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Let K be a field and let 1(x) = Xn b be a binomial in K[x]. The iterates

of f (x) are the polynomials fi(x), f2(x), . in K[x] defined by fi(x) = f (x), and

frn-Fi(x) = f (fm(x)) for m > 1. In this dissertation we determine conditions un-

der which the iterates of an irreducible binomial remain irreducible, and if so, we

investigate the corresponding Galois groups 5-2,7, for in > 1.

Let R be a unique factorization domain with quotient field K. Let f (x) =

xn b E R[x] with 0 b E R, b a non-unit, and 72 > 1. Assume either

if u is a unit in R, then u E RP for all primes p dividing 12, or

if u is a unit in R, then u E {±1}.

We show under these conditions that if f(x) is irreducible in K[x], then fm(), the

Mt h iterate of f (x), is irreducible in K[x] for all in > 1. If we assume further that

n , for p an odd prime, and cp K with 67, a primitive pth root of unity, then we

are able to show for a given m> 1, if none of c1,. , cm is in Kr', then Gm [Gn]'

where Gm is the Galois group of fm(x) over K(C) and ck = ndlk fd(0)4(kid), for

1 < k < m. Restricting our arguments to R = Z (the integers) and thus K = Q
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(the rationals), we show Gm 2-I' [Cpt]m except for at most finitely many b E K. We

also show if f (x) = xP b is irreducible in Z[x], then G2 =2- [Cp] 2 .



The Galois Theory of Iterated Binomials

by

Lynda Major Danielson

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed April 27, 1995
Commencement June 1995



Doctor of Philosophy thesis of Lynda Major Danielson presented on April 27, 1995

APPROVED:

Major Professor, representing Mathematics

Head of Department of Mathematics

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Lynda Major Danielson, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGEMENTS

I wish to thank first and foremost my advisor, Professor Burton Fein, for all

his guidance, help, support, and above all patience.

Christie Gilliland and Troy Warwick are also due special thanks for encour-

aging me and helping me to finish my first year of graduate school. I am especially

grateful to Christie for her steadfast faith in my ability these past six years. I would

not have reached this stage in my mathematical career without both of them.

I would also like to thank several of the wonderful teachers I have had along

the way. I am especially appreciative of my fifth grade teacher, Tom Briten, for

not only spending extra time with me after school to get me caught-up on "long

division," but also giving me my first dose of Algebra. I am grateful to my marvelous

high-school mathematics teachers, Carol McCloy and Bob Bowman. And thanks to

Professors Roger Higdem, Ralph Applebee, and Les Tanner of my undergraduate

days. I would also like to thank all of the faculty at Oregon State who assisted

me along the way, especially Dennis Garity, Ron Guenther, Juha Pohjanpelto, Bob

Burton, Tom Dick, and Gary Musser.

And last, but certainly not least, I wish to thank my husband, Mike, for all

of his support and love through this struggle!



TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 STATEMENT OF THE PROBLEM 1

1.2 HISTORY OF THE PROBLEM 1

1.3 DISSERTATION SUMMARY 3

2 PRELIMINARIES 5

2.1 NOTATION AND TERMINOLOGY 5

2.2 IRREDUCIBILITY AND COMPOSITION OF FUNCTIONS 9

3 THE IRREDUCIBILITY OF THE ITERATES 12

3.1 OVER CERTAIN UFD'S 12

3.2 REDUCIBLE SECOND ITERATES 20

3.3 OVER THE RATIONALS 23

3.4 OVER ALGEBRAIC NUMBER FIELDS 28

3.5 WHEN ADJOINING ROOTS OF UNITY 35

4 THE GALOIS THEORY 39

4.1 BRIEF INTRODUCTION TO WREATH PRODUCTS 39

4.2 THE GALOIS GROUP OF THE ITERATES 41

4.3 A PAIRWISE COPRIME SEQUENCE 51

4.4 THE GALOIS GROUP A WREATH PRODUCT 55

BIBLIOGRAPHY 61



THE GALOIS THEORY OF ITERATED BINOMIALS

1. INTRODUCTION

1.1. STATEMENT OF THE PROBLEM

Let K be a field and let f (x) be a polynomial in K[x], that is

(x) = anxn an_1xn-1 + aix a()

with an, , ao E K and an 0. A nonzero polynomial (x) is said to be irreducible

over K if (x) is not a constant, and if, whenever (x) is expressed as a product

(x) = g(x)h(x) with g(x), h(x) E K [x], then g(x) or h(x) is a constant in K.

The iterates of (x) are the polynomials fi(x), f 2(x), . . in K [x] defined by fi (x) =

(x), and fm+i(x) = f (fm(x)) for m > 1. For simplicity, we shall work with

monic polynomials, i.e. the leading coefficient an, is equal to one. A binomial is a

polynomial of the form (x) = xn b.

This dissertation deals with the problem of determining whether the iter-

ates fm(x) of an irreducible binomial remain irreducible, and if so, determining the

corresponding Galois groups 52, for m> 1.

1.2. HISTORY OF THE PROBLEM

Computing the Galois group for a specific polynomial over the rationals can

be difficult. Describing the Galois group for a whole class of polynomials can pose

an even bigger problem. In fact, there are few classes of polynomials for which an
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explicit description of the Galois group is known. R.W.K. Odoni [12] calculated

the Galois groups for the iterates of the polynomial f (x) = x2 x + 1 over the

rationals. He, along with others, also investigated the Galois groups of the iterates

of the binomial x2 + 1. We give a brief history of this problem.

In the early 1980's, J. McKay (Concordia, Montreal) posed the following

problem.

Let fm() be the rrith iterate of f (x) = x2 + 1 over Q. What is Qm, the Galois

group of fm(x) over Q?

This is the natural first step in the study of the Galois groups of iterated binomials,

since for linear binomials, Sim is trivial for m > 1.

In 1988, R. W. K. Odoni [14] offered a partial solution to the above question.

It is easy to see that all iterates of x2 H- 1 are irreducible over the rationals. Odoni

was able to prove that the Galois group 1-2, is [C2]' for m < 750, where [C2]m

denotes the m-fold wreath product of C2 (the cyclic group of order 2) with itself.

He gave an algorithm for testing 52m [C2]rn for any given 771. Odoni was, however,

unable to offer a general solution to the problem.

In 1989, J. E. Cremona [3] carried out the algorithm of Odoni up to m =

5. 107. He conjectured that am [C2]m for all m.

In 1992, M. Stoll [18] considered a more general problem with f (x) = X2 + a E

Z [x], where a is not a square in Z. With considerably more difficulty, he was able

to show that the iterates of f (x) remain irreducible over the rationals. Stoll was

also able to compute Qin (m > 1) for certain a, including the case a = 1 of McKay

(proving Odoni and Cremona's conjecture). He showed there exist infinitely many

a E Z with 12m [C2]m, for all m > 2. He also showed there is one special case
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(with a = 2) yielding itm C2m the cyclic group of order 2m, for all m > I. His

results still left open the general problem of determining the groups lm, when a E Z

is given.

1.3. DISSERTATION SUMMARY

We now give a brief outline of the paper.

Chapter 2 begins with notation and standard definitions and results to be

used throughout the thesis. Included is a brief review of basic field theory and

finite Galois theory. Section 2.2 contains two standard theorems fundamental to the

thesis; the first describes the conditions necessary and sufficient for irreducibility of

a binomial and the second concerns irreducibility and composition of functions.

Chapter 3 contains a discussion of the irreducibility of the iterates of an

irreducible binomial. We investigate the irreducibility of iterates of xn b, with b an

element of a unique factorization domain, including the case b an integer. We are

able to show that the iterates of an irreducible binomial over the integers remain

irreducible. Section 3.2 demonstrates conditions under which the second iterate of

an irreducible binomial of degree 2 is reducible. Concerning the irreducibility of

iterates of a binomial over the rationals, two separate approaches are given. The

first uses results from diophantine equations. The second employs valuation theory.

Both yield conditions which will give rise to irreducible iterates. In the final section

we show that for polynomials of degree n = pt, for p an odd prime, if fm(x) is

irreducible in K[x] for all iterates of f (x) = xn b, and K does not contain any

primitive pth roots of unity for all p dividing n, then fm(x) is irreducible in K(Eri),

where Er, is a primitive nth root of unity. This result is needed for our investigation

of the Galois groups of the iterates in Chapter 4.
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In Chapter 4, with n still equal to 14' for some odd prime p, we investigate

the Galois groups Gm of the iterates fm(X) over K(E), where K is the quotient

field of a unique factorization domain R, and K does not contain a primitive pth

root of unity. We also assume the characteristic of K is zero. We begin with a

brief discussion of permutation groups and the wreath product of two groups. The

second section is an investigation of the Galois groups Gm. We let bm = fm(0) and

suppose fk(x) is irreducible in K(En)[x]. Using Kummer theory, we show

are p-independent in K(6) if and only if Gm [C]m, where [C,i]m is the ritth

wreath power of the cyclic group of order n. In 4.3 we construct a sequence {cm}

of pairwise coprime elements related to the Om -=- fm(0)} generated by the iterated

binomials. We add the hypothesis that the units of K are either all pth powers in

K or are +1. Then we show if none of , cm is in K P then Gm_=-=-2 [C]m. In the

final section we restrict our arguments to the case R = Z, hence K = Q, and show

Gm [C]"1 except for possibly finitely many b E Z. We show specifically that if

f(x) = XP - b is irreducible in Z[x], then C2 [Cp]2. Finally, as a consequence of

the Schur-Zassenhaus Theorem from group theory, if f (x) = XP - b is irreducible in

Z[x], then for the Galois group, 1m, of fm over Q, we have S2, = GmS , for some

subgroup S of S2m with Gm n S = {1}.



2. PRELIMINARIES

2.1. NOTATION AND TERMINOLOGY

We will establish notation and terminology to be used throughout the thesis.

Let K be a field, and let K* denote the nonzero elements of K. Let

f(x) E K[x], that is

f (x) = anxn an_1xn-1 + ax a()

with an, , ao E K and an 0. The sequence fi(x), f2(x), . of polynomials in

K[x] defined by fi(x) = f (x), and fm+i(x) = f (fm(x)) will be called the iterates

of f (x), with fm(x) the nit' iterate of f (x) for m > 1. We are concerned with

polynomials of the form f (x) = xn b. We note here for future reference that the

rilth iterate fm(x) has degree nm

We now review standard terminology and results necessary for our discussion

of the irreducibility of f (x) and Galois group of f (x), which can be found in various

references, such as [8] or [10].

Let D be an integral domain and let a, b E D. We say that b divides a, or

that b is a divisor of a, denoted b a, if there is an element c E D such that a = be.

An element u E D is called a unit of D if u divides 1. We call a and b associates if

there is a unit u E D such that a = ub; this is the case if and only if a and b divide

each other. An element of D is called a prime if it is not zero or a unit, and if it

has no divisors other than its associates and units.

An integral domain R is called a unique factorization domain (UFD) if

(1) every element of R which is not zero or a unit can be written as a product of

a finite number of primes, and

5
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(2) the factorization given in (1) is unique except for the order in which the factors

are written and the replacement of prime factors by their associates.

Examples. The ring of integers, Z, and Z[x] are both UFD's. In fact, for any

field F, F[xj is a UFD.

Definition 2.1.1 Let R be a UFD. A set PR of primes of R is called a complete

set of representatives for the primes of R if

71, ir2 E PR, 'xi r2 'xi and 72 are not associates, and

ir a prime of R there exists a 71 E PR such that 7r is an associate of 711

Examples. Pz = {2, 3, 5, 7, ...} is a complete set of representatives for the

primes of Z. PF[s] = (x) f (x) is monic irreducible} is a complete set of repre-

sentatives for the primes of F[x].

Throughout the remainder of the thesis, we assume R is a UFD and we have

fixed PR. Then define uniquely for a non-unit a E R, the prime factorization of

a by a = urP for u a unit in R, , 7r, E PR, and al, , ar > 0.

In a UFD any pair of non-zero elements a, b has a greatest common divi-
rnin(ai,b1)sor, gcd(a, b) = (a, b) = 7ri 7smzn b(a,,,), where {71, , rs} is the complete

set of primes from PR dividing both a and b (allowing some a b3 = 0). We note

this may be extended to the notion of the gcd(ci, , ck), for c, E R and k > 2. If

(a, b) = 1 then a and b are said to be relatively prime.

Let R and S be integral domains with R C S. An element a E S is integral

over R if there exists a monic polynomial f (x) E R[x] with f (a) = 0. The set of

all elements of S which are integral over R is the integral closure of R in S. R

is integrally closed in S when the integral closure of R in S is equal to R. For

future reference, we note the following fact about UFD's.



Fact 2.1.2 Any UFD is integrally closed in its quotient field.

Let E be an extension of K and let a E E. Recall that a is algebraic over

if there is a nonzero polynomial f(x) E K[x] such that f (a) = 0. The extension

of K is an algebraic extension of K if each element of E is algebraic over K.

The polynomial f(x) E K[x] splits completely in E[x] if

f(x) = 11(x
i.1

for some , Or E E. E is a splitting field for f(x) if f (x) splits completely in

E[x] and E is generated over K by the roots in E of f (x). E is algebraically closed

if every f(x) E E[x] splits completely in E[x], and E is an algebraic closure of K

if E IK is algebraic and E is algebraically closed. Recall also that the polynomial

f (x) E K[x] is irreducible in K[x] if f (x) = g(x)h(x) for polynomials g (x), h(x) E

K[x] implies one of g(x), h(x) is a unit in K. Also, if the leading coefficient of f (x)

is I, then f(x) is called monic.

Suppose a E E is algebraic over K. Then there is a unique monic irreducible

polynomial, Irr(a, K), in K[x] having a as a root.

We will repeatedly use the following basic fact from field theory.

Fact 2.1.3 If a E K, the algebraic closure of K, then the degree of the irreducible

polynomial Irr(a,K) is equal to the degree of the extension K(a) over K; that is,

[K(a) : K] = the degree of Irr(a, K).

Throughout this paper, we only deal with separable algebraic extensions E

of K; i.e., if a E E, then a is a simple root of Irr(a, K). For example, this holds if

has characteristic zero, e.g. K = Q or any finite extension of Q.

Recall that for a an element of E, the norm of a from E to K is defined by

NE,K(a) = H o-(a),

7
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Example. Let E = Q(4, K = Q. Then AutK(E) = {id,o-}, where

o-(a = a b4 and EAutK(E) = Q.

where the product is taken over the distinct embeddings of E in K over K.

We list some of the basic properties of the norm.

Fact 2.1.4 Let a E E and let

p(x) = Irr(a,K) = xr cr_ixr-1 +

NE-JC (a) ((-1-)rC0)[EXM ((-1)rp(0))[Ex(c)1,

NE,K(a) is an element of K,

NE_..,x(a13) = NE,K(a)NEK(P) for all a,13 E E,

if a E K then NE,K(a) a[E:K1

if L is a finite extension of E and if a E L, then NL,K(a) =

NE-+K (NL-).E (a)),

if R is a UFD with quotient field K and 13 E E is integral over R, then

NEK(M E R.

Let E be an algebraic extension of the field K. Let Aut(E) be the group of

automorphisms of E. Define

AutK(E) = fu laE Aut(E) and a(a) = a, Va E K}.

Then AutK(E) is called the Galois group of EIK. Suppose H is a subgroup of

AutK(E). Define

= {e E Ela-(e) = e, H}.
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An algebraic extension E of a field K is called Galois if EAutK(') = K. The

extension EIK is finite Galois if EIK is Galois and [E:K]< oo. We recall that

E K is finite Galois if and only if E is the splitting field of a separable polynomial

f(s) E K[x]. A Galois extension E K is abelian if its Galois group G is abelian.

A Galois extension EIK is of exponent k if gk = 1 for all g E G, the Galois group.

We will invoke the following main result of finite Galois theory.

Theorem 2.1.5 (The Fundamental Theorem of Finite Galois Theory) If

E is a finite dimensional Galois extension of K, then there is a onetoone cor-

respondence between the set of all intermediate fields of the extension and the set of

all subgroups of the Galois group AutK(E) (given by F F' = AutF(E)) such that:

the relative dimension of two intermediate fields is equal to the relative index

of the corresponding subgroups; in particular, AutK(E) has order [E : K];

E is Galois over every intermediate field F, but F is Galois over K if and

only if the corresponding subgroup F' AutF(E) is normal in G = AutK(E);

in this case G I F' is (isomorphic to) the Galois group AutK(F) of F over K.

For a proof, the reader is referred to [6].

2.2. IRREDUCIBILITY AND COMPOSITION OF FUNCTIONS

The following theorem allows us to determine when the first iterate is irre-

ducible. The case K = Q and n = p, a prime number, is due to Abel.

Theorem 2.2.1 Let b E K, b 0. Then xn b is irreducible in K[x] if and only if

(i) for all prime numbers p such that pin we have b KP = laP a E Kl, and



(ii) if 41n, then b 4K4 = {-4a4 a E K}.

For a proof, see [8]. The following lemma (see [19]), due to Capelli, estab-

lishes a relationship between the irreducibility of consecutive iterates.

Lemma 2.2.2 ("Capelli's Lemma") Let f (x), g(x) E K [x].

Let 3 be a root of f(x). Then every root of g(x) 13 is a root of f(g(x)).

Conversely, if a is a root of f(g(x)), then g(a) is a root of f(x).

Let E and L be, respectively, the splitting fields for f(g(x)) and f(x) over K.

Then L C E.

f(g(x)) is irreducible in K[x] if and only if both f(x) is irreducible in K[x]

and g(x) 3 is irreducible in K(/3)[x] for every root 3 of f(x).

For the convenience of the reader, we include the following elementary proof

taken from [5].

Proof. (1) Let a be a root of g(x) . Then g(a) = 3 so f (g(a)) = f(/3) = 0,

showing that a is a root of f(g(x)). The converse is equally clear. (2) is immediate

from (1). Now suppose that 3 is any root of f(x) and a is a root of g(x) 3.

Then g(a) = 3, so 3 E K(a) and f(g(a)) = f(/3) = 0. So a is a root of f (g(x)).

Let m and n be, respectively, the degrees of g(x) and f(x). Then f(g(x)) has

degree inn and f(g(x)) is irreducible in K[x] if and only if [K(a) : K] = mn. But

[K(a) : K] = [K(a) : K(3)][K(3): K]. Since ,3 is a root of f(x), [K(3): K] < n.

Since a is a root of g(x) 3 E K(3)[x], [K(a) : K(3)] < m. Thus f(g(x)) is

irreducible in K[x] if and only if both [K(3) : K] = n and [K(a) : K(3)] = m,

which is equivalent to if f(x) is irreducible in K[x] and g(x) 13 is irreducible in

K(3)[x].

10
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We have now established enough preliminaries to move on to a discussion of

the irreducibility of the iterates of an irreducible binomial.



3. THE IRREDUCIBILITY OF THE ITERATES

3.1. OVER CERTAIN UFD'S

In this section, we shall determine sufficient conditions for irreducibility of

iterates of binomials over certain UFD's. We shall make use of the properties of the

norm. We begin with some general lemmas which will be used repeatedly in what

follows.

Lemma 3.1.1 Let K be a field and let f(x) = xn b E K[x]. Assume that fm(x)

is irreducible in K[x] for some m and let am E K be a root of fm(). Then

NA-(,),K(b + am) = (-1)nm fm(b).

Proof: Let Sm = b am. This implies Sm is a root of fm( x b), which is

irreducible in K[x] since fm(x) is irreducible by assumption. (Suppose fm( x b) =

g(x)h(x) E K[x]. Then set y = x b so x = y + b. Then f(y) = g(y b)h(y b) =

G(y)H(y) E K[y].) Since K(8m) = K(b am) = K(am), we have [K(45m) : K] =

[K(am) : K] = the degree of fm(x) = rim. But the degree of fm(x b) equals the

degree of fm(x), implying fm( x b) = Irr(8m, K). And again since K(am) = K(6m)

we have the norm

NK(am),K(Sm) = [(-1)nmfm(0 b)][1'(' ):K(5.)]

=- (-1)nm fm(b).

LI
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Context: Throughout the remainder of this section, let R be a UFD with

quotient field K.



Corollary 3.1.3 For all m > 1, b divides fm(b).

13

Lemma 3.1.2 Let z1, z2 E R be non-zero, with z1 and z2 relatively prime. Let n > 2
Z1 rn Z1and fi(x) = f(x) = xn . Let cl, = z'22 fm(--). Then z2 is relatively prime to
Z2 z2

dm, and z1 divides dm.

Proof: Proceed by induction on m.

Suppose first that m = 1. We haveZ1n
eli = = z2n [( ]

Z2 4,2 Z2

= z1 )72 zizr E R.

Clearly z1d1. Also, since (zi, z2) = 1, if q is a prime of R dividing z2, then q does

not divide z1, showing (z2, di) = 1.

Now suppose inductively that dk = 2'22 fk(--) E R, ( , dk) = 1, and zildk,
Z2

for all k < m. Then

n+1 Zi Zi )] ri Zi )
dm+1 Z2

m
m+1 = Z2 m= f ( nm+1 72 Z2Z2

Zi nm-f-i_i= [Z2 fm(--)1 Z1 Z2
Z2

= (dm) ziz721m+1-1r E R.

.By the inductive hypotheses we have (z2, dm) = 1 which implies if q la, a prime of R

dividing z2, then q does not divide dm+1 , showing (z2, dm+i) = 1. And since zi ktin

by the inductive hypotheses, zi Idm+1. Thus, by induction we are done.

We will now suppose f (x) xn b E R[x]. Let az be a root of fi and let

= K(a2) for i > 1. Then we have the following results.

Proof: Applying Lemma 3.1.2 with b and z2 = 1, we get the result. 0

Before moving on, we require a simple result about UFD's.
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Lemma 3.1.4 Suppose R is a UFD with quotient field K, with a, non-zero ele-

ments of R. Suppose (a, ,(3) = 1 and ak = -yP for some prime number p, integers

k and j, and -yP E K. Then ak = u6P for some 6 E K and u a unit in R. Further,

if k > 0, then 8 ER.

Proof: Let ,Ps E 'PR be the set of distinct primes dividing y. Then

-y = wygi for my a unit in R, and -yi 0 for i = 1, ... s. Thus ak /3j = 7P =

u14,p71P . Suppose pi is a prime dividing a. Then pi does not divide 03 since

(a, )3) = 1. Therefore, since pTP divides -yP, we must have p divides ak . Since

p7iP+1 , then p7+1 ak . Also note gla, q a prime, implies q is an associate of pi

for some i. Thus, ak ucv(p7 .pt )P, where ua is a unit in R and i E {1, , 8}.

Clearly, if k> 0 then 6 = pt E R. 111

The next lemma will be used to derive a contradiction in the proof of Theo-

rem 3.1.6.

Lemma 3.1.5 Let a, be a root of the inth iterate, fm(). Suppose g(x) = xn b

an, is reducible in Km[x], with b E K* and [K, : K] nm (i.e. fm(x) is irreducible

in K[x]). Then there is a prime p dividing n, an element e E R*, and a unit u E R

such that b = ueP.

Proof: Since g(x) is reducible in Kni[x], by Theorem 2.2.1 there are two

possibilities. Either

there is a prime p dividing n such that b a, E Kt, or

41n and b a, E 4K.

In case (i), b am = i3P for some prime /An and some /3 E Km. We have

+ am) = NK,K(T) = [NR---,K(3)].
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Let c = Nicm,K(3) Then c E K (see Fact 2.1.4). By Corollary 3.1.3 we have

fm-i(b) = br for some 0 r E R and so by Lemma 3.1.1,

NK,,K(b am,) = (-1)nmfm(b)

= (-1)nm fi(fmi(b))

= (-1)Thm A(br)

(-1)nm [(br)n b]

=- (-1)nm b[bnIrn 11

It follows that

(-1)nmb[bn-lr" 1] e. (3.1)

Thus cP E R since b,r E R. Since c is a root of xl) E R[x], then c is integral

over the UFD R, implying c E R (see Fact 2.1.2). Now if p is odd, equation (3.1)

becomes

b[bn - rn 1] = +cP = (+c)P =

for some c1 E R. Likewise, if p = 2, then n is even and equation (3.1) becomes

b[bn-lrn 1] = c2.

Therefore, case (i) results in the relationship

b[bn-lrn 1] = cP ,

for some prime p dividing n and some r, c E R.

Similarly, in case (ii), there exists -y E K such that b ce, = 474 =
(2'72)2 = 02 for some E Km. Again, let c = NR-rn,K(/3) Then c E K, and we

have



N Km-+K(b + am) =

= NKK(-1)[NKinK()]2
(_1) [K m:K] e2

= C2

since by assumption [Km : K] = nm, and in this case, 4n, and so n is even. As

before, we have

NK,,,K(b + am) = (-1)nm b[bn-irn 1] for some r E R,

= b[bn-irn 1]

since n is even, yielding

b[bn-1 1] =- e2.

Thus, in either case (i) or case (ii), we have

b[bn-irn 1] = cP (3.2)

for some pin, and some r, c E R.

Since R is a UFD, if q is a prime dividing b, q does not divide [bn-irn 1].

Thus b and bn-irn 1 are relatively prime. But then by Lemma 3.1.4 we have

b = ueP for some e E R, with u a unit in R.

We are now in a position to prove the main result of this section concerning

the irreducibility of the iterates of a binomial with coefficients from a UFD under

certain hypotheses on the units.

Theorem 3.1.6 Let R be a UFD with quotient field K. Let f(x) = xn b E R[x]

with 0 b, b a non-unit, and n> 1. Assume either

(i) if u is a unit in R, then u E RP for all primes p dividing n, or

16



(ii) if u is a unit in R, then u E {±1}.

If fi(x) = f(x) is irreducible in K[x] then fm(x) is irreducible in K[x] for all rn > 1.

Proof: We proceed by induction on m. By hypothesis, fi(x) = f(x) is

irreducible in K[x], implying by Theorem 2.2.1 that b RP for all primes p dividing

n. Assume inductively that for some m > 1 f (x) is irreducible in K [x]. Let am+1 be

a root of fm+i(x). Since fm+i(x) = fm(f (x)), 0 = fin+i(arn+i) fm(amn+1 b) and

am = al+1 b is a root of fm(x). Let Km = K(am) and Kr/7+i = K(am+i). Then

fm-Fi(x) is irreducible in K[x] if and only if [Km+1 : K] = deg(fm+i) = nm+1. Since

fm(x) is irreducible in K[x] by our inductive assumption, [Km K] = deg(fm) =

Thus it suffices to show that [Km+1 : Km] n. Since am+1 is a root of

g(x) = xn b a, E Km[x], (3.3)

it suffices to prove that g(x) is irreducible in Km[x].

Assume by way of contradiction that g(x) is reducible in Km[x]. Therefore,

by Lemma 3.1.5 there is a prime p dividing n and an element e E R such that

b = ueP for some u a unit of R. If p is odd, then by our assumptions (i) and (ii) we

have u = VP for some unit v E R (either u is a pth power by (i), or u = 1 = 1P or

u = 1 = (-1)P by (ii)). Then we have b = ueP = (ve)P E R. But this contradicts

Theorem 2.2.1 and the irreducibility of fi(x). So we have p = 2, n is even, say

n = 2k, and by the previous argument, R is as in case (ii); that is, u E {±1}.

If u 1, then b = ue2 e2 which contradicts the fact that fi(x) is irreducible.

Therefore, we must have b = ue2 e2, and equation (3.2) becomes

-6R2r,-C) 2\2k-1r2k - 1] C2

yielding

17
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e2[(e2)2klr2k 11 = C2. (3.4)

If q is a prime of R dividing 62, then q does not divide Re2)2k-lr2k +11, which implies

e2 and [(e2)2k-1r21c are relatively prime.

Let pi,. ,p., E PR be the distinct set of primes dividing e. Then e

ztep71 so e2 pTe, ps2e$ since ue is a unit in R implying ue2 = 1. Similarly

if , qt are the primes dividing (e2)2k-lr2k 1 '"),, then -y = tt,q71

ucAi pC$ql1.
qctit where u, a unit in R. Since u,2 = 1, we have e2 =

2ci 2c 2d1 2ds 2 2ei ,.,2eszt
P1 ps8q1 e = " litYt . Therefore = 1 and -yi =

2di (using the fact that e and -y are relatively prime). Thus, = (e2)2klr2k +

qt2dt (41 )2d1 do2 2= w2. But then we have

(62kirk)2 w2 _1,

that is,

(62kirk 0(62kirk w) (3.5)

Now e, r, and w are in R, and we are considering case (ii). Thus, equation (3.5)

implies either e2k-1rk W = 1 and e21-1rk w =-1, or e21rk 1 and
e2klrk 1. In either case, adding the equations yields 2e2k-lrk = 0, which

leads to the contradiction that either e = 0 (b = 0) or r = 0 (r 0 by

Lemma 3.1.2).

Thus g(x) is irreducible in I ci[x], completing the proof that fm+i is irre-

ducible in K [x]. 0

The following two corollaries indicate particular UFD's satisfying the hy-

potheses of Theorem 3.1.6.
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Corollary 3.1.7 Suppose R = Z or R = F[T] where T is an indeterminate and

either F = Z or F is an algebraically closed field. Let K be the quotient field of R

and fi(x) = f(x) = xn b with 0 b E R, b a non-unit, and n > 1. If fi(x) is

irreducible in K[x], then fm(x) is irreducible in K[x] for all m > 1.

Proof: First note that the units of F[T] are the units of F. Suppose

R = F[T] with F an algebraically closed field. Then R is a UFD with every unit a

pth power, for all primes p. (This is true since if u E F*, then g(x) = xP u splits

completely in F[x], implying there exists some a E F with u = aP.) If R = Z or

R = Z[T], then R is a UFD with (the only) units +1. Therefore, since R satisfies

the hypotheses of Theorem 3.1.6, the corollary is proved.

Corollary 3.1.8 Suppose R = = Z[i]. Let K be the quotient field of R and

fi(x) = f(x) = xn b with 0 b E R, b a non-unit, and n > I odd. If fi(x) is

irreducible in K[x], then fm(X) is irreducible in K[x] for all m > 1.

Proof: The only units of R are +1 and ±i. Since n is odd, every prime

dividing n is odd. We show all units are in RP, for all p dividing n. If p = 2k +1 is

a prime dividing n, for some integer k, then 1 = 1P and 1 = (-1)P. Now either k

is even or k is odd. If k is even, then k = 2k1 for some integer k1 and p = 4k1 + 1.

Thus i = (1)i 'p
z and i = (-1)PiP = (i)P . Similarly, if k is odd, then

k = 2k1 + 1 for some integer lc1 and p = 4k1 + 3. Thus i (i)P and (i) =

Therefore, R satisfies condition (i) of Theorem 3.1.6 and the corollary is proved. CI

In the next section we show that the conclusion of Theorem 3.1.6 is false

in general. In fact, Theorem 3.2.2 gives some sufficient conditions under which the

second iterate of an irreducible polynomial is reducible.



3.2. REDUCIBLE SECOND ITERATES

Context: Throughout this section, let R (0) be a unique factorization

domain (of characteristic zero) with field of quotients K. A Pythagorean triple in

R is a triple (x, y, z) of elements of R satisfying

x2 + y2 z2 (3.6)

The following theorem of Kubota [7] characterizes the Pythagorean triples in R.

Theorem 3.2.1 If R (0) is a unique factorization domain of characteristic zero,

then every Pythagorean triple is of the form

s(u2 v2) 2suv s(u2 + v2)
x = Y = and z =

t

with s, u, and v arbitrary elements of R, and t is a factor of 2 relatively prime to s

such that t J u2 v2. If, in addition, the element 2 of R is either prime or invertible

in R, then every Pythagorean triple is of the form

x w(y2 v2), y 2wuv, and z = w(u2 + v2), (3.8)

with u, v, w ER.

Context: Throughout the remainder of this section, suppose V-1 is not an

element of K. Then for z1,z2 ER with (zi, z2) = 1, the polynomial

Z21h(x) = x2 +
Z2

is irreducible in K[x] by Theorem 2.2.1. By Lemma 2.2.2(c) with g(x) = f(x) =

n(x),
2 Z2

f2(x) fi(fi(x)) = (x2 +
2

,2

20

(3.7)



is irreducible in K[x] if and only if

z2
(x) 0 -= x2 +

Z2

is irreducible in K(/3)[x], for 0 a root of fi. Since

2

n(x) = x2 + =
Z1(X +. )(x )

Z2 Z2 Z2

for i2 = 1, = implying K(0) = K (i). Therefore,
Z2

Z2
f2(x) is reducible < > x2 + 4 (+i) is reducible in K(i)[x].

Z2 Z2

Z2 Z1
< (+i) = a2, for some a E K (i).

Z2 Z2

Hence, f2 reducible is equivalent to having a solution to

Z21 / Z1 C C2
e2

CC
= = --(d2 f2

+ 2z)
Z2

)

for c, d,e, f E R with (c,d) = 1 and (e, f) = 1. Then

z? c2 62
Z1 CC \2)i 0.

d2 f2 Z2 df

Since i t K, we have

2Zi C2 e2 Z1 CC
0 and + = 0, or

d2 f2 Z2 df

Z2 e2 c2 Z1 CC2 =dz2 j2 dan2 Z2

For future reference, this last equation is equivalent to

2 = 2(ec)2
z2 (df)(ec) cf de

But now equation (3.9) is equivalent to

21

(3.9)

(3.10)



C2C2 e2 C2

4d2f2 f2 d2' so

4e2e2 = d2e2 e2f2,

(2ec)2 (cf)2 = (de)2,

a Pythagorean triple.

Since the characteristic of R is zero, by equation (3.7) we have two cases.

Case 1:

s(u2 v2) 2suv s(u2 + v2)
CC =

2t
cf = and de =

t

Together with equation (3.10) this yields

= 2
(ec)2

Z2 cf de

= 2(s2(u2
v2)2 r2suv s(u2

22t2 )/1 t
(u2 v2)2

4uv(u2 v2).

Case 2:
suv s(u2 v2)

cc = cf = and de =
t

Together with equation (3.10) this case yields

z, (CC)2

+;-2 = 2cfde
v2) s(tt2 + v2)2(SUV)2 S(11,2

=
t2

2u2v2
(u2 v2)(u2 4_ v2)

We have proved the following theorem.

Theorem 3.2.2 Let R (0) be a UFD of characteristic zero. Let K be the quotient

field of R. Suppose fi(x) = x2+ 41 z3 is irreducible in K[x] Then the second iterate,

f2, is reducible in K[x] if and only if either

v2)1

22



-=
(u2 2,2)2

or
z2 4uv(u2 v2),

Zi 27/2'0+- =
Z2 (u2 - V2)(U2

Example. Let fi(x) x2 + 26245 x2 + (185)2. Then by Theorem 2.2.1, fi(x)

is irreducible over Q. Now

f2(x) (x2 26:5 )2 26245

1
(225x2 + 180x + 136)(225x2 180x 136)

50625

is reducible over Q. We see this is the result of Theorem 3.2.2, case (ii), with u = 2

and v = 1.

In the next section, we investigate the irreducibility of iterates over Q.

3.3. OVER THE RATIONALS

Our discussion of the irreducibility of iterates over Q will require some results

from diophantine equations. We begin with a definition taken from [4].

Definition 3.3.1 Let A, B, and C be non-zero integers. The generalized Fermat

equation is AxP d-Byq = C zr where p, q, and r positive integers. An integer solution

(x, y, z) to this equation is called proper if gcd(x,y, z) 1.

2 °

We will use the following theorem of Darmon and Granville [4].

23
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Theorem 3.3.2 Let A, B, and C be fixed non-zero integers and p,q,r positive

integers such that 11 p 1/q + 1/r < 1. Then the generalized Fermat equation

Axv Bye' = C zr,

has only finitely many proper solutions.

This leads us to the main result of this section regarding the irreducibility of

iterates of binomials over the rationals.

Theorem 3.3.3 Let n be a fixed odd integer with n > 5. Then there exists a finite

subset S (depending on n) of Q such that for b E Q and b 5, if fi(x) = xn b is

irreducible in Q[x], then fm(x) is irreducible in Q[x] for all m > 1.

Proof: We begin by identifying the set S. For p a prime dividing n, let

S'p = {(x, y) I (x, y, z) is a proper solution to xl) - yn-1 zp}

Now

2p < (p 2)n + 2 = pn 2n + 2

(since if p = 3, then p 2 = 1, and n > 5, so (p 2)n + 2 > 7 > 6 = 2p and if p > 3

then p 2 > 2 and n > p). Subtracting p from both sides yields

p < pn 2n p + 1 = (p 2)(n 1),

which implies
1 p

n p

Therefore, 1/p+1/(n-1)+1 p < 1, and by Theorem 3.3.2 (with A = 1, B = 1, C =-

1), there are only finitely many proper solutions to the equation XP - yn-1 zp

implying S; is a finite set. Let



Xi
Sp = E QI (x1, y1) = 1, xrldn = xP, and yl = y,

Yi

for (x, y) E Sp' and some d E Z, 0 < s E Z1.

Then S is a finite set since S is finite. Now define S as

Then S is finite since it is the finite union of finite sets.

Now suppose fi(x) = xn b E Q[x] is irreducible with b V S. Suppose b
Z2

for integers z1,z2 with (zi, z2) = 1. Let a, be a root of fm(). Let Km = Q(cen2).

Proceed by induction on m. By assumption, fi(x) is irreducible in Q[x]. Suppose

inductively that fk(x) is irreducible in Q[x] for all k < M. We must show that

fni+i(x) is irreducible. By Capelli's Lemma (2.2.2(3) and Theorem 2.2.1, since

fm-Fi(x) = fm(fi(x)) and n is odd,

frn+i(x) is irreducible in Q[x] <=>- fi(x) am is irreducible in Km Vroots am of frn(x)

< V pin, b Vroots am of fm().

Suppose to the contrary there exists a p dividing n and /3m E Km such that

b=
Let c = NK,,,Q(A-n). Then c E Q and

NR-,,Q(b + am) = NK,,Q(it)

= [NK.--0770

=cp.

By Lemma 3.1.1 and since n is odd, we have

NKQ(b + am) = (-1)nmim(b) =

25
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Or

r nm-1 fm_1(-01n ziz2nmtz2
rn-1 zn cp.

2

By Lemma 3.1.2, = zrifm_1( b) E Z, and clearly z1z2nm-1 E Z, which

implies zrcP E Z. Thus, let 4 = (z2nmiPc)P (recall An). Equation (3.11) becomes

cimn _1 zizr- c. (3.12)

By Lemma 3.1.2, zi divides say dm_i zidirn_l. Then equation (3.12) is now

Zi [
nm -114-1 (dinrn ) Z2

nBut zi and zn-1(di-1 )n1 m z2m 1 are relatively prime, SO again by Lemma 3.1.4 zi

(dm, zr2 im -1is a pth power, and Zin- is a pth power; that is, zi = (zpi) and

26

Together with the above, we have two cases. First, if m = 1, then the situation is

f1(b) = cP, which implies

[(b)Th b] = cP, or

b[(b) n-1 1] = cP.

But, b and [(b)n-1 + 1] are relatively prime, implying b E QP (by Lemma 3.1.4 and

using the fact that p is odd), a contradiction to fi(x) irreducible (by Theorem 2.2.1).

Second, if m> 1, we have

fm(b) = cP, which implies

{(fm-i(b)r b] CP, Or

[Cfm-1( b))n = cP
Z2

Multiplying by zr yields

[ m-1
Z2

nrn Z1
fm-1(b)in z2 ( ) cP

(3.11)



for some z, e2 E Z. Therefore, we are in the situation

7/-1 zp
X y

27

-1(d/
m-1/

\n
z2

ren-1Zn Rzion-1(4 on/pip (z2nm-1 +nm-2++1)n-1 (3.13)
1 l"'

(3.14)

im \ nfor some x,y, z E Z, i.e. (x, y) E S,. But we then have xP ( d
) and

y z2n"1-1+nm-2 +.+1 implying b = E Sp C S, a contradiction. Therefore, f,n+i is
Z2

irreducible in Q[x], completing the induction.

Remark 3.3.4 Let f(x) = xnb E Q[x] with n odd and n > 5. Then Theorem 3.3.3

implies that, except for finitely many b, if f(x) is irreducible over Q then so is fm(x)

for all m > 1. We note that in this context we have not discovered an example where

f (x) is irreducible and fm(X) is reducible for some m > 1.

Remark 3.3.5 Theorem 3.2.2 shows Theorem 3.3.3 does not hold for n = 2. Also

the proof of Theorem 3.3.3 does not go through for n even, since if p = 2, then

equation (3.4) becomes

n-1 2
X2 y = Z 7

and we have 1/2 + 1/(n 1) + 1/2 > 1 for all n > 1, and Theorem 3.3.2 doesn't

apply. Similarly, if n = 3, the argument fails since then p 3 and we have

1/3 -I- 1/2 + 1/3 > 1. In this case, infinitely many solutions to equation (3.14)

are known (see Up, but it is not clear if any satisfy equation (3.13). We do note,

however, for any given m, fm(x) is irreducible except for finitely many b = zil z2,

since equation (3.13) becomes

[(Zi(Cin-1l (Z
n-1

)
\ (nn1-1+nm-1+-41) = C12%r e PP 2

and 11 p + 1/(nm-1 + nm-1 + 1) 1/p < 1 since m > 2 and n > p.



3.4. OVER ALGEBRAIC NUMBER FIELDS

For a discussion of the irreducibility of iterates over other number fields, we

will need to review some elementary algebraic number theory. A complete treatment

of the material can be found in [20].

A nonarchimedean valuation of the field F is a function (i9 from F into

the nonnegative reals such that

co(a) = 0 < a = 0,

co(ab) = co(a)(,o(b),

co(a b) 5_ max {cp(a),(,o(b)}.

There is also the notion of an archimedean valuation. However, we will only

be concerned with nonarchimedean valuations in this section. Let valuation refer to

a nonarchimedean valuation.

One example of a valuation is the trivial valuation of F defined co (0) = 0,

(p(a) = 1 for a 0 E F.

A nonarchimedean valuation cp determines a Hausdorff topology Ts, on F.

For each a E F,a fundamental system of neighborhoods of a is given by the set of

all

U(a,) = {b E Flcp(a b) < 6} .

We say two valuations (pi and (p 2 are equivalent (and denote this by spi (P2 )

when they determine the same topology on F. The equivalence classes with respect

to this equivalence relation are called prime divisors of F and will be denoted by

P,Q, etc.

Suppose that P is a nonarchimedean prime divisor of F, and choose any

E P. Define

28



52p = fa E F cp(a) <1} = the ring of integers at P,

Pp = fa E F I co(a) <1} = the maximal ideal at P,

Up = fa E F ko(a) = 1} = the group of units at P.

Define the residue class field of F at P

F p =
Pp

For a E F, let

v(a) = log (i.o(a)

so that cp(a) = e-v(a). Then v is called an exponential valuation of F. Note that

v is a function from F into R U fool such that

v(a) = oo < > a = 0

v(ab) = v(a) v(b)

v (a + min {v (a) , v(b)}

Example. Let p E Z be any prime number. Define a function vp : Q

Z {} by
I°° , if a = 0

vp(a) =
ordp(a), otherwise,

where ordp(a) is the exponent to which p appears in the factorization of a. Then vp

is an exponential valuation of Q.

Fact 3.4.1 If v is an exponential valuation of F, then

v(a) < v(b) v(a = v(a).

29

The image v(F*) is a subgroup of R+ and is called the value group of v,

denoted G(v). The prime divisor P is said to be discrete or nondiscrete according
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as G(v) (for v E P) is discrete or nondiscrete as a subgroup of +. If P is a discrete

nontrivial prime divisor of F, then there exists in P a unique exponential valuation,

vp, such that G(v) = Z. up is called the normalized exponential valuation of

P. In this situation we have

p ={aE F vp(a)> 0} = {a E F vp(a)> 1}

Pp = {a E F I vp(a)> = {a E Fl vp(a)> 1}

Up = {a E F vp(a) = 0}.

Now suppose that E is an extension of the field F. Then we say (pQ is an

extension of (pp if yki is a valuation of E and (P F = (PF.

We then have QQ,PQ,14(2, as above and

EQ = = residue class field of E at Q.v

Define the residue class degree of E over F at Q by

f = f(Q1P) = [EQ FP],

and the ramification degree of Q over P by

e = e(Q I P) = the number of left cosets of vp(F*)in vQ(E*).

An ordinary arithmetic field (OAF) is a pair {F, S}, where F is a field

and S is a nonempty collection of discrete prime divisors of F such that the following

axioms are satisfied:

For each a E F, we have vp(a) = 0 for all but finitely many P E S (where

vp E P is the normalized valuation).

Given any Pi, P2 ES with P1 P2 there exists an element a E F with



vp, (a 1) > 1

up, (a) > 1

vp(a) > 0 for all other P E S.

The ring of integers of {F, S} is

= 51{S} = S2{F,S} = fa E F vp(a) > 0 VP E S}.

We note the following examples:

If F Q and S is the set of all nonarchimedean prime divisors of Q, then

{Q,S} is an OAF with 52 = Z.

If F = k(x) the field of rational functions over the field k and we take S as

the set of all prime divisors which are trivial on k and arise from irreducible

polynomials in k[x] (only the prime divisor arising from 1 I x is excluded), then

, S} is an OAF whose ring of integers is k[x].

Fact 3.4.2 Let {F,S} be an OAF. If E F is a finite extension, then {E,SE} is an

OAF, where SE is the set of all extensions to E of the prime divisors belonging to

S.

We will require the following result from [20].

Theorem 3.4.3 Suppose that {F,S} is an OAF, P is a nonarchimedean prime

divisor of 5, and that E I F is a finite separable extension of degree n. Then there

are only finitely many extensions, , Q, of P to E, and

E e(Qi/P)f(Qi/P) = n.

31

For convenience, we will now state the main result of this section.
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Theorem 3.4.4 Let {F,S} be an OAF. Suppose f(x) = xn b E F[x] and let

{Pi}, i = 1....,s, be the set of nonarchimedean prime divisors of S such that

zip(b) > 0 for all i. Suppose {Pi} is nonempty and the gcd(n,upi (b), ,vp,(b)) = 1.

Then fm(x) is irreducible over F[x] for in > 1.

We first prove two preparatory lemmas before beginning the proof of Theo-

rem 3.4.4. Lemma 3.4.5 establishes a relationship between the values of the roots

of f m(x) and b, the (negative of the) constant term of f (x).

Lemma 3.4.5 In the situation of Theorem 3.4.4, if a, is any root of fm(x), then

up (b)
vc2 (am) = n in

where vQ, is any extension of vp, to F(arn).

Proof: We proceed by induction on in. For the case in = 1, let al be any

root of fi(x) = f(s) = xn b. Then arii = b and

nvQi(cti) = VQ (an = liPz(b),

showing the lemma true for in = 1.

Suppose inductively vQ,(ak) = vp,(b)Ink , for all k such that 1 < k < 7n,

where ak is any root of fk(x). Then, if am is a root of fm(x),

0 = fm(am) fm-i(h(am)) = fm,_1(4 b),

implying anm b is a root of fm_i(x), say anin b = arn_i. Let vc2, be an extension

of vpi to F(cem_i, am). Then

nvQ,(am) = vQi(anm) vQ,(arri_i b). (3.15)

By the inductive hypothesis, we have

vQ,(am_i) = vp,(b)In'l < vpi(b)



since by assumption, vp,(b) > 0. So by Fact 3.4.1

vc2.(am_i b) = vQ,(cfm_i) vp,(b)In'.

Combining this and equation (3.15), we have

1'c2i(am) = vp,(b)Inm,

completing the induction.

Lemma 3.4.6 gives conditions under which the Mth iterate is irreducible.

Lemma 3.4.6 Assume we have the situation of Theorem 3.4.4. Suppose further

there exists an i E {1, . , s} such that gcd(n, vp,(b)) = 1. Then fm(x) is irreducible

over F[x] for all m > 1.

Proof: Let am be a root of fm(). Suppose without loss of generality

gcd(n, up, (b)) = 1, say vp,(b) = a. Let Q be an extension of P1 to F (am). By

Lemma 3.4.5,
v1(b) a

vQ(am) = =

Now gcd(n, a) = 1 and so gcd(nrn, a) = 1 implying the order of vQ(ani) is rim, and

thus nm divides e(Q Ili). But then (using the fact that the degree of fm(x) is nm

and Theorem 3.4.3)

nm [F(m) > e(Q > nm

which yields [F(am) : F] = nrn, implying fm(x) is irreducible over F[x].
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We are now ready to prove the theorem.
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Proof of Theorem 3.4.4: Fix m> 1. By

assumption, gcd(n, vp, (b), , vps(b)) = 1, so gcd(nm, vp, (b), , vps(b)) = 1. If for

some i E {1, , s} we have gcd(n, vp,(b)) = 1, then we are done by Lemma 3.4.6.

Thus, assume gcd(n, vps(b)) = d > 1, for all i = 1, Write v p,(b) = diai and

nm = dini, for all i. Then, since di =gcd(nm, vp, (b)), we have gcd(a ni) = 1. Fix i.

Let a, be a root of fm(x) and let Q be an extension of Pi to F(a). By Lemma 3.4.5

vp,(b) diai a,
vc2(am) =

72i n,

Since gcd(ai, ni) = 1, we have n, divides e(Q IP,) for all extensions Q of P, to F (am).

Now, by Theorem 3.4.3,

[F (am) : F] =1= E e(Q IPi) f (QIPi). (3.16)
Q3.13

Since n, divides the right hand side of equation (3.16), ni divides 1. But this is

independent of the choice of i, so lcm(ni, , ns) divides 1.

Claim: lcm(ni, , ns) rim = the degree of fm(x). Proof of Claim:

ni divides nm for all i, so lcm(ni, , ns) divides 11m, Therefore, it suffices to

show rim divides lcm(ni, , ns). Suppose to the contrary nm does not divide

lcm(ni, , ns). Then there exists 1 d nm such that d lcm(ni,

which implies d ni for all i. But nm = dini and d nm , d n, implies d di

for all i. This yields d I dia, = v p,(b) for all i. But this is a contradiction to

1 =gcd(nm, vpi(b), . . . , iips(b)). Thus, the claim is proved, implying nm divides

1 = [F (am) : F] < nm. Hence, [F(am) : F] = nm, showing fm is irreducible,

proving the theorem. 0

This immediately yields the following result over the rationals.
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Corollary 3.4.7 Suppose f(x) = xn h E Q[x]. Let {pi} be the set of primes such

that v(b) > 0 for all i. Suppose {pil is nonempty and gcd(n, Vpi(b) 7 Vps(b)) = 1.

Then fm(x) is irreducible over Q[x] for m > 1.

Remark 3.4.8 Corollary 3.4.7 gives us infinitely many binomials in Q[x] all of

whose iterates are irreducible. Corollary 3.4.7 also yields some information which

was not given by Theorem 3.3.3 or Corollary 3.1.7. For instance, using Corol-

lary 3.4.7 we can demonstrate infinitely many cubics x3 b with b E Q, b Z, all

of whose iterates are irreducible.

3.5. WHEN ADJOINING ROOTS OF UNITY

We will need to investigate the irreducibility of iterates in fields containing

certain roots of unity before moving on to the Galois theory.

Definition 3.5.1 A group G is called nilpotent if G can be written

G=PiXXPr,

where each Pi is a A-group for some prime pi, and pi p3 for i j. That is,

G is nilpotent if it is the direct product of its Sylow subgroups. Equivalently, G is

nilpotent if every Sylow subgroup is normal. An extension E K is called nilpotent

if E I K is Galois and the corresponding Galois group is nilpotent.

Examples: Every finite abelian group is nilpotent. S3 (see Section 4.1), the

symmetric group on 3 letters, is not nilpotent.

Theorem 3.5.2 Suppose n is odd, g(x) Xn b is irreducible in If[x], and E is

an extension of K with E K nilpotent. If for all primes p dividing n, K does not

contain any Pith roots of unity, then g(x) is irreducible in E[x].
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Proof: Suppose to the contrary that g(x) = xn b is reducible in E[x].

Then by Theorem 2.2.1, there exists a prime p dividing n such that b = aP for some

a E E. This implies VIP = a E E. Therefore, we have the following extension of

fields:

K C K(bl/P) C E

with [K(bliP) : K] = p, since p is prime and g(x) is irreducible in K[x] (so VIP K).

By assumption, E K is nilpotent, say the Galois group of E over K is Gal(E/K) =-

Pt Pr where P1 is the Sylow p-subgroup of Gal(E/K). Let F be the subfield

of E with Gal(E/F) P2 X Pr. Since EIK is nilpotent, P2 X Pr is normal

in Gal(E/K), implying FIK is Galois. Now K(blIP) C F, since [K(bilP : K] = p

and (p, [F, FD = 1. Let H =Gal(F/K(bl/P)). Then we have the number of left

cosets of H in P1 is (P1 : H) = [K(bVP) : K] p, which implies (by [16], Theorem

6.4.14) that H is normal in P1. It follows that K(blIP)IK is Galois. But then all

roots of x13 - b are in K(blIP). This implies ep, a primitive pth root of unity, is an

element of K(bl/P) (because if a is a root of XP - b, then cpa is also a root since

(Epa)P = aP implying cp = fl jE E K(bl/P)). Thus, we have K C K() C K(b1IP).
a

But [K(bl/P) : K] = p and so [K(e) : K] divides p. Also [K(e) : K] <p 1 so

we must have [K(e) : K] = 1, implying ep E K, a contradiction to our assumption.

Therefore, g(x) = xn b is irreducible in E[x].

Corollary 3.5.3 Suppose n is odd, g(x) = xn b is irreducible in K[x]. Assume

that p is a prime dividing n and that ep K, where ep is a primitive pth root of

unity. Then g(x) is irreducible in K(en)[x].

Proof: K(e)/K is abelian and thus nilpotent, so we are in the situation of

Theorem 3.5.2.
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Remark 3.5.4 It is necessary to have n odd, since if n is even, we have the follow-

ing counterexample. The binomial f(x) = x6 -I- 3 is irreducible in Q[x], but factors

in Q(c6) Q(') as (x3 + ,V-3)(x3 V-3). In fact, we have if f(x) = X2k - b,

where b = (-1)(P-1)12p for some odd prime p dividing k, then f(x) is irreducible in

Q[x], but reducible in Q(e2k)[x]. This follows from the fact that (see [20]), if q is an

odd prime and Eq is a primitive qth root of unity, then Q(9) contains exactly one

quadratic field, namely

We now state the final result of this section, which we use in the next chapter.

Corollary 3.5.5 Suppose p is an odd prime and n jot, f(x) = xn b, and fm(x)

is irreducible in K[x] for all m > 1. Suppose further that 6, K where ep is a

primitive pth root of unity. Then fm(x) is irreducible in K(n)[x].

Proof: We proceed by induction on m. The case m = 1 is true by Corol-

lary 3.5.3, so suppose fm(x) is irreducible in K(en)[x]. We show fm+i(x) is irre-

ducible in K(en)[x].

Let ai be a root of fi(x). As in the proof of Theorem 3.1.6, since fm+i(x) =

fm( f (x)), 0 --= fm+i(oem+i) = fm(ann.i+1 b), and we have a, = anm+1 b is a root of

f m(x). Let K = K (am) and Km+i = K(cen2+1 ). Since frn+i (x) is irreducible in K [x]

we have [Km+i : = the degree of fm+i(x) = nm+1, and similarly [Km : K] = nm

Thus, [Km+1 : Km] = n = the degree of g(x), where

g(x) = xn (b +m) E Km[x],

implying g(x) is irreducible in Km[x]. Now ci, Km, since 1 [K(e) :Kfip 1

and [Km : K] =- nm = (pt)m and (p 1,ptm) = 1.
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Now by Corollary 3.5.3, g(x) is irreducible in Km (Eri)[x]. But this shows that

[Km+i(f,i) : Km(fv,)] = n, and, by our inductive hypothesis [K,,(E72) : K (en)]

nm. Therefore [Km,44 (E.) : K(7)] = nm+1 = the degree of fm+1 and frn+i(x) is

irreducible in K(Eri)[x].

This concludes our investigation of the irreducibility of the iterates of an

irreducible binomial. We now turn to a study of the Galois groups of the iterates.



4. THE GALOIS THEORY

4.1. BRIEF INTRODUCTION TO WREATH PRODUCTS

Let us begin by defining the notions of a permutation group and a wreath

product of two groups. We also note some elementary properties which we will make

use of in the proofs of our main results. For reference, the reader is referred to [13]

or [15].

A permutation of a set A is a bijective mapping (both one-to-one and onto)

from A onto itself. We define Sym(A) to be the set of permutations of A, a group

under composition of functions.

Example. If A = {1, 2, ... , n}, then Sym(A) is called the symmetric group

on n letters, and is denoted Sn

A permutation group is a subgroup of Sn, and n is defined to be its degree.

Let A, B be non-empty disjoint sets with orders jAl = a and 1BI = 3. Let

G and H be permutation groups on A and B, respectively. Define

HA = {A1A : A H, A a (set-) map).

Given g E G, and A E HA, we define a map [g; :A><B---AxB by

(a, b) (g(a), A(a)(b)).

Then [g; A] E Sym(A x B) and the product [gi; Al] a [g2; A2] has the effect

(a, b) (gi(g2(a)), Ai(g2(a))(A2(a)(b))).
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Thus [gi; Al] a [g2; A2] = [g3; A3] E Sym(A x B), where g3 o 92 and A3 C HA

satisfies A3(a) = (g2(a)) o A2(a). Also, the inverse of [g; A] in Sym(A x B) is
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[g2; A2], where g2 =- g-1 and A2(a) = A (g-1(a))' for all a E A. Thus, the [g; A]

form a subgroup of Sym(A x B). We call this subgroup the wreath product of G

by H, and denote it by G[H]. We note there is a natural isomorphism of G[H[M]]

with (G[H])[M], allowing us to discuss wreath powers [G]m, where [GP G and

[G]m+1 = G[[G]m].

Fact 4.1.1 Let a =degG, =degH. Then

IG[H]l = ICHHI and (4.1)

degG[H] = (degG)(degH). (4.2)

= a0.

Our work will require the following lemma, which relates Fact 4.1.1 to our

results.

Lemma 4.1.2 Let Cfl, be the cyclic group of order n. Then

I[C nr I = ern-1+nm-2+---Fn+1.

Proof: Proceed by induction on m. Clearly, the result holds if m 1.

Suppose inductively that for m> 1 we have

1[Crt]n I +nm-2+...+n+1

Then by Fact 4.1.1 and the inductive hypothesis, we have

1[Cnr = Th[[C nr

= rn11[C nim

= n(n )Th

= 12,(nrim+nm-1+.-+n2+n

nnm-Fnm-1++n-F1

Thus, by induction we are done.



4.2. THE GALOIS GROUP OF THE ITERATES

For this section we assume that p is an odd prime, n =- p, K is a field of

characteristic 0, and En is a primitive nth root of unity over K. Let fi(x) = xn b E

K(eri)[x], and fm+i(x) = fm(fi(x)) for m > 1. We assume that fk(x) is irreducible

in K(eri)[x] for all 1 < k < m. Let Em be the splitting field of fm over K(7,,) and

let Gm = Gal(E9n/K(En)). We begin with a lemma concerning the constant terms

of the iterates. Recall that the degree of fm(x) is nm and that the roots of fm(x)

are distinct, since by assumption fm(x) is irreducible and Em is separable over K.

For the remainder of this chapter, let bm = f,(0), the constant term of fm(x).

Lemma 4.2.1 Let bm = fm(0) for m > 1, and let 133 (j = 1, . , nm) be the roots

of fm(x) in Em. Then
n771

bn,+1 llUi + b).
3=1

Proof: First note that fm(x) (x /33) E Em[x]. Since fm+i(

.f.(f) (X)) = fm(xn b) we have

n771

bm+1 = fm+i(0) = fm(b) = L[(-b 133)

41

j=1

= 11( 1)(b 133)

j=-1

nm

= (-1)nm 11(b +
J=1

Thin

= 11(,di b),
a=1

since n, = pi is odd.

Next we review the notions of Kummer extensions and modules. For refer-

ence, see [8] or [21] for example.
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Let G be a group and S/ be a set. We say G acts transitively on 12 if for

each a3 E 12 there exists ag E G with g a -= . We call G a p-group if each

element of G has p-power order, for some prime p.

Let F be a field and p prime. Let F* be the non-zero elements of F,

Nonzero elements di., d2,. , dk E F* are called pu-independent in F if dia' E

FPu Pu for i = 1, , k.

Let F be a field which contains a primitive (pu\th) root of unity. A finite

abelian extension of exponent pu of F is called a pu-Kummer extension of F.

The pu-Kummer extensions of F are the splitting fields over F of polynomials of the

form (xPrl (xPrk dk) where di, , dk E F and ri < u for all i. We'll need

the following standard fact (see [8]).

Fact 4.2.2 Let p be a prime, epu E F, d1,. ,d E F*. For each i and some

positive integer u, let Si E F, an algebraic closure of F, with Or = d. Then

[F(81, . . . , : F] = pru d1,. , d,. are p u -independent in F.

We now prove the following useful result, which we use in the arguments

which follow.

Lemma 4.2.3 Let the context be as in Fact 4.2.2. Then d1, . . , dr are

independent in in F -<==>d1,. , dr are p'-independent in F.

Proof: First suppose d1, . . ,d,. E F* are pa-independent. Then ci7.' -=

e E F implies cqPu-' drerPu-1 eu. Since d1, . . ,d,. are pu-independent we have

pa I eipu . Therefore pled for all i, which shows d1,. , dr are p-independent. Next, if

d1, , dr are p-independent, then if 41 der = CPu = (CPu-1 )P E F, we have plc, for

all i. Say ei pl. Then (dlii (eu-')P, and since (by assumption) epu E F,

without loss of generality we have eu-1. Continuing in this manner, we
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reduce down to 41 cP, implying pls, for all i. But we have shown pule, for

all i implying d1,. , dr are pu-independent.

Let A be a ring. A set M is called an A-module if

M is an abelian group, and

With every ordered pair (a, x) with a E A and x E M there is a unique element

ax E M such that the following relations hold:

a(x y) = ax + ay

(a + b) = ax bx

(ab)x = a(bx),

where a, b E A and x, y E M.

Examples. A vector space over a field F is an F-module. Any commutative

group is a Z-module.

Let Fp denote the finite field of order p. We denote the group algebra of G

over Fp by Fp [G], i.e. the group ring Fp [G] with Fp-module structure given by

k( rigi) = E(kri)gi

for k, ri E Fp and gi E G.

We begin our work with a lemma about p-groups.

Lemma 4.2.4 If G is a p-group and M 0 is a finite IF[G]-module, then the

submodule MG of G-invariant elements of M is also nontrivial.

Proof: Induct on the order of G. Suppose G is a cyclic group of order

p, i.e. G L.= Cp =< > . Let T : M M be the map T y = (o- 1)y, for

y E M. Then T is an 1?p-linear transformation from M to M. We must show
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kerT 0. Suppose to the contrary that kerT = 0. Then T would be 1-1 and thus

bijective, since M is finite. Thus every power of T would be bijective. However,

TP = (CT 1)1' = o-P 1 = 1 1 = 0 in ]E'1' [G], so that T is nilpotent. But this

contradicts the fact that all powers of T bijective. Therefore, kerT 0, which

implies there exists 0 y E MG.

If ICI > p, let H be a nontrivial normal subgroup of G. Then M is an

[H]-module, too, so by induction, MH 0. Now, MH is a finite IF, [C/H]-module

under the operation (gH)x = gx, for all gH E GIH and x E MH. We also have

MG (mH)GIH. (Clearly if x E MG then x E (MH)GIH. Also if x E (MH)G/H we

have h(x) = x for all h E H and (gH)x = x for all gH E GIH. So for g E G, we

have gH E GIH, so x = (gH)x = g(Hx)= g(x) implying x E MG.) But then we

are done by induction, since MG = (MH)GIE 0.

We use Lemma 4.2.4 in the following proof, and so assume n = pt for some

positive integer t, so that Gm is a p-group. (This is a generalization of Lemma 1.6

from [18].)

Lemma 4.2.5 Suppose p is an odd prime and n = pt. Then for all m > 1,

[Em+1 : = nnm

Proof: Let (j = 1, . . . , nm) be the roots of fm(x) ill Em. Now since

fm+i(x) = fm(fi(x)), if 13 is a root of fm+i(x) then

0 = fm+10) = fm(h(0)) = (On

showing On b = 13i is a root of fm(). But then we have Em+1 = Em({/3

13 is a root of fm+1}) = Em({(/3i WI'I Oi is a root of fm(x)1). Therefore (since

Em contains the nth roots of unity) Em c Em+1 is an n-Kummer extension. Also
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: Em] = [E,n(G% + Win , . (i3n7n + b)1171) : Ern]

= [Ern((th + b)11n) : Em][E.((1 + b)1 n (02 + Olin) Em(( + 13)1 / Th)]

. . . [Em(631 + / n G370, + olin) Ern((#i + b)1/n , . , (137i. b)1/n)]

< n =_- nnrre

n'n times

Clearly, if bm_Fi = FU,71(/3i b) E Efri then [Em_Ei : Em] < nnm since Ern+i is

obtained from Em by adjoining the nth roots of the 133 + b.

Now to prove [Em_i_i : Ern] = nnm we shall show that in any relation

nrn

1163i bY, E (E::111)n
j=1

where the ei are positive integers, each 63 must be a multiple of n /3 (by Fact 4.2.2).

But by Lemma 4.2.3, this is the same as showing that in any relation

nm

b)63 E (E:;.,)P
j.1

where the ci are positive integers, each cj must be a multiple of p.

Let V be the subspace of IFp defined by

V= E (j3+ b) E (E7*n)13}.
j<nrn

We need to show the dimension of V is zero, i.e. if (bi, . . . , 6.) E V then

(61, 6nm) = (0, . , 0). We suppose V { (0, . , 0)} and derive a contradic-

tion. First we note that Gm, the Galois group of Em over K(), operates on V

by permuting the components of the elements of V according to its action on the

[33. Extending this action linearly to Fp [Gm], V becomes an IFp [Gm]-module. So

by Lemma 4.2.4, VG'. {(0, , 0)}. Let (6k,. , Si, . . . , , Sam) E V" with

0. Since Gm operates transitively on the /33 fm is irreducible by assump-

tion), we have for each j there exists some g3 E Gm with g3(0i) = j3 , and so



gj(fii + b)62. Since (Si,. 'Si, , 8i, 8.m) E V", we must have

Si = 5j. But j was arbitrary, so if v is an element of V", v = (k , . , k) for some

0 k e

But this implies (using Lemma 4.2.1) that bmk+1 = (W(113<nm (/33 + b))k =

(_1)k13, for some 0 E Em, If k is even, then b1 = OP and if k is odd

kik+1 = 1313 -= (-13)P since p is odd. So in either case, bit+1 = 13P for some non-

zero /3 E Ern,. Then, since (p, k) = 1, we have 1 = rp sk for some integers r, s

Therefore,

I. brnip++isk

= (bm+1)"(bmk +is

= -FlYP

= (lirm+1,3s)P ErnP

Thus we have shown if [Em-Fi : Em] < nnm then bm+1 E E, completing the proof.

0

Let G be a group. The subgroup of G generated by the set faba-lb-11a, b E

Gl is called the commutator subgroup of G and denoted by G'.

Fact 4.2.6 G' is a normal subgroup of G and GIG' is abelian. Also, if N is a

normal subgroup of G, then GIN is abelian if and only if N contains G'. Thus

"-lab = GIG' is the largest abelian factor group of G.

We recall the group G is the semi-direct product of H and K if

H is normal in G,

G = HK, and

H n = {e}.

46
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Denote this by G=H>IK.

Lemma 4.2.7 If H and G are permutation groups with G transitive, then

(G[H]yb Gab x Hab, where G[H] denotes wreath product and (G[Il])ab denotes

the largest abelian factor group of C[H].

Proof: Suppose G is a transitive subgroup of Sym(F), with F = ,

and suppose H is a subgroup of Sym(A). Setting ILy, = H, then G[H] = x

I/1j G C Sym(F x A). Now G acts on Hy, x H-y. by

, h-y.)9-1 (h1 h-), (4.3)

where g-yj = -yij , and

g(h..? . . . 6) (g(-y,), h (6)). (4.4)

Now we claim for all h E H, (h, 1,..., 1, , 1) E G[H]/, where 12,-1

is in any position. Proof of claim: Suppose h1 is in the tth position, and con-

sider (h-1,1,...,1) E C[H]. Since G is transitive, there exists ag E G with

g(-yi) -yt. So by 4.3, g(h', 1, ... = (1,..., 1, h-1,1... , 1). Thus, we have

(h, 1, . , 1, h-1, 1, . . . , 1) = g(h,-1, 1, . , 1)g-1(h, 1, . . . , 1) E G[I1Ji , and the claim is

proved.

Define a map 7 : G[11] Gab x Hab by -y(g(h.), ...,h,))

(gG/ , h,y, 1-1H'). Then 7 is an onto homomorphism. We now show the kernel

of -y, ker('y) = G[H]' . Suppose g (h-yi , , h,) Eker(-y). This implies g E G' and

E H'. Without loss of generality, g 1 since g E G', so we need only

show (h.),. , h) E C[H]' since then ker(-y) C G[111/ and G[H]/ker(-y) is abelian

so ker(-y) D G[H]' . Now, using the claim above,
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(h-n, [H]'

(h,... ,h,)(h,2,h;1, 1, , 1)G[H]'

(hh1, h . , h)G[H]'

(h, h, 1, . . , 1)G[H]'

= G[H]' since h,, E C G[H]' ,

so 0,11, , E G[H]'

abLemma 4.2.8 Let Cn be the cyclic group of order n. Then ([G]m) the

direct product of m copies of C.

Proof: Induct on m. If m = 1, then since C is cyclic we have ({C11

(Cn)ab Cn. ab cf,72-1.Suppose now ([Cr-1n) Then using Lemma 4.2.7

and the inductive hypothesis we have ([G]m)ab (cn[[cn]m-i])ab (cr)ab x

([cnr-i)ab cn X CT-1 = CT, completing the induction. CI

We are now able to generalize Lemma 1.5 from [18]. Recall still that n = Pt,

for some odd prime p.

Lemma 4.2.9 If Gm [Gn]"' and b1,b2,... ,bin are p-independent in K(e,i) , then

for all c E K(6)*

C (Em* )P < c are p-independent in K(cri)

Proof: By Lemma 4.2.8, ([Cn]m)ab C. Thus the largest pt-Kummer

extension of K(cm) within Em has degree nm C. Now, let 1 < k < m and

denote by A the set of zeros of fk_i. We have by Lemma 4.2.1,

bk fk (0) = fk-i(b)= - ( + b)
13EA
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But if a is a root of fk, then an b is a root of fk-1. That is, for each /3 E

A, p +b = an E E = Et, which implies bk e Et (since p is odd). But 1 < k < m

was arbitrary, so all of the b1,. , bin are in Ef: so T = K (7)(bil I , , bid:Pt) C Em.

Since b1, b2,. , bm are p-independent in K(c), they are pt-independent in K(e)

and so [T: K (en)] pmt (by Proposition 4.3.4 and Lemma 4.2.3). But T I K (en) as

an abelian extension so Gal(Em/T) D G',72, (by Fact 4.2.6). Since Gm =2 [Crilm

and IGn, I Giml = pmt, we have T = Eim, implying T is the maximum Kum-

mer 7Y-extension of Em. Let c E K(En)*. If c E (E:OP, then c1'

T(cl/P)/K(E) is abelian, we have cl/P E T which implies b1, , bm, c are

p-dependent (i.e. not p-independent) in K(E72). Conversely, if c (P,)P, then

c11P T, so [K(en)(bP,..., b:IP,c11P) : K (en)] = pm+1 , implying b1,. , bm, c are

p-independent in K(6.)

We will need the following result. For reference see both [8] and Theorem 2

from [14].

Theorem 4.2.10 Let F be a field containing all the nth roots of unity, T al-

gebraically independent over F, and Hi(x,T) = xn T E F(T)[x]. Then

Gal(Hm(x,T)I F(T))=' [C,] n . Moreover if be F is such that Hin(x, b) = fm(x) is

defined (no denominator vanishes), deg(fm) =deg(H,), and fm(x) has no multiple

roots, then there exists a monomorphism from Gakfml F) [Crdm .

Now we are ready to show the following lemma which is a generalization of

Lemma 1.4 from [18].

Lemma 4.2.11 Gm can be embedded into [C]m. Moreover, we have for all m:

G,n+i [C]m+1 < 2-= [Cn]m and [Em+i: Em] =
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Proof: Using Theorem 4.2.10, with F = we get

Cm =Gal(An/K(En)) [C]m. By Lemma 4.1.2, 1[Cn]m+liii[Cn]ml nnm. But

[Ern+i : Ern] < nnm, which proves the lemma.

We now include a standard result (see [8] for example) concerning cyclic

extensions which we require for our induction in the final theorem of this section.

Fact 4.2.12 Let F be a field of characteristic zero, n > 0 an integer, and assume

En E F, where en is a primitive nth root of unity. If a is a root of the irreducible

binomial g(x) = xn b E F[x], then F(a)/F is cyclic of degree n.

We summarize our results for this section with the following theorem.

Theorem 4.2.13 Let n =p, p an odd prime, fi(x) = xn b E K(cri)[x], for en

a primitive nth root of unity. Let m > 1 be given. Assume fk(x) is irreducible in

K(en)[x] for all k such that 1 < k < m. Then Gm [Cn]m < > are

p-independent in K(En).

Proof: We prove this by induction on k. For k = 1, G1 =Gal(xn b/K(n)) =

Cn by Fact 4.2.12. Assume m > 1 and for k < m, we have Gk [C ]k -<==>

b1,. , bk are p-independent in K (en). By Lemma 4.2.11, Gk +1 [C n]k +1 if and

only if [Ek+i : = n. By Lemma 4.2.5, this will follow if and only if bk+i

By Lemma 4.2.9, this will follow if and only if b1,. , bk+i are p-independent in

K(c7i). Thus, we are done by induction.

In the next section, we construct a sequence which determines when

are p-independent in K(n), under additional hypotheses on K.



4.3. A PAIRWISE COPRIME SEQUENCE

Let the context be as in the previous section with the additional assumption

that 2, is not in K for fp a primitive pth root of unity (recall p is prime). Assume

further that K is the quotient field of a UFD R. The main lemma of this section

makes use of some elementary number theory. For a complete treatment, the reader

is referred to [1] or [17].

The Mains function ,a is defined as follows:

=

For n an integer greater than 1, let n pia' be the prime factorization of n.

Then
) if' al = a2 = ak = 1

it(n) = 0(1\k
otherwise.

Note that ,a(n) = 0 if and only if n has a square factor > 1. Two basic properties

of ,a(n) are the following.

Fact 4.3.1
{1 if n 1,

Eit(d) =
din 0 if n > 1.

Fact 4.3.2 (Mobius inversion formula) Suppose F is a field and f,g :N ---÷ F*.

Then

g(n) = flf(d)1d) < f(n) = g(d).
din din

We now construct a sequence of pairwise coprime (pairwise relatively prime)

elements related to the 0,1 generated by the iterated binomials. This is a gener-

alization of Lemma 1.1 from [18].
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Lemma 4.3.3 Let R be a UFD with quotient field K. Let f(x) = xn b be irre-

ducible in R[x] with b a non-unit and b 0. For m> 1, let I), = fm(0) E R . Then

there exists a sequence cm (m > 1) of pairwise coprime elements of R such that, for

all m > 1,

bm = II cd.
dim

Proof: First we will show that bm = f,(0) 0 for all m > 1. Suppose to

the contrary that bm = 0 with m minimal. If m = 1, then 0 = b1 = MO) b

implying b = 0, a contradiction to our assumptions. Thus m > 1. But then 0 =

bm = fm(0) = fi(fm-1(0)) = b, and so b , implying b E RP,

for all p dividing n. But this contradicts our assumption that fl(x) = f(s) = xn b

irreducible in R[x] (using Theorem 2.2.1).

Since all bm 0, we can define a sequence

Cm = H 1)1,2/(74 E K (where it is the Mobius function).
dim

So cm is in K, the quotient field of R. We show cm E R, for rn > 1. Let p be

a prime of R dividing at least one of the I), (note b1 = b is a non-unit). Let

1 = min{ k > 1 plbk} and let e vp(b0. Then we have pelbi and pe+1 t b1. We claim

for m > 1,

pbm < pc bm < >

Proof of claim: First, suppose lim, say m dl for some d E Z. Then we have

bm = bdi = fd1(0) = Ad-1)0(0)) = Ad-1)1(bl) Ad-1)1(0) # f(d_2)1(0) #

= b1# 0 mod pe. Thus if /im then pe ibm. Next suppose 1 m, say m dl r

where 0 <r < 1. Then bm bdi+, = fd1+r(0) = A-(fd1(0)) MO) mod /36. By the

minimality of 1, fr(0) = br # 0 mod p. Thus, if 1 t m then p bm, and so p6 bm.

This proves the claim.
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So by the claim, we have

{e, if
vp(bm) =

0, otherwise.

This gives us

vp(cm) = v([1 b(m/d))
dim

Vp(bt:/(m/d))
dm

E vp(bd),a(mId)
dim

= E vp(bdl)p(mIdl)
dlim

E
dlim

= e E ,a(mIdl)
dlim

'e, if m =
= eE ,u(d) =

dim I 1 s 0 otherwise.

We see from this that cm must be in R since vp(cm)> 0 for all primes p of R. (For if

Cm ct R, then there exists a prime p dividing the denominator of cm and vp(cm) <0

for this p.) We also see that if p divides some brn, then p divides exactly one of

the cm, namely c1. Thus, the cm are pairwise coprime. And by Fact 4.3.2 we see

bm ildim Cd

We now isolate the following two results about p-independence to be used in

the proof of Theorem 4.3.6.

Proposition 4.3.4 Let F be a field, p an odd prime with n = pit, and suppose

EP cE F Suppose di., dr E F*. Then d1,...,dr are p-independent in F(En)

d1,...,dr are p-independent in F.

Proof: Clearly, if di., ... p-independent in F(c), then we have ,

p-independent in F. We now show the reverse implication. Suppose to the contrary
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we have di, , d p-independent in F but not in F(e), i.e. there is some a E F(e)

with dull -= aP and p does not divide u, for some i. Then (dui' clurr)11P =

a E F(e), so we have F C F((dY1 cl)11P) C F(en). Since F(e)/F is abelian,

F ((dr. cl,l)11P)1 F is Galois. So if h(x) = x73 C1111 is irreducible in F[x], then

we get 2, E F (as in the proof of Theorem 3.5.2), a contradiction to our assumptions.

If h(x) is reducible, we have 41 E F. Since d1,, ,d p-independent in F,

this gives pluj for all j, a contradiction (from above, we supposed p Ui). Therefore,

the proposition is proved.

Lemma 4.3.5 Let ,c, be as in Lemma 4.3.3 and assume ,Cm are

independent in in F. Then ,bm are p-independent in F.

Proof: Suppose (without loss of generality) m is minimal with

not p-independent. (We derive a contradiction.) Then for some d E F*, we have

141 bc9,0 = d. If PIam, we get 141 bliq' =-- ( )P E K. By the minimality
bcitnm P

of m, b1, , bm_i are p-independent in F, which implies plai, for all i such that

1 < i < rn 1. But then, b1,. , bm are p-independent in F, a contradiction to our

supposition. Therefore, p am. Now note that cp bp =Cm fIdm, dom cudd

for some integers ud. Since c1,. ,C are pairwise coprime and p-independent in F,

a contradiction. Therefore b1,...,bm are p-independent. CI

We are now able to generalize the main result of [18].

Theorem 4.3.6 Let R be a UFD with quotient field K. Let p be an odd prime,

n = yr', and assume K. Assume further that the units of K are either all pth

powers in K or are ±1. Let fi(x) = xn b E R[x]. Let cm be the sequence

defined by cm = Hon kii(mid), where bd = fd(0). If none of ,Cm is in K, then

Gm [C]m, where Gm is the Galois group of fm(x) over K(en) for en a primitive

nth root of unity.
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Proof: Suppose none of C1, cm is in K. Since c1 = b1, b1 KP. But

b fi(0) = b1, so b KP (using the fact that p is odd). Thus fi(x) is irreducible

in K[x]. By Theorem 3.1.6, fm(x) is irreducible in K[x] for all m. By Corollary 3.5.5,

fm(x) is irreducible in K(cra)[x].

Recall bm = {Lim cd with the ci's pairwise coprime in R (see Lemma 4.3.3).

We show el, ,cm are p-independent in K. Suppose c' cp for some

d E K*. Then by Lemma 3.1.4 we have c`:' = u,c7' = (uic,)P for some unit u, a unit

and ei E K (since either ui is a pth power, or u, = +1 = (+1)P since p odd). Since

ci is not in KP, we have p divides ai, implying , cm are p-independent in K.

Then by Lemma 4.3.5, b1,...,bm are p-independent in K. But then we are done by

Theorem 4.2.13.

4.4. THE GALOIS GROUP A WREATH PRODUCT

In this section we restrict our arguments to the situation where R = Z and

thus K = Q. Recall fi(x) = xn b E Z [x] with n = pt for p an odd prime. We

use the results from the previous sections to show Gm [Cpt]n except for at most

finitely many b E Z.

We first introduce the following notation. Let T be algebraically independent

over Q and let Fi(x,T) = xn T, Fm+1(x,T) Fi(Fm(x,T)).

We will use the following result from [14].

Lemma 4.4.1

(a) For m > 1, let Hm(T) = Fm(0,T). Then lini(T) is monic of degree nm in

Z [T].

(b) For every m > 1, Hm(T) is sguarefree in C[T].



Our work requires a special case of a result of LeVeque-Siegel [9].

Theorem 4.4.2 Let g(x) E Z[x] having at least three distinct zeros in C. Let r > 2.

Then

does not have an infinite set of solutions in Z.

We now prove the main result of this section.

Theorem 4.4.3 Let f(x) = xn b E Z[x] with n pt, p an odd prime. Given

m > 1, Gm:-=j- [C,]m except for possibly finitely many b E Z, where Gm is the Galois

group of fm(x) over Q(en) for 7, a primitive nth root of unity.

Proof: By Theorem 4.3.6, if none of is in OP, then Gm [Cy]m.

We show that given an m > 1, except for possibly finitely many b E Z, none of

. , cn, is in QP. Let k be such that 1 < k < m. Using the notation given above,

let H k(T) = Fk(0, T). Now, by definition (see Lemma 4.3.3) we have

ck kil(k = f d(0)k d)

= fi F(0, b)(k1d)
dik

= 11 Hd(b)k
dlk

h k(b)

where hk(T) = ndik Hd(T)n(kid) E Z[T] by Lemma 4.3.3 (with R Z[T]). But

hk(T) = fJdIk H d(T)4(k I = Fd(o, T)4km), with F d(0 T) = Hd(T) squarefree by

Lemma 4.4.1.

Now by Theorem 4.4.2, if hk(T) has at least three distinct zeros in C, then

the equation
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to k. Thus we have
2

r > Tlk n n2 + n[ ])

k nW+1 k= n [-2] = s.n

57

yP = hk(T), (4.5)

has only finitely many solutions with y ,T E Z.

Set T Di(T) = Hi(T) for 1 < i < k. Then D(T) e Z[T] is squarefree, and

degDi(T) = ni 1. Now we have

hk(T)=HFd(0, b)(k d)
dlk

= H Hd T ( k d

clik

= HT4(k D d(T)(k cl)
dik

T (k) Dd(T)4(k/d) E Z[T],
dlk

for some integer T (k).

We now claim r = degDk(T)degf /crn{Dd(T) I dik, d < k}l > 3. If so,

then we will have at least three distinct roots of Dk(T) remaining in the product

ilk Dd(T)L(kid) (coming from the prime factors dividing D k (T) not dividing D d(T)

for d < k). Now the maximum of

degflemWd(T) J dk, d < kll = E degDd(T)
dik, G41c

E (rid 1).
, ciAlc

So we need to show r = 72k (n1 + Tldi + 1) > 3, for di the

divisors of k. We note that

(n + n2 + nED 1) > (n1 + 72d1 nds 1)

since dlk, d k implies d < [k], where [k is the greatest integer less than or equal
2 2



We note s > 3 if k > 4. We have

S > n4
n3 1

+2
n

= n4 (n2 + n + 1) +2

> 34 (32 + 3 + + 2 >3,

since n = > 3. Next, if k = 3, we have r = n3 1 (n 1) = n3 n > 33 3 > 3,

and if k = 2, we have r = n2 1 (n 1) =n2 n > 32 3 >3, So for k> 1,

we get r > 3. Therefore, hk(T) has at least three distinct zeros in C which implies

there exist at most finitely many b E Z with

yP = hk(b) = C k (4.6)

Thus, for each k such that 1 < k < m, there exist at most finitely many b with

ck E Z. Therefore, there exist infinitely many b E Z with b not a solution to

equation (4.6) for all k < m. Then for such b, ZP and by Theorem 4.3.6,

[Cn]m. 0

We note the following result.

Corollary 4.4.4 Let p be an odd prime and fi(x) = .XP b irreducible in Z[x]. Then

G [C]2 °

Proof: We show that c1, c2 ZP. By definition, we have

= MO) = b,

b2 = 12(0) = .f1(b) = (b)P b = b(bP-1 +1)

which gives

ci = b = b
b2

c2 = bP + 1.
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Proof: First, Q(e)/Q is Galois (see [20]), so by Theorem 2.1.5 Gm is normal

in Q. Also, since p is prime, [Q(cp) (2] = p - 1. Also, by Lemma 4.1.2, we have

59

By Theorem 4.3.6, G2r'="' [G]2 if Ci ZP (i 1, 2), that is, if c1 ZP and if

there are no solutions to the diophantine equation

yp bp-1 + 1. (4.7)

By assumption, fi(x) is irreducible, so ci -b Igt ZP. Since p is odd, p - 1 is

even, so b1'2 = bo E Z. Thus equation 4.7 becomes

yP = (b(P-1)/2)2 + 1 = b + 1. (4.8)

Solutions to 4.8 were proved impossible for y> 1 and p an odd prime in 1850

by Lebesgue [11]. Therefore, c2 Z.

So for fi(x) = XP b irreducible in Z[x], f2(x) is always irreducible, and

G2 [C29]2. LI

We have one final remark concerning the Galois group of the iterates in the

special case of f(x) xP - b E Z[x], for p an odd prime. This will follow from the

Schur-Zassenhaus Theorem from group theory [2]:

Theorem 4.4.5 (Schur-Zassenhaus) Suppose E is a finite group with A normal

in E, and (I A 1,1 E = 1. Then there exists a subgroup S of E with A n S = 1}

and E = AS. Moreover, if T is another such subgroup, then there exists an e E E

with T eSe-1.

Corollary 4.4.6 Let p be an odd prime and fi(x) = xP - b irreducible in Z[x].

Let Em be the splitting field of fm, and let Gm = Gal(E,10(p)). Assume that

Gm [Cpr a. Then for Qm, the Galois group of fm over Q, we have 1m = G,S, for

some subgroup S of Qn, with G, n S {1} .
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land = pPm-1 +Pm-2 . Therefore (1Gm QIGT. I) = (13Pm-i+Pm-24-..+p+1

1) = 1. Thus we are done by Theorem 4.4.5. 0

Finally, we conclude by mentioning some of the unanswered questions which

have arisen from this study. The general problem of determining whether or not all

iterates of an irreducible binomial, xn b E Q[x], are irreducible is still open. In

the special case where p is an odd prime, and .XP - b E Z[x] is irreducible, we have

not determined Gm, the Galois group of Ern over Q(cp), for m> 2 (recall Em is the

splitting field of fm()). The more general problems of determining Gm for .xn b

irreducible with b E Z or b E Q remain open. And thus, f2m. the Galois group of

Em over Q, remains undetermined.
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