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the variables are different. The Nusselt number was found to be a

function of a magnetic Rayleigh number.
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tigation at the thermal entry region of flow caused by a change in

tube wall heat flux and a numerical solution to the governing equa-

tions for the same problem. Because of the low pyromagnetic coeffi-

cient of the water-based Lignosite fluid used in the study, only low

Reynolds number flows were obtained. It was found that a hot-wire

anemometer could be used for velocity measurements if the overheat
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a region of constant magnetic field strength. The experimentally

and numerically obtained velocity and temperature profiles generally

agreed in magnitude and shape but a shift in maximum velocity point

location was observed. This shift was attributed to experimental

errors and to physical properties of the magnetic fluid that were
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Heat Transfer in Magnetic Fluids

at Low Reynolds Number

I. INTRODUCTION

A magnetic fluid is called exotic or novel because of its mag-

netic property. This type of fluid is known by several names (such

as magnetic fluid [1 ,2] , ferrofluid [3,4,5] , magnetic colloid [3,6] ,

ferromagnetic suspension [7] and so on) and is usually synthesized

in a laboratory.

The magnetic fluid is a two-phase fluid (a colloid) which has

very fine particles of solid ferromagnetic material suspended in a

carrier fluid. Such a colloidal suspension may occur in all fluids

if the particle size is maintained small enough to allow random

motion (Brownian motion) due to thermally agitated by collision with

molecules of the fluid. If this Brownian motion is not maintained,

flocculation of magnetic particles is unavoidable. That is, in order

to have a colloidal suspension the thermal energy kT should be bigger

than magnetic energy KV.

However, as the particle size becomes smaller and smaller,

flocculation may also arise due to Van de Waals attrac-

tive force. This attractive energy between particles is proportional

to the inverse sixth power of distance according to London's model.

Therefore, as particles approach each other at a distance as small as

a particle diameter, the Van der Weals force increases rapidly. The
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sufficient thermal agitation energy for Brownian motion is maintained

by making very fine particles, but at a certain point the floccula-

tion of particles due to Van der Waals forces will occur. In

order to prevent magnetic particle flocculation and improve a high-

density colloidal suspension of very fine magnetic particles, the

materials are coated. These coating materials are steric acid or

oleic acid. For high stability of a colloidal suspension the par-

0

ticle diameters can range from 20 A to 100 A. These particles are

somewhat less than the dimensions of a single magnetic domain V with

no settling or separation under gravity or in a strong magnetic

field [8,9,10]. These colloidal suspensions behave like true homo-

geneous fluids when they are flowing. The ferromagnetic properties

of fluids can be improved by using a ferromagnetic material with high

saturation magnetization and high concentration.

Magnetic fluids are manufactured mechanically or chemically.

The mechanical manufacturing method is a ball mill filled with a mag-

netic material, a carrier fluid, end a particle coating agent (such as

oleic acid). The mill runs for several weeks to make the final

product. This method is more expensive and limits the amount of

magnetic fluid in each run, but it is not restricted to make only a

certain kind of magnetic fluid as with the chemical method. The

Ferrofluidics Corporation has manufactured most of their magnetic

Ferrofluidics Corp.: 144 Middlesex Turnpike, Burlingham, Mass.
01803.. Products: water, glycerides, esters, hydrocarbons, sili-
cones, fluorocarbons, and others based magnetic fluids.
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fluids by this mechanical method. The Georgia Pacific Corp.
**

makes

a magnetic fluid chemically from a by-product of its pulp-mill, which

is called Lignosite. This magnetic fluid was used in the experimental

and numerical models of this study. As another method, Popplewell

et al. [11,12] made a ferromagnetic liquid containing 2% by

weight of iron in mercury by electro-deposition of iron onto an agi-

tated mercury cathode and a mercury/tin amalgam cathode.

A variety of magnetic fluids have been studied and applied in

industry. So far most of the research has been on the properties and

characteristics of magnetic fluids from a microscopic point of view.

The characteristics of a magnetic fluid in a continuum model are

thoseof a micropolar fluid [13] which apparently shows a couple

stress and body couple phenomena. In most Navier-Stokes equation

applications these phenomena have been omitted since their effects

are minimal and can be ignored. But all fluids have these two pro-

perties in their momentum and energy equations even though their

magnitudes are not visible. In non-Newtonian fluids these flow

properties have significant effects. Such discussions have been

well established by several scientists for the past 30 years [13,14,

15]. In magnetic fluids, however, this phenomena cannot be ignored.

Particular interest has been shown in the development of the thermo-

mechanics of magnetic fluids [14-17]. In addition, a great deal of

**
Georgia Pacific Corp.: Bellingham Division, Bellingham, Wash.

98225. Product: Lignosite FML.
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attention has been paid to the investigation of physico-chemical,

mainly static [18,19] and rheological properties of magnetic fluids

[20-25] .

In the application of magnetic fluids many attempts have been

successful, and some of them are still being developed. These diverse

applications include vacuum [26] and high pressure C27] rotary seals,

controlled lubricants [28], damping systems C29], material separa-

tors [30], fluid jet printer C31], visualization and display systems

[32], bearings C33], sensors, actuators, switches, accelerometer C1,

34], and magnetocaloric heat pipes and engines C35-37] which rely on

the variable magnetization of magnetic fluids with temperature gradi-

ent in the presence of an external magnetic field.

The principle of a magnetocaloric energy conversion system

has been developed by Resler and Rosensweig [35-37]. The appli-

cation of the principle has yet to be studied. The idea is based on

the changes in magnetic moment of a magnetic particle in a carrier

fluid as a function of magnetic field intensity and temperature.

When the thermal energy kT is greater than the magnetic anisotrophy

energy KV, the moment of a magnetic particle in a magnetic field be-

comes disoriented from its domain. Contrarily, when the magnet-

ic anisotropy energy KV is greater than the thermal energy kT, the

magnetic moment of a magnetic particle in a magnetic field becomes

frozen in its domain. Accordingly, magnetic particles of a magnetic

fluid change their magnetic moment with respect to temperature and

field intensity. Hence, if there is any temperature gradient and/or
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magnetic field gradient in the control volume of a magnetic fluid,

a magnetic force or a pressure will be built up due to the change

in magnetic moment of the particles. Due to the motion of magnetic

particles in a carrier fluid, the neighboring fluid particles en-

trained by the magnetic particles start moving along with the mag-

netic particles. The magnetic moment development of magnetic par-

ticles in the magnetic field rapidly reaches its saturation point.

The relaxation time for magnetic moment change to its saturation

point is of the order of 10-9 to 10-9 sec. [38].

Until the magnetic moment vector is parallel to the applied mag-

netic field vector, R111171, the interaction of the magnetic fluid with

an external magnetic field through magnetic body couples and kinetic

processes are considerable. Otherwise, there will be no interaction

of the magnetic moment with an external magnetic field. Figure (1)

shows this relationship between the magnetic moment iT and the field

intensity F. The field intensity is of primary importance in Ferro-

hydrodynamics, since it is a spatial distribution of absolute magni-

tude of field rather than the vector field itself. Therefore, the

magnetic field has a direction of flow that is the resultant of the

vector quantities. As a result, this property of a magnetic fluid

introduced the idea for direct energy conversion system. Figure (2)

shows a simple schematic diagram of an energy conversion system using

a magnetic fluid. A magnetic fluid in the presence of a magnetic field

increases its temperature by taking energy from a heat source. A

magnetic fluid, with a fully saturated magnetic moment at a low
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temperature, drops its magnetic induction (or magnetization or mag-

netic moment change) due to a thermal energy increase. This happens

up to the Curie point temperature, in which magnetic materials com-

pletely lose their magnetic moment from their domain. Hence, a

pressure difference is formed between the hot fluid portion and the

cold fluid portion due to the interaction between high magnetization

at low temperature and low magnetization at high temperature. This

pressure difference causes the fluid to flow from the cold to the

high temperature portion.

The energy conversion device as shown in Figure 2 uses this

principle. When a turbine [35] or MHD generator [11] is put between

the heat source and sink, heat energy can be transformed into

mechanical energy. It should be noted that the efficiency of this

cycle with regeneration was found to be close to the Carnot effici-

ency in principle [35,36,37].

Although there are still many problems to be solved with this

idea, it is applicable to many other fields. For example, a solar

energy collector can use a magnetic fluid with a natural magnet to

speed up the working media through a circulation loop. And if a

liquid metal like mercury C11,12] with high concentration of mag-

netic particle suspension can be obtained, this kind of magnetic

fluid can be used in a fast-breeding nuclear reactor or a fusion

reactor, combined with an MHD generator, and for a closed cycle MHD

generator. There is also another advantage to this device, it does

not have any moving mechanical parts.
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Under the blessing of such a fascinating working media, there

has been much research in magnetic fluids. So far about 800 papers

have been published and about 260 patents have been issued in the

past 20 years [39]. However, there are still plenty of areas to be

studied. The rapid development of basic concepts for magnetic fluid

has created its own branch of the hydrodynamics. The area which now

studies magnetic fluids and their applications is called Ferrohydro-

dynamics (FHD) like the ordinary hydrodynamics (OHD), magnetohydro-

dynamics (MHD), and electrohydrodynamics (EHD).

I-1. Terminology and Basic Concepts

The terminology is explained here so that it might help readers

in subsequent chapters.

1. A magnetic fluid has various names:

a. The magnetic fluid (this name is consistently used in this

paper),

b. Ferro fluid,

c. Ferromagnetic suspension,

d. Magnetic colloid,

e. Magnetic liquid,

f. Ferro liquid,

2. A typical magnetic fluid as a colloidal mixture is that

a. it behaves like a true homogeneous fluid,
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b. it has extra characteristics of high susceptibility to a mag-

netic field,

c. it has a magnetic particle concentration in the order of

1017 /cm3 with their sizes varying from 20 A - 100 A in diameter,

d. the magnetic particles in the presence of a uniform magnetic

field have torque and then line up with the field., but magnetic

fluids respond so rapidly to a magnetic torque ('l0-9 sec) that

one can assume the following condition to hold

x = 0 . (1)

This means that the magnetic moment vector M rapidly lines up

with the magnetic field vector T. Hence, the two vectors are

parallel to each other (W11170,

e. the magnetic particles in the gradient of a magnetic field ex-

perience a force and attempt to slip through its carrier

fluid,

f. the magnetic particles with a temperature gradient in the media

experience a force due to their magnetic moment change accord-

ing to temperature change. Figure (3) shows the relation of

magnetic moment to temperature for various ferrites,

g. it can be hypothesized as a Newtonian fluid if the carrier

fluid is a Newtonian fluid,

h. it is a perfect continuum model,

i. its electric conductivity is very small, so one can assume the

electric conductivity of magnetic fluids to be zero,
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Figure 3. Temperature dependence of magnetic induction for
various ferrites (Ref. 40).



12

J =0,

j. magnetic fluids also satisfy Maxwell's equation. Due to the

negligible conductivity of magnetic fluids the Maxwell's

equation in most present applications is

V x = 0 (2)

k. it is assumed to be essentially incompressible although its

density is temperature dependent.

3. Magnetic properties of magnetic fluids

The magnetization or magnetic induction is closely related to

the magnetic moment of magnetic particles in a carrier fluid. From

a macroscopic point of view, magnetization M is assumed to be paral-

lel to the applied magnetic field H, that is, because the in-

teraction happens within the relaxation time. This implies that

there is no interaction of the magnetic fluid with the external mag-

netic field through magnetic body couples and kinetic processes.

Figs. (1) and (3)show that for various magnetic materials the magnet-

ic moment is a function of the external magnetic field and tempera-

ture. Therefore the equation of magnetic state is described as

M = M (T,H) . (4)

Magnetization is analytically defined for magnetic materials
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whether it is a superpara-magnetic, or paramagnetic, or diamagnetic.

Magnetization for a superparamagnetic material is described by the

Langevin type formula [36,41].

M = %NE(u° MoH/kT)

where the Langevin equation is

L(x) = Coth (x) - l/x.

(5)

(6)

Equation (5) represents the magnetization for superparamagnetic (or

ferromagnetic) particles.

Magnetization for magnetic fluids is a function of the composi-

tion, size distribution and volume concentration of the particles in

suspension. It can be expressed by the following equation [3] modi-

fied from Equation (5)

[;M i=1 \24kT1
eM

s ! n.v.

i=1 "

Another expression is the Weiss formula [42]

M = M, tanh
TNvM0

Tc(NvM + H)

(7)

(8)

Where Equations (5), (7), (8) predict a temperature dependence of

magnetization, above the Curie temperature he temperature depen-

dence becomes [41,43],
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(9)

for small values of the ratio H/T.

For magnetization of a magnetic fluid, various factors such as

particle size, volumetric concentration, temperature, and

applied field intensity should be determined. Rosenweig et al.'s

work [36] show the experimentally measured ferric induction curves

for fluids with various concentrations of ferrite particles and vari-

ous particle sizes. It shows that the high volumetric loading of

magnetic particles into a fluid gives rise to a strong magnetization

for the fluid. It also shows that in approaching magnetization

saturation it is a strong function of particle size. That is, large

size particles have higher saturation than that of small size par-

ticles. The 100 4 size particles are 97 percent saturated in a mag-

netic field of 10,000 Oersteds at room temperature while 25 X parti-

cles are only about 20 percent saturated under the same condition.

In order for ferromagnetic particles to be maintained as a suspended

colloid in a fluid, the size and volumetric concentration are limited

to certain levels. Otherwise the problems of sedimentation and floc-

culation of magnetic particles cannot be avoided.

In most cases the magnetization of a magnetic fluid has been

approximated from the magnetic equation of state Equation (4), for

convenience, even though the magnetization of a magnetic fluid is a

function of particle size and volume concentration. That is, the
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magnetization of a magnetic fluid in the presence of a constant mag-

netic field can be regarded as a function of only temperature [35,

37] under the condition that a magnetic fluid is homogeneous. It

can be approximated by the linear equation:

PoM = PoK(Tc - T) (10)

where the pyromagnetic coefficient,K = [4 ,can be regarded as a
H

slope at a certain point on a curve as shown in Figure (4). The Curie

temperature, Tc, has the value of 1043 K for iron. Bashtovoi et al.

[45] approximated the dependence of the magnetization for a unit

volume of liquid on the temperature by an exponential function

M
exp(nT/T

c
)-exp n

Mo
1 - exp n

where n has the value of 8 for iron.

Another property to be considered is the voscosity of the mag-

netic fluid. The viscosity of a magnetic fluid is dependent on many

variables. A functional relationship can be postulated of the form

n = f(no,ms,Di,k,T,H,y,ni) (12)

Rosensweig et al. [2], using dimensional analysis, postulated

that the viscosity of the fluid in a magnetic field was a function
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Figure 4. Magnetization for iron as a function of
temperature. Broken lines are approxi-
mations for magnetization and support
(Eq. 10).
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of the ratio of hydrodynamic stress to magnetic stress, yno/MH, which

implies that there is no change of viscosity in the presence of an

applied field. This was verified experimentally for values of

yno/MH greater than 10-4. For values between 10-6 and 10-4 the vis-

cosity rapidly changes to the maximum value. In this transition

region the viscosity is a function of both magnetic field and rate

of shear. For values less than 10-6 the viscosity does not change and

it maintains a uniform maximum value. McTague [6] also carried out

an experiment for the magnetoviscosity of magnetic fluids with the

condition that the magnetic field dependence of the viscosity is in-

dependent of particle size and concentration at low concentration.

His results showed a different aspect of viscosity as compared to that

of Rosensweig et al. This is because McTague did not regard the

effects of particle diameters and concentration and the hydrodynamic

stress. The analytical calculation of viscosity by Hall and

Busenberg [7] shows some qualitative resemblance to the results of

Rosensweig et al.

Consequently, it is found that the field dependence of the vis-

cosity of a magnetic fluid in the presence of an applied field pro-

duce significant effects on the flow of such magnetic fluids.

Table I [3,8,45,46] is given as a summary of properties of magnetic

fluids.

4. Magnetic body force

There are two different types of pondoromotive forces. One is

the Kelvin-type force, which can be formulated in terms of



TABLE I

Summary of Physical Properties of Ferrofluids

Carrier
Liquid

Initial

Suscep-
tibility, x

Saturation Magnetization,
Gauss

Density
PL

(9/cm3)

Viscosity
at 300C os

(cP)

Particle Concen-
tration (based
on Ferrofluid

Density)

Volume-Percent
Average Spheri-
cal Particle,
Volume v (cm3)

140

(at T=0°K

Ms

(at H=10000 Oes

Kerosene 3.78 735 392 1.54 102 17.5 9.5 x 10-1'

Kerosene 1.10 305 104 1.13 8.6 7.9 3.4 x 10-19

Paraffin Oil 1.40 405 NA 1.10 122 10.2 3.4 x 10-19

Paraffin Wax 1.01 285 276 1.12 Solid* 12.2 3.4 x 10-19

Fluorocarbon 1.18 370 167 2.15 34.4 12.3 2.3 x 10-19

Silicone Oil 1.60 330 NA 1.45 2500 9.7 3.0 x 10-'9

Water 1.60 256 161 1.24 8.1 3.7 1.0 x 10-19

Glycerol 0.95 330 NA 1.51 1650 8.0 4.0 x 10-19

Lignosite NA 140 1.22 60 10.4 NA

DI0 (Diester) NA 255 1.205 500 10 NA

*
Melting point 38°C.
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magnetization, and the other Helmholtz-type force which is formu-

lated explicitly using magnetic permeability. With the Helmholtz-

type force, it is consistent to use the pressure which would be in

the fluid in the absence of an applied field. With the Kelvin-type

expression, the total pressure, including the contribution from an

applied field, can be considered. Dealing with a magnetic body force

of a magnetic fluid in the presence of an applied field, one can

guess that the Kelvin-type force is predominant. This difference

also can be seen through body forces in MHD and PHD systems.

As a qualitative description of body forces in various hydro-

dynamic systems, one can see the differences in the following areas:

OHD -- gravitational force =

MHD -- Lorentz force = J x B /volume,

EHD -- Coulomb force = ne E,

as n number of unipolar ions or particles carries

charge e in an electric field E,

FHD -- Kelvin force (in case, including helmholtz force)

= p0MVH,

the body force originates from the interaction of a

magnetic field H with a ferromagnetic dipole moment

(simply saying, magnetic moment) M in a magnetic fluid.

From an expression of Bernoulli's equation,

OHD P + pV2 + pgz = const.
2

MHD -- none, because the fluid flow itself generates elec-

tricity



20

EHD -- none, with the same reason as that of MHD

FHD [OHD] + magnet body force,

P + pV
2 1

+ pgz - )0 MdH = const.

The direction of the body force is determined by the gradient

of the field magnitude regardless of its orientation relative to that

of the induced magnetic moment.

1-2. Study Objectives

In the energy conversion system discussed earlier, one can see

that the improvement of heat transfer, high thermal conductivity,

and high magnetization of a magnetic fluid will give a higher effi-

ciency of energy conversion [35,36,37,48]. Their properties are also

desirable for the other applications discussed. Knowledge of temper-

ature and velocity profiles, and heat transfer rates in a magnetic

fluid flow, will aid in the development of magnetic fluid systems.

The research reported in this thesis is on the velocity and

temperature profiles and heat transfer coefficient of a magnetic

fluid flow in a horizontal circular duct initiated by an applied

magnetic field and heat transfer rate through the cylindrical wall

to the magnetic fluid when exposed to peripheral and axial constant

heat flux.

This study was composed of two parts. The first part was to

obtain the velocity and temperature profiles analytically from the

governing equations of a ferrofluid within the thermally fully
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developed region of a cylinder and to determine the heat transfer

coefficient, and magnetic Rayleigh number for stability of flow.

The second part was to obtain local velocity and temperature

profiles in the radial direction at the thermal entrance region in

the presence of an external magnetic field using a hot-wire anemo-

meter and thermocouple. The results were compared to-a numerical

solution of the equations governing ferrofluidic motion at the

thermal entrance region in a cylindrical duct.

A literature review is presented in Chapter II. Experimental

work and reduction are presented in Chapter VI. A data table and

related figures are given. The discussion and conclusion are given

in Chapters VII and VIII.
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II. LITERATURE SURVEY

Problems of a similar nature have been scarcely studied till

now. However, these problems are frequently suggested by the con-

ceptual idea [1], theoretical work [35,37, and 57], and the experi-

mental work [36] of the energy conversion system using magnetic

fluid as a working substance.

Past work concerning velocity profile and heat transfer rate of

a magnetic fluid in a circular cylinder have not been directly con-

ducted, but Berkovsky et al. [58 and 59] studied heat transfer

across a vertical plane of a ferrofluid layer; and on a vertical cir-

cular magnetic fluid layer of an energized cable. Although these

studies are not similar to the present study, the results give some

examples of the effect of a gradient magnetic field on heat transfer

and temperature profiles.

Also Neuringer et al. [57] showed that the temperature and

pressure distribution for the steady two-dimensional source flow of

a ferrofluid inside the annular region with heat addition are in-

fluenced by the azimuthal magnetic field produced by a current-

carrying cylindrical conductor; and by the asymptotic solution.

This was obtained through their analytical work concerning the tem-

perature and pressure distribution (or expressed as the heat trans-

fer and flow characteristics of ferrofluid) and are well related to

the pyromagnetic coefficient of a ferrofluid itself.

There was a lot of research conducted on magnetic fluids when
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they first came out. Only a few, however, are related to the hydrody-

namic and thermal boundary-layer [60 and 61]. Buckmaster [60] deduced

equations from the Neuringer-Rosensweig model [57] for the boundary

layer flow of a ferrofluid and solved them numerically for a variety of

circumstances. His study is a good example for flow patterns in ferro-

fluid motion. Luikov et al. [61] studied the convection in ferromag-

netic fluid due to magnetocaloric effect. They show through analyti-

cal calculations that the temperature and velocity profiles for given

conditions of the pyromagnetic coefficient in a duct are a function of

the rate of change in an external magnetic field for the isothermal

boundary conditions. If we apply a constant heat flux instead of con-

stant temperature to the boundary, it will be obvious that the change

of magnetic moment of the substance due to fluid temperature change

under a constant applied magnetic field forces the fluid to flow, but

the temperature and velocity profiles are different from what Luikov

et al. [61] obtained. Gak [6] studied the case where an appreciable

volume of vlowing liquid, containing particles with a non-vanishing

magnetic moment, was subjected to the effect of local inhomogeneous

fields (boundary effects) and passed through a uniform magnetic field

of low intensity as an order of 10 - 103 Gauss which was perpendicu-

lar to the flowing direction of a liquid. The object of his study

was to explain the nature of the effects associated with the magnetic

treatment of water.

In reviewing the references cited above, it is obvious that
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more analytical and experimental work is necessary on the flow struc-

ture [47] and heat transfer for magnetic fluid motion under the ex-

ternal magnetic field of variable range of intensity.
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III. THEORETICAL ANALYSIS

III-1. Model

A. Model assumption

1. Isotropic,

2. Monophase,

3. Non-conducting,

4. Asymmetrical continuum model.

B. A set of independent variables

1. Scalars:

a) liquid density,

b) pressure,

c) temperature,

d) thermodynamic coefficients of a magnetic fluid.

2. Vectors:

a) velocity,

b) magnetic field intensity,

c) magnetic field induction of magnetization,

d) temperature gradient.

C. Governing equations

1. Conservation of mass,

2. Conservation of change in momentum:

Navier-Stokes equation with the addition of the Maxwellian

stress tensor in the fluid for a magnetic field.
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3. Conservation of change in intrinsic angular momentum :

4. Conservation of energy

5. Maxwell equation

6. An appropriate equation of magnetization

7. Additional equations.

111-2. Continuum Model Approach

A magnetic fluid is regarded as a perfect continuum model since

it behaves every aspect of the continuum properties [49]. Historical-

ly, Eringen [49] pioneered and developed a continuum theory with in-

trinsic rotation. This is often called asymmetrical hydrodynamics

because of the asymmetry of the stress tensors which stems from an

averaging over the centers of mass of microcontinuum units having

rotatory degrees of freedom.

Before describing further details about the field equation,

some definitions should be presented for a better understanding of

the continuum model of a magnetic fluid.

A. Definitions

1. Body force:

A rate of arrival of linear momentum.

2. Body couple:

The moment of body forces like an electromagnetic force about

an arbitrary line within or without the domain of the body. It

is stated that a body couple is a rate of arrival of inter-

nal angular momentum from a magnetic field.
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3. Stress:

The stress is the applied load (or external forces) per unit

area acting on the common interface of domains and is direct-

ly associated with the flux of linear momentum imparted from

one part to its neighbor and from one neighbor to the next

through their interfaces.

4. Couple Stress:

The moment of a body force per unit area about an axis which

may cause a rotational effect on the surface through which it

is transmitted. Thus, this response of the body consists of

the moment of the stress which is clearly associated with the

flux of moment of momentum which is transmitted from one body

to another through their common interface or from one part of

the body to another inside the body through a common bounding

surface. This moment stress which acts on such common bounding

surfaces and which exerts a rotational effect on such surfaces

is also measured per unit area of the surface. In short, it

is the rate of arrival of the internal angular momentum from

neighboring material surrounding through diffusion.

B. Tensor notations

1. Body couple per unit mass -- Gi (pseudovector)

2. Surface couple per unit area -- Si = n.J S. (pseudovector)

3. Couple stress tensor -- Sid

4. Vector surface traction -- o n.a.
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5. Stress tensor -- aij

6. Translatory velocity -- Vi

7. Rotatory velocity -- Wi

8. Rate of deformation --

aV.

. ax. a.

Vi 3I-
3x.

xJ

= D..
lj

+ w..
lj

= Dij + eijk Wk

= (rate of deformation) + (vorticity or spin tensor)

ay.
Dij 3x. - = Vi,j eijk Wk

9. Vector body force --

Fi = tioMjHi,j

10. Pseudovector body couple/unit mass --

Gi = moMjHkeijk

11. Total energy/unit mass --

= (kinetic energy) + (average energy of intrinsic

rotations)

+ (magnetic field energy) + (internal energy)

+ (chemical potential)

1

2.1

1
po2E = TV2 + 4W2 + TM - poHi(Hi + Mi) + CvT + (I)
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111-3. Comparison to Conventional Continuum Theory

1. The rotatory degrees of freedom of magnetic fluids

a) The difference can be shown by the introduction of an internal

spin field, W, which is essentially different from the bulk

angular velocity, defined as half a vorticity vector.

b) It can be shown by the recognition of the existence of a

pseudovector magnetic body couple and couple stress tensor.

In these cases the stress tensor is asymmetrical and the conser-

vation of the total moment of angular momentum cannot be auto-

matically fulfilled whenever that of the linear momentum can be

assured.

111-4. Governing Equations of a Magnetic Fluid in

an Asymmetrical Monophase Approximation

1. Conservation of mass:

+ (PVi)'i =0

2. Conservation of momentum:

Navier-Stokes equation

dVi

Pdt Pii,j P11°MiHi,i

where the stress tensor

a.. = [-p6.. + - ye.. [12. .V . - 2W.]ij,j 3x. ij ij ijk jkl j ,k

and the viscous stress tensor

(13)

(14)
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[

ay. ay. avk avk

crii Po Dx. + ax. T6ii axk + 0°,Jaxk
J 1

Substituting the viscous stress tensor into the stress tensor and

writing in a simple form, we have

(_icsij)i + pgiivi,i + (X0 + f)(Vi,j)j

-
Yoeijk [ejkiVk,i - 2Wj],k .

Thus the Navier-Stokes equation has the form

dV.

P dti (-136ii)j Pgiivi,j (X° f)(Vi,j)j

-Yoe.
i

.k [ e.
.V

- 2WI.]
,k

+ pp M.H.
,.jk1

.

j 1j

where the fourth and fifth terms of the right-hand side

represent the effects due to couple stress and body couple.

3. Conservation of energy --

Yr
dHi

p = xv
2
T + jVi + Si jWi +1106T

3T dt

4. Conservation of intrinsic regular momentum

dW;

I S.. . - a. e.. + puoM.H e..
dt ij,j jk ijk j k ijk

5. Pressure

P = P (p,T,H)

6. Additional equations

a) Balance of momentum of inertia of unit mass

DI
+ (IVi),i = 0

(15)

(16)

(17)

(18)

(19)
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b) Dynamics of magnetization

If the deviation from equilibrium magnetization is not too

large, then the following equation is acceptable for rotating

with the subcontinuum unit.

3Mi
1 Ml

at T fH
Hi Mi) (20)

where the relaxation parameter T has an order of 10-5 sec.

This is mainly defined by the scale of rotary Brownian motion,

vn/kT.

7. Maxwellian equation

Since the displacement currents and electric conductivity of the

magnetic fluid are disregarded.

V x H = 0

V(H + M) =0

(1)

The equations shown above consist of constitutive equations for a

magnetic fluid. In the actual approaches to the problem, a few as-

sumptions are made in order to simplify or linearize equations

governing a magnetic fluid flow and heat transfer. The equations,

when simplified with the assumptions, must still hold the major

effect due to magnetic properties of a magnetic fluid in addition to

the conventional setting of equation, and also the changes in the

total feature due to the assumptions must be minimal enough as com-

pared to the overall approach. If the assumptions satisfy the above

conditions, then the solutions to the governing equation can give



32

rise to the answers to the physical phenomena.

111-5. Flow Stability Condition

From Equations (13), (15), and (16) the stability condition

will be sought for an incompressible fluid and for a fluid which is

totally balanced with an external magnetic field by introducing di-

mensionless variables.

Let

v = 7(k/pci),

t = j (02/p),

T = T [(A + 114thd ,

p = P (pk/pce)P,

where 2, is the characteristic length,

A = -
3T
-'.

aZ

3
h =

H

az

Here Equations (13), (15), and (16) will be written in vector-

ial form for convenience. Thus, we have

Vv = 0

dv
pa- = -Op + 1172v + poMVH,

dT 2 (M) dH
pC= kV T +Po

dt
To 7

H
dt

The magnetic field is constant with respect to time. Rewriting

Equations (22) and (23) we have
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3vp-- = - Vp + pV2
V + 110MVH, (24)

3t

3T 3M
pc .17 + pcvVT = kV2T + poTo

CaT v.vH . (25)

By an approximation for the temperature dependence of magnetization

(Fig. 4)

01-19
H

K

and poM = KT,

where T implies Tc T, which Tc is the Curie temperature. The mag-

netization decreases with heating, so that a fluid is cooled when it

is adiabatically displaced downstream (dz > 0) from a position of

equilibrium into a region of lower pressure, and is heated if the

magnetic field strength increases with distance. The temperature

change due to the magnetocaloric effect is

AT = p Az
pc

(26)

where the temperature To is taken to be average over the distance.

Rearranging Equation (25), we have

3TpC-a-F-kV2 T+ [pcA + TopoKh] v . (27)

Then substituting dimensionless variables into Equations (24) and

(27) gives

and

av

of pk pc

k _ 2- -
k

= V T + v
of

(28)

(29)
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In Equation (28) the coefficient of the last term is dimensionless

combination of the parameters. Comparing the ordinary convective

problems [50,51], the dimensionless combination plays the same role

as the Rayleigh number. Thus we can have so-called magnetic

Rayleigh number

PopcKhe A poToKh
(30)Ra

M pk pc

This number (30) is somewhat similar with that of Shliomis [52],

Berkovsky et al. [53] , and Lalas et al. [54] , Luikov et al. [55]

presented.

This magnetic Rayleigh number actually indicates whether the

thermomechanical equilibrium of a magnetic fluid can be maintained.

_Thus, on the basis of known results of the theory of convection it

is stated that thermomechanical equilibrium of a magnetic fluid is

stable only as long as the magnetic Rayleigh number, Ram*, remains

less than the critical value of Ram. For Ram > Ra
m
* the motionless

fluid shifts to a steady convective motion. The critical magnetic

Rayleigh number is determined by the geometry and the boundary condi-

tions of a model. Berkovsky [53] mentioned that the critical number

for a cylindrical layer of magnetic fluid is equal to 1707. There-

fore, any value over this critical value of the magnetic Rayleigh

number produces a flow field that is regarded as steady motion.

The next chapter presents the assumptions made to the governing

equations, and also gives the solutions to the simplified governing

equations.
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IV. ANALYTICAL SOLUTIONS FOR FULLY DEVELOPED FLOW

IV-1. Physical Model

As mentioned in Chapter I, fluid flow in the circular tube with

constant heat flux was chosen. Figure(5)shows a schematic diagram of

the model. This has the same dimensions as the experimental test

section.

IV-2. Assumptions

In Chapter III, the equations governing a flow field have been

established for a magnetic fluid regarded as an asymmetric continuum.

Now by making a few appropriate assumptions which do not change

the basic principles of the constitutive equations, one can simplify

or linearize the governing equations. This will make it possible to

obtain solutions to the governing equation. The following assump-

tions were made in this study.

1. Steady state

Steady state is assumed. If the magnetic Rayleigh number is

larger than a critical number, the flow field will be stable and

steady since heat flux and external magnetic field are constant.

Therefore, the steady state assumption is reasonable.

2. Axisymmetric, fully developed flow

It is assumed that fluid flows inside a tube far downstream of

any entrance or any elbow. Hence,
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V
z

>> V
r , ve

3vz
,,

3v
r

3v
r

avz

' 777- ' Ta--

3. Incompressible.

Since the fluid is a liquid, it is assumed to be incompressible.

4. The external magnetic field is constant.

Even though there is any change in an applied field, the re-

laxation time is so small that the spin energy becomes frozen soon

to its domain.

H =
r

, He, H
z l

= constant,

aH
z

3H
e

3H
z

h ,

az 3r ae

5. The magnetization is approximated by using Equation (10).

IV-3. Simplification and non-dimensionalization

of the Equations

1. Simplification of the equations.

With the above assumptions, the constitutive equations are

written in a cylindrical coordinate system.

The conservation of mass:
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Dp . 1 3 , x , x 3

--3-F + T. -37 (rpvr) + r- 1, kpy ) + -- (Pv ) = 0. (31)
u 0 3z z

Rewriting the above equation with assumptions we have

3v
z

+P 3z + vz

The final form of equation is

3v v
r

3v
z+ + O.

3r
r

r 3z

The conservation of momentum:

r-direction:

(32)

Note: The arrow and the circled number means cancellation
due to the related assumptions in Section IV-2.



0-direction:

at
+v

1

2+
r2

Z-di recti on :

avz vz Dv
zyr

Dr r ae
+ vz

Dz

= - + v1 DD
V

z 1

p are
+ --2-r302

3

[;

Hence, we have

aP = 0,'

ap

e

+ 0,
ra

DH
z+

ae a z

z + 1
Dv

z

Dv
z 2va v

z 1
+ zV

[ z 1 m
+

v

r +---r Dr + Vz Dz p v
D

are

39

(33)

( 34)

(35)
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The conservation of energy:

Hence, we have

al
pc [E

r ar
11: + v

z al--- - poToKv ---
z 3z

(k, 3T;)
+ k

321.
(avz

(36)
r ar ar 91..2 + 1-1.ar



2. Non-dimensionalization of the equations.

The following dimensionless variables are introduced:

V
z

U
z

=

Vz av

V
r

U
r

=
V
z av

P' =
P

pv
z
2
av

$

r' =
r

a

z

a

t = (T - Tw )/(Tc - Tw)

= (T - Tw) /AT

Re = 2apV
z av

Pr
k

LIE

H'
H

Ho

M
M

M
s

Then Equation (32) becomes

3U 3
r r

+

U

177 +

Uz

ars 3z'

Equation (35) is written to a form

3U
z : 1 32

BU
z _H ,

'r 3r' -z 3z' az' Re r'3r' r

3U
z

3r'
+ .012_ '

z av
az

41

(37)

(38)
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where M is defined by using Equation (10).

poMoM = MoK(tc - t). (10)

Also for a constant field intensity gradient let

h=
az

3H'

then (35) becomes

DU
z

3
z '+ 2 1 D

DU
z

Ur -5-Fr -z Tir Re r' Dr 31-'

MoHoKh
(t - t).

PVz av

The energy Equation (36) is given by

at
aQ

m
ATU + U A - ---7--

r Dr' z
zav,

2 AT
,

(
r
,at ) 2AT 32t PVzav nz 2--

RePr r' Dr' as r'

+
RePr Tz72 pca Dr'

(39)

(40)

DT
where A = - Ti. and Qm represents the magnetocaloric energy. The

magnetocaloric effect is assumed to be constant since the magnetic

fluid flow is under steady motion with constant external magnetic

field and heat flux.

Equations (37), (38), and (40) are used for the thermally fully

developed flow problem in the next section.
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IV-4. Hydrodynamically, Thermally Fully Developed Flow

With a few more assumptions Equations (37), (38), and (40) can

be linearized. First, let

3T

az'
= ± A = constant,

where the positive or negative signs are chosen for cooling or heat-

ing respectively. Hence

a
2T

0-gm

The pressure gradient is assumed to be constant in fully de-

veloped flow, and there is no dissipation energy due to the viscosity

effect because of the low velocity. Therefore,

aP = constantaz

(12

11 3r'
= 0.

For fully developed flow,

U
r

= 0.

Hence, from the continuity equation

0

a2 uz

az t2



Thus Equations (38) and (40) are reduced to

and

44

221.i. 2 1 a (E,Duz> MoHoKh
0 (t - t), (41)

az Re r' ar'_ pV2
zav

aQm 2AT 1 a (, at
U A = + r r
z pcV

zav
RePr r'ar

(42)

2. Heating case

For brevity, let us omit any prime notations and subscripts in

Equations (41) and (42),

aQm

Let S
MOH Kh , F?
pVav

pcVav '

St = (Ste - -c a121+1Re
-11-

r ar
(r 1-1') and P = (St

c
- P-a) = const.

z az

Then Equation (41) is written as

st = p 1 ai
y

+
Re 7:

I
`r 7F)

From the energy Equation (42) becomes,

2AT 1 a f_ at,
-Au = F

+ RePr ar " ari

(43)

(44)

Differentiating Equation (43) twice and then substituting into

Equation (44), we obtain a fourth order Bessel-equation. That is

a4u 2 33u 1 D2u 1 Du ASRe2Pr
---3-3r 2-Dr + -Tr ---Dr + 4 A T

FSRe2Pr
0.

4AT
(45)
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ASRe2 Pr
Let y

4AT

then we can write Equation (45) in the form

V41.1 +y=yf..
A

where 04 = v2072) = v2 32

3r2[

1 a

.7 ar

1 a2

arm
2 V

(46)

TY r DO

1

r are r3 3r

The solution to Equation (46) is

u = - Tk-+ ciJo(y
1/4Jr r) + c2Y0(y

1/4/f r) + c3I0(y
1/4

r)

+ c4K0(y4ii r) . (47)

In order to get rid of the coefficients of Equation (47) the

equation needs four boundary conditions. One boundary condition is

presumed that the velocity at centerline is finite. That is,

u = finite at r = O. (48)

Since Yo and Ko are undefined at r = 0, the coefficient c2 and c4

have to be zero.

Then Equation (47) has to take complex coefficients due to the argu-

ment.

F
u = -

A
+ (C

ir
+ iC

1
.) Jo (y°9 r)
1

+ (C3
r
+ iC3.) Io(y vr r) (49)



By the definitions of Kelvin Functions [56]

Ber(y4 r) = real part of Io(y1/4)/T r).

Bei(y4 r) = imaginary part of Io(y1/4ii r),

and by the properties that the function Jo(y4if r) is the complex

conjugate of Io(y44- r),

Ber(y4 r) = real part of Jo(y44- r),

Bei(y4 r) = - imaginary part of Jo (y4Vi r).

Equation (49) can be written in the form

u = - T+ [CI
r
+C3

r
] Ber(y4r) + [C3

i
-CI ] Bei(y4r).

Let (Cl + C3r) = Dr

then

(C3i - Cli) = Di

u = -
A

+ D
r
Ber(y r) + D.Bei(y4r).

46

(50)

The other boundary condition is that the velocity is zero at the wall

Hence

u = 0 at r = 1. (51)

D.

Bei (y4)

- D
r
Ber(y1/4)

The average velocity is defined by

uav = A fudA

where A is the cross-sectional area.

Therefore, for a scaled geometry the average velocity is
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urdr.
2 0
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(52)

Applying Equation (50) to (52), then performing the integration, we

obtain

1/4;1, F, F 1 Ber(y1/4)

Y 27-. A y1/4 Bei (y1/41,

Dr 1/4[64i (i1/41 Ber) 1/41

'
(yiu'r`i

By defining the coefficients as such, Equation (50) presents the

velocity profile along the radial direction.

In order to obtain the temperature profile, substituting Equation

(50) into Equation (44) yields,

AT
r ar (rte}

at

)
= GiBei (.y1/4r) + G2Ber(y1/4r)

ARePrD.
where G1

2

ARePrDr
G2

2

Integrating Equation (53) once

at
AT = -

G1
[rBerqy ril + [rbei(y r)] + cs

.or Y4 y1/4

The boundary condition is

hence

at

Br
0 at r = 0,

C5 = 0.

(53)



Then integrating again

G2
AT't =----iLBer(y41- r) + --f- Bei(y41-r) + c 6

/
Y

and the boundary condition is

Then

t = tw = 0 at r = 1.

C6 = 2-1-Ber(y4) - 21 Bei(y).
Y2 YZ

Therefore, we have a temperature profile equation

When

ATt =
2

[Ber(y4) - Ber(11/4r)]

Y

+ [Bei(y4r) - Bei(y4)] .

Y

r = 0, t = 1 and Bei (0) =0

Ber (0) = 1.

Applying this condition to Equation (54) we have

AT = T
c
-T
w
= -+ Ber(y4) - 1 - Bei(y4).

y2
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(54)

(55)

From Equation (55), we can also obtain the value of A = ± by

using a root finding procedure because G1, G2 and y have A in them.

Dividing Equation (54) by Equation (55)

= KI[Ber(y4) - Ber(y4r)] + K2[Gei(Y4r) - Bei (Y`)] (56)



where

and

K1

[Ber(y1/4) - 1] - G2Bei (Y4)

G2

K2 = 3-
[Ber(y4) - 1] - G2Bei (Y4)
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Thus, the velocity and temperature profile equations have been

derived.

The medium temperature is obtained by using the following equa-

tion

T uTdA ,
m AVav

IA

and the above form of equation can be written in a scaled geometry

T
t
m

+ =2f 2Twut rdr + f urdr .

AT

0

(57)

Substituting Equations (50) and (56) into (57) we have, therefore,

m

,,T

AT
"

+ (2B2

+ (2B3

2Tw

A

Dr)

Di)

1

f rdr

0

1-f r Ber(y4r)dr

0

r Bei(y r)dr
1/4

0

AT

Tw
+

2

AT

2Tw
+

2B4 f
1

[Bei- (y 4r) - Ber-(y'rndr

+ 2B6 rBei(y4r)Ber(y4r)dr, (58)



where

and

R = KIBer(y1/4) - V2Bei y

B1 = R,

82 = D
r A
R + F

83 D.R - F K2,
A

B4 = Di K2 ,

86 = DrKi = 84,

86 = DrK2- Di K1
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Integration of the above functions is performed in Appendix A. Thus,

we have the medium temperature

t = (13 IA FN 2

m AT pi' + (82 + D ) Bei )

AT r

2 Tw
- -7033+ , D.1 ) B4r
v4 Li

- B4 Ber2(Y4)+8er(Y4)-Bei2(Y4)-Beil2 (Y4)]

+ B6EBer(y4)Bei(y1/4)+ Berl(Y4)Beil(Y4)]. (59)

Next, the Nusselt number is derived by using the result after

integrating Equation (53) with the boundary condition. That is, the

temperature gradient is written in a form.

GT
9t 1 _

= L- GIBer(y"r) + G2Bei (y1/4r):
I -y4

And the heat flux is expressed by the following equation

(60)



0
= k

aT
0 ar

aT AT at
where ar a art

Therefore

r=a
= h [Tw - Tin]

as it has been
AT at

a ar

at 1
-k

A
a ar

= - h [T - Tw]
r=1
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(61)

(62)

And rearranging Equation (62) to make a combination of parameters

for a Nusselt number,

at

_ 2ah
2AT 77-1

ar =1Nu
k

rrm

The medium temperature in a scaled version is defined by

I - T
m w

tm =
AT

Hence, the Nusselt number becomes

2 1,

N
u y

[- GiBer(y4) + G2Bei
1/46,Ttm

(63)

(64)

2. Cooling Case

In a similar manner we can derive the equations for velocity,

temperature, medium temperature, and the Nusselt number.

For a cooling case, the A in Equation (42) has the positive

sign. Thus Equation (44) has a form

Au
2AT 1 a1,,,at\

' RePr r ar (65)
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Differentiating Equation (43) twice and then substituting it

into Equation (65), we also have the fourth order Bessel Equation like

Equation (46) except a sign different. It is

eu - Yu = - y-A- .

the solution to Equation (66) is

(66)

u = + d J (v41.)+d Y (Y4r)+d I (v1/4)-i-d K (v4r)-N 10 , 201 301 1+01 (67)

By using boundary condition (48),

d2 = d4 = 0,

and by boundary condition (51)

A
ditio(1-)

d3

io(y4)

And then using Equation (52) we have

1F FlII(Y4)
2_4122A .LL4-112122/2

[di (Y4) J:((ly:))11(y4)]

Therefore, the velocity profile is given by

=
F A 4 T 4

u + ulJoY r) u3loty r) (68)

Substituting Equation (68) into Equation (65), and then inte-

grating twice with the boundary conditions

et =0n
3r

at r = 0,



and t = t
w

= 0 at r = 1,

we have
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AT. t =
DI ;-
T. [J0 4)--th (Y4rn+

D2
[To (YX-40-10 (y4)] . (69)

Y 2 Y
2

When r = 0, t = 1, then Equation (69) becomes

where

and

AT= [Jo (y4) - 1] +

2

[1 - IO(Y`)]
Y Y

DI = ARePrd3/2,

02 = ARePrd2/2.

(70)

As with Equation (55), we can obtain the value of A = -Pi: from

Equation (70) by the same method.

Dividing Equation (69) by Equation (70), the temperature pro-

file equation is obtained in the form

t = Ei [Jo (y1/4) OH] E2 [I° (y1/4r) - I0 (Y1/4)]

where Di

Di [Jo (Y1/4)-1] + D2 [1-'0 (Y1/4)] ,

D2

E2

DI NO (Y1/4)-1] + D2 El (Y1/4)]

The medium temperature can also be found the same way.

1

Tw
t
m

+ = 2 utrdr +
2

urdrAT AT
0 0

(71 )
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= (a1+ a5 - a6 + Tw F
AT A

)+ 1(2a211/4 +

AT 1

d )J (14)

a4 1-+
y4

2

AT
2a3+ d3 )I1 (Y 4)4- [Jo (Y 4) I (Y

4
)+JI (Y

4
)4(Y4)]

as No2
4

Y4)+,112(Y )] 4E102(14) II2(Y)7

where G = E1J0(Y4) E210(14),

al = -A- G ,

a2 dIG -A- El

a3 = d3G + AF- E2

a4 = d1E2 - d3E1

a5 = d1E1

and a6 = d3E2

(72)

For a Nusselt number for cooling case, by using Equation (62)

and by differentiating Equation (71)

3t %
Tr- = Y4[EIJI(Y4r) E2I1(y4r)]

the Nusselt number is described as

Nu
n

CEIJI(Y4) E2II(Y4)] (73)



V. THERMAL ENTRY FLOW FIELD

In a previous chapter the fully developed flow problems were

analytically solved with some assumptions. In this chapter the

thermal entry problem is solved numerically. The results will be

compared with the experimental results in Chapter VII.

First, the Equations (32), (35), and (36) are transformed by

using finite difference methods. The governing equations can be

written as:

Conservation of mass:

3(rVr) 3(rV
z

)

r

Conservation of momentum:
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(32)

avz a vz
1 3P 3211z,.1 "z U0AT tarIN aH (35)

V . + V
z azr ar az v ar2 r ar p `aVii az

Here, we define a general pressure term including the magnetic

force rather than separate terms. This general pressure term is

defined later. Let

p 1 2E
1 21) -91

1 3 _ + PoAT( H az
_

p az pp

Thus, Equation (35) becomes

avz
1 3P

[a2 V
z 1

3V
z_

3V
z + v = -

r ar z aZ p 3Z ar2 r ar
(35a)



Conservation of energy:

3T
pc E + V - poKhV T

r Dr z az
DT

z

DT D2T
11`faVz12rDr`I Dr ) Tir ar

V-1. Difference Equations

All differential terms related to Equations (32), (35) and

(36) are depicted in difference equations based on the following
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(36)

mesh diagram

r

j+1

J

j 1

i-1,j+1 i ,j+1 i+1,j+1

i -1,j i,j i+1,j

i-1,j-1 i+1,j-1

1-1 1 i+1

aT Ti +1, j +1 - Ti+1,j-1

ar 26r

3 - +
Ti+1,3*

Dz 26
z



2
Ti +l

2T. . +
Ti +1T 1+,j+1 1+1,3 1+1 ,-1

Tr2- 8
r
z

u. u.
au 1+1,j+1 - 1+1,j-1

ar 28
r

3 - 4ui,i +

Dz 28
z

2 U- - 2u. + U.
3 u 1+10+1 1,j 1+1,j-1

8
r
2

U.
+ 1

U.
1+1,j -10

ui,j-
2

Using the above difference forms the continuity, momentum, and

energy equations are easily transformed in difference equations.

The following is the procedure to make these transformations.

to r

V-2. Continuity Equation in a Numerical Form

For continuity equation, it is first integrated with respect

u
r

= - r1 fr 71 (ruz)dr
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(74)

From now on, in order to avoid the repeated use of trans-

cripts r and z, we use U and V for z and r-directions, respective-

ly. Therefore, Equation (74) is written, with new variables,

rV = - I f (rU)dr

0

(74)



Then by the Trapezoidal rule Equation (74) has a following form

V. V. -
1+1,3 1+1,J-1 2r .

Sr
[A-(rU] - [4( rd
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(75)

By expanding the terms in a big bracket, we have a final difference

form for Equation (74)

Vi+1,j Vi+1,j-1 26z

Sr

i = 1,m, and

j = 2,n-1,

when j = n (at wall)

vi+1,n = 0

ui+1,n 0

and Ul . =0

U. . - U. . + (1 -
1+1,J 1,3

(1 31-) Ui,j_i

hence, Equation (76) is reduced as

1

j -1) 1+1 ,j -1

(76)

Vi+1,n-1 2S
z

(

n

n-1' "i+1 ,n-1 (1 F171-) Ui,n-1

sr
I 1

(77)

When j = 1, Equation (76) blows up because of the singularities

at j = 1 (that is, r = 0). This singularity can be avoided by using

the boundary condition

3r
at r = 0.

Also we can approximate the singularity term as r is approaching



zero by the following procedure

1 im 1 DU 32U
r+o r 7-

V-3. Momentum Equation

59

(78)

Here for convenience we also replace ur and uz from Equation

(35a) by V and U, respectively.

v au I, au 1 DP a2u 1 au
- p v -Try 7,- @r. (35a)

Replacing the variables in Equation (35a) by difference forms and

arranging terms in order of j we have

where

+ + CjUi+1,j4.1 Dj

for j = 2, n - 1 (79)

2v8z
A. = -(2V. .-v. +

vcS

,3 1-1,3 Sr
r

2 ( j-1 )6
r

2

B. = 3(2U. - U. .) +
4v6z

1 1-1
r

z
2vS vd

zz
(2V. . .)Cj

1,j
-V

1-1,i
r

(s

r
2 0-1)61.2 9

DJ =

25

pz

(E.
- U1._, .%;zA' 1+1 A

- u )(4U
,J

)

.

For j = 1, using the boundary condition



at r = 0,

and the approximation, Equation (78), we obtain

+ (Ai + 9) Ui+1,j+1 Di

for j = 1,

where

4v6z
= - 6-z

r r

8v6z
B. -

= (2V. . -
az

4v6
z

.C.
1,3

V
1-1.3

J

;r

6

z (2) + (2U.
,.-U -1,

.)(4U.
,.-U. -1,J

.)13 13 1

For j = n, the boundary conditions are

u
i+1 ,n

=

vi+1,n = 0

on wall

on wall

Hence, Equation (79) is reduced as a following form

A. U. . + B. U. . = .3-1 11,3-2 3-1 1+1,3-1 3-1

for j = n,
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(80)

(81)

where Aj_l Bj_i , and Dj_i are defined by replacing j of Aj,

and D. of Equation (80) by j-1 as j n.

We still have to define the pressure gradient term in Equations
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(79), (80), and (81). The pressure is defined in magnetic fluids

in the presence of an applied magnetic field by an expression for

the free energy F. The differential with constant concentration has

the form of the magnetic Gibbs function

dF = - SdT - PodV + poH6MdV (83)

where Po is the pressure in the absence of an applied field. Taking

a derivative with respect to the volume with constant T and M, we

have

where

3F
(TO = - po + poNSM

T,M

(g) P
T,M

in the presence of a magnetic field. Hence we have

P = - poN6M

= pa 1.104H(TcT) .

Taking a derivative with respect to Z, then

1 3P 1 3P0 poKAT al poKH DT
-p- az p az p az p az

where AT = T
h

- T

Under the assumptions of a fully developed velocity profile, the

(84)

(85)

(86)

(87)

pressure gradient in the absence of an applied field is expressed

in the form
1 Po av

P
_

.57

=
aL

(88)



Therefore, Equation (87)

( .2av) poKAT1 aP p0KH aT
a p az p Dz

In numerical form of Equation (89), we have
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(89)

...( 1 . 1/2.1

' p ;z1
= 2

a

[ 81-iljav

p 2 P. .

1 (811TUav)

i+1,j 1 ,J 1-1,j

uoKh (T1.
- Ti -1,j)

[T1. - T1. ] (90),j -1,i 6
zp

,j -1 ,j
A

V-4. Energy Equation

Equation (36) is transformed into a numerical form in the same

manner. As a result of the transformation, we have

where

a
j
T1. + . + y.T 6.+1,j-1 1+1,3 1+1,j+1

for j = 2, n - 1 (91)

. = -(2 v. )

6z 2k6z k6
za

J Vi,i 1-1,31 6
r

pc6
r

(j-1)pc6
r
2

= 3(2U. -U.
4k6

z 2k

J 1,j 1-1,j1
1 +

pcor pc6z

26,110Kh

- (2U. - U. ) '
1,j 1-1,j pc

6 2k6z kcSz

y. = (2U. - U. ) z
,j 1-1,j 6v pc6r pc(j-1)6

r



and

2k
S. = (2U. .-U. .)(4T. .-T. .)-(2T. .-T. .)

1,J 1-1,j 1,3 1-10 0 -1,j pcoz

12 "z
(Ui+1,j+1 Ui+1,j-11 2pc6r

For j=1, the boundary condition is

at r = 0,

Zim 1 DT a2T

r+0 r Dr ar2

Using these conditions, we have

where

6. T +10 . + (cJ 0. + yJ ') T1.

+1
,

,J+1
. = 6.

1 J

aj =-(2V. - Vi ) 6z

416z

1,j 1-1,j Sr 3E8 r

816

61. = 3(2U. - U. ) + z
2k

1,j 1-1,3 57r pc6
z

26 poKh

1

- (2U.
,i

-
1

U.
-1,J

.) z

6z 416z

1
= (2V. - V. ),i 1-1,j Sr pc pc
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(92)

= (2V. -V. )(4T. -T. )-(2T -T
2k

1,j 1-1,j 1,j -1,j i ,j -1 ,j1 pc6z

us
z

cu
i+ 1 +1 ui+1,j-1 2pcS

r
2

For j = n, the boundary condition is assumed to be constant

heat flux at the surface. That is,



0 3T
q" = k

Dr
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(93)

In a numerical expression of Equation (93), we use the three points

scheme as a following equation

q" = . . + Ti +l .Ti+1,j +1,3-1 +1,j-20 26r
[3 - 4T1

Then we have 0

26
rq"

Ti +l,j -2
- 4T

i+1,j-1
+ 3T

i+1,j k

where

Substituting Equation (94) into Equation (91), we have

Sz 210z 1(6
z 1

otj = -(2Vi ,i-Vi_i 4)
Sr

l

or par + (j-1 )pa r2 3

x 41(6z 2k , 4
f3 = 3(2Ui ,i-Ui_i j) + 75c61. 7- T Yj

26 moKh
-(2Ui

U." _1 j) Pc ,

Yj = ,

2k
6j = (2U. -U. .)(4T. -T. .)-(2T. -T. .)

1,j 1-1,J 1,j 1-1,J 1,j I-1,J pa

+ (Ui+j

E. = 0.

0

12

uSZ 26A

1,j-1' 2par 3k

(94)

For the initial setting, we define the constant values in the

following expressions.

For velocity,

U = U . = U
1,j 2,3 Uav

(j -1)(51

a ,n °2,n 0. (95)



For temperature,

U1,. = T
2,

. = constant.

V-5. Numerical Calculation

65

(96)

From the pervious sections we can see that the Equations (79),

(80), and (81) for velocity and (91), (92), and (94) for tempera-

ture form tridiagonal matrices respectively.

That is, for velocity

j = 17
1

B'.U. . + (At + CO U1. , . =
+1, ,3 +1,3+1 Oj

j = 2,n-1 A.U. . + B.U. . + CJ U1. . = D.
1+1,3-1 1+1,3 +1,3+1 J

j = n A U. . + B. U. . D.
n-1 1+1,3-2 3-1 11,3-1 3-1

and for temperature

j = 1, , . + +
1-1,

=
J 1+1,J J J 1,JTA sJ

j = 2,n-1 a.T. . + (3.T. . + y.T. . (S.
3 1+1,3-1 1+1,3 3 1+1,3+1

(97)

j = n + + BjTi +l sj
(98)

Finally, Equations (97) and (98) can be written as simultan-

eous equations through n specified nodes. Introducing some arbi-

trary coefficients instead of those in Equations (97) and (98), we

form a matrix with an arbitrary coefficient representing both cases

for velocity and temperature together. A matrix in tridiagonal

form is ai = b, that is



all a12

a21 a22 a23

a32 a33 a34

= = =
Let a = Q. R

Q = 1

q2 1

q3 1

a
n,n-2

a
n,n-1

a
n,n

en qn 1

and

R= rl

d2 r2
d3

S1 b1

S2 b2

S3 b3

S
n

r
3

b
n-

ti

dn
-1

r
n-1

do .
omparing elements of matrices (99) and (100), we find that

d1 = a11, d2 = a22, q2 = a21, r1 = a12, r2 = a23
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(99)

and so on. As a result, we can derive the following relationships

where

qi ai,i_i/di_,

d. = a
i,i

- r.
1

. q.
-1

r. = a1. .

1 ,1+1 9

e
n

= a
n,n-2

/d
n-2

d1 = a, ,

ri = al 2

i = 2, n-2

(100)

(101)



From the above,

a-s = b = QRS.

Let 11 = 6 = ;1.11..

= . -
Then Q z = b is given by

e e.

1
zi

q2 1 Z2

q3 1 Z3

qn-1 1

en q
n

1

z
n-1

zn

=

b1

b2

b3

b
n-1

bn
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(102)

We can also derive the following relationships from the simultan-

eous Equation (102)

For i = 1, zi = bi
i

For i = 2, n - 1 , = b.
zi -1 1-1

zi = bi -
i

q
zi-1,

and for. i = n, z.i

. . =
And then R S = Z is given by

d1 r1
.

d2 r2
d3 r3

dn
-1 n-1

dn

...

(103)

(' SI.-
K \

Z1

Si Z1

S3 Z3

=

S
n-1

z
n-1

Sn zn (104)

4... 4"%. ..0*
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where matrix R and matrix z are already known through Equations

(101) and (103). Therefore, we can make an arrangement to have

unknown values from R s = Z. The final arrangement is

S = z /d
n n n

and by setting k = n-j, j = 1, n - 1,

Sk = (z.k - rk Sk +l) /dk (105)

where z.n and do were defined by Equations (103) and (101). By such

a method the velocity and temperature are calculated.

The flowchart in Appendix C describes the program algorithm to

solve these equations.

Equations which describe the velocity and temperature profiles,

and so on, were programmed. A listing of this program and part of

the output data are presented in Appendix C. Calculated results

for velocity, temperature, medium temperature, Nusselt number, etc.

are discussed in Chapter VII. The input data for PROGRAM FHO were

illustrated in Table II.

The input data for PROGRAM MAGNET (Appendix B) are given here.

These data were selected to represent magnetic fluid "LIGNOSITE"

(Table I). Since some of the data were not available, approximate

values have been used.
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TABLE II

Data for the Magnetic Fluid "LIGNOSITE"

Kinetic Viscosity ,

Pyromagnetic Coefficient * *,

Density,

v = 7.787x10

K= 1 .0 Gauss / K

p = 1220 kg/m3

m2 /s

Magnetic Permeability at Vacuum, po= 1.26x10'6 N/A2
*

Thermal Conductivity , k = 0.175 W/m K

*
Heat Capacity , c = 5275.4 J/kg K

Vi scosity, p = 0.00126 Pa s

Curie Temperature, Tc = 1043 K

Saturated Magnetization, Ms = 57'1-150 Gauss

Field Intensity, H = 25004,8000 Gauss

Heat Flux q = 3769.0
0

W /m2

*
approximated.

**
at a temperature range from 273 K to 373 K.
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VI. EXPERIMENTAL WORK

Through the analytical and numerical work in the previous chap-

ters, solution to the velocity and temperature profiles have been ob-

tained. The experimental portion of this study was specially designed

to obtain the velocity and temperature profiles in the thermal en-

trance region of a magnetic fluid in the presence of an external mag-

netic field. The experimental data obtained were reduced through a re-

gressional analysis and a curve fitting program, and compared to the re-
/--

sults of the numerical analysis. The following sections describe

the step-by-step procedure of the experimental work done.

VI-1. Basic Idea

Velocity and temperature measurements in the flow of a mag-

netic fluid, while in the presence of an external magnetic field,

are not reported in the literature. A small amount of work has been

done on viscosity measurements [2,6], pressure [61] and the hydrau-

lic drag in a turbulent stream [62] for magnetic fluids. But these

measurements are not related to the present experimental work of

velocity and temperature measurement of magnetic fluids at low

Reynolds number initiated by an external magnetic field. The ex-

periments were, therefore, carried out from the probe calibration

to the data reduction.

The velocity itself is regarded as a function of temperature,

even though the fluid viscosity and density were assumed constant.
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This is because the fluid flow is initiated by a temperature de-

pendence of the magnetization of a magnetic fluid in an external

magnetic field. Accordingly, the velocity measurement should be

accompanied by temperature measurement at the same point. Then,

the measured velocities are interpreted by using the velocity cali-

bration fitting equation with respect to the fluid temperatures.

In the following section the velocity calibration is described.

VI-2. Velocity Calibration

1. Apparatus

The velocity calibration was done by using the system

shown on Figures 6 and 7. This system includes two major parts.

The first is the standpipe assembly. It maintains the weight

bob motion in a pipe filled with water which moves at a constant ve-

lodity controlled by valves. There are two valves: one is a large

valve which is used to control large velocities, and the other a

mini-flow control valve for low velocities. The velocity of the

weight bob is controlled by the valve, and is connected to a probe

by a steel wire through pulleys. In order to speed up the weight

bob motion, the support bar can have weights on its head. The

support bar in the weight guide moves linearally.

A fluid container filled with the magnetic fluid (LIGNOSITE)

*
By courtesy of Dr. J. R. Welty, Liquid Metal Heat Transfer

Lab., Department of Mechanical Engineering, Oregon State Univer-
sity, Corvallis, Oregon.
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g
D

PROBE
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Figure 6. Diagram of velocity calibration apparatus.
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was designed and made to insure constant fluid temperature. Hot

water was preheated electrically and circulated through the

annular space of the container. The container was also heated

by a nickel-chrome wire wound around the container along with in-

sulation. Thus, the fluid temperature was isothermally maintained

by a constant water flow rate and two separated electrical heaters.

The probe which was attached to the support bar was kept sub-

merged in the magnetic fluid until the end of calibration to pre-

vent surface contamination.

The other part of the system was the timing system. The timing

system and associated wiring diagram are illustrated in Figure 7.

It was used to precisely measure the probe motion in the test fluid

by measuring the time it took two sharp blades, separated a known

distances apart, to cut a thin light beam.

The timing system and anemometer consisted of the following:

a. Two power supplies and two regulators for warming the fluid

in the container,

b. A hot-wire anemometer probe TSI 1210-60 W, E479,

c. Hewlett-Packard 5300A Measuring System (timer),

d. Bausch & Lomb Light beam source,

e. Photocell,

f. Lens set,

g. One 6-volt and two 11/2-volt batteries,

h. Potentiometer,

i. Anemometer-TSI system,
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Monitor and power supply, Model 1051-2

Temperature and Switching Circuit, Model 1040

Constant temperature Anemometer, Model 10536

Variable Decade,

j. X-Y recorder.

2. Calibration Sequence

The velocity of the probe was controlled by adjusting the flow

control valve and adding necessary weights on the top of the probe

support bar. The weights were adjusted to define a range between

totally opened and closed valve positions for which measurements

are desired. The valves were then adjusted to obtain as many points

in that range as desired.

Calibration runs were made at four different magnetic fluid

temperatures. They were 289, 321, 328, and 345°K. A series of

runs was made at each temperature at various probe velocities

ranging from 5-100 in/min (0.002117-0.0423 m/s). Sufficient runs

were made over this range to give a good statistical average for

curve fitting, usually 40-90 runs for each temperature. The probe

voltage and knife edge gap traverse time were recorded for each

run. A regression analysis was run for each temperature setting

using program CURFIT given in Appendix D.

The equations obtained by the CURFIT program are:

For T = 289°K (RCALIA),

U1 (m/min) = 0.0254 [5.350172 + 22.46685 x (AV) - 44.35180 x (0)2

+ 70.29929x (AV)3]. (106)



For T = 321°K (RCAL3A),

U2 = 0.0254 [39.11619 - 441.1759x (AV) + 1873.675x (AV)2

- 2490.655x (AV)3],

For T = 328°K (RCAL4A),

U3 = 0.0254 [5.103801 + 22.57392x (AV) - 52.21068x (AV)2

+ 73.08020x (AV)2].

For T = 345°K (RCAL2A),

U4 = 0.0254 [4.733177 - 3.155512x (AV) + 41.58162x (AV)2

- 9.903631x (AV)3],
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(107)

(108)

(109)

A plot of these equations and all data points are shown in

Figures (8), (9), (10), and (11).

Equations (106), (107), (108), and (109) and Figures (8), (9),

(10), and (11) were used to evaluate the velocities experimentally

measured in the test section. Detailed discussion is given in

Section 4.

VI-3. Velocity and Temperature Measurements

1. Velocity Measurement

Methods for measuring low velocities in an opaque liquid like

a magnetic fluid are limited. As a result, a hot-wire Anemometer

was used. Initially, all possible methods were studied and tested,

but only the anemometer was satisfactory. Other methods were tried

but found unsatisfactory.

It was presumed that the use of a hot-wire Anemometer probe in

a magnetic fluid in the presence of an external magnetic field
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should be cautiously interpreted because the probe itself generates

a heat energy due to electrical resistance forming a temperature

gradient around a probe wire. Accordingly, a change in magnetization

due to this temperature gradient is formed. This region is quite

small, but when compared to the dimensions of a probe wire, this

unexpected flow field might influence the measurement- of a hot-wire

anemometer. Hence, in order to minimize these effects by the ane-

mometer, the probe was oriented in the magnetic field where there

was a small or no magnetic field gradient. This is where the con-

tribution of the magnetic field gradient to a flow field within the

region of temperature gradient could be ignored. Accordingly, the

measurement of velocity by a hot-wire anemometer where the field

gradient is steep is almost impossible.

Secondly, the resistance ratio of the anemometer was set as low

as possible. This reduced the heat flux from the heat probe wire.

If the resistance ratio was too small, however, the sensitivity of

the probe dropped. Therefore, a compromise was made. The resis-

tance ratio was 1.01.

2. Temperature Measurement

Temperature> within the magnetic fluid were measured with

copper-constantan thermocouples and an Esterline Anger Data Logger

Model PD2064. The Data Logger automatically converted the thermo-

couple emf into temperature from a pre-programmed calibration

curve. It printed out temperature continuously for record thermo-

couple if desired.
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3. Apparatus

The experimental apparatus is illustrated in Figures (12) and

(13). The closed loop arrangement comprised of a test section with-

in the magnetic field which was located far downstream from a corner,

and two water cooling sections. An alternate test section was on

the other side of the electromagnet. The distance upstream of the

test section was over 40 times the tube diameter. This was to

diminish any effects on the flow due to the entrance or corner.

The two cooling jackets were designed to drop fluid temperature from

370°K to 285°K.

The heating section was prepared by winding a Nickel-Chrome wire

as a heating element around a thin copper tube. The heating element

was covered by insulation and had terminals every 0.025 m interval.

Hence, even though there is only one slot for an anemometer probe,

by connecting or disconnecting the terminals the distance from the

thermal entrance could be varied by 0.025 meter intervals.

The anemometer probe and a thermocouple wire holder were held

by the micrometer head, as shown in Figure (13) and could be moved

up and down by adjusting the micrometer. The micrometer was also

attached to a vernier slide, so about 0.15 m stroke distance could

be covered. The probe and a thermocouple holder were sealed by an

0-ring and Halo oil. This oil was not soluble in the magnetic fluid.

It sealed and lubricated the probe.

The probe wire was moved up and down within the radius of the

tube. The probe and support arrangement are shown in Figure (13).

The magnetic field was generated by a Varian model V-2200A
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electromagnetic power supply and field regulator. The magnetic

field strength could be varied from 0 to 6500 Gauss with a 2 in gap

(0.05 m). Figure (14) shows how the magnetic field intensity varied

along the radial and axial directions. The data for Figure (14)

were taken for various field intensities using a flux meter. The

velocity measurements were performed within the region where the

field intensity was constant. Thus, the effect due to the field

gradient was minimized because of the constant field intensity with-

in the pole radius. As shown in Figure (13), the probe wire was

protected by pairs of protection legs from any direct contact with

the tube wall.

4. Procedure

The hot-wire anemometer probe and thermocouple holder were

first put through a hole in the circuit tube, and then attached to

the micrometer. This was done cautiously to insure that the probe

wire was parallel to the field intensity vector and perpendicular

to the flow direction. The magnetic fluid was then injected into

the test loop with a funnel into a valve.

The magnetic field generator was preset for the constant field

mode (instead of sweeping mode) for a maximum of 6500 Gauss within

a 0.05 meter gap between magnetic poles. If there were any super-

paramagnetic material between or neighborhood of magnetic poles,

the uniform field direction will be deflected through the superpara-

magnetic material. Therefore, all materials which were used in the

magnetic field were selected as non-magnetic materials except for
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for the magnetic fluid. All fabrications consisted of copper and

brass. After start-up of the electromagnet, the Field Selector Knob

was turned to the desired magnetic fields. In this experiment, the

field intensity was selected up to 5.5 Kilo Gauss. The first

setting of magnetic field was 4 kG.

A check was made to verify that all instruments. were properly

working and that the probe position was at the starting position.

When everything was working, the heating element around the test

section and cooling water were turned on and adjusted until a con-

stant surface temperature was obtained. The maximum temperature was

370 °K. The constant heat flux was 3769 W/m2. After equilibrium

was reached, the velocity and temperature measurements were carried

out at 10 points along the radial direction for the positions of

0.025 and 0.05 meter from the thermal entrance, and for the field

intensity of 4.0 kG and 5.0 kG, respectively.

5. Data Reduction and Analysis

During the measurements of velocity and temperatures, about

200 data points were successful out of about 500 attempts. An un-

stable flow field was often formed at a certain temperature and

magnetic field intermittently. It is still uncertain, but possible

interpretations are that the magnetic fluid was on the critical

point for stability; that is, the critical magnetic Rayleigh number

= 1707. Another interpretation is that the liquid velocity and

temperature rose with time and with accelerating motion of the fluid

up to their maximum values until, at a certain moment in time, the
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fluid temperature suddenly increased and the velocity was slowed

down. This phenomenon was well explained by Bashtovoi et al. [44]

by their thermoconvective explosion theory due to an accelerated

heating up of the magnetic fluid. It is suggested that this be

observed further on the scale of temperature and velocity of this

study.

The data obtained for velocity and temperature were reduced

through the program CURFIT in Appendix D and plotted through the

program FHDPLT in Appendix E. The computer programs CURFIT and

FHDPLT were developed using regression analysis. The complete pro-

gram listings are given in Appendices D and E.

The reduced data are illustrated in the following 12 figures.

Figures (15), (16), (17), and (18) show the regressed velocity

profile along the radial direction with data points. The velocity

profile in Figure (15) was drawn with a heat flux of 3769 Wm' and

the field intensity of 4000 Gauss at 0.025 m downstream from the

thermal entrance, Figure (16) with 5000 Gauss at 0.025 m, Figure (17)

with 4000 Gauss at 0.05 m, and Figure (18) with 5000 at 0.05 m down-

stream from the thermal entrance. The effect of magnetic accelera-

tion in this thermal boundary layer is obvious when comparing the

profiles at 0.025 and 0.05 m.

The velocity was also measured at the tube centerline as a

function of the external magnetic fields. These results are shown

in Figure (19) for field strength from zero to 5.5 kG. The velocity

is shown to be generally increasing with field strength. Figure (21)



.50

.30

.20

.10

0.00 0.00

H=4.0 KILO -GAUSS
I

II

I

Is

I I

.20 .40 .60 .eo 1.00

RADIUS , 1 - r/ I-,
Figure 15. Velocity profile at 0.025 meters downstream from thermal

entrance, and with 4.0 kG magnetic field strength.



.507

.40-
0

.30-

>: .20-
I-

0 .10
uu

0.000.0o

H=5.0 KILOGAUSS

4

.20
4,

.40 .60 I.do Lao

RADIUS ,1 r/rw

Figure 16. Velocity profile at 0.025 meters downstream from
thermal entrance, and with 5.0 kG magnetic field
strength. kr)



.60

0 .50w
w

om .40

.30

.20

.10

0.00 0.00

I

a

I

a

- H=4.0 KILO-GAUSS ; a

.20 .40 .60

RADIUS, 1

.80

r / r,A,

1.00

Figure 17. Velocity profile at 0.05 meters downstream from thermal
entrance, and with 4.0 kG magnetic field strength.



.70

o .60
w
(r)

.50
U

.40
>-
I-

I-, .30U
0
w
_.i .20
>

.10

H=5.0 KILO-GAUSS

0.00 0.00 .20 .40 .60

RADIUS 1 - r/ r,
.80 1.00

Figure 18. Velocity profile at 0.05 meters downstream from thermal
entrance and with 5.0 kG magnetic field strength.



.50

0
in
w .40

x0 .30
..,

)--
t---
--10 .200
_J
L±.1

.10

0.00 0.00 1.00 2.00 3.00 4.00 5.00. 6.00

FIELD INTENSITY, KILOGAUSS
Figure 19. Velocity profile with respect to external magnetic field.



.70-

.60-
5 cm

04.......... 2.5 cm

RADIUS, 1 r/rw

Figure 20. Experimentally measured velocity profiles.



95

shows the velocity profiles measured at the alternate test sectio n

where no magnetic field exists under the loading of 4 kG and 5kG

at the main test section. Figures (22) and (23) show the tempera-

ture profiles with the magnetic field intensities of 5 kG and 4kG,

and the heat flux of 3769 W/m2. These profiles are nearly the same

since the heating rate was the same.
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VII. RESULTS AND DISCUSSION

VII-1. Fully Developed Region

For theoretical fully developed flow an analytical solution was

calculated by PROGRAM MAGNET given in Appendix B. One sample output

page is also attached to the program. Calculated results are plotted

in Figures (24), (25), (26), and (27) for selected values of Re and

RaM. The nature of the problem is similar with the Graetz problem,

in which the fully established laminar flow with a constant wall

temperature in a round tube is considered [64]. It is also similar

to the work which Hallman [65], Hanratty et al. [66], Siegel et al.

[67], and Tao [68] did. But considering the problems related to the

magnetic properties of the working fluid, the solutions cannot be in-

terpreted as the same. The flow pattern of a magnetic fluid is de-

pendent on the magnetization of a magnetic fluid which is a tempera-

ture dependence, and on the magnetocaloric effect. Even though there

is no gravityOinduced flow for the case of horizontal flow, we can

obtain the same type of flow with a magnetic fluid with the internal

heat source.

Due to the magnetocalorid effect as a heat source and due to

the correlation of magnetization of a magnetic fluid to the fluid

temperature, the flow and heat transfer structure become unpredic-

tably unstable at a critical point. This unstable motion at a

critical point has been explained by the thermoconvective explosion

theory [44]. Equation (26) also explains the magnetocaloric effect
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on the flow of a magnetic fluid. The fluid magnetization decreases

with heating, so that a magnetic fluid is cooled when it is adiabati-

cally moved to downstream from a position into a region of lower pres-

sure, and is cooled when the magnetic field intensity decreases with

distance. Therefore, the velocity and temperature experience the

change in their values at a certain point when the magnetic field in-

tensity decreases with distance and the flow is also accelerated.

Such a phenomenon was observed in this study. That is, the calcu-

lated fluid medium temperature increased up to the temperature ratio

(T-Tw)/(Tc - Tw) = 0.9760 at H = 4500 Gauss and with the magnetic

Rayleigh number [ref. Eq. 30] RaM = 22500, and then started to decrease

gradually. Even though the change is quite small, the effects on the

heat transfer are quite visible. Figure (24) shows correlations of

Nusselt number for selected values of magnetic Rayleigh and Reynolds

numbers. The Nusselt number with respect to the selected magnetic

Rayleigh number in Figure (24) has the same trends up to the

magnetic Rayleigh number RaM = 22500, as the results of Hanratty

[66] for.low Reynolds number gravity induced flow in vertical tubes

with constant heat flux, and as a result of Hallman [65] for the

combined forced and free laminar heat transfer in vertical tubes

with uniform internal heat generation. But over RaM = 22500, the

Nusselt number declines due to the dominant magnetocaloric effect

and so-called thermomagnetic explosion phenomenon. As a result an

interesting correlation exists between Nusselt and Reynolds numbers
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over RaM = 22500 resulted from the magnetic properties of a magnetic

fluid.

Figures (25) and (26) show the velocity profiles against the

dimensionless radius for selected values of Re and RaM. And Figure

(27) shows the dimensionless temperature profiles against the

dimensionless radius of tube. These Figures (25), (26), and (27)

have the same tendency as those of the gravity-induced flow.

The discontinuity of the profiles in Figures (25), (26), and

(27) between .55 and .65 of dimensionless radius are due to the

methods in which the Kelvin function was evaluated. When the argu-

ment of Kelvin functions was greater than 6, the asymptotic ex-

pansions were used instead of the Kelvin series functions because

of a quicker convergence of functions for large arguments.

VII-2. Thermal Entrance Region

In this section, the numerically calculated velocity and tem-

perature, and also the experimentally measured velocity and tem-

perature are given and compared to each other. The numerical
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calculation could have covered the entire length of the thermal

entry, but the experimental measurements were carried out within

0.05 meter from the thermal entrance because the probe, as explained

in Section 3 of Chapter VI, should be put within 0.075 m of the mag-

net poles (Fig. 14).

Even though there is a small difference in temperature between

the probe wire and a neighboring fluid, if the applied magnetic

field intensity is strong, the instability of probe or the probe-

induced flow over the magnitude of velocity which is going to be

measured will be a dominant factor.

For better measurements with a hot-wire anemometry system, it

is important that the field intensity remain steady, a small resis-

tance ratio for the probe be placed in a uniform magnetic field,

and, if possible, use a magnetic fluid with a low pyromagnetic co-

efficient. The author feels that measurements in magnetic fluids

with hot-wire anemometry systems should be studied further.

Reduced experimental data for velocity and temperature were

plotted in Figures (15) through (23). Figures (15), (16), (17),

and (18) show the velocity profiles against the dimensionless radius

at different distances from thermal entrance in the presence of

an applied magnetic field. In the center portion of a flow in the

tube, the sinusoidal velocity curve was caused by the high order

of polynomial in the regression analysis as one of the reasons,

and also possibly by the probe sensitivity due to fluid temperature
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change. Another reason could be possibly a slight lack of the above

necessary conditions for the probe setting, and a flow fluctuation

due to the thermomagnetic explosion phenomenon. These combined

problems reflect the scatter of data points in Figures (15), (16),

(17), and (18).

The numerical analysis for the thermal entry problem of a

magnetic fluid gives some descriptive results for velocity, tempera-

ture and dimensionless numbers. Figure 28 shows the velocity pro-

files at 0, 2.5 cm, and 5 cm from the thermal entrance in the pre-

sence of the applied magnetic field of 5.0 kG. From Figure (28)

one can see that the velocity development caused by the temperature

dependence of magnetization of a magnetic fluid is similar with that

of the gravity-induced flow. For a magnetic fluid, as long as there

is any axial temperature gradient, the velocity (or momentum)

equation coupled with the energy equation generates a specific

velocity field with respect to temperature gradient. Such magnetic

field-induced flow can also be explained by the magnetic Rayleigh

number analysis. First, assume that a magnetic fluid exists at

rest. Then when the magnetic field gradient and temperature gradi-

ent are formed, the fluid starts flowing. For this convective

motion of a magnetic fluid, a correlation between the magnetic

field gradient and temperature gradient was developed in Section

111-5. It is represented by the magnetic Rayleigh number (Equation

30). Over the critical value of Ram the flow motion becomes

steady. For a cylindrical geometry flow the critical magnetic
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Rayleigh number is 1707 [53].

If a magnetic fluid enters into the region which a magnetic

field and circumferential heat flux exist, the fluid will experience

the change in velocity pattern caused by the above field and tem-

perature gradients. Figure 28 reflects the influences of the field

and temperature gradients.

Figure 29 shows the radial velocity profile at 2.5 cm from

the thermal entrance. This radial velocity profile is well matched

with the axial velocity in Figure 28.

Figure 30 shows magnetic Rayleigh number along the axial direc-

tion. The decline in magnetic Rayleigh number along the axial

direction is mainly due to the change in magnitude of the axial

temperature gradient and also due to the decrease in magnetic field

intensity along the axial direction. The magnetic Rayleigh number

has the maximum value at the thermal entrance because of high

activity of magnetic fluid particles due to the magnetic moment re-

orientation and due to the high axial temperature gradient at that

point. The magnetic Rayleigh number gradually decreases down to

the fully established region. However, the number is still about

in the order of 4 x 104 which is far over the critical number.

This means that the flow is stable.

There are many factors which dominate the flow field of a

magnetic fluid in a duct with a constant heat flux in the presence

of an external magnetic field. The major effects on the flow field

are due to the steep magnetic field gradient, the pyromagnetic
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coefficient, and the axial direction temperature gradient. Of

course, the thing to be mainly considered is how fast the heat flux

is absorbed by the fluid. It depends mostly on the fluid properties.

High thermal conductivity and low viscosity of a fluid are desirable.

If the fluid has these properties which satisfy the above condi-

tions, then the axial temperature gradient will be formed evidently

by rapidly absorbing the heat energy through the wall of a duct, and

the temperature dependence of magnetization of a magnetic fluid will

speed up the fluid velocity. Such a result suggests that a low

Prandtl number fluid like a liquid metal has merit. In fact liquid

metals are the promising media for the AID direct energy conversion

system because of not only their low Prandtl number, but also their

electrical conductivity.

The two points in Figure (31) show the Nusselt numbers which

were obtained from the experimental data under different magnetic

field loadings. Compared to the numerically calculated values,

the experimental values show good agreement, even though the measure-

ments covered only a limited range of test section.

Figure (32) shows temperature profiles from the experimental

measurements and from the numerical calculations. The differences

near the wall of the duct are larger than at other locations. One

possible reason is that in the numerical calculation, some input

data were approximated because they were unavailable. Another

reason was an experimental error.

Figures (33) and (34) show the comparison of velocities from
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experimental measurements and numerical calculations under the applied

magnetic field intensities of 4 kG and 5 kG, respectively. The ex-

perimental curves are a result of a least squares fit to all experi-

mental data.

The major differences in velocity profiles between measurement

and calculation are in the boundary layer near the tube wall.

However, measured and calculated profiles have similar shapes

even though the maximum points of the velocity profiles from experi-

mental measurements were shifted inward. The magnitudes of veloci-

ties for both cases are almost the same without regard to the shift-

ed velocity distribution.

The velocity differences cannot be explained by a single rea-

son. One possible reason is that the hot-wire calibration curves

were obtained in the absence of a magnetic field while experimental

measurements were made within a magnetic field. Since the probe

generated its own temperature field, local velocities were effected.

Another important reason for the differences is due to the approxi-

mated thermal and physical properties of the magnetic fluid and in

the numerical calculations.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

VIII-1. Fully Developed Region

As shown in Figures (25), (26), and (27) the velocity and

temperature profiles have the same form as gravity-induced flow be-

cause of the similarity in the equations governing the phenomena of

flow even though the physical nature of the problems is different.

It is recommended that further study be made for the cooling

case and experimental studies in fully developed flow be conducted

to verify the results of the analytical calculations.

VIII-2. Thermal Entrance Region

The velocities and temperature were calculated numerically and

plotted in Figures (28) - (34). The velocity profiles show that

the magnetic field-induced flow existed and the magnetic Rayleigh

number showed the flow to be steady. The measured velocity profiles

are generally similar to calculated profiles even though shifted in-

ward to the center.

It was found that the Nusselt number has a maximum value near

the thermal entrance due to the magnetic moment reorientation and

due to the steep axial temperature gradient. Calculated Nusselt

numbers generally agreed with the experimental results.

The necessary conditions for the use of a hot-wire Anemometer

in a magnetic fluid in the presence of an applied magnetic field were
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found. However, further study for using hot-wire anemometry in mag-

netic fluids is recommended in order to improve the anemometry tech-

nique in the presence of an applied magnetic field. The experiment

should be repeated for various magnetic fluids. It might give a clue

how the pyromagnetic coefficients of magnetic fluids influence the

velocity measurement under various applied fields and various probe

settings.

More extensive work is needed to prove the relationships between

the measurement and the probe setting, and the thermomagnetic fluc-

tuation phenomenon.

As a whole, further studies in every aspect of the problem will

be valuable for improving knowledge in thermomagnetic fluctuation of

the flow field, the magnetocaloric effects, and the measurement

techniques.
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APPENDIX A

A-1. The Integrals for Kelvin functions

Ber(y4r)dr 11 Beri(y1/4)

o y4

r Bei (y1/4r)dr = - Ber(y4)

o Y4

0

r[Bei2(y1/4r) - Ber2(y1/4r)]dr

1,
1= [Bert (y4) + Ber2 (y4) - Bei

2 (y) - Bei
2
(y4)]

2 0

127

1 , . ,

f1r 2(y1/4r) Ber(y4r)dr = BerokY
1/4,

Belo tY1/4) Berl (y1/4) Bei 1(1%4).

o

A-2. The Integrals for Bessel functions

fl
1

Jo(y4r)dr = (y4)
Y4

Io(y4r)dr =
1
-T- II(Y4)

0 y4

fir J0(y1/4r)dr = :12-- [Jo(Y4) J21(i1/4)] 2-
Jo

1 2 ;'
I0 (y4

1

r)dr = [I° (y-;) I1(Y1/4)]

fir Jo(y4r) I0(Y4r)dr
1

Po(Y1/4) II(Y4) ji(Y4) Io(Y4)]
0 2y4



A-3. Asymptotic Expansions of Kelvin functions
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APPENDIX B

Fully Developed Region - PROGRAM MAGNET

C

C

C***** THIS PROGRAM HAS THE PURPOSE TO CALCULATE THE VELOCITIES
C***** AND TEMPERATURES IN THE FULLY DEVELOPED FERROHYDRODYNAMIC
C***** (FHD) FLOW.
C

C

PROGRAM MAGNET(INPUT,OUTPUT)

COMMON REY, PR, B, FS, DT, AI

COMMON U(41),T(41)

DIMENSION UH( 41), TH( 41), BERG( 3), BEIG (3),DBERG(3),DBEIG(3),BER(3),

1 BEI(3),DBER(3),DBEI(3)

C

C***** INPUT DATA

C

C

DATA FRIC,PLEN/0.0356,4.9525/
DATA TEMPEN/285.0/

DATA RAD,DX,VISCOK,PYRO,DENS,COMAG/0.019050,0.0050,0.000007787,1.0
3,1220.0,0.00000126/
DATA COND,HTFLUX,HTCAPA,TEMPEN/6.436,375.9566,5275.4,285.0/
DATA VISCO,TCURIE,GRAV/0.0095,1043.0,9.8/
DATA SATMAG/150.0/
DATA OM,TC,TW/37.59566,288.0,372.0/
DATA DR/0.025/

DO 68 NN=1,10
IF(NN.EO.1) GO TO 59

IF(NN.EQ.2) GO TO 61

IF(NN.EQ.3) GO TO 62

IF(NN.EQ.4) GO TO 63

IF(NN.EQ.5) GO TO 81
IF(NN.E0.6) GO TO 82

IF(NN.EQ.7) GO TO 83
IF(NN.E0.8) GO TO 84

IF(NN.EO.9) GO TO 85
IF(NN.E0.10) GO TO 86

59 FIELD=2000.0

GO TO 66

61 FIELD=2500.0
GO TO 66

62 FIELD=3000.0

GO TO 66

63 FIELD=3500.0

GO TO 66

81 FIELD=4000.0
GO TO 66



131

82 FIELD=4500.0

83 FiarAg00.0
GO TO 66

84 FIELD=5500.0

GO TO 66

85 FIELD=6000.0

GO TO 66

86 FIELD=6500.0
66 GRAD=FIELD/0.12

C

VEL =SORT(COMAG*PYRO*FIELD*(321.-TEMPEN)/(DENS*GRAV*(2.*FRIC*
1 PLEN/(2.*RAD)+0.5)))

C

WRITE 200, RAD, DENS, HTCAPA, IC, TW, VEL, OM,
$, FIELD, GRAD, VISCO, COND, DR

200 FORMAT("1",10X,"RADIUS OF A DUCT

COMAG, PYRO, SATMAG

= ",F10.81/

$,10X, "DENSITY OF A MAGNETIC FLUID = ",F6.1,/,

$10X,"HEAT CAPACITY OF A MAGNETIC FLUID = ",F6.1,/,

=10X,"TEMPERATURE OF CENTER-LINE = ",F5.1,/,

$10WTEMPERATURE OF TUBE-WALL = ",F5.1,/,

$10X,"AVERAGE VELOCITY OF FLUID FLOW = ",F5.3,/,

$10X,"MAGNETOCALORIC HEAT GENERATION = ",F8.4,/,

$10X,"COEFFICIENT OF MAGNETIC PERMEABILITY = ",E9.3,/,

$10X,"PYRO-MAGNETIC COEFFICIENT = ",F6.1,/,

$10X,"SATURATED MAGNETIZATION = ",F5.1,/,

$10X,"APPLIED MAGNETIC FIELD INTENSITY = ",F6.1,/,

$10X,"MAGNETIC FIELD GRADIENT IN AXIAL DIRECTION = ",F9.1,/,

$10X,"VISCOSITY OF A MAGNETIC FLUID = ",F10.7,/,

$10X,"CONDUCTIVITY OF A MAGNETIC FLUID = ",F10.8,/,

$10X,"STEP-SIZE OF RADIAL DIRECTION = ",F10.8)

C

C***** INITIALIZING VARIABLES
C

N=INT(0.0)
GAMA=0.0

AI=NTFLUX/(DENS*HTCAPA*2.0*RAD*VEL)
FS=RAD*OMMDENS*HICAPA*VEL)

C

REY=DENS*2.0*RAD*VEL/VISCO
PR=VISCO*HTCAPA/COND

B=4.0*VEL *(RAD**2.0)*COMAG*PYRO*SATMAG*FIELD*GRAD*PR/(VISCO**2.0)

DV=TC-TU

GAMA=B*AI

WRITE 405, B, AI, GANA

405 FORMAT("0",20X,"B= ",F14.3, 620X,"AI= ",F8.5, /,20X,"GAMA= ",
1 F14.3)

C

RAMAG=(COMAG*PYRO*GRAD*(1.0**4.0)/(COND*VISCOK))*(AI-COMAG*PYRO*

1 GRAD*TEMPEN/(DENS*HTCAPA))
C
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C

C

C

C
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WRITE 55, RAMAG

55 FORMAT("0",20X,"MAGNETIC RAYLEIGH NUMBER = ",F10.3)

WRITE 300
300 FORMAT("0",15X,"COOLING CASE = VEL AND TEMP", 3X, "HEATING CASE =

1VEL AND TEMP",//,10X,"RADIUS",
1 3X,"VELOCITY", 3X,"TEMPERATURE",3X,"VELOCITY", 3X,
2 "TEMPERATURE")

DO 10 J=1,41

R=FLOAT(J-1)*DR
G=GAMA**0.25
X=G*R

CALL BESSE(J,X,DJOR,BAR,BIOR,BI1R)
CALL BESSE(J,G,DJO,BJ1,BIO,BI1)

CI=((G*FS/AI)*(-0.5+BI1/(G*DIO))+0.5*G)/(BJ1-BJ0*BI1/BIO)
CT=-1.0*(FS/AI+CI*BJ0)/B10

C

C***** VELOCITY CALCULATION FOR COOLING

C

C

U(J)=FS/AI+CI*BJOR+CT*BIOR

DI=AI*REY*PR*CI
DT=AI*REY*PR*CT

C

C***** TEMPERATURE CALCULATION FOR COOLING
C

C

C

C

C

C

T(J)=(DI*(DJO-DJOR)+DT*(BIOR-BIO))/(DI*(BJ0-1.)+DT*(1.-BIO))
DV=CDI*(DJ0-1.0)+DT*(1.0-BIO))/(G**2.0)

L=1

CALL THOMSON(L,G,BERG(1),BEIG(1),DBERG(1),DBEIG(1))

IF(X.GT.5.2) GO TO 41

CALL KELVIN(L,X,BER(1),BEI(1),DBER(1),DBEI(1))

GO TO 42
41 CALL THOMSON(L,X,DER(1),BEI(1),DBER(1),DBEI(1))

42 CCI=G*(-0.5-0.5*FS/AI+FS*DBEIG(1)/(AI*G*BERG(1)))/(DBERG(1)+

1 BEIG(1)*DBEIG(1)/BERG(1))

CCT=(FS/AI-CCI*BEIG(1))/DERG(1)

C

C***** VELOCITY CALCULATION FOR HEATING

C

UH(J)=(-FS/AI+CCI*BEI(1)+CCT*DER(1))*G
C
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DDI=-AI*REY*PR*CCI
DDT=-AI*REY*PR*CCT

C

C***** TEMPERATURE CALCULATION FOR HEATING
C

TH(J)=CDDT*(BEI(1)-BEIG(1))+DDI*(BERG(1)-BER(1)))/(DDICBERG(1)
1 -1.0)-DDT*BEIG(1))

C

WRITE 301, R, U(J),T(J),UH(J),TH(J)

301 FORMAT(10X,F6.4, 3X,F10.6, 3X,F10.6, 3X,F10.6, 3X,F10.6)

C

C

C

10 CONTINUE

D0=ODI*(BERG(1)-1.0)-DDT*BEIG(1))/(0**2.0)
EI=DIRDICBJ0-1.)+DT*(1.-BIO))
ET=DT/(DI*(BJ0-1.)+DT*(1.-BIO))

H=EI*BJ0-ET*BIO

Al=FS*H/AI

A2=CI*H-FS*EI/AI
A3=CT*H+FS*ET/AI

A4=CI*ET-CT*EI
A5=CI*EI

A6=CT*ET

C

C***** MEDIUM TEMPERATURE CALCULATION FOR COOLING
C

TM=( 11+A5-A6+FS*TWMAI*DV))+(2.*A2+2.*TU*Cl/DV)*BJ1/G
1 +(2.*A3+2.*TW*CT/DV)*BI1/0+(BJ0*BI1+BJ1*BIO)*A4/G-A5*(BJ0**2.

2 +BJ1**2.)+A6*(BIO**2.-BI1**2.)-TW/DV
C

C***** NUSSELT NUMBER CALCULATION FOR COOLING

C

C

C

C

C

HNUSS2=2.*G*(EI*BJ1+ET*BI1)/TM

L=2

CALL THOMSON(1,G,BERG(1),BEIG(1),DBERG(1),DBEIG(1))
CALL THOMSON(L,G,BERG(2),BEIG(2),DBERG(2),DBEIG(2))

C

EHI=DDIRDDICBERG(1)-1.0)-DDT*BEIG(1))
EHT=DDT/(DDICBERG(1)-1.0)-DDT*BEIG(1))

HH=EHI*BERG(1)-EHT*BEIG(1)

B1=-1.0*FS*HH/AI

'B2=CCT*HH+FS*EHI/AI

B3=CCI*HH-FS*EHT/AI

B4=CCI*EHT

B5=CCT*EHI

B6=CCT*EHT-CCI*EHI
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C***** MEDIUM TEMPERATURE CALCULATION FOR HEATING

C

THM=B1TU*FS/(DO*AI)+2.0*(B2+TW*CCT/D0)*DBEIG(1)/0-2.0*(B3+
1 TIOCCl/D0)*DBERG(1)/GB4*(BERG(1)**2.0+BERG(2)**2.0BEIG(1)
2 **2.0BEIG(2)**2.0)+B6*(BERG(1)*BEIG(1)+BERG(2)*BEIG(2))TW/DO

C
C***** NUSSELT NUMBER CALCULATION FOR HEATING

C
HNUSS1=2.0*(+1.0*DDI*DBERG(1)+DDT*DBEIG(1))/(040*THM)

C

WRITE 302, TM, HNUSS2, TUN, HNUSS1

302 FORMAT("0",19X,"MEDIUM TEMP",3X,"NUSSELT NOTM, 3X, "MEDIUM TEMP",3X,

1 "NUSSELT NO ", / /,19X,Fi0.4, 3X,F10.7, 3X,F10.4, 3X,F10.5)

C

C

N=N+1

CALL SIMPU(N,VELN)

REY=2.0*RAD*DEkS*VELN*VEL/VISCO

WRITE 58, REY

58 FORMAT( 19X,"REYNOLDS NUMBER = ",F10.3)

WRITE 303, VEL

303 FORMAT( 19X,"AVERAGE VELOCITY ="F12.9)

68 CONTINUE

STOP

END

C

C

C

C

SUBROUTINE BESSEL(I,ARG,FG,FG1)
COMMON REY, PR, B, FS, DT, AI

GAMA=ARG**0.25
CALL BESSE(I,GAMA,BJ0,111,BIO,BI1)

FG=DT*(ARG**0.5)*(BJ1*BIO*BIOBJO*BIO*BI1)AI*REY*PRWBJO*BIO*BI1
1 BIO*BI1BJ1*BIO+BJ1*BIO*BIO)*FS/AI+0.5*GAMA*(1.FS/AI)
2 *(2.*BJO*BIO*BIOBJO*BIOBIO*BIO))

FG1=0.5*DT*(ARG**(-0.5))*(BJ1*BIO*BIOBJO*BIO*BI1)
1 +0.25*(DT/GAMA)*(BIO*BIO*(BJOBJ1 /GAMA)+BJ1*BIO*BI1

2 BJO*B11*BI1BJO*BIO*(BIOBI1/ GAMA))(0.25*FS*REY*PRPGAMA**

3 3.0))*(8.11*BIO*BI1+BJO*BI1*BI1+BJ0*BIO*(BIOBI1 /GAMA)

4 BII*BI1BIO*(BIOBIUGAMA)BIO*(BJOBJUGAMA)BJ1*BIl+
5 BIO*BIOCBJOBJ1/GAMA)+2.*BJ1*BIO*BI1)AI*REY0P10,(0.125*
6 (ARG**(-0.75))*(1.FS/AI)*(2.*BJO*BIO*BIODJO*BIOBIO*BIO)

7 +0.5*(ARG**(-0.5))*(1.FS/AI)*(0.5*BA*BIO*BIO+BIO*BJO*BI1
8 0.25*BA*BIO-0.25*BJ0*BII-0.5*BIO*BI1)+0.5*GAMA*FS*Ble
9 (2.*DJO*BIO*BIOBJO*BIOBIO*BIO)/(ARG**2.))
1 (REY*PR/B)*(FS*( BJO*BIO4BI1BIO*BI1BJ1*BIO+BJ1PBID*BID)/AI

2 +0.5*GAMA*(1.FS/AI)*(2.*BJO*BIO*BIOBJ0*BIOBIO*BIO))

RETURN

END
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SUBROUTINE BESSE (I,Y,BJO,BJI,BIO,BII)
COMMON REY, FR, B, FS, DT, AI
IF(Y.GT.3.0) GO TO 9

Z=Y/3.0
BJ0=1-2.2499997*(Z**2.)+1.2856208*(Z**4.)-0.3163866*(Z**6.)+
30.0444479*(Z**8.)-0.0039444*(Z**10.)+0.000210*(Z**12.)
BJI=Y*(0.5-0.56249985*(Z**2.)+0.21093573*(Z**4.)-0.03954289*(Z**6.
$)+0.00443319*(Z**8.)-0.00031761*(Z**10.)+0.00001109*(Z**12.))
GO TO 11

9 S=3.0/Y
F0=0.79788456-0.00000077*S-0.0055274*(8**2.) -0.00009512*(S**3.)

1 +0.00137237*(5**4.)-0.00072805*(S**5.)+0.00014476*(S*+6.)

AO=Y-0.78539816-0.04166397*S-0.00003954*(S**2.)+0.002625730(8**3.)

1 -0. 00054125 *(S * *4.) - 0.00029333 *(S * *5.) +0.00013558 *(S * *6.)

BJ0=(Y**(-0.5))*F0 *COS(A0)
FI=0.7988456+0.00000150S+0.01659667*(S*02.)+0.00017105*(S**3.)

1 -0.00249511*(S**4.)+0.00113653*(S**5.)-0.00020033*(S**6.)

AI=Y-2.356194494.0.12499612*S+0.0000565*(S**2.)-0.00637879*(Si*3.)
1 +0.00074348*(S**4J+0.00079824*(S**5.)-0.00029166*(S446.)

BJI=tY**(-0.5))*FI*COS(AI)

11 W=Y/3.75

IF(Y.GT.3.75) GO TO 12
BI0 =1.+3.5156229*(14**2.)+3.0899424*(U**4.)+1.20674920(W**6.)+

$0.2659732*(11**8.)+0.0360768*(W**10.)+0.0045813*(W4*12.)
BII=Y*(0.5+0.87890594*(0*2.)+0.51498869*(014.)+0.15084934*(1.046.

$)+0.02658733*(1,1**8.)+0.00301532*(W**10.)+0.00032411*(W**12.))

GO TO 13

C

12 BIO=(Y**(-0.5))*(EXP(Y))*(0.39894228+0.01328592/W+0.00225319/(U**
1 2.)-0.00157565/(W**3.)+0.00916281/(14**4.)-0.02057706/(W**5.)

2 +0.02635537/(11**6.)-0.016417633/(W**7.) +0.00392377/(W**8.))

C

C

BII=(Y**(-0.5))*(EXP(Y))*(0.39894228-0.03988024/G-0.00362018/
1 (W**2.)+0.00163801/(13**3.)-0.01031555/(W**4.)+0.02282967/(11**

2 5.)-0.02895312/(W**6.)+0.01787654/(W**7.)-0.00420059/(14**8.))

13 RETURN

END

SUBROUTINE KELVIN(J,X,TER,TEI,DTER,DTEI)
REAL NU
DIMENSION BER(3),BEI(3),DBER(3),DBEI(3)

NU=J

FAC=FACT=1.0

L=30

Y=T=0.0

DO 10 K=1,1.

E=FLOAT(K)

FAC=E*FAC
FACT=FACT*FLOAT(101)
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AR=(0.75*(NU-1.0)-0.5*E)*3.141527

CO=COS(AR)

SI=SICAR)
YI=C0*((0.25*X*X)**K)/(FAC*FACT)

TI=SI*((0.25*X*X)**K)/(FAC*FACT)
Y=Y+YI

T=T+TI

10 CONTINUE

BER(J)=Y

BEI(J)=T
P=X/8.0

DBER(J)=X*(-4.0*P*P+14.22222222*(P**6.0)-6.06814810*(P**10.0)
1 +0.66047849*(P**14.0)-0.02609253*(P**18.0)+0.00045957*
2 (P**22.0)-0.00000394*(P**26.0))

DBEI(J)=X*(0.5-10.66666666*(P**4.0)+11.37777772*(P**8.0)
1 -2.31167514*(P**12.0)+0.14677204*(P**16.0)

2 -0.00379386*(P**20.0)+0.00004609*(P**24.0))
TER=BER(J)

TEI=BEI(J)

DTER=DBER(J)

DTEI=DBEI(J)

RETURN

END

C

C

C

C

C

SUBROUTINE THOMSON(J ,X,SER,SEI,DSER,DSEI)

EXTERNAL COS, SIN, SORT, EXP
REAL NU,MOD,KER,KEI,MU,MV

DIMENSION BERG(3),BEIG(3),DBERG(3),DBEIG(3),BER(3),

1 BEI(3),DBER(3),DBEI(3)

DIMENSION MOD(3),SETA(3),KER(3),KEI(3)

1 ,F(3)4(3),Z(50)0(50),ZM(50),WM(50),FN(3),GN(3)

NU=J
MU=4.0*(NU-1.0)**2.0
MV=4.0*NU**2.0

ALPA=X/SORT(2.0)+3.141527*((NU-1.0)/2.0-1.0/8.0)
BETA=ALPA+3.141527/4.0

FAC=1.0

L=30

ZI=UI=0.0

ZA=WA=0.0

DO 10 K=1,L

TOA=1.0

E=FLOAT(K)
FAC=E*FAC
AGG=E*3.141527/4.0



t;

137

DO 20 NN=1,K
TOA=(MU-(2.0*FLOAT(NN)-1.0)**2.0)*TOA

20 CONTINUE
C

C

C

ZM( K)=TOACCOS(AG6))/(FAC*(-8.0*X)**K)

Z(K)=((-1.0)**10*TOACCOS(AGG))/(FAC*(8.0*X)**K)

WN(K)=TOWSIN(AGG))/(FACC-8.0*X)**K)
U(K)=((-1.0)**K)*TOACSIN(AGG))/(FAC*(8.0*X)**K)
ZI=ZI+Z(K)

ZA=ZA+ZM(K)

VI=UI+U(K)

UA=WA+UN(K)

10 CONTINUE

FN(J)=1.0+ZA

F(J)=1.0+2I

GN(J)=WA

G(J)=WI

ROAT=SORT(2.0)

KER(J)=(SORT(3.141527/(2.0*X)))*(EXP(-1.0*X/ROAT))*(FN(J)*
1 (COS(BETA))-GN(J)*(SIN(BETA)))

KEI(J)=(SORT(3.141527/(2.0*X)))*(EXP(-1.0*X/ROAT))*(-FN(J)*

1 (SIN(DETA))-ON(J)*(COVBETA)))

AIN=2.0*(NU-1.0)*3.141527

BER(J)=(EXP(X/ROAT))*(F(J)*(COS( ALPA))+G(J)*(SIN(ALPA)))/(SORT(2.0

1 *3.141527*X))-(( SIN(AIN))*KERUMCOS(AIN))*KEI(J))/3.141527

SER=BER(J)

DEI(J)=(EXP(X/ROAT))*(F(J)*(SIN(ALPA))-G(J)*(COS(ALFA)))/(SORT(2.0
1 *X *3. 141527)) +((COS( AIN))* KER (J)- (SIN(AIN)) *KEI(J)) /3.141527

SEI= BEI(J)

MOD(J)=(EXP(X/ROAT))*(1.0-(MU-1.0)/(8.0*X*ROADMMU-1.0)**2)
1 /(256.0*X*X)-(MU-1.0)*(NU*NU+14.0*NU-399.0)/(6144.0*ROAT*

2 X**3.0))

NOD(J+1)=(EXP(X/ROAT))*(1.0-(MV-1.0)/(8.0*MOADWMV-1.0)**2)
1 /(256.0*X*X)-(MV-1.0)*(MV*MV+14.0*NV-399.0)/(6144.0tROAT*

2 X**3.0))

SETA(J)=X/ROAT+(0.5*(NU-1.0)-1.0/8.0)*3.141527+(MU-1.0)/(8.0*ROAT*

1 X)+( MU-1.0)/(16.0*X*X)-(MU-1.0)*(NU-25.0)/(384.0*ROAT0

2 X**3.0)

SETA(J+1)=X/ROAT+(0.5*NU-1.0/8.0)*3.141527+(NV-1.0)/(8.0*ROAT*
1 X)+( MV-1.0)/(16.0*X*X)-(MV-1.0)*(MV-25.0)/(384.01.ROAT*

2 X**3.0)
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DBER(J)=((NU-1.0)/X)*MOD(J)*(COS(SETA(J)))+MOD(J+1)*(COS(SETA(J+1)
1 -3.141527/4.0))

DSER=DBER(J)

DBEI(J)=((NU-1.0)/X)*MOD(J)*(SIN(SETA(J)))+MOD(J+1)*(SIN(SETA(J+1)
1 -3.141527/4.0))
DSEI=DBEI(J)

RETURN

END

SUBROUTINE SIMPU(I,UM)

COMMON U(41),T(41)
DATA RAD,NR/0.019050,41/

DR=RAD/FLOAT(NR-1)
C

SUM=SUMI=0.0

C

DO 10 J=1,NR
DRAD=FLOAT(J-1)*DR

IF(J.E0.1) GO TO 5
IF(J.EQ.NR) GO TO 6

ITEST=J/2

TEST=FLOAT(ITEST)

TESTJ=FLOAT(J)/2.

C

IF(TEST.EQ.TESTJ) GO TO 4

SUMI=SUMI+U( J)*DRAD

GO TO 10
4 SUM=SUM+U( J)*DRAD

GO TO 10

5 SUMA=U( J)*DRAD

GO TO 10
6 SUMB=U( J)*DRAD

10 CONTINUE

C

F=SUMA+4.*SUM+2.*SUMI+SUMB
UM=2.*DR*F/(3.*(RAD**2.))
RETURN
END
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RADIUS

MAGNETIC RAYLEIGH NUMBER = 24893.0
COOLING CASE = VEL AND TEMP HEATING CASE = VEL AND TEMP

VELOCITY TEMPERATURE VELOCITY TEMPERATURE
0.0000 1.582326 1.000000 -.000000 1.007562
.0250 1.558770 .989805 .000522 1.007576
.0500 1.489156 .959676 .002084 1.007617
.0750 1.376584 .910954 .004675 1.007693
.1000 1.226056 .845803 .008273 1.007810
.1250 1.044221 .767098 .012843 1.007980
.1500 .839050 .678290 .018335 1.008219
.1750 .619447 .583229 .024676 1.008543
.2000 .394809 .485979 .031764 1.008972
.2250 .174576 .390623 .039467 1.009530
.2500 -.032230 .301064 .047605 1.010239
.2750 -.217423 .220838 .055953 1.011123
.3000 -.374044 .152953 .064226 1.012208
.3250 -.496665 .099753 .072073 1.013516
.3500 -.581628 .062813 .079073 1.015066
.3750 -.627182 .042883 .084723 1.016873
.4000 -.633521 .039867 .088443 1.018946
.4250 -.602729 .052850 .089569 1.021282
.4500 -.538620 .080166 .087360 1.023866
.4750 -.446499 .119496 .081006 1.026670
.5000 -.332851 .168008 .069646 1.029644
.5250 -.204970 .222512 .052386 1.032717
.5500 -.070555 .279633 .214771 1.059513
.5750 .062701 .335988 .182996 1.072993
.6000 .187526 .388363 .289518 1.082687
.6250 .297439 .433868 .460819 1.088975
.6500 .387085 .470078 .677580 1.091548
.6750 .452498 .495142 .933887 1.089480
.7000 .491287 .507852 1.225737 1.081442
.7250 .502740 .507686 1.547293 1.065838
.7500 .487840 .494796 1.889202 1.040893
.7750 .449197 .469967 2.237473 1.004732
.8000 .390902 .434535 2.572491 .955475
.8250 .318315 .390271 2.868101 .891365
.8500 .237804 .339239 3.090787 .810930
.8750 .156456 .283631 3.199021 .713183

.9000 .081781 .225589 3.142878 .597878

.9250 .021420 .167024 2.864052 .465803

.9500 -.017091 .109431 2.296428 .319134

.9750 -.026513 .053710 1.367380 .161817

1.0000 -.000000 0.000000 -.000000 0.000000
MEDIUM TEMP NUSSELT NO MEDIUM TEMP NUSSELT NO

.9214 -4.5931973 .9729 43.30405
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( START

'Read
DATA

Initialize
U, V, T, P
& Etc

DO 30
=2, NX

Calculate
A, B,C,D,
& Etc

J(DO

95

=1, NR
DO 98

Calculate
U,V, P, &

Etc

APPENDIX C

Thermal Entry Problem - PROGRAM FHD

r

Calculate
a, b,c,d ,e.
& Etc

( STOP

Write
OUTPUT

Calculate
Nu, Re, Pr,
& Ram

Calculate
T & Etc

DO 80
DO 90

J=1, NR

Flow chart for the program FHD to solve Equations
(101), (103), and (105).
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C****** THIS IS A NUMERICAL SOLUTION FOR THE THERMAL ENTRANCE REGION
C****** OF FERROHYDRODYNAMIC (FHD) FLOW IN A DUCT INTHE PRESENCE OF AN

C****** APPLIED EXTERNAL MAGNETIC FIELD.
C

C

C***** THE FOLLOWINGS ARE INFORMATIONS ABOUT INPUT DATA.
C***** THE INPUT DATA MUST BE ADJUSTED WITH THEIR UNITS

Cs** ** WHICH ARE GIVEN HERE IN SI UNIT SYSTEM.

C

C RAD (RADIUS OF TUBE) METER

C DX (STEP-SIZE IN X-DIRECTION) METER

C PYRO (PYRONAGNETIC COEFFICIENT) GAUSS /DEGREE K

C DENS (DENSITY OF FLUID) KILO -GRAM /CUBIC NETER

C COMAE (MAGNETIC PERMEABILITY AT VACUUM)

C NEWTON /SQUARE AMPERE

C

C

C

C

C

C

C
C

C

C

C

C

C

C

FRIC (FRICTION COEFFICIENT)
PLEN (TUBE LENGTH)
COND (THERMAL CONDUCTIVITY OF FLUID)

HEAT (HEATING RATE)
HTCAPA (HEAT CAPACITY)

TEMPER (ENTERING FLUID TEMPERATURE)
NX (ITERATION NUMBER OF X-DIRECTION)
NR (ITERATION NUMBER OF R-DIRECTION)

VISCO (VISCOSITY OF FLUID)

TCURIE (CURIE TEMPERATURE)
DL (LENGTH OF HEATING ELEMENT)

PROGRAM FHD(INPUT,OUTPUT)

METER
WATTS/NETER DEGREE K

WATTS
VATTS.SEC/KG. DEGREE K

DEGREE K

CP

DEGREE K
METER.

COMMON U(100,41),V(100,41),PRESX(100,41),T(100,41),DR
DIMENSION A(41),B(41),C(41),D(41)
DIMENSION UZ(42),Z(42),DU(41),PLOW(41),R0(41)

DIMENSION UZI(41),ZI(41),BUI(41),PLOWI(41)

DIMENSION USCALE(41), TSCALE(41), VSCALE(41), PSCALE(41)
DIMENSION ET(41), ALPA(41),BETA(41),GANA(41),DELTA(41),EXTA(41)

C

C***** INPUT DATA

C

DATA RADIDX,PYRO,DENS,COMAO/0.019050,0.0050,0.1

WM.0,0.00000126/



DATA FRIC,PLEN/0.03560.9525/
DATA NX,NR/29,21/
DATA COND,REATpliTCAPAITEMPEN/0.175,100.566,5275.41285.0/

DATA VISCOpTCURIEdL/0.00126,1043.010.175/
C

C

C***** INITIALIZE VARIABLES
C

C

DO 68 NN=4,4

IF(NN.E0.1) GO TO 59
IF(NN.E0.2) GO TO 61
IF(NN.E0.3) 60 TO 62

IF(NN.EQ.4) GO TO 63

IF(NN.EQ.5) 60 TO 81

IF(NN.EQ.6) GO TO 82
IF(NN.E0.7) 60 TO 83
IF(NN.E0.8) GO TO 84
IF(NN.E0.9) 60 TO 85

IF(NN.E0.10) 60 TO 86

59 FIELD=3500.0
GO TO 66

61 FIELD=4000.0

60 TO 66
62 FIELD=4500.0

60 TO 66
63 FIELD=5000.0

GO TO 66
81 FIELD=5500.0

60 TO 66

82 FIELD=6000.0
GO TO 66

83 FIELD=6500.0
GO TO 66

84 FIELD=7000.0
60 TO 66

85 FIELD=7500.0

GO TO 66
86 FIELD=8000.0
66 GRAD=FIELD/0.12

VISCOKIVISCO/DENS

NTFLUONEAT/(2.0*3.14*RAD*DL)

URITE 189, FIELD

189 FORNAT(.1",15X,"***FIELD INTENSITY, H = N,F7.1)
M=INT(0.0)

DR=RAD/FLOAT(NR-1)

R=0.0

1.1(2,NR)=0.0

Y(1,NR)=0.0
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II*NR

VELM=SORT(COMAG*PYRO*GRAD*(298.-TEMPEN)/(DENS*(2.*FRIC*
1 PLEN/(2.*RAD)+0.5)))

C

DO 10 01,NR
C

111,10=TEMPEN

T(2,K)*TEMPEN
U(2,10=2.0*VELM*(1.0-(FLOAT(K-1)*DR/RAD)**2.0)
U(1,K)4(2,K)

10 CONTINUE
CALL SIMPU(2,UAV)

DRAD4AD**2.0
DO 14 01,NR
PRESX(2,10*-(0.0*VISCO*VELM/DRAD-0.0*VISCO*VELN/DRAD)

14 PRESX(1,10*PRESX(2,K)
C

JONR-1
C
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DO 20 J.122,JR

J*JJ

V(1,1)=0.0

V(2,1)=0.0

I=1

U(I-10)=U(I,J)
V(I+10)=FLOAT(J-1)*V(I+10-1)/FLOAT(.1)-(0.5*DR/DX)*(U(I+10)-

1 U(I-1,J))

V(1,11)0(2,./J)

20 CONTINUE
C

X*0.0

C

C***** GENERATE THE TRI-DIAGONAL MATRIX COEFFICIENTS FOR VELOCITY

C***** AND TEMPERATURE CALCULATION.

C

DO 30 I=2,NX

C

C

C

C **** TEMPERATURE CALCULATION ****
C

C

IR*I+1

JR*NR..1

35 DO 500 J*1,NR

C
IF(J.GT.1) SO TO 501

ALPACD*0.0
ALPAP*-4.*COND*DX/(DENS*HTCAPACDR**2.))-(2.*V(I,J)-Y(I-1,J))

1 *DX/DR

DETA(.1)=3.*(2.*U(I,J)-11(I-10))+8.*COND*DX/CDENS*HTCAPACDR**2.)
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1 )-2.*COND/(DEMS*HTCAPA*DX)
GANAPs-4.*CORD*DX/(DENS*HTCAPACDR**2.))+(2.*IRIM-Y(I-19J))

1 *DX/DR

GAMA(J)=ALPAP+GANAP
DELTA(J)*(2.*U(I,J)-U(1-11J))*(4.*T(I0)-T(I-1,J))-(2.*T(I0)-

1 T(I10))*2.*COND/(DENS*HTCAPA*DX)+VISCO*DO
2 0+1)-WI fJ))**2.)/(4.*DENS*HTCAPACDR**2.))

3 +(2.*U(IFJ)-U(1-10))*(2.*T(10)-1(1-10))*2.*DX*CONAG
4 *PYRO*6RADMITCAPA*DENS)
EXTA(J)*0.0

60 TO 500

C

501 IF(J.EQ.NR) GO TO 502

C

C

C

ALPA(.1)=-(2.*V(I,J)-V(I-10))*DX/DR-2.*COND*DX/(DENS*HTCAPA*
(DR**2.))+COND*DX/(DENS*HTCAPA*DR*FLOAT(J-1)*DR)

DETA(J)03.*(2.*O(IO)-U(I-10))+4.*COND*DX/(DERSOTCAPA*(DR**2.)
1 )-2.*COND/(DENS*HTCAPA*DX)

GAMA(J)*(2.*V(I,J)-V(I-10))*DX/DR-2.*COND*DX/(DENS*HTCAPA*
(DR**2.)).-COND*DX/(DENS*HTCAPA*DR*FLOAT(J-1)*DR)

DELTA(J)3B(2.*U(I1J)...U(I-1,J))*(4.*T(I,J).4(11,J))(2.*T(I0)-
1 T(I-10))*2.*CONDADENS*HTCAPA*DX)WIBI ,J +1)-

2 ,J...1))**2.)*YISCO*DX/(2.*DERS*RTCAPACDR**2.))

3 +(2.*O(IFJ)-U( I-10))*(2.*T(I0)-T(I.-10))*2.*DX*CONA6

4 *PYRO*GRAD/(HTCAPA*DENS)

EXTA(J)20.0

60 TO 500

502 ALPA(J)*-(2.0)(I0)-V(I-10))*DX/DR-2.*COND*DX/(DENS*HTCAPA*
(DR**2.))+COND*DX/(DERS*HTCAPA*DR*FLOAT(,P-1)*DR)

BETA(J)*3.*(2.*U(I0)-U( I-10))+4.*COND*DX/(DERS*HTCAPA*(DR**2.)

1 )-2.41COND/(DENS*HTCAPA*DX)

6AMA(J)=(2.*V(I,J)-V(I-10))*DX/DR-2.*COND*DWDENS*HICAPA*
(DR**20)-CONDOW(DENS*HTCAPA*DR*FLOAT(J-1)*DR)

DELTA(J)2(2.0)(I,J)-U(I-1,J))*(4.*T(I,J)-T(I-1,J))-(2.*T(I,J)-
1 T(I-1,J))*2.*CUNDMIENS*HTCAPA*DX)+M(1 ,J)-

2 0-1))**2.)*VISCPDX*28/(DENS*HTCAPA*(DR**2.))

3 +(2.*U(10)-U(I-10))*(2.*T(I,J)-4(I-10))*2.*DX*CONA6
4 *PYRO*ORAD/(HTCAPA*DENS)

ALPA(J)*ALPA(J)+6AMA(J)

BETA(J)=BETA(J)
IF(X.6T.0.2) 60 TO 37

DELTA(J)*DELTA(J)-2.*DR*RTFLUX*601A(J)/COND
GANA(J)=0.0

EXTA(J)*0.0

GO TO 500

37 DELTA(J) =DELTA(J)

6ANA(J)20.0
EXTA(J) =0.0
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C

500 CONTINUE
C

Z(1)=DELTA(1)

DU(1) =BETA(1)

UZ(1)216ANA(1)+ALPA(1)

C

DO 80 Ja2,NR
IF(J.EO.NR) 60 TO 21

UZ(Da6ANA(J)
PLOU(J) =ALPA(J) /DU(J -1)

DU(DaDETACD-UZ(J-1)*PLOW(J)
I(DaDELTA(J)-2(J-1)*PLOU(J)

80 CONTINUE

C

21 ET(J)=EXTA(J)/DU(J-2)

PLOU(J)=(ALPAM-U2(J-2)*ET(J))/DU(J-1)
DUW2DETA(J)-UZ(J-1)*PLOU(J)
Z(J)=DELTA(J)-ET(J)*Z(J-2)-PLOW(J)*Z(J-.1)

T(IR,J)22(J)/DU(J)

C

C

DO 90 NIa1,II
ONR-NI
T( IR,K)a(Z(K)-UZ(K)*T(IR,K+1))/DU(K)

90 CONTINUE

C

CALL SINPU(IO,UAVI)
CALL SIMPU(I,UAV)

LaN+2
DRADL=RAD**2.0

C

C

C

C

DO 41 Ja1,NR
PRESX(I+10)02-(8.0*VISCOSUAV/DRADL-8.0*YISCO*UAVI/DRADL)

1 +CONAB*PYRO*FIELD*(T(I+1,J)-T(I,J))/DX
41 CONTINUE

DO 40 J=1,NR

IF(J.GE.2) 60 TO 15

A(J)20.0

AP =-4.*VISCOK*DWDR**2.)
D(J)23.*(2.*U(I,J)- U(I10))+8.*VISCOODX/(DR**2.)
CP11-4.*VISCOK*DX/(DR**2.)

C(J) =AP +CP

D(J)2(2.*U(I,J)- J(I-10))*(4.*U(I,J)-U(I-10))+2.*(DX/DENS)*
1 PRESX(I+14)+2.*DX*PYRO*CONA6416RADCT(I+1,J)-T(I0))/DENS
2 ..(2.44(I,J).-V(I-1,J))*(U(I,J+1)-U(I,J))*2.0*DX/DR
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C

60 TO 40

C

15 A(J): -2.*VISCOK*DX/(DR**2.)+VISCOK*DX/(DR*FLOAT(J-1)*DR)
IF(J.EQ.NR) 60 TO 40

D(J)=3.*(2.*11(I,J)-U(I-10))+4.*VISCOK*DX/(DR**2.)

C(J) =-2.*VISCOK*DX/1DR**20-VISCOK*DX/(DR*FLOAT(J-1)*DR)
D1J/=12.*U( I,J)-U( I-1,J))*(4.*U(I,J)-U(I-1,J))+2.*(DX/DEN8)*

PRE8X(I+1,J)+2.*DX*PYRO*CONAO*6RAD*(T(I+1,J)-T(I,J))/DENS
2 -(2.0( I,J)-V(I-1,J))*(MI,J+1)-U(I,J-1))*DX/DR

C

40 CONTINUE

C

C

C

C **** VELOCITY CALCULATION ****

C

C

C

C

C

C

C

C

C

C

C

C

U(I+1,NR)=0.0
V(I+1,KR)=0.0

J=1

ZI(J)=D(J)
DUI(J)=D1J)

UZI(J)=C(J)+A(J)

DO 95 J=2,JR

UZI(J)=C(J)
PLOUI(J) =A(J) /DUI(J -1)

DUI(J)=D(J)-UZI(J-1)*PLOUI(J)

ZI(J)=D1P-ZI(J-1)*PLOUI(J)
95 CONTINUE

U(I+1,NR-1)=ZI(NR-1)/DUI(NR-1)

LZ=NR-2

DO 98 LI=1,L2
KI=JR -LI
U(I+1,KI1=1ZI( KI)-UZI(KI)*U(I+1,K1+1))/DUI(KI)

98 CONTINUE

DO 60 J=2,JR
INJ.E0.2) V(I+1,J-1)=0.0
V(I+11J)=FLOAT( J-1)*V( I+1,J-1)/FLOAT(J)-(0.5*DR/DX)*(U(I+1,J)-

1 11(I-10))

60 CONTINUE
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M=M+1

C

C***** CALL AVERAGE VELOCITY AND TEMPERATURE.
C

C

CALL SIMPU(I,UAV)
CALL SIMPT(I+1,TAV)

AI=0.2*HTFLUX/(DENS*HTCAPA*2.0*RAD*UAV)

HTCO=HTFLUX/(T(I+1,NR)-TAV)
HNUSS=2.0*RAD*HTCO/COND

RAMAP(COMAPPYRO*GRAD*(0.20**4.0)*DENS*HTCAPARCOND*VISCO))*(AI
1+COMAPPYRO*GRAD*TAV/(DENS*HTCAPA))

C

C***** OUTPUT DATA.

C

REY=2.0*RAD*DENS*UAV/VISCO
WRITE 100, X, HTCO,HNUSS

100 FORMAT("0",15X,"**DISTANCE FROM STARTING POINT OF HEATING, X =1',

1F10.8, /05WHEAT TRANSFER COEFFICIENT, 11= ",F12.5, /,15X,
2 mNUSSELT NUMBER, NU= ",F12.5)
WRITE 58, REY

58 FORMAT( 15X,"REYNOLDS NUMBER = ",F10.3)

WRITE 55, RAMAG

55 FORMAT( 15WMAGNETIC RAYLEIGH NUMBER = *,F10.1)
WRITE 199

199 FORMAT("0",8WRADIUS",3WAXIAL VELOCITY ",3X, "RADIAL VELOCITY",
1 3WTEMPERATURE",3WPRESSURE")
DO 70 J=1,NR
RO(J)=FLOAT(J-1)*DR/RAD

WRITE 406,RO(J),U(I,J),V(I,J),T(I,J),PRESX(I,J)

406 FORMAT(10X,F4.2,7X,F8.6,7X,F8.6,9X,F6.1,7X,F7.2)
70 CONTINUE

X=X+DX
30 CONTINUE

68 CONTINUE

STOP

END

SUBROUTINE SIMPU(IIUM)
COMMON U(100,41),V(100,41),PRESX(100,41),T(100,41),DR
DATA RADIAR/0.019050,21/

SUM=SUMI=0.0

C

DO 10 J=1,NR

DRAD=FLOAT(J-1)*DR
IF(J.E0.1) GO TO 5

IF(J.EG.NR) GO 70 6

ITEST=J/2

TEST=FLOAT(ITEST)

TESTJ=FLOAT(J)/2.

C



INTEST.EO.TESTJ) GO TO 4

SUNI=SUNI+U(I,J)*DRAD
60 TO 10

4 SUN=SUN+U(I,J)*DRAD
60 TO 10

5 SUNA=U(I,J)*DRAD
60 TO 10

6 SUNB=0(1,J)*DRAD
10 CONTINUE

C

F=SUNA+4.*SUN+2.*SUMI+SUND
UN=2.*DR*F/(3.*(RAD*412.))

RETURN
END

SUBROUTINE SIMPV(I,UN)

COMMON U(100,41),V(100,41),PRESX(100,41),T(100,41),DR
DATA RADINR/0.019050,21/
SUN=SUNI=0.0

C

DO 10 J=1,NR

DRAD=FLOAT(J-1)*DR
IF(J.EQ.1) 60 TO 5
IF(J.EQ.NR) GO TO 6

ITEST=J/2

TEST=FLOAT(ITEST)

TESTJ=FLOAT(J)/2.

C

INTEST.E0.TESTJ) GO TO 4

SUNI=SUNI+V(I,J)*DRAD
GO TO 10

4 SUN=SUN+V(I,J)*DRAD
60 TO 10

5 SUNAWI,J)*DRAD
GO TO 10

6 SUNDWI,J)*DRAD
10 CONTINUE

C

F=SUNA+4.*SUN+2.*SUMI+SUMB
UN=2.*DR*F/(3.stRAD**2.))
RETURN
END

SUBROUTINE SINPP(I,UN)
CONNON U(100,41),V(100,41),PRESX(100,41),T(100,41),DR
DATA RAD,NR/0.019050,21/

SUN=SUNI=0.0

C

DO 10 J=1,NR

DRAD=FLOAT(J-1)*DR
IF(J.E0.1) GO TO 5

IF(J.EQ.NR) GO TO 6

ITEST=J/2
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TEST=FLOAT(ITEST)

TESTJ=FLOAT(J)/2.

IF(TEST.EQ.TESTJ) 60 TO 4

SUNI=SUMI+PRESX(I,J)*DRAD
60 TO 10

4 SUM=SUM+PRESX(I,J)*DRAD
GO TO 10

5 SUNA=PRESX(I,J)*DRAD
60 TO 10

6 -SUMB=PRESX(I,J)*DRAD
10 CONTINUE

C

F=SUMA+4.*SUM+2.*SUNI+SUMB
UM=2.*DR*F/(3.*(RAD**2.))
RETURN

END

SUBROUTINE SIMPT(I,TM)
COMMON U(100,41)0(100,41),PRESX(100,41),T(100,41),DR
DATA RAD,NR/0.019050,21/
ADD=ADDI=0.0

C

DO 20 J=1,NR

DRAT=FLOAT(J-1)*DR
IF(J.EQ.1) GO TO 5
IF(J.EQ.NR) GO TO 6

JTEST=J/2
TEST=FLOAT(JTEST)

TESTA=FLOAT(J)/2.

C

IF(TEST.ELTESTA) 60 TO 4

ADDI=ADDI+U(I,J)*T(I,J)*DRAT
GO TO 20

4 ADD=ADD+U(I,J)*T(I,J)*DRAT
GO TO 20

5 ADDA=U(I,J)*T(I,J)*DRAT
GO TO 20

6 ADDB=U(I,J)*T(I,J)*DRAT
20 CONTINUE

C

CALL SINPU(I,UN)
FU=ADDA+4.*ADD+2.*ADDI+ADDB

TM=2.*DR*FU/(3.*UMORAD**2.))
RETURN

END



**DISTANCE FROM STARTING POINT OF HEATING, X = 2.5 CPA

RADIUS

HEAT TRANSFER COEFFICIENT, H= 49.33219

NUSSELT NUMBER, NU* 10.74032

REYNOLDS NUMBER = 136.0

MAGNETIC RAYLEIGH NUMBER = 334797.8

AXIAL VELOCITY RADIAL VELOCITY TEMPERATURE PRESSURE

0.00 .004460 0.000000 285.0 -.02

.05 .004449 .000012 285.0 -.02

.10 .004413 .000020 285.0 -.02

.15 .004353 .000027 285.0 -.02

.20 .004269 .000033 285.0 -.02

.25 .004162 .000040 285.0 -.02

.30 .004030 .000045 285.0 -.02

.35 .003876 .000051 285.0 -.02

.40 .003700 .000057 285.0 -.02

.45 .003504 .000061 285.0 -.02

.50 .003292 .000065 285.0 -.02

.55 .003071 .000066 285.0 -.02

.60 .002856 .000062 285.0 -.02

.65 .002667 .000048 285.0 -.02

.70 .002537 .000016 285.0 -.02

.75 .002509 -.000046 285.0 -.02

.80 .002623 -.000158 285.2 -.02

.85 .002888 -.000338 284.1 .16

.90 .003020 - .000583 295.9 .59

.95 .002044 -.000800 296.8 1.73

1.00 0.000000 0.000000 323.7 1.71

**DISTANCE FROM STARTING POINT OF HEATING, X = 5.0 CPA

HEAT TRANSFER COEFFICIENT, Hs 37.62708

NUSSELT NUMBER, NU* 8.19195

REYNOLDS NUMBER = 136.0

MAGNETIC RAYLEIGH NUMBER = 260431.9

RADIUS AXIAL VELOCITY RADIAL VELOCITY TEMPERATURE PRESSURE

0.00 .004394 0.000000 285.0 -.00

.05 .004382 .000013 285.0 -.00

.10 .004346 .000022 285.0 -.00

.15 .004287 .000029 285.0 -.00

.20 .004204 .000036 285.0 -.00

.25 .004098 .000043 285.0 -.00

.30 .003968 .000050 285.0 -.00

.35 .003818 .000055 285.0 -.00

.40 .003649 .000060 285.0 -.00

.45 .003465 .000064 285.0 -.00

.50 .003276 .000065 285.0 -.00

.55 .003094 .000060 285.0 -.00

.60 .002942 .000047 285.0 -.00

.65 .002854 .000019 285.0 -.00

.70 .002883 -.000032 285.0 -.00

.75 .003110 - .000117 285.3 .03

.80 .003651 -.000250 287.7 .31

.85 .004570 -.000451 298.5 1.81

.90 .005343 -.000676 333.8 4.78

.95 .004810 -.000892 375.6 9.93

1.00 0.000000 0.000000 403.6 10.06
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APPENDIX D

Data Reduction, Regression Analysis - PROGRAM CURFIT

PROGRAM CURFIT(INPUT,OUTPUT,TAPE1,TAPE2,TAPE3=INPUT,TAPE4=OUTPUT)
DIMENSION WORD(8),NAME(2,7),XIN(400),YIN(400),X(400),Y(400),B(11),

1 MATRIX(11,11),SUM(20),RHS(11),WARN(3)
REAL LL,MATRIX
DATA WORDPLIN","EXP","LOG","POW","HYP","POL","INV","LIS"/
DATA NAME/"LINEAR"," ","EXPONENTIA","L ","LOGARITHMI",

1 "C ","POWER "," ","HYPERBOLIC"," ","POLYNOMIAL",

2 " ","INVERTED P","OLY"/
DATA WARN / "Y

" ""
, A ","X AND Y"/

C READ THE DATA FROM TAPE1 (FREE-FORMATTED U/INDEP VAR READ FIRST)

REWIND 1

READ(1,113)DATA

WRITE(4,106)DATA

READ(1,0N
READ(1,0(XIN(I),YIN(1),I=1,N)
IFLAG3=IFLAG4=0

C READ THE TYPE OF FIT

1 WRITE(4,99)

IF(IFLAG3.E0.0)WRITE(4,100)
IFLAG3=1

READ(3,101)TYPE
IF(TYPE.EQ.WORD(8)) GO TO 3

NTYPE=0
DO 2 1=1,7

2 IF(TYPE.EQ.WORD(I)) NTYPE=I
IF(NTYPE.NE.0) GO TO 4

WRITE(4,102)

GO TO 1

3 WRITE(4,103)
GO TO 1

C READ THE LIMITS...IF LL=0. AND UL=0. ALL OF THE DATA WILL BE FIT

4 IF(NTYPE.LE.5) GO TO 12

WRITE(4,105)

READ(3,*)NORDER

12 IF(IFLAG4.E0.0) GO TO 14

WRITE(4,115)
GO TO 15

14 WRITE(4,104)

15 READ(3,*) LL,UL

IFLAG4=1

IFLAG=0

IFLAG2=0
IF(LL.E0.0.0.AND.UL.E0.0.0) IFLAG=1

C TRANSFORM THE DATA

M=0

DO 25 I=1,N
IF(IFLAG.EQ.1) GO TO 5
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ig(fiNT.GE.LL.AND.XIN(I).LE.UL) GO TO 5

5 M=M+1

GO T0(6,7,8,11,9,6,9) NTYPE
6 Y(M)=YIN(I)

GO TO 10

7 IF(YIN(I).LE.0.0) GO TO 13

Y(M)=ALOG(YIN(I))

GO TO 10

IF(XIN(I).LE.0.0) GO TO 13
X(M)=ALOG(XIN(I))

GO TO 10

9 Y(M)=1./YIN(I)

10 X(M)=XIN(I)

GO TO 25

13 IFLAG2=1

M=M-1

GO TO 25
11 IF(YIN(I).LE.0.0.0R.XIN(I).LE.0.0) GO TO 13

X(M)=ALOG(XIN(I))
Y(M)=ALOG(YIN(I))

25 CONTINUE

C DO THE REQUIRED SUMATIONS (IF ITS A POLY FIT GO TO 50)

IF(NTYPE.E0.6.0R.NTYPE.E0.7)G0 TO 50

SX=SY=SX2=SY2=SXY=0.0

DO 30 I=1,M
SX=SX + X(I)

SY=SY + Y(I)

SX2=SX2 + X(I)*X(I)
SY2=SY2 + Y(I)*Y(I)
SXY=SXY + X(I) *Y(I)

30 CONTINUE

C CALCULATE THE COEFFICIENTS
XNUM=SXY-SY*SX/M
XDEN=SX2-SX*SX/M
YDEN=SY2-SY*SY/M

B(2)=XNUM/XDEN
B(1)=(SY/M)-B(2)*SX/M
IF(NTYPE.EQ.2.0R.NTYPE.EQ.4) B(1)=EXP(B(1))
IF(XDEN.EQ.0.0.0R.YDEN.EQ.0.0) GO TO 59

RSQ=XNUM*XNUM/(XDEN*YDEN)
NCOEF=2

GO TO 75

C THE ROUTINE FOR POLYNOMIAL FITTING BEGINS HERE

50 NCOEF=NORDER + 1

NP1=NCOEF + 1

N2=2*NORDER

DO 55 J=1,N2

SUM(J)=0.0

DO 55 I=1,M
55 SUM(J)=SUM(J) + X(I)**J
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DO 60 J=1,NCOEF
RHS(J)=0.0
DO 60 I=14
IF(X(I)*Y(I).NE.0.0) RHS(J)=RHS(J)+Y(I)*X(I)**(J-1)

60 CONTINUE

C SET UP THE NORMAL EQUATION MATRIX
DO 65 I=1,NCOEF

MATRIX(I,NP1)=RHS(I)

DO 65 J=1,NCOEF
K=I + J

IF(K.NE.2) MATRIX(I,J)=SUM(K-2)

65 CONTINUE
MATRIX(1,1)=M

C CALL THE GAUSSIAN ELIMINATION ROUTINE

CALL GAUSS(MATRIX,B,NCOEF,11)
C CALCULATE THE COEF OF DETERMINATION
59 YBAR=0.0

DO 66 I=1,M

66 YBAR=YBAR+Y(I)

YBAR=YBAR/M
SSR=SSTO=0.0
DO 70 I=1,M

SSTO=SSTOW(I)-YBAR)**2
YHAT=0.0

GO TO (61,62,63,64,67,68,68),NTYPE

61 YHAT=B(1)+B(2)*X(I)

GO TO 71

62 YHAT=B(1)*EXP(B(2)*X(I))
GO TO 71

63 YHAT=B(1)+B(2)*ALOG(X(I))
GO TO 71

64 YHAT=B(1)*X(I)**B(2)

GO TO 71

67 YHAT=1./(B(1)+B(2)*X(I))
GO TO 71

68 DO 69 N=1,NCOEF

IF(B(N)*X(I).NE.0.0) YHAT=YHAT+B(N)*X(I)**(N-1)

69 CONTINUE
IF(NTYPE.E0.7) YHAT=1./YHAT

71 CONTINUE
SSR=SSR+(YHAT-YBAR)**2

70 CONTINUE

RSO=SSR/SSTO

C FORMAT STATEMENTS

99 FORMAT( /1X,"TYPE OF FIT?")

100 FORMAT(1X,"TYPE LIST FOR A LIST OF AVAILABLE FITTING FUNCTIONS")

101 FORMAT(A3)
102 FORMAT(1X,"ILLEGAL FUNCTION, TRY AGAIN")

103 FORMAT(/1X,"THE FOLLOWING FUNCTIONS ARE AVAILABLE",

1 /7X,"LINEAR Y=B(1) + B(2)*X",

2 /7X,"EXPONENTIAL Y=B(1)*EXP(B(2)*X)",
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3 /7X,"LOGARITHMIC Y=B(1) + B(2)PALOG(X) ",
* /7X,"POWER Y=B(2)*X**B(2)",
4 /7X,"HYPERBOLIC Y=1./(B(1) + B(2)*X)",
5 /7X,"POLYNOMIAL Y= B( 1)+ B( 2 ) *X +B(3) *X * *2 +... +B(N+1) *X* *N ",

6 /7X,"INVERTED POLY Y=1./(B(1)+B(2)*X**1+...+B(N+1)*X**N)")

104 FORMAT( /1X,"INPUT THE LOWER AND UPPER LIMITS , RESPECTIVELY.",/

1 3X,"IF BOTH ARE ZERO...ALL THE DATA WILL BE FITTED")

105 FORMAT( /1X,"INPUT THE ORDER OF THE POLYNOMIAL")

106 FORMAT(//16X,"FITTER",/6X,"LEAST-SQUARES FITTING PROGRAM",/13X,
1 "VERSION 9/5/79",//8X,"THE DATA FILE IS ",A7)

107 FORMAT(/5X,"TYPE OF FIT- ",A10,A3)

108 FORMAT(5X,"ORDER- ",I2)

109 FORMAT(7X,"B(",I2,")=",G14.7)
110 FORMAT(7X,"RSQ=",F7.5)
111 FORMAT(5X,"LOWER LIMIT",010.3,/5X,"UPPER LIMIT",G10.3,

1 /5X,"NO. OF POINTS",I4)

112 FORMAT( /1X, "WOULD YOU LIKE TO RUN A NEW CASE?")

113 FORMAT(A7)

114 FORMAT(5X,"*** WARNING *** THIS FIT USES A TRANSFORMATION",

1 /22X,"WHICH MUST IGNORE NEGATIVE VALUES OF ",A7)

115 FORMAT(1X,"LL&UL?")
116 FORMAT(1X,"WOULD YOU LIKE TO SETUP A DATA FILE FOR PLOTTING?")
117 FORMAT(1X,"HOW MANY POINTS SHOULD BE CALCULATED?")
118 FORMAT(2G11.4)

C OUTPUT

75 WRITE(4,107) NAME(1,NTYPE),NAME(2,NTYPE)
IF(NTYPE.EQ.6.0R.NTYPE.EQ.7) WRITE(4,108) NORDER

WRITE(4,111) LL,UL,M

WRITE(4,109)(I,B(I),I=1,NCOEF)

WRITE(4,110)RSQ

J=NTYPE-1
IF(IFLAG2.EQ.1) WRITE(4,114) WARN(J)

WRITE(4,112)

READ(3,101) ANS
IF(ANS.EQ.YES) GO TO 1

C

C*****SET UP A DATA FILE FOR PLOTTING, IF REQUESTED
C

WRITE(4,116)

READ(3,101)ANS
IF(ANS.NE."YES") GO TO BO

WRITE(2,113) DATA

WRITE(2,*) M

WRITE(2,118)(X(I),Y(I),I=1,M)
WRITE(4,117)

READ(3,*) NDATA

XMAX=UL

XMIN=LL

IF(UL.NE.0.0.0R.LL.NE.0.0) GO TO 78
XMIN=XMAX=X(1)

DO 76 I=2,M
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IF(XMIN.GT.X(I)) XMIN=X(I)
76 IF(XMAX.LT.X(I)) XMAX=X(I)
78 HX=(XMAX-XMIN)/(NDATA-1)

WRITE(2,*) NDATA
DO 74 I=1,NDATA
YOUT=0.0
XOUT=HX*(I-1)+XMIN
GO TO(81,82,83,84,85,86,86),NTYPE

81 YOUT=B(f)+B(2)*XOUT
GO TO 77

82 YOUT=B(1)*EXP(B(2)*XOUT)
GO TO 77

83 YOUT=B(1)+B(2)*ALOG(XOUT)

GO TO 77
84 IF(XOUT.LT.0.0) GO TO 74

YOUT=B(1)*XOUT**B(2)
GO TO 77

85 YOUT=1./(B(1)+B(2)*XOUT)

GO TO 77

86 DO 87 N=1,NCOEF

IF(B(N)*XOUT.NE.0.0) YOUT=YOUT+B(N)*XOUT**(N-1)

87 CONTINUE
IF(NTYPE.EQ.7) YOUT=1./YOUT

77 WRITE(2,118) XOUT,YOUT

74 CONTINUE

80 STOP

END

SUBROUTINE GAUSS(A,X,N,NDIM)

C THE ROUTINE ACCEPTS THE DIMENSIONS OF THE MATRIX AS VARIABLES

DIMENSION A(NDIM,1),X(NDIM)
NP1=N+1
NM1=N - 1

DO 600 K=1,NM1

KP1=K + 1

L=K

DO 400 I=KP1,N

400 IF(ABS(A(I,K)).GT.ABS(A(L,K))) L=I
IF(L.EQ.K) GO TO 500

DO 410 J=K,NP1

TEMP=A(K,J)

A(K,J)= A(L,J)

410 A(L,J)=TEMP

500 DO 600 I=KP1,N

FACTOR=A(I,K)/A(K,K)

DO 600 J=KP1,NP1

600 A(I,J)=A(I,J)-FACTOR*A(K,J)

C BACK SOLUTION

X(N)=A(N,NP1)/A(N,N)

I=NM1

710 IP1=I + 1

SUM=0.0
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DO 700 J=IP1,N
700 SUM=SUM + AtI,J)*X(J)

X(I)=(A(I,NP1)-SUM)/A(I,I)
1 =1 -1

IF(I.GE.1) GO TO 710

RETURN

END
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APPENDIX E

Data Plot - PROGRAM FHDPLT

PROGRAM FHDPLUTAPE2,TAPE5,TAPE6,TAPE7,INPUT,OUTPUT)
DIMENSION XBAR1(1000),XBAR2(1000),XBAR3(1000),YBAR1(1000),

1YBAR2(1000),YBAR3(1000)
DIMENSION X1(400),X2(400),X3(400),Y1(400),Y2(400),Y3(400)
DIMENSION XIII(10),XMA(10),YMI(10),YMA(10)

DIMENSION X(400),Y(400),YBAR(1000),XBAR(1000),LABELS(2)
REWIND 2
REWIND 5

REWIND 6

REWIND 7
READ(2,50) DATA

50 FORMAT(A7)

C

READ(2, *) M

READ(2, *) (X(I),Y(I),I=1,M)

C

C

C

READ(2, *) NDATA

READ(2, *) (XBAR(I),YBAR(I),I=1,NDATA)

READ(5,50)DATA1

READ(5,0M1
READ(5,00(1(I),Y1(I),I=101)
READ(5, *)NDATA1

READ(5,0(XBAR1(I),YBAR1(I),I=1,NDATA1)

READ(6,50)DATA2
READ(6,0112

READ(6,0(X2(I),Y2(I),I=(,M2)
READ(6, *)NDATA2

READ(6,0(XBAR2(I),YBAR2(I),I=1,NDATA2)

READ(7,50)DATA3
READ(7,0M3
READ(7,0(X3(I),Y3(I),I=1,113)

READ(7,*)NDATA3
READ(7,0(XBAR3(I),YBAR3(I),I=1,NDATA3)
PRINT *,"INPUT HBOX, WBOX,HAX,WAX,LABEL"

READ*,HBOX,WBOX,HAX,WAX,LABEL

IF(EOF(5LINPUT)) 20,30

20 HBOX=8.5

UBOX=11.

HAX=5.

WAX=7.

LABEL=1

30 HOGT=HBOX41



UOUT=UBOX+1

PRINT*,"ICODE,MODEL"
READ*,ICODE,MODEL

CALL BELL
CALL PLOTYPE(ICODE)
CALL TKTYPE(MODEL)

CALL BAUD(2400)

CALL ERASE

CALL SIZE(IJOUT,HOUT)

YBIAS=XBIAS=0.0
IF(HBOX.E0.0.0.0R.4JBOX.E0.0.0) GO TO 10

YBIAS=(HOUT-HBOX)/2.

XBIAS=(UOUT-UBOX)/2.

CALL SCALE(1.,1.,XBIAS,YBIAS,O.,0.)
GO TO 10

C

C

C*****DRAU A BOX AROUND THE PLOT******

C

C

CALL PLOT(0.,0.,0,0)
CALL PLOT(WBOX,0.11,0)
CALL PLOT(UBOX,HBOX,1,0)
CALL PLOT(0.,HBOX,1,0)
CALL PLOT(0.,0.,1,0)

C

C*****RESET THE SCALE****

C

10 YBIAS= YBIAS +((HBOX- HAX) /2.)

XBIAS=XBIASMUBOX-MAX)/2.)
CALL CHECK(X,M,XMI(1),XMA(1))

CALL CHECK(Y,M,YMI(1),YKA(1))

CALL CHECK(X101,XMI(2),XMA(2))
CALL CHECK(Y101,YMI(2),YMA(2))

CALL CHECK(X2,M2,XMI(3),XMA(3))
CALL CHECK(Y202,YMI(3),YMA(3))

CALL CHECK(X3,113,XMI(4),XMA(4))
CALL CHECK(Y303,YMI(4),YMA(4))

CALL CHECK(XMI,2,XMINIXMAX0)
CALL CHECK(XMA,2,XMINO,XMAX)

CALL CHECK(YMI,4,YMIN,YMAX0)

CALL CHECK(YMA,4,YMINO,YMAX)

CALL RANGE(XMINIXMAX,IFTX(UAX),XMIN1,XMAX1,XTIC)
CALL RANGE( YMIN, YMAX ,IFIX(HAX),YMINI,YMAX1,YTIC)

XFACT=UAX/XMAX1
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YFACT=HAX/YMAX1-

CALL SCALE (XFACT,YFACT,XBIAS,YBIAS,O.,O.)

C

C*****DRAU AND LABEL THE AXIS*****

C

CALL AXISL(0.,XMAX1,0.,0.,YMAX1,0.,XTIC,YTIC,1,4,2,1,1.0.0.2,0)
C

C*****DRAU THE GRID*****

C

C
C*****PLOT THE DATA AS POINTS*****

C

C

C*****PLOT THE FUNCTION AS A LINE*****

C

C

C

C

C

C

CALL VECTORS
CALL LINE(XBAR,YBAR,1,NDATA)

CALL VECTORS
CALL LINE(XBAR1,YBAR1119,NDATA1)

CALL VECTORS

CALL LINE(XBAR2,YBAR2,0,NDATA2)

CALL VECTORS

CALL LINE(XBAR3,YBAR3,0,NDATA3)

IF(LABEL.E12.0) GO TO 11

SCL=7./WAX
CHT1=0.16/SCL
CHT2=0.18/SCL

CHT3=0.220/SCL

C

C*****LABEL THE X AXIS

C

11 XP1=0.25*XMAX1
YP1=-0.19*YMAX1
CALL SYMBOL(M,YP1,0.,0.2,18,18HRADIUS, FROM WALL.)

C

C*****LABEL THE Y AXIS*****

C

XP2=-0.2*XMAX1

YP2=0.2*YMAX1

CALL SYMBOL(XP2,YP2,90.,0.2,17,17HVELOCITY, CM/SEC.)

C

C*****LABEL THE FIGURE*****

C

ICHAR=IGRINPT(XPOS,YPOS)
CALL SYMBOL (XPOS,YPOS,O.,CHT2,23,23HPROBE CALIBRATION CURVE)

CALL TEKPAUS

CALL PLOTEND

STOP
END


