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DERIVATION AND AUTOMATIC GENERATION

OF KANE'S DYNAMICAL EQUATIONS

FOR MECHANICAL MANIPULATORS

I. INTRODUCTION

Development of an efficient mathematical representation

f manipulator dynamics is essential for the advanced

control and design of manipulator systems. In robot

control, dynamical equations are frequently used to compute

the forces and torques needed to drive the system to achieve

desired motions, a task that may be performed repeatedly

and, in most cases, rapidly. As regards manipulator design,

dynamical equations are employed to carry out simulations

for the purpose of testing the performance of a manipulator.

Consequently, constructing the most efficient computational

algorithm and finding the most efficient way to approach

dynamic equations of motion are of the first importance in

the field of robotics. The purpose of the present work is

to show how this can be accomplished by using Kane's

dynamical equations and to develop a computational algorithm

to automatically generate such equations.

Two methods are widely used in deriving the equations

of motion for mechanical manipulators, namely, the Newton-

Euler formulation and the Lagrangian formulation. The

Newton-Euler formulation is derived by direct interpretation

of Newton's second law of motion, which describes dynamic
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systems in terms of force and momentum. The equations

incorporate all the forces and moments acting on an

individual arm link, including the coupling torques, forces

and moments between adjacent links. In the Lagrangian

formulation, on the other hand, the system's dynamic

behavior is described in terms of work and energy using

generalized coordinates. Much effort has been devoted to

developing effective procedures to obtain the equations of

motion in the fields of spacecraft and robotics by using

these two methods.

In 1965, Hooker and Margulies [1] presented an

algorithm, based on the Newton-Euler formulation, to derive

the dynamical equations for an n-body satellite. This paper

is considered to be the first paper describing a quite

general derivation and computational algorithm in the field

of spacecraft. In the same year, Uicker [2] derived the

exact equations of motion for rigid-link spatial mechanical

systems, using 4X4 displacement matrices. The results were

specially written for open kinematic chains, the most common

manipulator configuration, by Kahn in 1969 [3]. The

following year, Keat [4] reported on the derivation of

dynamical equations of nonrigid satellites by using the

Lagrangian formulation. Woo and Freudenstein [5], Yang [6]

investigated the use of screw calculus in deriving the

equations of motion for spatial mechanisms. The basic

objective of these works was to provide a programmable,

analytical formulation for studying the dynamics of general,
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rigid link mechanical systems. A host of additional papers

[e.g. 7-20] soon followed during the late of 1960's and the

early of 1970's.

The derivations cited above provided a theoretical

framework for the study of what is called multibody

dynamics. The results were too complicated and the

computations too time-consuming to be practical for design

or real-time control in the robotic field. In 1974, Bejczy

[21] presented an approach to the equations of motion of a

robot arm and showed some simplifications of the basic

equations. In parallel efforts, to reduce the computation

time for evaluating the generalized actuator torques,

Whitney [22], Raibert [23], Raibert and Horn [24] considered

replacing some calculations by table look-up schemes. This

straightforward method, however, requires a very large

memory space and is difficult to modify when the mass

properties are changed.

The relatively promising methods for solving this

analysis task in real-time are the recursive formulation

presented in the last few years since Stepanenko and

Vukobratovic published their paper [25] in 1976. Orin [26],

Luh, Walker and Paul [27] devised the recursive Newton-Euler

dynamics computation. The method is recursive in the sense

that velocities and accelerations are found sequentially

starting from the fixed base link. Then, force or torque

balances at each successive joint, starting at the free end

of the arm, determine the actuator torques due to the
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inertial and applied loads. Paul and Luh [28] also gave a

more efficient implementation of this method, while

Hollerbach [29] developed independently the recursive

relations based on the Lagrangian formulation. Hollerbach

[30] and Kanade [31] further improved the computation

efficiency by customizing the dynamic computations to

particular robot structures. These recursive methods form a

computationally faster algorithm for calculating the

kinematic terms and for constructing the equations of

motion. However, they provide no information about the

overall structure of the dynamic system needed for analyzing

its dynamic behavior.

Derivation of dynamic equations of motion for

manipulators is a time-consuming and error-prone process.

Awareness of this problem comes into evidence in nearly

every paper dealing with the robotic dynamics. In the mid- -

1970's, dynamicists began to think about what is now called

automatic generation, which means computer programs intended

to simultaneously generate and integrate the equations of

motion numerically for user specified arrangements of

connected bodies or mechanical manipulators. As early as in

1973, Dillon [32] presented a program to generate the

equations of motion for linkage mechanisms based on the

Lagrangian technique. This program was then used to check

the correctness of certain derived equations of motion. Two

years later, Langrana and Bartel [33] reported an automated

method for dynamic analysis of spatial linkages for
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biomedical application. These early works seem too tedious

to be practical if the algorithm was used for six-link

robots. Research on this field had been silent for few

years until 1981 when Luh and Lin [34] developed an

algorithm to automatically simplify the dynamic equations of

motion for a manipulator. This algorithm is based on the

combination of the Newton-Euler and the Lagrangian

formulations. The following year, Thomas and Tesar [35]

presented a numerical simulation algorithm and announced

that a general computer package based on this algorithm had

been written for the static and the dynamic analysis of six-

joint manipulators.

All of the works cited above are based on either the

Newton-Euler's method, the Lagrangian method, or a

combination of these two. The resulting procedures have

serious difficulties. The equations obtained from the

Newton-Euler's method include the constraint forces acting

between two adjacent links. Therefore, additional

arithmetic operations are required to eliminate these

nonworking terms and to obtain the explicit relation between

the joint torques and the resultant motion in terms of joint

displacements. The Lagrangian formulation, providing relief

of this burden, suffers new problems. The manual labor

needed to derive and differentiate the kinetic energy

expression can be time-consuming and difficult to accomplish

without error. The resulting equations are very difficult

to modify after they have been developed, and the
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significance of individual terms in these expressions is

often obscure. Both methods are quite laborious, and, when

one attempts to save manual labor by resorting to the use of

a computer, one finds frequently that intermediate

computations need such large memory spaces that the storage

requirements exceed the capacities of the largest available

computers, even when the manipulator being analyzed

possesses only a modest number of links. Therefore, there

is a need to find a new method that is minimally laborious

and leads directly to the simplest possible computational

algorithm.

In the early 1960's, T. R. Kane developed an approach

[36] that reduces the formulation of dynamical equations to

a straightforward, deductive procedure instead of the

classical formulations. The formulation was called

"Lagrangian form of D'Alembert's principle" at that time.

In this formulation, the concept of partial velocity was

introduced. In accordance with Newton's second law, the

formulation was founded by dot-multiplying the active forces

and the inertia forces with the partial velocities. In

deriving the equations of motion, this method significantly

reduces the amount of hand labor, as stated by Peter

Radetsky [37], "a growing army of disciples claims that

Kane's dynamical equations are so far the most efficient

method in dynamics -- and the more difficult the problem,

the more valuable it is." In connection with spacecraft

dynamics, Kane and Levinson [38] further showed that this
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method enables one to work systematically with fairly

complicated multibody dynamics, to eliminate effortlessly

forces and torques that are of no interest, and to produce

straightforwardly explicit equations of motion having a

computationally sound form. This formulation was formally

called Kane's dynamical equations when Kane, Likins and

Levinson published the book "Spacecraft Dynamics" [39] in

1983.

The first paper regarding Kane's dynamical equations in

the field of robotic dynamics was published by Huston and

Kelly [40,41] in 1982. In the next year, Kane and Levinson

presented a detailed formulation procedure using Kane's

dynamical equations for the Stanford Arm [42]. Simulation

results based on the derived equations were reported. A

detailed comparison of Kane's dynamical equations with the

Lagrangian formulation was given in reference [43]. In this

paper, the authors focused their attention on the labor that

must be expended in formulating the equations of motion and

on the form assumed by these equations, which determines the

number of operations required for a numerical solution of

the equations. Following this, Kane and Fassler [44]

further investigated the derivation of closed-form of

dynamic equations for robots and manipulators with the same

algorithm, and concluded that the Kane's dynamical equations

provided the best basis for the solution of multibody

dynamics.
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However, since Kane's dynamical equations have been

introduced only since 1968, unlike those of classical

methods, the literature about it, especially in the robotic

field, is sparse, consisting only of the few references

cited above. In other words, the theoretical framework is

available, but the details of the computational algorithm

needs further development, and some aspects need to be

further discussed. First, the references do not present a

general guiding idea on how to construct the generalized

speeds, without which one may not know how to start his

work. Another problem is the elimination of the nonworking

contact forces. Rather than considering a specific robot, a

general expression that fits all robots needs to be derived

to provide a better basis for automatic generation. For

automatic generation, references [36, 38-44] provide a good

basis for constructing the equations of motion, but what

they have done so far is primarily based on hand-derived

equations rather than letting a computer do it. The

procedure described in the most recent paper [45] (Fall,

1986) regarding automatic generation of Kane's dynamical

equations avoids writing explicitly the expressions of

accelerations and generalized inertia forces, but with this

algorithm, one must spend almost the same amount of labor on

creating "inertia coefficients" and their derivatives. In

general, the algorithms of automatic generation by Kane's

formulation reported so far can only avoid writing

explicitly the equations of motion, all other ingredients,
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including kinematic and kinetic quantities and generalized

inertia and active forces, are still derived by hand. Thus,

the procedure is still very burdensome for the manipulators

with six-degrees of freedom. Indeed, when one's ultimate

goal is the numerical solution of the equations of motion,

one may employ computer codes to handle the derivation of

velocities, angular velocities and other kinematic and

kinetic ingredients, and to write the dynamical equations.

One may then proceed directly to the creation of a computer

program that yields simulation results.

To show how these deficiencies may be overcome, the

present work derives the dynamic equations for the

Intelledex 605 Robot Arm by employing Kane's dynamical

equations. The formulation procedure is general for all

serial robot arms with detailed discussions on how to select

the generalized speeds and how to eliminate the nonworking

forces for the general six-link robots. Based on the

formulation procedure, an algorithm for automatic generation

of Kane's dynamical equations for manipulators is then

derived. This algorithm requires analysts to provide only

the geometric configuration data of the manipulator being

analyzed, i.e., the elements of a set of transformation

matrices between links, the derivation of all kinematic and

kinetic ingredients and formulation of the equations of

motion being left for a computer. Computer programs based

on both the hand-derived equations and the automatic

algorithm are presented.
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The remaining chapters of this work are arranged as

follows.

Chapter II mainly deals with the manual derivation of

Kane's dynamical equations. The sequel begins with

coordinate assignations and transformations for the

Intelledex 605 Robot Arm. Then, guidance on how to define

generalized speeds is given. Next, the kinematic and

kinetic ingredients needed for constructing Kane's dynamical

equations are worked out. Thereafter, the equations of

motion for the example robot arm are established. Finally,

simulation results based on the equations are reported. In

Chapter III, the algorithm of automatic generation of Kane's

dynamical equations is derived. The symmetry property of

the inertia matrix of the system equations is proved. This

property is then used in constructing the algorithm to

reduce the arithmetic operation in the computer programs.

Simulation results based on this algorithm are also reported

and compared with those from the hand-derived equations.

Discussions and conclusions are presented in the last

chapter.
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II. DERIVATION

II.1 SPECIFICATIONS AND TRANSFORMATIONS

Figure 2.1 is a schematic representation of the

Intelledex 605 Robot Arm, which consists of six links

designated by A, B, F. Link A can be rotated in a

Newtonian reference frame N about axis Z0 fixed in N. A

supports B, which can be made to rotate relative A about the

axis Z1 fixed in A and B. C is connected to B, D to C and

so on in such way that the members of each pair can be made

to undergo relative rotation about their common axis, as

indicated in Figure 2.1. The quantities ql, q2, q6 are

radian measures of the angles of these six relative

rotations, which are defined as generalized coordinates.

For the configuration depicted in Figure 2.1, q1, q2,

q6 are regarded as being equal to zero. A
*,

B *, . , F* are

the mass centers of the links A, B, F respectively.

L1, L2, L11, L63 are linear measures used to specify

the coordinate components of the mass centers A
*

, B
*

,

F
*

.

The coordinate frame assigned to each link is shown in

Figure 3.2. Namely, axes x0, y0, z0 are fixed in the

reference frame N with a set of mutually perpendicular unit

vectors nl, n2, n3 in the directions corresponding to xo,

y0, z0 respectively. Axes xl, y2, z3 are fixed in link A

with the unit vectors al, a2, a3 in the direction of each of



C12

Z5 Z:fs

Figure 2.1. Schematic representation of the Intelledex 605
robot, shown for q1, q6 = 0.
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the axes respectively, and x2, y2, z2 with b1, b2, b3 are

fixed in B, x3, y3, z3 with Cl, 02, 03 fixed in C, and so on

through F.

Once the coordinate frames have been assigned, one can

begin to establish the transformation matrix Ai (i=1, 2,

6) relating the coordinate frame of link i to the

coordinate frame i-1, as described in reference [46].

Specifically, the transformations between adjoining bodies

are:

Al =

Cl

s1

0

0

s1

-Cl

0 1 0

c2 0

A2 = s2 0 c2

0 -1 0

c3 _s3 0

A3 = s3 c3 0

0 0 1

c
4 -s4 0

A4 = s4 c4 0

0 0 1

c6 0

A5 = s6 0 c 5

0 -1 0

06 -s6 0

A6 = s6 c6 0

0 0 1
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where si and ci are the abbreviations of the sine and cosine

of angle qi, that is

si = sin(qi)

ci = cos(qi)

The abbreviations such as

sij = sin(qi+qj)

cij = cos(qi+qj)

sijk = sin(qi+qj+qk)

cijk = cos(qi+qj+qk)

will also be used in the later part of this work.

The next step to be undertaken is to evaluate the

products of the above transformation matrices. These

products relate each coordinate frame towards the base

coordinate frame N and are historically called T matrices.

T1 = Al

T2 = A1A2

T6 = A1A2A3A4A5A6

These in turn give

{N} = [Ti](a) = [T2] (b) = = (T6)(f)

Therefore, the unit vectors of the base coordinate frame can

be expressed in each coordinate frame by the following

transformation relations.

n1 cl 0 sl

n2 = sl 0 _c1 (2.1)

n3 0 1 0 a
3
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111112/7"

n3

nl

n2

n3

n1

n2}=

n3

nl

:121=

n3

C1C2

sic2

s2

-si -cis2
cl -s1s2

0 c2

cic2c3-sis3

sic2c3+cis3

s2c34

cic2c34-s034

sic2c34+cis34

s2c345

:1

2

b3

'''CiC2S3S1C3 CiS2

"'S1C2S3-1-C1C3

1

-s2s3 c2 C3

-cic2s34-s1c34 -cis2-

-sic2s34+cic34 -sis2

-s2s34 -c2

C1C2C345- S1S345 C1S2 'C1C2s345-s1C345-

s1c2c345 +cls345 s1s2 s1c2s345 +c1c345
s 2c345 ""'S2S345

(2.2)

(2.3)

1/:

2 (2.4)

d3

1

e2 (2.5)

e
3

(cic2c345-sis345)cecis2s6 -(cic2c345-s1s345)secis2c6

(sic2c345+cis345)cesis2s6 -(sic2c345+c1s345)sesis2c6

s2c345c6-c2s6 -s2c345s5-c2c6

- cic2s345-sic345-

- sic2s345+c1c345 f2 (2.6)

-s2s345 f
3

For the reason that will be seen later, the expressions

of each set of unit vectors n's, a's, ...,f's in terms of

unit vectors cl, c2, c3 will also be needed. these are:

[n] = [A1][A2][A3][c]



i.e.

[a] = [A2] [A3] [

[b] = [A3] [c]

[d] = [A4]-1 [c]

[f] = [A5]-1[A4]-1[c]

[f] = [A6]-1[A5]-1[A4]-1[c]

n1

n2

n3

=

-c1c2c3-s1s3

s1c2c3+cis3

,.
s2c3

-c1c2s3-s1c3

-sic2s3+c1c3

S2S3

-cis2"

-s1s2

c2

ci

c2

c3

al

a2=

a3

:lt

2

b3

C2C3

s2c3

c3

s3

0

-c2s3 -

-s2s3 c2

-c3 0

2

-s3

c3 0

0 1

02

c3

3

dl c4 s4 0 Cl

d2 c4 0 °2
td3c 0 0 1 c3

e1 c45 s45 0 ci

6121= 0 0 -1 c2
e3 -s45 c45 0 03

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

16
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fl

f2

3

c45c6 s45c6 -s6- ci

-c45s6 -s45s6 -c6 c2

-s45 c45 0 (c3

11.2 GENERALIZED SPEEDS

(2.12)

For a simple nonholonomic system S possessing n-m

degrees of freedom, the n-m quantities u1, u2,..., un_m,

called generalized speeds, are defined [36] as linear

combinations of 41, q2, ..., 4n_m by means of equations of

the form

- .

u =
n
Em U q + Ur, (r=1, 2, ..., n-m) (2.13)r s=1 rs s r/

where Urs and Ur are functions of the coordinates ql, q2,

qn, and t, and these quantities are chosen in such a

way that equations (2.13) can be solved uniquely for 41, q2,

4n-m

It then follows that the velocity V of a typical

particle P of S can be expressed uniquely as

n-mV =Evu+ vtr=1 r r (2.14)

Similarly, the angular velocity of a rigid body of S can be

written as

-
W =

nEm
wr ur + wtr1 (2.15)

Where vr, wr, vt and wt are functions of q1, qn_m and

t, and the vrl wr are called the rth partial velocity and

the rth partial angular velocity, respectively.

By the definition (2.13), it is evident that

generalized speeds are used to specify the motion of a
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system, rather than its configuration. Generalized speeds

can be any linear combinations of 41, ..., 4n_m (subject to

the invertability mentioned above). They are not

necessarily time derivatives of any functions [36).

Therefore, there is actually an unlimited number of ways to

define generalized speeds for a given system. It then comes

to the question that what definition provides the best basis

for deriving dynamical equations for a manipulator? To help

answer this question, a few points are to be discussed.

First, the guiding idea in introducing generalized

speeds is to reduce the labor required to derive dynamical

equations. To this end, selection of definitions for

generalized speeds should be made such that corresponding

expressions for partial velocities and partial angular

velocities, which are to be dot multiplied with active and

inertia forces, be as simple as possible. Thus, with proper

selection, simpler expressions of these ingredients can

lead to a noticeable simplification of the derivation

process and of the resulting equations.

In practice, most six-link manipulators have three or

more revolute joints. The velocity of a point P fixed in one

of the links is usually found by the following equation.

VP=VQ + W X r

This indicates that simpler expressions of angular

velocities can lead to simpler expressions of velocities,

and thus simpler partial velocities. However, simple forms

of velocities cannot usually lead to simple expressions of
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angular velocities; in fact, they may be even more

complicated. Therefore, in selecting the forms of

generalized speeds, one should preferably make the

expressions of angular velocities as simple as possible.

The next point to be discussed is the choice of the

link relative to whose angular velocity the generalized

speeds are defined. Consider, first, the manipulators

having three or five revolute joints. As shown in Figure

2.2, for the system having three revolute joints, if each of

the three components of the angular velocity of the third

link is defined as a generalized speed, the angular

velocities for link 1, link 2 and link 3, respectively, can

be written as

wl" = (-1-3,/-2 - u2 3/s2)a2

w2 = f" ^ )'gtA- -)"- " ^ 1"us1-3Ar3l132321-34232 3

W3 = uici+u2c2+u3c3

where t2 stands for tan(q2). In these expressions, there

are 11 multiplications and 4 additions. On the other hand,

if the first link is chosen as the base, then,

wl

2w" = u2s1b1 - u2b2 + u1c2b3

W3 = (u1s2c3-u2s3)c1-(u1s2s3+u2c3)c2+(ulc2+u3)c3

There are 9 multiplications and 3 additions in these

equations. However, if the second link is chosen as the

base, then,

W1 = s
2u1a 2

W2 = u 1b1+u2b2+u3b3
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n3

Figure 2.2. Three rotational link manipulator.

ZO Z



21

W3 = (u1c3+u2s3)c1+(-u1s3+u2c3)c2+(ult2+u3)c3

These expressions only need 7 multiplications and 3

additions. Especially, for the manipulators having five

revolute joints, choosing the middle link as the base can

significantly reduce the number of arithmetical operations.

This is because the number of matrix transformations from

the middle link to other links is 2X(1+2)=6, while the

number from the first link or from the last one to others is

1+2+3+4+5=15. For manipulators having six revolute joints,

either the third link or the fourth link can be defined as

the base. However, since the kinematic ingredients of the

former link are more frequently used than those of the

latter, it is better to make the angular velocity of the

third link have the simplest form, that is, the third link

is taken as the base. For the same reason, the second link

is taken as the base for a manipulators having four revolute

joints.

In summary, the guiding idea for introducing

generalized speeds is to simplify the expressions of angular

velocities, velocities, partial angular velocities and

partial velocities, more importantly to obtain the simplest

forms of angular velocities. For the manipulators having

three or four revolute joints, it is best to choose the

second link as the base. For five or six revolute joint

manipulators, the third links should be chosen as the bases.

Once the base is chosen, define each of three mutually



perpendicular components of its angular velocity as a

generalized speed.

For the Intelledex 605 Robot, link C is taken as the

base, the angular velocity of which can be found by

WC 41n3 42a3 4- 431)3

In terms of unit vectors c1, c2 and c3 (refer to equations

(2.7-9)), this can be expressed as

WC" = (s2c341-s342)c1-(s2s341+c342)c2+(c241+43)c3 (2.17)

The generalized speeds u1,

ui = WC*c. (i=1,1

u. = 4. (i=4,

u6 are defined as

2, 3)

5, 6)

That is,

u1 = s2c341-s342

u2 = -s2s341-c342

u3 = c2414-43 (2.18)

u4 = 44

u5 = q5

u6 = 46

If the Intelledex 605 Robot Arm is not operated in the

vicinity of q2 =0° or q2=180°, equations (2.18) can be solved

uniquely for

41 = (c3u1-s3u2)/s2

q2 = - s3u1 -c3u2

43 = 1134.(S3112"'C3111)C2/52

q4

q5

= U4

= U5

46 u6

(2.19)

22
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For convenience, define

z1 = 41 = (c3u1-s3u2)/s2

z2 = 42 = -s3u1 -c3u2

z3 = q3 =u +(s3u2-c3u1)c2/s2

(2.20)

11.3 KINEMATIC INGREDIENTS

Angular velocities and velocities are to be expressed

in two different forms, one involving the generalized speeds

explicitly, another implicitly. The explicit form must be

used when one tries to find partial velocities and partial

angular velocities by inspecting the coefficients of the

generalized speeds and to form expressions of accelerations

(partly) and angular accelerations by differentiating the

available velocities or angular velocities. On the other

hand, when one tries to determine the cross products or dot

products of angular velocities, velocities with some other

vectors, the implicit forms should be used for this can

considerably save hand labor.

Wiht reference to Figure 2.1, the angular velocity of

link A in the base reference frame can be expressed in form

of

wA 41113

In terms of the vector basis fixed in link A, this can also

be written as

wA 41a2

In view of equation(2.20), in the implicit form,

WA = Z1a2



Alternatively, in the explicit form,

where

WA = (Z4u1+Z5u2)a2

Z4=c3/s2

Z5=-s3/s2

For the angular velocity of link B in N, one finds,

B AW = W + q2a3

In terms of the vector basis fixed in the link B,

with

WB = Z6b1+Z7b2+Z10b3

WB (11 r, C )P. 4.(11 4.11
)11.1

4.(7 4-7
" '%"8-19-2)~3

Z6 =u1c3 -u2s3

z7=1."'Z2

(2.21)

Z8=Z 4c2

Z9=Z5c2

Z10=Z 8u1+Z 9u2

The angular velocity of link C can be directly found from

equations (2.17) and (2.18) to be

WC = uici+u2c2+u3c3 (2.22)

Based on WC, one can express WD, the angular velocity of

link D, as

D CW = W + q4c
3

In terms of the vector basis that is fixed on link D,

WD = (11 I, 4.11 C %A 4.f 11 C 4.11 1.1 IA 4.(11 4.11 IA (2.23)

WD = Z11d1+Z 12 d2+Z 13 d 3

where

=111C4.+U2S4

24



z12=- uls4+u2c4

Z13=u3+u4

Similarly, the angular velocities of link E and link F are

found to be,

WE = Z1741114-Z18e2+219e3

WE = (u1Z14+u2Z15)el-(u3+u4+u5)e2+(u1Z16+

where

and

with

=c45

Z15=s45

z16=-Z15

Z17=u1Z14+u2Z15

Z18=-Z13-u5

Z19=u1Z1eu2Z14

wF = 7 f +7 f +7
-24-1'-25-2'-26-f 3

wF f7 n +7 n +7 c lf f7 n +7= %-20-1-21-2-18-61-1-%-22-1-23

-1-(Z16u14.Z14u2+u6)t3

Z20=Z14c6

Z21=Z15c6

Z22=Z14s6

Z23 =Z15s6

Z24=Z20u1 Z21u21-Z18s6

Z25=-Z22u1 18c6

Z26= Z16u1 +Z14u2 +u6

) e3

Zi8c6)f2

(2.24)

(2.25)

25



As for the velocities of links A, B and C, one notices

that point 0 is fixed in the base reference frame N. With

the vector from the point 0 to the mass center of a link

denoted as r, the angular velocity of this link denoted as

W,

V =WXr (2.26)

For link A,

r = OA
*
= -L12a2+L13a 3

Substitution of r and WA into equation (2.26) and

introduction of

Z27=L13 Z4

Z28=L13Z5

Z29=Z27u1+Z 28u2

lead to

A*V = (Z27u1+Z 28u2)a1 (2.27)

VA* = Z29a1

Similarly, the velocities of the mass centers of link B and

C are found to be

VB* = /7 4.7 NV. 4.
= %"30"1. "31"2/"1'

vB* = Z34b1 +Z35b3-."m

7 4.7
("324'41' "33 )I%`42 (2.28)

where

Z30=L22Z8

Z31 =L22Z9

Z32=-L22c3

Z33 =L22s3

Z34=Z30u1 +Z31u2

Z35=Z32u1+Z33u2

26



and

where

VC* = L (L L )c L33 -u 2-c 1+31 -u 3--33-u 12--31-u2c3

C*.17 = 7
-36-14.7 437-24.7 '38-3

Z36=L33u2

Z37=L31113-L33u1

Z38=-L31u2

The velocity of the mass center of link D is determined by

applying the following equation

D* P D *V = V +W XPD (2.30)

where VP stands for the velocity of point P which is fixed

in link C. VP can be obtained by simply replacing L31u2c3

in the expression of VC* with L1u2c3; that is,

VP = n 4-(T T.
)^

T

Notice that

Tw* T a
= la41`A14-1"43`13

Substituting these expressions and W into equation(2.30),

one obtains

with

VID*=( 7 4.7 4.7 1, NA .1( 7 7 4.7 11 lA
%--391-40-2"41"31"41.%-"40-1--39`42-42-3."41-4,-2

+(Z43121 -Z44u2)d3

VD* = 7 7
"45-A 14.-46-A 24.-47A n (2.31)

Z39=(L33+L43)s4

Z40= (L33+L43)c4

Z41=L 1
s
4

Z 42=L1c4+L41

Z43=L41s4

27



Z44 =L1 +L41c4

Z45=- Z39u1 +Z40u2 +Z41u3

Z46=- Z4Oul-Z 39u2+Z42u3+L41u4

Z47=Z43111-Z44u2

Following exactly the same procedure, VE* and VF* are found

to be

VE* 17 n +7 n 4-7 n +7 n A 7 n +7 )e= -55-2 -56-3 -50-2, e2

+(-Z551.11+Z54u2+Z58u3+Z59u4)03

17E* 7 A +7 a +
= -60-1-61-2-7 62-A3

with

Z48=L1c414-12

Z49=L2s4

Z50=Li+L2c4

Z51=L33+L43-L52

Z52=Z39c5+Z40s5

Z53=Z40c5-Z39s5

Z54=Z15Z51-Z52

Z55=Z53-Z14Z51

Z56=Z41c5+Z48s5

Z57=L2s5

Z58=Z48c5 -Z41s5

Z59=L2c5

Z60=Z54u1+Z55u2+Z56113+Z57u4

Z61=- Z49u1 +Z50u2

Z62= -Z55u1+Z54u2 +Z58u3 +Z59u4

and

28



with

29

vF* (7 , 17 1, _L _Lf7 17
k-64'Ll'"65'-'2-166"3-'67`44-63`45,-'1'"68"1-'69"212

+(Z65111+Z64112+Z58113+Z59114)e3

F* 7 kek. A-7 Am 17 ch"70-1"71`2-72n

Z63=L33+L43

Z64=Z15Z63-Z52

Z65=Z53-Z14Z63

Z66=Z56-L63

Z67=Z57-L63

Z6e-Z 49-L63Z14

Z69=Z50-L63Z15

Z70=Z64u1-1-Z 65u2+Z66u3+Z 67u4-L63u5

Z71=Z68u1+Z69u2

Z =-Z u +Z u +Z u +Z72 65 1 64 2 58 3 59u4

(2.32)

The partial velocities and the partial angular

velocities can be obtained by simply inspecting the

coefficients of the generalized speeds in the expressions of

velocities and angular velocities. For the robot under

consideration, the partial angular velocities and the

partial velocities are listed in Table 1 and Table 2

respectively. In the tables, the capital letters of the

first columns identify the link or point in question and the

number of the first rows stand for the generalized speed in

question. For example, w3 D , the third partial angular

velocity of link D can be found by checking the element on

the third column and row D in Table 1, i.e.

w = d33
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TABLE 1. PARTIAL ANGULAR VELOCITIES (wrR)

1 2 3 4 5

Z 5a 2 0 0 0 0

c3bi+s3b2 -s
3
b1+c b2 0 0 0 0

+Z8b3 +Z9 b3
g

C C1 C2 C3 0 0 0

D c4di-s4d2 s4di+c4d2 d3 d3 0 0

E Z14 el-Z16e3 Z15e1+Z14e3 -e2 -e2 -e2 0

F Z20.5-Zi2t2 Z21fi-Zi3 -s6fi -s6f1 -s6f1

16 3 14 3 -c6f2 -c6f2 -c6f2

TABLE 2. PARTIAL VELOCITIES (vrR)

1 2 3 4 5 6

A* Z27a1 Z28a1 0 0 0 0

B
*

Z30/21 +Z Z3ibi+Zi$3b3 0 0 0 0gib3
+Z8b3 +Z9 b3

C
*

-L33c1 L33c1-L31c3 L3 1c2 0

D
*

-Z39di-Z4 ad2
+Z43 U3

Z40d1-Z3gd2
-z44 3

.Z4_11%

42 2
L 41d2 0 0

E* Z54e1 -Z49e2 Z55e1+Z50e2 Z501 Z57e1 0 0
-Z55e3 +Z54e3 +Z58e3 +Z59e3

F* Z64e1 +Z68e2 Z65e1+Z69e2 Z66e1 Z67e1 -L63e1 0
-Z55e3 +Z54e3 +Z58e3 +Z59e3
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Next, the angular acceleration for each link can be

obtained by differentiating the corresponding angular

velocity with respect to time t. It should be noted that,

in these expressions, the derivatives of the generalized

speeds should be brought into evidence explicitly. For

example, *A, the angular acceleration of link A, can be

found by differentiating equation (2.21),

OA = (Z4111+i4u14-Z5A2-1-i5u2)a2

With Z73, Z74 and Z75 defined as in Appendix 1, this can be

written as

*A = (zea1 +Z5A2A-Z75)a2

Similarly, differentiation of equations (2.22-2.26) and

introduction of the quantities Z76,...,Z93 as defined in

Appendix

OB =

ac =

1, lead to

(c3A1-s31:12+Z78)b1 +(s3A1+c3A2+Z79)b2

+(Z81111+Z9A2+Z80)b3

-UlCi+Ii2C2+A3C3

(2.34)

(2.35)

OD = (C4A1 +s4A2+Z81) d1+(-s4iii+c4i12+Z82)d2

+(u3+114)d3 (2.36)

nE = 17 A +7 A +7 la (17 4.1.1 4-A la

+"16i114.Z14112+Z86)e3 (2.37)

*F = "201111-Z211:12-S6(A3+114+1:15))t1-(Z221:11+Z23A2

+c6(113+1a4+115))f2 +(s3111+c31:12+Z79)b2 (2.38)

The last group of kinematic ingredients, the

accelerations of the mass centers for each link, can be

found by employing the following equation
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NaP
RdNVP

+ NWR X NV P

dt

As with angular accelerations, the time derivatives of the

generalized speeds should be brought into evidence in the

expressions of the accelerations. Therefore, the explicit

forms of velocities should be used in determining the first

term of the above equation, and the implicit forms for both

the velocities and the angular velocities are to be used to

carry out the second term in the equation. For example, to

evaluate aA*, the acceleration of the mass center of link A,

one can first differentiate equation (2.28),

dVA*/dt = (Z271.11+Z281:12+27u1 + 28u2)alf

then determine the cross product

WAXVA* = -Z1Z29a3,

add them together and define Z94 and Z95 as in Appendix 1.

The result is

AA* = 17 1.1 I.'

%-27-1+7 28-2+794)all-Z95a3

Similarly, aB*, aF* are found to be

(2.40)

AB* 7 1.1 1.1

=(-30-1+7 31-2+7 100)121-1-21011224-(Z32111+Z331:124-Z102) b3(2.41)

AC* m +7 In +f L +L 1.1 +7 In +f 1.1 +7 In
=%-33-2-102/-1'%--33-1-31-3-104/-2*%--31-1-105/-3

(2.42)

AD* 7 1.1 +7 ;I +7 +7 IA=k--39-1-40-2-41-3.-112/-1

4-(-Z40il1-Z39i124-Z42i13+11411:14+Z113)d21-(Z43a1-Z44U24-Zl14)d3
(2.43)

AIE*=f7 ;I +7 1.1 +7 ;I +7 +7 No 4-1 7 1.1 +7 1.1 +7%-54-1 "55-2-56-3 -57-4 -125/-1 %--49-1 -50-- 126)(12

+(-Z551.114-Z541.12+Z581.13+Z591:14+Z127)e3 (2.44)

mF*=f7 +7 +7 +7 ;I T 1.1 +7 Im\-64-165-266-3-67-4--63-5-135/-1

4.(Z68i111-Z6911124-Z136)e2+(-Z65i114-Z641:121-Z581a3+Z59i14+Z137)e3
(2.45)



11.4 GENERALIZED INERTIA FORCES

Based on the kinematic analysis performed in the

previous section, generalized inertia forces are now to be

determined. The definition for the generalized inertia

forces can be found in references [36,39] as follows.

If S is a simple nonholonomic system possessing n-m

degrees of freedom in a reference frame N, n-m quantities

kl , kn_m* , called generalized inertia forces for S in

N, are defined as

kr* = .E vrPi-Ri*
1=1

(r=1, 2, ..., n-m) (2.46)

where n is the number of particles comprising S, Pi is a

typical particle, vrPi is the rth partial velocity of Pi and

Ri*, the inertia force for Pi in N, is given by

Ri = -m.a. (2.47)

Furthermore, the contribution to the rth generalized inertia

force made by the particles of a rigid body R belonging to

S, denoted by (kr*)R, is given by

(kr
*
)R = wr'T

*
+ vr'R* (r=1,2,...,n) (2.48)

where wr and vr are, respectively, the rth partial angular

velocity and the rth partial velocity of mass center of R in

N, and

T
*
= -I** - WXVW (2.49)

33
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For the example robot in discussion, assume that the

unit vectors a1, a2, a3 are parallel to central principal

axes of inertia of link A, and Al, A2, A3 are the central

principal moments of the inertia, so that IA, the central

inertia dyadic of A, can be expressed as

IA = Alalal +A
2 a2 a2+A3 a 3

a 3

Similarly, the central inertia dyadic of the links B,C,...,F

are respectively defined as

IB = B1b1b1 +B2b2b2+83 b3b3

IC = C1c1c1 +C2c2 c2 +C3 c 3
c 3

ID = Did1d1 +D2d2d2+D3d3d3

IE = Elelel +E
2 e2 e2+E3 e 3

e3

IF = F lfl f 1+F2 f2 f2+F 3 f3 f3

where B1, B2, "'l F2, F3 denote the central principal

moments of inertia of the links B, C, F respectively.

In accordance with equation (2.47), the inertia force

of link A, can be written

RA* *
s'A = -mA(Z271:114-Z2811121-Z94)al-mAZ95a3

where mA is the mass of link A. Meanwhile, equation (2.49)

indicates that the inertia torque of A, is given by

* -_ A.A AAIf ATA -I - W XI '

This gives

TA* *
alk -A2(Z417.111-Z5U2+Z75)a2

On the other hand, equation (2.48) gives

(kr*)A = wrILTA* + vrA**RA* (r=1, 2, ..., 6)
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Substitution TA* , RA
*

and the corresponding partial angular

velocities wrA, partial velocities vrA* (which can be found

from Table 1 and Table 2) into the above equation for r=1,

..., 6 results in

(k1*)A = -A2Z4(Z4111+Z5112+Z75)-mAZ27(Z27U1+Z281:12+Z94)

(k2*)A = -A2Z5(Zeil+Z5112+Z75) -mAZ28(Z271.114-Z281121-Z94)

(kr*)A = 0 (r=3, ..., 6)

After introducing the quantities Z152 through Z161, as

defined in Appendix 1, the contributions to the generalized

inertia forces made by link A then turn out to be

(kl*)A = Z154il1 +Z155i12+Z156

(k2*)A Z1591.114-Z160A2+Z161

(kr*)A = 0 (r=3, ..., 6)

The contributions to the generalized inertia forces

made by other links are determined in the same way as

indicated above. Quantities Z162 through Z242, involved in

the expressions of the contributions are as defined in

Appendix 1. The expressions for these contributions are

listed below.

Contributions made by link B:

(kl*)B Z165111+Z166112+Z167

(k2*)B Z168U11-Z16911124-Z170

(kr*)B = 0 (r=3, 4, ..., 6)

Contributions made by link C:

(kl*)C = Z1741114-Z1751:12+Z176

(k2
*
)C = Z1702+Z179

(k3*)C = Z1801+Z1811:124-Z182



(kr *)C = 0 (r=4, 5, 6)

Contributions made by link F:

(k1*)D Z1861114-Z1871:124-Z188113 19417144-Z189

(k2*)D = Z18717114-Z189Ail24-Z190i13+Z1951114+Z191

(k3*)D Z188u1 +Z190u2 +Z192u3 +Z196u4 +Z193

(k4*)D = Z194u1 +Z195u2 +Z196u3 +Z197u4 +Z198

(kr*)D = 0 (r=5, 6)

Contributions made by link F:

(kl*)E Z202il1 +Z20317124-Z204113+Z205f144-Z206

(k2*)E = Z203u1 +Z207u2 +Z208u3 +Z097u4 +Z210

(k3*)E = Z2041111+Z20811242211i13+Z2121714-E21:154-Z213

(k4*)E Z205111+Z2091:121-Z2121131-Z2141:14-E21154-2215

(k5*)E -E2(1.13+1:141-1715)+Z200

(k6 *)E = 0

Contributions made by link F:

(k1*)F Z219il1+Z220i12+Z221i13+Z222114+Z223i15+Z240i16+Z224

(k2*)F Z2201114-Z225i124-Z226U34-Z227U4+Z228i154-Z241U64-Z229

(k3*)F = Z221U1+Z2261:121-Z2303+Z231i14+Z2321:15+2234

(k4*)F = Z222u1+ Z227u2 +Z231u3 +Z235u4 +Z226u5 +Z237

(k5
*
)F = Z223u1+ Z228u2 +Z232u3 +Z236u4 +Z238u5 +Z239

(k6*)F Z2401.114-Z241i12-F3U61-Z242

Finally, the generalized inertia forces are constructed

by summing the corresponding contributions of each link,

i.e.

kr
*
= (kr*)A+(kr*)B+...+(k *

F
6

= is=E Xrs s +Z242+r (r=1, ..., 6) (2.50)

36
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i.e.

Al
*

X111111+Xl2a2+X131134-X14114+Xl5a5+Xl6U6+Z243

*
".2 X211:11+X22112+3(23a3+X241144-X25a51-X26a6+2244

k3* = X la +X U +X U +X a +x a +x a +Z
3 31 1 32 2 33 3 34 4 35 5 36 6 245
*

A.4 = X411.111-X42a24-X43113+X44a4+X45U5+3C46a6+2246

k5* = x51ii1 +x52a2+x531:13+x541:14+x551115+x56-ae2247

A6
*

= X61111+X62i12-4-X631134-X64U4+X65115+X66116+2248

(2.51)

where Z243, 0.0, Z248 and X11, X12, through X66 are listed

in Appendix 1.

11.5. GENERALIZED ACTIVE FORCES AND DYNAMIC EQUATIONS

Introduction generalized active forces, according to

Kane's method, results in considerable advantage over the

Newton-Euler's formulation, because the process eliminates

nonworking contact forces. This occurs because many forces

that contribute to the resultant acting on a body make no

contributions to the generalized active forces.

If S is a simple nonholonomic system possessing n-m

degrees of freedom in a reference frame N, n-m quantities

ki,...,kn_m, called generalized active forces for S in N,

are defined as [36]

n pi
kr = .E v (2.53)

11 r Ri (r=1, 2, ..., n-m)

where n is the number of particles comprising S, Pi is a

typical particle, vrPi is the rth partial velocity of Pi in

N and Ri is the resultant of all contact and body forces

acting on Pi. Furthermore, if a set of contact and body

forces acting on a rigid body B is equivalent to a couple of
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torque T together with a force R applied at a point Q of B,

then, (kr)B, the contribution of this set of forces to the

rth generalized active force kr, is given by [36]

(kr)B = wr'T + vrQ*11. (r=1, 2, ..., n) (2.54)

where wr and vrQ are, respectively, the rth partial angular

velocity of B in N and the rth partial velocity of Q in N.

In the case of the Intelledex 605, there are two kinds

of forces that contribute to the generalized active forces,

namely, contact forces applied in order to drive the links

A,B,...,F, and gravitational forces exerted on each link by

the earth.

Consider first the gravitational forces denoted by GA,

GB, ..., GF, respectively. In the base coordinate frame,

these forces turn out to be

GA = mAgn2

GB mBgn2

GC = mcgn2

GD mDgn2

GE = mEgn2

GF = mFgn2

Since GA, GB, ..., GF are to be dot-multiplied by the

partial velocities vrA*
Fvr * respectively, it is

convenient to express each G in terms of the coordinate

vectors in which the corresponding partial velocities are

expressed. With reference to equations (2.1) to (2.6), one

can express these in the form

GA =mAg(sial-cia3)
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GB =mBg(sic2bil-cib2-sls2b3)

GC =mcg((sic2c3+cis3)ci+(cic3-slc2)c2-sis2c2)

GD =mDg((s1c2c3ec1s34)d11-(cic34-slc2s34)d2-sls2d3)

GE =mEg((s1c2c345 +cis345)el+sis2e2+(cic345-sic2s345)e3)

GF =mFg((slc2c345+c1s345)el+sis2e2+(cic345-sic2s345)e3)

Having accounted for the gravitational forces, contact

forces are now to be considered. The set of such forces

transmitted from the robot base to the first link A is

replaced with a couple of torque TN/A together with a force

RN/A applied to the link at the mass center A*. Similarly,

the set of contact forces applied to link A by link B can

also be replaced with a couple of torque T B/A together with

a force RB/A applied to A at B * which coincides with B * and

is fixed in link A. By Newton's Third Law, it is known that

the set of contact forces transmitted from A to B (and

likewise from B to C and so on) is equivalent to a couple of

torque -TB/A together with a force -RB/A applied to B at the

mass center B* of link B. Likewise, the set of contact

forces exerted on link B by link C is replaced with a couple

of torque TC/ B together with a force RC/B applied to link B

at C
*

which coincides with C
*

and is fixed in B.

Consequently, the set of contact forces exerted on C by B is

equivalent to a couple of torque -TC/B together with a force

-RC/B applied to C at the mass center C*. Similarly, TD/C,

TE/D, TF/E R/D RF/Eand RD/C, ERE /D, and defined as the torques

and the forces in connection with the interactions of link C

and link D, link D and link E, link E and link F.
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In accordance with equation (2.54), the contributions

to the generalized active force kr of all forces acting on

each link can be expressed as

= wrA.(TN/A+TB/A)+ rA*.(RN/A+GA)+vrB*.RB/A

(kr) = wrB.(_TB/A+TC/B).1.vrB*.(_RB/A+GE)+vrC*.RC/B

= wrC.(_TC/13+TD/C)+vrC*.(_RC/B+ac)+37rD*.RD/C

(kr)D = wrD(_TD/C+TE/D)+vrD*.(_RD/C+GD) fvrE*.RE/D

(kr)E = wrE(_TE/D+TF/E)+vrE*.(_RE/D+GE)+vrF*RF/E

wrF.(_TF/E)+17rF*.(_RF/E+GF)

(r=1, 2, ..., 6)

The generalized active force kr is then formed by

summing its contributions, i.e.

kr = (kr)A+(kr)B+ +(kr)F (r=1, ..., 6)

Hence,

kr=wrA.TN/A+(wrA_wrB).TB/A+(wrB_wrC).TC/B+(wrC_wrD .TD/C

4.(virD_wrE).TE/D+(wrE_wrF).TF/E+vrA*.GA

+vrB**GB+vrC**Gc+vrp**GD+vrB**GevrF**GF

(r=1, 2, ..., 6) (2.55)

Notice that as the contributions made by different

links are summed together, all terms involving the

nonworking contact forces RB/ A, RC /B, RD/C, RE/D, RF/E are

out, and the term vrA* .RN/A vanishes, but all the working

torques and the gravitational forces remain in evidence.

This feature facilitates the task of deriving the equations

of motion by Kane's method for the contact forces making no

contributions to the generalized forces kr's.

Next, define
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ri = n3'TN/A

72 -a3"r"
r3 = -b3*TC/B

74 -c3.TD/C

r5 = _d3.TE /D

76 -4113.TF/E

To determine the first term of equation (2.55), one

notices that

so that

WA = ciin3 = (Z4u1 +Z5u2)n3

wiA.TN/A

w2A.TN/A

A.TNA 0 (r=3, ..., 6)

As for the second term of the equation, first notice that

wA_wB (u1s3+u2c3)a3

Then, with the introduction of

wiA_wiB s3a3

w2A_w2B c3a3

r
A_w

r
B 0

there results

(w1A_w1B).TB/A

(w2A_w2B).TB/A

(wrA_wrB).TB/A 0

Similarly, one obtains

(w1B_w1C).TC/B

(w2B_w2C).TC/B

B C C/BCe3 -W3 = r3

(r=3, 6)

(r=3, ..., 6)



(wrB_wrC).TC/B = 0

(w4C_w4D).TD/C

(wrA_wrB).TD/C 0

(w5D_w5E).TE/D =

(wrD_wrE).TE/D 0

(w5E_w5F).TE/F

E F E/F
(wr -wr = 0

(r =4,

(r=1,

(r=1,

(r=1,

5,

2,

...,

...,

6)

3, 5,

4,

5)

6)

6)

The last six terms in equation (2.55) are determined by

dot-multiplying each gravitational force with the partial

velocity of the corresponding mass center and introducing

the quantities Z253, z254, ..., Z280 as defined in Appendix

1. These turn out to be

v
EGA-1 = 252

v
EGA-2 -A = gZ253

A*.vr GA = 0

B*-11 n7
'1 '3 '1'1256

B* n
'2

-

'el 3 = "J7 "257

VrBle*GB = 0

v
UGC-1 -C = V259

v
UGC-2 -C = V260

v
3 UGC = gZ261

VrC**Gc = 0

v D*.a
-1 -D V265
v D*.a
-2 -D = gZ266

'3 -
ID*n

D = gZ267

v aD*.
-4 -D = V268

D*.vr GD = 0

(r=3,

(r =3, ..., 6)

(r =4, 5, 6)

(r=5, 6)

42
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vl*.GE V272

E**v2 GE = gZ273

v3E*.GE = gZ274
E*.n

E
7

v4 -

vr
E*.

GE = 0

F*.v1 GF = V276
v F*.c
w2 -F = V277
v F*..3 -a.-r = V278

v4 -F
F*.nv5 -F

v6F*'GF =

,7
v"279
,7
y"280

0

(r=5, 6)

As this point, all the necessary ingredients for

equation (2.55) are at hand. Setting the subscript r in the

equation equal to 1, 2, ..., 6 respectively, one obtains six

equations. Substitution of each group of corresponding

ingredients into the equations results in the following

expressions for the generalized active forces

kl = Ze1-s372-Z8r34-Z281

k2 = Z5r1- c3r2- Z9r3 +Z282

k3 = r3-1-Z283

k4 r4 +Z284

k5 1.54-Z285

k6 = r6

(2.56)

where 2281, Z285 are as defined in Appendix 1.

Now, one is in the position to write the equations of

motion for the Intelledex 605 Robot Arm by employing Kane's

dynamical equations
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kr
*
+ kr = 0 (r=1, ..., 6) (2.57)

Substitution of equations (2.52) and (2.56) into the above

equations with r=1, 2, ..., 6 gives

stlX1sils -Z4r1+s3r2+Z8r3-Z281-Z243

6
E X a c37-2+z9rs1 2s s = -1/41-1+ 3-Z282-Z244

6
s=E iX3sas -/-3-Z283-Z245

6
E1X4 s sa = r4- Z284 -Z246

st1X5sas = -1-5-Z285-Z247

6
sE1X6sils -1-6-Z241

(2.58)

These six equations together with equations(2.19)

constitute a set of twelve equations with twelve unknowns,

which are nonlinear. In matrix

X I 0 u r

0 U q

The matrix on the left side

form, they can be written as

(2.59)

of this equation is called

inertia matrix. The inertia matrix derived by Kane's method

is symmetric. This property will be proven in the next

section.

To test the validity of the underlying equations, two

programs in FORTRAN language are furnished. The first

program, called TORQUE (See Appendix 2.), is a
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straightforward calculation routine. Taking a specified

motion as input, this program calculates the torques needed

for carrying out the specified motion. In the testing case,

the generalized coordinates are designated by the following

equations.

qr = r(t-(T/2r)sin(2rt/T))/3T (r=1, 3, ..., 6)

q2 = r/2-r(t-(T/2r)sin(2rt/T))/6T

where T is the time span for running the program. these

equations (i.e. the input) are plotted in Figure 2.3 and

Figure 2.4. The parameters used in connection with the

example robot are listed in Table 3. The output of the

program TORQUE, the torques needed to carry out the

designated motion, are plotted in Figures (2.5-2.10).

Another program ANGLE (Appendix 3) is used to solve the

twelve simultaneous, nonlinear differential equations to

give the coordinates as functions of time in terms of given

driving torques. The core of this program is the subroutine

QSOLVE, which is based on the quasi-Newton [47] method. The

major expense of this method is to derive an approximation

to the Jacobian of the system equations by evaluating the

equations of motion at two successive points of the

generalized coordinate q. The torques generated by the

first program TORQUE are the input and the generalized

coordinates are outputs. When the outputs are plotted

versus time t, it turns out that the resulting curves are

identical to those in Figure 2.3 and Figure 2.4
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respectively. This is a good indication that the derived

equations of motion are free of errors.
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TABLE 3. PARAMETERS CHARACTERIZING THE INTELLEDEX
605 ROBOT

Quantity Value

m1 18.1440
m2 12.2472
m
3 8.6184

m4 4.9896
m5 1.3608
m6 0.9072
L1 0.2794
L
2 0.3226

L12 0.1397
L13 0.1588
L22 0.0127
L31 0.1880
L41 0.1727

Ill 0.1800

11
2 0.0450

11
3 0.1350

121 0.0300

12
2 0.0300

12
3 0.0232

13 1 0.1041

13 2 0.1041

13
3 0.0260

14 1 0.0605

14
2 0.0605

14
3 0.0260

15 1 0.0048

I 5
2 0.0048

15
3 0.0035

16 1 0.0040

16
2 0.0040

1 6
3 0.0030

Units

kg
kg
kg
kg
kg
kg
m
m
m
m
m
m
m

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2

kg m2
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Figure 2.4. Coordinate q2 vs time (the specified motion).
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Figure 2.5. Torque r1 vs time (output of TORQUE).
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Figure 2.10. Torque r6 vs time (output of TORQUE).
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Figure 2.11. Coordinate q1 vs time (output of ANGLE).
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Figure 2.14. Coordinate q4 vs time (output of ANGLE).
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III. AUTOMATIC GENERATION

III.1 GENERAL

It can be seen from the derivation procedure

demonstrated in the previous chapter that, although the

labor required to formulate the dynamic equations by Kane's

method is significantly reduced from those based on

classical methods, it is still very burdensome when a system

consists of more than a few rigid bodies. For a six-link

manipulator, the derivation is difficult, time-consuming,

and error-prone; in fact, it may take even longer to locate

and remove errors in the derived equations than to derive

them.

As mentioned in Chapter I, the best way to avoid such

problems is to resort to computers to simultaneously

generate and integrate the equations of motion. This is

called automatic generation. There are, at present time,

two research directions in the field of automatic

generation. One is called computer symbolic manipulation;

another is recursive computation. For the first category,

Rosenthal and Sherman [48] reported a detailed computer code

manipulation procedure by using Kane's formulation. The

idea used there is to divide the generation process into two

stages. First, the symbol-manipulation code is used along

with a general-purpose multibody program to create a

special-purpose simulation code for a particular

configuration. These simplified equations are then
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converted into a FORTRAN subroutine. In the second stage,

this subroutine is incorporated with a main simulation

program. The major advantage of this approach is that the

form of the equations of motion obtained by this method are

nearly the same as those derived by hand. However, the

discontinuity in the process will limit the efficiency of

the simulation. Each time the system configuration is

changed, one must begin with generating symbolic equations

and complete the interfacing of these equations with control

input and output files.

The algorithm being developed in this chapter belongs

to the second category, the recursive computation. Based on

Kane's formulation, this algorithm enables one to bypass all

the manual derivations of the ingredients to formulate the

equations. It requires that one input only structural data

(describing component inertia properties, interconnections,

and so forth) and either driving forces or a specified

motion. Then, depending on which of the latter is

specified, the program generates the variation with time of

configuration and speed, or of required driving forces.

Kane's Method allows one to form scalar expressions of

kinematic ingredients at a very early stage in the

formulation process. Instead of expressing the kinematic

and kinetic ingredients in vector forms, this paper

expresses all these ingredients into algebraic expressions

that only contain additions and multiplications of scalar

elements. This avoids repeatedly calling of subroutines to



64

calculate dot products and cross products, thus saving

computation time.

The remainder of this chapter includes two sections.

Section 111.2 is comprised of the derivations of the

algorithm. Section 111.3 outlines two systematic procedures

for using the algorithm and discusses its validity by giving

the simulation results for the Intelledex 605 robot.

111.2 FORMULATION

Refer to Figure 3.1. To specify a general

configuration of a mechanical manipulator, a coordinate

frame is assigned to each link. In doing so, Paul's

recommendation [46] is employed in the present work, with

additional emphasis on the following points. First, for the

base coordinate frame, one of the three unit vectors must be

aligned with gravitational forces. For revolute joints, in

which the rotation angle qk is defined as a generalized

coordinate, the kth set of three mutually perpendicular unit

vectors (n1k, n2k, n3k) is fixed on the link k, and the axis

of the rotation is aligned with the unit vector n3k-1. The

origin of the coordinate frame k is set to be at the

intersection of the common normal between the axis of link

k-1 and link k and the axis of joint k. In the case of

intersecting joint axes, the origin is set at the point of

intersection of the joint axes. In the case of a prismatic

joint, the distance qk the link moves from its origin is
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Figure 3.1. Numbering of coordinate frames.



defined as the generalized coordinate. The direction of qk

must be aligned with the unit vector n3k-1

Having assigned coordinate frames to all links, one can

establish transformation matrices. These transformation

matrices are 3X3 matrices and are historically called A

matrices. The matrix Ak specifies the orientation of link k

with respect to

matrix

Ak =

link

Ak11

Ak21

-
Ak31

k-1.

Ak12

Ak22

Ak32

That

Ak13

Ak23

Ak33-

is, the elements of the

are the direction cosines between the unit vectors attached

to the two links:

Ak13 = nk .°21
k-1

The interested reader may refer to [46] for greater

detail.

Next, DK is defined as the vector from the origin of

the kth coordinate frame to the mass center of link k, and

LK as the vector from the same origin to the next coordinate

origin. These may be expressed as

K kD = d 1n1+d
k
2n2+d

k
3
n
3

LK = Lk1n1 +L k
2n2

+Lk
3n3

(3.1)

(3.2)

In this formulation, the generalized speeds are simply

defined as

uk 7."4 14k (for k=1,...,N) (3.3)

66



67

where N is the number of links that constitute the

mechanism. The reason for defining the generalized speeds

in this way will be seen later.

Based on the scheme just described, a set of

expressions of all kinematic and kinetic ingredients is to

be constructed. First, to derive a general expression for

angular velocities, consider the adjacent links k-1 and k.

The angular velocity of link k can be written as

wk wk-1 4kn3k-1

or

Wk wk-1 ukn3k-1

W1
k-1

n1
+

W2
k-1 k-1

n2
k-1 (w3k-14.11k)n3k-1

=

In the kth coordinate frame, this can be expressed as

Wk (.i
1 1
w.k-lAkil+ukAk31)nlk

or

f w k-lAk Ak k+
%'- 1 1". i2'-k- 32/-21=

( w A A+ N3.7 k-l- k
i3'-k- 33)-3

k

(3.4)

k 3w = jEl(itiWik-lAijk+ukA3jk)njk (3.5)

On the other hand, since

wk
j1

w.kn.k
= 3 3 '

(3.6)

the component of Wk in the direction of njk is

Wjk = 1Wik-lAijk+ukA3jk (j=1,2,3. k=1,...,N) (3.7)

Equation (3.7) is true for all links, including the

first rotational link. To verify this, observe first that

the angular velocities of all links up to the first



rotational link are zero, so that if k designates the first

rotational link,

w.k-1 0 (j=1, 2, 3)
3

In this case, equation (3.7) reduces to

wjk ukAk3j (j=1, 2, 3) (3.8)

On the other hand, the angular velocity of the first

rotational link can be expressed as

Wk = 4kn3k-1

= ukn3k-1 (j=1,2,3)

This can be written in terms of the unit vectors of the kth

coordinate frame as

Wk uk(Ak31nik+Ak32n2k+Ak33n3k)

which implies that

wjk ukAk3j

which is exactly the same as equation (3.8).

If the kth link is translational, its angular velocity

is equal to that of the preceding link, i.e.

wk wk-1

w. k-1 .
k-1

3=17
nj

In the kth coordinate frame, this can be expressed in the

form

Wk w.k-1A..kn.k
j=li=1 1 17 7

So that,

143
k 3E w.k-1A..k

i=1 1 3.3
(j=1, 2, 3) (3.9)

68
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On the other hand, if the kth link has no prescribed

motion, Wik-1 can be expressed in the form

W
r=1 jr
kElw k-1u (j=1, 2, 3) (3.10)

where w. k
3r

-1 is the jth component of the rth partial angular

velocity of link k-1. Substitutions of equation (3.10) into

equations (3.7) and (3.9) give

kEl. ku
1=1 r=1

k-1
13A.. +A .r 33 uk (k is rotational)

3 kEl

i=1 r=1 Aij r

(3.11)

(k is translational)

Taking the partial derivative with respect to ur in the

above equation, one is left with the recursive expressions

for the jth component of the rth partial angular velocity

for link k

1 1w. k-lA..k= ir 13

3r
k A .k

0
33

(for r=1,...,k-1)

(for r=k)
(for r>k)

(3.12)

Then, W. k the time derivative of w. k can be found byjr 3r

simply taking the time derivative of both sides of the above

equations. That is,

3r
k

k-1A k+w k-li kl
1=1 ir ij ir ij /

A3j

0

(for r=k)

(for r>k)

For rotational links, the velocity

center and the velocity Sk+1 of the k+1 th coordinate origin

are related by

(for r=1,...,k-1)

(3.13)

V of the kth mass
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vk sk wkxDk (3.14)

sk+1 sk wkxlik (3.15)

where Dk and Lk are as defined previously. sk, the velocity

of the kth coordinate origin, may be expressed in the form

sk s
1
kn

1
k-14.s kn

2
k-ls

3
kn

3
k-1

2
(3.16)

Substituting equations (3.1), (3.6) and (3.16) into equation

(3.14) and rearranging it, one finds

vk = (lsikAkil+w2kd3k_w3kd2k)nik

+(iilsi ki2+143
kdik_wikd3k)n2k

4.(IsikAki3 fwikd2k_w2kdik)n3k (3.17)

so that the velocity components of the kth mass center in

the kth coordinate frame are found to be

1

v
1
k

ii1 1 1
s.kAk.

1
14

2
kd

3
k_w

3
kd

2
k

v
2
k

ii1
s.kAk.

2
+14

3
kd

1
k_w

1
kd

3
k

1

v3k jisikAki3+wikd2k_w2kdik

(3.18)

(k=1,...N)

Similarly, the velocity components of the k+1 th coordinate

origin turn out to be

(3.19)
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In the case when the kth link is translational, the

relationships that replace (3.14) and (3.15) are

vk sk wkxDk ukn3k-1

sk+1 sk wkmak ukn3k-1

Notice that, in this case,

Dk diknik+d2kn2k+d3kn3k+ciknk-1

Lk L
1
ku

1
k+L

2
kn

2
k+L

3
kn

3
k4.11

k
nk-1

(3.20)

(3.21)

(3.22)

(3.23)

Substituting these expressions and the other corresponding

terms into equation (3.20) and (3.21), respectively,

resolving them into the kth coordinate frame and rearranging

them, one can find the following relationships that, for the

translational link, replace (3.18) and (3.19):

k = kAk. +Ak 444 k k.44,k

11 1 11 31-k "2 (d3 33qk)--3 k-2 32-2k,
w kf,' k4.41,k m )

{

V' - .E S.

v2k .i s.kAk 44ik ,44,7 k(d k+Ak 1 klA k_i_Ak m N
1.1 1 i2 32 k 3 1 31-1k,- %-3 33-1k,

v k s.kAk .4_1J kfci k4.Ak w )(fig

3 1=1 1 i3 33uk'-1 %-2 32-1k,-"2 %-1 '- 31-1k/

(k=1, N)
and

(3.24)

1
k+1

1 1
s.kAk.

1 31 k
4407

2 3
ki_Ak33cik)_w3k(L2k+Ak32c/k)

s k+1 s.kAk. +1,./ k(1, k+Akncik)_wikulk+Ak33cik)
2 1=1 12 32 k 3 1

s
3 1 1 1
k+1 s.kAk.

3
4.Ak

33 K
u_ivik(L2k+Ak32cik)_w2k(Lik+Ak3icik)

=

(k=0, N-1) (3.25)

As with the angular velocities, if there is no

prescribed motion for the mechanism under consideration, the

velocities vk and can be expressed in terms of the

partial velocities and the generalized speeds. These are



vk ku
r r

k k1S = E s ur=1. r r

Alternatively,

k ku
r=i Jr r

Sjk = kEls. kur=i jr r

(j=1, 2, 3)

(j=1, 2, 3)

where .

k and sjr
k are the jth component of the rth partialv3

velocity of, respectively, the kth mass center and the kth

coordinate origin. Substituting the above expressions into

equations (3.24), (3.25) respectively and performing the

same operations as those for the partial angular velocities,

one obtains, for rotational joints:

vir
k =iiisirkAkil .4.w2rkd3k_w3rkd2k

k
-_

kAk kd k_w kd k
v2rk iElsir i2-3r 1 lr 3

(r4k) (3.26)

'3r
k

i1 isr
kAki3

""ilrkd2k-w2rkdik=

slrk+1 =.i s'

{

s2rk-1-1 = i s'

k+1 _1:1

kAk 4.,,, kr. k w3rkL2k
ir il'-2r -3

kAk 4., kT k w kr. k
i=1 ir i2'-3r -1 --lr L3

k k ki, k w kr. k
3r -iElsir A i34-141r 2 --2r -1

and for translational joints:

(r.4k) (3.27)

72



73

uk
-1r

_
iElsir

k
A
k
il+w2rk

(d3k+Ak33cik)_w3rk(d2k+Ak32c4k)

k _ 3 kAk 4.w krd k+ak f., ) w kfri k+Ak r, )

v2r -iElsir i2 -3r k 1 31-1k,--lr x-3 33-4k,

k =I kAk. 1./4 k(d k+Ak32cik)_w td +A a )
3r 1=1 1r 13 lr 2 -2rkx-lk -k31-c,< v

k k\ v. = A
3 3j

(for r<k)

(for r=k, j=1, 2, 3) (3.28)

sirk' =itisirkAkil+w2rk (L3k+Ak33cik)..w3rk(L2k4.Ak32cik)

s
2r

k+1 kk kk+Ak
) wlrk(L3 +Ak33qk)

s3rk+1 i kAk 4.w k k.t.A
i1 ir i3'-lr (L2

k
32(1k)- w2r +A c1k)

k
(L1

k k
31

(for r<k)

k+1 ksjr = A 3j (for r=k, j=1, 2, 3) (3.29)

Taking the derivative with respect to time of each

member of the above equations, and defining

k = (a. kA k
1

ki..k)
r i=ix ir r 13 ,

(3.30)

one is left with the following expressions, for rotational

joints:

Pirk + 1.42rkd3k
T.-.13rkd2k

Vlrk =

1.4

pirk + irird2
Wlrkd3k

k k k
*2rkdlk

2rk pirk 4. 3rkdlk

/.r.

3r
k 0 (r>k, j=1, 2, 3)

1

alrk+1
pirk

+ 1;i2rkL3k
*3rkL2k

a k+1 p. k ,:, ki, k - ,:, i, k
2r 1r -3r 1 -1r 3

a k+1 k T.., ki, k ,:, ki, k
3r r -1r 2 -2r 1

a. k+1 0

(3.31)

(rk) (3.32)

(r>k, j=1, 2, 3)3r
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and for translational joints:

/:rirk pirk.142rk(d3k+Ak33"_1_ fi " .4_,A " 1

4k, -2rkt-k33-12kk33-k,
.473rk(d2k+Ak32c/k)_nrk(Ak32cik+Ak32uk)

/i2rk p2rk+7.43rk(d1k+Ak3lcik)-nrk(Ak31q2k+Ak3luk)

_iiirk(d3k+Ak33,
4

kfik
a"k, wlr 334k' 33`" c,

(r<k)

ir3rk p3rki4 irk(d2k+Ak32"_%..w. ri " 4-A 1

4k/ wirk'1(32"12k'""k32.aki

.././2rk(dlk+Ak31.4, fl er 4-A
k1 w2rk")(31.1krk31`Aki

k=
Jr 4" 3j (r=k, j=1, 2, 3) (3.33)

ilrk+1 Plrk.44/2rk(L3k+Ak33c1k)
-1,72rk(Ak33q2k+Ak33uk)

,:, kfl._ k_LAk , % , kfik r, ..I.Ak " %

--3r %-2 '- 324kl-w3r %- 324k.- 32-k,

2r1(+1 -w3rkoikncl2k+Aknuk)P2r)(443rkalk+Ak31c1k)

-1:71rk(L3k+Ak33clk)-wlrk(Ak33clk+Ak33uk) (r<k)

63rk+1 p3rk44
1rk(L2k+Ak32"-) -la fi 4-A-lrk-k32-12kk32-ki

kir k.Ak , kfik .1.Ak " %

--2r t-1 31sdki-w2r %- 314k- 31-k,
k ;ksjr = 3j (r=k, j=1, 2, 3) (3.34)

Next, the expressions for the generalized inertia

forces and the generalized active forces also need to be

carried out. For the system under consideration, the

acceleration of the kth mass center can be obtained by

kdVk

ak = k k+W XV (3.35)
dt

The first term of the right side of the above equation can

be proved to be

kdVk

dt'

k
=

j 1
(

r 1
E

]
+ ii-jrkur )nik==

To obtain scalar expressions for the second term, define



Bk = Wk X Vk

then,

B1k = W2kV3k - W3kV2k

B2k = W3kV1k - W1kV3k

B3k = W1kV2k - W2kV1k

So that the equation (3.35) can be rewritten

3 kak .E
1

(

r
E
1 7 r

kla

r Jr
ku

r 7

B.k)n.k

To further simplify the above expression, define

DJ k k
J

ku= E v.r1 r r + B.k

(3.36)

(j=1, 2, 3) (3.37)

Then the scalar expression of the acceleration for the kth

mass center turns out to be

3 k
+ Dak =E (

r=E 1 j
v. k)n.

jj=1
k

r r (3.38)

Now, let mk be the mass of the kth link; then the inertia

force acting on the mass center is

R*k = -m ak

Substitution of the equation (3.38) into the above equation

gives

R*k = - ( v. ku + D. k)m n.k
j=1 r=1 jr r k (3.39)

The inertia torque of the kth link about its mass

center can be obtained from the following formula [36]

T*k _Ik.ak - wkxik.wk (3.40)
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where 0k is the angular acceleration of the link and can be

obtained by taking time derivative to each side of the

equation (3.10) and then summing the three components as



or

ok
3

=.2
r= 3

w. ku ,k
=1 1 r r r r

k =.2
r=

OpzJ.
ka + E. k .k

J=.1 1 r r

with Ej .k defined as

E4k ku
r=i Jr r

(3.41)

(3.42)

(3.43)
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Ik is the central inertia dyadic of link k. In general, the

central principal axes of the inertia of the kth link are

not parallel to the kth set of coordinate vectors for an

arbitrary robot configuration. Therefore, the inertia

dyadic Ik generally consists of nine elements including

three moments of inertia and six products of inertia. To

derive the expression of the generalized inertia torques for

the general cases, it is nothing more than just representing

the inertia dyadic with a double summation and plugging it

into the equation (3.40). However, in order to keep the

assumptions the same as those for the methods mentioned in

Chapter I so that the comparison can be based on the same

bases, it is simply assumed in the present work that the

three unit vectors nk1, nk2, nk3 fixed on link k are

parallel to the central principal axes of the inertia of the

link, so that Ik can be expressed as

1k k kn k k kn k k kn k
1 1 1 2 2 2 3 3 3

Now, substituting ak, Wk and Ik into equation (3.40), one

can obtain

T*k = - I.kw. .k)n.k (3.44)
j

r=1 3 3r r + H3
3
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where

Hlk IikElk w2kw3k(I3k_I2k)

H2k 12kE2k w3kw1k(ilk_I3k)

H3k 13kE3k wlkw2k(I2k_Iik)

(3.45)

With R*k, T*k, wk, and Vk in hand, one is ready to

construct the expressions for generalized inertia forces.

The contribution from link k to the generalized inertia

force Kr* is denoted by (Kr*)k and can be evaluated from

(Kr*)k = wrk 'T*k + vrkR*k (3.46)

Substituting equations (3.39), (3.44) and

k =j knk
r 1 J r j

r
k =j 1 j r

kn.k
=

into equation (3.46) and rearranging one has

(Kr*)k =
] 1 m 1 3

(I.kw. kw k + mkvimkvirk Om== Nft jr

3 1 7

(w.
1.

kH.k mkvirkpjk
=

The generalized inertia force is the sum of contributions

evaluated as above:

N *
K* = (Kr k=i 1.

jgl mgl(Ijkwimkwirk mkvj kvjrk

- ., kw k kp k )
k1 j=1

( T

N) (3.47)

In addition to the generalized inertia forces, the

expressions for the generalized active forces need to be

constructed. To this end, let Pk-1/k be the resultant of

forces from link k-1 acting on link k, Tk-1 /k be the



resultant moment about the mass center of link k of these

forces, Gk be the gravitational force acting on the mass

center, and IA denote the velocity of the point of link k-1

coinciding with the mass center of the link k. Then, with

the same reasoning that led to equation (2.55) in Chapter

II, one can express the rth generalized active force as

(wrl_wrO)'T0/1.4.(wr2_wr1).T1/2+...

4.(wrN_wrN-1).TN-1/N 4.(v1.1_wri).1.0/11.(wr2_wr).F1/2

.4....4.(wrN_wrii) pN-1/N+wr1.G1+wr2. N.G2+...+vr GN

(3.48)

Recalling the definitions of the generalized speeds and the

angular velocities and the specifications for coordinate

frames, the differences of the angular velocities between

two adjacent links may be expressed simply as

wk - Wk-1 = ukn3
k-1

that is

Wi - WO = u1n30

W2 - Wi = u
2
n
3
1

w N - WN-1 = ukn3N-1

From these equations, the general expression for the

difference of the partial angular velocities between two

adjacent links follows as

n k-1
k_w k-1 3

r r
0

(for r=k)

(for r#k)
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The same is true for the difference of the partial

velocities between two adjacent links with translational

connection, thus

v k-v =

k-1 (for r=k)

r r
0 (for r*k)

Consequently, equation (3.48) can be rewritten as

or

(wrr_wrr-1).Tr-1 /r (vrr_vri.).pr-vr

+ vr1.G1 + vr2-G2 + +

K
r
= (v k.G ) (w r_w r-1).Tr-1/r+(v frrr-1/rk1 r k r r r r

(3.49)

Notice that, for the rth and r-1 th links, either

wrr_wrr-1 n3r-1

r E = 0v -vr r

or

wrr_wrr-1 0

vrr-vril = n
3
r-1

(for the rotational joint)

(for the translational joint)

must be satisfied. Therefore, one can introduce fr as

(wrr_wrr-1).Tr-1 /r (when joint k is rotational)

fr
(vrr-vri)*Fr-1 /r (when joint k is translational)

i.e.
n3r-1.Tr-l/r

1

fr =
n3r-1.Fr-1/r

(when joint k is rotational)

(when joint k is translational)

Substituting this into equation (3.49) gives

N k
K, =

k
E
1
(v, °Gk) + fr

=
(3.50)

Now, consider Gk, the gravitational force. In the base

coordinate,



0
Gk = mkgnL

Where nL0 is the unit vector of the base coordinate frame

(3.51)

that coincides with the direction of the gravitational

force. In terms of the quantities

A 1
yk. Lj

3 3 k-1 kY. A
iE1 1 13

this may be expressed as

0 = k-1nk- Y4
3=1 3

so that

Kr
3.kgA4,k + frr = EkNi E]=1mYJ

kv
J-

(k=1)

(k=2,3,...,N)
(3.52)

(3.53)

(3.54)
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Finally, the dynamical equations are given by substituting

the available expressions into the Kane's dynamical

equations [36]

Kr + Kr* = 0 (r=1,...,N) (3.55)

That is

E t (I.kw. kwk + mkvinikvirk )um = Kr -Zr (3.56)
k=1 3=1 m=1 3 3m jr3

(r=1,2,...,N)
where

Zr = E E
1
(wirkHik mkvir

k
Dj

k
r kN1 3==

(r=1,2,...,N)

These expressions, together with

6Ir = Ur (r=1,2,...,N),

(3.57)

furnish a set of 2N system equations. In matrix form, these

may be expressed as

(3.58)



81

where F is called the inertia matrix. Observe that the

element in the mth row and rth column of the inertia matrix

F, denoted by Fmr, is equal to the element in the rth row

and the mth column,

i.e.

N 3 kFr = E
JE

E (ikw. kw k meimkvirk )
k=1 =1 m=1 j jm jr

N 1
E t (I.kw kw.

J
k kv k

k=1 j=1 m=1 J Jr m + -kyjr jm
)

= Fmr

Frm = Fmr (3.59)

This symmetry property enables one to reduce, from N2 to

N(N+1)/2, the number of the arithmetic operations for

calculating the coefficients.

111.3 COMPUTATIONAL PROCEDURE

The preceding algorithm is derived with dual purposes;

one is to determine the values of the generalized

coordinates (i.e. desired motions) with driving torques and

forces given; another involves determining the driving

torques and/or forces needed to carry out a user-specified

motion.

The first category involves integration of a set of

nonlinear differential equations. The generalized

coordinates are output. Users are to be asked to specify

driving torques and forces either in the form of a set of

numerical values or in the form of functions. Also, initial
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values of the generalized coordinates and their time

derivatives must be provided.

In writing a computer program to integrate the set of

differential equations, one may reorder the calculation

procedure and modify some of the expressions derived in the

last section to reduce memory space and to avoid repeated

calculations. In summary, the following calculation

procedure is suggested.

(1) Calculate all partial angular velocities by

equation (3.12), carry out their time derivatives by

equation (3.13), then use the following equation to find all

the components of each angular velocity.

Wi k

ku
r=1 3r r

k-1
E w. ur=i 3r r

(link k is rotational)

(link k is translational)

(2) Determine partial velocities for each mass center

and for each coordinate origin using equations (3.26) or

(3,.8) and (3.27) or (3.29) respectively, then calculate the

components of each velocity by

vjk
1 3 r

ku
r (j=1,2,3. k= l,...,Nr=

sk+1 k+lu
r1 3r r (j=1,2,3. k=0,...,N-1)

(3) calmaaa:e
P3 rk by equation (3.30), then determine

the time derivatives of each partial velocity by equations

(3.31) or (3.33) and (3.32) or (3.34).
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(4) Determine the intermediate variables in the order

ofiEbyequation(3.36), D7k by equation (3.37), E.k by

equation (3.43), Hjk by equation (3.45) and Zr by equation

(3.57) .

(5) Find .k by equation (3.52), then build N

generalized active forces by equation (3.54).

(6) Calculate inertia coefficients by the equation

N 3 k
Frm = _El .E E ri.kw. kw k

k 3=1 m=1` 3 3m -jr licyjmkvirk )

taking advantage of the symmetry property to reduce the

arithmetic operations.

(7) Substitute the expressions into Kane's equations to

obtain

N
E F

rm
Am = Kr -Zrm1

together with

qr = ur

(r =1,.. ,N)

(r =1,.. ,N)

(8) Finally, with the given initial conditions and the

specified torques and/or forces for a particular system, one

can perform integration of the dynamic and kinematic

equations derived in step (7) to find the generalized

coordinates for each link at all time steps.

As for the second category, the dynamic inverse of the

first category, users are asked to specify a desired motion

for the system. In other words, a set of numerical values

or functions specifying generalized coordinates and their

derivatives are given as input, and the program provides

driving torques and forces. This is a straightforward



84

calculation to evaluate the driving forces fr, which appear

in equation (3.54). For convenience, introduce K'r as

N 3
K'r = E E mkg Yj kvjr k (3.60)

jk1 =1

So that the equation (3.54) can be written as

Kr = fr + K (3.61)

Substituting of equation (3.61) into the Kane's dynamical

equation and rearranging it give

fr -K *r K'r (3.62)

A complete calculation procedure for the dynamic inverse is

outlined in the following

(1) Calculate all partial angular velocities by

equation (3.12), carry out their time derivatives by

equation (3.13), then use the following equation to find all

the components of each angular velocity.

kE ku
r=i j r r

kElw.
r=1 Jr

k_
"r

(link k is rotational)

(link k is translational)

(2) Determine partial velocities for each mass center

and for each coordinate origin using equations (3.26) or

(3.28) and (3.27) or (3.29) respectively, then calculate the

components of each velocity by

vjk t ku
r3. r r (j=1,2,3. k=1 ...,N)

s.k+1 =
r1 J r

k+1u
r (j=1,2,3. k=0,...,N-1)

=
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(3) calmaate Pjr k by equation (3.30), then determine

the time derivatives of each partial velocity by equations

(3.31) or (3.33) and (3.32) or (3.34).

(4) Determine the intermediate variables in the order

offl.kby equation (3.36), D. k by equation (3.37), E.
3

k by

equation (3.43), Hjk by equation (3.45) and Zr by equation

(3.57).

(5)Find.Y3 kby equation (3.52), then evaluate quantity

K'r by the equation (3.60)

(6) Calculate inertia coefficients by the equation

N 3 k
F E

jE
E (i.kw. kw k k

k=1 =1 m=1 3 3m jr -kvjm "Jr )

taking advantage of the symmetry property to reduce the

arithmetic operations.

(7) Determine the generalized inertia forces by

.

mK
*
r = mEF rmu + Zr (r=1,...,N)

N
1

by

(8) Finally, calculate the active forces and/or torques

fr = -K
*
r - K' r

In both cases, mass properties and structural data

describing the geometric relations between links must be

specified. For the structural data, users can use equation

(2.37) in reference (36] to enlist a computer to

automatically generate each element of the N transformation

matrices and their derivatives; or, to save memory space

and computation time, one may simply write those elements

into a computer program.
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To test the validity of the underlying algorithm, two

programs, AUTOTF (Appendix 4) and AUTOQ (Appendix 5), have

been written in FORTRAN language. AUTOTF is to

automatically generate driving torques and/or forces with a

specified motion. AUTOQ is to simultaneously generate and

solve the equations of motion with driving torques and/or

forces given. The algorithm for numerically solving the

nonlinear differential equations is the same as that for the

the program ANGLE in Chapter II.

For comparison, the Intelledex 605 robot with the same

parameters used for programs TORQUE and ANGLE in Chapter II

is again simulated with both AUTOTF and AUTOQ. The

specifications of the coordinate frames are as shown in

Figure 3.2.

For the example use of AUTOTF, the rotation angles

q1(t),...,q6(t) have been specified as

qr = r(t-Tsin(2rt/T)/2r)/3T (r=1, 3, ..., 6)

q2 = lr /2- lr(t- Tsin(2lrt /T)/27r)/6T (60)

with T=2s, the same as that for program TORQUE plotted in

Figures 2.3 and 2.4. The outputs (see Appendix 4), driving

torques on each of the six links, are plotted in Figures

3.3-3.8. The values of these torques are precisely the same

as those generated by program TORQUE at every time step.

This is an indication that both the automatic generation

algorithm and the hand-derived equations are correct.

As an example inverse process use of the AUTOQ, the

output file of the above-described run of AUTOTF was used as
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input torques. The outputs, plotted in Figures 3.9-3.14,

are consistent with those shown in Figures 2.3-2.4. This

further indicates the algorithm is correct.
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Figure 3.2. Coordinate frames for the Intelledex 605 arm.
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Figure 3.10. Coordinate q2 vs time (output of AUTOQ).
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IV. DISCUSSIONS AND CONCLUSIONS

1. In the field of manipulator dynamics, one of the

principal concerns of dynamicists is computational

efficiency. The derivation procedure of Kane's dynamical

equations presented in this work apparently avoids such

problems intrinsic to the use of Newton-Euler or Lagrange

equations as: (1) introducing and subsequently eliminating

large numbers of nonworking contact forces between rigid

bodies, as required in the Newton-Euler formulation; (2)

extensive effort required to differentiate the kinetic

expression and large number of unnecessary arithmetic

operations, which are inevitable in Lagrangian formulation;

(3) repeatedly evaluating N(N-1)/2 inertia coefficients

which are determined by symmetric property of the inertia

matrix. Accordingly, the use of Kane's dynamical equations

proposed here may be expected to lead to computational

algorithms involving fewer arithmetic operations than

algorithms generated by employing the best available

Lagrangian and Newton-Euler approaches.

2. A comparison of the numbers of arithmetic

operations indicates a computational efficiency, for this

algorithm applied to the Intelledex 605, similar to that

shown by Kane and Levinson [42] for the Stanford arm, who

say,

"According to Hollerbach [29], when one resorts to the
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Lagrangian approach to determine quantities equivalent

to our r1, r5 and F6 for an instant at which ql,

q6, ql, q6, ql, q6 are specified, one

must perform 2195 multiplications and 1719 additions.

These numbers are reduced to 1541 and 1196,

respectively, if a Newton-Euler technique method

reported by walker and Orin [49] is employed, and they

become 852 and 738, respectively, when either the

Newton-Euler technique discussed by Hollerbach or

Silver's Lagrangian formulation [50] is used."

With Kane's method, however, Kane and Levinson continue,

"one needs but 646 multiplications and 394 additions to

accomplish the same task."

In the present work, 672 multiplications and 404 additions

are needed. The difference between these numbers and those

stated by Kane and Levinson is because of different robot

configurations. The Intelledex 605 robot consists of six

rotational links, while the Stanford Arm discussed by Kane

and Levinson consists of five rotational links and one

translational link. Moreover, the numbers discussed in the

present work could be reduced if one is willing to spend

time on working with the trigonometric identities to find

the simplest expressions for the kinematic terms.

3. Based on Kane's dynamical equations, a fully

automatic generation algorithm of the equations of motion

has been derived. This algorithm bypasses the manual

derivations of all kinematic and kinetic ingredients,
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leading in a straightforward way to the equations of motion,

reducing the amount of hand labor to a minimum. The

equations of motion derived by this algorithm is "exact" and

explicit. The algorithm can furnish computer programs to

simultaneously generate and integrate the equations of

motion or to carry out the inverse dynamics. On an IBM AT

microcomputer, the program AUTOTF takes about 0.28 second

average to compute six torques. Although this means that

on

it

is not feasible to perform on-line computation on an IBM AT,

it would certainly be faster than that reported by Luh,

Walker and Paul [27] if the same computer (PDP11/45) were

used, since the number of arithmetic operations required by

Kane's method is about 15% less than for Newton-Euler's

method employed by Luh Walker and Paul.

4. The automatic generation algorithm presented in

this work can be used for any type of linkage mechanism.

This also implies that it is highly likely that a computer

can be employed to deal with any given multibody dynamics

problem. However, due to the fact that it is extremely

difficult for a computer to recognize algebraic

simplifications, such as trigonometric identities or terms

that cancel each other, it is by no means true that it is

always best to use a general purpose multibody computer

program to carry out the requisite calculations. Indeed,

when a particular multibody configuration is under

consideration and the on-line computational efficiency is

more important than amount of manual labor, the opposite is
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true: it is better to formulate the necessary expressions by

hand than to attempt to work with an available multibody

program. When more than a few multibody configurations are

to be investigated, it is definitely better to apply an

automatic generation method rather than to work with them by

hand for it can save considerable time for the analysts.

5. Generalized speeds play a central role in the

formulation procedure of Kane's dynamical equations.

Properly choosing the forms of generalized speeds can

significantly reduce the number of arithmetic operations.

In doing so, selection of the definitions for generalized

speeds should be made such that corresponding expressions

for partial velocities and partial angular velocities be as

simple as possible. Human analysts can accomplish this by

following the guiding idea summarized in page 21. But for

automatic generation, selecting the definitions of

generalized speeds in this way seems to make generalized

active forces appear in a more complicated set of equations,

thus additional arithmetic operations need to be

accommodated. In an effort to avoid such problems, the

first order time derivatives of the generalized coordinates

are simply defined as the generalized speeds in the

automatic generation algorithm; this in turn brings more

arithmetic operations that the author would not like to

have. Further study on this aspect is therefore suggested.

6. In performing dynamic inverse or integrating the

equations of motion, the appropriate form of the dynamic
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equations should consist of equations described in terms of

all independent position variables and forces /torques that

are explicitly involved in the dynamic equations. In other

words, the dynamic equations are expected to have a closed-

form. Deriving explicit input-output dynamic equations is

very time-consuming if either the Newton-Euler or the

Lagrangian method is employed. By contrast, the use Kane's

dynamical equations leads directly to explicit equations of

motion. Employing the automatic generation algorithm

presented in this work can bring position variables, input

forces and/or torques and inertia coefficients all in

evidence in the dynamic equations. Therefore, the dynamic

equations generated by this algorithm are particularly

useful for either integration or to perform dynamic inverse.
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APPENDIX 1. INTERMEDIATE VARIABLES

Z1=(u1c3-u2s3)/s2

Z2=-u1s3-u2c3

Z3=u3+(u2s3-uic3)c2/s2

Z4=c3/s2

Z5= -s3 /s2

Z6=u1c3-u2s3

Z7=-Z2

Z8=Z4c2

Z8=Z5c2

Z10= Z8u1 +Z9u2

z11=u1c4 +u2s4

Z12=-ulseu2c4
Z13 =u3 +u4

Z14=c45

Z15 =s45

Z16 = -Z15

Z17=u1Z14+u2Z15

Z18=-Z13-u5

Z19= u1Z16 +u2Z14

Z20=Z14c6

Z21=Z15c6

Z22=Z14s6

Z23 =Z15s6
Z24 =Z20u1 +Z21u2 +Z18s6

Z25=-Z22 ul-Z23u-+Z18c6

Z26=Z16u 14-Z14u2-1-u6

Z27 =L13Z4

Z28 =L13Z5

Z29=Z27u1+Z28u2

Z30=L22Z8

Z31=L22Z9

Z32=-L22c3

Z33=L22s3
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Z34=Z301+Z31u2

Z35= Z32u1 +Z33u2
Z36=L33u2

Z37=L31u3-L33u1

Z38=1.131112

Z39=(1.133+1.143)S4

Z40= (L33 +L43)c4

Z41=L1s4
Z42 =L1c4 +L41

Z43=L41s4
Z44= L1 +L41c4

Z45=-Z39u1 +Z40u24-Z41u3

Z46=-Z39u2-1-Z42u34-L41u4
Z47=Z43u1-Z44u2
Z48=Lic4+L2

Z49=L2s4

Z50=Li+L2c4

Z51=L33+L43-L52

Z52=Z39c5+Z40s5

Z53=Z40c5-Z39s5
Z54=Z15Z51-Z52

Z55=Z53-Z14Z51

Z56=Z41c5+Z48s5
Z57=L2s5

Z58= Z48c5 -Z41s5
Z59=L2c5

Z60= Z54u1 +Z55u2 +Z56u3 +Z57u4

Z61=-Z 49111+Z50u2

Z62=- Z55u1+Z54u2+Z58u3+Z59u4

Z63=L33+L43

Z64=Z15Z63-Z52

Z65=Z53-Z14Z63

Z66=Z56-L63
Z67=Z57-L63

Z68=-Z49-L63Z14
Z69=Z50-L63Z15
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Z70=Z64 ull-Z55u2+Z503+Z57u4-L53u5

Z71=Z68u1+Z69u2
Z72='"'Z65111426411242581134.Z59U4

Z73=-(s2s3Z3+c2c3Z2)/=_2 2

Z74=(c2s2Z2-s2c3Z3)/s22

Z75=Z73u1 +Z74u2

Z76=Z73C2Z2Z4S2
Z77=Z74c2-Z2Z5s2

Z78=-(u1s3+u2c3)Z3

Z79=(uic3-u2s3)Z3

Z80= Z76u1 +Z77u2

Z81= (c4u2-s4u1)u4

Z82=- (c4ul+s4u2)u4

Z83=-s45(u4+u5)

Z84=c45(u4+u5)

Z85=Z83u1+Z84u2
Z86=-Z84 u1 +Z83u2

Z87=Z83c 6-Z14s6u6

Z88=Z84c6-Z 15s5u6

Z89=Z83s5+Z14c6u6

Z90= Z84s6 +Z15c6u6290=Z84
Z91=Z871114288112+Z18C06
Z92=Z89111+Z90u2+Z18s5u5

Z93=-Z84u 1+Z83u2

Z94=1.13(Z73u1+Z74u2)

Z95=-Z1Z29

Z96=L22Z76

Z97=L22Z77

Z98=122s3Z3

Z99=L22c3Z3

Z100=Z 901+Z97u2+Z7Z35

Z101=Z10Z 34-Z6Z35

2102=Z98u14-Z99u2-Z7Z34

Z103=Z 38u2-Z37u3

Z104=Z 303-Z38u,

Z105=Z 37u1-Z302



115

Z106=- (L33+1143) C4114

Z107=- (L33+1143) S4114

Z108=L1c4u4
Z109=-L1s4u4
Z110=1/41c4u4
Z111=-L41s4u4
Z112=Z106u1+Z107u2+Z108u3+ (Z12Z47-Z13Z46)
Z113=-Z107u1+Z106u2±Z109u3+ (Z13Z45-Z11Z47)
Z114=Z110u1-Z111u2+ (Z11Z46-Z12Z45)
2115=Z84Z51- (1.133+1143) (U4+115) c45

Z116=-Z83Z51+ (Z107-Z39u5) C5- (-Z106+Z40u5) s5
Z117=L1c45 (u4+u5) +L2 c5u5

Z118:=L2c5u5
Z119=L2c4u4
Z120=-L2s4u4
Z121=-L1s4c5u4-Z48s5u5-Z108s5-Z41c5u5
Z122=-L2s5u5
Z125=Z115u1+Z116u2+Z117u3+Z118u4+Zi8Z62-Zi8Z6i
Z126=-Z119u1+Z120u2+Zi8Z60-Zi7Z62
Z127=-Z116u1+Z115u2+Z121u3+Z122u4+Z Z -Z61 18 Z 60

Z128=Z84Z63- (L33+L43) (u4+u5) c45
Z129=-Z83Z63+ (Z107-Z39u5) C5- (-Z106+Z40115) s5
Z130=-Z119-L63Z83
Z131=Z120-L63Z84
Z132=Z18Z72-Z18Z71
2133=Z18Z70-Z17272

Z134=Z17Z71-Z18Z70
Z135=Z128u1+Z129u2+Z117u3+Z118u4+Z132
Z136=Z130u1+Z131u2+Z133
Z137=-Z129u1+Z128u2+Z121u3+Z122u4+Z134
Z152=-A2Z4
Z153=-mAZ27

2154=Z152 Z4+Z153Z27

2155=Z152Z5+Z153Z28
2156=Z152Z75+Z153Z94
Z157=-A2Z5



Z158= -mAZ28

Z159=Z157Z4+Z158Z27

Z160=Z 157Z5+Z158Z28

Z161=Z157Z75+Z158Z94

Z162=(B3- B2)Z7Z10

Z163=(B1-B3)Z6Zio

Z164= (B2-B1)Z6Z7
24q , 2+R 7 24.,m 7 2.4.m 7 2)

Z165=- (B1c3 2-3 3-8 B-30 '-B-32
Z166=-(-B1c3s3+B2c3s3+B3Z8Z9+mBZ30Z31+mBZ32Z33)

Z167=-(Z162 c3+Zi63s3+Zi64Z8+Bic3Z78+B2s3Z79+B3Z8Z8()

IllriBZ30Z100 4111BZ32Z102)

Z168=- (-Bis3c3+B2c3s3+B3Z8Z9+mBZ30Z31+mBZ32Z33)

Z169=- (Bis32+B2c32+B3Z92+mBZ312+mBZ332)

Z170=- (-Bis3Z78-Z 162 s3+B2C3Z79+Z163c3+B3Z9Z80-1-Z164Z9

+111BZ31Z100 412BZ33Z102)

Z171= (C3-C2)u2u3

Z172= (Ci-C3)ulu3

Z173=(C2-C1)ulu2

Z174=-C1-mCL332
Z175=mcL33L31

Z176=-Z171 4-MCL33Z104

Z178=- C2-mcL31
2_mcL332

Z179=-Z172- mcL33Z103+mcL31Z105

Z18em cL31L33

Z181=-C 3-mCL312

Z182=- Z173-mCL31Z104

Z183= (D3-D2)Z12Z13

z184= (D1-D3)Z11Z13
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Z185= (D2-31)Z11Z12
241 24.m (7 2+7 2+7 2))

Z186=- (Dic4 2-4 '-C-39 40 43
Z187= (D2-D1)c4s4+mDZ43Z44

Z188 =ftZ39Z41+mDZ40Z42

Z189=- c4(D1Z81+Z183)+s4(D2Z82+Z184)+ft(ZZ112+Z40Z113

-Z43Z114)
2 2 2 2 2

Z189A=-D1S4 "'ID2C4 '1113(Z40 +Z39 +Z44 )

Z190=-1111) (Z40Z41-Z39Z42)
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Z191=- s4( D1Z81+ Z183 )- C4(D2Z82 +Z184) +mD(- Z40Z112

+Z39Z113 +Z44Z114)

2192=D3111D(Z4124-242
2)

Z193=Z185111D(Z41Z1124-Z42Z113)

Z194=MDZ40L41
Z195=MDZ391141

Z196=D3MDL41Z42

21972D3.'MDIJ412

Z198=Z185 '1111:1L41Z113

Z199=(E3.".E2"18Z19

Z200= (E3:E3)Z17Z19

Z201=(E2E 1)Zi7Z18

2202=E1Z142 E3Z162ME (z5424.z494z552)

Z203=... ElZ14Z 15...E3Z14Z1CME (Z54Z55..-Z49Z5cZ54Z55)

Z204=''' ME(Z54Z56- Z55Z58)

Z2O5= 1E(Z54Z57".Z55Z59)

Z206=Z14 (E,Z854-2199) .-.Z16(E"J Z 864-Z201)

''IRE(Z54Z 125."249Z12CZ55Z127)
2 p 7 2 17 2+7 2+7 21Z2O7= ElZ15 .."54

Z208='. ME(Z55Z5eZ54Z58)

Z209= ME(Z55Z57+Z54Z59)

Z21()= Z15(E1Z851-Z199) ".214(E3Z864-Z201)

Z..111E(Z55Z125-1-Z,^ou 126+Z54 *Z127)

2211=E2'"
mE(Z5624.2582)

Z212 =E2ME(Z56Z574-Z58Z59)

Z213=Z200- ME(Z56Z1254-Z58Z127)

2214=E2- ME(Z5724-2592)

Z215=Z200-ME(Z57Z125+259Z127)
Z216=(F3'.. F2)Z25Z26

Z217=(F1... F3)Z24Z26

Z218=(F2''' F1)Z24Z25
7 24_p 7 2.4_p 7 24.m (7 2+7 2+7 2)1

Z219=....(F1'-'20 2-22 3-16 -Fv-64 -68 -65 //

Z220=- (F1Z20Z21+F2Z22Z23+F3Z14Z1emFZ68Z69)

Z221=F1Z 20 ScF2Z22C6-MF (Z64Z6CZ65Z58)
Z222 =F1Z20S6- F2Z22C6- nIF (Z64 Z6v-Z65Z59)

Z223=F1Z 20 ScF2Z22COMFZ64L63
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Z224=-Z20(F1Z914-Z216)+Z22(- F2Z92-1-Z217)Z16(F3Z934-Z218)

-mF(Z64 Z1354268Z136- Z65Z137)

Z225=- (FiZ212+F2Z232+F3Z142+mr(Z6524-Z692.4-Z642))
Z226=F1Z21s6- F2Z23C6- MF(Z65Z6eZ64Z58)

Z227=F1Z21s6- F2Z23C6- MF(Z65Z67+Z59Z64)

2228=F1Z21s6- F2Z23ce1FL63Z65

Z229=-Z21(F1Z91+Z216)+Z23(Z217- F2Z92)...Z14(F3Z 4-Z218)

-m F(Z65Z135+Z69Z136+Z64Z137)

Z230=- (Fis62+F2c62 -1-mr (Z6621-Z582))

Z231=- (Fis62+F2c62+TaF (Z66Z67+Z58Z59) )

2232=- (F1s62+F2-62 %... IUF"63" 66 j

Z234=s6(F1Z914-Z216)A-c6(Z217-F2Z92)-111F (Z66Z135+Z58Z137)

2235=-(F1s62+F2c62-1111F(Z672+Z592))
, 2.4.r 2

Z236=-(-r 1-6 2-0 6 MFL63Z67)

Z237=s6(F1Z 914-Z216)-c6 (F2Z92-Z223) (Z67Z135+Z59Z137)

2238 =-F 1 s 62-F2c62-mFL63
Z239=s6 (FiZ93.+Z216)+c6 (Z217-F2Z92) +mFL63Z135

Z240=-F3Z16

Z241=-F3Z14

Z242=- F3Z93 -2218

2243=2156-1-21674-217642189+22064-2224

Z244=Z161+Z1704-Z1794-Z1914-Z2104-Z229

2245=Z182-1-21934-22134-2234

2246=21984-22154-2237

2247=2200+2239

Z248=Z242

Z251=mAs1

2252=Z251Z27

2253=Z251Z28

Z254=111Bslc2

Z255=-m8sis2

2256=Z30Z254+2322255

2257=Z31Z254+2332255
Z258=c1c3-slc2s3

Z259=-mc1,33Z258

Z260=mC(L33 (sic2c3+cis3) +Lnsis2)
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Z261=111CL31Z258
Z262 =sic2c34+c1s34
Z263=cic34-sic2s34

Z264 = -s1s2
Z265=-11D (Z39Z262+Z40Z263-Z43Z264)

Z266=111D(Z40Z262-Z39Z263-Z44Z264)
Z267=21D(Z41Z262+Z42Z263)
Z268=mDL41Z263

Z269=s1c2c345+c1s345
Z270=s1s2
Z271=c1c345-s1c2s345
Z272=1nE (Z54Z269-Z49Z270-Z55Z271)
Z273 =mE(Z55Z269 +Z50Z270+Z54Z271)
Z274=mE (Z56Z269+Z58Z271)
Z275=IrtE ( Z57 Z2 .0t ,s+Z 59Z271)
Z27 6=111F (Z 64 Z2 69+Z 68Z27 0-Z 65Z 271)
Z 277=MF Z 65Z 2 69+Z 69Z 27 0+Z 64 Z271)

Z27 8=111F ( Z 66Z 2 69+Z 58Z 271)
Z279=ifiF Z 67Z 2 69+Z59Z 271)

Z280=-mFL63Z269
Z281=g (Z252+Z256+Z259+Z265+Z272+Z276)
Z282=g (Z253+Z257+Z260+Z266+Z273+Z277)
Z283=g (Z261+Z267+Z274+Z278)
Z284=g (Z268+Z275+Z279)
Z285=gZ280

X11=Z154+Z165+Z174+Z186+Z202+Z219
X12=2155+2166±2187+2203+2220
X13=Z175+Z188+Z204+2221
X14=2194+2205+2222
X1rZ223
X167--2240

3(21=x12

X22=Z160+Z169+Z178±Z189A+Z207+Z225
X23=Z190+Z208+Z226
X24=Z195÷Z209+Z227
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X25=Z228

X26=Z241
X31=X13

X32=X23

X33=21814-21921-22114-2230

X34=Z196+Z212+Z231

X35=-E2+Z232
X36=0.0

X41=X14

X42=X24

X43=X34

X44=2197+2214+2235
X45=-E2+Z236

X46=°")
X51=X15

X52=X25

X53=X35

X54=X45

X55=-E2+Z238

X56=0.0

X61=X16

X62=X26
X63=X63

X64=X46
X65=X56

X66=-F3
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APPENDIX 2. PROGRAM TORQUE

PROGRAM TORQUE

WRITTEN BY: TINGLIN NIE
DATE WRITTEN: OCT. 1986

THIS PROGRAM IS TO CALCULATE THE TORQUES APPLIED TO
EACH OF THE SIX LINKS OF INTELLEDEX 605 ROBOT THAT
ARE NEEDED TO CARRY OUT A SPECIFIED MOTION.

PROGRAM TORQUE
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER I,N,NPRINT
COMMON/TANDR/TIME,TSPAN
COMMON/COORD/C11,02,03,04,05,06.11P1,0P2,0P3,0P4,0P5,0P6
COMMON/ACCEL/ODPIADP2,00P3,00P4,QOPS,00P6
COMMON/GSPO/UI.U2,U3,U4,US,U6,UPI,UP2,0P3,UP4,UPS,UPS
COMMON/STROT/L12,L13,L22,L31,L33,L41,L43,L52,L63,LI,L2
COMMON/IPTO1 /AM,BM,CM,DM,EM,FM,AII,AI2,A13,811,812,1313,

CII,Cl2,CI3,011,012,1113,E11,EI2,E13,F11,FI2,FI3
COMMON/OUTT/TI,T2,13,14,T5,I6
OPEN (5,FILE=.0A1A1')
OPEN (Ei,FIIE..'0U1-1')

OPEN(9,FILE-'IOUTI')
C

C INPUT THE VALUES OF MASSES, INERTIAS, MASS CENTER COORDINATES
C

READ (5,100)1911,8M,CM,DM,EM,FM
100 FORMAT (6F7.4)

READ (5,100) AII,Al2,A13,811,812,813
READ (6,100) CII,Cl2,C13,011,012,013
READ (5,100) EII,E12,E13,FII,F12,FI3
READ (5,110) L12,L13,L22,L31,L33,L41,L43,1_52,L63

110 FORMAT (9F7.4)
READ (5,120) LI,L2

120 FORMAT (2F7.4)
READ (5,130) TSPAN
READ (5,130) TSTEP

130 FORMAT (F7.4)
FRIAR (5,135) NPRINT

135 FORMAT (14)
C

C PRINT TITLE FOR THE OUTPUT
C

WRITE (8,140)
140 FORMAT (////,30X,16FITABLE OF TORQUES/20X,

38HNEEDED TO CARRY OUT A SPECIFIED MOTION)
WRITE (8,150)

150 FORMAT ( / / /,IX,I9HTHE GIVEN DATA ARE:)
WRITE (8,160)

160 FORMAT (//,3X,23HMASS OF EACH LINK (Kg):)

WRITE (8,170) AK,BM,CM,DM,EM,FM
170 FORMAT (//,8X,SHMA ,F7.4/8X,5HMB ,F7.4/8X,SHMC ,F7.4/

8X,51AMD ,F7.4/8X,SHME ,F7.4/8X,511MF = ,F7.41

WRITE (8,180) AII,Al2,AI3,8I1,812,813,CII,C12,CI3,
DI1,012,013,E11,EI2,EI3,F11,FI2,F13

180 FORMAT (//,38,31HINERTIAS OF EACH LINK (Kg-r.'2)://
8X,SHAI ,F7.4,8X,SHA2 ,F7.4,8X,SHA3 = ,F7.4/

88,5H8I ,F7.4,8X,SHB2 ,F7.4,8X,SH63 ,F7.4/

8X,SHC1 = ,F7.4,8X,SHC2 ,F7.4,8X,SHC3 ,F7.4/

88,5H0I ,F7.4,8X,SHD2 ,F7.4,8X,5HD3 ,F7.4/

8X,SHEI ,F7.4,8X,SHE2 ,F7.4,8X,5HE3 ,F7.4/

, 8X,5HFI ,F7.4,8X,SHF2 = ,F7.4,8X,SHF3 ,F7.4)

WRITE (8,190) L12.L13,122,L31,L33,L41,L43,L52,L63
190 FORMAT (//,38,40HTHE COORDINATES OF MASS CENTERS (meter)://

8X,61-1L12 ,F7.4/8X,61iL13 ,F7.4/8X,6HL22 = ,F7.4/
8X,6HL31 ,F7.4/8X,6HL33 ,F7.4/8X,61-1L41 ,F7.4/

8X,61-1L43 = ,F7.4/8X,GHLS2 ,F7.4/8X,61-1L63 ,F7.4)

WRITE (8,200) LI,L2
200 FORMAT (8X,6HLI - ,F7.4/8X,6HL2 = ,F7.4)

WRITE (8,210)TSPAN,TSTEP
210 FORMAT (//,3X,IIHOTHER DATA://

8X,I2HTIME SPAN - ,F8.4,8X,
)2HTIME STEP - ,F8.4)

WRITE (8,220)
220 FORMAT (//,3X,38HTHE TORQUES APPLIED TO EACH LINK (Nm):)

WRITE (8,230)
230 FORMAT (//,IX,4HTIME,6X,2HT1,9X,2HT2,9X,2HT3,9X,2HT4,

98,21415,98,2HT6//)
C

C MAIN PROGRAM TO CALL THREE DIFFERENT SUBROUTINES
C

TIME-0.0
N-IDINT(TSPAN/TSTEP)
N-N+2
DO 250 1=1 ,N

C TO CALCULATE GENERALIZED COORDINATES
CALL GCOORD

C TO CALCULATE GENERALIZED SPEEDS
CALL GSPEED

C TO CALCULATE THE ACTIVE FORCES, INERTIA FORCES AND
C FINALLY CALCULATE THE TORQUES

CALL CLCLIN
WRITE (9,240) TIME,TI,T2,1.3,T4,75,76

240 FORMAT (F5.3,IX,6616.8)
IF(I.EO.1 .0R. MOD(I,NPRINT).EO.0) THEN
WRITE(8,235) TIME,11,72,T3,T4,75,T6

235 FORMAT(F5.3,1X,6F11.51
ENDIF
TIME-TIME+TSTEP

250 CONTINUE
STOP
END

C

C THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED COOR-
C DINATES, ANGULAR VELOCITIES AND ANGULAR ACCELERATIONS



C UPGQDPG

SUBROUTINE GCOORD
IMPLICIT DOUBLE PRECISION (A-Z) RETURN

COMMON/TANDR/TIME,TSPAN END

COMMON/COORD/01,02,03,04,05,06,0P1,0P2,0P3,QP4,0P5,0P6
COMMON/ACCEL/ODPI,ODP2,0DP3,QDP4,00P5,00P6 C THIS SUB ROUTINE IS TO CALCULATE THE ACTIVE FORCES,

C C THE INERTIA FORCES, AND FINALLY CALCULATE THE TORQUES.

TF=TSPAN SUBROUTINE CLCLTN

PI-DACQS(-1.808)
IMPLICIT DOUBLE PRECISION (A -Z1

00-T-IFDSIN(2PIT/TF)/(2PI) COMMON/TANDR/TIME,TSPAN

Q1-00R1/(3.TF) COMMON/COORD/Q1,02,03,04,Q5,06,QPI,QP2,0P3,QP4,0P5,0PG

02-PI/2.-Q0,11/(G.TF) COMMON/ACCEL/QOPI,QOP2,00P3,0P4,0DPS,QOP6

Q3-01
COMMON/GSPD/UI,U2,U3,U4,VS,U6,UPI,UP2,UP3,UP4,UP5,UP6

Q4-01 COMMON/STRDT/L12,L13,1_22,L31,L33,L41,1_43,L52,L63,LI,L2

05-01
COMMON/ IPTOT/AM ,BM ,CM ,DM ,EM ,FM ,AI I ,Al2 ,AI3,911,812,1313 ,

06-Q1
CI 1 ,C12,CI3,011,012 ,DI3 ,Ell ,EI2,E13,FII ,FI2 ,FI3

QPI-P1<1.-000S(2.PIT/TF))/( TF3. ) COMMON/OUTT/T1,72,13,74,T5,T6

QP2--QPI/2.
QP3-QPI C DEFINE SYMBOLS

OP4-QPI
QP5-QPI
OP6 -QP1 C1=0005(011

ODP1-2. Pl2/(3.TF..2)OSIN(2.PIT/TF) C2=DCOS(Q2)

QOP2..-CIDPI/2.
C3=DCOS(Q3)

(IDP3-00P1 C4-DCOS(Q4)

OUP4-00P1 C5-13COS(05)

QOPS-Q0F1 C6-000S(06)

QDRG-QOPI
RETURN S2..OSIN(02)

END S3.-EISIN(03)

C
S4.,OSIN(04)

C THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED SPEEDS S5..DSIN(05)

S6 -OSIN(06)

SUBROUTINE GSPEED C34=DCOS(03+04)

IMPLICIT DOUBLE PRECISION (A-7) C4S-DCOS(114+05)

COMMON/COORD/Q1,02,03,04.05,06,OPIAP2,0P3,0P4,0P5,0P6 C345.DCOS(03+04+05)

COM11ON/ACCEL/ODPI,QDP2,00P3,QDP4,01P5,0DP6 534-DSIN(Q3+04)

COMMQN/GSPD/U1,112,U3,04,05,06,UPI,UP2,1IP3,UP4,0P5,UP6 S45 -DSIN(Q4+05
S345..DSIN(03(04.(6)

52-DSIN(Q2)
93.0SIN(03) C CALCULATE INTERMEDIATE VARIABLE Z'S

C2-000S(Q2)
C3=DCOS(Q3) 71-(UlC3-U2S3)/S2

Ul.GPI.S2C3-0P253 22.U1.53-U2C3

02--QPI,S2.53-0P2*C3 23-U3F(U2S3-U1C3)C2/S2
U3=QPI.C2+QP3 Z4-C3/52

U4-QP4 Z5=-93/S2

US.QPS 26.Ul.C3-U2S3

U6-0P6
UP1-(113P12C3+0PIQP2C2C3-QPIQP352.S3-QDP2.53-0P2.QP3C3 IB=Z4.C2

02--(QOPI.S2*S3*QP100P2oC2+53+0P1.0P3.S2.C3+0DP2.C3-QP2.0P3oS3) 29-I5C2
UP3.QOPI.C2-QPIQP252.00P3 Z10-78U1+79U2
UP4-QOP4 ZII.UIC4)-U2.54 1.4

UPS,-QDP5 112=-1.11.S4+U2C4 b.)

N

3 4



ZI3-U3+U4 268--249-L5314
ZI4-C45 Z69-Z50-L63.Z15
115-545 Z70-Z641.11+Z65U2+Z56U3+Z67U4-L63U5
ZI6--ZI5 271-268.111+269.02
217-UlZI4+U2.Z15 Z72--Z55U1+Z6U2+Z58.1i3+159U4
ZI6--Z13-U5 173--(52.53Z3+62.63.12)/52..2
Z19-UlZ16W214 174-(62.5322-52C3q3)/62..2
Z20-Z1466 Z75-Z73U1+274.02
121-Z15.66 276-173.62-Z2.1452
Z22-ZIOS6 277-274.62-22Z5.52
223-Z15.56 278--(01.53+U2.63)Z3
Z24-220.U1+12IU2+2I8.56 279-1111.63-U2531.73
Z25--Z22U1-Z23L12+ZIeC6 260-176U1+277.02
226-2I6.U1+ZIU2+16 Z81..,(CU2-SU1).04
227=L13.24 182..-(CU1+54.U21.04
228-L13Z5 283--S45(U4+U5)
Z29-Z27UI+Z28.U2 Z84-C45(U4+05)
230-L22113 285..Z83Ul+Z84U2
231-1_22.0 286=-184.U1+Z1332
132--L2263 287=203.66-ZI4.566
Z33=L22+53 Z88.q8466-Z1556.U6
Z34-Z30.U1+231.U2 Z89-263+56+2166.1.16
235-132U1+233.02 Z90-284.56+21566U6
Z36-L33.U2 291267Ut+2WU2tZ19.66U5
Z37-L3I.U3-L3311 Z92-Z89U1+Z90U2+Z18.55U6
Z38--L3I.U2 Z93--284*U1+Z83J2
139-IL33+L431.54 294-LI3(Z7311I+Z742)
240-(L33+L431.64 295--ZI.229
Z4I-LI54 196-L22.276
Z42-LIC4+L4I 797-L22.277
Z43-L41S4 Z98=12253.Z3
244-LI+L4I.C4 299-L226313
Z45--Z39.1.11+Z40U2+14IU3 2 I00=296U1+297.02+774235
Z45--Z40U1-Z39U2+Z42U3+L41.U4 2101-ZI0*234-16+235
Z47-Z43.U1-144.02 ZI02-298U1.+Z99U2-Z7234
248-LIC4+L2 2103.238.02-237.U3
Z49-L2.54 7104-236.03-238U1
Z50-LI+L264 2105-Z37.11I-236.U2
Z5I-L33+L43-L52 2106--(133+143).64U4
252-239C5+Z4055 Z107-(L33+L43)SU4
253-240+65-23955 2108-LIC4.14
154-115.Z51-252 ZI09 --L1.54.U4
255-Z53-Z14.251 ZlI0-L41.64.U4
156-141*C5+248.55 2111--L41.5U4
257-1_2S5 Z1l2..Z106 U1+11437U244108U3+(Z12Z47-Z13145)
258-Z46.65-141.55 ZI13--Z107*U1+2106.02+2109.03+1113.245-211.2471
259-L2C5 2114-Z110UI-Z11U2+(110.Z46-Z12.245)
260-254.111 +7ss.u2.1.m6toil57.u4 2II5-Z84Z51-(L33+L43)(U4+U5)645
261-Z4911+250.112 2116--Z83751+(Z107-Z39U5)*C5-(-Z106.1Z40.U51.55
762--Z55U1r254.U2+Z58.U3+259.U4 ZII7-LIC45(U4+U5)+L2.65115
Z63-L33+L43 2118-L2C55
264-Z15.253-Z52 7119-L2C4+U4
365-153-114.263 2120-12*54014
165-256-L63 2121--L154 65.14-Z46.55.U5-Z108.55-24I.C5U5
767-757-L63 2122-L255.1)5



7125-7115.01+1116.U2+2117U3+7118.114+718.762-719.761 719PS4.(011.281+7183)-04.(012.782+2184) +0M.(-740.1112+739.7113

7128=-7119.01.1120.12+219.760-717.262 +244.1114)

2127=-1116U1+111502+7121.031.2122.04+717.761-718760 1192.-013-011.(241..2+742.+21

7128.784.763-1L33+L43)184+US).C45 2193.-7185-0M(741.2112+742.7113)

7129 -283 763+(1107-73905)05-(-7106+740.US)S5 7194-011.740L41

7130Z119-L63'783 2195-13t1139L41

1131-7120-L63784 7196..-013-011L41.742

2132=118.172-Z19.771 7197.-013-0ML41..2
2133=719.770-217.772 7198.-7185-0ML41.7113
7134..717.271-218.770 7199-1E13-E12/.118719
7135-2128.111-01129.02+2117.03+711884+7132 7200-1E11-E13/.717.219

7136-713001-11131.0241133 7201..(E12-EI1).217.218

7137--7129.U1r7128.02+2121.034.712204+2134 7202E11.714..2-E13.716.2-EM.(254.1.2+749.2+755..2)
Z152--Al274 7203--E11.714215-E13.714.716-EM.(754755-749.750-250255)
7153A1'1.727 7204--EM1754.756-755158)
7154-2152.2411153.227 2205--EM.1754.757-755.759)

7155=1152.25+71530728 1206--714.(Elf.285+2199) -7(6.(E13.1864-2201)-EM.(254.7125-249.2126

Z156=2152.775+2153.194 -Z55.7127)

7157Al2.7S 7207--EI12152-E13.7142-EM.(7582.1-25024-754.2)
1158--A1l228 7208--EM.(255.256+754.758)

Z159=7157.74+7158727 2209=-E11(755.757+754.758)

7160-7157.25+7158.728 7210--115.(E11.785+7199)-714.(613.788+7201)-EM.(755.7125+750.2126
7161-1157775f7158.784 +7507127)
2162-(813-812)77710 7211--E12-EM.(7562+758..2)
7163-(811-B131.26.710 7212--E12-EM(756.757+758.759)
1164=(1:112-811)7677 7213-7200-EM(756.7125+758.7127)
7166=-181103 +2+812532313.782+8MZ302+8M.Z32..2/ 7214--E12-EM(757.2+769..2)
7166--(-81103.53+812C3.83+813.18.79+BMZ307314BM.232.233/ 7215..7200-EM.(757.21254159.7127)

7167=-(7162.03+7183.511116028+811.03.778+61263779+813.28.780 7216=(F13-F12).225.726

+8t1730.2100+BM.232.71021 7217..(F11-F13>724.726
7168--(-131153.C3+1312.03 53+813.78.19+8MZ30.231+8MZ32233) 2218-(F12-F11).22725
7169--1811.5321812C32+813.792.UM731..2113M.Z33621 7219=-1F117202-W127222..F13716.2+FM17842+768.2
7170=-1-811.53.778-7162.53+1312.03.179t2163.C3+813.79.280+716479 +765.211

+8h1.731.7100.13MZ337102/ 7220=-1F11720.721.1-F12.222.223+F13.714.716rFM768.7691
2171-(C13-C12).82.03 7221.+11.720.86-F12.222C6-FM.(264.766-265.258)
2172-1C11-C13/00103 7222-F11.720.56-F12.22206-FM.(764.767-265.759)
7173-1C12-011/1.112 7223-F11.720.86-F12.222.C6+FM.764.L63
7174--C11-CML332 7224--720(F11.291.11216)+722.1-F12.792.11217/-716(F13793+7218)
7175-CM.1.33.L31 -FM.(164.7135+268.7136-765.7137)
7176--7171+CML337104 7225--(F11,421..2+F12.223.+2+F13.714..2+FM.1765..24-769"2+764**2/)
7178=-C12-CM.L31..2-CML33.2 7226-F11.721.56-F12.723.06-FM.(285766+764758)
7179=-7172-CML33.2103+CM.L31.7105 7227=F11.221.56-F12.223C6-FM.(765767+759.164)
7180=C/11_31.1.33 7228-F11.721.58-F12.223.06+FM.163.265
2181--C13-C11131.2 7229..-721.1F11.791412161+723.17217-F12.7921-714.8F13.793.72181
1182--2173-CHL31.7104 -FM.(265.71354169.2136+764.21371
7163-(813-012)712.213 7230--(F11.56021-F1206..74-Ftts(7662 1158..2))
2184-1811-1313)711.213 7231..-1F11.68. 2+F12.062+FM.(766767-1.758.759),
2185-1012-8111.711212 2232..-1F115602+F12.C6.2-FM.63.766/
7186--tD11.C4.2*1312.842+0M(739 .2.1.74024-743211 2234-86.1F1129141216/406.12217-F12292)-FM(7667135+258.71371
7187-1012-011)C484+DMZ43.744 7235=-(F11.86..2+F12.C8.2+FM(767..2+759.2))
7188=011.739.7414DM.I40.742 7236--(F11.86..2-W12.06.2-FM.L63.1671
1189--C4.1011.781+71831+84.(012.782+7184)+0M(239.71124740.2113 7237-561F11291+22161 -06.(F12.792-7217)-FM.(767.7135+759.7137)

-743.71141 7238--F11.562-F12.C6..2-FM.L63..2
2189A--011.8.2-012.04.2-0M(7402+239 .247442/ 2239=86(F11791+7216)4.06.(7217-F12.792)+FM.L637135
7190--13t1.(740141-739.7421 2240--F13.216
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C

2241--F13214
2242-F13293-2218

2243-n56+2167+2176+2189+2206+2224
2244=2161+2170'2179+2191+2210+2229
2245=2182+2193+2213+2234

KI2=X2I UPI+X22+UP2+X23UP3+X24UP4+X25+UP5+X26+UP6+2244
KI3=X3I+UPI+X32 UP2+X33UP3+X34UP4+X35+UP5+x36+uP6+2245
KI4=X4I+up1+X42 UP2+X43UP3+X44+UP4+X45+UP5+x46Up6+2246
KI5-X5I+UP1 +X52 Up2+X53+UP3+XSUP4+X55+UP5+x56UP6+2247
KI6=X6I+up1+x62uP2+X63UP3+x64+up4+X65+UP5+X66UP6+2248

2246-2198f2215+2237 C CALCULATE THE GENERALIZED ACTIVE FORCES
2247=2200'2239
2248-2242 2251-AM61

C 2252-2251+227

C CALCULATE THE GENERALIZED INERTIA FORCES 2253-Z251+228
2254=8MSI.C2

xii-2154+2165+2174+2186+2202+2219 2255--BM61+52
X12-2155+2166+2187+2203+2220 Z256-230+2254+232+2255
X13-2I75+2188+2204+2221 Z257-231+2254+233+2255
x14-2194+2205+2222 7258-C1+C3-61C2+63
X15-2223 2259--CML33+2258
X16-2240 2260-CM.(L33.(61+C2+C3+C1+63)+L31+61+62)

2261-CH1_31+2258
X21-2159+2168+2187+2203+2220 2262-61C2+C34+CI634
x22=2160+2169'2178+2189A+2207+2225 2263-CIC34-61C2634
X23 =2190 +2208+2226 Z264=-67+62
X24-2195+2209+2227 2265--011(239+2262+240+2263-243+2264)
x25-2228 2266=0M.(240+2262-239+2263-244+2264)
X26-2241 2267-011(2412262+2422263)

C 2268-DM.L41+2263
X31-2180+2188+2204+2221 2269-61+C2C345+CI6345
x32-219012208+2226 2270-S1+U
X33 =2181 +2192 +2211 +2230 2271-CiC345-61.C2+6345
x34-2196+221212231 2272-EM.(254+2269-149+2270-25522711
x35-612+1232 2273-6M(z55+2269+250+2270+254+22711
x36=0.0 2274-EM.(2562269+258+2271)

C 22754M1257+2269+2592271)
X41=2194 +2205 +2222 2276-Fm(264+2269+2682270-265+2271)
X42-2195+2209+2227 22774M+(265+2269+269+2270+26422711
X43=2196+2212+2231 2278-Fm(2662269+2582271)
X44=2197+2214+2235 2279-FM.(267+2269+259+2271)
X45--612+2236 2280-FM.1_63+2269
X46-0.0 2281-6.(2252+2256+2259+2265+2272+2276)

C 2282-6.(2253+2257+2260+2266+2273+2277)
X51 =2223 2283-G(2261+2267+2274+2278)
x52-2228 2284-6.(2268+2275+2279)
X53--E12+2232 2285=G+2280
X54=-612+2236
X55.-612+2238 C CALCULATE THE TORQUES NEEDED TO CARR), OUT THE SPECIFIED MOTION
x56-0.0

13-(KI3+2283)
x6I-2240 14-(KI4+2284)
X62=224I 15--(KI5+2285)
X63-0.0 76--4(16
X64=0.0
x65-0.0 VI--KII-2281+1328
x66=-F13 V2--K12-2282+1129

DET--1.0/52
EII-xiiupi+X12+UP2+Xi3uP3+xioUP4+x15UP5+x16+UP6+2243

9 10



T1-(V2.53-U1 .C3)/DET
T2=T 14 oV2Z5V1 //DET

C RETURN THE CALCULATED VALUES TO l'HE MAIN PROGRAM
C

RETURN
ENO
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C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

APPENDIX 3. PROGRAM ANGLE

PROGRAM ANGLE

WRITTEN BY: TINGLIN NIE
DATE WRITTEN: OCT. 1986

THIS PROGRAM IS TO FIND THE SOLUTION OF THE KANE'S DY-
NAMICAL EQUATIONS FOR INTELLEDEX 605 ROBOT. WITH THE
GENERALIZED ACTIVE FORCES GIVEN, THIS PROGRAM WILL
SOLVE THE DYNAMICAL EQUATIONS FOR THE GENERALIZED
COORDINATES, THE ROTATION ANGLES Q1,02,03,84,05 AND Q6.

PROGRAM ANGLE
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER 1,1TER,ITIME,IIMAX,J,M,MAXITR,N,NPRINT,TQTYPE
DIMENSION A(12,12),V(12),Q0(6),Q00(6),U0(6),Q0L0(12),Q(12),FN(12)
DIMENSION TQ(12),QOLDEST(12)
COMMON/TYPE/TQTYPE
COMMON/TANOR/TIME,TSPAN
COMMON /STEP /TSTEP

COMMON/STROT/L12,L13,122,L31,L33,L41,L43,L52,L63,LI,L2
COMMON/IPTDI/AM,BM,CM,DM,EM,FM,A11,Al2,A13,811,8)2,813,

CII,Cl2,C13,011,012,013,E11,E12,E13,F11,F12,F13

COMMON/EPS1/XESPI,FEPSI
COMMON/OLD/QOLD,V,BTA,T0,13OLDEST.ITIME
OPEN (7,FILE-'DATA2')
OPEN (8,FILE='TOUTI')
OPEN (9,FILE.0AOUTI')

C

C INPUT THE VALUES OF MASSES, INERTIAS, MASS CENTER COORDINATES
C

READ (7,100)AM.E1M,CM,DM,EM,FM
100 FORMAT (6F7.4)

READ (7,100) AII,AI2,A13,1311,1312,BI3

READ (7,100) CI I ,Cl2 ,C13,011,1312 ,E113

REAL) (7,100) EII,E12,E13,FII,F12,F13
READ (7,110) LI2,L13,L22,L31,L33,141,L43,L52,L63

110 FORMAT (9E7.4)
READ (7,120) LI,L2

120 FORMAT (2F7.4)
READ (7,130) TSPAN
READ (7,130) TSTEP

130 FORMAT (F7.4)
READ (7,135) (00(1).1-1,6)

135 FORMAT (6E12.9)
READ (7,135) (000(1),I-1,6)
READ (7,.) MAXITR,ERRMAX,XEPSI,FEPSI,NPRINT

137 FORMAT (15,3(F10.7,2X),I4)
C

C PRINT TITLE FOR THE OUTPUT

C

WRITE (9,140)
140 FORMAT (////,25X,I8HNUMERICAL SOLUTION/ 20X,

3IH( THE GENERALIZED COORDINATES 1)
WRITE (9,150)

150 FORMAT (///,IX,I9HTHE GIVEN DATA ARE:)
WRITE (9,160)

160 FORMAT (//,3X,23HMASS OF EACH LINK (Kg):)
WRITE (9,170) AM,BM,CM,DM,EM,FM

170 FORMAT (//,8X,SHMA ,F7.4/8X.SHMB ,F7.4/8X,5HMC = ,F7.4/

BX,SHMD ,F7.4/8X,51-1ME - ,F7.4 /8X,SHMF ,F7.4)

WRITE (9,180) AII,Al2,AI3,1311,812,813,C11,C12,C13,
011,1312,1313,EII,E12,E13,F11,F12,F13

180 FORMAT (//,3X,3IHINERTIAS OF EACH LINK (Kg-m"2)://
8X,SHA1 = ,F7.4.8X,5HA2 ,F7.4,BX,5HA3 ,F7.4/

C 8(,5H131 ,F7.4,8X,51182 - ,F7.4.85,5H83 - ,F7.4/
8X,51181 ,F7.4,8X,5HB2 ,F7.4,8X,51103 - ,F7.4/

8X,5HCI ,F7.4,8X,5HC2 ,F7.4,8X,SHC3 ,F7.4/

8X,51101 ,F7.4,8X,SH02 - ,F7.4,8X,5H03 ,F7.4/

8X,SHEI - ,F7.4,8X,SHE2 - ,F7.4,8X,SHE3 - ,17.4/
BX,SHFI ,f7.4,8X,5HF2 ,F7.4,8X,51-1F3 ,F7.4)

WRITE (9,190) L12,L13,L22,L3I,L33,141,L43,L52,L63
190 FORMAT (//,3X,40HTHE COORDINATES OF MASS CENTERS (meter)://

8X,EHLI2 - ,F7.4/8X,6111_13 - ,F7.4/BX,611L22 - ,F7.4/

8X,611L31 ,F7.4/8X,EHL33 ,F7.4/8X,611L41 ,F7.4/
111X,61(L43 - ,F7.4/8X,6HL52 - ,F7.4/8X,CHL63 - ,17.4)

WRITE (9,200) LI,L2
200 FORMAT (8X,GHLI .F7.4/8X,611L2 - ,F7.4)

WRITE (9,210)TSPAN,TSTEP
210 FORMAT (//,3X.IIHOTHER DATA://

BX,I2HTIME SPAN ,F8.4,8)(,

12HTIME STEP ,F8.4)

WRITE (9,213)
213 FORMAT (//,3X,35HTHE GIVEN INITIAL VALUES (RAD) ARE:)

WRITE (9,215) (I,00(I),I,Q00(1),1-1,6)
215 FORMAT (/,6(8X,3H00(,I1,4H) = ,F9.6,8X,4110130(.11,4H) ,F9.6/1)

WRITE (9,220)
220 FORMAT (//,35,40HTHE GENERALIZED COORDINATES 01-Q6 (RAD):)

WRITE (9,230)
230 FORMAT (//,IX,4HTIME,6X,21101,9X,2H02,9X,2H03,9X,2H04,

9X,2H05,9X.2H06//)
WRITE (.,) 'PLEASE DECIDE THE METHOD:
WRITE (,) 'EXPLICIT: 0

WRITE (,) 'IMPLICIT: I

WRITE (.,.) 'CRANK-NELSON: 0---I '

READ (..) BTA
C

C MAIN PROGRAM TO CALL THREE DIFFERENT SUBROUTINES
C

TIME -0.0

ITMAX=DINT(TSPAN/TSTEP+I)
N=I2

C

C CALL GUESS
C



WRITE (,) 'PLEASE ENTER THE INITIAL GUESS FOR A MATRIX:'
WRITE (.) 'AND VECTOR V:
READ AA,B13

CALL GUESS(A,V,AA,BB)
C

C CALL UINTL
C

CALL UINTL(Q0,Q00,U0)
C

00 240 1.1,6
0(1) -00(I)
Q(It61=U0(I)

240 CONTINUE
WRITE (9.260) TIME,(Q(1).1.1,6)
DO 244 I=1,N
QOLDEST(I).00(1)

244 CONTINUE
C

WRITE 'PLEASE INDICATE THE DATA TYPE OF THE TORQUES'
WHITE (,) 'YOU ARE GOING TO USE)'
WHITE (,) 'IF USE FUNCTION,TYPE I'
WRITE (.,) 'IF USE NUMERICAL VALUES, TYPE 2:'
READ TQTYPE

C

DO 280 ITIME.1,ITMAX
IF (TQTYPE .EQ. I) GOTO 245

READ (8,268) TIMET,(70(1),1.1,6)
268 FORMAT (F5.3,1X,6616.8)
245 DO 250 I=1,N

IF (ITIME .EQ I) THEN
DOLD(I)-()(1)
Q(1).0(I)+V(I),TSTEP
ELSE
OOLDEST(I)=QOLD(I)
GOLD(1)-0(1)
Q(I).2.0TSTEP,V(I)+QOLDEST(I)
ETIDIF

250 CONTINUE
C

C CALL SUBROUTINE ()SOLVE TO FIND THE SOLUTION

C

C

CALL QSOLVE (A,Q,FN,MAXITR,ERRMAX,ERRX,ERRF,ITER)

ITER.MIN(ITER,MAXITR)
TIML-FIMEOSTEP

C RETURN

C PRINT THE SOLUTION OR MESSAGE ENO

C C

IF (MOD(ITIME,NPRINT) .EQ. 0) THEN C

WRITE (9,260) TIME,(0(1),1.1,6) C SUBROUTINE ()SOLVE TO SOLVE THE 12 SIMULTANEOUS NONLINEAR

260 FORMAT (F5.3,1X,6(2X,F9.6)) C DIFFERENTIAL EQUATIONS BY USING QUASI-NEWTON ALGORITHM.

ENDIF C

280 CONTINUE SUBROUTINE QSOLVE (A,X,F,MAXITR,ERRMAX,ERRX,ERRF,ITER)

STOP IMPLICIT DOUBLE PRECISION (A-2) H
ENO INTEGER 1,ITER,J,M,MAXITR,N INJ

00

C

C

C THIS SUBROUTINE GUESS THE INITIAL VALUE OF MATRIX A AND VECTOR V
C

SUBROUTINE GUESS (A,V,AA,BB)
IMPLICIT DOUBLE PRECISION (A-2)
INTEGER I,J,N
DIMENSION A(12,12),V(12)

C

C INITIALIZATION
C

N -12

DO 20 I=1,N
DO 10 J=1.N

10 CONTINUE
A(1,1).AA
V(I)=BB

20 CONTINUE
RETURN
END

C

C

C THIS SUBROUTINE COMPUTE THE INITIAL VALUES OF THE GENERALIZED
C SPEEDS U0(1) THROUGH U0(6).
C

SUBROUTINE UINTL (00,000,00)
IMPLICIT DOUBLE PRECISION (A-2)
DIMENSION Q0(6),000(6),U0(6)

C

C
C2.000S(00(2))
52=DSIN(00(2))
C3.000S(00(3))
53..DSIN(Q0(3))

C

C

C

C

1)0(1).000(1)52.C3-000(2).53
U0(2).-1300(1).$253-000(2)C3
U0(3)=000(1)C2+000(3)
U0(4)=000(4)
U0(6).000(5)
U0(6)=00(6)
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CONMON/EPSI/XEPSI,FEPSI 60 CONTINUE

DIMENSION A(12,12),X(12),F(12),OF(12),Q(12,12),R(12,12)
C UPDATE THE A MATRIX

C CALL SUBROUTINE CLCLTN TO FIND THE PREVIOUS VALUES OF FUNCTION
O 00 80 I=1,N

CALL CLCLTN (X,F) DO 80 J=I,N

IS FORMAT (' X/F: ',6E12.4) A(1,J)=A(1,J)-DF(1)(1(.1,M)/R(M,M)
80 CONTINUE

C FIND THE INVERSE JACOBIAN AND THE SOLUTION BY ITERATION M-11+1

ENDIF

M=I 10 CONTINUE

N=12
DO 10 ITER-1,MAXITR RETURN

ERRX=0.0 END

ERRF=0.0
ERROF=0.0

C C THIS SUBROUTINE COMPUTES THE ORTHOGONAL BASIS FOR SPACE SPANNED

DO 20 I=1.1,1 C BY THE INPUT VECTOR AND M-I PREVIOUS VECTORS. THE OR DECOMPOSI-

DX=0.0 C TION IS RETURNED.

DO 30 J=I,N
DX=DX-A(I,J)F(J) SUBROUTINE ORTHO (B,M,Q,R)

30 CONTINUE IMPLICIT DOUBLE PRECISION (A-2)
INTEGER N,M,1,J,K

X(I)=X(I)+OX DIMENSION B(12),Q(12,12),R(12,12)
IF (DABS(X(I)) .GT. XEPSI) THEN
RELERR-DABS(DX/X(I))
IF (RELERR .6T. ERRX) ERRX=RELERR N=12

ENDIF IF (M .LE. N) THEN

20 CONTINUE IF (M .EQ. 11 THEN

C C

DO 40 I=1,N C INITIALIZATION

DF(I)-F(I)
40 CONTINUE DO 10 I=1,N

DO 20 J-1,N
C CALL CLCLTN TO FIND THE NEW VALUE OF THE FUNCTIONS Q(I,J)=0.0

20 CONTINUE

CALL CLCLTN (X,F) Q(I,I)=1.0
00 50 I=I,N 10 CONTINUE
OF(1)-F(1)-DF(1) ENDIF
IF (DABS(OF(1)).GT.ERROF) ERROF=DABS(OF(1))
IF IDABS(F(I)).GT.ERRF) ERRF=DABS(F(I)) C TRANSFORM B VECTOR

50 CONTINUE
C DO 30 I=I,N
C COMPUTE THE ORHTOGONAL VECTORS Z AND R SUM=0.0

C DO 40 J=I,N
IF (LRRF .LT. ERRMAX) RETURN SUM=SUM0(.1,1)61(J)
CALL ORTHO (DF,M,Q,R) 40 CONTINUE

C R(I,M)=SUM
C 30 CONTINUE

IF (DABS(R(M,M)) ERRDFFEPS1) THEN IF (M .LT. N) THEN
DO 60 1.1,N
OF(1)=0.0 C HOUSEHOLDER TRANSFORMATION
DO 70 J=I,N
DF(I)=DF(I)+A(I,J).F(J) R0=0.0

70 CONTINUE DO 50 I=M,N NJ

MD
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RO-ROFFMI,Mr.R(1,M> DO 160 I-I,N
50 CONTINUE ROvOrI,K1BK+O(I,K1-118KP

RO-OSURT(170) Q(1.K)=0(1,K)-ROBK/C
IF (R(M,M).LT.0.0) RO--R0 WI,KrI)=C(I,K+1)-R081(P/C
D(M)-11(M,M)+RO 160 CONTINUE
C=OSOR1(1100(M)1 ENDIF
IF (C.GT.0.0) THEN 140 CONTINUE
RrN.Mr--RO ENDIF
0(11)=8(MT/C RETURN
DO 60 I-11+1,N END
B(I)=R(I,M)/C
13( I ,M /-0.0

60 CONTINUE C THIS SUBROUTINE IS TO CALCULATE THE VALUES OF THE 12
C C FUNCTIONS.
C ACCUMULATE ORHTOGONAL TRANSFORMATIONS
C SUBROUTINE CLCLTN (11,FN)

DO 70 I-1,N IMPLICIT DOUBLE PRECISION (A-2/
SUM-0.0 INTEGER I,N,T6ITYPE,ITIME
DO 80 K=M,N DIMENSION 0(121,F14(12),OOLD(12),V(12),QM(12),TO(12),KI(6),KA(6)
SUM-SUM+O(I,K).B(K) DIMENSION QOLOEST(12)

80 CONTINUE COMMON/TANDR/TIME,TSPAN
DO 90 J-M,N COMMON/TYPE/TQTYPE
011,J1=CHIM-SUM8(J) COMMON/STEP/TSTEP

90 CONTINUE COMMON/STRDT/L12,L13,L22,L3I,L33,L41,L43,L52,163,11,62
70 CONTINUE COMMON/IPTDT/AM,BM,CM,DM,EM,FM,AII,AI2,AI3,811,812,013,

ENDIF
ENOIF COMMON/OLD/OOLD,V,8TA,TO,OOLDEST,ITIME
ELSE
M=N C ASSIGN 0(I) TO 01,02,-,Q6 AND UI,U2,...,U6
00 100 1=1 ,N
DO 110 J-2,N N -12

R(I,J-1)-11(1,J1 DO 15 I-I ,N
110 CONTINUE OM(I)=(1-EITA)0OLDrI/f0(I)BTA
100 CONTINUE 15 CONTINUE

DO 120 I-I,N 81-0(1)
SUM-0.0 02-0M(2)
DO 130 J-I,N 03-0M(31
SUM-SUM*O(J,1)B(1) 04-QM(4)

130 CONTINUE Q5 -QM(S)
R(I,N)=SUM 06..0M(6)

120 CONTINUE UI -QM(7)
00 140 K-I,N-1 U2-0(8)
RO-DSORT(R(K,K)R(K,K)+R(K+1,K).R(K+I,K)) U3 -QM(9)
IF (R(K,K).LT.0.0) RO--R0 U4-0111101
BK-R(K,K)00 US-QM(11)
8KP=FMK+1,K) U6=0M(12)
C-140.8K

IF (C.NE.0.0) THEN C DEFINE SYMBOLS
RiK,K)--R0
R(K+I,K)-0.0 G-9.8I
DO 150 J-KrI.N CI-OCOS(011
RO-E1VRrK,J1+0EP.R(K+1,J) C2 =DCOS(Q2)
R(K,J)=FI(K,J)-R08K/C C3 =OCOSIQ3)
F1(101,J)=R11.1+1.,1)-R0.13EP/C C4- DCOS(Q4) FJ

150 CONTINUE CS-OCOSTOST L.)

0
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(36-000S(CI6)
121.115C6

SI-OSIN(01)
222-Z14+56

S2-0SIN(02)
Z23=ZIS.S6

S3- OSIN(Q3)
724-Z2O+Ul+Z21.U2+218.S6

54-0SIN(Q4)
225--Z22UI-Z23,W2+218C6

65-051N(05)
Z26-Z16+Ul+ZIU2+U6

S6-05IN(Q6)
Z27=L13+Z4

C34-DCOS(Q3+041
Z28+.13ZS

C45-000S(04tp5)
228+q27Ul+Z28 +U2

C345-000S(C13+04+05)
Z30=L22.Z0

534.0SIN(03.04)
131-L22Z9

545-DSIN(04+QS)
132--L22.C3

S345,0SIN(Q3*Q4+06)
Z33=1.2253

C
230q301.11+131*U2

C COMPUTE NEW VECTOR V(12)
Z35-Z32.0.M+Z33oU2

C
Z36-1.33U2

DO 25 I-1,N
237-'1,31.U3-L33UT

IF (irimE .E0. 1) THEN
Z38.-L31U2

V(1)-(C(II-OOLD(I))/TSTEP
Z39(L33+L43)S4

ELSE
Z40=(L33+1_43)C4

V(I)-(3. Q(1)-4.pOLD(I)+OOLDEST(1))/(2.TSTEP)
241-LIS4

ENOIF
Z42.1_1C4+I.41

25 CONTINUE
Z43.141S4

C
244.1..14L41C4

C COMPUTE THE VALUES OF FUNCTIONS FN(1), FN(2),...,FN(8).
Z45..-Z39+111+Z40U2+141.U3

C 246ft-Z40+UI-139U2+Z42U3+14I.U4

FN(1)V(1)-(LII.C3-U2S3)/S2
247.Z43J1-Z44*U2

FN(2)-v(2)+UI.S3+U2C3
248..LI.C4+L2

FN(3)-V(3)-U3-(U2*S3-U1,,C3)+C2/S2
Z491..2*S4

FN(4)-V(4)-U4
Z50.1_1+L2.C4

FN(5)-VI S)-U5
ZSIL33+1_43-LS2

FN(6)-V(6)-U6
Z62,-Z39*C5.1140SS

C
Z53=140.C5-139S5

C CALCULATE INTERMEDIATE VARIABLE Z'S
Z54,-Z15,Z51-Z52

C
Z55.253-ZIZS1

ZI-(UlC3-U2+53)/S2
256-241C5+248S5

Z2- Ul+S3 U2,C3
Z67-L295

Z3-U3+(U2*S3-UlC3)*C2/S2
158.148.C5-Z41+SS

14-C3/S2
259=L2CS

ZS--S3/S2
Z60.Z54Ul+ZSS,U2+256.U3+ZS7U4

Z6=U1.C3-U2eS3
Z61--Z4SUl+ZS0 +U2

27--Z2
262-=-2S5oU1+154.U2+Z58U3+269..U4

Z8=Z4.CZ
263-L33+L43

29-Z5C2
Z64.71S+Z63-Z52

Z10-18001+Z9U2
Z65-Z53-Z14763

211-usc4m2.54 Z66-Z56-L63

Z12=-UlS4+U2C4 Z67- Z57 -L63

ZI3-U3+114
Z68--Z49-L63Z14

ZI4-C4S
Z69-Z50-L63+115

215-S4S
270-Z641J1+165U2t266U3+167+U4-L63+US

216-215 271-2680.11+Z69U2

217.(11,214+U2Z15
Z72--Z65 +Ul+Z6U2t2S8U3+Z59U4

ZI8--Z13-U5
273--(S2+53023+C2+C3Z2)/522

Z19-U1Z16+1)2114
274-(C2+53Z2-52C323)/522

220-114.C6
Z75-Z73Ul+Z74102

1.4

1+

9
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Z76=Z73.C2-Z2Z52 2133-119.Z70-117172

Z77Z74C2-Z2*15S2 Z134=Z17.Z7I-Z18.270

Z78.-(111.S3W2C3)Z3 Z135-Z128U1+Z129.U2-Q117.0-q118U01132

279.(U1..C3-1.1253)Z3 Z136=Z1301+2131U2+2133
Z80.06.U1+Z77.U2 Z137--Z129 1.11+Z128.U2+Zt2lU3+Z122W4+Z134

I81 .(C4U2-SUI).U4 1152--Al2.Z4

Z02- (C.I.UI,SOU2).U4 2153--AMZ27

Z83=-S45(U4+U5) 1154-ZI5224+Z15327
ZB4=C45*(U4fUS) 2155=ZI52.254.Z153Z28

zes-m.ulfzeouz 1156-Z152Z7S+Z153.194

286.-Z84U14.Z032 2157--Al2IS

Z87-283.C6-Z1056.1.16 1158--0128
Z88 .Z84C6-ZI5S6.U6 Z159.Z157.Z4i4158Z27

Z89-Z8356+ZIC6.16 Z160=Z157.Z512158128

19e,a14.56+ZISC6U6 Z161-I157.175+ZI58294

z91-z87ulfze8.u2+zte.c6.u6 Z162--(813-1312)Z7710

Z92-289U1+190.12+1I8.S6U6 2163-(811-813).Z6ZIO

293--184Ul+Z83112 Z164 (812-811).Z617

Z94.1_13(Z731111174.W2) 1165--(1311C3241112 S3 2+1313Z82411M2302+B12322>
Z95--II.Z29 Z166--(-811353+1312C3*S3+1313ZEW948MZ30Z31+8MI32+133)
Z96-L22*276 2167--(Z162.C3+1163 S3+Z16 18+811C3Z780312.53Z79+81318180

Z97-L22.177 IIIMZ302100+BM.Z32Z102)

Z98-L22S3q3 ZIES--(-8153.C3+812C353+813.Z8.29+BMZ30.Z31+8M.Z32Z33)
2994_22C323 Z169--(B11532+812 C3 24131328240M231248M332)
Z100=Z96U1+Z97.12+Z7Z35 Z170=-(-811.53.278-Z162.531.812.C3.779+Z163.C3+813.Z90280+Z164.Z9

Z101-Z10134-Z6.Z35 03MZ31Z100+BMZ33Z1021
Z102-Z9B1114.Z99U2-Z7Z34 2171-(C13-C12)1.12*U3

Z103-Z3B.U2-237U3 Z172..(CII-C13).11.U3

Z104-136.U3-I38U1 1173-(C12-CIl)UlU2
ZI05-Z37Ul-Z36U2 Z174--CII-CM.L332
1I06--(L33tL43)CU4 1175-CM.L33L31

Z107--(L33+1_43)..SU4 Z176=-2171+CM.L33I104
Zie8.LIC4+U4 Z178--C12-CM1_312-CML332
1105--LI.S4.114 2179=-Z172-CML331034-CM.L31Z105
1110-L4I.CU4 Z180-CM.L31L33

Z181--C13-CtL312
Z112-Z106.U14.Z107..U2rI100W34-(112,,Z47-Z13.Z46) ZI82--Z173-CML31.Z104
1113--Z107*UrQ106..U242109*U3#(113+Z45-211.Z47) 2183=(D13-012)Z12Z13
Z114=Z1101-2111U2f(211Z46-Z12145) ZIE14-(011-013)ZIlZ13
IIIS.284151-(L33+1.43).(U4+US)C4S 2185..(012-1:111).211ZI2

/116--Z83514-(1107-Z39U5).C5-(-Z106+240U5)S5 Z186--(011.00.21D12.5021.0M*(Z39*21-Z40,..2+Z43..2))

Z117=LI.C45*(U4+US)1_2.C6*U5 1187-(012-D11)C454+0t0.143..Z44

2118-L2.C5U5 Z188-DM392414-DMZ40.Z42
ZII9-L2.CU4 ZIOS--C4.1011Z81+1183>+54(012Z824Z184)4DM(Z39Z1121.Z40.Z113
1120-1.2.54U4 -143.1114)

2121--LI.S4 CSll4-24855US-Z108S5-241C5U5 ZIE9A--011.S2-012.C42-0M(Z402+13924-244.2)
2122--L2.55U5 Z190--DM(Z40.Z4I-Z39Z42)
Z125-ZIISUi+ZI16U2+ZI17U34-Z112.U4#118262-119.,26i 2191=-54.(D10.18141183)-C4.(012.292+Z184)+DM.(-I40eZ112+Z39.Q113
2126.-ZI19.111+Z120.U2+ZISZ60-117Z62 +144.2114)

1127.-2116.U1+ZIIS*U2+Z1210U311122.U444170Z61-Z18.Z60 2192--D13-0M(141.241422)
Z128-Z134.263-(133+1_43)(U4+U5)C45 2193--Z185-0M(Z41.I112+Z427113)
Z129=-283.Z63+(Z107-239.U5)C5-(-Z106+Z40US).S5 2194..0MZ40L41
2130,-Z119-L63.183 2195-DM239L41
2131-Z120-L63294 Z196.-1313-0M.L41Z42
2132-Z18.q72-119Z71 ZIU7--013-0M.L41.2

1'4



2198--2185-DML41+2113 2248=2242
2199=(EI3-E12)218+219
2200-(LII-EI31217.219 C CALCULATE THE GENERALIZED INERTIA FORCES
2201=(EI2-EII/+217218
1202--E11,214+.2-EI3+2162-EM.(252+249+*2+255**2) XII=2154+2165+2174+2186+2202+2219
2203--LII.214215-EI3210216-EM(254.255-249250-254255) X12-2I55+2166+2187+2203+2220
2204--EM(264256-255+258) X13=2175+2188+2204+2221
2205=-EM.(250257-255+259) X14=2194+2205+2222
2206--214.(EI1285+2199)-216.(E13286+2201)-EM.(254+2125-249+2126 X15=2223

-2552127) XI6 =2240
22e7--EII215+2-EI3.2142-EM(2552+2502+254++2/
2208--EM(255256+254258) X2I=2159+2168+2187+2203+2220
2209--EM.(255+257+250259) X22-2160+2169+2178+2189A+2207+2225
2.710-215+(EI1285+2199)-2140(E13+286+2201)-EM.(255+2125+250+2126 X23=2190+2208+2226

+254+2127) X24=2195+2209+2227
221I--E12-EM(2562+2582) X25=2228
2212--EI2-EM.(256+257+258+2591 X26=2241
2213=2200-EM.(256+2125+2582127)
2214=-EI2-EM(257+2+2592) X31=2180+2188+2204+2221
2215=2200-EM(2572125+259+2127/ X32=2190+2208+2226
2216-1F13-FI2).225,226 X33=218I+2192+2211+2230
2217-(F-11-F13)+224+226 X34=2196+2212+2231
2218-(FI2-FII)+220225 X35--E12+2232
2219--(FI1+2202+F12+222++2+F13216++2+FM(2642+2682 X36=0.0

+265..2/)
2220--(F11220+221+FI2+222+223+FI3214+216+FM=268+269) X41 =2194+2205+2222
2221=FII.220+S6 -F12+222C6-FM(264.266-265+258) X42-2195+2209+2227
2222-F1122056-F12+222.C6-FM*(264+267-2650259) X43-2196+2212+2231
2223-FII+22056-FI2+222C6fFM+260L63 X44=2197+2214+2235
2224=-220.(FII291+2216) 4222(-FI2292+2217/-216.(FI3293+2218) X45=-E12+2236

-FM*(264+2135+268+2136-265+2137) X46=0.0
2225=-(FIls221++2+F12223++2+FI3+2142+FM*(265++2+269++2+264++2))
2226-FII+22166-FI2+223+C6-FM.(265266+260258) X51=2223
2227-FII22156-FI2223+C6-FM.(265267+259+264) X52-2228
22284-1122156-F12223C6+FML63265 X53=-EI2+2232
2223=-221*(FI1,291+2216)+223+(2217-F12+292)-210(FI3293+2218) X54--EI2+2236

-FM*1265+2135+269.2136+264+21371 X55=-E12+2238
7230--(F10,56 +2+FI2*C62+FMI266+02+258++211 X56=0.0
2231--(FII=56++2+FI2C62+FM(266267+2582591)
2232=-(FII+662+FI2*C6 =.2-FML63+2661 X61=2240
2234-56.(FII291+2216)+C6*(2217-F12.292)-FM.(266,2135+258+2137) X62=2241
2235--(FI1056* 2+FI2oC6+2+FM(26721-259++21) X63-0.0
2236--(F11.562+FIZC62-FM+L63+2671 X64-0.0
2237-56+(FII291+2216)-C6(F12+292-22I7)-FM.(267+2135+259+2137) X65=0.0
2238=-FI10562-FI2CGo+2-FM.L63+62 X66=-FI3
2239-50.(FII+291+2216)+C6+(2217-F12+292)+FM+L632135
2240F13.216 C CALCULATE THE GENERALIZED INERTIA FORCES
2241=-F13214
2242F0293-Z218 XI(1)=X11V(7)+X120V(8)+X13 V(9)+XIU(10)+X15V(11)+X16U(12)

C +2243
2243-2156+2I67+2176+2189+2206+2224 XI(2)=X21+U(7)+X22*V(8)+X23V(9)+X24V(10)+X25,U(11)+X26WI2/
2244-2161+21702179+2191+22102229 +2244
2245=2182+2193+2213+2234 11.1(3)=X3IV(7)+X32 V(8)+X339)+X34+V(10)+X351.(11)+X36+V(12,
2246=2198+2215+2237 +2245
2247-2200+2239 X1(4)=X4IU(7)+X42V(8)+X43 (9)+X44+V(10)+X45V(11) +X46V(12)



+2246

1:1(6)=551V(7)+552.V(0)+553.V(9)+554.V(10)+555(1I)+)(56V(12) DO 33 1=1,6

+2247 FN(I+6)-KI(I)+KA(I)

KI(6)-X61V(7)+X62(6)0(63 V( 9))(64(10))-X65(11)+)(66(12) 33 CONTINUE

+2248
C C RETURN THE CALCULATED VALUES TO THE SUBROUTINE QSOLVE.

C CALCULATE THE GENERALIZED ACTIVE FORCES
C RETURN

IF (TQTYPE .EQ. 2) GOTO 35 ENO

CALL TORQUE (NAN)
C C

35 2251-AMS1 C THIS SUBROUTINE COMPUTE THE VALUES OF TORQUE FUNCTIONS.

Z252-2251Z27
2253-Z251U8 SUBROUTINE TORQUE (TQ,Q,V)

2254=8M.SIC2 IMPLICIT DOUBLE PRECISION 01-71

Z255--BMSloS2 INTEGER I

2256-Z302254+2322255 DIMENSION TO(12),Q(12),V(12)

2257=2311254)Z332255
2258=CIC3SIC2S3
2259--CM.L33.Z258 DO 45 1-1,12

Z260=CM.(L33(SIC2C3+C153)+L31S1S2) TQ(I)-0.0

2261-CML31.Z250 45 CONTINUE

2262=51C2.C34+CI534
2263ClC34-51C2.534
1264--61.62 RETURN

2265--OM.(Z392262+240Z263Z43Z264) END

2266-011(240.Z262-2392263-244.1264)
Z267-011*(241.2262+242.2263)
2260-0ML41.2263
2269=SIC2C345+C1.6345
Z270-S1.52
2271=CI.C345SI.C2.5345
2272=EM(Z52269-249.2270+255.2271)
2273-EM.(2552269+2502270+254.2271)
2274-EM(1562269+250..2271)
Z275-EM(Z57.2269+259.2271)
2276=FM(2642269+2682270Z6522711
2277-F11(Z65Z269+269.1270+26Z271)
Z278-FM.(2662269+25B2271)
1279-FM(Z672269+259.227)
22110--FML632269
2201-6.(2252+1256+2259+2265-+2272412761
2202-6(2253+2257+2260+2266+2273+1277)
2283-6.(2261+22671227411278)
2204-6(22604Z275+22791
2285-6.2280

C

EA(i)=TC)(1).Z4-70(2)S3-1.0(3)28+22111
KA(2)-10(1).25-10(2).C3TO(3)29+2282
KA(3)=10(3)+2283
KA(4)=TQ(4)42284
KA(5)-TQ(5)42285
MA16)-10(6)

C

C COMPUTE THE VALUES OF THE FUNCTIONS FN(7), FN(B),....FN(12)
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C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

APPENDIX 4. PROGRAM AUTOTF

PROGRAM AUTOIF

WRITTEN BY: TINGLIN NIE
DATE WRITTEN: MAY 1987

THIS PROGRAM IS TO CALCULATE THE TORQUES /OR FORCES
APPLIED TO THE LINKS OF THE ROBOT UNDER CONSIDERATION
TO CARRY OUT A SPECIFIED MOTION. IN OTHER WORDS, THE
MOTION SPECIFIED BY FUNCTIONS OR NUMERICAL DATA IS
INPUT, THE TORQUES /OR FORCES ARE OUTPUTS.

PROGRAM AUTOTF
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER I,J,J1,J2,J3,K,L,M,N,NN,DELTA
PARAMETER(NN=6)
DIMENSION UELTA(NN,2)
DIMENSION Q(NN),U(NNI,UDINN),TC(NN)
DIMENSION IN(NN,3),MS(NN),UL(NN,3),LL(NN,3)
COMMON/BLKI/Q,U,U0
COMMON/BLK2/LL,OL,MS,IN,TO
COMMON/BLK3/TIME,TSPAN
COMMON/BLV4/N,L,DELTA
OPEN (7,FILE='ATOATA')
OPEN (8,FILE='ATOUT')

C

C SPECIFY THE JOINT STATUS AND THE DIRECTION OF GRAVITY FORCES
C

WRITE(,) ' PLEASE ENTER THE NUMBER OF LINKS: '

READ(.) N
WRITE(,) ' PLEASE INDICATE THE JOINT STATUS (IF THE JOINT IS'
WRIIE(.,.) ' REVOLUTE, TYPE "1,0"1 IF THE JOINT IS PRISMATIC,'
WRITE(,.) ' TYPE "0,1".'
DO 100 K=1,N
WRITE(*,110) ' JOINT ',K,' 7'

READ(.,.) DELTAIK,1),DELTAIK,2)
100 CONTINUE
110 FORMAT (A,II,A)

WRITE(,.) ' PLEASE INDICATE THE DIRECTION OF THE GRAVITATIONAL'
WRITE(,) ' FORCES (i.e. I,2,3).'
HEAD(., *) L

C

C INPUT THE MASS PROPERTY DATA AND STRUCTURAL DATA
C

READ(7,120) (MS(K),K=1,N)
120 FORMAT(6F7.4)

00 130 K=I,N
READ(7,140) (IN(K,J),J=1,3)

lid CONTINUE
140 FORMAT(3F7.4)

DO ISO K=1,N
READ(7,140) (DL(K,J),J-I,3)

150 CONTINUE
DO 160 K=I,N
READ(7,140) (LL(K,J),J=1,3)

160 CONTINUE
REA0(7,170) TSPAN
READ(7,(70) TSTEP

170 FORMAT(F9.5)
C

C PRINT TITLE FOR THE OUTPUT
C

WRITE (8,180)
180 FORMAT (////,30X,15HTABLE OF OUTPUT/5X,

, 61H(TORQUES /OR FORCES NEEDED TO CARRY OUT THE SPECIFIED MOTION))
WRITE (8,190)

190 FORMAT (///,1X,I9HTHE GIVEN DATA ARE:)
WRITE (8,200)

200 FORMAT (//,3X,23HMASS OF EACH LINK (Kg):/)
DO 210 K-I,N
WRITE(8,220) K,MS(K)

210 CONTINUE
220 FORMAT(8X,511MASS( I1,4H) ,F7.4)

WRITE (8,230)

230 FORMAT(//,3X,3IHINERTIAS OF EACH LINK (Kg-m"2):/)
JI =I

J2=2
J3=3
DO 235 K=I,N
WRITE(8,240) K,JI,IN(K,1),K,J2,IN(K,2),K,J3,IN(K,3)

235 CONTINUE

240 FORMAT(3X,3(5X,4HINR( ,I1,IHI1,4H) = ,F7.4))
WRITE(8,250)

250 FORMAT (//,3X,40HTHE COORDINATES OF MASS CENTERS (meter):/)
DO 255 K=1,N
WRITE(8,265) K,JISIL(K,1),K,J2,0L(K,2),K,J3,0L(K,3)

255 CONTINUE
WRITE(8,) '

DO 260 1(.1,N

WRITE(8,268) K,JI,LL(K,I),K,J2,LL(K,2),K,J3,LL(K,3)
260 CONTINUE

265 FORMAT(2X,3(6X,3HDL( ,11,1H11,4H) = ,F7.4))
268 FORMAT(2X,3(6X,3HLE(,I1,1H11,4H) = ,F7.4))

WRITE (8,270)TSPAN,TSTEP
270 FORMAT (//,3X,I1HOTHER DATA://

UX,121.11ME SPAN - ,F9.5,8X,
12HTIME STEP - ,F9.5)

WRITE (8,280)

280 FORMAT (//,3X,38HTHE TORQUES APPLIED TO EACH LINK (NM):)
WRITE (8,290)

290 FORMAT (//,4HTIME,9X,2HT1,9X,2HT2,9X,2HT3,9X,2HT4,

91,2HT5,9X,2HT6//)
C

C MAIN PROGRAM



TIME-0.0 ENO
M-IDINT(TSPAN/TSTEP)
M-M4:2 C THIS SUB ROUTINE IS TO AUTOMATICALLY GENERATE
DO 300 I-I C THE GENERALIZED ACTIVE FORCES, THE GENERALIZED

C C INERTIA FORCES, AND FINALLY CALCULATE THE TORQUES
C 10 CALL SUBROUTINE GCRD C /OR FORCES.
C C

CALL GCRO SUBROUTINE AUTOSUB
IMPLICIT DOUBLE PRECISION (A-Z)

C TO CALL SUBROUTINE AUTOSUB INTEGER I,J,K,L,M,NN,N,R,DELTA
PARAMETER(NW.6)

CALL AUTOSUB DIMENSION A(NN,3,3),AD(NN,3,3)
WRITE (8,295) TIME,(TQ(K),K-1,N) DIMENSION W(NN,3),V(NN,31,S(N11+1,3),PW(NN,3,NN),

255 FORMAT (F5.3,IM,6F11.5) PU(NN,3,NN),PS(NN +I,3,NN)
TIME-TIME+TSTEP DIMENSION PWO( NN,3,(0),PVINNN,3,NN),PSINN101,3,NN)

300 CONTINUE DIMENSION DELTA(NN,2)
STOP DIMENSION MI(NN,3,NN),MID(NN,3,NN),B(NN,3),D(NN,3),E(NN,3),H(NN,3)
END DIMENSION Z(NN),Y(NN,3),P(NN,3,NN),PD(NN,3,NN)

C DIMENSION IN(NN,3),MS411N),DIANN,3),LL(NN,3)
C THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED COOK- DIMENSION F(NN,NN),KSTAR(NN),KP2(NN),TC(NN)
C DINATES, GENERALIZED SPEEDS AND THEIR DERIVATIVES. DIMENSION C(NN),LIINN),U0(NN)
C COMMON/BLEI/Q,U,UD

SUBROUTINE GCRD COMMON/OLK2/LL,OL,MS,IN,TO
IMPLICIT DOUBLE PRECISION (A-Z) COMMON/8LK4/N,L,DELTA
INTEGER NN
PARAMETER(NN-G) C DEFINE TRANSFORMATION MATRICES AND THEIR DERIVATIVES
COMMON/BLK1/0,0,U0
COMMON/BLK3/TIME,TSPAN G-9.81
COMMON/8LK4/N,L,DELTA 00)10 K-I,N
DIMENSION Q(NN),U(NN),UD(NN) DO 110 1-1,3

C DO 110 J-1,3
T -TIME A(K,I,J)-0.0
TF-TSPAN AD(K,I,J)=0.0
PI.DACOS(-1.0D0) 110 CONTINUE
QQ-T-TF*DSIN(2P1T/TF)/(2P1) A(1.10)-DCOS(0(1))
(1(1)-QQ.P1/(3.+TF) A(1,1,3)-DSIN(0(1))
(1(2)=P1/2.-QQP1/(6.*TF) A(1,2,1)=DSIN(Q(1))
(1(3)-(1(1) A(1,2,3)=-DCOS(Q(1))
0(4)-0(1) A(1,3,2)..1.0
Q(5) -0(t) A(2,1,1 ),..11COS(1)(2))
Q(6)-(1(1) A(2,1,3)=-DSIN(Q(2))
U(1)--P1(1.-DCOS(2.PIT/TF))/(TF3.) A(2,2,1).DSIN(11(2))
U(2)--P1(1.-000S(2.+PleT/TF))/(6.*TF) A(2,2,3).DCOS(0(2))
0(3)-U(1) A(2,9,2)--1.0
U(4)-U(I) A(9,1,1)-000S(Q(3))
U(5)=,U(I) A(3,1,2)--DSIN(Q(3))
U(6) -U(I) A(3,2,1).OSIN(Q(31)
U0(1)-2.+PI++2/(3.=TF2)DSIN(2.*PIT/TF) A(3,2,2)-000S(0(3))
UD(2)--P1+2/(3.TF 02)DSIN(2.P1=T/TF) A(3,9,3).1.0
UD(3)-UD(I) A(4,1,1)-DCOS(Q(41)
(1014)=U0(1) A(4,1,2)--DSIN(0(4))
U0(5)=UD(1) A(4,2.1)-OSIN(Q(4))
UO(G)-U0(1) A(4,2,2).DCOS(Q(4))

C A(4,3,8).1.0
RETURN A(5,10)-DCOS(Q(5))
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A( 5,1,3)- -051/1( (1(5 ) PS(1( ,J ,R)-0.0
A( 5,2,1 )-DSIN(Q( 5 )) PSD(K ,J,R )-0.0
A(5,2,3 )-000S(Q( 5 )) P(1( ,J ,R )-0.0A(5,3,21-1.0 ,J,R)-0.0
A(5,1.1 )=000S(Q( 6 )) MI(K,J,R)-0.0
A(6 ,1 .2 )--DSIN(Q(6 )) MID(K ,J,R )-0.0
A(6,2,I )-DSIN(C)(6)) F1K ,121-0.0
A(6.2,2 )-DCOS( C1( ) ) 115 CONTINUEA(6.3,3)=1.0

C
C PARTIAL ANGULAR VELOCITIES

C
C

A131 1,1,1 )--DSIN(Q( 1 )).11( 1 ) IF (DELTA( 1 , I ).EQ.1 ) THEN
AD) I ,1,3 I-DCOS(Q( I 1101 I ) 00 120.1.1.3
An( 1,2,1 )-DCOS( 0111 101 1 PW( I ,J ,1 )-A( I ,3 ,J )
AD) I ,2 ,3).1351N(Q( 1 )1.0( I ) FWD( I ,J , I ) '-AO( 1,3 ,J )
A0(2,1,1 )--OSIN(Q( 2 )1*(1(2) 120 CONTINUE
AD( , ,3 )--DCOS( 0( 2 ) ).U( 2 ) ENDIF
AU( 2,2 , I )-DCOS( 0(2 )).1J(2 ) DO 150 K-2 ,N
AD( 2,2,3 )--OSIN(Q( 2 ) ).U( 2 ) DO 150.1-1,3
A0(3,1,1 )--U( 3 )DSIN(Q( 3 ) ) DO 130 F11 ,K-1
AD( 3,1.2 )--U( 3 )13COS(al 3 ) DO 130 1.1,3
AD( 3 , 2 , 1 )-DCOS(Q( 3 ) )*1.1( 3 PW(K ,J ,R)=PW(K ,J ,R )+PW(K-1,I ,R )AlK ,J I
AD( 3,2,2 )--DSIN(Q( 3 ) )0U( 3) PW0(K,J,R)- PWD(K,J,R)+ PWD( K- I, I, R1 A(K,I,J) +PW(K- I,I,R1AD(K.1.J)A0(41,1,1 )--U( 4 )OSIN(Q(.1 ) ) 130 CONTINUE
AD( 4,1,2 )--11( )),DCOS(1)( ) I IF (DELTA( K , I ).E(;) . I I THEN
AD( 4,2,1 )-DCOS( C1( 4 ) ),(U( 4 ) PW(K,J,K)- A(K,3,J)
AD( 4 , 2 , 2 0( 4 ) I.U( 4 1 PWO(K ,J ,K )-AD(K ,3,J
AD( 5 , I ,1 )--DSIN(Q( 5 ))U(S) ELSE
AD( 5,1,3 )--DCOS(Q( 5 ) )*U(5 ) PW(K ,J ,K I-0.0
AD( 5,2,1 )-000S(Q( 5 ))015 I PWD(K ) -0.0
AD( 5,2,3 )-- OSIN(Q( 5 ) )U( 51 ENDIF
AD( 6,1,1 )--0511)1(13(6 )).U( 6 ) 150 CONTINUE
AD( 6,1,2 )=-000S()( 61 ).U(6)
AD( 5.2,1 )-13COS( 0( 6 ) )11( ) C ANGULAR VELOCITIES
AD( 6,2,2 )--OSIN(Q( 6 ))0U(5 )

C 00 160 10.1,N
C INITIALIZATIONS DO 160.11,3
C DO 160 13..1,1(

DO 115 K-1 ,N 6.1(1( ,J )-IJ(K ,J HPW(K ,J ,R ).U(R
Z(1,1-0.0 160 CONTINUE
KSTARCK
KP2(1: )-0.0 C PARTIAL VELOCITIES
DU 115 J-I ,3
Id(K ,J >=0.0 IF (DELTA( I , I ).EQ.1 ) THENV(K.J)-0.0 P1/1 I , I , I 1.141(1,2,1 )OL( 1,3 )-PW( 1,3,1 )DL( 1,2 )
5( K ,J 1 -0.0 PVI I ,2,1 1,3 , I )DU )-PW( 1,1,1 IDIA 1,3 )DOI ,J )=0 .0 P0( I ,3,1 )-PW( 1,1,1 ).11)L( I ,2 )-PW( 1,2,1 ).13L( 1.1 )
01K ,J 1-0.0 P5(2,1,1 I-PW( 1,2,1 )LL( 1,3 )-PW( 1.3.1 )LL( 1,2 )
El1< PS( 2,2,1 )=PW( 1,3,1 )0..L( ,11-PW( ,I .1 )LL( 1,3 )Y(1: ,.11-0.0 PS(2 ,3 ,11-PIJI ,I ,1 ) *Lt.( 1,2 )-PWI 1,2,1 I'LL( 1,1 )
U0 115 ,N ELSE
PlJ(K ,J,F11-0.0 P0( 1,3,1)-1.0
PLANK .J ,R 1-0.0 PS(2,3,11-1.0
PV(K ,J ENDIF
FMK ,J ,R)-0.0 DO 180 K-2 ,N



IF (OEL TACK .1 ).ETA) THEN ENDIF00 165 R-I,K-1 180 CONTINUE
DO 163 3-1,3
DO 163 1.1,3

C VELOCITIESMI(K ,J,R)-MI(K,J,R)+PS(K,I,R)A(K,I,J)
MID( K ,J ,R )-MID(K ,J ,R)+PSD(K ,R TA(K ,J )+PS(K ,R TAD(K ,J ) DO 200 K-1 ,N

163 CONTINUE DO 200 J -1,3
PV(K 1 ,R )-111(K ,R)+(DL(K ,3 )+Q(K ))PW(K ,2 ,R T-DL(K ,2 /*PUCK ,3 ,R I DO 200 R-I ,K
PV(K ,2 ,R )411(K ,2 ,R /*DLO( ,1 TPLI(E ,3 ,R )-(0L(K ,3 )+()(K ))*PW(1( 1 ,R ) V(K ,J1-V(K ,J 1+PV(K ,J ,R )11(11 )

,3,R)-MI(K ,3,R)+DL(K ,2 )PW(K ,R)-0L(1( ,1 )PW(K ,R ) 5(K ,31-50( ,J1+PS(K ,J,R)/U(R)
PS(K+1,1,R)-MICK,I,R)+(LL(K,3)+0(K))PW(H,Z,R)-OL(K,2).PW(K,3,R) 200 CONTINUE
PS(K +1,2 ,R )-MICK ,2 ,R )+LL(K , I ),(PW( K ,3 ,R )-(LL(K ,3 )SO(K ) )4,14(K ,R )
PS(K+1,3,R)-MI(K ,2 ,R )+LLIK .2)PW(1(,1,R)-LL(K,1)PW(K ,2,R) C CALCULATE INTERMEDIATE VARIABLES
POO( , I ,R)-MID11( ,R )+IDTAK ,3)+Q(1( ))Pt4DIK ,2 ,R)+U(K )PW(K .2 ,R )

-DLO< ,2 )*PWD(1( ,3,R) DO 220 K-I ,N
PVL)(1<,2 ,FT )-MID(K ,2 ,R )*DO K .1 /*FWD( K ,3,ii T-U(K )WO( K I ,R ) B(14,1 )--W(K ,2 )V(K ,3)-W(K ,3)V(K ,2 )-(DL( K ,3)411(1())PWO(K ,R ) B(H,2)=W(K ,3)V(K )-14(K ,1)V(K,3 )PV0(1( ,3,R )-MID(K ,3 ,R )+DL(K ,2)*PWO(K I ,R )-DL(1( , I )PWO(K ,2 ,R ) B(K,3)-W(K,1 )V(K )-W(K ,2 )V(K ,1PSO(K+1,1,11 TMID(1(,1,R )+(lL(1( .3 )+C)(K )1PWD(K ,2,R)+U(K )PW(K ,2,R) DO 210 3-1,3

LL(K,2)PWD(K,3,R) 00 210 R-1 ,K
P50(K+1,2 ,R 1-M113(1( ,2 ,R )+LLAK ,11PWOCK ,3 ,11 1-(LL(K .3 )+0(K ) ) Ill ,J 1-13( K )+PVE)(K,J,R).1)(R)

PWD(K ,I,R)-U(K )PW(K ,1 RI E(K ,J )=E(I( ,J )+PWD(K ,J ,R )U(R
PST:( K*1,3,R )-MITT(K ,3,1214LL(K ,2)*PWD(K .1 ,R T-L1_0( ,1 TPW11(K ,2 ) 210 CONTINUE

165 CONTINUE /UK ,1 T.IN(1( ,11E(1( )+W(K ,2)W(K ,3)(IN(K ,3 )-IN(K ,2 ))PUT K INK ,2 Tr-INCE ,2 TE(K ,2 )+14(1( ,3)14(K,1 )(IN(K , I 1-IN(K .3))PSIK +1,3 ,K )-I.0 HO( ,3 T-INCK .3 TElK ,3)+W(K 1W(K ,2 )1 IN( K ,2 T-IN( K .1 ))ELSE 220 CONTINUE
DO 175 R.I ,K 00 230 K-IDO 170 3-1,3 DO 230.1-1,3UO 1/0 I-I ,3 13(1( ..1)=D(K ,J )+il(( )P(K,J,R)-P(K,J,R)+PS<K,I,R)A(K,I,J) 230 CONTINUE
POO< ,J ,R)-P13(K .3 ,R)4PSD(K ,R )A(K ,1 )+PS(K ,R /*AMR ,J )

170 CONTINUE
C CALCULATE INTERMEDIATE VARIABL Z'S

PUCK ,1 ,R T-PL)(K ,1,11)+P(K .1 ,R)+PW(K ,2 ,R )DL(K ,3)-PW(K ,3,R )*DL(K ,2 )
PV( K, 2, RI- PV( K, 2, R)+ P(K,2,R) +PW(K,3,R>DLIH.1C-PW(K ,1 ,R)*OL(K ,3) DO 240 R-I ,N
/MK ,3,R)-PV(K ,3,R)+P(K ,3,R )(KICK ,1 ,R )DL(V, ,2 T-PW(K .2,R )OL(1( ,1 ) DO 240 K-I ,N
PS(K+1,1,FT )-PS(K+1,1,R)+P(K ,R)+PW(K .2 ,R TLL(T. .31-PW(K .3 ,R ) DO 240 J.,1,3

11.1K ,2 ) 2( R )Z(Fi )+131J(K,J,R)N(K ,.1 (+MK WV( K ,R (+INK ,J )P5(K+ I ,2 ,R 1-PS(K+1 ,R)+P(K ,2,IT )+PWl Y. .3 ,R /*USK , I ,R ) 240 CONTINUELL(K ,3)
PS(K+1,3,R)-PS(K+1 ,3,R1+P(K ,3,R )+PW(K ,ThLL(K,2 )-PW(K ,2 ,R ) C CALCULATE INERTIA COEFFICIENTSLL(K )

PVD(K , ,R).PVD(K ,1 ,R)+PD(K , I ,R)+134/13(K ,2.R )DL(K ,3)-PWD(K ,3,R) DO 250 R-I ,N
QUI< .2 ) DO 250 11-1 ,R

PVD(K ,2 ,R).PVD(K ,2.R 1+PD(E ,2,R )+PWD(K ,3,RTDL(K ,I)-PWD(K ,1 ,R) DO 245 3-1,3
DL(1( ,3 ) DO 245 K-1 ,N

PVC( K ,3,R)-Pi(f)(K ,3,R ) *PM .3,R )(TWO( K ,1 ,R113L(K ,2 PLANK ,2 ,R FIR ,M (-FIR ,T1 )+11,11K ,J TPW(K 01,M )WO( K ..1,11)+1151K )WO( K ,J ,M)OL(K ,1 ) PV(K,J ,R)P513( K+ I ,I,R)-PSD(K+1,1,R)+PD(1( I FT )+PWO(K ,2 ,R TLL(K ,3 T-PWD(fl .3,R ) F(M,R)-F(R,M)
LL(K ,2 ) 245 CONTINUE

PSC( K+1,2 ,R )-PSD(K+1,2 ,R )+PD(K ,2 ,R 1+PWD(K ,3 ,R )LL(K T-PWINK ,1,R) 250 CONTINUE
LL(K,3) C

PSD(K+ I ,3,R)-PSO(K+1,3,R)+PD(K ,3 ,R )+PWD(K ,1 ,R TLL(K .2 T-PW1)(1( ,2 ,R C GENERALIZED INERTIA FORCESLL(K,1)
(4)175 CONTINUE DO 260 R-I ,N
CO
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DO 255 11.1,N

ESTAR(R)=KSTAR(R)-F(R,M).UDIM1
255 CONTINUE

KSTAR(R)=KSTAR(R)-ZIR/
2G0 CONTINUE

C

C INGREDIENTS OF GENERALIZED ACTIVE FORCES
C

DO 270 J-1,3
Y(I,J)=A(1,L,J)

270 CONTINUE
DO 280 10.2,N
DO 280 J.I,3
DO 280 1=1,3

280 CONTINUE
00 290 R-I,N
DO 290 1<-1,N
DO 290 J-1,3
FP2(14/-1<P2IR/4MSIK).G.YIK,J).PVIK,J,RI

290 CONTINUE
C

C CALCULATE ACTIVE FORCES /OR TORQUES
C

DO 300 R-I,N
TOIR1--KSTAR(R)-KP2(R)

300 CONTINUE
C

C RETURN THE CALCULATED VALUES TO THE MAIN PROGRAM
C

RETURN
END
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APPENDIX 5. PROGRAM AUTOQ

C

READ(7,120) (MS(K),K=1,N)
C 120 FORMAT(6F7.4)
C DO 130 K-I,N
C PROGRAM AMU READ(7,140) (IN(1<d),J=1,3)
C . 130 CONTINUE
C WRITTEN BY: TINGLIN NIE 140 FORMAT(3F7.4)
C DATE WRITTEN: JUNE 1987 DO 150 K=I,N
C REAU(7,140) (DL(K,J),J=1,3)
C THIS PROGRAM IS TO SIMULTANEOUSLY GENERATE AND SOLVE 150 CONTINUE
C THE KANE'S DYNAMICAL EQUATIONS FUR MECHANICAL DO 160 K=I,N
C MANIPULATORS. WITH THE STRUCTURAL DATA AND THE READ(7,140) (LL(K,J),J=1,3)
C GENERALIZED ACTIVE FORCES GIVEN, THIS PROGRAM WILL 160 CONTINUE
C AUTOMATICALLY GENERATE THE EQUATIONS OF MOTION AND READ(7,165) (Q0(1),1,N)
C SOLVE THEM FOR THE GENERALIZED COORDINATES. READ(7,I65) (U0(I),I=1,N)
C 165 fORMAT(6F12.9)
C READ(7,) MAXITR,ERRMAX,XEPSI,FEPSI,NPRINT
C READ(7,170) TSPAN
C READ(7,170) TSTEP

PROGRAM AUTOQ 170 FORMAT(F9.5)
IMPLICIT DOUBLE PRECISION (A-Z) C

INTEGER 1,J,JI,J2,J3,K,L,M,N,NN,N2,DELTA C PRINT TITLE FOR THE OUTPUT
INTEGER ITER,ITIME,ITMAX,MAXITR.TQTYPE,NPRINT C
PARAMETER(NN*6) WRITE (8,180)
PARAMETER(N2-12) 180 FORMAT (////,19X,'NUMERICAL SOLUTION OF THE EQUATIONS OF MOTION'
DIMENSION AM(1,12,N2),Q0(NN),U0(NN),QU(N2),FN(N2)

. /26X,'(BY AUTOMATIC METHOD)')
DIMENSION DELTA(NN,2),TF(NN) WRITE (8,190)
DIMENSION DOLD(N2),Q0LDEST(N2),VECTOR(N2) 190 FORMAT (///,1X,19HTHE GIVEN DATA ARE:)
DIMENSION IN(NN,3),MS(NN),DL(NN,3),LL(NN,3) WRITE (8,200)
COMMON/BLKI/OOLD,VECTOR,BTA,TF,Q0LCIEST,TSTEP,ITIME 200 FORMAT (//,3X,23HMASS OF EACH LINK (Kg)://
COMMON/BLK2/LL,DL,MS,IN DO 210 K=I,N
COMMON/BLK3/N,L,DELTA WRITE(8,220) K,MS(K)
COMMON/BLK4/XEPSI,FEPSI 210 CONTINUE
OPEN (7,FILE='ATTC1') 220 FORMAT(8X,SHMASS(,I1,41)) - ,F7.4)
OPEN (8,FILE='ATAGL') WRITE (8,230)
OPEN (9,FILE='TOUT1') 230 FORMAT(//,3X,3IHINERTIAS OF EACH LINK (Kg-m"2I:/)

C J1=1
C J2=2
C SPECIFY THE JOINT STATUS AND THE DIRECTION OF GRAVITY FORCES J3=3
C DO 235 K -I ,N

WRITL(,) ' PLEASE ENTER THE NUMBER OF LINKS: ' WRITE(8,240) K,JI,IN(K,1),K,J2,IN(K,2),K,J3,1N(K,3)
REAO(.,./ N 235 CONTINUE
WRITE(,) ' PLEASE INDICATE THE JOINT STATUS (IF THE JOINT IS' 240 FORMAT(3%,315X,4HINR(,11,1HII,4H) = ,F7.4))
WRITE,) ' REVOLUTE, TYPE "1,0"; IF THE JOINT IS PRISMATIC,' WRITE(8,250)
WRITE(,..) ' TYPE "01".' 250 FORMAT (//,3X,40HTHE COORDINATES OF MASS CENTERS (meter):/)
DO 100 K-I,N DO 255 K=1,N
WRITE(.,110) ' JOINT ',K,' 7' WRITE(8,265) K,JI,DL(K,1),K,J2,0L(K,2),E,J3,DL(K,3)
READ(.,.) DELFA(K,I),DELTA(K,21 255 CONTINUE

100 CONTINUE WRITE(8,*) "
110 FORMAT (A,I1,A) DO 260 K=1,N

WRITE(,) PLEASE INDICATE THE DIRECTION OF THE GRAVITATIONAL' WRITE(8,270) K,JI,LL(K,1),K,J2,LL(K,2),K,J3,LL(K,3)
WRITE(.,.) ' FORCES (1.e. 1,2,3).' 260 CONTINUE
REACH,) L 265 FORMAT(2X,3(6)(,3H0L(,I1,1H11,4H) - ,F7.4))

C 270 FORMAT(2X,3(6X,3HLL(.1),1HII,4H) = ,F7.4)) H
C INPUT THE MASS PROPERTY DATA AND STRUCTURAL DATA WRITE(8,280) 4=.

0
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280 FORMAT(//,3X,35HTHE GIVEN INITIAL VALUES (RAO) ARE:/)
WHIR. (9,290) (I,U0(1),I,U0(I),1-1,6) CALL QSOLVE (AM,QU,FN,MAXITR,ERRMAX,ERRX,ERRF,ITER)

290 FORMAI (/,6(8X,3HQ0( ,I1,4H) - ,F9.6,0X,3HU0(,I1,4H) - ,F9.6/)) ITER-MIN(ITER,MAXITR)
WRITE(8.295) TSPAN,TSTEP TIME- TIME +TSTEP

295 fORMAT(//,39,111IOTHER DAFAT//0X,12H1IME SPAN - , IF (MOD(ITIME,NPRINT) .EQ. 0) THEN
F8.4,8X,12HTIME STEP - ,F0.4) WRITE (8,300) TIME,(01.1(I),I-1,N)

WRITE(0,300) 380 FORMAT (F5.3,1X,6(2X,F9.6))
300 FORMAT (//,3X.40HTHE GENERALIZED COORDINATES QI-ON (RAD): ) ENDIF

WRITE (8.310) WRITE(.,) ' ITERATION NUMBER: ',ITIME
310 FORMAT (//,4HTIME,9X,21401,9X,2H02,9X.2H03,9X,2H04, 340 CONTINUE

9X,211O5,9X.21106//) STOP
WRITE (.,.) ' PLEASE INDICATE THE METHOD TOU WISH TO USE.' END
WRITE (...) ' EXPLICIT: 0
WRITE (,.) ' IMPLICIT: 1

WRITE (.,.) ' CRANK-NELSON: 0.0-1.0 ' C THIS SUBROUTINE ASSIGN INITIAL VALUE TO MATRIX A AND VECTOR V
READ (.,.) BTA
WRITE (.,.) ' PLEASE ENTER THE INITIAL GUESS FOR AM MATRIX' SUBROUTINE GUESS (A,V,AA,BB)
WRITE (.,.) ' AND VECTOR (VALUE OF TIME STEP IS SUGGESTED): ' IMPLICIT DOUBLE PRECISION (A-2)
READ(,) AA,813 INTEGER I,J,N

DIMENSION A(12,12),V(12)
C MAIN PROGRAM TO CALL THREE DIFFERENT SUBROUTINES N=I2

DO 20 I-1,N
TIME-0.0 DO 10 J -I,N
ITMAX-DINT(TSPAN/TSTEP+1) A(I,J)=0.0
CALL GUESS(AM,VECTOR,AA,00) 10 CONTINUE
U0 320 I-1.N All,I)=AA
QU(I)-00(I) V(I)=BB
QUIITN)-U0(I) 20 CONTINUE

320 CONTINUE V(2)=-813
WRITE (8,380) TIME,(QU(I),I-1,N) RETURN
DO 330 1-1,N2 END
CIOLDEST(I) -00(I)

330 CONTINUE C SUBROUTINE ()SOLVE TO SOLVE THE 12 SIMULTANEOUS NONLINEAR
WRITE (.,) 'PLEASE INDICATE THE DATA TYPE OF THE TORQUES' C DIFFERENTIAL EQUATIONS BY USING QUASI-NEWTON ALGORITHM.
WRITE (.,.) 'YOU ARE GOING TO USE)'
WRITE (,.) 'IF USE FUNCTION,TYPE SUBROUTINE QSOLVE (A,X,F.MAXITR,ERRMAX,ERRX.ERRF,ITER)
WRITE (,) 'IF USE NUMERICAL VALUES, TYPE 2: IMPLICIT DOUBLE PRECISION (A-2)
READ (.,.) TQTYPE INTEGER I,ITER,J,M,MAXITR,N,N2

PARAMETER(N2=12)
DO 340 ITIME*1ITMAX COMMON/BLK4/XEPSI,FERSI
IF (TQTYPE 1) GOTO 360 DIMENSION A(N2,N2),X(N2),F(N2),DF(N2),Q(N2,N2),R(N2,N2)
READ (9,350) TIMET,(TF(I),I-1,N)

350 FORMAT (F5.3,1X,6616.9) CALL AUTOSUB(X,F)
360 DO 370 I-1,N2

IF (ITIME .EQ. I) THEN C FIND THE INVERSE JACOBIAN AND THE SOLUTION BY ITERATION
ETOLD(I)-QU(I)
QU(I)-QU(I).VECTOR(I).TSTEP M-1
ELSE N-12
(ZOLDEST(I)=OOLD(I) DO 10 ITER=1,MAXITR
CIOLD(I)-QUTI) ERRX-0.0
QU(I)-2.0ISTEP*VECTOR(1)TOOLDEST(I) ERRF-0.0
ENOIF ERRDF=0.0

370 CONTINUE

C DO 20 I-1,N
C CALL SUBROUTINE QSOLVE TO FIND SOLUTION DX-0.0
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DO 30 J-I,N
DX-DX-A(1,1)F(J) SUBROUTINE ORTHO (B,M,Q,R)

30 CONTINUE IMPLICIT DOUBLE PRECISION (A-2)
C INTEGER N,M,I,J,K

X(I).X(I)+DX DIMENSION B(12),Q(I2,12),R(12,12)
IF (DABSIX(1)) .GT. XEPSI) THEN
RELERR-DABS(OX/X(I))
IF (RELERR _GT. ERRX) ERRX.41ELERR N-I2
ENDIF IF (M .LE. N) THEN

20 CONTINUE IF (M .EQ. I) THEN
C C

DO 40 1-I,N C INITIALIZATION
OF(1)-F(1)

40 CONTINUE DO 10 I-),N
C DO 20 J-I,N
C CALL AUTOSUB TO FIND THE NEW VALUE OF THE FUNCTIONS 0(1,J)=0.0
C 20 CONTINUE

CALL AUTOSUB(X,F) 0(1,1)=1.0
DO 50 I-1,N 10 CONTINUE
DF(I)-F(I)-DF(I) ENDIF
IF (0ABS(DF(1)).GT.ERREIFI ERROF..DABS(DF(1))
IF (DABS(F(I)).GT.ERRF) ERRF-DABS(F(I)) C TRANSFORM B VECTOR

50 CONTINUE
C DO 30 I-I,N
C COMPUTE THE ORHTOGDNAL VECTORS 2 AND R SUM-0.0
C DO 40 J-1,N

IF (ERRE .LT. ERRMAX) RETURN SUM.SUM40(3,1)8(j)
CALL ORTHO (DF,M,Q,R) 40 CONTINUE

C R(I,M)=SUM
C 30 CONTINUE

IF (DABS(R(M,M)) .GT. ERRCIF,FEPS11 THEN IF (M .LT. N) THEN
DO 60 I-I,N
OF(1)-0.0 C HOUSEHOLDER TRANSFORMATION
DO 70 J-I,N
DF(1)-DF(ITTA(1,3)*F(J) RO-0.0

70 CONTINUE DO 50 I-M,N
60 CONTINUE

RO-RO+R(1,11)01(1,M)
C

50 CONTINUE
C UPDATE THE A MATRIX

RO=DSORT(RO)
C

IF (R(M,M).LT.0.0) RO--R0
DO 80 I-1,N

B(M)-R(M,M)+RO
DO 80 J-I,N

C=DSORT(R0.13(M))
A(I,J)-A(1,J)-DF(1)(J,M)/R(M,M) IF (C.GT.0.0) THEN

80 CONTINUE R(M,M)=-R0
M-Mr1 B(M)-B(MD/C
ENDIF DO 60 I=M+I,N

10 CONTINUE
EI(1)=R(I,M)/C

C
R(I,M)-0.0

RETURN 60 CONTINUE
ENO

C
C ACCUMULATE ORHTOGONAL TRANSFORMATIONS

C
C

C THIS SUBROUTINE COMPUTES THE ORTHOGONAL BASIS FOR SPACE SPANNED DO 70 I-1,N
C BY THE INPUT VECTOR AND N-I PREVIOUS VECTORS. THE OR DECOMPOSI-

SUM -0.0
C TION IS RETURNED.

DO 80 K -M,N

5
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SUM-SUM)(1(1.K)B(K)
80 CONTINUE SUBROUTINE AUTOSUB(QU,FN)

DO 90 .1-11,N IMPLICIT DOUBLE PRECISION (A-21

0(1,J)-0(1,J)-SUM.B(J) INTEGER I,ITIME,J,K,L,M.NN,N,N2,R,DELTA

90 OuNIINUL PANAMLTERINN-61
70 CONTINUE PARAMEIER(N2-12)

ENDIF DIMENSION VECTOR(N2),FN(N2),OU(N2),QOLD(N2),KA(NN),QOLDEST(N2)

ENDIF DIMENSION A(NN,3,3),AD(NN,3,3)

ELSE DIMENSION W(FIN,3),V(NN,31,S(NN+1,3),PW(NN,3,NN),

M=N PV(NN,3,NN),PS(N14+1,3,NN)

DO 100 I-I,N DIMENSION POD(NN,3,NN),PVINNN,3,NN),PSD(N11+1,3,NN)

DO 110 J-2,N DIMENSION DELTA(NN,2)
R(1,1-1)-R(1,J) DIMENSION MI(NN,3,NN),MID(N1.1.3,NN),B(NN,3),D(NN,3),E(NN,3),H(NN,3)

110 CONTINUE DIMENSION Z(NN),Y(NN,3),P(NN,3,NN),PD(N11,3,NN)

100 CONTINUE DIMENSION ININN ,3),MS(NN),DL(NN,3),LL(NN,3)

DO 120 I-I ,N DIMENSION F(NN,NN),KSTAR(NN),KP2(1111),TF(NN)

SU/1=0.0 DIMENSION (1(NN),U(NN),U0(NN)

DO 130 J-I ,N COMMON/BLRI/OOLD,VECTORATA,TFAOLDEST,TSTEP,ITIME
SUM-Sum40(J,1).B(J) COMMON/BLK2/LL,OL,MS,IN

130 CONTINUE COMMON/BLK3/N,L,DELTA

11(1,111-SUM

120 CONTINUE C ASSIGN NEW VALUES TO Q(I) AND U(I)

DO 140 K-I,N-1
RO-DSORT(R(K,K).R(K,K)+R(K+1,K)R(K+1,K)) DO 70 I-1,N

IF (R(K,K1.LT.0.0) RO--R0 Q(1)..(1.-BTA)00L0(1)+QU(1)BTA
BK-R(K,K)+110 U(I)-(1.-BTA)00L0(1+N)+QU(1+N)BTA
BKP=R(1(+1,1() 70 CONTINUE
C=R0.8K
IF (C.NE.0.0) THEN C COMPUTE NEW VECTOR
RIK,K) - -RO

R(K(1,51-0.0 DO 90 1 -I ,N2

DO 150 J-K+I,N IF(ITIME.EQ.I) THEN
RO-BKA(K,J)+BKPR(K+1,J) VECTOR(I1 -(17U(I)-(100(1))/TSTEP
R(K,J)-R(K,J)-R013K/C ELSE
R(K41,1)-R(K+1,1)-R031(P/C VECTOR(1)-(3. QU(I)-4.(1OLD(I)+00LDEST(1))/(2.TSTEP)

ISO CONTINUE ENDIF
DO 160 I-I,N 90 CONTINUE
RO-0(I,K)314+0(1,1(+1).up DO 100 I-1,N
Q(1,K>=0(1,K)-R08K/C FN(I)-VECTOR(I)-U(I)
0(1,K+1)-0(1,1(+1)-R0.131(P/C 100 CONTINUE

160 CONTINUE
ENDIF C FN(1)=VECTOR( I )-( U( 11DCOS(C1( 3 ))-U( 2)DSIN( Ql 3 ) )/DSIN( 0( )

140 CONTINUE C FN( 2l- VECTOR( 21+ U(I)DSIN(Q(3)) +U(2)DCOS(Q(3))
ENDIF C FN(3)-VECION(3)-U(3)-(U(2)*DSIN(Q(3))-U(1)*DCOS(Q(3))).DCOS(0(2))
RETURN C /DSIN(Q(2))
END C FN(4)=VECTOR(4)-U(4)

C C FN(S)-VECTOR S)-U(S)
C THIS SUBROUTINE IS TO CALCULATE THE GENERALIZED COON- C FN(6)=VECTOR(6)-U(6)
C DINATES, GENERALIZED SPEEDS AND THEIR DERIVATIVES. C DEFINE TRANSFORMATION MATRICES AND THEIR DERIVATIVES
C C

C G-9.131

C THIS SUB ROUTINE IS TO AUTOMATICALLY GENERATE DO 110 K-I,N
C THE GENERALIZED ACTIVE FORCES, THE GENERALIZED DO 110 I-I,3
C INERTIA FORCES, AND FINALLY CALCULATE THE TORQUES DO 110 J-I,3 1'4

C /OR FORCES. A(K,I,J)-0.0
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AO(K ,I ,J 1-0.0 A0(6,1,2 )--DCOS( DC 6 ) )U( 6 )

110 LOW INuL AD( 6,2,1 )-DCOS(C( 6 ) 1U( 6 )

A(1,1,1 ) -000S( CH I )) A0(6,2,2 )---DSIN( 0( 6 ) ).t1( 6 )

Al I ,1,3 )-OSIN( 0( 11 ) C

A( I ,2 ,I )-DSIN( (..1( 1 ) ) C INITIALIZATIONS
A( 1,2,3 /- -DC05( 0( 1 )) C

A(1,3,2 )-1.0 DO 115 K-I ,N
A( 2,1 , I )-0006( 0( 2 )) Z(K )-0.0
A(2,1,3 ).DSIN(0(2 )) KSTAR(K 1-0.0

A(2,2,1 /-DSIN(Q( 2 )) KP2(K )-0.0
A(2,2,3 /-DC06( 0( 2 ) ) DO 115 J-I ,3
A(2,3,21.I.0 W(K ,J)-0.0
A( 3,1,1 /-000S(Q( 3 )) VII< ,J 1-0.0
A( 3,1,2 )--DSIN( (;)( 3 )) S(K ,J)-0.0
Al 3,2,1 )-0SIN( Q( 3 )) B(K,J)-0.0
A( 3,2,2 /-000S( Q( 3 ) ) D(K,J)=0.0
A(3,3,3).1.0 E(K ,J)=0.0
A(4,1,1 )-DCOS(13( 4 ) ) Y(K ,J).0.0
A(4,1,2 /--OSIN( 0( 4 ) ) DO 115 R=1,14

A( 4,2,1 )-OSIN(L)( 4 )) PW(K ,J,R )-0.0
A(4,2,2 ) -DCOS( 0( 4 ) ) PWO(K ,J ,R)-0.0

A(4,3,3 /-1.0 PV(K ,J ,R)-0.0
A(5,) ,1 )-DCOS(0( 5 ) ) PV0(K ,J ,R)-0.0
A(5,1,3 )=-05IN( CH 5 )) PS(K ,.1 ,R 1-0.0

A(5,2,1 )-DSIN(Q( 5 ) ) PSEIllf ,J ,R)-0.0
A( 5.2,3) -DCOS(C)(.5 )) P1K ,J J71-0.0
A(5,3,21-1.0 PD(K ,J,R)-0.0
A(6,1,1 ) -13COS(G(6 )) MI(K ,J,R )-0.0
A(6,1,2 ).DSIN(Q(6 )) MIO(K ,J ,R)-0.0
A(6,2,1 )-DSIN( 0( 6 )) F(K ,R)-0.0
A(6,2,2 )-DCOS( 0(6 ) ) 115 CONTINUE

A(6,3,3)-1.0 C

C C PARTIAL ANGULAR VELOCITIES

C C

A0(1 , I ,1 )--DSIN( 0( I ) )U( I ) IF (DELTA( I , I ).E0. 1 ) THEN

AO( 1,1,3 ) -0006(Q( 1 )).U( I ) 00 120 J -1,3
AD( I ,2,1 )-DCOS( CH 1 ) )11( 1 ) PW( I ,J ,1 I-Al I ,3,.1)
AD( 1,2,3 )-DSIN( CH 1 ) ).U( 1 ) PWD( 1 ,J , I )=AD( I ,3 ,.I )
A0(2,1,1 )--OSIN( 0( 2 ) )Ul 2 ) 120 CONTINUE
AD( 2,1,3 )--DCOS(C1( 2 ))U( 2 ) ENDIF
A0(2,2,1 )-DCOS(0( 2 ) )U( 2 ) DO 150 K-2 ,N
A0(2,2,3 )=OSIN( 0( 2 ) ).1.1( 2 ) DO 150 J-I ,3
A0(3,1,1 ).U( 3 ).0SIN(C)( 3 ) ) DO 130 R-1 ,KI
A0( 3,1,2 )=-11( 3 )DCOS(()( 3 ) ) DO 130 1-1,3
AD( 3,2,1 )-DCOS( 0( 3 ))0.113) PW(K ,3 ,R I-PW(K ,J ,R )+PW(K-1,1 ,R ).A(K ,I ,J )
A0( 3,2,2 )--OSIN(Q( 3 )/U( 3 ) PWD(K ,J ,R )-PWERK ,J ,R)+PWO(K-1,I,R )+A(K,I,J )+PW(KI ,I ,R 1AD(K ,1 ,J )
AD( 4,1,1 )--U( 4 /DSIN( (;)( 4 ) ) 130 CONTINUE
AD( 4,),2)=-11( 4 /*DCOS( 0( 4 )1 IF (DELTA(K ,1 ).EQ.1 ) THEN
AD( 4,2 ,I ).000S( 0( 4 ) /Ul 4 ) PW(K ,J,K )-A(K ,3,J )
Kg 4,2,2 )--DSIN( 0( 4 ) ).U( 4 ) PLUNK ,J ,K )-AD(K,3,J)
AD( 5,1 ,I )--OSIN( 0( 5 ) )*U( 5 ) ELSE

AL( 5.1,3 )--OCOS( CH 5 )1Ul 5 ) PW(K ,J ,K )-0.0
AD( 5,2,1 )-13COS( 0( 5 ) )U( 5 ) PWD(K ,J ,K >=0.0

AD( 5,2,3 )--DSIN(0( 5 ) )Ul 5 ) ENDIF I
A0(6,1,1 ).-OSIN(11( 6 ) )U( 6 ) 150 CONTINUE 04

litub
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C 170 CONTINUE
C ANGULAR VELOCITIES PV(K ,1 ,R I-PUCK ,1.11 )+P(K ,1 ,R )+PW(K .2 ,R )*DL(: ,3 )-PW(K ,3,R )DL(K ,2
C

PUCK ,2 ,R )-PV(K ,2 ,R )+P(K ,2 ,R )+1.41(15 ,3 ,R ) DL(K )-PW(K ,) ,R )*DLIK ,3 )
00 160 1(-1 ,N PUCK ,3,R )-PV(1( ,3,R )+P(K ,3,R )+PW(K ,1,R ).0L(K ,2 )-PW(K ,2,R )+DL(K ,1 )
DO 160 J-I , 3 PS(K+1,1 ,R )-PS(K+1,1 ,R )+P(K ,1 ,R )+PW(K ,2 ,R )LL(K ,31-PW(K ,3 ,R
DO 160 R-1,1( *LL(K ,2 )
W(K ,J ) -W(K )+PW(K ,J ,R )0.1(R ) PS(K +1 ,2 ,R 1-PS(K+1,2 ,R)+P(K ,2 ,R )+PLI(K ,3 ,R )LL(K )-PW(K ,) ,R)

160 CONTINUE LL(K ,3 )
PS(K+1,3,R )-PS(K+1,3,R )+P(K ,3 ,R )+PW(K .1 ,R )LL(K ,2 )-PW(K ,2 ,R

C PARTIAL VELOCITIES LICK ,1 )
C PVD(K ,1 ,R )=PVD(K ,1 ,R )+PCI(K ,1,R )+PW0(1( ,R )DL(K ,3 )-PWO(K ,3 ,R

IF ( DELTA( 1,1 ),E11.1 ) THEN OL(K .2 )
PV( 1,1,1 )-PW( 1,2,) )OL( 1,3 )-PW( 1,3,1 COL( 1,2 ) PVD(I( ,2 ,R )=PVOCK ,2 ,R )+PO( K ,2,R )+PWO(K .3 ,R )DL(K ,1 )-PWO(K ,R
PV( 1,2 , 1 )-14)( 1,3,1 )13L( 1,1 )-PW( 1,1,1 )DL( 1,3 ) DL(K ,3 )
PV( 1,3,1 )-PW( 1,1,1 )1)L( 1,2 )-PW( 1,2,1 ) OL( 1,1 ) PVINK ,3 ,R )=PV0( K ,3,R )+PD(K ,3,R )+PWINK ,1 ,R )01..(1( ,2 )- PWD(K,2,RC
PS(2,1 ,I )-PW( 1,2,1 ILL( 1,3 )-PW( 1,3,1111( 1,2 ) 01(K,11
F5(2,2,1 )-PW( 1,3,1 ) LL( 1,1 )-PW( 1,1,1 CIL( 1,3 ) PSD(K+1,1 ,R )-PSD(K+1,1 ,fl )+PD(K ,1 , R )+PWD(K,2,IC)LL(K,31- PWD(K,3,RC
PS(2,3,1 ) -PW( 1,1,1 CLL( 1,2 )-PW( 1,2,1 )LL( 1,1 ) 'LICK ,2 )
ELSE P50( K+ 1, 2, R1= PSO( K+ 1, 2, R)+ PD( K, 2, R ) +PWD(K,3,R)LL(K,I)-PWD(K,I,RCPVC) ,3,1)-1.0 LL(K ,3 )
PS(2,3,1)-1.0 PS0( K+1,3 ,R )=PSD(K+1,3,R )+PD(K ,3 ,R )+PWD(K ,1 ,R )LL(K ,2 ) -PWD(K ,2 ,R
ENDIF -LICK ,) )
00 180 K-2 ,N 175 CONTINUE
IF ( OEL TA( K , I 1.0.01 THEN ENDIF
00 165 R-1,1<-1 180 CONTINUE
DO 163 J-1,3
DO 163 1-1,3 C VELOCITIES
MIC K, J, R)- MI(K,3,R) +PS(K.1,R)ACK,I,3C C
1110(K ,.1 ,R )-MID(K ,J ,R )+PSD(K ,R )A(K ,I,J )+PS(K ,R IAINK ,1 ,J 00 200 K-1 ,N

163 CONTINUE DO 200 J-1,3
PV(K ,1 ,R )-MICK ,1,R MI:1(K ,3)+0(K ) /*PUCK ,2,R )-DLIK ,2 )14)(1( ,3,R DO 200 R-I ,K
PUCK ,2 ,R )-MI(K ,2 ,R )+DL(K ,1 )PW(K ,3,R )-( OL(K ,3 )+Q(K ) )011(K , I ,R ) V(K )-V(K ,3)+PV(K ,.1 ,R1U(R)
PUCK .3 ,R )-MI(K ,3,R )+DL(K ,2 CPW( ,1 ,R)-DICK ,1 )PW(I( ,2 ,R SCK ,J)-S(1( ,J )+PS(K ,J,R1U(R )
PS(14 r1,1 ,R )-MI(K , 1 ,R >4.(LL(K ,3)+CHK ))PW(K ,2,R I-DL(K ,Z )PW(K ,3,R ) 200 CONTINUE
PS(K+1,2,R)-111(K,2,R)+LL(K,1).PW(K,3,R)-(LL(K ,3)10(10).PW(K,1 ,R)
PS(K+1,3,R)-MI(K,2,R)+LL(K,2 )PI.I(K,I,R)-LL(H,1).PW(K,2,R) C CALCULATE INTERMEDIATE VARIABLES
PVD)K,) ,R)=MID(K ,1 ,R)+(DL(K ,3)+CHK ))PWD(K ,2 ,R )+INK )1,11(K ,2 ,RC C

DLO< ,2 /OM(I< ,.$,R) DO 220 K-1 ,N
PVIEK ,2 ,R )-MID(K ,2,R )401(K ,1 )PW0( ,3 ,R )-U(K )PW(K ,I ,R 1 B(K ,1 )=W(K ,2 /*VIM ,3 )-W(K ,3 )V(K ,2 )

-(DL(K .3 ) IB( K ))PWD(K ,1 ,R ) B(K ,21-W(K ,31.V(K ,1 )-W(K ,1 )V(K ,3 )
PV0(K ,3 ,R)-M113(K ,3 ,R )40LIK .2 )PWINK ,1 ,R1-0L(K I )PWD(K ,2 ,R) 13(K ,3)-W)K ,1 )V(K ,2 )-WIK ,2 )VIK ,1 )
PS0(1(+1,1 ,R f-MID(K , 1 ,R )*(LL(K ,3 )+C)(K ))PWD(f; ,2 ,R )PW(K ,2,R ) DO 210 J -1,3

-LL(K ,2 )PlJD(K ,3 ,R ) DO 210 ,K
PSD(K+1,2,R )=MID(K ,2 ,R )+LL(K ,1)PLID(1( ,3,R )-(LL(K ,3 )+CHK ). D(K ,3)-D(K )+PVINK ,J ,R CU(R )

PW13(K ,1 ,R)-U(F. CPW(K ,R) ECK ,3)-E(l< ,J)+PWCI(K ,R )11(11)
PS0( K +1,3 ,R )-MID(K ,3,R )*IL( K ,2)PWD(K ,1 ,R )-LL(K .1 )PWD(K ,2,R ) 210 CONTINUE

155 CONTINUE INK ,4)-IN(K ,1)E(K,1)+1.1(K,2 )4.1(K ,3 )( INCK ,3 )-IN(K ,2 )1
PUCK ,3,K ).1.0 H( K .2 )-IN( K ,21E(K ,2 )411(K ,3 )4)(K ,1 )( IN(K )-IN(K ,3PS(++1,3,1.)-1.0 H( K ,3 )-IN(K ,3)E(K ,3 )+W( K .1 )04(K .2 )( IN( K ,2 )-IN(K ,1 CC
ELSE 220 CONTINUE

DO 230 10.1 ,N
DO 230 3-1,3
(UK ,31-1)(K ,J )+B(K ,J)

P(K,J ,R)=P(K,J,R)+PS(K,I,R)A(K,I,J) 230 CONTINUE
POCK ,J ,R )-PINK ..1 ,R )+PS0( K ,R )A( K .1 ,J )+PS(K ,R )AD(K ,J )

00 175 R-I ,K
DO 170 3-1,3
DO 170 1-1,3
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C CALCULATE INTERMEOIATE VARIABL Z'S
C

RETURN
END

DO 240 R-I,N
DO 240 E.I,N C THIS SUBROUTINE COMPUTE THE VALUES OF TORQUE FUNCTIONS.

DO 240 J-I,3
2:17/-Z( R)+PV(K,J,R).H(K,J)+M5(E)V1K,J,R).1)(K,J) SUBROUTINE TORQUE (TF,Q,V)

240 CONTINUE IMPLICIT DOUBLE PRECISION (A-2)

C INTEGER I

C CALCULATE INERTIA COEFFICIENTS DIMENSION TQ(12),Q(12),V(12)
C C

DO 250 R-I,N C DEFINE YOUR FUNCTION EXPRESSIONS OF GENERALIZED ACTIVE
DO 250 M-I,R C FORCES OR/TORQUES IN THIS PART IF YOU INPUT IS FUNCTIONS.
DO 245 J-I,3 C SUCH AS
DO 245 K-I,N DO 45 I.1,6
FIR,M)=FIR,M)+IN(E,J).PW(E,J,M)4PW(E,J,R)+MS(E).PV(E,J,M) TQ(I)-0.0

.PV(E,J,R) 45 CONTINUE
F(M,R).F(R,M) RETURN

245 CONTINUE END
250 CONTINUE

C

C GENERALIZED INERTIA FORCES
C

DO 260 R-I,N
DO 255 M-I,N
KSTAR(14)-ESTAR(R)-F(11,M)UD(M)

255 CONTINUE
ESTAR1R1-ESTAR(R)-2(R)

260 CONTINUE
C

C INGREDIENTS OF GENERALIZED ACTIVE FORCES
C

DO 270 J-I,3
Y(1,31-AlI,L,J)

270 CONTINUE
DO 280 E-2,N
00 290 J-I,3
DO 280 1-1,3
Y(E,J).Y(E,J)+Y(E-1,I).A(E,I,J)

280 CONTINUE
DO 290 R-I,N
DO 290 E-I,N
DO 290 J-I,3
EP2( 11)-EP2113):MS(E)GY(EJ)PV(E,J,R)

290 CONTINUE
C

C GENERALIZED ACTIVE FORCES
C

DO 300 R.I,N
KA(R).TF(R)rKP2(R)

300 CONTINUE
DO 310 R-I,N
FN(R:11)-EA(R)+ESTARIR)

310 CONTINUE
WRITE(',400) FN: ',(FN(3),J..1,12)

400 FORMAT(A,6E11.5/5X,6E11.5)
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