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Regression Calibration and Maximum Likelihood Inference for Measurement
Error Models

1. INTRODUCTION

The overall topic of this dissertation is inference for regression models,
particularly linear regression models, when one or more explanatory variables are
measured with error. The dissertation work largely concerns the properties of a
method called “regression calibration,” which has emerged as a major tool for these
models, and its performance relative to likelihood-based approaches. Regression
calibration (RC) has received increasing usage for scientific problems, largely because
of its simplicity, transparency and intuitive appeal. The most simple and transparent
form, however, ignores both the uncertainty due to estimation of the regression
calibration model, and the problems that arise when the regression of interest is not
linear. While the latter issue has received considerable attention, the former remains

largely ignored and is a focal point of this work.

1.1. The problem of regression with measurement error

Suppose interest is in the regression of a response variable, ¥, on an
explanatory variable, X, which is observed only through an imprecise measurement or
surrogate variable, W. Regression with measurement error refers to the problems that
arise from using W instead of X in the model of interest. In general, ignoring the
measurement error results in biased estimates of the parameters of the regression of ¥
on X, so a variety of methods have been proposed to correct or reduce the bias. This
problem was noted and studied as early as 1877 by Adcock. Recent reviews include
Fuller (1987) for the classical linear model, Carroll, Ruppert and Stefanski (1995) for

non-linear models, and Gustafson (2004) from a Bayesian perspective.



Assessing the impact and possible corrections of the measurement error
requires an understanding of the measurement process. This involves the formulation
of a conceptual model for the relationship between the true variable X and its surrogate
W. A primary distinction is between classical and Berkson error models. Classical
error structure arises when W = X + ¢, and ¢ is independent of X. This structure is
appropriate, for example, for an imprecise measurement device that adds
noninformative noise to the true value of X. Berkson error structure arises when
X = W+ ¢ and ¢ is independent of W (Berkson 1950). This structure was initially
proposed for controlled experiments, in which a nominal level of a treatment was
prescribed to an experimental unit, but the actual level applied was the nominal level
plus some noninformative noise. In the simple linear model, classical error results in
an attenuation of the regression slope, while Berkson error allows for unbiased
estimation of the regression parameters (see, for example, Madansky 1959, Cochran
1965). In more complex cases, there is not a simple pattern and both structures can
result in attenuation, inflation, or can even induce a curvature in the regression of Y on
W (Fuller 1987, Reeves et al. 1998, Schafer and Gilbert, in press).

For the classical error model, if Y | X, W | X, and X are all normal, the
parameters of the distribution of Y | X are not identifiable without additional
assumptions or data (Fuller 1987). Only Y and W are observed and, while the joint
distribution of Y and W contains six parameters, the bivariate normal distribution is
completely determined by only five parameters. Although for other distributional
assumptions the parameters of the simple linear regression model with measurement
error are identifiable (Reiersol 1950), additional information is necessary to practically
estimate the parameters of interest. This information can take several forms, including
replicate measurements on some observations or a calibration study in which the true
Xis observed. This study focuses on the latter, including external calibration studies,
in which observations (x;, w;), independent from the primary study are available, and
internal calibration studies, in which observations (y;, x;,, w) are available for a subset

of cases.



1.2. The regression calibration estimator

One of the most popular methods to approximate measurement error models,
regression calibration, uses whatever method of estimation would have been
appropriate if X were observed exactly, but with the missing X replaced by E(X| W)
(Carroll et al. 1995, Chapter 3). There are different forms of this estimator for
different types of information available for arriving at E(X|W), and there are
refinements available for particular models. Versions of the RC estimator were
proposed by Prentice (1982) for Cox proportional hazards regression models,
Armstrong (1985) for generalized linear models, and Rosner, Willet and Spiegelman
(1989) for logistic regression.

Due to its transparency and ease of use, the RC estimator has emerged as one
of the more important tools for dealing with measurement errors. It has seen
considerable use in epidemiology, where the exposure variables associated with a
disease are difficult to measure precisely. For example, in a prospective study of the
effect of fat on the risk of breast cancer, X was the long-term average intake of fat
(Willett et al. 1992). This variable was imprecisely assessed with a semi-quantitative
food questionnaire administered to over 90,000 women. Then, a validation study was
conducted on 173 participants, who completed four, one-week diet records. The model
for E(X|W) was estimated from this subset with values of both X and W, and then used
to estimate E(X|W) for the 90,000 individuals in the primary data, for whom only W
was available. As typical with this type of study, the correlation between nutrient
intakes calculated from the questionnaire and the ‘gold standard’ was relatively low,
ranging between 0.4 and 0.6 (Willett et al. 1988). In radiation epidemiology, to
determine the effect of radiation exposure for the atomic bomb survivors or uranium
miners, X was the dose of radiation, and E(X|W) was estimated with a combination of
physical and biological models, and empirical data (Pierce et al. 1990, 1992; Stram et
al. 1999).

Often, RC is used without explicit acknowledgement. For example, in

cosmology, estimation of the Hubble constant involves the regression of a galaxy’s



recession velocity on its distance from Earth (Freedman et al. 2001). Distance is
estimated as a function of a galaxy’s apparent luminosity, which is measured directly,
and its intrinsic luminosity, which is estimated from other variables such as rotational
velocity. The models to predict intrinsic luminosity are linear regressions, calibrated
with a small sample of nearby galaxies. In this example, X is the true distance; W
includes the ancillary variables used to predict intrinsic luminosity; and Z, the apparent
luminosity, is an explanatory variable virtually free of measurement error. The missing
Xis replaced by E(X|W, Z).

Regression calibration emerges naturally when the regression of ¥ on X is

linear, because if E(Y | X)= S, + B,X , thenE(Y |W)=E[E(Y| X)|W |=
By + BE (X | W) . If E(X|W) 1s known, usual regression tools for the regression of ¥’

on E(X|W) may be used to estimate Sy and f;, with appropriate attention to weights
dictated by Var(X|W). However, if the regression of ¥ on X is not linear, this form of
RC is, in general, an approximation to the model of interest. The conditions under
which the approximation is almost exact depend on the particular model. For example,

for logistic regression with a linear model relating X and W, RC is approximately

unbiased if either B Var(X |W) is small or P(Y=1 | X) is small and f{X| W) is normal

(Kuha 1994). When the degree of non-linearity in the regression of ¥ on X is large,
several improvements to the simple RC estimator have been proposed, based on
Taylor expansions and the assumption of small measurement error variance (Carroll
and Stefanski 1990).

In addition to its simplicity and transparency, RC is attractive because it relies
on minimal assumptions on the distribution of the explanatory variables. Because of
its emerging popularity, though, we believe it is appropriate to critically examine its
shortcomings, and to better understand the situations in which extra care is needed. Of
particular interest here is the role of the uncertainty in the estimation of £(X| W)
because, typically, it is not E(X] W), but an estimate of it that is used in place of X.

Using an estimate of £(X|W) instead of the true value results in an extra component of



variability to the estimator of the regression coefficients, so standard errors of
estimated regression coefficients may be adjusted to account for this additional
uncertainty. However, the effect of the additional variability on the estimator’s
properties is often ignored. There are additional problems with the simple version of
RC unless either the degree of non-linearity in the regression of Y on X or the
measurement error variance are small. These problems may be magnified after

accounting for the additional uncertainty in the estimation of E(X|W).

1.3. The effect of the uncertainty on the estimation of E(X|W)

The typical application of RC estimates E(X|W), replaces X by its estimated
expectation given W, and runs a standard analysis. Since E(X|W) is not known exactly,
it becomes an imprecise measurement, subject itself to the problem of regression with
measurement error. The RC estimator should show an improvement compared to the
naive regression of Y on W, because the estimate of E(X|W) should be closer to the
true E(X|W) than W is to X. However, if the estimated expectation is not sufficiently
close to the actual value, the resulting estimators may be seriously biased, even in the
linear model. Most discussions of RC ignore the effect of the uncertainty on the
estimation of E(X|W), either by assuming that E(X|W) is known, or assuming that it is
consistent and basing inference on the asymptotic distribution of the RC estimator.
The latter may be problematic, because the sample size used to estimate E(X|W) can
be very small, or at least much smaller than that of the main study.

A conceptual model for incorporating the uncertainty in the estimation of
E(X|W), describes the RC and similar methods as a combination of classical and
Berkson error structures (Tosteson and Tsiatis 1988, Reeves et al. 1998, Stram and
Kopecky 2003, Schafer and Gilbert, in press). If E(X]|W) is known, RC is a mapping of
W into a Berkson error structure, because X = E(X|W) + ¢, and ¢ is independent of
E(X|W). However, the uncertainty on E(X|W) is best described as classical error,

because it arises from the variability in the sampling distribution of the estimator.



Reeves et al. (1998) propose a representation based on a latent, unobservable
random variable to encapsulate both the Berkson and classical error structures. In RC,

the latent variable is £(X|W) and the model can be written as:
X=E(X|W)+e,; E(X|W)=E(X|W)+e.,
where £ (X | W) is the estimated value of E(X|W), and ¢, and ¢, are the Berkson and

classical measurement error components. Then, they specify the relationship between
the random variables (E (X | W) 55 gc) as being either independently and normally
distributed or mutually uncorrelated, and assume that observations from different
subjects are independent. They show that, for simple linear regression, the slope
parameter is attenuated, as is to be expected from the classical error component.

This model fails to recognize that all observations in the study may share the
same model to estimate £(X|W). Thus, while each observation may have a unique and
independent deviation from its expected value ¢, , the deviation of the estimated

expectation from the true value, ., would be correlated among different observations,

if not fully functionally related. This ‘shared error’ component was noted by Stram

and Kopecky (2003) and Schafer and Gilbert (in press).

To further clarify this issue, assume that that E(X | W) = o, + o,V , and that
(@, ) are estimated from a calibration study where both X and W are observed. The
estimate of E(X|W) for each observation in the main study is based on the same
parameter estimates (0?0 ,a, ) , obtained from the same calibration data. Therefore, &,
while different depending of the values of W, is functionally dependent among all
observations. The estimation of (., ) involves a classical error component but, for a

particular study, only one realization from the sampling distribution of the parameter
estimates is observed. From a measurement error perspective, the effect may be closer

to that of a biased measurement device, than to random measurement noise.



The approach followed in this study is to derive the sampling distribution of
the RC estimator and discuss its properties. Unfortunately, analytical results are only
possible in the simplest cases, so most of the work focuses in a linear, normal model
with an independent calibration study. The results, however, shed light on other
models as well. As it will be shown, the RC estimator tends to be inflated away from
zero, rather than attenuated as would be expected if the error associated with the

estimate of E(X|W) followed the classical model.

1.4. Regression calibration and maximum likelihood

Regression calibration is basically a method-of-moments-like estimator, and it
is unusual in statistical data analysis that a method of moments is preferred over
maximum likelihood. However, likelihood methods have not been used extensively in
the analysis of measurement error models, in part because of difficult computations
and concerns about robustness, but also because of the belief that, in many statistical
models, simpler methods such as regression calibration perform just as well as
likelihood methods (Carroll et al. 1995). However, Carroll et al. (1995) note that there
is little documentation to support this belief.

In some instances, if E(X | W) is known, the RC and ML estimators are the
same or very close. For example, if the regressions of ¥ on X and of /¥ on X are both
linear, and Y | X, W'| X and X are all normally distributed, then the RC and ML
estimators give the same estimates. ML and RC also give identical results if ¥ | X is
Bernoulli and the regression of Y on X is linear in X, and approximately the same
results for linear hazard regression (Prentice 1982, Pepe et al. 1989, Schafer et al.
2001).

There is a natural concern over the robustness of ML inferences against
possible distributional misspecifications. While RC typically only requires
assumptions about the first two moments of the distributions, ML requires the

specification of the distribution of variables that may not even be observed. In a



typical application, under the assumption of non-differential error, the joint
distribution of ¥, X and W is decomposed as follows:

fLXw)=fYIX)f(W|X)f(X),
because non-differential error implies that /(Y | X, W) = f(Y | X).

This model requires the specification of three distributions, which in
epidemiology have been described as the disease model, (Y | X), the measurement
model, /(W | X), and the exposure model, f(X) (Clayton 1992). The specification of
f(X), is the most problematic, because it describes the distribution of the risk factor X
in the population, which typically is not even observed. Addressing those concerns,
several approaches for flexible structural and semiparametric modeling have been
proposed (Roeder et al. 1996; Carroll et al. 1999; Schafer 2001, 2002).

When the information about the measurement process comes from a validation
study, where X and ¥ are observed, ML becomes more attractive. Then, the likelihood
can be expressed conditional on the observed values of W, as
Y, X | W) =£(Y|X) f(X]| W). It is not necessary to specify f{X), only f(X | W), and the
proposed distribution can be checked against data from the validation study.

Maximum likelihood can be relatively difficult to implement, because
obtaining f(Y | W) requires solving a complex integral. If the regressions of ¥ on X and
of X on W are both linear, and Y | X and X | W are both normally distributed, the
integral has a closed form solution. For other models, it has to be solved through
numerical analysis or simulation. The variety of types of information about the
measurement error process makes the implementation case specific, requiring
retooling of the algorithms and programs for each application.

Not only is RC easy and transparent, but the alternative of ML requires
stronger distributional assumptions, which may be difficult to check, and possibly
difficult computation. However, even though likelihood analysis may not be an easy
‘off-the shelf” solution for a wide range of problems, it may be worth the additional

difficulty. If data collection and study involve significant time and cost, then the



additional effort involved in a likelihood analysis would be small for realizing
increased flexibility, greater efficiency and more powerful tests and confidence

intervals.

1.5. Organization of the dissertation

Chapter 2 examines the sampling distribution of the RC estimator in the simple
case when the regressions of ¥ on X and of X on W are both linear, ¥ | X and X | W are
both normally distributed, and information about the measurement process comes
from an independent calibration study in which X and W are observed. We consider
this model partly because of motivating data problems with this structure, but partly
because this simple setting permits some theoretical investigations into the effect of
uncertainty in estimating £(X | ) on the RC estimator. In this case, it is also possible
to obtain MLEs in closed forms or using readily available software, so we compare the
efficiency of the estimators for small sample sizes using simulation.

Chapter 3 considers the same settings, but when information about the
measurement process comes from an internal calibration study in which ¥, X and W
are observed. In this case, there is not an agreement about the implementation of the
RC method, and several estimators have been proposed. In addition, it is not possible
to obtain a closed form solution for the MLE, although it can easily be obtained using
standard software. We will rely in extensive simulations to compare the performance
of the different estimators and associated confidence intervals, both under the correct

and misspecified distributional assumptions.
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2. REGRESSION CALIBRATION INFERENCE FOR MEASUREMENT
ERROR MODELS WITH AN INDEPENDENT CALIBRATION STUDY

Vicente J. Monleon
Daniel W. Schafer

Department of Statistics
Oregon State University

2.1 Abstract

Regression calibration seeks to estimate regression models with measurement
error in explanatory variables. The mismeasured explanatory variable is replaced by
its conditional expectation, given a surrogate variable, in an estimation procedure that
would have been used if the true value were available. This study examines the effect
of the uncertainty in the estimation of this conditional expectation on inference about
regression parameters, when the true explanatory variable and its surrogate are
observed in an independent calibration study and related through a normal linear
model. The sampling distribution of the regression calibration estimator is skewed and
its moments are not defined, but its median is approximately the parameter of interest.
As the sample size of the calibration study increases, it converges to a normal
distribution centered on the target parameter. The maximum likelihood estimator,
assuming that the distributions are properly specified, is bounded and more efficient
than the regression calibration estimator. Likelihood ratio inferences are more accurate
and efficient than those based on approximate normality and estimated standard errors.
The performance of regression calibration inference approaches that of likelihood
inference as the calibration sample size increases, and it approaches at a faster rate for

small measurement error variance.
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2.2. Introduction

Because of its transparency, ease of use, and apparently good operational
characteristics, the technique known as regression calibration (RC) has emerged as an
important tool for estimation of regression parameters in the presence of explanatory
variable measurement errors. Let Y represent the response variable, X an explanatory
variable of interest that is measured with error, /' a measurement or surrogate for X,
and Z additional explanatory variables free of measurement error. The regression
calibration estimator, in its most transparent form, uses the regression estimator that
would have been used if X were known exactly (for linear, generalized linear, or
failure time regression models), but with the missing X replaced by E(X|W, Z) (Carroll
et al. 1995, Ch. 3). Versions of the RC estimator were proposed by Prentice (1982)
for Cox proportional hazards regression models, Armstrong (1985) for generalized
linear models, and Rosner, Willet and Spiegelman (1989, 1990) for logistic regression.

Although regression calibration can be used in many disciplines, two notable
areas of application are nutritional epidemiology (e.g. Willett et al. 1992, Binham et
al. 2003, van Gils et al. 2005) and radiation health epidemiology (e.g. Pierce et al.
1990, Stram et al. 1999, Schafer et al. 2001). The former primarily involves logistic
and failure time regression models for binary health responses on diet and nutrition
explanatory variables, which are measured imprecisely. The latter involves failure
time regression models that are linear or quadratic functions of dose of radiation,
which is observed through an imprecise estimate.

It is easy to see the rationale for regression calibration in simple linear

regression. If the regression of Y on X is linear, £ (Y | X ) = fB,+ B,X, then
E(Y|\W)=E[E(Y|X)|W |=B,+BE(X|W). Since the coefficients in the

regression of Y on E(X|W) are the same as those in the regression of interest, E(Y]X),
practical attention can be switched to the regression of ¥ on E(X|W). This also shows

that the naive regression of ¥ on W will lead to biased estimation of the regression
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coefficients if W is not the same as E(X|I), as is the case under the classical
measurement error model. In the classical model, ¥ is the sum of X and a random
measurement error that is independent of X, and the estimated slope of the regression
line is biased towards zero (see, for example, Madansky 1959, Cochran 1965). On the
other hand, under the Berkson error model, in which E(X|W) = W follows from the
model definition, the usual estimators of regression coefficients are unbiased (Berkson
1950).

If E(Y|X, Z) is not linear in X, the simple substitution of E(X|W, Z) in place of X
in the regression model E£(Y]X, Z) leads to an approximate model for E(Y|W, Z).
Estimation based on this substitution is, in general, biased and inconsistent (Carroll et
al. 1995). However, under additional assumptions that depend on the particular model,
it is approximately consistent, and the approximation may be improved with a second-
order approximation to E(YX, Z) about X = E(X|W, Z) (Carroll and Stefanski 1990,
Kuha 1994). For generalized linear models, Var(Y|W) will not have the same form as
Var(Y|X), and some attention to proper “weighting” is necessary for efficient
estimation. If the distribution of Y given X and Z is Poisson and W is a “classical”
measurement of X, for example, the distribution of Y given W and Z is not Poisson
and, in particular, the variance is greater than the mean.

For the following models, regression calibration and maximum likelihood give
the same estimates:

1. The “everything normal” linear structural model when either E(X]W) or the

reliability coefficient, defined as A = o}, /(o +0y,,,) , is known. For this model,
Y|X~N(B+BX.07), W|X~N(a,+a,X,05,),and X ~N(u,07 ). Let
W*=E(X|W)=u(1-1)+AW .If either A or W* are known, the maximum

likelihood estimator of #, is SS, ., /SS, ., ., where the SS’s are sums of squares or

cross products indicated by their subscripts. This can be seen by equating the five

sufficient statistics from the bivariate normal distribution of Y and W to their
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expectations based on five unknown parameters. This estimator is equivalent to the
least squares estimator for the linear regression of ¥ on X, but with X replaced by

EXW).
2. Bernoulli linear model when E(X|W) is known. Y | X~ Bin(1, n); 7 = ,+ B,X . 1t

must be true that Y | W~ Bin(1, n*); 7* = S, + B E(X | W), so maximum likelihood

based on Y| W is equivalent to using maximum likelihood based on Y| X but
with E(X]W) used in place of X.

In addition, there is a model for time to response data in which regression
calibration and maximum partial likelihood are approximately the same: the linear
proportional hazards model when E(X|/) is known. As shown in Prentice (1982),
Pepe et al. (1989), and Schafer et al. (2001, appendix), the hazard function for a
waiting time as a function of the measurement W is approximately the expected value
of the hazard as a function of X, conditional on W. The approximation is good for the
“rare disease” case. If the hazard function is linear in X, then the induced hazard is
linear in E(X|W). Therefore, any method, such as maximum partial likelihood based on
W will be the same as it would be for X but with X replaced by E(X|W).

These last two models are not broadly useful, but they are important for
radiation research where there is theoretical and empirical justification for probability
and hazard rate models that are linear in radiation dose (Pierce et al. 1992).

These equivalences of regression calibration and likelihood estimators, and the
unbiasedness of the RC estimator when E(Y|X, Z) is linear in X, are only true if the
conditional mean E(X|W, Z) is known, which is seldom the case. The properties of the
regression calibration method are obviously more complicated when the uncertainty in
EX|W, Z) is acknowledged. This paper focuses on the role of uncertainty in E(X|W, Z)
in regression calibration inference.

Uncertainty in E(X|W, Z) is not negligible in most epidemiological studies. For
example, for diet and health research from the Nurse’s Health Study, a primary data

set consists of almost 90,000 nurses. Investigations consider the regression of health
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outcomes on explanatory variables, X, associated with diet, such as total fat intake.
Surrogates, I, for this type of variable are measured on all nurses in the primary
study, and E(X]W, Z) is taken to be an estimated mean from a regression model fit to a
calibration dataset of 173 nurses (Willett et al. 1992). The estimated correlation
between X and W is low — typically, between 0.4 and 0.6 (Willett et al. 1988). The
values used as E(X|W, Z) for each of the nurses in the primary data set therefore
contain a component of uncertainty due to the sampling error from the regression
estimation on the calibration set.

An interesting aspect of the problem is that this uncertainty component is
shared by all the nurses in the study, since the estimate of E(X|W, Z) for each
individual in the primary data set is based on the same estimated regression equation.
Fraser and Stram (2001) examined the effect of this kind of “shared” uncertainty in
estimating E(X]|W, Z) on the power of tests based on regression calibration. Through
simulations, they noted the need for sample sizes that were considerably larger than
those usually available.

Because regression calibration is used for important statistical problems in
epidemiology, we feel it is appropriate to explore in more detail further practical
effects associated with the uncertainty in E(X]|W, Z). We are interested in both linear
and nonlinear regression models for £(Y|X, Z), and also in various types of data
structures that permit the estimation of E(X|W, Z). To start, though, we consider linear
regression of ¥ on X and Z, with a model for E(X|W, Z) estimated from an external
calibration data set. This means that a data set is available with observations on X and
W and Z (but not Y), separate from the primary data set. # may be a measurement of X
(in which case the calibration data set is typically referred to as an external validation
study) or a surrogate variable that is associated with X and which can be used to
predict X. While the linear model with an independent calibration set situation is of
interest in itself, it is studied here as one of the more transparent structures for
isolating the effect of the uncertainty in the estimate of E(X|W, Z), for a first step in

exploring the use of regression calibration with inexact calibration more generally. It
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is, of course, essential that E(X|W, Z) is the same in the primary data set as in the
calibration data set or, in other words, the calibration equation must be portable. This
1s an important practical issue, but will not be considered further in this paper.

The RC estimator in some models is also a method-of-moments estimator
(Appendix A) and is like a method-of-moments estimator more generally. It is often
easy to implement and it is relatively transparent while alternatives, such as maximum
likelihood, usually are not. However, maximum likelihood may efficiently combine
the information from several sources, such as the primary and calibration studies.
Therefore, in this study, we wish to further examine its relative efficiency and the
accuracy of inferences based on its approximate normality in light of the uncertainty in
EX|W, Z).

This paper is organized as follows. Section 2.2 describes the model of interest,
the regression calibration estimator, and the methods typically used to estimate its
standard error for approximate tests and confidence intervals. Section 2.3 discusses the
exact sampling distribution of the RC calibration estimator for a simple linear-linear
model when Y | X and X | W are normally distributed. Relaxing the normality
assumption, it provides an approximation to the bias of the RC estimator when its
expectation is defined. Section 2.4 compares the RC and maximum likelihood (ML)
estimators, and discusses the properties of the MLE. Section 2.5 presents the results of
a set of simulations devised to explore the effect of the uncertainty in £(X|W) on the
performance of the RC and ML estimators and associated confidence intervals.

Section 2.6 summarizes the main conclusions of this report.

2.3. The regression calibration estimator for linear regression when E(X | W) is

estimated from an independent calibration dataset.

Consider the model:

Y=0+BX+¢ 2.1

X=a,+aW+6 (2.2)
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where Y is the response variable; X is the explanatory variable; W is a surrogate for X;

( Bos B oy, ) are unknown regression coefficients; and (8, ) ) are random variables.
It follows that:
Y=(By+a,f)+a, W +(e+ B5) (2.3)

Let y,=pf, +a,B, and y, = o, 5, be the coefficients of the regression of ¥ on

Suppose that (1) there is a primary sample consisting of observations ( Vi W, ) ,
i=1,...,n, and an independent calibration sample consisting of observations (xi, w, ) ,

i=n+l,...n+m;(2) (5, o ) are independent random errors with means equal to 0; (3)

random variables associated with different values of i are independent of one another;

and (4) the error structure is non-differential, meaning /(¥ | X, W)= f(Y|X).

Notice that because of the existence of the calibration data set it is not
necessary to make distributional assumptions for X, as long as E(X|#) has the same
form in the primary and calibration data sets. If there are additional explanatory
variables Z, free of measurement error, then all expectations should also be conditional
on Z; but that notation will be suppressed.

For this model, the regression calibration estimator of f, can be defined
following two different but equivalent approaches. One approach consists of

estimating («,,e, ) by (&,,4,) from the external calibration sample, calculating
X, =&, +a,w, for each observation in the primary sample, and estimating the slope of
the regression of y, on X, using least squares (e.g., Carroll et al. 1995, Chapter 3).

Then, the regression calibration estimator takes the form (see also Appendix B.1):

n n

2 —)7)()%1, _)TC) 2 (v =7)(@w -a,w)

— i=1 — i=1 =ﬁ (24)

1L,LRC n
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where 7, and ¢, are the least squares estimators of the slope of Y on W, based on the

primary data, and of X on W, based on the calibration data, respectively.
The other approach arrives at the same estimator directly from equation (2.3),

by solving 7, =, f, for S, and substituting y, and ¢, by their respective estimators
(Rosner et al. 1989). More generally, as long as the regression of X on W is linear,
both approaches yield ﬁl’ c - This is true, for example, when the regression of Y on X is

a generalized linear model. This is shown in Appendix B, as is the form of the
estimator when there are additional explanatory variables measured with or without
error (see also Thurston et al. 2003).

Without additional distributional assumptions, it is not possible to derive the
sampling distribution of the RC estimator. Asymptotic properties are based on the
theory of stacked estimating equations (Carroll et al. 1995, Appendix). In an
asymptotic setting in which » and m both increase to infinity, the sampling distribution
of the RC estimator converges to a normal distribution (Carroll and Stefanski 1990).

The mean of this distribution is £, and, under the additional assumption that the

variances of (5, ) ) are constant, the variance is

2

P 1

Var(ﬂlwkc):%oﬁ+?6§ (25)
1 1

where o’ =Var(7,) and o =Var(4,). Tests and confidence intervals are based on
this asymptotic distribution, with unknown parameters replaced by their estimates, but
the bootstrap method can also be used (Carroll et al. 1995, Rosner et al. 1989).
Confidence intervals based on asymptotic normality have been widely used
and have been implemented in readily available software (Spiegelman et al. 1997).

However, although asymptotically correct asm — oo, they may not have very

desirable finite sample properties. While the interval is symmetric about ,bﬂ’l, #c» the

actual sampling distribution of ﬁlﬂ zc can be very skewed, even for relatively large
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sample sizes. A bootstrap confidence interval, based on the percentiles of the
bootstrap replications, should perform better in this case. In addition, the expectation
of the estimated variance given by (2.5) typically does not exist. Therefore, for any
finite sample size, a confidence interval with non-zero coverage probability (e.g. a
95% CI) has an expected infinite length, a common feature of this type of confidence
interval in the measurement error problem (Gleser and Hwang 1987). The bootstrap
confidence interval is not immune to this problem because, as it will be shown, the
moments of the distribution of the regression calibration estimator are not defined
(Athreya 1987). The practical consequences of this are that the width of both types of

confidence intervals can be very large and erratic if the sampling distribution of &, has

positive mass at 0. This will become apparent in the simulations of Section 6.

2.4. Exact sampling distribution of the regression calibration estimator
2.4.1. Sampling distribution when Y|X and X|W are normally distributed
Suppose that the variables ¢ and 6 in (2.1) and (2.2) follow normal

distributions with means 0 and constant, positive variances Ufp( and 0';|w ,

respectively. Then, the distribution of Y| W is
yi lw; ~ N(ﬂo +a,f, +alﬂlwi’a)%\)( +ﬂ120)2(\w)
As before, lety, = f, +a,f,, 7, =a,f, and oy, =0y, + oy, be the

parameters of the distribution of ¥ given W. First notice that the least squares

estimators of 7, (from the regression of Y on W in the primary data) and ¢, (from the

regression of X on W in the calibration data) are normally and independently
distributed. The regression calibration estimator is the ratio of these two, so its
sampling distribution is that of a ratio of two independent normal random variables.
The probability density function, cumulative distribution function and asymptotic
properties are discussed in Appendix C, and other parametrizations are given by

Hinkley (1969) and Marsaglia (1965). Some features of this distribution are:
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. _ 2 2
1. It depends on three parameters: a scale parametern = /o, / o; , where

o; =Var(y,) and o} =Var(&,); andz, :71/,/0'7? and 7, :al/ o, , the
reciprocals of the coefficient of variation of the sampling distributions of 7, and
a,, respectively. The parameter 7, , which depends only on the calibration study,

plays an important role in the behavior of the RC estimator.
2. Its moments are not defined. This is a common feature of estimators in the
measurement error problem that are derived using the method of moments (Fuller

1987). The sampling distribution of ¢, has positive mass at 0, so the distribution

of ,BL zc 18 heavy tailed. Therefore, in theory, the RC estimator can attain very

large values and behave erratically. In addition, it can be difficult to compare
alternative estimators based on their moment properties, such as bias and mean
square error.

3. Although the mean is not defined, the median is approximately equal to the target

parameter, B, (Appendix C).
4. It is symmetric when either 7, or 7, are 0. In general, though, it is skewed away

from 0. Therefore, symmetric confidence intervals based on the asymptotic
normality of the RC estimator may not be appropriate for finite sample sizes.

5. It can be unimodal or bimodal. In the latter case, it has a positive and a negative
mode, but one of the modes may be insignificant (Marsaglia 1965). Absurd modal

values of very large magnitude and the opposite sign to that expected are possible.

Figure 2.1 shows the exact sampling distribution of the RC estimator for a
selection of situations, and table G2 (Appendix G) shows the parameters of those
distributions. The figures illustrate that the sampling distribution of the RC estimator

is very skewed for small m (and negative values of the estimator are possible). As m
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Corr(X,W)=0.75 ™\ Corr(X,W)=0.75
m=50 m=300
1.5 20 25 3.0 1.8 20 22 24
Corr(X,W)=0.50 Corr(X,W)=0.50
m=50 \ m=300
2 4 6 8 1.5 20 25 3.0
Corr(X,W)=0.36 Corr(X,W)=0.36
m=50 \ m=300
40 -20 O 20 40 60 1.5 20 25 3.0 35 40

Regression calibration estimator

Figure 2.1. Probability density function of the sampling distribution of the RC
estimator for several choices of oﬁw and calibration sample size m. The true

value of the slope of the regression of ¥ on X, S, is 2.The X axis has been
scaled to cover from the 0.001 to the 0.999 quantiles of the distribution.

increases, it converges to a normal distribution centered about 3, . It converges to
normality at a faster rate for small U;w

Asymptotically, as m — o for fixed n, the distribution of the RC estimator

converges in distribution to a normal distribution with mean S, and variance
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0'7? / a} (Appendix C.2). More interestingly, as 7, — o or, equivalently, if values of

@, close to 0 are unlikely,

alIBI,RC —

A 12
2 52 2
(O-o?ﬁl,RC +0; )

F(Bc W) >

5

where © () denotes the cumulative distribution function of the standard normal

random variable. This distribution is a useful approximation to the true sampling

distribution for large 7, but, for finite 7, it is an improper distribution (Hinkley 1969).

Although skewed away from 0, its median is £, (Appendix C.2).

2.4.2. Properties of the sampling distribution more generally

The results presented in the previous section only require that the sampling
distributions of 7, and &, be normal, and that the regression calibration estimator be
defined as their ratio. Therefore, they apply more generally when the regression of Y
on X (2.1) and X on W (2.2) include additional variables, but the errors still follow a
normal distribution. They will also be approximately true for any kind of regression
for which the estimated regression coefficients have approximately normal sampling
distributions. In most epidemiological studies, the size of the primary sample is very
large so, if the regression of Y on W follows a generalized linear model, the

distribution of 7, would be approximately normal. Typically, the regression of X on W
is linear, so that the distribution of ¢, from the calibration study is approximately

normal, and the results discussed in the previous section will apply approximately.

The RC estimator is the ratio of two estimators of slope. If the expectation of

the ratio exists and if £(7,)=y, and E(&, ) = ¢, and both have the same sign, it

follows from Jensen’s inequality that:

E(ﬁl,RC) = E(E(j;l/&l

dl)):ylE(l/&l)Zyl/alzﬁlZO
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Likewise, if 7, and «, have different signs, E ( ,631, Rc) < f, £0. Therefore,

under these conditions, any bias in the regression calibration estimator due to sampling
error in E(X | W) would be described as inflation. This inflation effect on the
regression coefficient is surprising, since it the opposite of the expected attenuation in

the classical measurement error setting (Madansky 1959, Cochran 1965).

If is assumed that the expectation of ,@1’ zc €xists, the bias of the RC estimator

can be explored with a second-order Taylor expansion of ,31 around B, =y, /e, :
g V2, 5 ) = 1
E(,BLRC) ~ o + p Var(al) =p {1+ Ti}
Thus, the relative bias depends only on the calibration study, and only
through,, . If ¢, is estimated using least squares and Var (X |W )= O')Z(W is constant,

2 1 n+m

Oi—l , where Sy, =—— > (w,—w, )2 . The bias depends on the
XWw m—1 i=n+l

thenz. =(m—1)S,,

sample size of the calibration study, the relative magnitude of o, and O')z(‘W, and the

sample variance of W in the calibration study. In many epidemiological studies of diet-

disease association, the relationship between X and W is weak, with R? in the range of

0.1t0 0.5, so that ¢, tends to be small compared with o, . Then, a large calibration

sample size may be needed to reduce the bias. Even a greater sample size may be

needed to reduce the variance and increase power (Fraser and Stram 2001).

2 2

SWL’ p
Var(W) l1-p

The parameter 7., can also be written as 7, = (m—1) -, where p is

the correlation between X and W (Appendix C.3). Therefore, if S, is close to its

2

o,

expectation, Var(W), then 7. =~ (m - 1) "
-p

- . In the diet-disease studies, p is
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2

Y2
l1-p

typically between 0.3 and 0.7, so that >1s between 0.1 and 0.96, and increases

rapidly as p becomes closer to 1.

Simulation results, detailed in Section 2.6, also indicate that one of the effects

of uncertainty in E(X| ) is inflation in the estimated coefficient of X.

2.5. The relationship between regression calibration and maximum likelihood in
the normal-normal model

The joint density function of Y, observed in the primary study, and X, observed

in an independent calibration study, conditional on the observed values of W, is:

f(y,x|w) Hf vilw) [T/ (x1w)

i=n+l

Typically, f (Y | W) cannot be obtained analytically, so numerical integration

may be necessary. However, under the normal distributional assumptions of section

2.4.1, there is a closed form solution for the log likelihood:

(B,(l O-Y\X’GX\W) 210g(o'y\x +5 O-X\W) > log(O')zﬂW)

2(o} +/>’ )Zl[y (o + B+ )] (2.6)
Yx X\W i
1 n+m
262, | —(0{0 raw )]2
X i=n+

The regression calibration estimators are shown in Appendix D.1 to be the

unconstrained solution to the likelihood equations. The estimators of (ao,al,aj |W) are

the MLEs of those parameters based on the calibration data alone, and the estimator of

(ﬂoaﬂlaa}%p{)is

~ A ~ 2
D N a2 N Vi~ V1 a2 71 ~2
(ﬂo:ﬂlvay\){)_ Yo~ = o> »O0yw —| = | Oxw
(04 (04 94
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where ( Vo» 7?1,6';”,) are the MLEs of the parameters of the distribution of Y given W,

based on the primary data only.

The estimator of af‘ + canresult in a negative estimate. To find the MLEs, the

likelihood has to be maximized under the constraint that &y, —(7,/4, )2 Gy >0.
Equivalently, if 67, <0, oy, canbe set to 0 in (2.6), yielding a new set of likelihood

equations and estimators (Appendix D.2). The solution for S, are the roots of the
following quadratic equation:

n| 883y, =SS (SSymp + Sy ) | B+ (n=m) S84, o
—m[ 552, =85, (55,0, + SSyenc) | =0 '

where the SS’s denote are sums of squares or cross products indicated by their
subscripts. The two solutions to this quadratic equation are real numbers, one positive

and one negative, and are different from the regression calibration estimator.

The MLE, 3, ,,.,., equals 7, /&, , the RC estimator, if &7, —(7,/4, ) Sew >0,

or one of the roots of eq. (2.7) if 62, —(7,/&,) 62, <0.In fact, f3,,,, is the
minimum, in absolute value, of those two estimates and it is bounded (Appendix D.3).
This is practically relevant, because the RC estimator can be very unstable and reach
very large values when ¢, is close to 0, as indicated by the lack of moments of its
sampling distribution. There is a close relationship between a large absolute value of

the RC estimated regression coefficient and a negative estimate of 0; +» because as &,

p A A e ) A I AN2 A2 .
becomes small, S, .. =7,/ is large and 6, -(7/&) Oy <0. Several solutions

have been proposed to improve the behavior of other method-of-moments type of
estimators in the context of the measurement error problem (Fuller 1987). These
methods impose a bound on the estimator, a result obtained with maximum likelihood

in a less ad-hoc manner.
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Combining the constrained and unconstrained forms, the log likelihood

equation, can be written from eq. (2.6) as:

I, (Bsaa O'i\xao-)z(\w) = Z(B,(I,O‘ilx,O';‘W)[(

6,2,‘X>0)
. (2.8)
+l(|3,u,a§‘x = O,G;W)(I—I(A J

2
Gy x <0

where / (67

Sypx >

) is an indicator variable that depends only on the data and takes the value

Lif 67, =67, —(7,/4, )2 Sy >0 (in which the parameters with hats are the
regression calibration estimators). In practice, equation (2.6) can be parametrized as a
function of log (oﬁl X) andlog (O'f(lw ), and maximized using standard software (such
as the S-Plus ‘nlmin’ or R ‘nlm’ functions).

Under standard regularity conditions, the estimators (0?1, 7?1,6';‘W,6'§‘W) are
consistent. Therefore, as n —c0 andm — 0, 7,/&, — B, 63y = Oy »
GA;\W - G;\W = O';\X + ﬂlzo-)?’W , and:

P63, ~(7./a) 65y >0] > P(o7, >0)=1
Thus, asymptotically, only the unconstrained likelihood equation is relevant,

and the ML and RC estimators are asymptotically equivalent. However, for m or n

finite, P(oﬁﬁ‘ S 0) may not be negligible, even for large sample sizes (Appendix E).

The sampling distribution of the MLE based on / (B,a, oﬁl v =0, onW) 1s not

asymptotically normal, and the asymptotic distribution of the likelihood ratio test
statistic does not converge to a y°, because one of the nuisance parameters is in the
boundary of the parameter space (Lehmann and Casella 1998).

The profile log likelihood function of £; can be obtained analytically, by

evaluating the log likelihood at the conditional MLE of (ao,ocl, By O Oy ) for

fixed f; (Appendix F). As with the log likelihood, the profile log likelihood has two
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components, depending on whether &7, (5,) =6y, (B,)— B S5, (B,) is positive or
negative. In the latter case, the profile likelihood function is calculated under oy, =0,

resulting is a function that has a vertical asymptote at 0, and two local maximums. As
a result, the profile likelihood for £; can be bimodal or unimodal, depending on the
values of the parameters and the sample sizes of the primary and calibration studies.
Figure 2.2 shows some results for simulated data.

The parameter space of f; is limited by the non-negativity of the variance of Y| W, so

that| ﬂ1| <\ /a;W / J;‘W . Thus, 63‘ () eventually becomes negative as 8, increases in

magnitude, and so it is set to 0 when calculating the profile likelihood function. This
restriction is reflected in the profile log-likelihood function, which drops rapidly as £;
increases over its allowable range (Fig. 2.2). From a practical perspective, this
property imposes a desirable bound in the allowable values of the MLE of f; but, on
the other hand, confidence intervals calculated by inverting a likelihood ratio test may
not perform properly. A confidence interval can be obtained by calculating the set of

values of f8; ‘not rejected’ by a likelihood ratio test, but some values in this set may

result in a negative estimate of 63‘ ¥ ( B ) The sampling distribution of a likelihood

ratio test statistic when £; is outside its parameter space may not be well approximated

by a y°. This topic will be explored further with simulations.

2.6. Simulations

A primary objective of the simulations is to examine the effect of the
uncertainty in the estimation of £(X | ) on the operating characteristics of the
regression calibration estimator and on the performance of tests and confidence
intervals based on its approximate normality. Part of this is based on comparisons with
likelihood analysis. The conditions and details of the simulations are described in

Appendix G.
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Figure 2.2. Log profile likelihood of f; for simulated data with different calibration
sample sizes (m). The log profile likelihood of ; (solid line), restricted so that

63‘ + >0, 1s the result of combining two functions: a log profile likelihood that does
not place any restrictions on 6'5‘ + (dashed line) and a log profile likelihood that sets

05‘ v =0 (dotted line). The true value of f; is 2 and the parameter space of f; is

| ﬂ1| <4 /ai‘W / oﬁ‘W =2.154 (dashed vertical lines). The solid vertical line denotes the

MLE. The maximum of the unrestricted log profile likelihood is the RC estimator (not
shown). As the sample size of the calibration study increases, the profile log likelihood
becomes unimodal. The parameters used in this example are

(0.2 By B2 07 .02 ) =(0.1,1,2,0.67,0.757 ) and n=1000.
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2.6.1. Performance of the estimators

Figures 2.3-2.5 (and tables G.3 and G.4, in Appendix G) show the average,
RMSE and selected quantiles of the Monte Carlo approximation to the sampling
distribution of the regression calibration and maximum likelihood estimators after
2500 simulations. The results support the theoretical results from previous sections in
the following ways. First, the median of the RC estimator is about equal to the target
value (Fig. 2.5) but the mean tends to be greater than the target value (Fig. 2.3). The
bias, however, decreases rapidly as the sample size of the calibration study is

increased, even when the measurement error variance is large. Second, the behavior of
the RC estimator depended mostly on the value of 7, = ¢, / \Jo, . Settings with similar

values of this parameter (Table G.2, appendix G) have similar distributional

characteristics (Table G.3, appendix G). Third, when the probability of a negative

estimate of the ai‘  1s small, the RC estimator and MLE are about the same, as the

results for f, =2 and Corr(X | W) =0.76, and for B, =1/2, Corr(X | W) = 0.50, and

m =300, indicate.

The MLE is substantially more efficient and less erratic than the RC estimator
when the correlation between X and W is low or moderate and the calibration sample
size small, as evident in figure 2.4. The bias of the MLE, and its RMSE to a much
greater degree, are smaller than those of the RC estimator (Figs. 2.3 and 2.4), mostly
because the distribution of the RC estimator has heavy tails and some very large
values. This is reflected in the quantiles of the respective distributions (Fig. 2.5). The
2.5% percentile and the median of the distributions are virtually identical, but the
97.5% percentile of the distribution of the RC estimator is always much larger than

that of the MLE. Large values of the RC estimator correspond to small values of¢,,
which are more likely to occur when m is small and J;W is large. Those values also
result in negative estimates of o, , so the MLE is one of the roots of eq. (2.7) instead

Y|X

of being identical to the RC estimator.
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Even though the MLE is more efficient than the RC estimator when &ﬁl + <0,

estimators based on the likelihood function with 05‘ + set to 0 are not consistent and
their distribution is not asymptotically normal, as apparent in figure 2.6. In the

situation shown there, with » fixed at 1000, P(&;‘ v < 0)’"—"“’)0.20 , and the MLE

is frequently based on / (B,u, oyy =0, aﬁ‘W) even for very large m. The distribution of

the RC estimator is very skewed for m=100, but is nearly normal for m=1000, while
that of the MLE does not approach normality. Figure 2.6 also illustrates the superior
performance of the MLE: its spread is less than that of the RC estimator, and the

proportion of samples greater than the upper limit of the parameter space was much

smaller.

2.6.2. Performance of the confidence intervals

Since the sampling distributions of estimators in this model are often skewed,
there is some concern about tests and confidence intervals based on approximate
normality and estimated standard errors. Simulations were used here to compare
confidence intervals based on the approximate normality of the regression calibration
estimator (labeled as “RC-Wald” in the figures), bootstrap confidence intervals for the
RC estimator (labeled as “RC-bootstrap” in the figures), and confidence intervals
derived by inverting the likelihood ratio test (see Appendix G for details). Figure 2.7
shows that likelihood ratio-based 95% confidence intervals tend to be substantially
narrower than the other two, except when the correlation between X and W was large
and, therefore, the measurement error small.

In general, RC-Wald intervals are shorter than RC-bootstrap intervals,
especially for small m. However, the lengths of both intervals are very variable for

moderate and large measurement error and small sample sizes. The asymptotic

variance of the sampling distribution of the RC estimator (eq 2.5) depends on 1/ al,

and so can become very large for &, close to 0. The bootstrap intervals also perform
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Figure 2.3. Relative bias of the RC and ML estimators of the slope in simple
linear regression with measurement error. The distributions of Y| X and X|W are
normal, the primary sample size is » = 1000 the calibration sample size is m.
The results are based on 2500 simulated primary and calibration samples.
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the slope in simple linear regression with measurement error. The distributions
of Y| X and X|W are normal, the primary sample size is n = 1000 the calibration
sample size is m. The results are based on 2500 simulated primary and
calibration samples.
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poorly in that situation, because of the lack of moments of sampling distribution of the
RC estimator. Surprisingly, the BCa bootstrap confidence intervals do not perform
better than the much simpler intervals based on the percentiles on the bootstrapped
distribution, even though the former is based on a higher order approximation to the
true distribution function of the RC estimator (Tables G.7 and G.7) (Efron and
Tibshirani 1993).

Of somewhat more concern, though, is the actual coverage rate and, in light of
the skewness involved, the one-sided error rates on either side individually. Figures
2.8 and 2.9 show the non-coverage rates of the 95% confidence intervals on the upper
and lower sides (corresponding to the separate upper and lower type I error rates).

The coverage of the LRT and RC-bootstrap intervals tend to be closer to the
nominal coverage rates than that of the RC-Wald intervals. The error rate of the RC-
Wald confidence interval is greater than the nominal 5% for sample sizes up to 300
when the correlation between X and W is low or moderate, while the RC-bootstrap and
LRT intervals tend to be conservative for small sample sizes. As the calibration
sample size increased, the three methods converge to the nominal error rate. The only

exception is the error rate for the LRT interval for B, =2 and Corr(X, W) =0.36,

which remained at approximately 3% even as m increased to 1000 and further (data
not shown). In this scenario, the asymptotic distribution of the MLE is not
approximately normal and, therefore, it is not surprising that the null distribution of
the LRT statistic is not well approximated by a y* distribution. However, even though
the error rate of the LRT-based intervals is conservative, they were substantially
shorter than intervals based on the RC estimator. At m=1000, the mean and median
length of the intervals based on the RC estimator is approximately 40% greater than
that of the LRT based interval. The difference is even greater for smaller calibration

sample sizes (Tables G4-G8, appendix G).
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Figure 2.8. Percent of samples for which the true slope in simple linear
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confidence interval. The distributions of Y | X and X | W are normal, with a
primary sample size of n = 1000 and a calibration sample size of m. The results
are based on 2500 simulated primary and calibration samples. The intervals are
based on a Wald approximation, bootstrap percentile, and inversion of the
likelihood ratio test.
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Figure 2.9. Percent of samples for which the true slope in simple linear
regression with measurement error is less than the lower limit of a 95%
confidence interval. The distributions of ¥ | X and X | W are normal, with a
primary sample size of n = 1000 and a calibration sample size of m. The results
are based on 2500 simulated primary and calibration samples. The intervals are
based on a Wald approximation, bootstrap percentile, and inversion of the
likelihood ratio test.
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The most striking difference, however, is that most of the ‘misses’ of the RC-
Wald intervals are in one direction, even in the best case scenario of small
measurement error variance and large calibration sample size (Figs. 2.8 and 2.9). The
true value of the parameter tends not to be included in the RC-Wald confidence
interval when greater than the RC estimator. This may have important consequences in
the interpretation of the results of epidemiological studies. For example, the
calibration sample size for the Nurse’s Health Study was 173 nurses (Willett et al

1992). For m = 150, B, =2 and a correlation between true and surrogate

measurements of 0.75, these simulations show that the actual overall error rate of
95% Cl is 5.4%, but the true parameter is greater than the upper bound of the interval
4.0% of the time, and smaller only 1.4% on the time. When the correlation is
decreased to 0.50, those figures are 4.8% and 0.1%, respectively, and when the
correlation is decreased further to 0.36, they are 6.9% and 0.0%. Therefore, for the
settings considered here, there will be a tendency to report erroneous results when the
estimated effects are less than the true effect. Intervals that allowed for asymmetric
sampling distribution of the estimator, such as RC-bootstrap and LRT intervals, tend
to have a more even rejection rate. In the case of the RC-bootstrap, the better
performance in terms of symmetry and coverage came with decreased efficiency in

terms of length, compared with the RC-Wald and, specially, the LRT interval.

2.7. Conclusions

Regression calibration is a transparent and straightforward method to estimate
the parameters of regression models with measurement error in the explanatory
variables when information about the measurement error process comes from an
independent calibration study. In addition, if the distribution of Y | X'and X | W are
both normal, and the RC estimate of var(Y|X) is positive, RC and ML estimators are
equivalent. However, if the RC estimate of var(Y|X) is negative, the RC estimator of
the slope of the regression of ¥ on X can be very unstable and attain unreasonably

large values, while the MLE is bounded and closer to the target parameter. Therefore,
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in practice, one may compute the RC estimator and verify that the estimate of
var(Y|X)>0. If not, then one may switch to the MLE, which can be calculated with the
formulae provided in this study or a maximization routine from standard software.

Negative estimates of var(Y|X) are likely for small calibration sample size and large
measurement error, but are also likely if 3, is close, in magnitude, to , /oﬁ‘W / af(‘W .

Even though the RC and ML estimator may be equivalent in some instances,
likelihood ratio inferences can be substantially more accurate and powerful than those
based on approximate normality and estimated standard errors. The sampling
distribution of the RC estimator converges to a normal distribution centered on the
target parameter but, for finite sample sizes, it can be very skewed. As a result, one-
sided error rates of confidence intervals based on the asymptotic normality are
inaccurate. Confidence intervals calculated from the percentiles of the bootstrapped
sampling distribution of the RC estimator were more accurate than those based on
approximate normality, in terms of symmetry and overall error rate, with only a
relatively small increase in length.

Inverting a likelihood ratio test resulted in the shortest confidence intervals,
while keeping an error rate close to the nominal rate. The efficiency gains where a
consequence of the skewness of the sampling distribution of the RC estimator, and of
the bound imposed by the constraint that the estimated Var(Y | X)>0. However, under

this constraint and for some values of the parameters, the sampling distribution of the
LRT statistic cannot be approximated by a y” distribution, even for large sample sizes.

This problem is apparent for small sample sizes in general, but becomes increasingly
important when the true slope of the regression of ¥ on X is close, in magnitude, to the
ratio of the standard deviations of Y and X, given the surrogate variable. Simulations
indicated that, in those cases, LRT confidence intervals were conservative.

Although this study focuses on RC inference when both the distribution of ¥
given X and of X given its surrogate are normal, the findings apply more generally.

The RC estimator can often be written as the ratio of the slope of the regression of ¥
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on W to the slope of the regression of X on W. Whenever the estimators of those
slopes are approximately normal, such as when the regression of interest is a
generalized linear model, the results in this paper regarding the sampling distribution
of the RC estimator and implications for inference remain approximately valid. In
those cases, however, the RC and ML estimators may not be equivalent. Furthermore,
since the superior efficiency of the MLE depends to a large degree on the positiveness
of the estimated Var(Y | X), it is not clear how its relative performance would be when
the regression of ¥ on X is not normal.

There is a natural concern over the robustness of maximum likelihood
inferences against possible distributional misspecifications. However, the existence of
a calibration study in which both the true explanatory variable and its surrogate are
observed should alleviate some of those concerns. While full likelihood analysis in
measurement error problems typically requires the specification of three probability
distributions (the response distribution, Y | X, the measurement error distribution, ¥ |
X, and the distribution of the true explanatory variable, X), when a calibration study is
available, only the response distribution and the distribution of the explanatory
variable, conditional on the surrogate, have to be specified. Furthermore, the adequacy
of the assumed distributions can be assessed with the calibration data. Likelihood
analysis can be challenging computationally for realistic distributional assumptions
but, given the potential for substantial gains in efficiency and accuracy, we believe

that likelihood inference should be considered for the scenarios discussed in this study.
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3.1 Abstract

Regression calibration has emerged as a major tool to estimate regression
models with measurement error in explanatory variables. The mismeasured
explanatory variable is replaced by its conditional expectation, given a surrogate
variable, in an estimation procedure that would have been used if the explanatory
variable were known exactly. This study examines the effect of the uncertainty in the
estimation of this conditional expectation on inference about regression parameters in
the linear model, and the relative performance of regression calibration and likelihood
inference, when the true explanatory variable is observed in a subset of the data. The
estimator proposed by Spiegelman, Carroll and Kipnis (2001), defined as an inverse-
variance weighted average of the estimator of the regression parameters obtained from
the calibration data alone, and the regression calibration estimator obtained by treating
the internal calibration data as an external calibration study, is almost as efficient as
the maximum likelihood estimator (MLE). Other regression calibration estimators are
less efficient, often substantially so, and can be less efficient than the estimator of the
regression parameters obtained from the calibration data alone. The estimators are not
affected by moderate departures from the assumption of normality of the regression of
the true explanatory variable on its surrogate. For small sample sizes, inference based
on the asymptotic normality of the sampling distribution of the regression calibration
estimators can be improved by using the bootstrap or likelihood ratio tests and

confidence intervals.
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3.2. Introduction

Regression calibration (RC) has received increasing usage for problems that
involve estimation of regression parameters in the presence of explanatory variable
measurement errors, largely because of its simplicity, transparency and intuitive
appeal. Suppose interest is in the regression of a response variable, Y, on an
explanatory variable, X, which is observed only through an imprecise measurement or
surrogate variable, W. The RC estimator uses whatever method of estimation would
have been appropriate if X were observed exactly, but with the missing X replaced by
EX)W) (Carroll et al. 1995, Chapter 3). Versions of the RC estimator were proposed
by Prentice (1982) for Cox proportional hazards regression models, Armstrong (1985)
for generalized linear models, and Rosner, Willet and Spiegelman (1989) for logistic
regression.

Regression calibration has seen considerable use in nutritional and
occupational epidemiology, where the exposure variables associated with a disease are
difficult to measure precisely. For example, in a prospective study of the effect of fat
intake on the risk of breast cancer, X was the long-term average intake of fat, assessed
with a semi-quantitative food questionnaire administered to over 90,000 women
(Willett et al. 1992). A validation study was conducted on 173 participants, who
completed four, one-week diet records. The model for E(X|W) was estimated from this
subset with values of both X and W, and then used to estimate E(X|W) for the 90,000
individuals in the primary data, for whom only /" was available. As typical with this
type of study, the correlation between nutrient intakes calculated from the
questionnaire and the ‘gold standard’ was relatively low, ranging between 0.4 and 0.6
(Willett et al. 1988). Other examples include the effect of dietary fiber in the incidence
of colon cancer (Binham et al. 2003), and of radiation exposure for the atomic bomb
survivors (Pierce et al. 1990) or uranium miners (Stram et al. 1999).

Regression calibration emerges naturally when the regression of ¥ on X is

linear, because ifE(Y\X)=,BO+ﬂ1X,thenE(Y]W)=E|:E(Y|X)\W]=
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B+ BE(X|W). If E(X]W) is known, usual regression tools for the regression of ¥

on E(X|W) may be used to estimate Sy and f;, with appropriate attention to weights
dictated by Var(X|W). However, if the regression of ¥ on X is not linear, this form of
RC is, in general, an approximation to the model of interest and the RC estimator is
usually inconsistent. The conditions under which the approximation is almost exact
depend on the particular model. When the degree of non-linearity in the regression of
Y on X is large, several improvements to the simple RC estimator have been proposed,
based on Taylor expansions and the assumption of small measurement error variance
(Carroll and Stefanski 1990, Kuha 1994).

In some instances, if E(X|W) is known, the RC and maximum likelihood (ML)
estimators are the same or very close. For example, if the regressions of Y on X and of
W on X are both linear, and Y | X, W | X and X are all normally distributed, or if Y| X'is
Bernoulli and the regression of ¥ on X is linear in X, then the RC and ML estimators
are identical. They give approximately the same results for linear hazard regression
models (Prentice 1982, Pepe et al. 1989, and Schafer et al. 2001).

These equivalences of RC and ML estimators, and the unbiasedness of the RC
estimator when E(Y|X) is linear in X, are only true if the conditional mean E(X|W) is
known, which is seldom the case. Problems with the simple version of RC when the
degree of non-linearity in the regression of Y on X or the measurement error variance
are large, may also be magnified if £(X|W) is not known. While standard errors of
estimated regression coefficients can be adjusted to account for the additional
uncertainty in the estimate of £(X|W), the effect on the estimator’s properties has not
received much attention. This paper focuses on the role of uncertainty in E(X]W¥) in
regression calibration inference.

Estimating measurement error models, whether using RC or other techniques,
requires additional information about the measurement error process. It is well known
that for the classical error model, if Y | X, W | X, and X are all normal, the parameters

of the distribution of Y| X are not identifiable without additional assumptions or data
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(Fuller 1987). Although for other distributional assumptions the parameters of the
simple linear regression model with measurement error are identifiable (Reiersol
1950), additional information is necessary to practically estimate the parameters of
interest. This information can take several forms, including replicate measurements on
some observations or a calibration study in which the true X is observed. In either
case, the study can be an internal study, in which Y and either replicate measurements
or the true X and W are observed in a subset of the data, or an external study, in which
Y is not observed. An internal calibration dataset allows for increased precision, the
assessment of both the model relating Y to X and the error structure and eliminates
concerns about transportability of models for E(X]W).

Regression calibration is often easy to implement and transparent, and relies on
minimal assumptions on the distribution of the explanatory variables. Alternatives
such as maximum likelihood, on the other hand, usually require difficult computations
and stronger assumptions, although several approaches for flexible structural and
semiparametric modeling have been developed (Roeder et al. 1996; Carroll et al.

1999; Schafer 2001, 2002). However, ML may efficiently and automatically combine
the information from several sources, such as primary and calibration studies. Because
RC is becoming increasingly popular, we believe it is appropriate to critically examine
its properties and performance, relative to likelihood-based approaches, in light of the
uncertainty in estimating E(X|W). We are interested in complex models for E(Y].X), but
in this study we consider linear regression of Y on X, with a model for E(X|¥)
estimated from an internal calibration data set. The term “internal calibration dataset”
establishes an analogy with the closely-related data structure in which there is a
primary dataset (with observations on Y and ) and an independent “external
calibration dataset” (with observations on X and #). In fact, a more sensible
terminology for the problem of interest here specifies a single dataset of observations
Y and W, with true X available in a subset. Nevertheless, we will use the terminology

“internal calibration” to be consistent with recent studies on this topic.
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This paper is organized as follows. Section 3.3 describes the model and
reviews alternative regression calibration estimators and the methods typically used to
estimate their standard error for approximate tests and confidence intervals. Section
3.4 discusses likelihood-based inference and compares the asymptotic efficiency of the
RC and ML estimators. Section 3.5 presents the results of a set of simulations devised
to explore the effect of the uncertainty in £(X | W) on the performance of the RC and
ML estimators and associated confidence intervals, and the robustness of RC and ML
inference to departures from the specified assumptions. Section 3.6 summarizes the

main conclusions of this report.

3.3. The regression calibration estimator for linear regression

Consider the model:
Y=8,+pX+e 3.1
X=a,+taW+o (3.2)
where Y is the response variable; X is the explanatory variable; W is a surrogate for .X;
( B B ao,al) are unknown regression coefficients; and (g, o ) are random variables.
Suppose that (1) there is a primary sample consisting of observations ( Vis W, ) ,
i=1,...,n, and an internal calibration sample consisting of observations (y,,x,,w,),

i=n+l..,n+m;(2) (8, o ) are independent random errors with means equal to 0 and

variances oy, and oy, , respectively; (3) random variables with different values of i

are independent; and (4) the error structure is non-differential, meaning f(Y | X, W) =
f(Y | X). It follows that:

Y=(B,+a,B)+a W +(e+ B,5) (3.3)
Let yo = o+ agf; and y; = a,f; be the coefficients of the regression of Y on W,

2 2 2 2
and oy, =0y + B Oy -
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There may be additional explanatory variables Z, free of measurement error.
Then all expectations and probability densities should also be conditional on Z, but
that notation will be suppressed.

There is not a universally accepted approach for defining the RC estimator for
internal calibration data. Several estimators have been proposed (Rosner et al. 1989,

1990; Carroll et al. 1995; Spiegelman et al. 2001), but all of them are weighted
averages of the estimators of B obtained from the calibration data alone (ﬁlNT ), and the
RC estimator obtained by treating the internal calibration data as an external
calibration study (B, ) (Thurston et al. 2005). Neither B, nor ., makes full use of
the available information, but both are consistent, the latter as n — ooand n/m —> k , k

a positive constant (Carroll and Stefanski 1990). Therefore, as long as all the elements

are consistent, the resulting weighted average will also be consistent and could be
more efficient than either ﬁmr orﬁEXT .
The estimators that will be considered here are the ‘as external’ estimator,

ﬁEXT , proposed by Rosner, Willet and Spiegelman (1989); the estimator proposed by
Carroll, Ruppert and Stefanski (1995), denoted by ﬁCRS ; and the estimator proposed by

Spiegelman, Carroll and Kipnis (2001), denoted byﬁSCK . In what follows, let X, W,

and W, be the design matrices for the calibration and primary data,

2

1 n
respectively, A = {0 } , and A the matrix A with the unknown parameters

al
substituted by their estimators. The estimator of f based on the calibration data alone

is ﬁINT = (XX, )'l X'y, ,and Var(ﬁlNT) = oﬁw (XX, )'1 )

‘As external’ estimator, ﬁEXT
The ‘as external” estimator is obtained by first estimating (., ) by (&,.4,)

from the calibration sample, calculating X, = ¢, +a&,w, for each observation in the
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primary sample, and estimating the slope of the regression of y, on X, using least
squares. The design matrix for this model can by written as X= W, A, so that:

0 Al ' -1 ’ A1

Bexr =A™ (W, W,) Wy, =A"§ (3.4)
where ¥ is the least squares estimators of the slope of Y on ¥, based on the primary

data (Rosner et al. 1989, Carroll et al. 1995, Thurston et al. 2003, Chapter 2 of this

Dissertation). Using the delta method, the variance of |§EXT can be approximated by

Var(ﬁEXT) ~A” [ﬂiEXTO-)ZqW (W)W, )-1 + O-}%IW (W];Wp )-1 } AT (3.5)

In epidemiology, this estimator has been used mostly for logistic models for
binary health responses, when the calibration sample is relative small and the disease
rare (for example, Willett et al. 1992). Since there are only a few health events in the

calibration sample, the efficiency gains from incorporating information provided by
ﬁm may be negligible. However, Spiegelman et al. (1997) also advocated the use of
this estimator for linear and failure time regression.

The moments of the sampling distribution of ﬁl’ o and of its estimated
variance are not defined (Chapter 2, this Dissertation), because the sampling
distribution of ¢, has positive mass at 0. For small calibration sample sizes and large
measurement error variance, this results in an erratic behavior of ﬁl’ sy and associated
confidence intervals. However, as the calibration sample size increases, the sampling

distribution of ,él, £y converges to a normal centered on the target parameter.

Carroll, Ruppert and Stefanski (CRS) estimator, ﬁCRs

This estimator is obtained by fitting a single regression of Y to the true X when
available, and to the estimated E(X]| W) otherwise. The parameters of the regression of
X on W are estimated from the calibration data. Carroll et al. (1995) also suggest
including a dummy variable indicating whether X is observed or not. The model under

consideration is:
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Therefore,
Bews = (AW, W, A+ XX, )*1 (AW,y, +Xly, )= 56
(AW, WA+ XX,) (AWW, Ay + XX Biny

The asymptotic variance of this estimator is (Thurston et al. 2005):
Var(p)=(AW,W,A+XX,) " x
[(A’WéWpA)Var@EXT )(AW, W, A)+ (XX, ) Var (B )(XIX, )} x (37

-1

(AW, W,A+X/X, )

Spiegelman, Carroll and Kipnis (SCK) estimator, ﬁSCK .

Buce = | Var(Buss)

This estimator is an inverse-variance weighted average of By, and Pyy; :

Tar(be) | [Far(Buse) B Far (B B | 59

Spiegelman et al. (2001) note that, as long as the weights are estimated

accurately, this choice of weights gives the estimator with the minimum asymptotic

variance among all unbiased linear combinations of By, and ., . The approximate

asymptotic variance is (Spiegelman et al. 2001):

arc:

Var(ﬁSCK) = [Var(ﬁEXT )71 + Var(ﬁlNT )l]l =
4 (3.9

-1
{A’ [ Blexi O (WW.)' +07,, (Wi W,) } A+orl (XX, )}

Focusing only on the slope 3, , the SCK estimator and its estimated variance
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A3 A2
a’62 AD A2 ADAD
ﬁA _ 1 ﬁl,lNT 7 + 7/1 O-dl +a1 }71 ﬁ (3 10)
1,SCK — Azo,\_z +d2&2 +d46'2 7/1 AD A2 +&20A_2 N ,\40,\_2 1LINT .
7/1 2 1= 1 /BI,INT 7/1 4 17 1 /BI,INT
A2 A2 A2 A2 A2
E 3 O-Bl INT (71 Gdl + 127 )
ar(ﬂl,SCK) = ) +6%20A'2 +&4OA_2 (311)
7/1 @ 17 1 BI,INT
A2 A2 A2 . . 2 A A
where & et O and o are the estimated variances of S, ,,, &, and 7,

respectively. Note that asa, — 0, 181, scx converges to ,@L vr- The moments of the

sampling distribution of ,@L scx may not be defined, however, because the joint
sampling distribution ¢, and 7, has positive mass at (0, 0). In practice, it is unlikely
that both &, and 7, become close to 0, unless y, and, therefore, f, is close to 0.

Regression calibration test and confidence intervals are usually based on the
asymptotic normality of the sampling distribution of the estimators, with the unknown
parameters of their asymptotic variances substituted by their estimators. Bootstrap
inferences can also be used (Carroll et al. 1995).

Thurston et al. (2005) compared the asymptotic efficiency of the RC estimators
when the regressions of Y on X and X on W are linear. Asymptotically, they found that
the SCK estimator is uniformly more efficient than the ‘as external’ and CRS

estimators. The asymptotic standard errors of the three estimators are approximately

the same when the correlation between X and W is close to 1, otherwise ,bﬂ’l, e 18 less
efficient than ,31’ scx and ,B’I,CRS . When the correlation between Y and X is low and the
proportion of data in the validation study is large, the standard error of ﬁl’CRS was

approximately the same as that of ,@L scx - Thurston et al. (2005) do not study the finite

sample performance of the alternative RC estimators, or compare their performance to

the ML or internal estimators.
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Spiegelman et al. (2000, 2001) compared the bias, mean squared error, size,
power and coverage probabilities of ,631, SCK > ,@L o and the MLE for a logistic regression
with covariate misclassification and measurement error, using simulation. The MLE

was generally superior to the RC estimators for all the examined criteria, but ,@L sck Was

a clear improvement over ,él, & - The SCK estimator was nearly as efficient as the

MLE for the largest validation sample size that they examined (346 subjects). In their
simulations, likelihood inference relied upon the asymptotic normality of the sampling
distribution of the MLE, with the asymptotic standard error estimated from the
empirical information matrix. If the profile likelihood is asymmetric, inference based
on the likelihood ratio may perform better, in terms of efficiency and coverage, than

Wald-based inference.

3.4. Regression calibration and maximum likelihood in the normal-normal model

3.4.1. Maximum likelihood in the normal-normal model
The joint density function of Y, observed in the primary study, and Y and X,
observed in an internal calibration dataset, conditional on the observed values of W,

can be decomposed as:
f(Y9X|W):Hf(y,- |Wi)H f(yi | xi)f(xi | Wz)
i=1 i=n+l
Typically, f (Y | W) cannot be obtained analytically, so numerical integration

may be necessary. However, if the conditions stated in section 3.3 hold and, in

addition, (5, 1) ) from equations 3.1 and 3.2 are normally distributed, the log likelihood

function is:
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Z(B,a, oﬁ‘x,oﬁw) = —glog(oﬁ‘x +,8120'§‘W)—%log(aﬁ‘){)—%log(o—;w)

1 2 2 )Zn:(yp,i_ﬂo_ﬂlao_ﬂlalwi)z (3.12)

- 2
2(O-Y\X+ ' Oxw ) i=1

1 n+m n+m

_20_2 Z(yi_ﬂo_ﬂ1xi)2_202 Z(xl.—ao—alwl.)z

Y|X i=n+l X W i=n+l

There is not a closed form solution for the MLE, but equation (3.12) can be
easily maximized using standard software (such as the S-Plus ‘nlmin’ or R ‘nlm’
functions).

When inference is based on an external, rather than internal, calibration study,

the estimator of o, obtained by maximizing the likelihood function can be negative.
If 63‘ + >0, the RC and ML estimators are equivalent. Otherwise, imposing the

constraint that 6'; + >0 induces a bound on the MLE, while the RC estimator can
behave erratically (Chapter 2, this Dissertation). As a result, the MLE is more efficient
than the RC estimator but, for some values of the parameters, the null sampling
distribution of the likelihood ratio test statistic cannot be approximated by a y°
distribution, even for large sample sizes. When an internal calibration dataset is

available, however, the estimator of aﬁ‘  obtained by maximizing equation (3.12) is

always positive. Therefore, neither the bound, nor the problems with inference

associated with setting 05‘ to 0 would be present in this case.

The profile log likelihood function of £; can be obtained by evaluating the log
likelihood at the conditional MLE of (ao,al, By GfLX , af(‘W ) for fixed g, . Figure 3.1

shows some examples of the profile likelihood for simulated data. Although the profile
likelihood can be bimodal for small sample sizes, it becomes unimodal as the
calibration sample size is increased. Even for relatively large sample sizes, however,
the profile likelihood can be relatively asymmetric around the MLE, suggesting that

inference based on the asymptotic normality of the MLE may not be adequate
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(Fig.3.1). For very small sample sizes, a confidence interval obtained by the set of

values of ff; ‘not rejected’ by a likelihood ratio test may include two disjoint intervals.

Profile loa likelihood of B+
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Slope of the regression of Y on X (B+)

Figure 3.1. Log profile likelihood of S, for simulated data with different

calibration sample sizes (m) and correlations between Y and X, and X and W. In
this example, the true value of f, is 1. The vertical lines indicate the location

of the ML, SCK and CRS estimators.
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In simulations, this occurred about 13% of the time when the correlation between Y
and X and X and W were both low, and the calibration sample consisted of 10
observations. As the sample size increased to 25 observations, or the correlation
between Y and X to 0.75, the proportion of simulated samples with disjoint intervals

decreased to approximately 1%, and it was 0 for all other scenarios.

3.4.1. Asymptotic relative efficiency of the regression calibration and maximum
likelihood estimators

Thurston et al. (2005) provide formulae for the asymptotic variance of the ‘as
external’, CRS and SCK estimators of 5; (Appendix H). The asymptotic variances are

functions of the correlation between Y and X, p,, , between X and W, p,,, , and the
ratio of the sample sizes of the calibration and primary datasets, scaled
Var(Y )/[n Var(X )} . They showed that the ‘as external’ estimator is uniformly less
efficient that the CRS and SCK, and therefore will not be considered here.

When internal calibration data is available, it is always possible to estimate the

coefficients of the regression of ¥ on X with the calibration data alone, but the primary

data can contribute additional information and result in increased efficiency.
Therefore, ,31, ~r Provides a useful baseline to compare the relative efficiency of the
other estimators, and to judge the gains incurred by adding the primary study data. The
variance of ,@L vy €an be written as:

Var (ﬁl,lNT ) = %[

X

i(l—pix)}

m

The asymptotic standard error of the MLE can be approximated through a Monte
Carlo simulation, setting a very large m and n. Figure 3.2 shows the asymptotic

standard deviation of the CRS, SCK, and the estimated standard error of the MLE,

relative to the standard deviation of ,ﬁl’ wr» Whenm /n=1/5. Asymptotically, the MLE

is more efficient than any of the RC estimators. As the measurement error decreases,

the efficiency of the CRS and SCK estimators approaches that of the MLE. The most
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surprising result, though, is that the CRS estimator can be less efficient than the
estimator calculated from the internal validation alone, ignoring the information from

the primary study altogether, if the correlation between Y and X is medium to high.
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Figure 3.2. Asymptotic standard deviations of the CRS, SCK estimators, and
standard errors of the MLE, relative to the standard deviation of the estimator
based on the calibration data alone. The ratio of the calibration to primary
study sample size is 1/5. The standard error of the MLE is estimated from a
Monte Carlo simulation with a calibration sample size of 5000.
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3.5. Simulations
3.5.1. Study design

The goal of this simulation is to investigate how the properties of the
estimators and confidence intervals varied with the sample size of the calibration study
and strength of the association between Y and X, and X and W, measured by their
correlations. Since all estimators incorporate information from the calibration and
primary data, we designed a complete factorial study in which the correlation between
Y and X, and between X and W was approximately 0.36 or 0.75. These values
correspond to the low and high ends of the correlations between the gold standard and
surrogate observed in studies of association between diet and disease (Willet et al.
1988). The calibration sample size ranged between 10 and 500 observations. The
values of the parameters used in the simulations are shown in Table 3.1.

For each scenario, we calculated the internal, ‘as external’, CRS, SCK and ML
estimators. We also estimated confidence intervals based on the asymptotic normality
and approximate asymptotic standard errors of the sampling distribution of the various
RC estimators (denoted by ‘Wald’), on the percentiles of the bootstrap distribution of
the RC estimators (Efron and Tibshirani 1993), and on the inversion of a likelihood
ratio test. The results are based on 2000 simulated primary and calibration samples.

Detailed results from the simulations are included in tables I.1 — 1.6, appendix .

Table 3.1. Model parameters of the simulation scenarios. The parameters not shown in
the table are(,,a,, B,, 5,) =(0,1,1,1), n=1000 and m = (10, 25, 50, 100, 200, 500).

Corr(X, W) Ty Corr(Y, X) ol

oh 2 High —0.75 0.347
High — 0.75 0.25 e 03
Low — 0.36 0.75 High —0.75 0.70°

Low — 0.37 2.00?
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3.5.2. Performance of the estimators.

The SCK and ML estimators are at least as efficient as the alternatives in all
the scenarios examined, but are not very different from each other (Fig. 3.3-3.5). In
terms of RMSE (Fig. 3.4) and the spread of the sampling distribution (Fig. 3.5), the
MLE is slightly more efficient than the SCK estimator when the correlation between X
and W is 0.36, but indistinguishable when the correlation is 0.75. However, when the
calibration sample size is small, the MLE tends to be positively biased, while the SCK
tends to be negatively biased. If Corr(X, W) is low, these biases can be relatively large.

The SCK estimator is an inverse-variance weighted average of f, ,, and 3, . The
latter is proportional tod, ', so large values of f, ,,, are associated with small values
of &, . However, its estimated variance is proportional to@;* . Therefore, smaller values

of ,31’ = Would tend to receive a greater weight than large values, which would

explain the negative bias.

The estimator of S, from the calibration data alone performs relatively well,

and often better than some of the other estimators. Of course, ,BL vr 1S unbiased for all
sample sizes, while the other estimators are not. The RC estimators were clearly more
efficient than ,bA’L v only when the correlation between Y and X is low and that

between X and W high. In all other cases, the RMSE of ,bA’l’ r 18 less than that of ,31’ EXT

for all sample sizes, often substantially so, and close to or less than that of the CRS

estimator. While the RMSE of the SCK and ML estimators is less than that of ,@1’ INT >

the improvement is sometimes negligible.
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Figure 3.3. Relative bias of the internal, ‘as external’, CRS, SCK and ML
estimators of the slope in simple linear regression with measurement error. The
distributions of Y|X and X|W are normal, with a primary sample size of n =

simulated primary and calibration samples.
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Figure 3.4. Relative root mean squared error of the internal, ‘as-external’,
CRS, SCK and ML estimators of the slope in simple linear regression with
measurement error. The distributions of Y| X and X|W are normal, with a
primary sample size of n = 1000 and a calibration sample size of m >25. The
results are based on 2000 simulated primary and calibration samples.
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Figure 3.5. Selected percentiles of the Monte Carlo sampling distribution of the
SCK and ML estimators of the slope in simple linear regression (with true
slope equal one) with measurement error. The distributions of Y| X and X|W are
normal, with a primary sample size of n = 1000 and a calibration sample size
of m >25. The results are based on 2000 simulated primary and calibration
samples.
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3.5.3. Performance of the confidence intervals.
Intervals based on inverting a LRT test are, on average, shorter than intervals
based on the asymptotic normality of the sampling distribution of the SCK estimator

or the bootstrap, even though sometimes they can be very close (Fig 3.6). The average

length of the exact interval of ,BL wr 1s always greater that that of the SCK or ML

estimators. However, the shorter Cls of the SCK and ML estimators are associated
with a substantial increase in their error rate, especially for small sample sizes (Figs.
3.7-3.8). For example, when the correlation between X and W is low and m=50, the

total error rate of the Wald-based 95% confidence interval is almost 10%, even though
the average length of the exact confidence interval of ﬁl, wr 1s only 35% greater than

that of the Wald-based confidence interval. Likelihood ratio and bootstrap confidence
intervals have coverage rates that are closer to their nominal rates.

When the calibration sample is small, the ‘misses’ of the SCK and LRT
confidence intervals tend to be greater in one direction. However, the true value of the
parameter tends not to be included in the SCK intervals when greater than the SCK
estimator, while the opposite is true for the LRT intervals. This difference may be
explained by the negative and positive bias of the SCK and ML estimators,

respectively.
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Figure 3.6. Average length of the estimated 95% confidence interval of the
slope in simple linear regression with measurement error. The distributions of
Y| X and X|W are normal, the primary sample size is n = 1000 the calibration
sample size is m. The intervals are based on the t-distribution for the internal
estimator; on a Wald approximation and bootstrap percentile for the SCK
estimator; and on inverting the likelihood ratio test. The results are from 2000
simulated primary and calibration samples.
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Figure 3.7. Percent of samples for which the true slope in simple linear
regression with measurement error is greater than the upper limit of a 95%
confidence interval. The distributions of Y | X and X | W are normal, with a
primary sample size of n = 1000 and a calibration sample size of m. The
intervals are based on a Wald approximation and bootstrap percentile for the
SCK estimator, and inversion of the likelihood ratio test. The results are from
2000 simulated primary and calibration samples.
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Figure 3.8. Percent of samples for which the true slope in simple linear
regression with measurement error is less than the lower limit of a 95%
confidence interval. The distributions of Y | X and X | W are normal, with a
primary sample size of n = 1000 and a calibration sample size of m. The

intervals are based on a Wald approximation and bootstrap percentile for the
SCK estimator, and inversion of the likelihood ratio test. The results are from
2000 simulated primary and calibration samples.
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3.5.4. Robustness.

There is a natural concern over the robustness of maximum likelihood
inferences against distributional misspecifications. The existence of a calibration study
in which the response, explanatory and surrogate variables are observed alleviates
those concerns somewhat, because the assumed distributions can be checked against
observed data. Nevertheless, the assessment may be difficult if the sample size and
departures from the assumed distribution are small. In this section, we check the
performance of the RC and ML estimators when the distribution of the error term of
the regression of X on W follows a t-distribution with 5 degrees of freedom, or a
lognormal distribution. The settings are the same as in the previous sections, and the t
and lognormal distributions have been scaled to keep the same correlation between X

and W and Y and X as before. Figure 3.9 shows the normal probability plot of those

distributions when oy, =0.75".

The misspecifications of the distribution of the error term of the regression of
X on W considered in this study have very little effect in any of the measurement of
performance examined (Fig. 3.10-3.14 and tables 1.5-1.7). Although there is a slight
increase in bias and decrease in efficiency, which tends to be greater for the lognormal
than for the t-distribution, the magnitude of the changes are minimal. Compared with
the scenarios when the distribution of X on W was correctly specified, the relative
performances of the estimators remain unchanged. Therefore, likelihood inference
does not seem to be affected by small departures from the normal assumption of the

distribution of X given W examined in this study.
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Figure 3.9. Normal probability plots of the distribution of the error term in the
regression of X on W.
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Figure 3.10. Robustness results: Relative bias of the internal, RC and ML estimators
of the slope in simple linear regression with measurement error. The distributions Y|X
is normal, and the distribution of the regression error of X|W is either a t-distribution
with 5 d.f. or a lognormal distribution. The primary sample size is n = 1000 and
the internal calibration sample size is m. The results are based on 2000 simulated
primary and calibration samples.
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Figure 3.11. Robustness results: Relative root mean squared error of the internal, RC
and ML estimators of the slope in simple linear regression with measurement error.
The distributions Y|X is normal, and the distribution of the regression error of X|W is
either a t-distribution with 5 d.f. or a lognormal distribution. The primary sample size
is n = 1000 and the internal calibration sample size is m. The results are based on 2000
simulated primary and calibration samples.
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Figure 3.12. Robustness results: Average length of the estimated 95% confidence
interval of the slope in simple linear regression with measurement error. The
distributions Y|X is normal, and the distribution of the regression error of X|W is either
a t-distribution with 5 d.f. or a lognormal distribution. The intervals are based on the t-
distribution for the internal estimator; on a Wald approximation and bootstrap
percentile for the SCK estimator; and on inverting the likelihood ratio test. The results
are from 2000 simulated primary and calibration samples.
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Figure 3.13. Robustness results: Percent of samples for which the true slope in
simple linear regression with measurement error is greater than the upper limit
of a 95% confidence interval. The distributions Y| X is normal, and the
distribution of the regression error of X| W is either a t-distribution with 5 d.f.

or a lognormal distribution. The primary sample size is n = 1000 and the
internal calibration sample size is m. The intervals are based on a Wald
approximation and bootstrap percentile for the SCK estimator, and inversion of
the likelihood ratio test. The results are from 2000 simulated primary and
calibration samples.
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Figure 3.14. Robustness results: Percent of samples for which the true slope in
simple linear regression with measurement error is less than the lower limit of
a 95% confidence interval. The distributions Y|X is normal, and the distribution
of the regression error of X|W is either a t-distribution with 5 d.f. or a
lognormal distribution. The primary sample size is # = 1000 and the internal
calibration sample size is m. The intervals are based on a Wald approximation
and bootstrap percentile for the SCK estimator, and inversion of the likelihood
ratio test. The results are from 2000 simulated primary and calibration samples.
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3.6. Conclusions

If the distribution of the response variable given the true explanatory variable,
and the explanatory variable given the surrogate are both normal, the maximum
likelihood estimator is asymptotically more efficient than the proposed regression
calibration estimators. However, simulation results indicate that the estimator
proposed by Spiegelman, Carroll and Kipnis (2001) is nearly as efficient as the
maximum likelihood estimator, particularly when the measurement error is small. This
estimator is defined as an inverse-variance weighted average of the estimator of the
regression parameters obtained from the calibration data alone, and the regression
calibration estimator obtained by treating the internal calibration data as an external
calibration study. It is easy to compute with existing software, and does not require
special iterative calculations, even when the distributions involved are not normal.
Therefore, from a practical point of view, it is a sensible alternative to the maximum
likelihood estimator.

Confidence intervals based on the asymptotic normality and estimated standard
errors of Spiegelman’s et al. (2001) estimator, however, tend to have a high error rate
for small calibration sample sizes. Inferential properties can be improved by using the
bootstrap, but this reduces the simplicity and appeal of the estimator. Confidence
intervals calculated by inverting a likelihood ratio test are somewhat more efficient
and accurate than the bootstrap.

Other seemingly sensible estimators can be substantially less efficient than the
MLE, and may even result in an actual loss of efficiency compared with estimators
obtained from the calibration data alone. This is the case, for example, with the
estimator obtained from the regression of ¥ on X when available, and on the estimated
E(X | W) otherwise. If the correlation between the response and true explanatory
variable is high, this estimator is less efficient than the estimator that ignores the
primary study altogether.

Maximum likelihood inference requires the specification of the distributions of

Y| X and X] W, while regression calibration only requires specification of the moments
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of the distributions. Simulations show that the maximum likelihood estimator,
however, does not seem to be affected by small misspecification of the error of the
regression of X on W. Its efficiency, both in overall terms and relative to the other
estimator considered here, remained virtually unchanged. Although Spiegelman’s et
al. (2001) estimator is simple and transparent, because of the better inferential
properties and relative robustness, we believe that likelihood inference may be worth

the extra difficulty.
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4. CONCLUSIONS

Regression calibration is a simple, transparent and intuitive approach to
estimate regression models with measurement error. In their monograph, Carroll,
Ruppert and Stefanski (1995, p.142) note that “traditional folklore” suggests that, in
many statistical models, simpler methods such as regression calibration perform just
as well as likelihood methods, but they remark that there is little documentation to
support this belief. Since Carroll et al. (1995) made this observation, a few studies
have compared versions of regression calibration and likelihood methods, some
supporting the folklore (for example, Spiegelman et al. 2001, Thoresen and Laake
2000), while others indicating that the maximum estimator can be substantially more
efficient (for example, Spiegelman et al. 2000, Suh and Schafer 2002). Those studies
rely on simulation of a limited number of scenarios, because analytical results or
extensive simulation are not feasible in the complex settings that they consider.

The results from chapter 2 partially support this folklore, because for normal
linear regression with an independent calibration dataset, the regression calibration
estimator is equivalent to the maximum likelihood estimator, provided a natural
estimate of variance is non-negative. In practice, this result offers a check for judging
the suitability of regression calibration. However, if the estimate of this variance is
negative, the regression calibration estimator can be very unstable and attain
unreasonably large values, while the MLE is bounded and closer to the target
parameter. Negative variance estimates are likely if the uncertainty on the estimation
of E(X | W), the conditional expectation of the true explanatory variable given its

surrogate, is large. However, they are also likely if £, is close, in magnitude,
to IG;W / af(‘W , where f, is the slope of the regression of the response variable Y on

the true explanatory variable X, and a;‘W and af(‘W the variance of the regression of ¥

on the surrogate variable /" and the measurement error variance, respectively. This
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situation reflects a strong relationship between Y and X, and a relatively large
measurement error variance.

Asymptotically, the regression calibration and maximum likelihood estimators
and their sampling distributions are equivalent, and converge to a normal distribution.
However, for finite sample sizes, the sampling distribution of the regression
calibration estimator can be very skewed, and even bimodal. One-sided error rates of
confidence intervals based on the asymptotic normality and estimated standard errors
are inaccurate. Two-sided type I error rates may be more accurate, but this is
misleading because it is due to the one-sided error rates tend to be too high in one tail
and too low in the other. In addition, the moments of the sampling distribution of the
estimated asymptotic variance are not defined, resulting in large and erratic values for
small calibration sample sizes. Confidence intervals calculated from the percentiles of
the bootstrapped sampling distribution of the regression calibration estimator is more
accurate than those based on approximate normality, in terms of symmetry and overall
error rate, with only a relatively small increase in length.

Inference based on the likelihood ratio results in the shortest confidence
intervals, while keeping a coverage rate close to the nominal rate. The efficiency gains
arise in part from the bound imposed by constraining that the estimated variance of the
conditional distribution of ¥ on X to be positive. However, under this constraint and

for some values of the parameters, the sampling distribution of the LRT statistic
cannot be approximated by a y distribution. This problem is apparent for small

sample sizes in general, but becomes increasingly important when the true slope of the
regression of Y on X is close, in magnitude, to the ratio of the standard deviations of ¥
and X, given the surrogate variable. Simulations indicated that, in those cases, LRT
confidence intervals were conservative.

Chapter 3 discusses the case when the true explanatory variable is observed in
a subset of the data. The maximum likelihood estimator is asymptotically more
efficient than the proposed regression calibration estimators, but the difference

decreases as the measurement error variance decreases. Through an extensive
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simulation study, we show that if the distribution of the response variable given the
true explanatory variable, and the explanatory variable given the surrogate are both
normal, the estimator proposed by Spiegelman, Carroll and Kipnis (2001) is nearly as
efficient as the maximum likelihood estimator for a range of calibration sample sizes.
This estimator is defined as an inverse-variance weighted average of the estimator of
the regression parameters obtained from the calibration data alone, and the regression
calibration estimator obtained by treating the internal calibration data as an external
calibration study. Spiegelman’s et al. (2001) estimator can be computed with little
more than standard software and, therefore, from a practical point of view, it is a
sensible choice. However, confidence intervals based on the asymptotic normality and
estimated standard errors of Spiegelman’s et al. (2001) estimator, tend to have a high
error rate for small calibration sample sizes. Inferential properties can be improved by
using the bootstrap, but this reduces the simplicity and appeal of the estimator.
Confidence intervals calculated by inverting a likelihood ratio test are somewhat more
efficient and accurate than the bootstrap.

Other seemingly sensible versions of the regression calibration estimator can
be substantially less efficient than the MLE, and may even result in an actual loss of
efficiency compared with simple estimators obtained from the calibration data alone.
If the correlation between the response and true explanatory variable is high, the
estimator derived from the regression of ¥ on X when available, and on the estimated
E(X'| W) otherwise, is less efficient than the estimator that ignores the primary study
altogether.

Although this study focuses on regression calibration inference when both the
distribution of ¥ given X and of X given its surrogate are normal, the findings apply
more generally. For generalized linear models with an external calibration dataset, the
regression calibration estimator can be written as the ratio of the slope of the
regression of Y on W to the slope of the regression of X on . Since the estimators of
those slopes are approximately normal, the results in this paper regarding the sampling

distribution of the regression calibration estimator and implications for inference
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remain approximately valid. However, in those cases, as when the calibration dataset
is internal, the regression calibration and maximum likelihood estimators may not be
equivalent.

Even though regression calibration estimators are simple and, in some
instances, equivalent to the maximum likelihood estimator, likelihood ratio inference
is shown to be more accurate and efficient than inference based on the approximate
normality of the regression calibration estimator. The existence of a calibration study
in which both the true explanatory variable and its surrogate are observed alleviate
some of the concerns over the robustness of maximum likelihood inferences against
possible distributional misspecifications. When a calibration study is available, the
distribution of the true explanatory variable does not have to be specified, and the
adequacy of all the assumed distributions can be assessed with the calibration data.
For complex cases, however, likelihood analysis can be challenging computationally
for realistic distributional assumptions. However, if data collection and study involved
significant time and cost, the additional effort in doing a likelihood analysis would be

small for realizing greater efficiency and more powerful tests and confidence intervals.
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Appendix A. Regression calibration and method of moments

Suppose that(y,,w;), i =1,...,n, are observed, and that
v, =P, +Px +¢&
with E(&,)=0, Var(s,) =0y, , and Cov(el.,gj) =0 fori#j.
Suppose a classical error structure, withw, =x, +6,, E(6,)=0, Var(5,)=0,,,
Cov(é)‘i,é j) =0 for i# j, and & and o, independent of each other.

Suppose that £ (x, | w; ) = a, +a,w;, known. Let w] represent E(x, |w,).

, . A Sy 1 &L _

Then, the RC estimator of f3, is /3, ;- = -, where S, . =— (wl. —w )(yl. -7)
SW*W* n— 1 i=1
I & . . ~ 1S,

and § . .= Z(Wi -w ) . This is equivalent to S, , =———.Ifand ¢, and 0,
n— i=1 al SWW

0_2
normally distributed, then o, =4 = 2—’(2 , the reliability of the measurements, and
oy +0y,

2
E| Sm | flo_X — . Therefore, if E(x, |w,) or a, are known, E(,B1 Rc) =p4.In
Sy oy +0;, ’

addition, the RC and ML estimators are equivalent.

Without any distributional assumptions, ,31, zc 15 a method of moments

estimator, because E(S,, )= B0y andE(S,, )=o0y +0,,,S0 E(AS,, ) =0y .
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Appendix B. Derivation of the regression calibration estimator.
B.1. Linear model
Let Y denote the response variable, X the explanatory variable measured with

error, W a surrogate variable for X, and Z a set of ¢ other explanatory variables.

Suppose that:
Y=, +BX+ZLP,+¢ (B.1)
X=a,+taW+Za,+0 (B.2)
Y=y, +yW+Zv,+¢ (B.3)

where B =(3,, 5.8, )’ , a=(aya,0, )' and v =(7y.7,,7, )’ are unknown regression
coefficients; and (&,5,{’) are random variables.

Interest is in inference about £, . The study data consists on a primary sample
( Vis W, Z:) , i=1,...,n, and an independent calibration sample consisting of
observations (x,,w,,z;), i =n+1,..,n+m. Assume that observations with different
values of i are independent. The subindex p indicates the primary study, and ¢ the
calibration study. Thus, the available data are (yp,wp’Zp) and(xc,wc,Zc) .

The RC estimator is obtained after substituting x,; in (B.1) by an estimator of

i

! A

its expectation, given w,, andz . Let this estimator bex,, =&, +aw,, +2,,0

N piz?
where @ =(&,,4,,4, )' is an estimator of a. Then, the model actually fitted is:

E(Y \W=w,Z= Zi) = ﬂO,RC + IHI,RC)%p,i + Z,p,iBZ,RC = (1 Wi Z;,i)ABRC

1 a, 0,
where A =| 0 a, 0, |, which will be assumed to be positive definite w.p.1, and
0, @ [

Brec = (ﬂO,RC,ﬂLRC,B’Z,RC )’ .LetW, = (l,wp’Zp) . The RC estimator is:
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A

A AN—1 A A -1 A
Bec = (A’WI;WPA) AWy, =A" (WW,) Wy, =A"§

2 A A A-]lA
Po.re Yo~ H& 7y
5 _ Al A
ﬂl,RC - al }/l
A A A A-]lA
ﬁz,RC Yz _a’zal 7/1

B.2. Generalized linear model with canonical link

Suppose that Y|X, Z follows a distribution from a regular exponential family

with mean £ (Y | X, Z) and a scale parameter ¢. Let

gI:E(Y|X =x,ZL =Zi):| =B+ X, +z.B,
X=o,+aW+Za,+o
where g () is the canonical link function for the distribution of Y | X, Z, and the symbol

definitions and data structure are as in the previous section.

Let w,=(1 w, z )'. Write the log likelihood for the regression of ¥ on W

1

and Z, based on the primary data, is:

1(r) e D {[ywiv=b(wir) /(o)

i=1
whereb(-) is the cumulant generating function and v; is a known weight.

Note that
W;A=(1 a,+aw,; +z,,0 z;’i)=[1 E(X|W=wi,Z=zi) ZLJ=§;T

pi -z i

Multiply terms in /(y) by AA™, as shown below:

n

(1) zl{[ ywiAA Ty -b(wiAA™) | flo/m)] = 2| xiAtr-b(3iA%) ] (o)

i=1
Therefore, the coefficients of the generalized lineal model
g [E (Y | X =X,Z=1, )] , 1.e., the RC calibration estimator, are A'ly . An alternative

proof was given by Thurston et al (2003).
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Appendix C. Distribution of the ratio of two independent, normally distributed
random variables

C.1. Density and cumulative distribution functions
Lety, ~ N(?/l,dﬁ), a, ~ N(al,aa% ), independent, where
2

N o N
o; :Var(yl):m, o;=Var(a,)=

2 n
O xw 2
=

1 32
—(m_l)S;/L’ g E;(W[—Wp) and

Then, ﬁl’ e =7,/¢, is the ratio of two independent normal variables. The

distribution of this ratio has been discussed by Hinkley (1969) and Marsaglia (1965).
Here, I will discuss a different parametrization.

The joint distribution of 7, and ¢, is:

A A 1 1 (7?1_71)2 (&1_%)2
G | W) =——=exp{—=
f(71 al | ) 27[ O‘}?g; exp{ 2[ O'}? + 0;

The probability density function of ,31, xc 1s obtained by solving:

A 2 s
1 (ﬂ],RCal _71) . (0?1 —al) Jé
1

f(:él,Rc | W) :ﬁj‘i & exp _E o'; 62
704

which yields



where ® (t) 1s the cumulative distribution function of a standard normal random

variable.
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This function depends only on 3 parameters, 7, =y, / \ /O'; , T, =0 / Jo, and

the scale parameter 77 = /o / 0'7? . Therefore, it can be re-expressed as:

) e N S
f(ﬂl,RC|W)_ne 2 ”(Uzﬁl?RCJrl)x

. 2
1[ %P re+ o

A ’72,312,Rc+1 J 2M Tynﬂl,RC + Ta -1

1+\/E Tyn:él,Rc""[a 62
2 \/772,81?%"'1 \/772:812,1«7"'1

The cumulative distribution function can be obtained by integrating the

density:

T, - 7a77:é1,Rc . ﬂﬁl,RC
(772:812,Rc + 1)1/2 - (772:812,RC + 1)

F(BacIW)=1

12

ry—ranﬂALRc s nﬂAl,RC
(772,85“ +1)1/2 - (772/31?1% +1)

1/2

where L is the cumulative distribution function of a standard bivariate normal

distribution:
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C.2. Asymptotics
There are two asymptotic distributions of interest: when m — o and when

7, — . Note that when both n — o0 andm — o, the RC estimator converges to £,
since 7, > 7, and &, = a,. Whenn — «©, 7, — 7,, but the distribution of the RC

estimator is proportional to the inverse of a normal distribution.

Ifm — oo, assuming that the variance of W is finite,

77:&: O-XIW/ )S2 _ (n_l)szVPO-;W N
o, \op/(n-1)S; ~\(m-1)S; 07,
T S ] —>

o JJ;W /(m-1)s;.

3 _Tanlél,kc . 77:81,1%0 a5
Lq- 72 ~ 720 Cas S A 12 - o -7, +O__lﬂl,RC
(77 ﬂuac +1) (77 ﬂl,RC +1)

7

-7,npB, ,RC . 1P, xe

= T,5 - -0
(77 /61 re T 1)1 "’ (772/312,RC + 1)1/2

. o’
Then, F(,BIRC|W)—>®[—T +—L ﬁchj and f pc %N(ﬂpa—Z]

1
Ast, —o00:

Ty_z-anﬁmc . nﬂl,RC

' (7721312,% +1)1/2 - (772,812,% +1)1/2

-0

So that:

alﬂl,RC s

N 72
2 n2 2
(Udﬂl,RC +0o; )

F(Bc|W)—>®
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The median of this distribution is £, , because for ,@L e =N/

a1(71/a1)_7/1 - —0 and @ P ke — -
(O-a% (71/“1)2 +O—;) (O'a%ﬁlz,kc +O—}f)
useful approximation to the true sampling distribution for large 7, but, for finitez_, it
is an improper distribution (Hinkley 1969).

=0 {0} . This distribution is a

C.3. Alternative form of 7,

The parameter 7, was defined as7, = ¢, / \o, , where q, is the slope of the

regression of X on W and o is the variance of the estimator of ¢, . Then,

_ COV(X, W)2

2
_CoXW) e Gww () Var ()
ar

Var(W) T (n—l)S;,(,’

2 X 2 2 2
2 0512 —(m-1)s; Cov(X, W) /Var(W) (1) Sy p _
; Var(W)1-p

o e Var(X)Var(W)—Cov(X,W)

where p is the correlation between X and W.
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Appendix D. Maximum likelihood estimation

D.1. Unrestricted likelihood

Suppose that:
Vilx,w.z, =B+ Bx +zp, +e, i=l..n
X |w,z, =a,+a,w, +z,0,+0,, i=n+l,.,n+m
wherez; is a vector of explanatory variables measured without error, and(¢,,d, ) are
distributed normally and independently, with mean (0, 0) and variances (oﬁl o U;‘W ) .
Then, y, |w,,z,1s normally distributed with mean and variance:
E(yi | w2 ) = (ﬂo +pa ) + fiayw, +z; (ﬂlaz + Bz)
Va’”(yi |w,, 2, ) = O-)%|X + 16120-)2(\W
Denote the coefficients the regression of y, on w, and z, asy, = 3, + f.«,,
n=po, ¥, =pa,+B,.

The log-likelihood is:

m+n

I(B,a, J;‘X,O';‘W) =- log(Zﬂ)—glog(oﬁlx + ,Blza;‘W)—%log(a)?lW)

1 n
_2(0_2 + B0’ )ZE{)@ _[ﬂo +pa, + Baw, +z;(fa, +BZ)]}2 (D.1)
YIX 12Xxw ) =
1 n+m
"ot (e

Taking derivatives with respect to ( By BB, 0,,0,,00, .05, ) and
equating to 0, the likelihood equations are:

J_’p _:éo - 181&0 _Iéldlwp _i;, (ﬁlaz + Bz) =0 (D.2)



ﬁlo-X\W

n
nﬁ1 X W WZ(J’,‘ =B, = Ba, - paw, -

Oyx t P Oxpy =i
+na, (J_’p _ﬂo _/810?0 - ,Bld'lwp _z;) (ﬁldz +B, ))
+a ZW ( ,Blao Baw, - Z;),i (ﬂldz +B, ))

7, (B, +B,

+a ZZ ( ﬂlao ﬂlal ;(ﬂA‘iz"'ﬁz)):O

n
zzi (yi =By - Ba, - Baw, -z
i1

-‘
m>
&R>
N
+
>
N
~—
SN—
Il
S

W(-}_}p - BB, _ﬁldlwp _i;)(

m o . .
+——(%.-d,-a,w,-7.a,)=0
X W

%Zw ( ﬂlao ﬂ1a1 :(ﬁ&z +l§z ))

Oyx + Oxpy i=l
1 n+m
+—= wl.(xi—o?o—a?lwl.—z'az)zo
GX\W i=n+1
B A
P> (- B B B~ B, +B,))
Oyix TP Oxpy i=l
1 n+m
A oA PA YL
+—— Dz, (x,— &, —dw,—26,)=0
O_X‘W i=n+1

1

_n+ﬁ2(y, ﬂo ﬁlao ,Blal ;(A1&z+l§z))2:0

Oyx t P Oxp i=l

nﬂlz m 1 n+m . A
— R — + > (x—d,-aw,

A2 2 A2 A2 ~2 2
Oy T B Oy Oxw (GXW) i=n+1

éZ n n AL AL
+ Al 2 Z(y,‘ =By — B, — Baw, _Z; (

A2 22 —
(O-Y\X + B O-X\W) =

i
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(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)
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D.1.1. Solution to likelihood equations for (ao,al,az,of(w)

Substituting eq. (D.2) on eq. (D.5), eq. (D.4) on eq. (D.7), eq. (D.8) on eq.

(D.9), and assuming that o”';‘w # 0, the following equations are obtained:

X —d,-a,w —7a,=0 (D.10)

Z z,(x,~d, —éw,~2za,)=0 (D.11)

i=n+1

—m+ 21 g(xi—do—&m—%dz)go (D.12)
O-)qW i=n+l

Substituting egs. (D.2), (D.4) and (D.7) on eq. (D.3) yields:
a, Wi(yi_Bo_ﬁldo_Bldlm_zg(ﬁ1&z+ﬁz)):0 (D.13)
i=1
Then, under the additional assumption that¢, # 0, substituting eq. (D.13) on

eq. (D.6) yields:

nin w,(x,—&,-aw,—2a,)=0 (D.14)

i=n+1
Equations (D.10), (D.11), (D.12) and (D.14) are the likelihood equations for

(do,dl,&z,&jw) based on the calibration data alone. Therefore, the estimator is

obtained by ignoring the primary data and relying on the calibration study alone.

D.1.2 Solution to likelihood equations for ( Bos BB, 07y )

Equations (D.2), (D.13), (D.4) and (D.8) are the likelihood equations for the
regression of Y on W and Z. If the estimators of the parameters of that regression
are ( PorT1sV 4o cﬁw ) , then from the definition of (,,7,,v, )and the invariance property

of the MLE, it follows that:

B =7/é (D.15)

,Bo :770 _:5)10?0 (D.16)
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B.=1,- 4, (D.17)

Giw = 6w = BiSiw (D.18)
Therefore, if 67, + 576+, #0, 65, #0,and & #0, the solutions to the
likelihood equations for (u, O';‘W) are the MLESs obtained from the calibration data

only. The solutions to the likelihood equations for (B, 0'5‘ X) are the RC estimators.

However, these estimators are the MLEs only if &7, =&y, —(7,/4, )2 Gy >0.

D.2. Likelihood equations when &7, <0

If 6'; v <0, typically 05‘ v 1s set to 0 and the remaining parameters are

estimated under this assumption. This is equivalent to maximizing the log-likelihood

under the restriction that 63‘ + > 0. For simplicity, I will derive the estimator when

there are no additional covariates z. Then, the log likelihood becomes:

l(ﬁ,d, O-i\x =0, O-)?\W): —glog( 120)2(\W)_%10g(0-)?\w)

I’I +m

SR} Z[J’I ﬂo+ﬂ1a0+ﬂ1a1 } - —(0(0 +a1Wi)]2

2ﬂ X|W i=1 X\Wl n+]

=~ log(5) -~
1 n+m

1 Z(yp,i_lgo_ﬂlao_ﬂ]alwpi)z_ Z (xi_ao_()[l""'i)2

- 2 2 . 2
zﬂl O-)qW i=1 20—X|W i=n+1

(D.19)

log(O'X‘W)

Taking derivatives and simplifying under BIOA-)?\W # 0, the likelihood equations

¥, - By - Bé, - Béw, (D.20)
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1 z Aa A N2
—n+—=- Z(J’i - By — B, _:810‘1”’1‘)
ﬂlO-XU/V i=1
Y n (D21)
a A A
+— Ny, =B, — - 1=0
ﬂl&;|W ,Z::‘Wl (yz By — B, ﬂlalwz)
X, —a,-aw, =0 (D.22)
1 n ~ ~ . ~ . n+m . .
IBT w, (y,. - B, - B, _ﬂ1051Wi)+ z w,(x,—a,—dw,)=0 (D.23)
1 i=1 i=n+l
1 n ~ ~ L AL 2
_(n+m)+ ~ Z(yz‘_ﬂo_ﬂlao_ﬂlalwi)
ﬂlO-X|W i=l
nim (D.24)
+ Azl z (xi -4, —dlwi)z =0

X W i=n+l

The solution to these equations is tedious, but after some algebra they yield:

n |:SS)2(WC - SSXX (SSWpr + SSWch )] :5’12 + (n - m) SSXWCSSYWpﬁl

(D.25)
2
—m] 887, =SSy (S, +SSyre) |0
1
— S8y, + 58 .
a, = s (D.26)
SSWp Wp + S SWC We
&;IW _ S8y =SS e (D.27)
m
&, =X, —aw, (D.28)
Bo = .)_}p - ﬁldo - ﬁld] Wp (D.29)

where SS denote sum of cross products indicated by their subscripts.

D.3. The MLE of g, is bounded

2 A2

Define the MLE of 3, as f, =7,/4, if Syw —(7,/4,) G4y >0, or the solution

to (D.25):
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1SS =SS o (S + Sy ) | B +(n=m) S8 1SSy, B
—m] S8}, =SSy (SSm, + Sy ) |[= 0

if62, —(7,/&) 62, <0. (ﬁl,&ﬁ‘w) and(o?l,o‘;‘w ) are the MLEs of the parameters of

the distribution of Y given W, based on the primary data only, and of X given W, based
on the calibration data only, respectively.

Then, assuming that the cross products SS,, >0, SS,,,, >0 andSS,, . >0,

the MLE of f, is bounded.

Proof:
The proof has three parts. First, it will be shown that the roots of equation
(D.25), are both real, one positive and one negative. Second, it will be shown that the

MLE is the smallest, in magnitude, of 7, / @, or one of the roots of (D.25). Third, it will
be show that the roots of (D.25) are finite.

LetA = nI:SS)Z(WC _SSXX (SSWpr +SSWCWC ):| ’B = (n_m)SSXWcSSYWp > and

C=m [szwp ~ 58, (88, + Sy )} .

(1) Existence of real roots of eq. (D.25). By Holder’s inequality,
S8ty <SSy SS,yy. and SSy, <SS, SS,, . . Therefore, A<0 and C<0.

XWe

The argument of the square root of the formula for the roots to equation (D.25)

isB*+4A4*C >0, so both roots are real numbers. In addition, B| is smaller

than or equal to the positive solution of/ B> +44*C . Therefore, one root is
positive and the other negative.

(2) MLE is the smallest, in magnitude, of 7,/@, or the solution to (D.25). Let

f(ﬂl ) = nﬁlz |:SS)2(WC —SSy (SSWpr + 88y )} + (” - m) ﬂlSSXWcSSYWp

(D.30)
~m[ 552, =58, (S8 + Sy, |

" ) A S AN A2 . .
Re-express the condition oy, —(7,/&) Oy 10 terms of sums of squares as:
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1 < A AL A 2 ];2 n+m A . )
;;(y,- - fy - Ba, - Béw,) - Lo 3 (5= =
2
U ss, - _(SSYWP /Sy, j 1 [ 55, S j )
n WP Wp SSXW(/ SSW(’WC m SSWC’WC
SS?,,,SS
m(SS SSWPWP 2YWP)_nSS2Y’/VP—WCWC(‘SlS’XXLSSVWch _SSZXWC) (D31)
XWe WpWp
because 7;1 M
al SSXWC/ SSWch
Then,

N2
f(ﬁl/dl): (Olj |:SS)2(WC SSXX (SSWpr+SSWch):|
1

+(n —m)@SSXWCSSYWp —m| 887, =SSy (SSym + Sy ) | =

a

SS? SS SS
SS..SS —5S? P L/ il G N NN o _S8S% 1 4 2werwe
l:m( YYPRwpwp YWP) nSSzXWcSSWpr( Xx PP wewe XWL) —SSWpr
v 1o 5 oy = SS cWe
f(yl/al)z[alg\W _(71/al)2 O-;\W:| 1+ e (D.32)
SSWpr

The second derivative of f ( ﬂl) is negative, therefore, the quadratic function
has a maximum. Since both roots are real, the value of f(/3,) at the maximum is
positive. Therefore, if / (7,/d,)>0, 7,/4, is bounded by the roots of (D.25). If
f ( 7/ 0?1) <0, 7,/&, is smaller than the smallest root of (D.25), or greater than the

greatest root.

If67, —(7,/4, )2 Sy >0, then 7, /d; is the MLE and, by (D.32), is bounded

2 A2

by the roots of (D.25). The opposite holds if &y, —(7,/&,) &3, <0.

(3) The roots of (D.25) are bounded. The denominator of the formula for the roots
of the quadratic equation (D.25) is:
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‘21’1 (SS)Z(WL - SSXXSSWch - SSXXSSWpr )

> 21188 1SSy,

because SS3,,. <SS, SS,.. - Since the numerator is finite, the roots are of D.25 are

bounded.
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Appendix E. P(&}-(1,/d,)" 6%>0)
The expression above can be restated as
);2 dZ
A2
P( Oy (71/0‘1) Oxw >O) P #<%
Oyw Oxw

Under the assumption of section 2.3.1., the distributions of

A

~2
( a7 90_X|W’O-Y\W)are

(m—l)SfVc G [1 (m—l)SfVcafJ (n l)Spr FO (1 (n—l)Spr;/f]
b 2 b b

2 1

O xw O xw Oy Oy
mé_)zr\w 2 né_é\w -7
G)Z(‘W (m 2) U)%lW (n—2)
Then,
(n-1)82,7? F£1 o (n—l)Sprny
[n/ n-— 2 ]aw ’ O'}%‘W
(m—1)S2.a2 F(l , (m—l)SfVcafJ
m—2,~—="C
[m/ m— 2 ]o-)qw O-)z(\W
As m— o,

A2 2 2

(04 a

P <= mox o pl L —<—
O xw O-Y|W O xw

f
. (n-1)S;,7 3 (n-1)S;,0
[ Ll > O-i\W ] I:n/(n - 2)] G)Z(\W J

This asymptotic probability of &7, —(7,/,)’ 61, <0can be large. For

example, for the simulations of section 2.6, if B, = 2, the asymptotic probability as
m — oo is negligible for o3, =0.25%, 0.01 for oy, =0.5%, and 0.20 for

oy =0.75° . If ,=0.5 and oy, =0.75, the asymptotic probability is negligible.
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Appendix F. Profile likelihood for 5,

The profile likelihood for f, is obtained by first solving equations (D.2) and
(D.4)-(D.9) as a function of £, , and then substituting in (D.1). For simplicity, it will be
assumed that there are no additional covariates z, . Solving those equations, the
estimator &, (/4,) is obtained from the following cubic equation

- [(n +m) 258, 58, ]dﬁ

+ [(n +2m) B35S, 58y, +(2n+m) 2SS, S, ]dﬁ

(F.1)
| 1B xSy, +2(n+m) BSS Sy +mSS,,SS,,,, |é,
+[ 1SSy, +mSS,, Sy, |=0
Then, the estimators of the remaining parameters, as a function of S, are
dy =X, —a,W, (F.2)
ﬁozyp_ﬂlfc_ﬂldl(wp_wc) (F3)
| & ’
Srw =— (%, —Ay—aw, ) (F.4)
m ‘3
A2 I P A A 2 2 A2
Oyx = ;Z(yp,i - B, - Ba, - ﬂlalwp,i) - B Oxw (F.5)
i=1
Substituting in (D.1), the unrestricted profile likelihood for g, is
2pI(B,)oc ~nlog(SS,y + B1G7SS,,, ~2B,6:SSw, )
rp P (F'6)

—mlog(Syy +&'SS,,, 24,5, )
For some values of 3, eq. (F.5) may yield a negative estimate of O'}%‘ +- Then,

0; + can be set to 0 and the resulting likelihood equations solved to yield

. (1
& = (ﬂ Sy +SSyex ] /( SSyump + Sy )

1
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A

ﬂo = J7p _ﬂldo _ﬂldlwp

2
. 1] 1
62y = —[? SS,, +5S,, — (ﬂ SSy, + SSXWCJ /(SSWPWP + 58,0 )]
1

m+n| f

Substituting in (D.19), the profile likelihood becomes
2pl(B)= —nlog(ﬂlz)—(m+ n)log(oﬁ;‘w ) oc
(=SS e +SS xSy +SS 1SSy ) B +25S 1, SS oy B }

mlog B} —(n + m)log
—SS2YWp + 888y + SS SSyie
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Appendix G. Simulation details from the external calibration study

The focus of this study is the effect of the uncertainty in estimating E(X | W)

on regression calibration inference. In section 2.3, 7, = ¢, / Var(@,) was identified as
a key factor influencing the performance of the RC estimator. 7, depends on the size
of the calibration sample, the values of ¢, and o7y, , and the sample variance of /¥ in

the calibration study. The simulations explore the effect of the size of the calibration

sample and o, , while holding the other two parameters constant.

W
Since the main interest is in the calibration component of the study, the

parameters of the distribution of Y given X were chosen to reflect a strong (large £,)
and tight (small O'}%‘ ) relationship between those variables. For all the situations
examined, the intercept of the regression of ¥ on X was set to 4, =1, the variance of ¥
given X to G;  =0.67, and the primary sample size ton =1000 . The intercept and

slope of the regression of X on W were set to o, =0 ande, =1, respectively. Inference
is conditional on the values of I, so it was chosen to be regularly spaced in (0, 1) for
all scenarios. Although this is a rather artificial distributional choice, it can be thought
as a most favorable scenario, because the performance of the RC estimator decreases
as the sample variance of ¥ in the calibration study increases. If the distribution of W
is skewed, a more realistic scenario, the sample variance of /¥ would be greater than if
it is regularly distributed.

The first set of simulations fixed the slope of the regression of Y on X at f, =2
and examined a combination of three values of the variance of X given W,
O = (0.252,0.52,0.752) and six calibration sample sizes, m = 50, 100, 150, 300, 500
or 1000. The values of oy, were chosen so that the correlations between X and W

cover the range typically observed between reference and surrogate variables in

epidemiologic studies of diet-disease associations (Table G.1). A second set of
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simulations examined the effect of the value of £, which may affect the probability of

negative estimates of the variance of Y | X. The slope of the regression of ¥ on X was

set to 5, =1/2, the variance of X | W at U;m/ =(.75%, and the calibration sample sizes

were maintained at m = 50, 100, 150, 300, 500 or 1000. A summary of the parameters
of the simulation scenarios is included in table G.1. The parameters of the sampling
distribution of the regression calibration estimator for each simulation situation are
included in Table G.2.

For each of the 24 settings described, 2500 simulations were run. Primary and
calibration samples were generated from normal distributions with the set parameters.
From each sample, we calculated the RC and ML estimators and several types of
confidence intervals. The performance of different estimators is typically compared in
terms of bias and root mean square error (RMSE). However, given the lack of
moments of the sampling distribution of the RC estimator, those measures of
performance may behave erratically and lack a direct interpretation, especially for

small sample sizes. As the calibration sample size increases, the sampling

Table G.1. Summary of the parameters and features of the simulation scenarios. The
parameters not shown in the table are(ao,al,ﬂo,oﬁw ) = (0,1,1,0.62 ), n=1000 and m

= (50, 100, 150, 300, 500, 1000).

Corr(X, W) Cor(Y,X) (1)  P.(67, <0)

oy =0.25° 0.76 0.79 2.00 0 (approx.)
fi=2 oy, =050 0.50 0.88 2.96 0.01
opy =0.75 0.36 0.94 4.12 0.20
B =12 oy, =075 0.36 0.55 1.03 0 (approx)

(1) Difference between £ (Y | X ) at the 90™ and 10" percentile of the distribution of X .
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Table G.2. Parameters of the sampling distribution of the RC estimator. The three

parameters arez, =y, / ar (7)), 7, = / JVar(&,) and the scale parameter

n= \/ Var(&,)/Var(7,) . (7,,4,) are the least squares estimators of the regression of Y

on W and X on W, respectively.

pi=2 B =12
Oy =0.25° oy =0.50° Oy =0.75° Oy =0.75°

T, 23.38 15.66 11.30 6.45
M T, n T, n T, n T, n
50 8.16 1.54 4.08 1.92 2.72 2.08 272 4.74
100 11.55 1.01 577 1.36 3.85 147 3.85 3.35
150  14.14 0.83 7.07 1.11 471 1.20 471 2.74
300 20.00 0.58 10.00 0.78 6.67 0.85 6.67 1.94
500 2582 0.45 12.91 0.61 8.61 0.66 8.61 1.50
1000 36.51 0.32 18.26 0.43 12.17 0.46 12.17 1.06

distribution of the RC estimator converges to a normal distribution and the mean and
RMSE become more stable. Thus, we report the median and 2.5 and 97.5 percentiles
of the distribution of the estimator, and the mean and RMSE when they stabilized.

The performance of the 95% confidence intervals was measured in terms of
total coverage, left- and right-side coverage, and length. As with the estimator itself,
the expected value of the length of the RC confidence intervals is not defined, so we
report the median and the 2.5 and 97.5 percentiles of its distribution, and the mean and
RMSE when appropriate. We computed the following confidence intervals:

(1) RC-Wald, based on the asymptotic normality of the sampling distribution
of the RC estimator and the asymptotic variance of this distribution, calculated with
the Delta method (eq. 2.5).

(2) RC-bootstrap: we computed two types of bootstrap confidence intervals for

the RC estimator, based on the percentiles on the bootstrapped distribution and the
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BCa method (Efron and Tibshirani 1993). The confidence intervals were based on a

total of 2500 bootstrapped samples.
(3) LRT: obtained by inverting a y* likelihood ratio test. The likelihood ratio
test was calculated on a grid of values around the MLE. The set of values not rejected

by this test defined the confidence interval. Grid spacing was 0.01 units.

Tables G3-G9 show detailed summaries of the results of the simulations.
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Table G.3. Summary statistics of the Monte Carlo sampling distributions of the RC
estimator of the slope in a simple linear regression with measurement error. The
distributions Y| X and X|W are normal, with a primary sample size of » = 1000 and a
calibration sample size of m. The results are based on 2500 simulated primary and
calibration samples.

Percentiles
m Average RMSE  Min. 2.5% Median 97.5%  Max.

B, =2, oy =025

50 2.0298 0.28 1.38 1.59  1.9964 2.66 4.61
100 2.0158 0.20 1.48 1.68 2.0034 2.44 2.80
150 2.0129 0.17 1.50 1.71  2.0061 2.37 2.76
300 2.0105 0.13 1.61 1.78  2.0035 2.28 2.49
500 2.0062 0.12 1.64 1.79  2.0017 2.24 2.42

1000 2.0015 0.10 1.71 1.81 1.9969 2.21 2.36

B, =2, oy =0.50°

50 2.1667 1.66 1.06 .32 1.9819 3.77  77.37
100 2.0623 0.42 1.12 1.46  1.9928 3.07 4.70
150 2.0539 0.34 1.24 1.52 2.0160 2.83 3.61
300 2.0181 0.25 1.37 1.59 1.9973 2.54 3.09
500 2.0098 0.20 1.34 1.65 1.9978 243 2.75

1000 2.0090 0.17 1.40 1.70  2.0012 2.38 2.63

B, =2, oy, =075

50 2.6738 8.07 -55.32 1.14  1.9733 6.52 277.87
100 2.1822 0.78 0.92 1.26 2.0148 4.09 8.15
150 2.1002 0.59 1.01 1.32° 1.9933 3.47 9.10
300 2.0433 0.38 1.18 1.44 1.9984 2.90 4.24
500 2.0297 0.30 1.10 1.52  1.9989 2.68 3.49

1000 2.0073 0.25 1.29 1.55 2.0005 2.55 2.98

p,=0.5, oy, =0.75

50 0.3555 12.16 -600.65 0.26  0.4922 1.78 2499
100 0.5570 0.27 0.19 0.29 0.5076 1.12 5.99
150 0.5295 0.16 0.21 0.30 0.5009 0.92 1.71
300 0.5139 0.12 0.22 0.32  0.5001 0.77 1.56
500 0.5096 0.10 0.20 0.34 0.5020 0.72 0.93

1000 0.5024 0.09 0.17 0.34 0.5002 0.68 0.82
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Table G.4. Summary statistics of the Monte Carlo sampling distributions of the MLE
of the slope in a simple linear regression with measurement error. The distributions of
Y|X and X| W are normal, with a primary sample size of » = 1000 and a calibration
sample size of m. The results are based on 2500 simulated primary and calibration
samples.

Percentiles
m Mean RMSE Min. 2.5% Median 97.5% Max.

B, =2, oy =025

50 2.0289 0.27 1.38 1.59  1.9963 2.66 3.54
100 2.0158 0.20 1.48 1.68 2.0033 2.44 2.80
150 2.0129 0.17 1.50 1.71  2.0061 2.37 2.76
300 2.0105 0.13 1.61 1.78  2.0035 2.28 2.49
500 2.0062 0.12 1.64 1.79  2.0017 2.24 2.42

1000 2.0015 0.10 1.71 1.81 1.9969 2.21 2.36

B, =2, oy =0.50°

50 1.9832 0.37 1.06 .32 1.9749 2.69 3.53
100 1.9933 0.29 1.12 1.46  1.9906 2.54 2.87
150 2.0109 0.26 1.24 1.52 2.0155 2.48 3.02

300 2.0011 0.22 1.37 1.59 1.9972 2.40 2.63
500 2.0023 0.19 1.34 1.65 1.9978 2.35 2.49

1000 2.0056 0.17 1.40 1.70  2.0011 2.33 251
B, =2, oy, =075
50 1.8788 0.41 0.88 1.14 19148 2.58 2.94
100 1.9211 0.32 0.92 126  1.9677 2.42 2.87
150 1.9237 0.29 1.01 132 19717 2.37 2.61
300 1.9430 0.24 1.18 1.44 19852 2.29 2.48
500 1.9601 0.21 1.10 1.52  1.9942 2.27 2.45
1000 1.9629 0.19 1.29 1.55  1.9993 2.24 2.39
B, =05, oy, =0.75
50 0.5492 0.2164 0.1679 0.2644 0.4958 1.0288 1.2590
100 0.5401 0.1769 0.1917 0.2891 0.5076 0.9494 12173
150 0.5261 0.1488 0.2050 0.2953 0.5009 0.8896 1.1081
300 0.5134 0.1162 02249 0.3191 0.5001 0.7727 1.0197
500 0.5096 0.0989 02016 0.3350 0.5020 0.7183 0.9284

1000 0.5024 0.0888 0.1739 0.3357 0.5002 0.6814 0.8166
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Table G.5. Summary statistics of the Monte Carlo sampling distributions of the length

of'a 95% Wald confidence interval of the slope in a simple linear regression with

measurement error. The interval is based on the asymptotic normality of the sampling

distribution of the RC estimator. The distributions Y|.X and X|W are normal, the

primary sample size is » = 1000 and the calibration sample size is m. The results are

based on 2500 simulated primary and calibration samples. (**** indicates that the

value is >1000.)
Percentiles
m Mean RMSE Min. 2.5% Median 97.5% Max.
B =2, oy, =025

50 1.06 0.292 0.51 0.64 1.01 1.76 4.77
100 0.77 0.136 0.46 0.56 0.76 1.08 1.44
150 0.66 0.089 0.39 0.51 0.65 0.86 1.09
300 0.52 0.045 0.40 0.44 0.52 0.62 0.75
500 0.45 0.028 0.37 0.40 0.45 0.51 0.56

1000 0.40 0.016 0.35 0.37 0.40 0.43 0.46
B =2, O')?‘W =0.50?

50 3.57 56.014 0.56 0.91 1.95 6.68 koK
100 1.58 0.646 0.55 0.83 1.44 3.24 7.86
150 1.30 0.392 0.53 0.77 1.23 2.23 4.04
300 0.95 0.182 0.60 0.68 0.93 1.36 1.89
500 0.80 0.106 0.53 0.62 0.78 1.03 1.29

1000 0.67 0.058 0.51 0.57 0.66 0.79 0.88
B, =2, o3 =075

50 51.45 Hkok ok 0.69 1.04 2.85 31.58 Hkk ok
100 2.82 2.507 0.63 0.97 2.18 8.69 39.48
150 2.10 1.453 0.67 0.93 1.79 497 38.06
300 1.45 0.459 0.71 0.86 1.36 2.59 5.16
500 1.19 0.252 0.60 0.82 1.15 1.75 2.84

1000 0.96 0.126 0.61 0.75 0.94 1.26 1.56
B, =05, O';‘W =0.75°

50 479.89 ok ok 0.20 0.29 0.76 10.43 koK
100 0.83 1.650 0.18 0.29 0.61 2.42 62.76
150 0.59 0.320 0.20 0.29 0.51 1.41 5.12
300 0.45 0.126 0.24 0.29 0.42 0.74 2.24
500 0.39 0.071 0.23 0.29 0.38 0.55 0.84

1000 0.35 0.037 0.25 0.28 0.34 0.43 0.50
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Table G.6. Summary statistics of the Monte Carlo sampling distributions of the length
of'a 95% percentile bootstrap confidence interval of the slope in a simple linear
regression with measurement error. The interval is based on the percentile bootstrap
method applied to the RC estimator from bootstrap sample of size 2500. The
distributions of Y| X and X|W are normal, the primary sample size is n = 1000 and the
calibration sample size is m. The results are based on 2500 simulated primary and
calibration samples. (**** indicates that the value is >1000.)

Percentiles
m Mean RMSE Min. 2.5% Median 97.5% Max.

B =2, o, =025

50 1.12 0361 0.52 0.64 1.05 1.95 6.93
100 0.79  0.153 0.44 0.55 0.77 1.15 1.51
150 0.67  0.098 0.37 0.51 0.65 0.88 1.10
300 0.52  0.049 0.39 0.44 0.52 0.63 0.77
500 0.46  0.031 0.36 0.40 0.45 0.52 0.59

1000 0.40  0.019 0.34 0.36 0.40 0.44 0.48
B, =2, oy =0.50°

50 4.67 12.564 0.58 0.94 247 1756  390.61
100 1.84  1.012 0.56 0.86 1.60 434 1649
150 142 0512 0.53 0.79 1.31 2.62 6.25
300 0.98  0.202 0.56 0.68 0.96 1.46 2.13
500 0.81  0.115 0.52 0.62 0.80 1.06 1.38

1000 0.67  0.061 0.50 0.56 0.66 0.80 0.90

B, =2, oy, =075
50 17.95  32.100 0.74 1.18 5.05 12030 271.95

100 5.87 12921 0.67 1.06 288 3297 17549
150 3.05  6.204 0.66 1.00 2.10 9.68 185.99
300 1.60  0.612 0.70 0.88 1.47 3.11 7.66
500 124 0.289 0.62 0.84 1.19 1.92 3.49
1000 097  0.134 0.60 0.76 0.96 1.29 1.67
p,=05, oy, =0.75

50 482  8.579 0.20 0.33 131 3329 60.134
100 173 4271 0.20 0.31 0.78 1142  72.98
150 0.83  1.305 0.21 0.30 0.59 237 33.65
300 049  0.171 0.24 0.30 0.45 0.85 3.57
500 0.41  0.080 0.23 0.29 0.39 0.60 0.98

1000 0.35  0.040 0.25 0.28 0.35 0.43 0.52
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Table G.7. Summary statistics of the Monte Carlo sampling distributions of the length
of'a 95% BCa bootstrap confidence interval of the slope in a simple linear regression
with measurement error. The interval is based on the BCa bootstrap method applied to
the RC estimator from bootstrap sample of size 2500. The distributions of Y|.X and

X|W are normal, the primary sample size is n = 1000 and the calibration sample size is
m. The results are based on 2500 simulated primary and calibration samples. (****
indicates that the value is >1000.)

Percentiles
m Mean RMSE Min. 2.5% Median 97.5% Max.

B =2, o, =025

50 1.11 0.362 0.52 0.64 1.05 1.94 6.93
100 0.79  0.152 0.44 0.55 0.77 1.14 1.50
150 0.67  0.098 0.37 0.50 0.65 0.88 1.10
300 0.52  0.049 0.39 0.44 0.52 0.63 0.76
500 046  0.031 0.36 0.40 0.45 0.52 0.59

1000 040  0.019 0.33 0.36 0.40 0.44 0.47

B, =2, oy =0.50°
50 47.69  wEEx 0.59 0.94 241 1959  Hwkx

100 1.83 1.014 0.60 0.86 1.59 4.28 18.53
150 142 0510 0.53 0.79 1.31 2.61 6.00
300 0.98  0.203 0.58 0.68 0.95 1.46 2.09
500 0.81 0.115 0.52 0.63 0.80 1.07 1.37
1000 0.70  0.061 0.50 0.56 0.66 0.80 0.90

B, =2, oy, =075
50 Frkk ok 0.72 1.18 4.84 46539  Hwkx

100 6.92 26.032 0.67 1.05 2.83 32.69 687.81
150 3.28  12.951 0.66 1.00 2.10 932 513.83
300 1.60  0.611 0.70 0.88 1.47 3.09 7.50
500 1.24  0.288 0.62 0.84 1.20 1.92 3.34
1000 097 0.134 0.60 0.75 0.96 1.29 1.67

p,=05, oy, =0.75
50 66.93 ok 0.20 0.32 127 150.92 ks

100 4.07 68.058 0.20 0.31 0.78 12.04 ok
150 0.86  2.160 0.21 0.30 0.59 2.38  70.60
300 049  0.170 0.24 0.30 0.45 0.86 3.62
500 0.41 0.081 0.23 0.29 0.39 0.60 0.98

1000 0.35  0.040 0.25 0.28 0.35 0.44 0.53
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Table G.8. Summary statistics of the Monte Carlo sampling distributions of the length
of'a 95% likelihood-ratio confidence interval of the slope in a simple linear regression

with measurement error. The interval is calculated by inverting the likelihood ratio

test. The distributions of Y|X and X|W are normal, the primary sample size is n = 1000
and the calibration sample size is m. The results are based on 2500 simulated primary
and calibration samples.

Percentiles
m Mean RMSE  Min. 2.5% Median 97.5%  Max.
B =2, o;?w =0.25"

50 1.07 0.236 0.52 0.66 1.06 1.52 1.83
100 0.79 0.137 0.47 0.57 0.77 1.09 1.31
150 0.67 0.092 0.39 0.52 0.65 0.88 1.04
300 0.52 0.047 0.40 0.44 0.52 0.62 0.75
500 0.46 0.029 0.37 0.41 0.45 0.52 0.56

1000 0.40 0.017 0.34 0.36 0.40 0.43 0.46
B, =2, oy =050

50 1.34 0.197 0.58 0.94 1.35 1.73 1.96
100 1.07 0.143 0.56 0.77 1.09 1.32 1.47
150 0.95 0.123 0.55 0.68 0.96 1.16 1.33
300 0.79 0.096 0.42 0.56 0.80 0.94 1.02
500 0.70 0.079 0.39 0.50 0.71 0.83 0.90

1000 0.61 0.063 0.31 0.44 0.62 0.70 0.77
B =2, oﬁ‘W =0.75*

50 1.43 0.226 0.74 0.99 1.43 1.88 2.30
100 1.15 0.182 0.61 0.80 1.16 1.48 1.67
150 1.02 0.171 0.54 0.68 1.04 1.32 1.48
300 0.85 0.156 0.43 0.54 0.87 1.11 1.31
500 0.76 0.148 0.36 0.46 0.79 1.00 1.10

1000 0.67 0.138 0.27 0.39 0.70 0.89 0.96
B,=05, oy, =075

50 0.73 0.163 0.23 0.33 0.75 1.00 1.33
100 0.61 0.134 0.19 0.32 0.64 0.82 0.93
150 0.54 0.116 0.21 0.30 0.56 0.73 0.85
300 0.45 0.089 0.24 0.30 0.45 0.62 0.74
500 0.40 0.065 0.24 0.29 0.39 0.54 0.64

1000 0.35 0.038 0.26 0.29 0.35 0.43 0.51
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Table G.9. Error rate of a 95% confidence interval for the slope in a simple linear
regression with measurement error. m denotes calibration sample size ; “L” the percent
of samples for which the true slope was greater than the upper limit of a 95% CI; “R”
the percent for which the true slope was smaller than the lower limit of a 95% CI; and
“Tot” the total error rate. The confidence intervals are based on the asymptotic
normality of the sampling distribution of the RC estimator (Wald), the percentile BCa
bootstrap methods, and inverting a LRT. The results are based on 2500 simulated
primary and calibration samples.

Wald Boots. Percentile  Bootstrap BCa LRT

m L R Tot|] L R Tot|] L R Tot|] L R Tot

B =2, o, =025

50 536 036 5.72 1276 3.00 5.76|3.08 2.88 596|272 272 544
100 3.92 0.72 4.64 252 276 528|248 260 508|232 232 4.64
150 396 136 532|248 272 520|2.60 2.68 528|252 276 5.28
300 248 1.56 4.04|188 276 4.64|1.72 280 4.52|1.64 2.68 4.32
500 2.80 2.04 484|248 272 520|244 260 504|252 280 5.32

1000 2.68 228 496|244 2.64 508248 2.56 5.04 248 2.60 5.08

B, =2, oy, =0.50°

50 6.80 0.00 6.80]292 1.08 4.00|3.12 096 4.08|2.76 0.56 3.32
100 6.12 0.00 6.12|2.68 2.84 552|284 256 540|236 0.88 3.24
150 4.76 0.08 4.84 | 256 280 536|260 288 548|244 124 3.68
300 496 0.72 5.68|3.16 248 5.64|3.28 248 576|324 1.68 492
500 336 0.72 4.08 252 224 476|240 236 476|236 1.76 4.12

1000 3.08 2.00 5.08 1244 292 536|240 272 5.12]2.20 2.80 5.00

B =2, o, =075

50 8.88 0.00 8.88]276 0.00 2.76 |3.04 1.08 4.12|2.72 0.04 2.76
100 6.24 0.00 6.24 |2.84 0.64 3.48 284 0.88 3.72|3.00 0.12 3.12
150 692 0.00 692|316 148 4.64|3.00 1.48 4.48|3.08 0.00 3.08
300 548 0.00 548 |3.16 224 540 |3.00 224 524|296 0.04 3.00
500 4.12 0.44 456|228 228 456|228 236 4.64|232 0.08 2.40

1000 4.60 148 6.08 324 2.84 6.08]|3.16 2.80 596|292 040 3.32

B,=05, og, =075

50 8.08 0.00 8.08 |3.00 0.00 3.00|3.40 1.28 4.68|2.52 2.00 4.52
100 6.76 0.00 6.76 | 2.88 096 3.84|2.80 1.00 3.80|2.60 2.88 5.48
150 6.12 0.00 6.12|3.36 228 5.64|3.52 228 5.80|3.20 2.80 6.00
300 396 0.24 420|240 276 5.16|2.44 272 516|244 2.68 5.12
500 336 0.76 4.12|2.12 252 4.64|2.28 268 496|220 2.52 4.72

1000 324 1.40 4.64 276 2.64 540|280 2.64 544|272 252 524




Appendix H. Asymptotic variance of the regression calibration estimators for
designs with internal calibration data (from Thurston et al., 2005)

The following results are provided by Thurston et al., 2005:

o Pry (l_pf(w)(1+:1j+(l_p)%x)

X Pxw

o | o)1+ 2o 1=

"o’ m P (1- piw( j
(1-

pXW + + 2
Prx

where the subscripts in o> and p” denote the variance and correlation between the

subscripted variables, respectively, and n and m the sample size of the primary and

calibration datasets.
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Appendix I. Simulation details from the internal calibration study

Table I.1. Relative bias and RMSE the RC and ML estimators of the slope in a simple
linear regression with measurement error and an internal calibration study. The true
value of the parameter is 1. The distributions Y|.X and X] W are normal, with a primary

sample size of n = 1000 and an internal calibration sample size of m. The results are
based on 2000 simulated primary and calibration samples. (**** indicates that the

value is >100.)

Internal External CRS SCK MLE
m Rel. rmse Rel. rmse Rel. rmse Rel. rmse Rel. rmse
Bias Bias Bias Bias Bias
(%) (%) (%) (%) (%)
Corr(Y,X)=0.75, Corr(X,W)=0.75
10 0.88 0.32 12.16 1.09 9.19 051 -1.28 023 623 024
25 -0.79  0.19 329 020 298 0.19 -0.86 0.13 212 0.13
50 -0.26 0.13 168 014 141 0.13 -043 0.09 1.13 0.09
100 -0.14 009 046 0.10 028 0.09 -044 0.07 039 0.06
200 032 0.07 059 008 045 0.06 0.15 0.05 051 0.05
500 -0.09 004 0.10 0.06 -0.02 0.04 -0.12 0.03 -0.01 0.03
Corr(Y,X)=0.75, Corr(X,W)=0.36
10 -0.65 0.32 wwEkER okkkx 115 098 -10.1 0.33 748 0.30
25 0.14 0.18 253 1756 395 045 -440 0.18 3.09 0.14
50 -0.08 0.13 109 493 227 026 -2.69 0.13 153 0.09
100 0.11  0.09 102 057 094 0.15 -1.04 0.09 0.84 0.07
200 002 0.06 340 025 -025 0.09 -0.61 0.06 031 0.05
500 -0.10 004 155 0.17 -0.16 0.05 -0.27 0.04 006 0.03
Corr(Y,X) =0.36, Corr(X, W) =0.75
10 -1.25 095 162 285 839 045 149 035 988 043
25 234 053 287 023 251 022 062 020 268 0.21
50 0.62 038 180 0.18 160 0.17 089 0.16 1.83 0.16
100 009 026 1.11 0.15 086 0.13 045 0.13 096 0.13
200 0.03 0.19 023 0.13 0.11 0.11 -0.10 0.11 025 0.10
500 -0.02 0.12 021 0.12 0.06 0.08 -0.02 008 0.13 0.08
Corr(Y,X)=0.37, Corr(X,W)=0.36
10 -3.58  0.97 wwEkx o okkEkx 114 1.05 -180 0.69 795 0.88
25 252  0.54 RxxEk o oxxEkk o 422 054 -635 041 6.71 041
50 -0.23 037 449 847 274 033 -559 029 3.04 027
100 -026 025 707 042 022 022 -298 020 146 0.19
200 -0.20 0.18 481 034 0.12 0.16 -1.35 0.16 060 0.15
500 -0.37 0.11 184 027 -0.33 0.10 -0.70 0.10 0.09 0.10
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Table 1.2. 2.5 and 97.5 percentiles of the Monte Carlo sampling distribution of the RC
and ML estimators of the slope in a simple linear regression with measurement error
and an internal calibration study. The true value of the parameter is 1. The
distributions Y|.X and X|W are normal, with a primary sample size of n = 1000 and an
internal calibration sample size of m. The results are based on 2000 simulated primary
and calibration samples. (**** indicates that the value is >100.)

Internal External CRS SCK MLE

m 25 975 25 975 25 975 25 975 25 975

Corr(Y,X) =0.75, Corr(X,W) =0.75

10 036 163 063 218 064 213 062 153 070 1.59
25 062 135 074 153 0.75 149 076 129 080 1.30
50 075 126 079 133 080 129 084 120 085 1.19
100 082 1.18 082 123 084 1.19 087 1.13 088 1.13
200 088 1.13 08 1.17 090 1.13 091 1.10 092 1.10
500 092 108 089 1.13 093 1.07 093 1.07 094 1.06

Corr(Y,X)=0.75, Corr(X,W)=0.36

10 036 1.64 -6.15 999 -167 291 037 152 057 1.66
25 065 136 030 691 046 200 062 132 077 133
50 0.75 125 053 299 060 155 073 122 085 1.21
100 083 1.18 063 208 073 132 082 1.17 089 1.15
200 088 1.12 067 159 082 1.18 088 1.11 091 1.10
500 092 107 072 139 091 109 092 1.07 094 1.06

Corr(Y,X) =0.36, Corr(X, W) =0.75

10 -075 296 0.60 213 060 212 056 1.84 0.60 226
25 -0.07 2,04 069 157 070 153 071 147 071 152
50 026 176 073 142 074 138 074 135 0.75 1.37
100 049 152 075 132 077 128 078 127 078 1.28
200 063 137 075 127 080 122 080 121 081 1.21
500 077 124 077 125 084 1.17 084 1.17 084 1.17

Corr(Y,X)=0.37, Corr(X,W)=0.36

10 -093 284 -103 1094 -1.65 3.10 -044 231 -129 272
25 -0.10 2.06 -391 7.11 028 218 026 183 045 190
50 028 173 043 337 051 177 047 159 056 1.59
100 051 152 050 212 062 147 060 139 0.66 140
200 0.65 135 048 178 069 133 068 131 071 1.30
500 078 121 054 163 080 121 080 120 0.82 1.19
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Table 1.3. Average length of a 95% confidence interval of the slope in a simple linear
regression with measurement error and an internal calibration study. The distributions
Y| X and X|W are normal, the primary sample size is » = 1000 and the calibration
sample size is m. The results are based on 2000 simulated primary and calibration
samples. (**** indicates that the value is >100.)

Wald Bootstrap
Int. Ext. CRS SCK Ext CRS SCK LRT
Corr(Y,X) =0.75, Corr(X, W) =0.75
10 1.35 2.36 1.64 0.77 2.42 3.96 0.99 0.69
25 0.75 0.77 0.74 0.50 0.87 0.87 0.52 0.45
50 0.51 0.54 0.49 0.36 0.57 0.51 0.36 0.33
100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
Corr(Y,X)=0.75, Corr(X,W)=0.36
10 1.39 ok 9.12 1.00 18.00 4.20 1.37 0.87
25 0.75 okl 2.91 0.64 16.36 1.97 0.72 0.53
50 0.51 40.67 1.31 0.46 9.02 1.01 0.50 0.36
100 0.35 1.61 0.68 0.33 3.07 0.57 0.34 0.26
200 0.24 0.93 0.37 0.23 1.11 0.34 0.24 0.19
500 0.15 0.66 0.18 0.15 0.68 0.18 0.15 0.13
Corr(Y,X) =0.36, Corr(X, W) =0.75
10 3.99 12.11 1.65 1.23 3.84 2.48 1.78 1.28
25 2.21 0.87 0.84 0.79 1.01 0.93 0.83 0.81
50 1.50 0.68 0.63 0.61 0.71 0.65 0.62 0.62
100 1.04 0.57 0.51 0.50 0.58 0.51 0.50 0.50
200 0.73 0.51 0.42 0.41 0.51 0.42 0.41 0.41
500 0.46 0.47 0.33 0.33 0.47 0.33 0.33 0.33
Corr(Y,X)=0.37, Corr(X,W)=0.36
10 3.97 oAk 9.70 2.23 4.61 18.35 2.87 2.03
25 2.15 Glolol 3.18 1.48 9.63 9.44 1.63 1.24
50 1.44  67.02 1.53 1.07 9.54 1.32 1.12 0.95
100 1.00 1.65 0.92 0.79 2.96 0.86 0.81 0.73
200 0.70 1.27 0.63 0.60 1.47 0.62 0.60 0.55
500 0.44 1.05 0.41 0.40 1.09 0.40 0.40 0.38
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Table 1.4. Error rate of a 95% confidence interval for the slope in a simple linear
regression with measurement error and an internal calibration study. m denotes
calibration sample size ; “L” the percent of samples for which the true slope was
greater than the upper limit of a 95% CI; “R” the percent for which the true slope was
smaller than the lower limit of a 95% CI; and “Tot” the total error rate. The results are
based on 2000 simulated primary and calibration samples.

Wald intervals

Internal External CRS SCK

m L R Tot|] L R Tot| L R Tot| L R Tot

Corr(Y,X) =0.75, Corr(X,W) =0.75

10 29 28 56| 101 0.0 10.1| 10.1 0.0 10.1| 11.2 32 143
25 33 24 56| 51 0.1 5.1 52 0.1 521 59 19 78
50 22 24 46| 46 04 49| 46 04 50| 45 23 6.8
100 29 27 56| 53 09 62| 54 10 64| 48 20 6.7
200 24 33 57| 39 14 53 3.1 1.5 46| 27 24 51
500 28 25 53 30 18 48| 30 23 53 32 25 5.7

Corr(Y,X)=0.75, Corr(X,W)=0.36

10 29 22 50| 176 00 176 176 00 17.6| 172 23 195
25 23 25 48113 00 113} 11.0 0.0 11.0| 94 22 115
50 28 22 50| 95 00 95 95 00 95| 75 18 93
100 27 27 54| 63 00 63 60 00 60| 50 22 72
200 24 24 48] 62 00 62| 51 0.1 52| 38 1.7 55
500 25 20 45| 44 06 50 37 19 56| 35 20 55

Corr(Y,X) =0.36, Corr(X,W) =0.75

10 26 28 54| 89 0.1 89| 88 0. 89| 93 13 10.6
25 26 23 49| 50 0.1 5.1 52 0.1 521 55 07 62
50 23 29 52| 38 07 44| 40 08 48| 39 12 51
100 23 23 46| 36 1.7 52| 31 17 48| 31 19 50
200 2.6 25 5.1 34 22 55 30 20 50| 29 19 48
500 29 32 60 25 27 52| 24 27 5.1 23 25 47

Corr(Y,X) =0.37, Corr(X,W) =0.36

10 29 27 55| 166 00 16.6| 163 00 163 | 174 1.8 19.2
25 28 26 54,100 00 100 94 00 94| 103 15 11.8
50 28 28 56| 86 00 86| 81 0.0 8.1 76 1.8 94
100 23 27 50} 53 00 53| 44 0.1 44| 46 15 6.0
200 22 26 48] 48 0.1 48| 41 12 53] 42 20 62
500 28 21 49| 32 16 48| 27 23 50| 30 22 52




122

Table 1.4 (Cont).

Bootstrap percentile intervals

External CRS SCK LRT

m L R Tot|] L R Tot|] L R Tot| L R Tot

Corr(Y,X)=0.75, Corr(X,W)=0.75

10 52 19 71 5. 20 7.0 54 16 69| 32 72 104
25 27 32 59| 28 3.1 59| 46 2.1 66| 24 40 64
50 29 33 62| 29 3.1 60| 32 23 54| 26 37 62
100 39 27 66| 39 24 63| 40 22 62| 29 30 58
200 29 29 58] 22 29 51 26 29 55| 23 30 53
500 27 26 53 29 26 54| 30 28 57| 26 26 5.1

Corr(Y,X) =0.75, Corr(X, W) =0.36

10 55 0.0 55 54 00 54| 106 0.1 107 22 62 84
25 37 00 37| 39 00 39| 65 06 7.1 1.6 50 6.5
50 37 00 37| 35 0.1 3.5 60 13 731 20 36 56
100 22 03 25| 26 07 33| 48 18 66| 22 37 59
200 29 26 55 32 23 55| 43 14 56| 24 30 54
500 27 30 56| 32 28 59| 41 1.7 58| 26 26 52

Corr(Y,X)=0.36, Corr(X,W)=0.75

10 48 14 62| 47 14 6.1 54 12 66| 44 4l 8.4
25 28 30 58| 28 30 58| 33 13 46| 26 30 5.6
50 21 32 53 21 30 51 26 22 48| 23 30 52
100 24 34 58| 25 32 57| 28 3.1 59 25 32 57
200 30 29 59| 29 24 53| 27 22 49| 25 25 5.0
500 26 30 55| 23 29 52| 23 29 52| 22 26 48

Corr(Y,X)=0.37, Corr(X,W)=0.36

10 57 00 57| 54 00 54| 114 00 114| 54 65 11.8
25 35 00 35 38 00 38| 75 03 78| 29 40 69
50 32 01 32| 33 03 36, 65 10 75| 25 36 6.1
100 24 12 36| 26 13 39| 41 1.0 5.1 1.8 3.1 4.9
200 3.0 25 55 34 22 55| 42 16 58| 29 33 6.1
500 22 3.0 52 25 24 49| 31 20 5.1 21 26 47
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Table I.5. Robustness study: relative bias and RMSE of the RC and ML estimators of
the slope in a simple linear regression with measurement error. The true value of the
parameter is 1. The distributions Y|.X is normal, and the distribution of the regression

error of X|W is either a t-distribution with 5 d.f. or a lognormal distribution. The

primary sample size is #» = 1000 and the internal calibration sample size is m. The
results are based on 2000 simulated primary and calibration samples.

Internal External CRS SCK MLE
m Rel. rmse Rel. rmse Rel. mmse Rel. rmse Rel. rmse
Bias Bias Bias Bias Bias
(%) (%0). (%) (%) (%)
t —distribution, Corr(Y, X) =0.75, Corr(X, W) =0.75
25 025 0.19 394 022 360 020 -0.07 0.13 240 0.13
50 043 0.13 184 0.14 160 0.13 0.03 0.09 125 0.09
100 0.35 0.09 1.09 0.10 089 009 0.17 0.07 0.79 0.06
200 -0.16 0.06 0.19 0.08 0.03 006 -028 0.05 0.04 0.05
500 0.00 0.04 0.13 006 003 004 -0.06 0.03 0.10 0.03
t —distribution, Corr(Y,X) =0.36, Corr(X,W) =0.35
25 0.81 055 -147 113 387 051 -735 040 824 0.39
50 -0.50 038 193 134 231 032 -560 029 270 0.27
100 -0.64 025 699 050 -063 022 -3.67 021 073 0.19
200 -0.59 0.18 392 033 -037 0.16 -1.79 0.15 047 0.14
500 0.08 0.11 174 027 -0.01 0.10 -0.35 0.10 0.14 0.10
lognormal distribution, Corr(Y, X) =0.75, Corr(X, W) =0.75
25 -1.06 0.18 358 021 322 020 -1.02 0.13 187 0.13
50 0.61 0.13 1.67 0.14 145 0.13 -0.02 0.09 127 0.09
100 -0.40 0.09 0.78 0.10 052 0.09 -042 0.07 032 0.06
200 0.08 0.06 049 008 032 006 -0.01 0.05 034 0.05
500 -0.06 0.04 004 006 -003 0.04 -0.11 0.03 004 0.03
lognormal distribution, Corr(Y, X) =0.36, Corr(X, W) =0.35
25 -229 053 641 161 255 050 -114 040 5.12 0.39
50 -1.55 036 276 409 244 033 -6.11 028 251 0.27
100 031 025 554 042 -0.10 021 -286 020 1.31 0.19
200 0.17 0.18 385 034 -0.04 0.16 -1.36 0.15 0.80 0.15
500 -0.31 0.11 070 026 -048 0.10 -0.79 0.10 -0.13 0.09
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Table 1.6. Robustness study: average length of a 95% confidence interval of the slope
in a simple linear regression with measurement error. The distributions Y|X is normal,
and the distribution of the regression error of X|W is either a t-distribution with 5 d.f.
or a lognormal distribution. The primary sample size is #» = 1000 and the internal
calibration sample size is m. The results are based on 2000 simulated primary and
calibration samples. (**** indicates that the value is >100.)

Wald Bootstrap
Int. Ext. CRS SCK Ext CRS SCK LRT
t —distribution, Corr(Y, X) =0.75, Corr(X, W) =0.75
25 0.76 0.78 0.74 0.49 1.01 0.81 0.51 0.45
50 0.52 0.53 0.49 0.35 0.58 0.51 0.36 0.33
100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
t —distribution, Corr(Y,X) =0.36, Corr(X, W) =0.35
25 2.23 Hokkx 2.96 1.47 15.09 2.28 1.61 1.27
50 1.46 4.89 1.52 1.07 9.11 1.31 1.11 0.95
100 1.01 1.73 0.91 0.79 3.19 0.86 0.81 0.74
200 0.70 1.26 0.63 0.60 1.48 0.62 0.60 0.56
500 0.44 1.05 0.41 0.40 1.08 0.41 0.40 0.38
lognormal distribution, Corr(Y,X) =0.75, Corr(X, W) =0.75
25 0.75 0.77 0.74 0.49 0.96 0.82 0.51 0.45
50 0.51 0.54 0.49 0.36 0.57 0.51 0.36 0.33
100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
lognormal distribution, Corr (Y,X) =0.36, Corr(X, W) =0.35
25 2.16 Hokkx 2.98 1.44 15.40 2.25 1.58 1.25
50 1.46  34.24 1.51 1.07 8.93 1.30 1.11 0.96
100 1.00 1.61 0.91 0.79 2.89 0.86 0.81 0.73
200 0.70 1.28 0.63 0.60 1.50 0.62 0.60 0.56
500 0.44 1.05 0.41 0.40 1.08 0.40 0.40 0.38




125

Table I.7. Robustness study: error rate of a 95% confidence interval for the slope in a
simple linear regression with measurement error. The distributions Y]X is normal, and
the distribution of the regression error of X|W is either a t-distribution with 5 d.f. or a
lognormal distribution. Error rate of a 95% confidence interval for the slope in a
simple linear regression with measurement error. m denotes calibration sample size ;
“L” the percent of samples for which the true slope was greater than the upper limit of
a 95% CI; “R” the percent for which the true slope was smaller than the lower limit of
a 95% CI; and “Tot” the total error rate. The results are based on 2000 simulated
primary and calibration samples.

Wald intervals

Internal External CRS SCK

m L R Tot|] L R Tot| L R Tot| L R Tot

t —distribution, Corr(Y,X) =0.75, Corr(X, W) =0.75

25 1.7 30 46| 62 02 64| 62 02 64| 58 26 84
50 24 25 48| 45 04 49| 44 04 47| 40 22 62
100 25 24 49| 29 07 36| 32 08 39| 3.0 25 5.5
200 25 25 50| 36 13 48| 37 10 47| 33 1.7 49
500 28 24 52| 29 17 46| 28 15 43| 26 20 46

t —distribution, Corr(Y,X) =0.36, Corr(X, W) =0.35

25 23 22 44, 99 00 99| 95 00 95| 96 13 109
50 23 22 45 82 00 82 79 00 79| 83 16 99
100 2.8 27 55 69 00 69| 57 04 60| 58 16 74
200 26 24 50| 46 02 47| 33 1.1 44| 38 15 52
500 25 28 53 3.1 1.1 421 3.0 25 551 34 23 5.7

lognormal distribution, Corr(Y, X) =0.75, Corr(X, W) =0.75

25 31 18 48| 62 02 63 6.1 02 63 64 16 80
50 21 26 47| 48 04 52| 46 04 50| 41 21 6.1
100 3.1 24 54| 47 09 56| 44 09 53| 43 17 6.0
200 23 32 55| 40 15 54| 37 14 51 36 27 63
500 23 23 46| 30 17 47| 32 18 50 3.1 23 54

lognormal distribution, Corr(Y, X) =0.36, Corr(X, W) =0.35

25 30 19 48| 130 00 13.0| 126 0.0 126 128 1.1 139
50 28 19 46| 85 00 85 78 00 7.8 &5 1.5 10.0
100 21 25 46| 47 00 47| 43 02 45| 50 1.1 6.1
200 24 26 50| 42 0.1 43 3.1 1.5 46| 36 21 5.6
500 23 22 45 29 1.1 4.1 22 17 39| 23 17 40
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Bootstrap percentile intervals

External CRS SCK LRT

M L R Tot] L R Tot|] L R Tot| L R Tot
t —distribution, Corr(Y,X) =0.75, Corr(X, W) =0.75
25 35 40 74 34 39 7.3 42 26 6.8 35 5.1 8.6
50 3.0 35 6.5 29 35 6.4 28 25 53 3.0 4.1 7.0
100 19 26 44 1.9 2.7 4.5 27 3.0 5.6 25 37 6.2
200 2.5 24 49 25 22 4.7 27 2.0 4.7 3.0 29 5.8
500 25 25 50 25 1.8 4.3 26 2.1 4.7 27 2.6 5.3
t —distribution, Corr(Y,X) =0.36, Corr(X,W) =0.35
25 25 00 25 2.6 0.0 2.6 59 0.1 6.0 22 33 5.5
50 34 02 35 2.8 0.5 3.3 6.3 0.9 7.2 26 3.6 6.2
100 2.7 10 3.6 33 14 47 51 0.9 6.0 23 2.7 5.0
200 3.1 22 53 28 2.0 438 3.7 14 5.1 2.1 29 5.0
500 24 22 45 29 26 54 35 2.1 5.6 29 2.8 5.7
lognormal distribution, Corr(Y, X) =0.75, Corr(X, W) =0.75
25 34 36 7.0 35 33 6.8 53 1.9 7.1 3.0 4.0 7.0
50 33 3.0 6.3 32 3.0 6.1 33 24 5.7 24 34 5.8
100 29 27 5.6 3.1 2.8 5.9 3.8 1.9 5.7 34 34 6.8
200 2.6 24 5.0 2.8 2.7 5.5 29 27 5.6 25 33 5.7
500 25 27 52 3.0 2.1 5.1 29 24 5.3 29 24 5.3
lognormal distribution, Corr(Y, X) =0.36, Corr(X, W) =0.35
25 47 00 47 53 0.0 53 9.0 0.3 9.3 35 35 7.0
50 3.1 02 32 39 03 4.2 6.6 0.7 7.3 26 35 6.1
100 23 09 32 2.8 1.1 39| 44 06 49 23 24 4.6
200 24 29 53 24 24 47 39 1.5 5.4 1.9 32 5.1
500 24 21 45 24 2.1 4.5 27 1.8 4.5 23 23 4.6




