P4 ,QDPS ,QDPE
03-01 COMMON/GSPO/UY U2 ,U3,U4 ,US,U6 ,UP1 ,UP2,UP3 ,UP4 ,UPS UPE
Q4=Qt COMMON/STROT/L12,L13,L22,L31,L33,L41,L43,L52 L63,L1,L2
IR COMMON/IPTOT/AM,BM,CM,DM,EM FM,AT1 ,AT2 ,A13 B11 812,813,
06-Q1 , ciy,c12,c13,011,012,013 ,E1t ,E12 E13,F11,FI2 FI3
QP I=PIs(1.-DCOS(2.sPIeT/TF))/(TFe3.) COMMON/OUTT/T1,72,73,74,75,76
QP2=-QP1/2. c
QP3=GP1 [ OEFINE SYMBOLS
QP4=QP? c
QPS-QP 1 6=9.81
QPE-QP1 C1=0C05¢(Q1)
QDP1=2,sP1es2/(3.+TFs#2)sDSIN(2.sP1sT/TF) €2=0C05(Q2)
QOP2=-QDP1/2. €3=DC0S(03)
QOP3=QDP1 C4=0C0S(Q4)
QDP4=QO0P 1 €5=DC0S(QS)
QDPS=QOP | C6=DCOS(Q6 )
QNP6 =QOP 1 S§=DSIN(Q1)
RETURHN §2=05IN(Q2)
END §3=DSIN(Q3)

$4=0SIN(Q4)

THIS SUBROUTINE 1S TO CALCULATE THE GENERALIZEO SPEEOQS §5=DSIN(QS)

S6=DSIN(Q6 )
SUBROUT INE GSPEED €34=DCOS(Q3+Q4)
IMPLICIT DOUBLE PRECISION (A-2) €45=DCOS(Q4+0Q5)
COMMON/COORO/Q1,02,03,04,05,06,0P1,0P2,QP3 ,QP4 ,QPS ,0P6 €345=-0C05¢ Q3+0Q4+05)
COMMON/AGCEL/QOPY ,QDP2,Q0P3 ,QDP4 ,QDPS ,QOPE §34=DSIN(Q3+04)
COMMON/GSPD/UT ,UZ U3 ,U4,US UG ,UPT ,UP2 UP3 UP4 UPS UPE S45=DSIN(Q4+405)

5345-D51N(Q3104+405)
52=0SIMCQ2) c
$3=DSINCQ3) C CALCULATE INTERMEDIATE VARIABLE 'S
€2=0C05(Q2) c
€3=0C05(0Q3) Z1=(U1+C3-U2#53)/52
U1=GP1+524C3-QP2+53 12=-U1+53-U2+C3
U2=-QP1+52453-QP2+C3 13=U3+(U2#53-U19C3)+C2/52
U3=GP1+C24QP3 14=C3/52
Ua=QP4 25=-53/52
US=QPS 16=U1+C3-U2#53
U6 =0P6 17=-12
UP1=Q0P1+52+C34QP1+QP2#C2+C3-0P | #*QP3s52+53~Q0P2+53-QP2sQP3+C3 18=74+C2
UP2=-(QOP1+52¢534QP 1 +QP2+C253+QP | *QP3+52+C3+Q0P2+C3-QP2+QP3+53) 19=15+C2
UP3=QOP1+C2-QP 1 +QP2+524Q0P3 110=78+U1+29+U2
UP4-Q0P4 Zi1=Ut*C4+U2+54
UPS5=Q0PS 112=-U1+54+U2+C4

221



113=U3+U4

114=C45

115=545

116=-115
L17=U1%714+U2#215
118=-713-U5
Z13=U1e2161U24714
120=714+C6

121=115+C8

122114756

123=115+56
7124=720°U1+7212U2+718+S6
225=-7122U1-723+U2+4218+C6H
I26=116°U1+714°U2+UB
127=L 13«24

128=L13+1S
129=127+U14228+U2
130-122+18

131=L2279

132=-1L22+C3

133=1.22+53
134=130+U1+2314U2
135=732«U14233+U2
136=L33«U2
237=L31+U3-L33.U
138=-L31.U2
139=(1L33+4L43)e54
140=(133+L43)sC4

141=L 1454

142=L1+C4+L 4}

143=L 4154

244=L1+L41+C4
145=-7139+U1+740Q+U2+241+U3
146=-740°U1-739+U2+Z42+U3+L 4114
147=743°U1-244+02
148=L1+C44L2

149-12+54

150=L1+4L2+C4
IS1=L33+L43-L52
152=739+C5+240+55
153=740+C5-239+55
154=715751-752
155=153-114+751
156=741+C5+748+55
157=1L2+S5
158=748+C5-741455

159=L 2«C5
I160=154+U1+755+U2+256%U3+757«U4
161=-749+U1+750+U2
162=-7155%U1+754+U2+7508+U3+259+U4
163=L33+L43
164=715+163-152
I65=153-114+763
166=156-1L63

167=157-L63

168=-749-L63+714
169=750-L63+715

270=1644U1+7652U2+7664U3+767+U4-LE3US

171=168+U1+269+U2
172=-7165+U1+7644U2+758+U3+759+U4
173=-(G2¢G3¢734C24C3072)/520 42
174=((C2953%72-52+C3423)/52n+2
Z75=173+U1+4274+U2
176=7732C2-22+74452
I77=174%C2-72+75452
Z78=-(U1253+4U2+C3 )23
Z79=(U1eC3-U2#53 )23
180=776+U1+277+U2
181=(C4+U2-S4+U1 )eU4
782=-(C4*UI+S49U2)4U4
183=~-545+(U4+US)
184=C45+(U4+US)
185=783+U1+784+U2
186=-784+U1+283+U2
187=7834C6-114+56+UB
188=784+C6-715+S62UB
189=783+S6+714+CE+UE
190=784+56+715+C6+UB
191=787+U1 +71882U2+218+CE*UE
192=789+U1+790+U2+718+56+UE
193=-784+U14783+U2
194=L13(Z73+U1+774%U2)
195=-71+729

196=L22+276

197=L22277

198=1.22+53+73

199=1 22+C3+23
1100=796«U1+7972U2+27+235
1101=710+734-26235
1102=798+U1+4799+U2-27+234
1103=238+U2-737+uU3
2104=7364U3-738+U1
1105=737+U1-236+U2
1106=-(L33+L.43)+C4wU4
Z107=-(L33+1L43)s54U4
2108=L14C4U4
2109=-L1+54+U4
Z110=141+C4+U4
Z111=-L41e542U4

Z112=7106°U1+Z107+U2+Z108%U3+(Z12%247-213+246)
Z113=-21072U1+7106%U2+Z109¢U3+(Z134745-2114247)
ZV14=21100U1-Z1110U2+(2119246-212+145)
2115=7684+751-(1L33+L43)#(U4+US)eC45
Z116=-2832751+(Z107-2139+US)*C5-(-2106+Z40+US5)sS5

Z117=11«C45«(U4+US )+ 2+C5#US
2118=1.2+C5*US
1119=L2+C4»U4
Z120=-1L2+54+U4

2121=-1L1954+C5¢U4-748+55+U5-7108+55-241+C5+US

1122=-L2+55+US
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2125=Z115+U1+Z116%U2+2117°U3+Z1182U4+Z218°262-219+761

7126=-21130U1+42120eU2+4719+160~217+162

1127=-2116%U1+Z115¢U2+421212U3+471225U4+117+161-118+160

21128=784+763-(L33+L43)+(U4+US)*C45S

2129=-183263+(72107-239+US)sCS-(~Z106+7402U5)+55

2130--2119-L63+183

Z131=2120-L63+764

2132=718+772-219+171

2133+2194270-2172272

2134=217+271-118+170

Z135=7128eU1+42129¢U2+2117°U3+Z1182U4+7132

Z1136=2130°U1+21312U2+2133

Z137=-1129¢U1+21282U2+71210U3+7122°U4+2134

2152=-A12+14

2153=~-AM*227

1154=Z152+74+21653127

2155=7152+75+1153+728

2156=2152+775+7153+794

2157=-A12415

2158=-AM+728

2159=7157+74+42158+727

716@=7157+75+71581228

Z161=2157+175+7158+784

1162=(013-B12)2717+710

Z163=¢B811-813)eI6+210

2164=(812-Bl1)976e77

Z165=-(BI19C3902+B12053022+4013470¢22+0Me130022+4BMe732022)

7166=-(-B114C3e53+BI12+C3¥S3+BI3+7879+BM#23007314BMe1324733)

Z167=-(1162¢C3+I163+53+7164+ZB+BI1+C3+770+B12253+779+B13+768+780
+BM+Z230+7100+BMs732+7102)

7168=-(-BI10534C3+BI2#C3¢53+4B132708¢29+BM*23@+231+BM¢132+733)

Z169=~(BI10530424B12+C3¢22+B130790¢2+4DMeI31002+BMs733842)

2170=-(-B119530278-2162+53+B12+C3¢279+2163C3+013794780+7164+29

. +BMeZ31+71004BM* 21332102

Z171=(CI3-CI2)eU24U3

2172=(CI1-CI3)sUIeU3

Z173=(C12-C11)=U12U2

2174=-CI1-CMeL33ue2

Z175=CMeL33eL3)

2176=-71714CML 337104

2178=-C12-CMeL31042-CHsL330e2

Z2179+-2172-CMeL33+7Z103+CH+L 3142105

2180=CMsL31 L33

218t=-CI3-CM#L3fes2

Z182=-7173-CMeL3}+7104

7183-(DI3-012)#212.713

Z2184=(DI1-D1312Z112713

2185=(DI12-011 02112212

Z186=-(D119C4022401205420240Ms(73920024740042+743002))

Z187=(DI2-011)2C42S4+DMe743+744

2188=DMe739+74140M2740.742

Z189=-C42(D11+201+42183)+544(D1247082+7184)+0Me(Z3927112+740+7113

, -7437114)

Z189A=-011254922-0124C442-DMs( 2740 22+71390e2+7440¢2)

2190=-DMe(740°741-2390242)

’

2191=-54+(DI122814Z183)-C4+(DI2+782+7184 }+DMe(-740@+7112+4239¢2113
+28452118)

7192=-013-0Me (Z41%22+242042)

7193=-7185-0Ms(Z4122112+24242113)

7194=DM*74@sL 41

2195-0H+239+0L41)

7196=-D13-0MsL 414242

2197=-D13-DMeL4}0e2

2198=-Z185-DMeL 4122113

2199~(EI3-EI2)+218+219

2200-(E11-E13)+Z17+719

1201=(EI2-E11)+Z174218

2202=-E11Z14%#2-E134216#s2-EMe( 2544 22+7499 424755422}

2203-E11 214 215-E134714+216-EMe(254+255-749+750~254«255)

2204=-EM=( 254+ 756-255+250)

1205=-EMs{( 154 157-155+759)

7206=-214+(EI1+285+2199)-216+(EI32206+1201 )~EM+(154+2125~249+7126

, -155¢2127)

7207=-E110215%02-E13471442-EMn( I550#2+7500 a2+4254022)

2208--EM» (255+256+2540258)

7209=-EMs( 255+ Z57+154+753)

2210=-215(E11+Z85+2193)-214+(E13+206+2201 )-EM* (2552 2125+250+2126
+I5402127)

2211=-E12-EMs (1564 #2+25Bu12)

212=-E12-EMs (256+257+258+259)

1213=7200-EM= (156 +2125+258+2127)

2214=~E12-EMs (257%+2+253%42)

1215=1200-EM=(257+2125+259+2127)

1216=(F13-F12)2225¢226

2217=(FI1-F13)22242226

1218=(FI2-F11)s1242125

1219=~(F110720%+2+F 20722+ 2+F [34Z16+2+4FMs (1642224260042

, +265421)

1220=-(F11+220121+F12+122+223+F13+Z14+Z16+FM+168+769)

2221=F114220+56-F124222+C6-FMs( 264+ Z66~265+258)

2222F11+220+56-F [22222+C6-FMa ( 2648 167-265%259 )

1223=F11+220+56-F[24222¢CE+FMaZ64+LE3

1224=-720(FI1+291 4121614222+ (-F124292+2217)-216+(F132293+2218)

, ~FMe{ 764 Z135+1608% 7136~ 165+ 2137)

1225=-(FI10221082+F12¢723052+F 13071442 2+4FMe(Z6Se22+769422+764542))

7226=F11#721%S6-F [24223+CE6-FMe( 265+ Z66+264+758)

2227=F11+221%56-F12+223sC6-FMe( I6GZ67+159+264)

1228=F11%721%S6-F12¢723CE+FMsL63+ZES

7229=-121+(FI12291+2216)+2232(2217-F125292)~214%(F13+793+1218)

; ~FMe (Z65%Z135+263+2136+26442137)

7230=-(F 1156 42+F[2eCE* s 2+FMe( 266+ +242584+2))

1231=~(FI19SE##24F I20CE*#2+FMa( 766+ Z67+250%259))

2232=-(F11956#22+F12+CEo#2-FMoLE3*Z66 )

123456 (FI1# 29142216 4CE*( Z217-F120292)-FMs (216627 135+758+2137)

7235=-(FI1eGB¥+2+F124CEas2+FMa(Z67222+253242))

7236=-(F11456%#24F12eCE#22-FMaLE32Z67)

2237=S6«(FI1+291+42216)-CE#(FI124292-1217 )-FM=(Z67+2136+15942137)

7238=-FI1+56%22-F12¢C6e+2-FMeLE30s2

7239=56e (FI10 29142216 )+CE*( Z217-F122792 1+FMsLE347135

2240--F13+216

»
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1241=-F13+714 KI2=X212UP1+X22#P2+X23+UP3+X242UP4+X25+UPS+X26+UPE+2244
1242=-F13+293-7218 KI3=X31#UP|+X32+UP2+X33eUP3+X34+UP4+4X35¢UP5+X362UPE+7245
KI4=X412UP1+X420UP2+X432UP3+X442UP44X45+UP5+X46+UPE+7246
KIS=X51*UP1+X522UP2+X53+UP3+X54#UP44X55* UPS+XG6+UPE+7247
KIE=XE1sUPI+X622UP2+XE39UP3+X64#UP4+XE5+UPS+XEE*UPE+2248

1243=1156+4+21167+71176+7189+7206+2224
1244-7161+42172¢7179¢21914721042229

(e Mol

1245=7182+71193+4721341234 %
1246=7198+17215+71237 % CALCULATE THE GENERALIZED ACTIVE FORCES
1247=1200+2239 %
1248=7242 1251=AN=S1
1252=1251+1227
CALCULATE THE GENERALIZED INERTIA FORCES 1253=1251+228
1254=BMsS1¢C2

Xt1=2154+7165+7174+7186+2202+2219
X12=715547166+2187+71203+7220
X13=7175+7188+7204+2221
X14=7194+7205+42222

X1622223

X16=7240

X24=7159+7168+2187+2203+2220
X22=7160+7169+7178+71B9A+71207+42225

1255=-BM+S1+52

1256=130%2254+732+1255
1257=131+7254+733+7255
12658=C1+C3-54C2+53

1259=-CMeL 337258
I260Q=CMe(L33+(S12C2¢C3+C1eS3)+4L31051452)
1261 =CM+L.31+7258

1262=519C2+C34+C 12534
1263=C1+C34-51+C22534

X23=1190+71208+2226 1264=-51952

X24=7195+¢71209+7227 1265=-DM#(7139+7262+740+7263-243+1264)
26=7228 1266=0M+( 740+7262-7139+7263-144+7264)

X26=7241 I1267=DMe(74197262+742+7263)

X31=7180+7188+7204+1221

1268=DM+L 417263
71269=51#C2+C345+C145345

X32=7190+7208+2226 1270=511+52

X33=718147192+47211+1230 21271=C1#C345-51+C2+5345
X34=7196+¢2212+1223) 2272=EMe(75407268~749°2270-155+1271)
X35=-E1247232 1273~EMe(15542269+7507270+154+2271)
X36-0.0 1274=EM«(I56+2269+7158+2271)

X41=7194+71205+7222

1275=EMe{7157#2269+259+2271)
1276=FM+(764+7269+160#2270-165+2271)

X42=7195+1209+1227 1277=FMe( 2165+ 7269+2169+7270+164+2271)

X43=7196+71212+1231 1278=FMe(Z6621269+25822271)

X44=7197+1214+42235 I1279=FMe(7I67#1269+159+2271)

X45=-E12+1236 1280=-FM+L63+2269

X46=0.0 21281=G+(2252+2256+2259+7265+21272+1276)
12082=6#(7253+21257+1260+1266+2273+1277)

X51=7223 1283=6+(7261+42267+2274+1278)

X52=7228 1284=6+(21268+2275+1279)

X53=-E12+47232

X54=-E[241236 % :
X55=-E12+7238 c CALCULATE THE TDRQUES NEEDED TO CARRY DUT THE SPECIFIED MDTION
X56-0.0 %
T3=-(K13+7283)
X61=2240 T4=-(K14+47264)
X62=1241 TS=-(KI5+7285)
X63=0.0 TE=-KI6
X64-0.0 %
X65-0.0 Vi=-KI1-7281+T73+28
X66=-F13 U2=-K12-71282+73+79
DET=-1.0/52
KIi=Xt1aUP|+X120UP24X130UP3+X14+UP4+X150UPS+X162UPE+2243 c

2285=6+7280

SZt



C
C
c

Tt=(U2a53-U1+C3)/DET
T2=(24+9y2-75+V1)/DET

RETURN THE CALCULATED VALUES TO THE MAIN PROGRAM

RETURN
END
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APPENDIX 3.
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PROGRAM ANGLE

WRITTEN BY:
DATE WRITTEN: OCT.

TINGLIN NIE
1386

NAMICAL EQUATIONS FOR INTELLEDEX 605 ROBOT. WITH THE
GENERALIZED ACTIVE FORCES GIVEN, THIS PROGRAM WILL
SOLVE THE DYNAMICAL EQUATIONS FOR THE GENERALIZED
COORDINATES, THE ROTATION ANGLES Q1,Q2,03,Q04,Q5 ANO Q6.

.
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-
THIS PROGRAM 1S TO FINO THE SOLUTION OF THE KANE'S DY- .
-
-
-
-
-
-

N N N N N N NN Y YR ]

PROGRAM ANGLE

IMPLICIT DOUBLE PRECISION (A-Z)

INTEGER I,ITER,ITIME ,ITMAX,J ,M ,MAXITR ,N ,NPRINT ,TQTYPE
DEMENSION AC12,12),U(12),00(6),QD0(6),U(6),Q0LD(123,Q(12) ,FN(12)
DEMENSION TQ(12),Q0LDEST(12)

COMMON/TYPE/TQTYPE

COMMON/ TANOR/TIME  TSPAN

COMMON/ STEP/TSTEP
COMMON/STRDT/L12,L13,L22,L31,033,L41,L43,L52,L63,L1,L2
COMMON/IPTDT/AM ,8M ,CM DM EM ,FM ATl ,Al2 ,A13 ,BI1 B12 BI3,
. cIt,c12,ct3,011,012,013,EN ,EX2,EI3,FE1 FI2 FI3

COMMON/EPSE/XESPI FEPSI
COMMON/OLD/QOLD ,V ,BTA,TQ ,QOLDEST ,ITIME
OPEN (7 ,FILE="DATA2"}

OPEN (B ,FILE='TOUT!')

OPEN (9 FILE='AOUTI')}

INPUT THE VALUES OF MASSES, INERTIAS, MASS CENTER COORDINATES

REAO (7,100)AM,BM,CM,DM EM FM

100 FORMAT (BF7.4)

READ (7,100) ALl ,Al2,A13,811,812,813
READ (7,100) CI1,CI2,C13,01,012,013
READ ¢7,100) EIV EF2,EI3,FE1 ,FI2,F13
READ (7,110) L12,0L13,022,L34,L33,L4),L43,L52,L63

113 FORMAT (9F7.4)

READ (7,120) Li,L2

120 FORMAT (2F7.4)

REAQ (7,130) TSPAN
READ (7,130) TSTEP

130 FORMAT (F7.4)

READ (7,135) (Qac¢1),I=1,6)
5 FORMAT (6F12.9)
READ (7,135) (QDO(1),I=1 6)
READ (7,+) MAXITR ,ERRMAX ,XEPSE ,FEPSE NPRINT

137 FORMAT (15,3(F1@.7,2X),14)

PRINT TITLE FOR THE OQUTPUT

PROGRAM ANGLE

c
c
c

c
c
c

WRITE (9,140)
14@ FORMAT (////,25X,1BHNUMERICAL SOLUTION/ 20X,
' 31H( THE GENERALIZED COORDINATES ))
WRITE (9,150)
150 FORMAT (///,1X ,19HTHE GIVEN OATA ARE:)
WRITE (9,16@)
160 FORMAT (//,3X,23HMASS OF EACH LINK (Kg):)
WRITE (9,170) AM,BM,CM,DM EM ,FM
170 FORMAT (//,BX ,SHMA = ,F7.4/8X ,5HMB =~ ,F7.4/8X,5HMC = ,F7.4/
.- 8X ,5HMD = ,F7.4/8X,5HME = ,F7.4/BX ,S5HMF = ,F7.4)
WRITE (9,180) Al1,Al2,Al3 .81 ,BI2,813,C1N,C12,C13,
. oti1,012,083 €1 ,E12,EE3 ,FIV FI2,FI3
180 FORMAT (//,3X ,3IHINERTIAS OF EACH LINK (Kg-m"2)://

. B8X ,5HAt = F7.4 ,8X,5HA2 = ,F7.4,8X ,5HA3 = F7.4/
. 8X ,5HBt = ,F7.4,8X,5HB2 = ,F7.4 ,8X,5HB3 = ,F7.4/
. 8X ,5HB1 = ,F7.4,8X,5HB2 = ,F7.4,8X,5HB3 = ,F7.4/
. BX,5HC1 = ,F7.4,8X,5HC2 = ,F7.4,8X,SHC3 = F7.4/
. 8x ,5HD1 = ,F7.4,8X,5HD2 = ,F7.4,8X,5H03 = ,F7.4/
. 8x ,5HEl = ,F7.4 ,B8X,5HEZ = ,F7.4 ,BX,5HE3 = ,F7.4/

B8X,5HF1 = F7.4 ,8X,5HF2 = ,F7.4 ,BX ,5HF3 = F7.4)

WRITE (9,190) L12,L13,022,L3),L33,L41,L43,L52 163
190 FORMAT (//,3X ,4@HTHE COOROINATES OF MASS CENTERS (meter)://
8X ,EHLI2 = ,F7.4/BX,6HLI3 = ,F7.4/8X,6HL22 = ,F7.4/
8X ,EHL3! = ,F7.4/8X,6HL33 = ,F7.4/8X,6HL41 = ,F7.4/
. 8X ,6HL43 = ,F7.4/BX ,BHLS2 = ,F7.4/8X,GHLE3 = F7.4)
WRITE (9,200) L1 L2
200 FORMAT (BX,BHL1 = ,F7.4/8X,BHLZ =
WRITE (9,210)TSPAN,TSTEP
210 FORMAT (//,3X,1IHOTHER DATA://
, 8X,IZHTIME SPAN = ,FB.4,8X,
. 1ZHTIME STEP = ,FB.4)
WRITE (9,213)
213 FORMAT (//,3X,3SHTHE GIVEN INITIAL VALUES (RAD) ARE:)
WRETE (9,215) (1,00¢1),1,000¢1) I=1,6)
215 FORMAT (/,6(BX,3HQ@¢ ;I1,4H) = ,F9.6,BX,4HQDO¢ ;11 ,4H) =
WRITE (9,220)
220 FORMAT (//,3X,4@HTHE GENERALIZED COORDINATES Q1-Q6 (RAD):)
WRITE (9,230)
230 FORMAT (//,1X ,4HTIME ,6X ,2HQ1,9X ,2HQZ ,9X ,2HQ3,9X ,2H04 ,
. 9X , 2HQS ,9X ,2HOE// )
WRITE (s,s) 'PLEASE DECIDE THE METHOD: °
WRITE (»,*) 'EXPLICIT: @ .
WRITE (»,s) "IMPLICIT: 1 ’
WRITE (»,+) 'CRANK-NELSON:  @---1 *
READ (+,s) BTA

F7.4)

,F9.67))

MAIN PROGRAM TO CALL THREE DIFFERENT SUBROUTINES
TIME=0.0
ITMAX=DINT(TSPAN/TSTEP+1)
N=12

CALL GUESS

LZt



WRITE (»,s) 'PLEASE ENTER THE INITIAL GUESS FOR A MATRIX:’®

WRITE (s,s) *AND VECTOR V: '
READ (e« ,*) AA,BB
CALL GUESS(A,v,AA ,BB)

C
C CALL UINTL
C
CcALL UINTL(Q®,Q0Q,u0)
C

00 249 I=1,6
Q(1)=Qe¢I)
Q(I+6)=U0(I)
240 CONTINUE
WRITE (9,260) TIME (Q(I), I=1,6)
DO 244 I=1,N
QOLDEST(I)=Q0(1)

244 CONTINUE

-

WRITE (s+,s) *PLEASE INDICATE THE DATA TYPE OF THE TORQUES®

WRITE (¢ ,%) *YOU ARE GOING TO USE1’

WRITE (+,¢) 'IF USE FUNCTION,TYPE 1’

WRITE (#,e) 'IF USE NUMERICAL VALUES, TYPE 2:’
READ (#,#) TQTYPE

00 280 ITIME=1,ITMAX
IF (TQTYPE .EQ. 1) GOTO 24S
READ (8,268) TIMET ,(TQ(I),I=1,6)
268 FORMAT (FS.3,1X,6616.8)
245 DO 258 I=1,N
IF (ITIME .EQ. 1) THEN
QOLD( 1=Q(1)
QUIN=QCI 4V ) eTSTEP
ELSE
QOLDEST(I)=QOLD(I)
QoLo¢I)=Q¢I)
Q(I1)=2.0+«TSTEP#V( I )+QOLDEST( 1)
ENOIF
250 CONTINUE

CALL SUBROUTINE QSOLVE TO FIND THE SOLUTION

o000

CALL QSOLVE (A,Q,FN,MAXITR ,ERRMAX ,ERRX ,ERRF ,ITER)

ITER=MINCITER ,MAXITR)
TIME=TIME+TSTEP

PRINT THE SOLUTION OR MESSAGE

o000

IF (MODCITIME ,NPRINT) .EQ, @) THEN
WRITE (9,26@0) TIME (Q(I),I=1,6)
260 FORMAT (FS.3,1X,6(2X,F9,6))
ENDIF
280 CONTINUE
STOP
ENO

o000

c

THIS SUBROUTINE GUESS THE INITIAL VALUE OF MATRIX A AND VECTOR V

SUBROUTINE GUESS (A,V,AA,BB)
IMPLICIT OOUBLE PRECISION (A-1)
INTEGER I,J,N

DIMENSION A(12,12),0(12)

C INITIALIZATION

c

C
C

20

N=12

00 20 I=1,N
D0 10 J=1,N
A(l,1)=0.0
CONTINUE
ACT, 1)=AA
V(l)=88
CONTINUE
RETURN

ENO

C THIS SUBROUTINE COMPUTE THE INITIAL VALUES OF THE GENERALIZED
C SPEEDS U@(1) THROUGH U@(E).

c

ao

o0

ao

c
C

SUBROUTINE UINTL (Q@,Q08,ue)
IMPLICIT DOUBLE PRECISION (A-~Z)
DIMENSION QO(E),QDQ(E),UQ(E)

C2=0C0S(QO(2))
S$2=0SIN(QO(2))
C3=0pC0S(Qa¢3))
§3=DSIN(QQ(3))

UQ(1)=QDA( 1 )2524C3-QDA(2)*53
UB(2)=-Q0Q( | )#S2¢53-QDA(2)+C3
UB(3)=Q00(1)+C2+Q0A(3)
Uo(4)=Q00(4)

U0(S)=QD0(S)

U0(E )=QD0(E)

RETURN
END

C SUBROUTINE QSOLVE TO SOLVE THE 12 SIMULTANEQUS NONLINEAR
C DIFFERENTIAL EQUATIONS BY USING QUASI-NEWTON ALGORITHM.

c

SUBROUTINE QSOLVE (A,X,F ,MAXITR,ERRMAX ,ERRX ,ERRF,ITER)
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER I,ITER,J M ,MAXITR,N

8¢CT



C CALL SUBROUTINE CLCLTN TO FINO THE PREVIOUS VALUES OF FUNCTION

c

anon

o0

o

15

FINO THE INVERSE JACOBIAN ANO THE SOLUTION BY ITERATIONM

3o

28

40

COMMON/EPST/XEPSI ,FEPSI

OIMENSION A(12,12),X¢12),F(12),0F(12),0¢12,12) ,R(12,12)

CALL CLCLTN (X ,F)
FORMAT (' X/F: ' ,6E12.4)

M=1

N=12

00 t@ ITER=!,MAXITR
ERRX=0.0

ERRF=0.0

ERRDF=0.0

00 20 I=1 N
0x=0.¢

00 30 J=1 N
OX=0X~-A(T ,J)eF(J)
CONT INUE

X¢CD)=X(1)+0X

IF (0ABS(X(I})) .GT. XEPSI) THEN
RELERR=0ABS(DX/X(1))

IF (RELERR .6T. ERRX) ERRX=RELERR
ENOIF

CONTINUE

00 40 I=1 N
OF¢1)=F(I)
CONTINUE

CALL CLCLTN TO FINO THE NEW VALUE OF THE FUNCTIONS

50

CALL CLCLTN (X ,F)

00 5@ I=t,N

DFCI)=F(1)-0F(I)

IF (0ABS(OF(1)).GT.ERROF) ERROF=DABS(DF(I))
1F (DABS(F(1)).GT.ERRF) ERRF=0ABS(F(I1))
CONTINUE

COMPUTE THE ORHTOGONAL VECTORS I AND R

IF (ERRF .LT. ERRMAX) RETURN
CALL ORTHO (OF ,M,Q,R}

IF (DABS(R(M M)) .E6T. ERROF*FEPSI) THEN
00 €@ I=1,N

OF(1)=0.0

00 70 J=1 ,N

OF(I)=0FCI)+ACT J)=F(J)

70 CONTINUE

o0

oOOD0DO0DOO

[eNeN]

OO0

o0oo0

60 CONTINUE
UPDATE THE A MATRIX

00 80 I=1,N

00 B@ J=1,N

ACT ,J¥=ACT J)-OFCT)eQ(I ,MI/R(M M)
BO CONTINUE

M=M+1

ENDIF
1@ CONTINUE

RETURN
ENO

THIS SUBROUTINE COMPUTES THE ORTHOGONAL BASIS FOR SPACE SPANNED

BY THE INPUT VECTOR AND M-1 PREVIOUS VECTORS.
TION IS RETURNEO.

SUBROUTINE ORTHO (B,M,Q,R)
IMPLICIT OOUBLE PRECISION (A-Z)
INTEGER N,M,1,J.K

DIMENSION B(12),0€(12,12),R(12,12}

N=12
IF (M .LE. N) THEN
IF (M .EQ. 1)} THEN

INITIALIZATION .

00 18 1=} ,N
00 2@ J=1 ,N
Q(1,3)=0.0
20 CONTINUE
Qr,1)=1.0
1@ CONTINUE
ENOIF

TRANSFORM 8 VECTOR

00 30 I=1 N

SUM=0.0

00 40 J=1 N

SUM=SUMtQ(J ,1)=B(J)}
40 CONTINUE

R(I,M)=5UM
30 CONTINUE

IF (M .LT. N) THEN

HOUSEHOLOER TRANSFORMATION

R0=0.0
00 50 I=M,N

THE QR OECOMPOSI-

6CT



RO=RO+R(I ,M)*R(T M)

00 160 I=1,N

5@ CONTINUE RO=Q( I ,K)*BK+Q(1 ,K+1 )»BKP
RO=DSURT(RO) QCI,K)=QC1 ,K)-RO*BK/C
IF (R{(M,M).LT.0.0) RO=-RO QCI,K+1)=Q(I K+1)-RO*BKP/C
B(M)=R(M ,M)+RO 16@ CONTINUE
C=USQRT(ROB(M)) ENDIF
IF (C.6T.0.0) THEN 140 CONTINUE
R(M M)=~RO ENOILF
B(M)=B(M)/C RETURN
00 6@ I=M+1 N ENO
g(I1)=R(I ,M)/C c
RCI,M)=0.0 c
6@ CONTINUE C THIS SUBROUTINE IS TO CALCULATE THE VALUES OF THE 12
c C FUNCTIONS.
C ACCUMULATE ORHTOGONNAL TRANSFORMATIONS c
c SUBROUTINE CLCLTN (Q,FN)
00 70 I=1,N IMPLICIT OOUBLE PRECISION (A-2)
SUM=0.0 INTEGER I ,N,TQTYPE ,ITIME
DO 80 K=M,N OIMENSION Q(12) ,EN(12),00L0¢12) ,0¢12),0M(12),TQC12) ,KI(E) ,KA(B)
SUM=SUM+Q( I ,K)#B(K) DIMENSION QOLDEST(12)
80 CONTINUE COMMON/TANOR/TIME , TSPAN
00 90 J=M,N COMMON/TYPE/TQTYPE
Q(I,3)=0(1,J)-SUM+B(J) COMMON/STEP/TSTEP
9¢ CONTINUE COMMON/STROT/L§2,L13,L22,131,L33,1.4,L43,L52,L63,L1,1.2
70 COMTIMUE COMMON/IFPTOT/AM BM,CM,OM EM ,FM Al ,AI2 ,AI3 Bl BI2 BI3,
ENOIF . cI4,CI2,C13,011,012,013,E11,E12 ,E13,FI1,FI12,FI3
ENDIF COMMON/0OLD/QOLO v ,BTA,TQ ,QOLOEST ,ITIME
ELSE c
M=N C ASSIGN Q(1) TO Q!,Q2,...,06 ANO U1 ,UZ,,..,U6
00 100 I=i,N c
00 110 J=2 ,N N=12
RCI,J-1)=R(T, 1) po 15 I=1,N
110 CONTINUE QMU= 1-BTA)*QOLOC 1 )+Q( 1 )»BTA
100 CONTINUE 1S CONTINUE
00 120 I=1 ,N Q1=QMCs)
SUM=0.0 Q2=QM(2)
00 130 J=1 ,N : Q3=QM(3)
SUM-SUM+Q(J ,1)+B( ) Q4=QM(4)
130 CONTINUE Q%=QM(5)
R¢I,N)=SUM Q6=QM(6)
120 CONTINUE Ui =QM(7)
00 140 K=§ N-1 U2=QM(8)
RO=DSQRT(R(K ,K)#R(K ,K)+R(K+1 K)IsR(K+] K)) U3«QM(9)
IF (R(K,K).LT.0.0) RO=-RO Ud=QM10)
BK=R(K ,K)+RO US=QM11)
BKP=R(K+1 ,K) U6=QM(§2)
C=RO*BK c
IF (C.NE.®.Q) THEN C OEFINE SYMBOLS
R(K ,K )=~RO c
R(K+1 ,K)=0.0 6=9.81
DO 150 J=K+1 N C1=0C0S(Q1)
RO=BK*R(K ,J)4BKP*R(K+1,1) €2=0C05(Q2)
RCK ,J)=R(K,J)-RO+BK/C €3=0C05(Q3)
R(K+1,J)=R(K+1,J)-RO«BKP/C C4=0C05(04)
150 CONTINUE €S-0C05¢(Q5)

0€T



C6=DCOS(Q6)
S1=0SIN(Q1)
§2=DSINCQ2)
53-DSINCQI)
54=0SINCQ4)
S5=0SIN(Q5)
56=0SIN(QE)
C34=0COS(Q3+0Q4)
C45=0C0S(Q4+0QS)
C345=0C0S(Q3+Q4+QS)
534-DSIN(Q3+Q4)
S45=DSIN(Q4405)
§345-0SIN(Q3+Q4+QS)

C COMPUTE NEW VECTOR V(12)

00 25 I=f,N
IF (ITIME .EQ. 1) THEN
VCI=(Q(1)-Q0LDCT))/TSTEP
ELSE
V(I)=(3,eQ(1)-4.Q0LOCT)+QOLOEST(1))/(2.«TSTEP)
ENOIF

25 CONTINUE

C COMPUTE THE VALUES OF FUNCTIONS FNCI), FN(2),... FN(E).

FN{1)=y(1)-(U}2C3-U2053)/52
FN(2)=U(2)4U1e534U2eC3
FN(3)=U(3)-U3-(U2¢53-UieC3)eC2/52
FNC4)=y(4)-U4

FN(S)=U{5)-US

FN(B)=V(6)-UB

OO0

CALCULATE INTERMEDIATE VARIABLE Z°'S

Z1=(U1eC3-U253)/52
12=-U1953-U2+C3
713=U3+(U2+53-U1»C3)eC2/52
14=C3/52

15=-583/52
16=U1+C3-U2e53
17=--12

18=174+C2

19=715+C2
710=28+U1429+U2
It1=U1sC44U2+54
212=-U154+U2+C4
213=U3+U4

114-C4S

215=54S5

116=-118§
217=U1+2144U2+215
218=-113-Us
7192U1eZ16+U2e714
2120+214+C6

221=715+C6

122=114+S6

123=115+56
124=120+U1+1212U2+47180S6
26=-722eU1-723+U2+718+CE
126=716+U1+714sU2+UE

127=L 1324

128=L 1315

129=127+U1+128+U2

130=L22+18

131=122+19

132=-L22+C3

2133=1.22+53

134=730+U1+731U2

2135=732+U1+133°U2

136=L33sU2

137=L31+U3-L33+U1

738=-L314+02

139=(1L334L43)e54
740=(1L334L43)C4

141=L 154

742=L1eC4atL 4!

743=L41+54

744~L1+0L41C4

245=-739+U1+2402U2+Z41U3

146~-740sU1-739+U2+742+U3+L41:U4

Z47=743+U1-7444U2

748=L19Ca9L2

249=12+54

150=L1+L2+C4

IS1=L334L43-LS2
152=739+C5+740SS
153=240+C5-739eSS
154=715+751-182
155=153-114+15)
2156=741+C5+748e55

157=L245S

156=74B+C5-741955

159=L2+¢CS

16@=754+Ut +I55+U2+Z56+U3+157+U4
161=-749*U1+750+U2
162=-155+U1+254+U2+4758+U3+759+U4
163=L33+L43

164=215+263-152
1665=153-714+163

166=15S6-L63

167=157-L63

168=-749-LE3+114
169=750-L63+71S
7170=164+U1+265+U2+2660U3+Z67+U4-LE3*US
171=168%U1+169+U2
172=~1659U1+I642U247580U3+769+ U4
173=-(5246530734C2#C3022)/52002
174=(C2253072-52+C3223)/52902
175=173+U1+174902

TET



276=2730C2-22024952 113322192270-217+272

277=2740C2-22025052 . 1134=717271-218+270

178=-(U1+S3+4U20C3 )23 2135=721200U1+Z128°U2+Z1172U3+Z118U4+2132
279=(U1+C3-U2+53)273 2136=7130eU1+Z21319U2+2133

280=276U1+277+U2 T137=-2129%U1+4Z21282U2+21212U3+2122+U4+7134

281=(C4+U2-S40U1 )0 U4 1152=-A12+24

I82~-(C4:U1+54#U2)sU4 1183=-AM*227

183=-545»(U4+US) 2154=2152+74+7153.227

184=C45+(U4+US) 1155=7165225+7153+228

185+783.U142842U2 1156=21529275+72153+194

186=-2842U14283U2 1187=-A12+15

I87=283+C6~214+56°UB 1158=-AM*228

188=2184+C6-215+56+UB 1158=7157+24+7158B2227

189=183+56+214+CHUB 1160=7157+15421568+228

190=284+56+215C6+UB Z161=Z157275+215B+794

291=287:U14208+U2+2108+CE+UB 2162=(B13-BI2)+17+210

2192=289°U1+290+U24218+56+UB 1163=(B11-BI13)+I6+210

293=-284+U1+2Z83+U2 2164=(B12-BI1 122627

294=L13¢(273+U1+2742U2) Z16S=-(BI19C3002+B12#53042+B139700e24BM#Z300e2+BMe73202)
195=-71+229 1166=-(-BI1+C3¢53+BI2#C3053+B13070e79+BMe2300731tBM22322233)
196=L22+276 2167=-(Z162C3+7163053+Z154+28+B11+C34278+812+532273+813+20+7680
297=L22277 , +BMeZ30+7100+8M*232+2102) :
298=L22053+23 Z16B=~(-B11+53+C34B]2+C3¢534B1322027948BM«730731+BM*7324733)
299=L22+C3+23 Z169=—(BI14532024B120C30224B8134732424BMe731002+HMe233042)
1100=296eU1+1372U2+27+235S 117Q=-(~B11053e77B~Z162#53+B12¢C3e279+2163+C3+B13+79+2680+2164°79
1101=7100734-26+235 K R +BMeZ312Z10048BM733+7102)

7102=298+U14799+U2-27+234 L171=(C13-C12)2U2#U3

2103=238+U2-2372U3 1172=(CI11-C13)eUfsU3

1104=1362U3~238+U1 2173=(C12-CIt)sUleU2

2105=237+U1-236+U2 Z174=-CI1-CM2L33042

2106~-(L33¢tL43)+CasU4 2175=CMsL33+L 310

2107=-(L33+4L43)e54+U4 Z176=-7171+CM=L33+2104

2108=L12C40U4 2178=-C12-CMeL 319 22-CMeL 33002

Z109=-L1+54+U4 2179=-2172-CMe2L33+Z1@3+CMsL312105

Z110=L41+CasU4 1180=CM*L31+L33

Z111=-L4)1 54204 Z181=-CI3-CMeL 3122
2112=2106¢U1+21072U2+21080U34(212#247-213+1246) 1182=-7173-CM*L31+2104
2113=~Z2107oU1+Z71062U2+2109sU3+(213745-211+247) 2183=(D13-012)+212+213
Z114=2150°U1-Z111eU24(Z119246-2122245) 2184=(D11-0D13)2Z01+213

2115=7849251-¢(L33+L43)+(U4+US)eC45 2185=(D12-DIY1 12112742
2116=-283+251+¢(2107-233+US)+CS-(~-2106+74Q°U5 )55 11B6=-(DI1eC4ue2+4DI12#54e42+DMe(733002+740Q#e2+743022))
2117=L1+C45e(U4+US)+L2+CSUS 2187=(D12-D11)2C4054+DMeZ43744

1118=L2+CSeUS 7188=DM*Z39+741+DM= 2402742

2119=L2+C40U4 1189=-C4+(DI19ZB1+Z1B3)+54+(D12+2B824Z184 1+0M*(23922112+7402113
2120=-12+542U4 , -243+7114})
2121=-L1054sCS2U4-74855:US-210Be55-241CSeUS Z189A=~D1 10544 #2-DI12#4C4¢22-DM*(Z40Q0e2+7139022+744222)
2122=-L2+55US 2130~-DM+(24007241-239242)
2125=211SeU1+Z116%U2+42117+U3+21182U4+2182262-219+261 1191=-54+(D112ZB81+2183)-C4+(D12¢ZB2+7104)+0Me(-2402112+739¢2113
2126=~2119eU1+2120%U2+2199260-217+262 . +744+2114)
2127=-2116%U1+Z1152U2+4Z212140U3+421222U4+Z17161-118+769 2192=-D13-DMe(Z41#024742042)
7128=204+263-(L33+L43)s(U4+US)eC4S 7193=-7105-0M=(Z41221124242+2113)
2129=-783+2634(2107-739+US)eCS-(-7106+714Q+US )55 1194=DMe 24Q0L 41

2130=-1%19-L63+283 1195=0MsZ239L 41

2131=2120-1L63+284 . 1196=-D13-DM=L 419742

2132=2180272~-219271 L1Y7=-DI3-UMsL 41002

Cel



2198--2185-DMeL41+Z113 2248=2242

2199=(EI3-EI2)*Z21B+219 [

L200=(E{1-EI3)eZ217+219 C CALCULATE THE GENERALIZED INERTIA FORCES

1201=(EIZ2-EIt)eZ17+218 C

2202=-EJ19214092-E[307216292-EMe (2542424749 0024755¢02) Xt1=Z154¢2165+2174+2186+2202+2219

2203=-E11 014 15-E130214¢7216-EM*(2549255-2499250-254+755) X12=2155¢2166+2187+2203+2220

1204=-EM*(2154+756-155+758) X13=2175+42188+2204+2221

2205=-EMe(154+257-155+259) X14=219447205+1222

2206=-214+(EI12285+2199)-216*(EI3#206+2201)~EM9(254+2125-249+2126 X16=2223

. -I5592127) X16=2240

2207=-El10215092-E[3¢714002-EM#( 7550247500 ¢24754%02) C

2208=-EM*(2155+256+254+258) X21=2159+47168+2187+2203+2220

2203=-EMe(155+157+154759) X22=2160+2169+2170+2189A+2207+2225

2210=-21Se(E1197B5+42199)-214+(E13286+2201)-EMe(255¢2125+2150+2126 X23=2190+1200+2226

. +254+2127) X24=2195+2209+2227

221 1=-E12-EMe( I56##2+25Qe#2) X25=2228

2212=-E12-EMe(156257+1508+259) X26=2241

2213=7200-EMe(Z5692125+2582127) C

2214=-EI2-EMe(I579¢2+4159e:2) X31=7180+2186+2204+2221

2215=7200-EMe( 257¢2125+4259#2127) X32=2190+2200+2226

2216=(FI13-F12)e225+126 X33=7181+2192+2211+2230

Z217=(F11-F13)9224°226 X34=2196+2212+223)

2218=(FI12-F11)9224+225 X35=~E12+2232

2219==(FI1#22Q0#24F 12022200 24F[3%216202+FMe(264#+2+260%#2 Xx36=0.0

. +265002)) C

2220=-(FI11922002214F12222%2234F130214¢216+FMv268+269) X41=2194+47205+1222

2221=F110720+56-F12+222+C6-FM*(264+266-265+258) X42=7195¢2209+2227

2222-F119220056-F129222+C6-FMe(264¢267-265+259) X43=2196+2212+2235)

2223=F11¢720+S6-F12#222+C64FM»264LE3 X44=7197+2214+2235

1224=-220%(FI119291+42216)+222%¢(~F12+292+42217)-216(F13+793+2218) X45=-E12+2236

R ~FM*(264+2135+4268%2136-265+2137) X46=0.0

222G=~(FI1eZ21%024F[207230024F 1397140 02+4FMe{26590242G69##2+1G4##2)) %

2226=F112221+56-F12#723+C6-FM+(265#266+264+2508) XS51=2223

2227=FI1197214S6-F12+223°C6-FMe(Z654267+2159%264) X52=2228

2228=FI19721956-F12+223¢CE6+FMeLE3*265 X53=-E12+2232

21229=-2210(FI10291+42216)4223%(2217-F12#292)-214(F13#293+2218) XS54=-E12+42236

. -FMe{Z6592135+269+2136+264+2137) X55=-E1242238

Z1230=-(Fl1eS69e2¢F[20CE#92+FMe(ZEGo#2+258%u2)) X56=0.0@

2231 =-(F11eS6e#2+F]12¢CE292+4FMe(266+767+25B8+259)) [

2232=—(Fl1e56*02+F12¢CEe+2~FMeLE3*266) X61=2240

21234=56+(F119291472216)4C69(2217-F12#292)~-FMe(26692135+25082137) X62=2241

2235=-(F[1956992+4F[2¢CE0024FMe( 2670 02+259e¢2)) X63=0.0

2236=-(FI1e56*%2+F12eCE*92-FMeLE3#267) X64=0.0

2237=S6+(FI1929142216)-C69(F129292~-2217)-FMe(267+2135+159+2137) X65=0.0

2238=-FI1956#2-F12+CEe#2-FMoLE3##2 X66=-F13

2239=569(F119291+2216)+C6(2217-F12¢292)+FMeLE3+2135 C

21240=-F13+216 C CALCULATE THE GENERAL1ZED INERTIA FORCES

1241=-F13e714 c

2242=-F139293-2248 KICT)=X118U(T7)4X1200(B 4 X130U0TI+X 140U 104X TISeUCH] J4XIE0U(12)
. 12243

2243=7156+2167+2176+2109+2206+2224 KIC2)=X2) U(T)4X220U(BI4X230U(T)+X240UC 1014 X250U( 11 ) 4X260U(12)

21244=7Z1614217042179+4219142210+2229 . . +2244

2245=7182+2193+42213+42234 KIC3)=X310U(T714X320U(8)4X330U(F)+X340UC 1OI+XI50U( 11 )I4X3EeU(12)

2246=2198+2215+2237 , 41245

1247-1200+1239 KIC4)=Xa10U(7)4X420U(B)I+X430U(T)+X442U( 10)4X4SoU( 11 )+X46+U( 12)

13 14
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KICE)=XB1oU(7)+XE22V(B)+XE3eV(D)+XE4oV{ 10)XESVI 11 )+XEE2V(12)

+1246

KI(S)=XSt1eU(T7)+XG2eU(B)+XS3eV(9)+X54eV(10)+XE5eV(11)+XEB+V(12)

+1247

+1248

CALCULATE THE GENERALIZED ACTIVE FORCES

35

IF (TQTYPE .EQ. 2) GOTO 35
cALL TORQUE (TQ,Q,v)

1251=AM+S1

1252=1251+227

1253=1251+128

1254=BM+51eC2

1265=-BMeS51 52

1256=130+1254+13227255
1267=131%1254+233125S
21258=CI1+C3-51°C2953

1269-~CHMeL 3392258
2260=CMe(L330(SteC22C3+C153)+4L31951052)
21261=CHeL312258
2262=51C2+C34+C1534
22635-C1eC34-51+C2+534

L264~-51#52
1265=-DMe(13922262+740+7263-743+7264)
1266=DMe(24007262~139+21263-144+1264)
I1267=DMe(Z419#2262+242#2263)

2268=D*L 4142263
21269=512C2+C34S+4C1 #5345

1270=51+52

2271=C1C345-519C2¢5345
I1272=EMe(154°1269-7497270+155+2271)
1273=EM#*(15507269+250°7270+154+2271)
21274=EM*(I5622269+1258+2271)
I127S=EMe(I1S571269+159+2271)
1276=FMe(1642269+168+2270-165°1271)
I1277=FMe(2166°1269+716921270+164+1271)
1278=FMe(166+1269+4158+2271)
2279~FMe(167+2269+159+2271)
1280=-FM*LE3+Z269

1281269 (1252+41256+1259+1265+2272+1276)
1282=69(71253+21257+21260+1266+1273+41277)
2283=6(2261+¢1267+127441278)
21284=G+(12608+42275+41279)

1285=6+2280

KAC1)=TQ(1)eZ4-TQ(2153-TQ(3)+78+7281
KA(2)=1Q(1)e25-TQ(2)#C3-TQ(3)+79+7282
KA(3)=TQ(3)+2283

KA(4)=TQ(4)+2284

KA(S5)=TQ(S)+128S

KA(6)=TQ(E)

C COMPUTE THE VALUES OF THE FUNCTIONS FN(7), FN(B),...,FNC(12)

1S

[eNeNe]

o000 C

(2N ¢

o

D0 33 I=1,6
FNCI+6)=KI(I)+KACT)
33 CONTINUE

RETURN THE CALCULATED VALUES TO THE SUBROUTINE QSOLVE.

RETURN
END

THIS SUBROUTINE COMPUTE THE VALUES OF TORQUE FUNCTIONS.

SUBROUTINE TORQUE (1Q,Q,Vv)
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER 1

DIMENSION TQ(12),Q¢12),V(12)

00 45 I=1,12
TQ(1)=0.0
4S5 CONTINUE

RETURN
ENC

VET
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APPENDIX 4.

. -
. PROGRAM AUTOTE .
+ L]
. WRITTEN BY: TINGLIN NIE .
. OATE WRITTEN: MAY 1987 .
. .
. THIS PROGRAM IS TO CALCULATE THE TORQUES /OR FORCES .
. APPLIEO T0 THE LINKS OF THE ROBOT UNOER CONSIOERATION .
' TO CARRY OUT A SPECIFIED MOTION. IN OTHER WORDS, THE .
. MOTION SPECIFIEO BY FUNCTIONS OR NUMERICAL OATA IS .
. INPUT, THE TORQUES /OR FORCES ARE OUTRUTS. .
. .
Q.!IlllllllllllIIIIIIllllllllllllIIIIlIQIIIIII!IIIQ!IIIIII'IIIII

PROGRAM AUTOTF

IMPLICIT OQUBLE PRECISION (A-Z)
INTEGER 1,4,J1,32,43 K,L ,M,N,NN,DELTA
PARAMETER(NN=6 )

OIMENSION QELTA(NN,2)

OIMENSION Q(NN) ,UCNN) UD(NN),TQ(NN)
DIMLNSTON INCNN,3) ,MS(NN) ,DL(NN,3) ,LL(NN,3)
COMHMON/BLK 1 /Q U ,UO
COMMON/BLKZ/LL 0L ,MS,IN,TQ
COMMON/BLK3/TIME , TSPAN
COMMON/BLK4/N L ,DELTA

OPEN (7 FILE='ATDATA’)

OPEN (8 ,FILE=’ATOUT’)

SPECIFY THE JOINT STATUS AND THE DIRECTION OF GRAVITY FORCES

100
fie

WRITE(#,*) * PLEASE ENTER THE NUMBER OF LINKS: '

REAO( ¢ «} N

WRITECw ,») * PLEASE INOICATE THE JOINT STATUS (IF THE JOINT IS’
WRETECe ,v) * REVOLUTE, TYPE “1,0"y IF THE JOINT IS PRISMATIC,”
WRITE(w ,*) * TYPE "0,1"."

00 120 K=t N

WRITEC«,110) ' JOINT * K,* 7°*

REAO(s ,¢) OELTA(K,!) ,DELTA(K,2)

CONTINUE

FORMAT (A,I1,A)

WRITEC®,¢) * PLEASE INOICATE THE OIRECTION OF THE GRAVITATIONAL'®
WRITE(* ,¢) ' FORCES (1.e. 1,2,3).*

READCe o) L

INPUT THE MASS PROPERTY DATA AND STRUCTURAL OATA

120

130
14@

READ(7,120@) (MS(K),K=t N)
FORMAT(BF7.4)

00 130 K=1 N

READ(T ,140) (INCK,J) J=1,3)
CONTINUE

FORMAT(3F7.4)

PROGRAM AUTOTF

000

o

00 150 K=t ,N

READ(7,140) (OL(K,J), J=1,3)
150 CONTINUE

DO 160 K=t N

READ(7,14@) (LL(K,J),J=1,3)
160 CONTINUE

READ(7,170) TSPAN

READ(7,17@) TSTEP
170 FORMAT(F9.5)

PRINT TITLE FOR THE OUTPUT

WRITE (8,180)
18@ FORMAT (////,30X ,1SHTABLE OF OUTPUT/SX,

. BIH(TORQUES /OR FORCES NEEOEO TO CARRY OUT THE SPECIFIEO MOTION )

WRITE (8,190)
190 FORMAT (///,1X,19HTHE GIVEN DATA ARE:)
WRITE (8,200)
200 FORMAT (//,3X ,23HMASS OF EACH LINK (Kgl:/)
00 210 k=1 ,N
WRITE(8,220) K ,MS(K)
210 CONTINUE
220 FORMAT(BX ,SHMASS( ,I1,4H) = F7.4)
WRITE (8,230)
230 FORMAT(//,3X ,31HINERTIAS OF EACH LINK (Kg-m"2):/)
Ji=1
J2=2
J3=3
00 235 K=1,N
WRITE(B,240) K,JF ,INCK, 1) K, J2,INCK,2) ,K,J3,IN(K,3)
235 CONTINUE
24@ FORMAT(3X ,3(SX ,4HINRC ,I1,1H, 11 ,4H) = ,F7.4))
WRITE(8,250)
250 FORMAT (//,3X ,40HTHE COOROINATES OF MASS CENTERS (meter):/)
DO 255 K=i ,N
WRITE(B,265) K,J1 ,0L(K,1),K,J2,0L(K,2) K, ,J3,DL(K,3)
255 CONTINUE
WRITE(B,+) *
00 269 K=1,N
WRITE(8,268) K,J,LL(K,1),K,J2,LL(K,2) K, J3,LL(K,3)
260 CONTINUE
265 FORMAT(2X,3(6X ,3HOL( ,I1,1H,, 11 4H) = F7.4))
268 FORMAT(2X ,3(EX,3HLL( ,I1,1H, I 4H) = F7.4))
WRITE (8,270)TSPAN,TSTEP
270 FORMAT (//,3X,11HOTHER OATA://
. OX , EIHTIME SPAN = |FY.5,8X,
. I2HTIME STEP = ,F9.5)
WRITE (8,280)
280 FORMAT (//,3X ,38HTHE TORQUES APPLIED TO EACH LINK (Nm):)
WRITE (8,290)
290 FORMAT ¢// AHTIME ,9X ,2HT1 ,9X ,2HT2,9X ,2HT3,9X ,2HT4,
, 9X ,2HTS ,9X ,2HT6//)

MAIN PROGRAM
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TIME=0.0 _END

coOooo

QQ=T-TF*DSIN(Z2sPIeT/TF)/(2+P1)
QC1)=QQ*PI/(3.+TF)
Q(2)=P1/2.~QQ+P1/(E.*+TF)

Q(3)=Qc1)

Q4)=Q(t)

Q(S)=Q( 1)

QE)=0(1)
UC1)=PIe(t,-DCOS(2.*PIaT/TF))/(TF3.)
U(2)=-PIe(}.-DCDS(2.*PI+T/TF))/(6.2TF)
Ue3)=uct)

Ut4)r=uct)

U(s)=Uct)

Utg=uct)

UDCt }=2. oP1292/(3, #TF222)sDSIN(2.#P[aT/TF)
UD(2)=-PIea2/(3.aTFns2)sDSIN(2.¥PI*»T/TF)
unD(3)=un(t)

up4)=un{1)

uD(s)=udct)

UDCB=UDC1 )

RETURN

M=IDINT(TSPAN/TSTEP ) c
M=M 2 C  THIS SUB ROUTINE IS TD AUTOMATICALLY GENERATE
DO 300 I=1.M C  THE GENERALIZED ACTIVE FORCES, THE GENERALIZED
C  INERTIA FORCES, AND FINALLY CALCULATE THE TORQUES
TO CALL SUBROUTINE GCRO C  /OR FORCES.
¢
CALL GCRD SUBROUTINE AUTOSUB
IMPLICIT DOUBLE PRECISION (A-2)
TO CALL SUBROUTINE AUTOSUB INTEGER I,J ,K,L,M,NN,N,R,DELTA
PARAMETER(NN=6 )
CALL AUTOSUB DIMENSION A(NN,3,3) ,AD(NN,3,3)
WRITE (8,295) TIME,(TQ(K) K=} ,N) DIMENSION W(NN,3),V(NN,3),SCNN+1,3) PWCNN,3,NN),
295 FORMAT (F5.3,1X ,6F11.5) , PUCNN,3 ,NN) ,PSCNN+I ,3 ,NN)
TIME~TIME+TSTEP DIMENSION PWO(NN,3 NN),PUDCNN,3 NN) ,PSDINN+],3,NN)
300 CONTINUE DIMENSION DELTA(NN,2)
sTOP DIMENSION MICNN,3,NN) ,MID(NN,3 ,NN),BCNN,3) ,D(NN,3),ECNN,3),H(NN,3)
ENO : DIMENSION Z(NN),Y(NN,3),P(NN,3 ,NN),PD(NN,3 ,NN)
DIMENSEON IN(NN,3) ,MS(NN),DL(NN,3) LL(NN,3)
THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED CDOR- DIMENSION F(NN,NN) KSTAR(NN) ,KPZ(NN) TQ(NN)
DINATES, GENERALIZED SPEEDS AND THEIR DERIVATIVES. DIMENSEON Q¢NN) ,UCNN),UDENN)
COMMON/BLK /Q,U,UD
SUBROUTINE GCRD COMMON/BLK2/LL ,DL ,MS,IN,TQ
IMPLICIT DDUBLE PRECISION (A-Z) COMMON/BLK4/N L ,DELTA
INTEGER NN c
PARAME TER( NN=6 ) C DEFINE TRANSFORMATION MATRICES AND THEIR DERIVATIVES
COMMON/BLK1/Q ,U,UD c
COMMON/BLK3/TIME , TSPAN 6=9.81
COMMOM/BLK4/N,L ,DELTA D0 11@ K=t ,N
DIMENSION Q(NN),U(NN) ,UD(NN) DD 110 I=4,3
00 110 J=1,3
T=TIME ALK, I,i)=0.0
TF=TSPAN AD(K ,I,1)=0.0
PI=DACOS(-1.000) 11@ CONTINUE

ACL 1, 1)=DCOS(Q(1 )
ACT,1,3)=DSINCQCI D))
ALY ,2,0)=DSINCQCT D)
A(1,2,3)=-DCOS(Q( 1))
A(1,3,2)=1.0
AC2Z,1,1)=0C0S(Q(2))
A(2,1,3)=-DSINCQ(2))
A(2,2,1)=DSIN(QL2) )
Al2,2,3)=0C05(Q(2))
A(2,3,2)=-1.0
AC3,1,1)=0C05(Q(3))
A(3,1,2)=-DSIN(Q(3))
A(3,2,1)=0SINCQ(3))
A(3,2,2)=0C0S(Q(3))
A(3,3,3)=1,0
AC4,),1)=0C0S(Q(4))
AC4,1,2)=-DSINCQ(4))
AC4,2,1)=0SINCQ(4))
AC4,2,2)=DC05(Q(4))
A4,3,3)=1.0
ACS,1,1)=0C0S(Q(5))

9¢€T



ACS,1,3)=-DSIN(G(S))
A(S,2,1)=0SIN(Q(S))
A(5,2,3)=0C05(Q(S5))
A(5,3,2)=-1.0
A(6,1,1)=0C0S(Q(6))
ACG,1,2)=-DSIN(Q(E))
A(6,2,1)=DSINCQ(E ))
A(6,2,2)=DCOS(Q(6) )
A(6,3.,3)=1.0

ADCT 1,1 )=-DSINCQC1))eUC 1)
ADCT,1,3)=DCOS(Q(1))eUCL)
ADCY,2,1)=DCOSCQCT ) eUC )
ADCT , 2, 3)=05INCQC1))sUC 1)
ADC2, 1 ,1)=-DSINCQ(2))vuU(2)
ADCZ,1,3)=-0C05(Q(2))U(2)
AUC2,2,1)=0C0S(Q(2))eU(2)
AD(2Z,2,3)=-0SIN(Q(2))eU(2)
AD(C3,1,1)=-U(3)+DSINCQ(3))
AD(3,1,2)=-U(3)*DC05¢(Q¢(3))
AD(3,2,1)=DCOS(Q(3))vuU(3)
AD(3,2,2)=-0SINCQ(3))vU(3)
ADC4 1,1 )=-U(4)DSINCQ(4))
ADC4 1 ,2)=-U(4)+DCD5¢(Q(4))
AD(4,2,1)=DCOS(Q(4))U(4)
AD(4,2,2)=-0SIN(Q(4))eU(4)
AD(S,1,1)=-DSIN(Q(S))esU(S)
AD(S,1,3)=-0COS(Q(5))*U(S)
AD(S,2,1)=DCOS(Q(S))aU(S)
AD(S,2,3)=-DSIN(Q(S))sU(S)
ADCE, 1 ,1)=-DSIN(Q(E })*U(B)
ADCE,1,2)=-DCOS(Q(6))*U(B)
AD(E,2,1)=0C0S(Q(6))*U(B)
AD(6,2,2)=-DSIN(Q(E }))*U(B)

INITIALIZATIONS

00 115 K=1 N
1(K)=0.08
KSTAR(K )=
KP2(K )=3.
00 115 J=
WK, 1)=0.

0.0
"]
1
"]
V(K,J)=0.0
"]
"]
%]
"]

3

S(K,J)=0.
8(K,J)=0.
0K, J =0,
E(K,J)=0.
Y(K,})=0.0

DO 115 R=1,N
PU(K ,J,R)=0.0
PUD(K ,J,R)=0.0
PU(K ,J ,R)=0.0
PUD(K ,J ,R)=0.0

oo

e NNl

PS(K,J ,R)=0.0
PSD(K,J ,R)=0.0
P(K,J ,R)=0.0
PO(K ,J,R)=0.0
MICK,J,R)=0.0
MID(K,J ,R)=0.0
F(K,R)=2.0
115 CONTINUE

PARTIAL ANGULAR VELOCITIES

IF (DELTAC1,1).EQ.1) THEN
00 120 J=1,3
PUC1,J,1)=A01,3,0)
PUD(L,J,1)=A0C1,3,0)
120 CONTINUE
ENDIF
00 150 K=2,N
00 150 J=1.3
D0 130 R=1 ,K-1
00 130 i=1,3
PUCK ,J,R)=PU(K ,J ,RI+PUCK=1,1 ,RIeA(K,1,J)
PWO(K,J ,RI=PWD(K ,J ,RIHPWOCK-1 1 ,RIACK, T ,J)4PUCK=1,1 ,R)*ADCK,I,J)
130 CONTINUE
IF (DELTA(K,1).EQ:1) THEN
PU(K,J,K)=A(K,3,J)
PUO(K ,J ,K)=AD(K ,3,J)
ELSE
PUCK,J .K1=0.0
PUD(K ,J K 1=0.0
ENDIF
150 CONTINUE

ANGULAR VELOCITIES

0D 16Q K=1,N

00 160 J=1,3

DD 160 A=1 K

WK, J)=W(K , J+PW(K ,J ,R)2U(R)
16@ CONTINUE

PARTIAL VELDCITIES

IF (DELTA(I,1).EQ.1) THEN

PUCT, 1,1 )=PW(1,2,1)0L€1 ,3)-PW(1,3,1)0L(1,2)
PUCT,2,1=PW(1 3 1)e0LC1 ,1)-PUCY 1 ,1)e0L0(1,3)
PUCT,3,1)=PWCT F,1)eDLCT,2)-PWCT,2,1)00LC1,1)
PS(2,0,1)=PWC1, 2,000 ,3)-PWCT,3,1)0LL0(1,2)
PS(2,2,1)=PWC1, 3, 1)eLL01 , 1)-PWCT 0, 000101 ,3)
PS(Z, 3,0 0=PUCH 1, F2aLL0) 2)~PWCT, 2,1 )eLLCE, 1)
ELSE

PU(C1,3,1)=1.0

PsS(2,3,1)=1.0

ENDIF

00 180 K=2 ,N

LET



IF (DELTA(K,$).EQ.Q) THEN ENOIF

DO 165 R=1 ,K-1 180 CONTINUE
DO 163 J=1.,3 c
D0 163 I=1.,3 C VELOCITIES
MICK ,J ,R)=MI(K ] RI+PS(K, I ,R)sA(K, I, 1) c
MID(K 3 R)=MID(K ,J ,R)+PSD(K 1 ,R)*A(K 1 ,J)+PSCK, 1 ,R)sAD(K,1,J) 00 200 K=1 ,N
163 CONTINUE D0 200 J=1,3
PU(K, I JRI=MICK 1 RIH(OL(K ,3)+4Q(K ) )sPW(K ,2 ,R)~DL(K ,2)*PU(K ,3,R) DO 200 R=1 K
PUCK,2 ,R)I=MI(K Z,RHDL(K,I)-PU(K,B,R)—(DL(V.,BHQ(K))-PU(K,I,R) VIK ,J)=U(K , J)+PVU(K ,J ,R)*U(R)
PUK ,3 WRI=MICK 3 ,RI+DL(K ,2)ePW(K 1 ,R)-DLCK ,1)ePW(K ,2,R) SCK,J)=5(K JI+PS(K ,J ,RI*U(R)
PSCK#1,1,RI=MIC(K t ,RI+(CLL(K,3)4Q(K ) )*PW(K ,2 ,R)-DL(K ,2 )»PW(K ,3.R) 200 CONTINUE
PSKH1,2 R)=MI(K,2 , RILLCK , 1)*PW(K 3 ,R)-(LL(K ,3)+Q(K))sPW(K 1 R} c
PSCK+1,3,R)I=MI(K 2 RI4LLCK ,2)0PW(K,1 ,RI-LL(K, 1) ePW(K ,2 ,R) C CALCULATE INTERMEDIATE VARIABLES
PUDCK , 1 R)=MID(K,1 RIH(DL(K ,3)+Q(K))sPWD(K ,2 ,RI+U(K )*+PW(K ,2 ,R) c
-DL(K ,2)+PWD(K ,3 R) DD 220 K=1,N
PUO(K 2,R)=MID(K 2 ,RI+DL(K,1)*PWD(K ,3 ,R)-UCK)IsPW(K 1 R) BOK,1)=W(K,2)9U(K ,3)~W(K, 3)eU(K,2)
=(DL(K ,3)+Q(K))*PUWD(K ,I ,R) B(K,2)=W(K 3)2U(K, 1 )-W(K,1)eU(K,3)
PUD(K 3,R)=MIO(K,3 ,R)+DL(K, Z)HPUD(K 1 ,R)-DL(K,1)sPUD(K,2 ,R) BOK,3)=W(K,1)0U(K ,2)~W(K ,2)0U(K 1)
PSD(I\H 1 R)-HID(K R RH(LL(K,3)+Q(K))'PUD(K,Z,RHU(K)'PU(K,Z,R) 00 210 J=1.,3
, -LL(K,Z)'PUD(K,B,R) DO 210 R=) K
PSO(K+1,2 ,R)=MID(K ,2 ,RI+LLC(K ,1)oPWD(K ,3 ,R)~(LL(K ,3)+Q(K ) ) DK ,J)=D(K ,J »+PVD(K ,J ,R)*U(R)
. ) PWO(K ,1 ,R)-U(K)ePW(K,1 ,R) EC(K,J)=E(K ,J)+PWD(K ,J ,RI*U(R)
PSOCK+§,3,R)=MID(K 3 RI4LLIK ,2)¢PUD(K, 1 ,R)-LL(K ,1)ePWD(K ,2,R) 210 CONTINVE
165 CONTINUE HOK L E)=INCK  1)0ECK 1 0+WIK 2% W(K ,3)#CINCK ,3)-INCK ,2))
PU(K ,3,K)=1.0 HOK,2)=INCK ,2)%EC(K , 2 )+W(K ,3)eW(K , 1 )% CINCK , 1 )-INCK 3))
PS(K+i 3 K)=1.0 HOK,3)=INCK ,3)0E(K ,3)+W(K 1 DJosW(K ,2)»(IN(K L2)-INCK 1))
ELSE 220 CONTINUE
DO 175 R=t K 00 23@ K=1,N
00 170 J=1,3 00 230 J=t,3
00 170 I=4.3 O(K ,J)=0(K,J)+B(K ,J)
PCK,J ,R)=P(K,J RI+PS(K ,I ,RIsA(K 1 ]} 230 CONTINUE
PD(K I, R)=PD(I< J R)'PSD(K T LRISACK T LI4PS(K T ,RISAD(K ,T,0) c
170 CONTINUE C CALCULATE INTERMEDIATE VARIABL 'S
PUCK 1 ,R)=PUCK 1 ,RI+P(K 1 ,RI+PW(K,2 ,R)*DL(K ,3)- PW(K ,3,R)*DL(K ,2) c
PUCK,2,R)=PVU(K ,2 ,R)+P(K,2 ,R)I+PW(K ,3 ,R)sDL(K 1)~ -PW(K,1 ,R)*DL(K,3) 00 240Q R=1,N
PU(K ,3,R)=PV(K ,3 ,R)+P(K,3 ,R)+PW(K 1 ,R)*DL(K ,2)- -PW(K,2,R)*OL(K,t) DO 240 K=t ,N *
PS(KH i R)=PS(K0| 1,RI+P(K , H RHP[J(V 2 R)-LL(I«,B) PU(K 3.R) DO 240 J=1,3
LLCK ,2) Z(R)-Z(RHPU(K WL RIPHIK T I+MS(KI*PU(K ,J R)*D(K ,J)
PS(VH 2 R)=PS(K+1,2 RI+P(K 2, RI+PW(K ,3 RIsLL(K,})- PW(K,} R} 240 CONTINUE
*LL(K,3) c
PS(KH ,3,R)=PS(K+1 ,3 RI+P(K ,3,R)+PW(K 1| JRISLLIK,2)-PW(K,2 ,R) C CALCULATE INERTIA COEFFICIENTS
, *LL(K 1) c
PVUD(K,1 ,R)=PUD(K ,1 ,R)+PD(K ,1 ,R)+PWD(K ,2 ,R)sDL(K ,3)-PWD(K,3 ,R) D0 250 R=1,N
DL(K,2) D0 250 M=) R
PUD(K 2,R)=PVD(K,2 ,R)+PD(K ,2 ,R)+PWO(K ,3 ,R)sDL (K 1 )- PWO(K ,t ,R) DO 245 J=t,3
«DL(K ,3) DO 245 K=} N
PUD(K L3,R)=PUD(K ,3 ,RI+PD(K ,3 ,R)I+PUD(K 1 ,R)+DL(K ,20-PWD(K ,2 R) FOR,MI=F(R,MI+INCK ,J)*PW(K ,J M)*PW(K ,J SRIMSCK)oPYCK T M)
*DL(K, 1) *PU(K,J ,R)
PSD(K*I 1 R)=PSD(KH FLRI4POCK 1 RIFPWD(K ,2 ,R)*LL(K ,3)-PWD(K ,3 ,R) F(H LRI=F(R N)
sLL(K, 2) 245 CONTINUE
PSD(V.H .2,R)=PSD(K+1,2 ,RI+PD(K ,2 ,R)+PWD(K ,3 R)sLL(K,1)-PWD(K ,1,R) 250 CONTINUE
*LL(K,3) c
PSD(KH ,3,R)=PSD(K+1 ,3,R)4+PD(K ,3 ,R)+PWO(K 1 ,R)*LL(K ,2)-PWD(K ,2.R) C GENERALIZED INERTIA FORCES
*LL(K, l) c
175 CONI’INUE 00 260 R=) N
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DO 255 M=} N
KSTAR(R)=KSTAR(R)-F(R ,M)*UO(M)
2585 CONTINUE
KSTAR(R }=KSTAR(R)-Z(R)
26@ CONTINUE

INGREDIENTS OF GENERALIZED ACTIVE FORCES

DO 270 J=1,3
YOI, D) =AU, 1)
CONTINUE
DO 280 K=2,N
DO 280 J=1,3
DO 280 1=1,3
YUK, J)=Y(K,J)+¥(K-1 1 )eA(K,1,1)
280 CONTINUE
00 290 R=I N
DO 290 K=I,N
DO 290 J=1,3
KP2(R)=KPZ(R 14MS(K )+G+Y (K ,J)sPV(K ] ,R)
299 CONTINUE

27

=

CALCULATE ACTIVE FORCES /OR TORQUES
00 300 R=I N
TQ(R)=-KSTAR(R)~KP2(R)
300 CONTINUE
RETURN THE CALCULATED VALUES TO THE MAIN PROGRAM

RETURN
END
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PROGRAM AUTOQ

WRITTEN BY: TINGLIN NIE
DATE WRITTEN: JUNE 13987

.
.
*
.
.
.
THIS PROGRAM IS TO SIMULTANEDUSLY GENERATE AND SOLVE .
. THE KANE'S DYNAMICAL EQUATIONS FOR MECHANICAL »
. MANIPULATORS. WITH THE STRUCTURAL OATA AND THE .
J GENERALIZED ACTIVE FORCES GIVEN, THIS PROGRAM WiLL *
* AUTOMATICALLY GENERATE THE EQUATIONS OF MOTION AND .
. SOLVE THEM FOR THE GENERALIZED COOROINATES. .
. .
' .

PROGRAM AUTOQ
IMPLICIT DOUBLE PRECISION (A-2)

INTEGER I,J,J1,J2,J3,K,L ,M,N,NN,N2 DELTA

INTEGER ITER,ITIME,ITMAX ,MAXITR,TQTYPE ,NPRINT
PARAME TER(NN=6 )

PARAMETER(NZ=12)

DIMEMSION AM(NZ,N2),Q0(NN),UB{NN),QU{N2) FN(N2)
DIMENSION DELTA(NN,2),TF(NN)

DIMENSION QOLD(N2),QOLDEST{NZ2) ,VECTOR(N2)
DIMENSION INCNN,3),MS(NN),DL(NN,3) LL(NN,3)
COMMON/BLK 1 /QOLD,VECTOR ,BTA,TF ,QOLOEST ,TSTEP , ITIME
COMMON/BLK2/LL ,DL ,MS , IN

COMMON/BLK3/N L ,DELTA

COMHON/BLK4 /XEPSI ,FEPSI

OPEN (7 FILE="ATTQ")

OPEM (8,FILE="ATAGL")

OPEN (9,FILE="TOUTI")

SPECIFY THE JOINT STATUS AND THE OIRECTION OF GRAVITY FORCES

WRITE(®,*) * PLEASE ENTER THE NUMBER OF LINKS: °

REAU(s ,») N

WRITE(s &) * PLEASE INDICATE THE JOINT STATUS (IF THE JOINT I§°
WRITE(s o) ' REVOLUTE, TYPE "1,0"y IF THE JOINT IS PRISMATIC,'
WRITECs ,») * TYPE "Q,1°."

00 100 K= N

WRITE(s,110) * JDINT ' ,K,* ?2°

READ(+,#) DELTACK,1) ,DELTA(K,2)

130 CONTINUE
110 FORMAT (A,I1,A)

WRITE(e ,») ' PLEASE INDICATE THE OIRECTION OF THE GRAVITATIONAL'
WRITE(e &) ' FORCES (i.e. 1,2,3)."’
READ(e ,») L

INPUT THE MASS PROPERTY DATA AND STRUCTURAL DATA

PROGRAM AUTOQ

(o]

READ(7,12@) (MS(K) K=l ,N)
FORMAT(EF7.4)
00 130 K=1 ,N
READ(7,140) (IN(K,J), J=t 3)
130 CONTINUE
140 FORMAT(3F7.4)
00 150 K=I ,N
READC7,140) (DL(K,3),0=1,3)
1S@ CONTINUE
00 160 K=I ,N
READ(7,140) (LL(K,J),J=1,3)
CONTINUE
READ(7,165) (QA(1),I=1,N)
READ(7 ,165) (UQ(I) I=1 N)
165 FORMAT(GF12.9)
READ(7,*) MAXITR,ERRMAX ,XEPSI ,FEPSI ,NPRINT
READ(7,17@) TSPAN
READ(7,170) TSTEP
170 FORMAT(FS.5)

12

16

S

PRINT TITLE FOR THE OUTPUT

WRITE (8,180)
180 FORMAT (////,19X ,"NUMERICAL SOLUTION OF THE EQUATIONS OF MOTION'
, /26X ,"(BY AUTOMATIC METHOOD)')
WRITE (8,190)
190 FORMAT (///,1X,19HTHE GIVEN DATA ARE:)
WRITE (8,200)
20@ FORMAT (//,3X ,23HMASS OF EACH LINK (Kg):/)
D0 210 K=t ,N
WRITE(8,220) K ,MS(K)
210 CONTINUE
220 FORMAT(8X ,SHMASS( 1) ,4H) = ,F7.4)
WRITE (8,230)
230 FORMAT(// ,3X ,3IHINERTIAS OF EACH LINK (Kg-m"2):/)
Ji=1
12=2
13=3
00 235 K= ,N
WRITE(8,248) K,J0 INCK,1),K,32,INCK,2),K,J3,IN(K,3)
235 CONTINUE
240 FORMAT(3X,3(SX 4HINRC 1) ,1H, 11 ,4H) = ,F7.4))
WRITE(8,250)
250 FORMAT (//,3X ,40HTHE COORDINATES OF MASS CENTERS (meter):/)
00 255 K=1,N
WRITE(8,265) K,J1,0L(K,1),K,J2,0L(K,2),K,J3,0L(K,3)
255 CONTINUE
WRITE(B,) ' *
00 260 K=1 ,N
WRITE(8,270) K,J1 ,LL(K,1),K,J2,LL(K,2) ,K,J3,LL(K,3)
260 CONTINUE
265 FORMAT(2X,3(6X ,3HOL( 11 ,0H, 11 4H) = F7.4))
270 FORMAT(2X ,3¢6X ,3HLL( 11 ,0H, 11 ,4H) = F7.4))
WRITE(8,280)
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280 FORMAT(// 3% ,35HTHE GIVEN INITIAL VALUES (RAO) ARE:/)
WRITE (8,290) (1,00¢1),1,06(1),1=1,6)

290 FORMAT (/,B(8X,3HQQC 11 ,4H) = F9.6,8X,3HUO( 1 ,4H) = F9.6/))

WRITE(B 295) TSPAN,TSTEP

295 FORMATC// 30, 1 THOTHER OATA://8X ,12HTIME SPAN =
s F8.4 ,8X,12HTIME STEP ~ ,F8.4)
WRITE(B,300)

300 FORMAT (//,3X,40HTHE GENERALIZEO COORDINATES Q1-UN (RAD):)
WRITE (8,310)

330 FORMAT (// ,4HTIME,9X ,2HQY ,9X ,2HQ2,9X,2HQ3 ,9X ,2HQ4,
, 9X ,2HQS 9% ,2HQ6/ /)
WRITE (e o) ' PLEASE INDICATE THE METHOO TOU WISH TD USE.'
WRITE (e,+) ' EXPLICIT: 0 '
WRITE ¢+ o) * IMPLICIT: 1} '
WRITE (e,*) * CRANK-NELSON: 2.0-1.0 °
READ (+,¢) BIA
WRITE (+,s) ' PLEASE ENTER THE INITIAL GUESS FOR AM MATRIX'
WRITE (»,e) * AND VECTOR (VALUE OF TIME STEP IS SUGGESTED):
READCe  ¢) AA BB

MAIN PROGRAM TO CALL THREE OIFFERENT SUBROUTINES

TIME=0.0
ITMAX=DINT(TSPAN/TSTEP+1)
CALL GUESS(AM,VECTOR,AA,BB)
U0 3290 I=I N
QU(I »=Qa(1)
QUII+N)=vO(T)
20 CONTINUE
WRITE (B,380) TIME,(QU(I) ,I=t ,N)
00 330 I=1 ,N2
QOLDEST(I)=Qa(I)
CONTINUE
WRITE (+,e) 'PLEASE INDICATE THE OATA TYPE OF THE TORQUES'
WRITE (+,*) 'YOU ARE GODING TO USEt’
WRITE (e ,e) "IF USE FUNCTION,TYPE 1°
WRITE ¢#,%) 'IF USE NUMERICAL VALUES, TYPE 2:'’
READ («,*) TQTYPE

L

33

DO 340 ITIME=) , ITMAX
IF (TQTYPE .EQ. 1) GOTO 360
READ (9,350) TIMET (TF(1),i=1 ,N)
350 FORMAT (FS.3,1X,6616.8)
360 DO 370 I=1,N2
IF (ITIME .EQ. 1) THEN
QOLD( 1)=QU( T}
QU(I)=QUCT)+VECTOR( I )« TSTEP
ELSE
QOLOEST(I)=QOLO( )
QOLOC T )=Qu(T)
QU(I)=2.0¢TSTEP«VECTOR( [ )+QOLDEST(])
ENDIF
370 CONTINUE

CALL SUBROUTINE QSOLVE TO FIND SOLUTION

eNeNeNe]

oooon

oo

CALL QSOLVE (AM,QU,FN,MAXITR ,ERRMAX ,ERRX ,ERRF ,ITER)
ITER=MINCITER ,MAXITR)
TIME=TIME+TSTEP
IF (MOOCITIME ,NPRINT) .EQ. @) THEN
WRITE (8,360) TIME ,(QU(I),I=1 ,N)
3680 FORMAT (FS.3,1X,6(2X,F9,6))
ENDIF
WRITE(#»,*) * ITERATION NUMBER: ' ITIME
340 CONTINUE
sTOP
ENO

THIS SUBROUTINE ASSIGN INITIAL VALUE TO MATRIX A AND VECTOR V

SUBROUTINE GUESS (A,V,AA,BB)
IMPLICIT OOUBLE PRECISION (A-Z)
INTEGER 1,4 ,N
OIMENSION AC12,12),0(12)
N=12
00 20 I=t,N
00 10 J=1,N
ACT,J)=0.0

10 CONTINUE

ACT,I1=AA

V(1)=88

CONTINUE

V(2)=-88

RETURN

END

2

SUBROUTINE QSOLVE TO SOLVE THE 12 SIMULTANEOUS NONL INEAR
DIFFERENTIAL EQUATIONS B8Y USING QUASI-NEWTON ALGORITHM.

SUBROUTINE QSOLVE (A,X ,F ,MAXITR,ERRMAX ,ERRX ,ERRF,ITER)
IMPLICIT OOUBLE PRECISION (A-2)

INTEGER I,ITER,J,M MAXITR ,N,N2

PARAMETER(N2=12)

COMMON/BLK4/XEPS] ,FEPSI

OIMENSION A(N2,N2),X(N2),F(N2) ,DF(N2),Q(N2 ,N2),R{N2,N2)

CALL AUTOSUB(X ,F)
FIND THE INVERSE JACOBIAN AND THE SOLUTION BY ITERATION

M=1

N=12

00 10 ITER={ ,MAXITR
ERRX=0.0

ERRF=0.0

ERRDF=0.0

00 20 I=t,N
Dx=0.0

TvT



o

o000

c

c

c
c

C THIS SUBROUTINE COMPUTES THE ORTHOGONAL BASIS FOR SPACE SPANNED
C BY THE INPUT VECTOR AND M-1 PREVIDUS VECTORS. THE QR DECONPDSI-

Jo

40

DO 30 J=1,N
DX=DX-A(I ,J)sF(J)
CONTINUE

XCD)=X(1)+DX

IF (DABS(X(I)) .6T. XEPSI) THEN
RELERR=DABS(OX/X(1))

IF (RELERR .6T. ERRX) ERRX=RELERR
ENDIF

CONTINUE

DO 40 I=1 N
OF(1)=F(1)
COMT FHUE

CALL AUTOSUB TO FIND THE NEW VALUE OF THE FUNCTIONS

se

CALL AUTOSUB(X ,F)

00 50 I=1,N

DFCI)=F(1)-OF(])

IF (DABS(DF(1)).,6T.ERRDF) ERRDF=DABS(DF (1))
IF (DABS(F(I)).6T.ERRF) ERRF=DABS(F(1))
CONTINUE

COMPUTE THE ORHTOGONAL VECTORS Z AND R

70
60

IF (ERRF .LT. ERRMAX) RETURN
CALL ORTHO (DF ,M,Q,R)

IF (DABS(R(M M)) .GT. ERRDF#FEPSI) THEN
00 6@ =t ,N

DF(I)=0.02

00 7& J=1 N

DECI=DFCIIACT  J)#F ()

CONT INUE

CONTINUE

UPDATE THE A MATRIX

20

00 80 I=I,N

00 80 J=1,N
ACT,J3=ACT,J)-0F(1)*Q(J ,MI/R(M M)
CONT INUE

M=M+

ENDIF

CONTINUE

RETURN
END

C TION IS RETURNED.

c

SUBROUTINE DRTHO (B,M,Q,R)
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER N,M,1,J K

DIMENSION B(12),Q(12,12),R(12,12)

N=12
IF (M .LE. N} THEN
IF (M .EQ. 1) THEN

C INITIALIZATION
c

c

DO 10 I=t,
00 20 J=)

N
N
Q(r,1)=0.0

20 CONTINUE

QI )=1.0

1@ CONTINUE

ENDIF

C TRANSFORM B VECTOR

c

c

DO 30 I=1,N

SuM=0.0

DO 40 J=1 N
SUM=SUM+Q(J ,1)=B(J)

40 CONTINUE

RCI,M}=5UM

30 CONTINUE

IF (M LT. N) THEN

C HOUSEHOLDER TRANSFORMATION

c

S

R0=0.0

DO SO I=M,N
RO=RO+R(I ,M)*R(I M)
CONTINUE
RO=DSART(RO)

IF (R(M,M).LT.0.0) RO=-RO
B(M}=R(M ,M}+RO
C=DSQRT(R0O+*B(M))

IF (C.6T7.0.0) THEN
R(M,M)=-RO
8(M)=B(M)/C

D0 6O I=M+I N
B(I)=R(1 ,M)/C
R(1,M)=0.0

6@ CONTINUE

C ACCUMULATE ORHTOGONAL TRANSFORMATIONS
c

DO 70 I=1,N
SUM=0.0
DO 80 K=M,N

Zvt
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SUM=SUMtQ(T K )*B(K) c

80 CONTINUE SUBROUTINE AUTOSUB(QU ,FN)
DO 98 J=M,N IMPLICIT DOUBLE PRECISION (A-Z)
Q<1 ,J)=QC1,J)-SUM+B(J) INTEGER I,ITIME,J ,K,L ,M NN N,N2,R DELTA
49 CONFINUL PARAME TER(NN-G)
70 CONIINUE FARAMETER(NZ2=12)
ENDIF DIMENSION VECTOR(N2) ,FN(N2),QU(N2),QDLD(N2) ,KA(NN) ,QOLDEST(N2)
ENOIF DIMENSION A(NN,3,3),AD(NN,3.3)
ELSE DIMENSION W(NN,3),V(NN,3) ,S(NN+J ,3) PW(NN,3 NN},
M=N . PU(NN,3 .,NN) ,PS(NN+1,3 ,NN)
00 108 I=1,N DIMENSION PWD(NN,3 ,NN) PUD(NN,3 NN),PSD(NN+! ,3 ,NN)
DO 110 J=2,N DIMENSION DELTA(NN 2}
RUL,J-1)=R(1,J) DIMENSION MIC(NN,3 ,NN) ,MID(NN,3 ,NN) ,B(NN,3),D(NN,3) E(NN,3) H(NN,3)
118 CONTINUE DIMENSION Z(NN),Y(NN,3),P(NN,3 NN),PD(NN,3 ,NN)
1Q0 CONTIRUE DIMENSION IN(NN,3) MS(NN),DL{NN,3),LL{(NN,3)
DO 120 I=1 N DIMENSION F(NN,NN) KSTAR(NN) KP2(NN) TF(NN}
SUM=0.0 DIMENSION Q(NN),U(NN) UD(NN)
DO 130 J=I N COMMON/BLK 1 /QOLD ,VECTYOR ,BYA,TF ,QOLDESY ,TSTEP ,ITIME
SUM=SUM+Q(J ,I1)eB(J) COMMON/BLKZ2/LL ,DL ,MS,IN
130 CONTINUE COMMON/BLK3/N,L ,DELTA
R¢I,N)aSUM c
120 CONTINUE C ASSIGN NEW VALUES TO Q(I) AND U(I)
DO 140 K=1 ,N-1 c
RO=0SQRT(R(K ,K)eR(K ,K)+R(K+} ,K)*R(K+1 ,K)) DO 70 I={,N
IF (R(¥ ,K).LT7.0.0) RO=-RO Q¢ 1)=(1,-BTA)*QOLD( 1)+QU( 1 )+BTA
BK=R(K ,K}+RO UCT)=(1,-BTAI*QOLD(I+N)+QU( I+N)+*BTA
BEP=R(K+1 K} 70 CONTINUE
C=RO*BK c
IF (C.NE.Q.Q) THEN C COMPUTE NEW VECTOR
R(K ,K}=-RO c
R(K+1,K1=0.0 DO 9@ I-1,N2
DO 150 J=K+1,N IFCITIME.EQ, 1) THEN
RO=BK*R(K,J)+BKP*R{(K+},J) VECTOR(I)=(QU(1)-QOLD(1))/TSTEP
R(K,J)=R(K,J)-RO*BK/C ELSE
R(K+1 ,J)=R(K+1 ,J)-RO*BKP/C VECTOR(I)=(3,+QU(1)-4,+QOLD¢ 1 )+QOLDEST(I))/(2.+TSTEP )
150 COUNTINUE ENDIF
DO 160 I=1,N 90 CONTVINUE
RO=Q{( I ,K)*BK+Q(I ,K+))sBKP DO 100 I=t N
QCI,K)=Q¢I K)-RO*BK/C FN(I)=YECTOR(I)-U(I)}
QCI,K+1)=Q¢1 K+1)-RD*BKP/C 100 CONTINUE
16@ CONTINUE c
ENDIF [% FN(1)=VECTOR(1)-(U(1)+DCOS(Q(3))-U(2)*DSIN(Q(3)))/DSIN(Q(2))
140 CONTINUE c FN(2)=VECTOR(2)+U( 1 }*DSIN(Q(3))+U(2)sDCOS(Q(3))
ENDIF c FN(3)=UECTOR(3)-U(3)~(U(2)+DSINCQ(3))-U(1)*DCOS(Q(3)))+0COS(Q(2))
RETURN [% , /DSINCQC2))
ENO c FN(4)=VECTOR(4)~-U(4)
c FN(5)=UECTOR(5)-U(5)
THIS SUBROUTINE IS TD CALCULATE THE GENERALIZED COOR- c FN{B )=VECTOR(B)-U(B}
DINATES, GEMERALIZED SPEEDS AND THEIR DERIVATIVES. C DEFINE TRANSFORMATIDN MATRICES AND THEIR DERIVATIVES
c
6=9.B1
THIS SUB ROUTINE IS TO AUTOMATICALLY GENERATE DO 110 K=1 ,N
THE GEMERALI1ZED ACTIVE FORCES, THE GENERALIZED DO 110 I=t 3
IMERTIA FORCES, AND FINALLY CALCULATE THE TORQUES DO 110 J=1,3
/0R FORCES. ACK,1,J)=0.0
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00

119

ADCK 1 ,1)+0.9

CONT ITNUE
AC1,1,1)=DCDS(QC1))
AC1,1,3)=0SINCQ(t))

ACE,2,1)=0SINCQ(1))
ACt,2,3)=-DCOSCQC1))
AC1,3,2)=1.2

AC2,1,1)=DCDS(Q(2))
AC2,1,3)=-DSINCQ(2))
AC2,2,1)=DSINCQ(2))
A(2,2,3)=DCDS(Q(2))
A(2,3,2)=-1.0

A(3,1,1)=DC0S(Q(3))
AC3,1,2)=-DSIN(Q(3))
AC3,2,1)=DSINCQ(3))
A(3,2,2)=DC0S(Q(3))
A(3,3,3)=1.0

AC4,1,1)=DCDS(Q4))
AC4,1,2)=-DSIN(QC4))
AC4,2,1)=DSINCQ(4))
AC4,2,2)=DCOS(Q(4))
A(4,3,3)=1.0

ACS,1,1)-DCDS(QLS) )
ACS,1,3)=-DSIN(Q(S))
A(5,2,1)=DSIN(Q(S))
A(S,2,5)-DCOSIQLE))
A(S,3,2)=-1.0

A(6,1,1)=DCOS(Q(6))
ACG,1,2)=-DSIN(Q(E))
A(6,2,1)=DSIN(Q(E )}
A(6,2,2)=DCOS(Q(E))
AL ,3,3)=1.0

ADCT 1, 13=-DSIN(QC ) )sUCT)
AD(1,1,3)=DCDS(QC1 3 IeUCT)
ADCE ,2,1)=DCDSCQET Y IeUl )
AD(1,2,3)=DSINCQE 1) )aUC 1)
AD(2,1,1)=-DSINCQ(2))eU(2)
AD(2,1,3)=-DCOS(Q(2))sU(2)
AD(2,2,1)-0C0S(Q(2))sU(2)
AD(2,2,3)=-DSIN(Q(2))eU(2)
AD(3,1,1)=-U(3)eDSIN(Q(3))
AD(3,1,2)=-U(3)eDCOS(Q(3))
AD(3,2,1)-DCOS(Q(3) ) UC3)
AD(3,2,2)=-DSIN(Q(3))sU(3)
ADC4, 1, 1)=-UC4)sDSINCQE4))
ADC4,1,2)=-U(4)+DCOS(Q(4))
04 ,2,1)=DCOS(QC4))sUC4)
AD(4,2,2)=-DSIN(Q( 4))*U(4)
ADCS 1,1 )=-DSINCQ(S ) ) U(S)
AD(S .1 ,3)=-DCOS(Q(S))=U(S)
ADCS ,2,1)=DC0S(Q(S ) )sU(S)
AD(S,2,3)=-DSIN(Q(S ) )sU(S)
ADCE,1,1)=-DSINCQUE ) )*U(E)

c
c
c

c

AD(6,1,2)=-DCDS{Q(E ) )sU(B)
AD(G,2,1)=DCOS(Q(E ) )I*U(B)
AD(6 ,2,2)=-DSINC(Q(E ) yeU(B)

INITIALIZATIDNS

115

D0 115 K=1,N
72(K)=0.0
KSTAR(K)=0.0
KP2(K)=0.0
0D 115 J=1,3
WK, J)=0.
U(K,J)=0.
S(K,J)=0.
B(K,J)=0.
D(K,J)=0.
E(K,J)=0.
YOK,J)=0.
00 115 R=1,N
PU(K ,J ,R)=0.0
PWD(K,J ,R)=0.0
PU(K,J ,R)=0.0
PYD(K ,J ,R)=0.0
PS(K,J ,R)=0.0
PSD(K ,J ,R)=0.0
P(K,J,R)=0.0
PO(K ,J ,R)=0.0
MIC(K,J,R)=0.0
MID(K,] ,R)=0.0
F(K,R)=0.0
CONT INUE

(=30 -N I~~~

€ PARTIAL ANGULAR VELOCITVIES

c

120

130

150

IF (DELTA(t,1).EQ.1) THEN
D0 120 J=1.3
PWC1, 0, 1H)=A01,3,0)

PWD(1 ,J,1)=AD(t,3,J)
CONTINUE

ENDIF

DO 150 K=2 ,N

00 150 J=},3

DO 13@ R=t K-1

DO 130 I=1.,3

PWIK ,J ,R)=PW(K,J RI4PWU(K-1 I ,R)vA(K I,1)
PWOCK ,J ,R)=PWDCK ,J ,RIPUWD(K~1 T RIACK I 1)+PW(K-1 1 ,R)sAD(K I ,J)

CONTINUE

IF (DELTA(K,1).EQ.1) THEN
PW(K,J K)=A(K 3,J)

PWD(K ,J K)=AD(K ,3,J)

ELSE

PU(K,J K)=0.0

PWD(K,J ,K)=0.0

ENDIF

CONTINUE

1A A"



o

[rBelel

*

ANGULAR VELOCITIES

00 16@ K=t ,N
DO 160 J=1.,3
DO 160 R=1 K
WK, 1)=W(K ,J)+PU(K ,J ,R)*U(R)

16@ CONTINUE

PARTIAL VELOCITIES

IF (DELTACI ,1).EQ.1) THEN
PUCH,E,1)=PWCL,2 ,1)eDLCE 3)-PWCE,3,1)9DLC1,2)
PUCE, 2, 1)=PWCE,3,1)eDLCE, 1 )-PW(T 0,1 )eDLET,3)
PUCE,3,1)=PWCE,E, 1 )eDLCH ,2)~PWCY 2,1 )eDLCY 1)
PSCZ, 1, 1)=PWCE,2,1)0LLCT,3)-PUCT 3,0 )eLL(1,2)
PS(2,2,1)=PWCE, 3, 1)0eLLCY, 1)-PWEE 1, E)eLLC),3)
PSC2,3,1)=PWCt 1, 1)eLLEY ,2)-PU(T 2, 1)Lt 1)
ELSE

PUC1,3,1)=1.0

PS(2,3,1)=1.0

ENDIF

00 80 K=2 N

IF (DELTA(K ,1).EQ.Q) THEN

DO 165 R=1 K-t

DO 163 J=),3

DO 163 I=1,3

MICK ,J ,R)=MI(K , J RI4PS(K, I RI*A(K K1, 1)

MID(K ,J ,R)=MID(K,J ,R)+PSD(K, 1 ,R)*A(K I ,J)+PS(K 1 ,R)*AD(K ,1,J)

163 CONTINUE

PUCK, 1 ,R)=MI(K,1 ,R)+H(DL(K,3)+Q(K))ePW(K,2 ,R)-DL{K ,2 )oPW(K 3 ,R)
PUCK,2 ,R)=MI{K ,2 ,R)4DL(K, §)oPW(K 3 ,R)-(DLCK,3)4Q(K ) ) sPW(K 1 R}
PUCK,3 R)=MI(K,3 ,R)4+DL(K,2)PW(K | ,R)-DL(K,1 )*PU(K ,2 ,R)

PSCK#1 1 ,R)=MIC(K, 1 ,RIHC(LL(K,33+Q(K))ePW(K,2 ,R)-DL(K,2)ePW(K ,3,R)
PS(K+1,2,R)=MI(K,2 ,RIHLLIK, 1 )oPUCK 3 ,RI~(LLCK,3)HQCK ) JoPUW(K 1 ,R)
PSCK+), 3, RI=ME(K,2,R)I4LLIK,2IsPU(K 1 ,RI-LL(K, 1 )sPU(K,2 ,R)

PUDCK, 1 ,R)=MID(K 1 ,R)+(DL(K ,3)+Q(K ) )sPUD(K ,2 ,RI+HUCK ) sPW(K ,2 ,R)

, -DL(K ,2)ePUOCK 3, R)

PUD(K ,2 ,R)<MID(K ,2 ,R)+DL(K , 1 )sPWD(K ,3 ,R)-U(K }sPW(K ,1 ,R)

, ~(DL(K,3)+Q(K))sPUD(K,1 ,R)

PUD(K,3 ,R)=MID(K,3 ,RI+DL(K ,2)sPWO(K 1 ,R)-DL{K 1 )*PWD(K ,2 ,R)
PSD(K+1 1 ,R)=MIDCK, | ,RI4(LL(K,3)4QCK })ePUOCK ,2 ,RI+UCK ) sPW(K ,2 ,R)
, ~LL(K ,2 }*PUD(K ,3 ,R)

PSD(K+1,2 ,R)=MID(K, 2, ,RI+LLCK , 1 DoPUD(K 3 ,R)-{LL(K,3)4Q(K))»

R PUD(K , 1 ,R)-UCK)sPU(K ) ,R)

PSD(K+1,3 ,R)=HID(K,3 ,R)4LL(K,2)ePUDCK 1 ,R)-LLCK ,1)ePWOCK ,2 ,R)
CONTINUE

PU(K,3,K)=1.0

PS(K+t,3 K)=1.0

ELSE

D0 175 R=1 K

DO 170 J=1,3

DO 70 I=1,3

P(K,J ,R)=P(K,J ,R)+PS(K I ,RI*A(K,1,J)

POCK 1 ,R)=PD(K ,J ,RI+PSD(K I ,RIsACK  E,J)+PS(K, T RISAD(K ,1,J)

s EoNe]

170 CONTINUE

PUCK, 1 ,R)=PU(K 1 RI+P(K,1 ,RI4PW(K,2 ,R)*DL(K ,3)-PW(K,3 R)*DL(K,2)
PUCK,2 ,R)=PV(K ,2 ,R)+P(K,2 ,RI+PW(K ,3 R)sDL{K,1)-PU(K 1 ,R)+DL(K,3)
PU(K ,3 ,R)=PV(K,3,R)+P(K,3 ,R)4PW(K 1 ,R)sDL(K ,2)-PU(K ,2 ,R)e0L(K,1)
PSCK+1,) ,R)=PS(K+I,1 ,RI+P(K,1 ,RI+PU(K,2 ,RI*LL(K ,3)-PW(K,3 R)

) *LL{K,2)
PS(K+1,2,R)=PS(K+|,2 ,RI+P(K,2 ,RI4+PW(K 3 R)eLL(K,1)-PU(K, 1 ,R)

) *LL(K ,3)
PSCK+1,3 ,R)=PS(K+1,3 ,RIP(K,3,RI4PU(K 1 ,R)eLL(K,2)-PW(K 2 ,R)

R SLL(K, 1)
PUD(K,I,R)=PUO(K,I,R)+PD(K,I,R)*PUD(K,Z,R)-OL(K,B)-PUD(K,3,R)

, *DL(K,2)
PUD(K,Z,R)=PUD(K,2.R)+PD(K,2,R)+PUD(K,3,R)-DL(K,I)-PUO(K,(,R)

. *DL(K,3)
PUD(K,3,R)=PUD(K,3,R)4PD(K,3,R)+PUO(K,I,R)'OL(K,Z)-PUD(K,Z,R)

, *DL(K,1)
PSDCK+1,1,R)I=PSD(K+1 1 ,R)I4+PD(K 1 ,R)+PUD(K ,2 ,R)*LL(K ,3)-PWD(K ,3 ,R)

R SLL(K,2)
PSD(K+|,2,R)=PSD(K+I,Z,R)+PD(K,2,R)+PUD(K,3,R)-LL(K,I)—PUD(K,I,R)

R sLL(K,3)
PSD(K+|,3,R)=PSD(K+|_3,R)+PD(K,3,R)0PUD(K,I,R)!LL(K.2)~PUD(K,2,R)

, sLL(K,1)

175 CONTINUE
ENDIF

180 CONTINUE

VELOCITIES
DO 20@ K=i ,N
D0 200 J=1,3
DO 200 R=1 K
V(K ,J)=U(K ,JIHPY(K ,J ,R)sU(R)
S(K,J)=5(K,J)4PS(K,J ,R}*U(R)

200 CONTINUE

CALCULATE INTERMEDIATE VARIABLES
DO 22@ K=1 ,N
BOK, 1 )=W(K,2)2V(K,3)~W(K,3)0U(K,2)
B(K,2)=W(K ,3)0U(K,1)-W(K,§)eU(K, 3)
BUK,3)=W(K,1)eV(K,2)-W(K,2)eU(K 1)
D0 210 J=1.,3
DO 210 R=I K
D(K ,J}=0(K ,J)+PVD(K ,J ,R)I*U(R)
ECK,J)=E(K,J)+PWD(K ,J ,R)eU(R)

210 CONTINUE
H(K.l)=IN(K,|)-E(K,l)+U(K,2)-U(K,3)-(IN(K,B)-IN(K,Z))
H(K.2)=1N(K,2)-E(K,2)+U(K,3)-U(K,|)-(IN(K.I)—IN(K,B))
H(K,3)=IN(K,3)'E(K.3)+U(K,I)-U(K,Z)-(IN(K,Z)—IN(K,I))

220 CONTINUE
DO 230 k=1 ,N
DO 230 J=i,3
DOK,J)=D(K ,J)+8(K ,J)

230 CONTENUE

ST



C CALCULATE INTERMEOIATE VARIABL 1°'S
C
DO 240 R=1,N
DO 240 K=1,N
DO 240 J=1,3
ZCRI=Z(RI+PUW(K ,J ,RIeH(K ,J)+MS(K ) ePUCK ,J ,RI*D(K ,J)
240 CONTINUE
c
C CALCULATE INERTIA COEFFICIENTS
C
Do 2
Do 2
no 2
DO 245 K=1 ,N
FOR,M)=F(R M)+INCK ,J)ePW(K ,J ,M)*PU(K ,J RILMS(K IePW(K J M)
. *PU(K,J ,R)
F(M, R)=F(R M)
245 CONTIMNUE
258 CONT INUE

5
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C GENERALIZEO INERTIA FORCES

00 260 R=1,N

, 00 255 M=t N
KSTAR(R)=KSTAR(R)-F(R ,M)*UD(M)

255 CONTINUE
KSTAR(R)=KSTAR(R)-Z(R)

260 CONTINUE

(gl

C INGREOIENTS OF GENERALIZED ACTIVE FORCES

DO 270 J=1,3
YU, d3=ACT L, 00
270 CONTINUE
00 288 K=2,N
Do 286 J=1,3
00 280 1=1,3
YK, =YK 4 (K=1 1 )eA(K ,1,0)
280 CONTINUE
DO 298 R=1,N
DO 290 K=),N
po 298 J=1.3
KP2OR)=KP2(RI4MS(K )eGeY (K ,J)ePU(K ,J ,R)
290 CONYINUE

oo

GENERALIZED ACTIVE FORCES

DO 300 R={ N
KA(R)=TF(R)+KP2(R)
300 COMTINUE
DO 318 R=1 ,N
FN(R+N)=KA(R)+KSTAR(R)
310 CONTINUE
WRITE(» ,400@) * FN: * (FN(J) J=1,12)
400 FORMAT(A ,EEVI1.5/5X ,6E11.5)

t3

(gl

(gl

coOo0oo

RETURN
END

THIS SUBROUTINE COMPUTE THE VALUES OF TORQUE FUNCTIONS.

SUBROUTINE TORQUE (TF,Q,Vv)
IMPLICIT DOUBLE PRECISION (A-1)
INTEGER 1

DIMENSION TQ(12),Q¢12),V(12)

DEFINE YOUR FUNCTION EXPRESSIONS OF GENERALIZED ACTIVE
FORCES OR/TORQUES IN THIS PART IF YOU INPUT IS FUNCTIONS.
SUCH AS:

Do 45 I=1 .8

TQ(1)=0.0
4S5 CONTINUE

RETURN

END

9%T1



