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Regression Calibration and Maximum Likelihood Inference for Measurement 
Error Models 

 

 

1. INTRODUCTION 

 

The overall topic of this dissertation is inference for regression models, 

particularly linear regression models, when one or more explanatory variables are 

measured with error.  The dissertation work largely concerns the properties of a 

method called “regression calibration,” which has emerged as a major tool for these 

models, and its performance relative to likelihood-based approaches. Regression 

calibration (RC) has received increasing usage for scientific problems, largely because 

of its simplicity, transparency and intuitive appeal.  The most simple and transparent 

form, however, ignores both the uncertainty due to estimation of the regression 

calibration model, and the problems that arise when the regression of interest is not 

linear. While the latter issue has received considerable attention, the former remains 

largely ignored and is a focal point of this work.   

 

1.1. The problem of regression with measurement error 

Suppose interest is in the regression of a response variable, Y, on an 

explanatory variable, X, which is observed only through an imprecise measurement or 

surrogate variable, W. Regression with measurement error refers to the problems that 

arise from using W instead of X in the model of interest. In general, ignoring the 

measurement error results in biased estimates of the parameters of the regression of Y 

on X, so a variety of methods have been proposed to correct or reduce the bias. This 

problem was noted and studied as early as 1877 by Adcock. Recent reviews include 

Fuller (1987) for the classical linear model, Carroll, Ruppert and Stefanski (1995) for 

non-linear models, and Gustafson (2004) from a Bayesian perspective.  
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 Assessing the impact and possible corrections of the measurement error 

requires an understanding of the measurement process. This involves the formulation 

of a conceptual model for the relationship between the true variable X and its surrogate 

W. A primary distinction is between classical and Berkson error models. Classical 

error structure arises when W = X + ε, and ε is independent of X. This structure is 

appropriate, for example, for an imprecise measurement device that adds 

noninformative noise to the true value of X. Berkson error structure arises when          

X = W + ε and ε is independent of W (Berkson 1950). This structure was initially 

proposed for controlled experiments, in which a nominal level of a treatment was 

prescribed to an experimental unit, but the actual level applied was the nominal level 

plus some noninformative noise. In the simple linear model, classical error results in 

an attenuation of the regression slope, while Berkson error allows for unbiased 

estimation of the regression parameters (see, for example, Madansky 1959, Cochran 

1965). In more complex cases, there is not a simple pattern and both structures can 

result in attenuation, inflation, or can even induce a curvature in the regression of Y on 

W (Fuller 1987, Reeves et al. 1998, Schafer and Gilbert, in press).  

 For the classical error model, if Y | X, W | X, and X are all normal, the 

parameters of the distribution of Y | X are not identifiable without additional 

assumptions or data (Fuller 1987).  Only Y and W are observed and, while the joint 

distribution of Y and W contains six parameters, the bivariate normal distribution is 

completely determined by only five parameters. Although for other distributional 

assumptions the parameters of the simple linear regression model with measurement 

error are identifiable (Reiersol 1950), additional information is necessary to practically 

estimate the parameters of interest. This information can take several forms, including 

replicate measurements on some observations or a calibration study in which the true 

X is observed.  This study focuses on the latter, including external calibration studies, 

in which observations (xi , w i), independent from the primary study are available, and 

internal calibration studies, in which observations (yi,, xi,, w i) are available for a subset 

of cases. 
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 1.2. The regression calibration estimator 

One of the most popular methods to approximate measurement error models, 

regression calibration, uses whatever method of estimation would have been 

appropriate if X were observed exactly, but with the missing X replaced by E(X|W) 

(Carroll et al. 1995, Chapter 3).  There are different forms of this estimator for 

different types of information available for arriving at E(X|W), and there are 

refinements available for particular models. Versions of the RC estimator were 

proposed by Prentice (1982) for Cox proportional hazards regression models, 

Armstrong (1985) for generalized linear models, and Rosner, Willet and Spiegelman 

(1989) for logistic regression. 

Due to its transparency and ease of use, the RC estimator has emerged as one 

of the more important tools for dealing with measurement errors.  It has seen 

considerable use in epidemiology, where the exposure variables associated with a 

disease are difficult to measure precisely. For example, in a prospective study of the 

effect of fat on the risk of breast cancer, X was the long-term average intake of fat 

(Willett et al. 1992). This variable was imprecisely assessed with a semi-quantitative 

food questionnaire administered to over 90,000 women. Then, a validation study was 

conducted on 173 participants, who completed four, one-week diet records. The model 

for E(X|W) was estimated from this subset with values of both X and W, and then used 

to estimate E(X|W) for the 90,000 individuals in the primary data, for whom only W 

was available. As typical with this type of study, the correlation between nutrient 

intakes calculated from the questionnaire and the ‘gold standard’ was relatively low, 

ranging between 0.4 and 0.6 (Willett et al. 1988). In radiation epidemiology, to 

determine the effect of radiation exposure for the atomic bomb survivors or uranium 

miners, X was the dose of radiation, and E(X|W) was estimated with a combination of 

physical and biological models, and empirical data (Pierce et al. 1990, 1992; Stram et 

al. 1999).  

Often, RC is used without explicit acknowledgement. For example, in 

cosmology, estimation of the Hubble constant involves the regression of a galaxy’s 
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recession velocity on its distance from Earth (Freedman et al. 2001). Distance is 

estimated as a function of a galaxy’s apparent luminosity, which is measured directly, 

and its intrinsic luminosity, which is estimated from other variables such as rotational 

velocity. The models to predict intrinsic luminosity are linear regressions, calibrated 

with a small sample of nearby galaxies. In this example, X is the true distance; W 

includes the ancillary variables used to predict intrinsic luminosity; and Z, the apparent 

luminosity, is an explanatory variable virtually free of measurement error. The missing 

X is replaced by E(X|W, Z). 

 Regression calibration emerges naturally when the regression of Y on X is 

linear, because if ( ) 0 1|E Y X Xβ β= + , then ( ) ( )| | |E Y W E E Y X W= =⎡ ⎤⎣ ⎦  

( )0 1 |E X Wβ β+ .  If E(X|W) is known, usual regression tools for the regression of Y 

on E(X|W) may be used to estimate β0 and β1, with appropriate attention to weights 

dictated by Var(X|W). However, if the regression of Y on X is not linear, this form of 

RC is, in general, an approximation to the model of interest. The conditions under 

which the approximation is almost exact depend on the particular model. For example, 

for logistic regression with a linear model relating X and W, RC is approximately 

unbiased if either ( )2
1 |Var X Wβ  is small or P(Y=1 | X) is small and f(X|W) is normal 

(Kuha 1994). When the degree of non-linearity in the regression of Y on X is large, 

several improvements to the simple RC estimator have been proposed, based on 

Taylor expansions and the assumption of small measurement error variance (Carroll 

and Stefanski 1990).  

 In addition to its simplicity and transparency, RC is attractive because it relies 

on minimal assumptions on the distribution of the explanatory variables. Because of 

its emerging popularity, though, we believe it is appropriate to critically examine its 

shortcomings, and to better understand the situations in which extra care is needed.  Of 

particular interest here is the role of the uncertainty in the estimation of E(X|W) 

because, typically, it is not E(X|W), but an estimate of it that is used in place of X. 

Using an estimate of E(X|W) instead of the true value results in an extra component of 
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variability to the estimator of the regression coefficients, so standard errors of 

estimated regression coefficients may be adjusted to account for this additional 

uncertainty. However, the effect of the additional variability on the estimator’s 

properties is often ignored.  There are additional problems with the simple version of 

RC unless either the degree of non-linearity in the regression of Y on X or the 

measurement error variance are small. These problems may be magnified after 

accounting for the additional uncertainty in the estimation of E(X|W). 

 

 1.3. The effect of the uncertainty on the estimation of E(X|W) 

 The typical application of RC estimates E(X|W), replaces X by its estimated 

expectation given W, and runs a standard analysis. Since E(X|W) is not known exactly, 

it becomes an imprecise measurement, subject itself to the problem of regression with 

measurement error. The RC estimator should show an improvement compared to the 

naïve regression of Y on W, because the estimate of E(X|W) should be closer to the 

true E(X|W) than W is to X. However, if the estimated expectation is not sufficiently 

close to the actual value, the resulting estimators may be seriously biased, even in the 

linear model. Most discussions of RC ignore the effect of the uncertainty on the 

estimation of E(X|W), either by assuming that E(X|W) is known, or assuming that it is 

consistent and basing inference on the asymptotic distribution of the RC estimator. 

The latter may be problematic, because the sample size used to estimate E(X|W) can 

be very small, or at least much smaller than that of the main study. 

A conceptual model for incorporating the uncertainty in the estimation of  

E(X|W), describes the RC and similar methods as a combination of classical and 

Berkson error structures (Tosteson and Tsiatis 1988, Reeves et al. 1998, Stram and 

Kopecky 2003, Schafer and Gilbert, in press). If E(X|W) is known, RC is a mapping of 

W into a Berkson error structure, because X = E(X|W) + ε, and ε is independent of 

E(X|W). However, the uncertainty on E(X|W) is best described as classical error, 

because it arises from the variability in the sampling distribution of the estimator. 
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 Reeves et al. (1998) propose a representation based on a latent, unobservable 

random variable to encapsulate both the Berkson and classical error structures. In RC, 

the latent variable is E(X|W) and the model can be written as: 

( ) ( ) ( )ˆ| ;       | |B CX E X W E X W E X Wε ε= + = + , 

where ( )ˆ |E X W  is the estimated value of E(X|W), and Bε  and Cε  are the Berkson and 

classical measurement error components. Then, they specify the relationship between 

the random variables ( )( )| , ,B CE X W ε ε as being either independently and normally 

distributed or mutually uncorrelated, and assume that observations from different 

subjects are independent. They show that, for simple linear regression, the slope 

parameter is attenuated, as is to be expected from the classical error component.  

 This model fails to recognize that all observations in the study may share the 

same model to estimate E(X|W). Thus, while each observation may have a unique and 

independent deviation from its expected value Bε , the deviation of the estimated 

expectation from the true value, Cε , would be correlated among different observations, 

if not fully functionally related. This ‘shared error’ component was noted by Stram 

and Kopecky (2003) and Schafer and Gilbert (in press).  

 To further clarify this issue, assume that that ( ) 0 1|E X W Wα α= + , and that 

( )0 1,α α are estimated from a calibration study where both X and W are observed. The 

estimate of E(X|W) for each observation in the main study is based on the same 

parameter estimates ( )0 1ˆ ˆ,α α , obtained from the same calibration data. Therefore, Cε , 

while different depending of the values of W, is functionally dependent among all 

observations. The estimation of ( )0 1,α α involves a classical error component but, for a 

particular study, only one realization from the sampling distribution of the parameter 

estimates is observed. From a measurement error perspective, the effect may be closer 

to that of a biased measurement device, than to random measurement noise.  
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The approach followed in this study is to derive the sampling distribution of 

the RC estimator and discuss its properties. Unfortunately, analytical results are only 

possible in the simplest cases, so most of the work focuses in a linear, normal model 

with an independent calibration study. The results, however, shed light on other 

models as well. As it will be shown, the RC estimator tends to be inflated away from 

zero, rather than attenuated as would be expected if the error associated with the 

estimate of E(X|W) followed the classical model. 

 

1.4. Regression calibration and maximum likelihood  

Regression calibration is basically a method-of-moments-like estimator, and it 

is unusual in statistical data analysis that a method of moments is preferred over 

maximum likelihood. However, likelihood methods have not been used extensively in 

the analysis of measurement error models, in part because of difficult computations 

and concerns about robustness, but also because of the belief that, in many statistical 

models, simpler methods such as regression calibration perform just as well as 

likelihood methods (Carroll et al. 1995). However, Carroll et al. (1995) note that there 

is little documentation to support this belief. 

In some instances, if E(X | W) is known, the RC and ML estimators are the 

same or very close. For example, if the regressions of Y on X and of W on X are both 

linear, and Y | X, W | X and X are all normally distributed, then the RC and ML 

estimators give the same estimates. ML and RC also give identical results if Y | X is 

Bernoulli and the regression of Y on X is linear in X, and approximately the same 

results for linear hazard regression (Prentice 1982, Pepe et al. 1989, Schafer et al. 

2001).   

There is a natural concern over the robustness of ML inferences against 

possible distributional misspecifications. While RC typically only requires 

assumptions about the first two moments of the distributions, ML requires the 

specification of the distribution of variables that may not even be observed. In a 
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typical application, under the assumption of non-differential error, the joint 

distribution of Y, X and W is decomposed as follows: 

( ) ( ) ( ) ( ), , | |f Y X W f Y X f W X f X= , 

because non-differential error implies that f(Y | X, W) = f(Y | X). 

This model requires the specification of three distributions, which in 

epidemiology have been described as the disease model, f(Y | X), the measurement 

model, f(W | X), and the exposure model, f(X) (Clayton 1992). The specification of   

f(X), is the most problematic, because it describes the distribution of the risk factor X 

in the population, which typically is not even observed. Addressing those concerns, 

several approaches for flexible structural and semiparametric modeling have been 

proposed (Roeder et al. 1996; Carroll et al. 1999; Schafer 2001, 2002).  

 When the information about the measurement process comes from a validation 

study, where X and W are observed, ML becomes more attractive. Then, the likelihood 

can be expressed conditional on the observed values of W, as                                      

f(Y, X | W) = f(Y | X) f(X | W). It is not necessary to specify f(X), only f(X | W), and the 

proposed distribution can be checked against data from the validation study. 

Maximum likelihood can be relatively difficult to implement, because 

obtaining f(Y | W) requires solving a complex integral. If the regressions of Y on X and 

of X on W are both linear, and Y | X and X | W are both normally distributed, the 

integral has a closed form solution. For other models, it has to be solved through 

numerical analysis or simulation. The variety of types of information about the 

measurement error process makes the implementation case specific, requiring 

retooling of the algorithms and programs for each application.  

Not only is RC easy and transparent, but the alternative of ML requires 

stronger distributional assumptions, which may be difficult to check, and possibly 

difficult computation. However, even though likelihood analysis may not be an easy 

‘off-the shelf’ solution for a wide range of problems, it may be worth the additional 

difficulty. If data collection and study involve significant time and cost, then the 
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additional effort involved in a likelihood analysis would be small for realizing 

increased flexibility, greater efficiency and more powerful tests and confidence 

intervals. 

 

1.5. Organization of the dissertation 

Chapter 2 examines the sampling distribution of the RC estimator in the simple 

case when the regressions of Y on X and of X on W are both linear, Y | X and X | W are 

both normally distributed, and information about the measurement process comes 

from an independent calibration study in which X and W are observed. We consider 

this model partly because of motivating data problems with this structure, but partly 

because this simple setting permits some theoretical investigations into the effect of 

uncertainty in estimating E(X | W) on the RC estimator. In this case, it is also possible 

to obtain MLEs in closed forms or using readily available software, so we compare the 

efficiency of the estimators for small sample sizes using simulation. 

 Chapter 3 considers the same settings, but when information about the 

measurement process comes from an internal calibration study in which Y, X and W 

are observed. In this case, there is not an agreement about the implementation of the 

RC method, and several estimators have been proposed. In addition, it is not possible 

to obtain a closed form solution for the MLE, although it can easily be obtained using 

standard software. We will rely in extensive simulations to compare the performance 

of the different estimators and associated confidence intervals, both under the correct 

and misspecified distributional assumptions. 
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2. REGRESSION CALIBRATION INFERENCE FOR MEASUREMENT 
ERROR MODELS WITH AN INDEPENDENT CALIBRATION STUDY 

 

Vicente J. Monleon 
Daniel W. Schafer 

 

Department of Statistics 
Oregon State University 

 

 

 

2.1 Abstract 

Regression calibration seeks to estimate regression models with measurement 

error in explanatory variables. The mismeasured explanatory variable is replaced by 

its conditional expectation, given a surrogate variable, in an estimation procedure that 

would have been used if the true value were available. This study examines the effect 

of the uncertainty in the estimation of this conditional expectation on inference about 

regression parameters, when the true explanatory variable and its surrogate are 

observed in an independent calibration study and related through a normal linear 

model. The sampling distribution of the regression calibration estimator is skewed and 

its moments are not defined, but its median is approximately the parameter of interest. 

As the sample size of the calibration study increases, it converges to a normal 

distribution centered on the target parameter. The maximum likelihood estimator, 

assuming that the distributions are properly specified, is bounded and more efficient 

than the regression calibration estimator. Likelihood ratio inferences are more accurate 

and efficient than those based on approximate normality and estimated standard errors. 

The performance of regression calibration inference approaches that of likelihood 

inference as the calibration sample size increases, and it approaches at a faster rate for 

small measurement error variance.      
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2.2. Introduction 

Because of its transparency, ease of use, and apparently good operational 

characteristics, the technique known as regression calibration (RC) has emerged as an 

important tool for estimation of regression parameters in the presence of explanatory 

variable measurement errors.  Let Y represent the response variable, X an explanatory 

variable of interest that is measured with error, W a measurement or surrogate for X, 

and Z additional explanatory variables free of measurement error. The regression 

calibration estimator, in its most transparent form, uses the regression estimator that 

would have been used if X were known exactly (for linear, generalized linear, or 

failure time regression models), but with the missing X replaced by E(X|W, Z) (Carroll 

et al. 1995, Ch. 3).  Versions of the RC estimator were proposed by Prentice (1982) 

for Cox proportional hazards regression models, Armstrong (1985) for generalized 

linear models, and Rosner, Willet and Spiegelman (1989, 1990) for logistic regression. 

Although regression calibration can be used in many disciplines, two notable 

areas of application are nutritional epidemiology (e.g. Willett et al. 1992, Binham et 

al. 2003, van Gils et al. 2005) and radiation health epidemiology (e.g. Pierce et al. 

1990, Stram et al. 1999, Schafer et al. 2001). The former primarily involves logistic 

and failure time regression models for binary health responses on diet and nutrition 

explanatory variables, which are measured imprecisely.  The latter involves failure 

time regression models that are linear or quadratic functions of dose of radiation, 

which is observed through an imprecise estimate. 

It is easy to see the rationale for regression calibration in simple linear 

regression. If the regression of Y on X is linear, ( ) 0 1|E Y X Xβ β= + , then 

( ) ( ) ( )0 1| | | |E Y W E E Y X W E X Wβ β= = +⎡ ⎤⎣ ⎦ . Since the coefficients in the 

regression of Y on E(X|W) are the same as those in the regression of interest, E(Y|X), 

practical attention can be switched to the regression of Y on E(X|W). This also shows 

that the naïve regression of Y on W will lead to biased estimation of the regression 
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coefficients if W is not the same as E(X|W), as is the case under the classical 

measurement error model. In the classical model, W is the sum of X and a random 

measurement error that is independent of X, and the estimated slope of the regression 

line is biased towards zero (see, for example, Madansky 1959, Cochran 1965). On the 

other hand, under the Berkson error model, in which E(X|W) = W follows from the 

model definition, the usual estimators of regression coefficients are unbiased (Berkson 

1950). 

If E(Y|X, Z) is not linear in X, the simple substitution of E(X|W, Z) in place of X 

in the regression model E(Y|X, Z) leads to an approximate model for E(Y|W, Z). 

Estimation based on this substitution is, in general, biased and inconsistent (Carroll et 

al. 1995). However, under additional assumptions that depend on the particular model, 

it is approximately consistent, and the approximation may be improved with a second-

order approximation to E(Y|X, Z) about X = E(X|W, Z) (Carroll and Stefanski 1990, 

Kuha 1994). For generalized linear models, Var(Y|W) will not have the same form as 

Var(Y|X), and some attention to proper “weighting” is necessary for efficient 

estimation. If the distribution of Y given X and Z is Poisson and W is a “classical” 

measurement of X, for example, the distribution of Y given W and Z is not Poisson 

and, in particular, the variance is greater than the mean. 

For the following models, regression calibration and maximum likelihood give 

the same estimates:  

1.  The “everything normal” linear structural model when either E(X|W) or the 

reliability coefficient, defined as 2 2 2
|/( )X X W Xλ σ σ σ= + , is known. For this model, 

( )2
0 1 || ~ , Y XY X N Xβ β σ+ , ( )2

0 1 || ~ , W XW X N Xα α σ+ , and ( )2~ , XX N µ σ . Let 

( ) ( )| 1W E X W Wµ λ λ∗ = = − + . If either λ  or W* are known, the maximum 

likelihood estimator of β1 is * * */
W Y W W

SS SS , where the SS’s are sums of squares or 

cross products indicated by their subscripts. This can be seen by equating the five 

sufficient statistics from the bivariate normal distribution of Y and W to their 
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expectations based on five unknown parameters. This estimator is equivalent to the 

least squares estimator for the linear regression of Y on X, but with X replaced by 

E(X|W). 

2.  Bernoulli linear model when E(X|W) is known. Y | X~ Bin(1, π); 0 1Xπ β β= + . It 

must be true that Y | W~ Bin(1, π*); 0 1* ( | )E X Wπ β β= + , so maximum likelihood 

based on Y | W is equivalent to using maximum likelihood based on    Y | X but 

with E(X|W) used in place of X. 

In addition, there is a model for time to response data in which regression 

calibration and maximum partial likelihood are approximately the same: the linear 

proportional hazards model when E(X|W) is known. As shown in Prentice (1982), 

Pepe et al. (1989), and Schafer et al. (2001, appendix), the hazard function for a 

waiting time as a function of the measurement W is approximately the expected value 

of the hazard as a function of X, conditional on W. The approximation is good for the 

“rare disease” case.  If the hazard function is linear in X, then the induced hazard is 

linear in E(X|W). Therefore, any method, such as maximum partial likelihood based on 

W will be the same as it would be for X but with X replaced by E(X|W). 

These last two models are not broadly useful, but they are important for 

radiation research where there is theoretical and empirical justification for probability 

and hazard rate models that are linear in radiation dose (Pierce et al. 1992).  

 These equivalences of regression calibration and likelihood estimators, and the 

unbiasedness of the RC estimator when E(Y|X, Z) is linear in X, are only true if the 

conditional mean E(X|W, Z) is known, which is seldom the case. The properties of the 

regression calibration method are obviously more complicated when the uncertainty in 

E(X|W, Z) is acknowledged. This paper focuses on the role of uncertainty in E(X|W, Z) 

in regression calibration inference.   

Uncertainty in E(X|W, Z) is not negligible in most epidemiological studies. For 

example, for diet and health research from the Nurse’s Health Study, a primary data 

set consists of almost 90,000 nurses. Investigations consider the regression of health 
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outcomes on explanatory variables, X, associated with diet, such as total fat intake. 

Surrogates, W, for this type of variable are measured on all nurses in the primary 

study, and E(X|W, Z) is taken to be an estimated mean from a regression model fit to a 

calibration dataset of 173 nurses (Willett et al. 1992). The estimated correlation 

between X and W is low – typically, between 0.4 and 0.6 (Willett et al. 1988). The 

values used as E(X|W, Z) for each of the nurses in the primary data set therefore 

contain a component of uncertainty due to the sampling error from the regression 

estimation on the calibration set. 

An interesting aspect of the problem is that this uncertainty component is 

shared by all the nurses in the study, since the estimate of E(X|W, Z) for each 

individual in the primary data set is based on the same estimated regression equation.  

Fraser and Stram (2001) examined the effect of this kind of “shared” uncertainty in 

estimating E(X|W, Z) on the power of tests based on regression calibration. Through 

simulations, they noted the need for sample sizes that were considerably larger than 

those usually available.    

Because regression calibration is used for important statistical problems in 

epidemiology, we feel it is appropriate to explore in more detail further practical 

effects associated with the uncertainty in E(X|W, Z). We are interested in both linear 

and nonlinear regression models for E(Y|X, Z), and also in various types of data 

structures that permit the estimation of E(X|W, Z). To start, though, we consider linear 

regression of Y on X and Z, with a model for E(X|W, Z) estimated from an external 

calibration data set. This means that a data set is available with observations on X and 

W and Z (but not Y), separate from the primary data set. W may be a measurement of X 

(in which case the calibration data set is typically referred to as an external validation 

study) or a surrogate variable that is associated with X and which can be used to 

predict X. While the linear model with an independent calibration set situation is of 

interest in itself, it is studied here as one of the more transparent structures for 

isolating the effect of the uncertainty in the estimate of E(X|W, Z), for a first step in 

exploring the use of regression calibration with inexact calibration more generally.  It 
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is, of course, essential that E(X|W, Z) is the same in the primary data set as in the 

calibration data set or, in other words, the calibration equation must be portable. This 

is an important practical issue, but will not be considered further in this paper. 

The RC estimator in some models is also a method-of-moments estimator 

(Appendix A) and is like a method-of-moments estimator more generally. It is often 

easy to implement and it is relatively transparent while alternatives, such as maximum 

likelihood, usually are not. However, maximum likelihood may efficiently combine 

the information from several sources, such as the primary and calibration studies. 

Therefore, in this study, we wish to further examine its relative efficiency and the 

accuracy of inferences based on its approximate normality in light of the uncertainty in 

E(X|W, Z).  

This paper is organized as follows. Section 2.2 describes the model of interest, 

the regression calibration estimator, and the methods typically used to estimate its 

standard error for approximate tests and confidence intervals. Section 2.3 discusses the 

exact sampling distribution of the RC calibration estimator for a simple linear-linear 

model when Y | X and X | W are normally distributed. Relaxing the normality 

assumption, it provides an approximation to the bias of the RC estimator when its 

expectation is defined. Section 2.4 compares the RC and maximum likelihood (ML) 

estimators, and discusses the properties of the MLE. Section 2.5 presents the results of 

a set of simulations devised to explore the effect of the uncertainty in E(X|W) on the 

performance of the RC and ML estimators and associated confidence intervals. 

Section 2.6 summarizes the main conclusions of this report. 

 

2.3. The regression calibration estimator for linear regression when E(X | W) is 

estimated from an independent calibration dataset. 

Consider the model: 

0 1Y Xβ β ε= + +                (2.1)

 0 1X Wα α δ= + +                (2.2) 
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where Y is the response variable; X is the explanatory variable;  W is a surrogate for X; 

( )0 1 0 1, , ,β β α α  are unknown regression coefficients; and ( ),ε δ are random variables. 

It follows that: 

( ) ( )0 0 1 1 1 1Y Wβ α β α β ε β δ= + + + +               (2.3) 

Let  0 0 0 1γ β α β= +  and 1 1 1γ α β=  be the coefficients of the regression of Y on 

W.   

Suppose that (1) there is a primary sample consisting of observations ( ),i iy w , 

1,...,i n= , and an independent calibration sample consisting of observations ( ),i ix w , 

1,...,i n n m= + + ; (2) ( ),ε δ are independent random errors with means equal to 0; (3) 

random variables associated with different values of i are independent of one another; 

and (4) the error structure is non-differential, meaning ( ) ( )| , |f Y X W f Y X= .  

Notice that because of the existence of the calibration data set it is not 

necessary to make distributional assumptions for X, as long as E(X|W) has the same 

form in the primary and calibration data sets. If there are additional explanatory 

variables Z, free of measurement error, then all expectations should also be conditional 

on Z; but that notation will be suppressed. 

For this model, the regression calibration estimator of 1β  can be defined 

following two different but equivalent approaches. One approach consists of 

estimating ( )0 1,α α  by ( )0 1ˆ ˆ,α α  from the external calibration sample, calculating 

0 1ˆ ˆ ˆi ix wα α= +  for each observation in the primary sample, and estimating the slope of 

the regression of iy  on ˆix  using least squares (e.g., Carroll et al. 1995, Chapter 3). 

Then, the regression calibration estimator takes the form (see also Appendix B.1): 

( )( )

( )

( )( )

( )

1 1
1 1 1

1, 2 2 1
1 1

1 1

ˆ ˆ ˆ ˆ
ˆˆ
ˆˆ ˆ ˆ ˆ

n n

i i i i
i i

RC n n

i i
i i

y y x x y y w w

x x w w

α α
γβ
αα α

= =

= =

− − − −
= = =

− −

∑ ∑

∑ ∑
             (2.4) 
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where 1̂γ  and 1α̂  are the least squares estimators of the slope of Y on W, based on the 

primary data, and of X on W, based on the calibration data, respectively.  

 The other approach arrives at the same estimator directly from equation (2.3), 

by solving 1 1 1γ α β=  for 1β  and substituting 1γ  and 1α  by their respective estimators 

(Rosner et al. 1989). More generally, as long as the regression of X on W is linear, 

both approaches yield 1,
ˆ

RCβ . This is true, for example, when the regression of Y on X is 

a generalized linear model. This is shown in Appendix B, as is the form of the 

estimator when there are additional explanatory variables measured with or without 

error (see also Thurston et al. 2003). 

 Without additional distributional assumptions, it is not possible to derive the 

sampling distribution of the RC estimator. Asymptotic properties are based on the 

theory of stacked estimating equations (Carroll et al. 1995, Appendix). In an 

asymptotic setting in which n and m both increase to infinity, the sampling distribution 

of the RC estimator converges to a normal distribution (Carroll and Stefanski 1990). 

The mean of this distribution is 1β  and, under the additional assumption that the 

variances of ( ),ε δ  are constant, the variance is    

( )
2

2 21
ˆ ˆ1, 4 2

1 1

1ˆ
RCVar α γ

γβ σ σ
α α

= +                (2.5)  

where ( )2
ˆ 1̂Varγσ γ=  and ( )2

ˆ 1ˆVarασ α= . Tests and confidence intervals are based on 

this asymptotic distribution, with unknown parameters replaced by their estimates, but 

the bootstrap method can also be used (Carroll et al. 1995, Rosner et al. 1989).  

Confidence intervals based on asymptotic normality have been widely used 

and have been implemented in readily available software (Spiegelman et al. 1997). 

However, although asymptotically correct as m →∞ , they may not have very 

desirable finite sample properties. While the interval is symmetric about 1,
ˆ

RCβ , the 

actual sampling distribution of 1,
ˆ

RCβ  can be very skewed, even for relatively large 
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sample sizes.  A bootstrap confidence interval, based on the percentiles of the 

bootstrap replications, should perform better in this case. In addition, the expectation 

of the estimated variance given by (2.5) typically does not exist. Therefore, for any 

finite sample size, a confidence interval with non-zero coverage probability (e.g. a 

95% CI) has an expected infinite length, a common feature of this type of confidence 

interval in the measurement error problem (Gleser and Hwang 1987). The bootstrap 

confidence interval is not immune to this problem because, as it will be shown, the 

moments of the distribution of the regression calibration estimator are not defined 

(Athreya 1987). The practical consequences of this are that the width of both types of 

confidence intervals can be very large and erratic if the sampling distribution of 1α̂  has 

positive mass at 0. This will become apparent in the simulations of Section 6.  

 

2.4. Exact sampling distribution of the regression calibration estimator 

2.4.1. Sampling distribution when Y|X and X|W are normally distributed 

Suppose that the variables ε  and δ in (2.1) and (2.2) follow normal 

distributions with means 0 and constant, positive variances 2
|Y Xσ and 2

|X Wσ , 

respectively. Then, the distribution of Y|W is 

( )2 2 2
0 0 1 1 1 | 1 || ~ ,i i i Y X X Wy w N wβ α β α β σ β σ+ + +  

As before, let 0 0 0 1γ β α β= + , 1 1 1γ α β=  and 2 2 2 2
| | 1 |Y W Y X X Wσ σ β σ= +  be the 

parameters of the distribution of Y given W. First notice that the least squares 

estimators of 1̂γ  (from the regression of Y on W in the primary data) and 1α̂  (from the 

regression of X on W in the calibration data) are normally and independently 

distributed. The regression calibration estimator is the ratio of these two, so its 

sampling distribution is that of a ratio of two independent normal random variables. 

The probability density function, cumulative distribution function and asymptotic 

properties are discussed in Appendix C, and other parametrizations are given by 

Hinkley (1969) and Marsaglia (1965). Some features of this distribution are: 
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1.   It depends on three parameters: a scale parameter 2 2
ˆ ˆα γη σ σ= , where 

( )2
ˆ 1̂Varγσ γ=  and ( )2

ˆ 1ˆVarασ α= ; and 2
ˆ1γ γτ γ σ=  and 2

ˆ1α ατ α σ= , the 

reciprocals of the coefficient of variation of the sampling distributions of 1̂γ  and 

1α̂ , respectively. The parameter ατ , which depends only on the calibration study, 

plays an important role in the behavior of the RC estimator.  

2.   Its moments are not defined. This is a common feature of estimators in the 

measurement error problem that are derived using the method of moments (Fuller 

1987). The sampling distribution of 1α̂  has positive mass at 0, so the distribution 

of 1,
ˆ

RCβ  is heavy tailed. Therefore, in theory, the RC estimator can attain very 

large values and behave erratically. In addition, it can be difficult to compare 

alternative estimators based on their moment properties, such as bias and mean 

square error. 

3.   Although the mean is not defined, the median is approximately equal to the target 

parameter, 1β  (Appendix C). 

4.   It is symmetric when either γτ  or ατ are 0. In general, though, it is skewed away 

from 0. Therefore, symmetric confidence intervals based on the asymptotic 

normality of the RC estimator may not be appropriate for finite sample sizes.  

5.   It can be unimodal or bimodal. In the latter case, it has a positive and a negative 

mode, but one of the modes may be insignificant (Marsaglia 1965). Absurd modal 

values of very large magnitude and the opposite sign to that expected are possible. 

 

Figure 2.1 shows the exact sampling distribution of the RC estimator for a 

selection of situations, and table G2 (Appendix G) shows the parameters of those 

distributions. The figures illustrate that the sampling distribution of the RC estimator 

is very skewed for small m (and negative values of the estimator are possible). As m 
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Figure 2.1. Probability density function of the sampling distribution of the RC 
estimator for several choices of 2

|X Wσ  and calibration sample size m. The true 
value of the slope of the regression of Y on X, β1, is 2.The X axis has been 
scaled to cover from the 0.001 to the 0.999 quantiles of the distribution. 

 

 

increases, it converges to a normal distribution centered about 1β . It converges to 

normality at a faster rate for small 2
| .X Wσ  

Asymptotically, as m →∞  for fixed n, the distribution of the RC estimator 

converges in distribution to a normal distribution with mean 1β  and variance 

Regression calibration estimator 

  Corr(X,W)=0.75 
         m=50 

   Corr(X,W)=0.75 
           m=300 

  Corr(X,W)=0.50 
         m=50 

  Corr(X,W)=0.50 
         m=300 

   Corr(X,W)=0.36 
          m=50 

      Corr(X,W)=0.36 
             m=300 
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2 2
ˆ 1γσ α (Appendix C.2).  More interestingly, as ατ →∞  or, equivalently, if values of 

1α̂  close to 0 are unlikely, 

( )
( )

1 1, 1
1, 1 2

2 2 2
ˆ ˆ1,

ˆ
ˆ |

ˆ
RC

RC

RC

F W
α γ

α β γ
β

σ β σ

⎧ ⎫
−⎪ ⎪→Φ⎨ ⎬

⎪ ⎪+⎩ ⎭

,  

where ( )Φ ⋅  denotes the cumulative distribution function of the standard normal 

random variable. This distribution is a useful approximation to the true sampling 

distribution for large ατ but, for finite ατ , it is an improper distribution (Hinkley 1969). 

Although skewed away from 0, its median is 1β  (Appendix C.2).  

 

2.4.2. Properties of the sampling distribution more generally 

The results presented in the previous section only require that the sampling 

distributions of 1̂γ  and 1α̂  be normal, and that the regression calibration estimator be 

defined as their ratio. Therefore, they apply more generally when the regression of Y 

on X (2.1) and X on W (2.2) include additional variables, but the errors still follow a 

normal distribution. They will also be approximately true for any kind of regression 

for which the estimated regression coefficients have approximately normal sampling 

distributions. In most epidemiological studies, the size of the primary sample is very 

large so, if the regression of Y on W follows a generalized linear model, the 

distribution of 1̂γ would be approximately normal. Typically, the regression of X on W 

is linear, so that the distribution of 1α̂  from the calibration study is approximately 

normal, and the results discussed in the previous section will apply approximately. 

The RC estimator is the ratio of two estimators of slope. If the expectation of 

the ratio exists and if ( )1 1ˆE γ γ=  and ( )1 1ˆE α α= , and both have the same sign, it 

follows from Jensen’s inequality that: 

( ) ( )( ) ( )1, 1 1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ1 0RCE E E Eβ γ α α γ α γ α β= = ≥ = ≥  
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Likewise, if 1γ  and 1α  have different signs, ( )1, 1
ˆ 0RCE β β≤ ≤ . Therefore, 

under these conditions, any bias in the regression calibration estimator due to sampling 

error in E(X | W) would be described as inflation. This inflation effect on the 

regression coefficient is surprising, since it the opposite of the expected attenuation in 

the classical measurement error setting (Madansky 1959, Cochran 1965).  

If is assumed that the expectation of 1,
ˆ

RCβ  exists, the bias of the RC estimator 

can be explored with a second-order Taylor expansion of 1̂β  around 1 1 1β γ α= : 

( ) ( )1 1
1, 1 13 2

1 1

1ˆ ˆ 1RCE Var
α

γ γβ α β
α α τ

⎡ ⎤
≈ + = +⎢ ⎥

⎣ ⎦
 

Thus, the relative bias depends only on the calibration study, and only 

through ατ . If 1α  is estimated using least squares and ( ) 2
|| X WVar X W σ=  is constant, 

then ( )
2

2 2 1
2

|

1 Wc
X W

m Sα
ατ
σ

= − , where ( )22

1

1
1

n m

Wc i c
i n

S w w
m

+

= +

= −
− ∑ .  The bias depends on the 

sample size of the calibration study, the relative magnitude of 2
1α  and 2

|X Wσ , and the 

sample variance of W in the calibration study. In many epidemiological studies of diet-

disease association, the relationship between X and W is weak, with R2 in the range of 

0.1 to 0.5, so that 1α  tends to be small compared with 2
|X Wσ . Then, a large calibration 

sample size may be needed to reduce the bias. Even a greater sample size may be 

needed to reduce the variance and increase power (Fraser and Stram 2001).  

The parameter 2
ατ can also be written as ( ) ( )

2 2
2

21
1

WcSm
Var Wα

ρτ
ρ

= −
−

, where ρ  is 

the correlation between X and W (Appendix C.3). Therefore, if 2
WcS  is close to its 

expectation, Var(W), then  ( )
2

2
21

1
mα

ρτ
ρ

≈ −
−

. In the diet-disease studies, ρ  is 
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typically between 0.3 and 0.7, so that 
2

21
ρ
ρ−

is between 0.1 and 0.96, and increases 

rapidly as ρ  becomes closer to 1. 

Simulation results, detailed in Section 2.6, also indicate that one of the effects 

of uncertainty in E(X | W) is inflation in the estimated coefficient of X.  

 

2.5. The relationship between regression calibration and maximum likelihood in 
the normal-normal model 

The joint density function of Y, observed in the primary study, and X, observed 

in an independent calibration study, conditional on the observed values of W, is: 

( ) ( ) ( )
1 1

| |
n n m

i i i i
i i n

f f y w f x w
+

= = +

=∏ ∏y,x | w  

 Typically, ( )|f Y W cannot be obtained analytically, so numerical integration 

may be necessary. However, under the normal distributional assumptions of section 

2.4.1, there is a closed form solution for the log likelihood:  

( ) ( ) ( )

( ) ( )

( )

2 2 2 2 2 2
| | | 1 | |

2
0 1 0 1 12 2 2

1| 1 |

2
0 12

1|

, , log log
2 2

1      
2

1                       
2

Y X X W Y X X W X W

n

i i
iY X X W

n m

i i
i nX W

n ml

y w

x w

σ σ σ β σ σ

β β α β α
σ β σ

α α
σ

=

+

= +

= − + −

− − + +⎡ ⎤⎣ ⎦+

− − +⎡ ⎤⎣ ⎦

∑

∑

β,α

             (2.6) 

 The regression calibration estimators are shown in Appendix D.1 to be the 

unconstrained solution to the likelihood equations. The estimators of ( )2
0 1 |, , X Wα α σ  are 

the MLEs of those parameters based on the calibration data alone, and the estimator of 

( )2
0 1 |, , Y Xβ β σ is 

( )
2

2 2 21 1 1
0 1 | 0 0 | |

1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,
ˆ ˆ ˆY X Y W X W
γ γ γβ β σ γ α σ σ
α α α

⎡ ⎤⎛ ⎞
⎢ ⎥= − − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
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where ( )2
0 1 |ˆ ˆ ˆ, , Y Wγ γ σ  are the MLEs of the parameters of the distribution of Y given W, 

based on the primary data only.  

 The estimator of 2
|Y Xσ  can result in a negative estimate. To find the MLEs, the 

likelihood has to be maximized under the constraint that ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− > . 

Equivalently, if 2
|ˆ 0Y Xσ < , 2

|Y Xσ  can be set to 0 in (2.6), yielding a new set of likelihood 

equations and estimators (Appendix D.2). The solution for 1β  are the roots of the 

following quadratic equation: 

( ) ( )

( )

2 2
1 1

2

ˆ ˆ

                  0

XWc XX WpWp WcWc XWc YWp

YWp YY WpWp WcWc

n SS SS SS SS n m SS SS

m SS SS SS SS

β β⎡ ⎤− + + −⎣ ⎦
⎡ ⎤− − + =⎣ ⎦

             (2.7) 

where the SS’s denote are sums of squares or cross products indicated by their 

subscripts. The two solutions to this quadratic equation are real numbers, one positive 

and one negative, and are different from the regression calibration estimator. 

 The MLE, 1,
ˆ

MLEβ , equals 1 1ˆ ˆγ α , the RC estimator, if ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− > , 

or one of the roots of eq. (2.7) if ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− ≤ . In fact, 1,

ˆ
MLEβ is the 

minimum, in absolute value, of those two estimates and it is bounded (Appendix D.3). 

This is practically relevant, because the RC estimator can be very unstable and reach 

very large values when 1α̂  is close to 0, as indicated by the lack of moments of its 

sampling distribution. There is a close relationship between a large absolute value of 

the RC estimated regression coefficient and a negative estimate of 2
|Y Xσ , because as 1α̂  

becomes small, 1, 1 1
ˆ ˆ ˆRCβ γ α= is large and ( )22 2

| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− < . Several solutions 

have been proposed to improve the behavior of other method-of-moments type of 

estimators in the context of the measurement error problem (Fuller 1987). These 

methods impose a bound on the estimator, a result obtained with maximum likelihood 

in a less ad-hoc manner. 
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 Combining the constrained and unconstrained forms, the log likelihood 

equation, can be written from eq. (2.6) as: 

   
( ) ( ) ( )

( ) ( )

2
|

2
|

2 2 2 2
| | | | ˆ 0

2 2
| | ˆ 0

, , , ,

      , 0, 1

Y X

Y X

c Y X X W Y X X W

Y X X W

l l I

l I

σ

σ

σ σ σ σ

σ σ

>

≤

=

⎛ ⎞+ = −⎜ ⎟
⎝ ⎠

β,α β,α

β,α
.              (2.8) 

where ( )2
|ˆ 0Y X

I
σ >

 is an indicator variable that depends only on the data and takes the value 

1 if ( )22 2 2
| | 1 1 |ˆ ˆ ˆ ˆ ˆ 0Y X Y W X Wσ σ γ α σ= − >  (in which the parameters with hats are the 

regression calibration estimators). In practice, equation (2.6) can be parametrized as a 

function of ( )2
|log Y Xσ  and ( )2

|log X Wσ , and maximized using standard software (such 

as the S-Plus ‘nlmin’ or R ‘nlm’ functions).   

Under standard regularity conditions, the estimators ( )2 2
1 1 | |ˆ ˆ ˆ ˆ, , ,X W Y Wα γ σ σ  are 

consistent. Therefore, as n →∞  and m →∞ , 1 1 1ˆ ˆγ α β→ , 2 2
| |ˆX W X Wσ σ→ , 

2 2 2 2 2
| | | 1 |ˆY W Y W Y X X Wσ σ σ β σ→ = + , and:  

( ) ( )22 2 2
| 1 1 | |ˆ ˆ ˆ ˆ 0 0 1Y W X W Y XP Pσ γ α σ σ⎡ ⎤− > → > =⎣ ⎦  

Thus, asymptotically, only the unconstrained likelihood equation is relevant, 

and the ML and RC estimators are asymptotically equivalent. However, for m or n 

finite, ( )2
|ˆ 0Y XP σ <  may not be negligible, even for large sample sizes (Appendix E). 

The sampling distribution of the MLE based on ( )2 2
| |, 0,Y X X Wl σ σ=β,α  is not 

asymptotically normal, and the asymptotic distribution of the likelihood ratio test 

statistic does not converge to a χ2, because one of the nuisance parameters is in the 

boundary of the parameter space (Lehmann and Casella 1998).  

 The profile log likelihood function of β1 can be obtained analytically, by 

evaluating the log likelihood at the conditional MLE of ( )2 2
0 1 0 | |, , , ,Y X X Wα α β σ σ for 

fixed β1 (Appendix F). As with the log likelihood, the profile log likelihood has two 
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components, depending on whether ( ) ( ) ( )2 2 2 2
| 1 | 1 1 | 1ˆ ˆ ˆY X Y W X Wσ β σ β β σ β= −  is positive or 

negative. In the latter case, the profile likelihood function is calculated under 2
| 0Y Xσ = , 

resulting is a function that has a vertical asymptote at 0, and two local maximums. As 

a result, the profile likelihood for β1 can be bimodal or unimodal, depending on the 

values of the parameters and the sample sizes of the primary and calibration studies. 

Figure 2.2 shows some results for simulated data. 

The parameter space of β1 is limited by the non-negativity of the variance of Y|W, so 

that 2 2
1 | |Y W X Wβ σ σ≤ . Thus, ( )2

| 1ˆY Xσ β  eventually becomes negative as β1 increases in 

magnitude, and so it is set to 0 when calculating the profile likelihood function. This 

restriction is reflected in the profile log-likelihood function, which drops rapidly as β1 

increases over its allowable range (Fig. 2.2). From a practical perspective, this 

property imposes a desirable bound in the allowable values of the MLE of β1 but, on 

the other hand, confidence intervals calculated by inverting a likelihood ratio test may 

not perform properly. A confidence interval can be obtained by calculating the set of 

values of β1 ‘not rejected’ by a likelihood ratio test, but some values in this set may 

result in a negative estimate of ( )2
| 1Y Xσ β . The sampling distribution of a likelihood 

ratio test statistic when β1 is outside its parameter space may not be well approximated 

by a χ2. This topic will be explored further with simulations. 

 

2.6. Simulations 

A primary objective of the simulations is to examine the effect of the 

uncertainty in the estimation of E(X | W) on the operating characteristics of the 

regression calibration estimator and on the performance of tests and confidence 

intervals based on its approximate normality. Part of this is based on comparisons with 

likelihood analysis. The conditions and details of the simulations are described in 

Appendix G. 
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Figure 2.2. Log profile likelihood of β1 for simulated data with different calibration 
sample sizes (m). The log profile likelihood of β1 (solid line), restricted so that 

2
|ˆ 0Y Xσ > , is the result of combining two functions: a log profile likelihood that does 

not place any restrictions on 2
|ˆY Xσ  (dashed line) and a log profile likelihood that sets 

2
| 0Y Xσ =  (dotted line). The true value of β1 is 2 and the parameter space of β1 is 

2 2
1 | | 2.154Y W X Wβ σ σ< =  (dashed vertical lines). The solid vertical line denotes the 

MLE.  The maximum of the unrestricted log profile likelihood is the RC estimator (not 
shown). As the sample size of the calibration study increases, the profile log likelihood 
becomes unimodal. The parameters used in this example are 
( ) ( )2 2 2 2

0 1 0 1 | |, , , , , 0,1,1, 2,0.6 ,0.75Y X X Wα α β β σ σ =  and n = 1000. 
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2.6.1. Performance of the estimators 

Figures 2.3-2.5 (and tables G.3 and G.4, in Appendix G) show the average, 

RMSE and selected quantiles of the Monte Carlo approximation to the sampling 

distribution of the regression calibration and maximum likelihood estimators after 

2500 simulations. The results support the theoretical results from previous sections in 

the following ways. First, the median of the RC estimator is about equal to the target 

value (Fig. 2.5) but the mean tends to be greater than the target value (Fig. 2.3). The 

bias, however, decreases rapidly as the sample size of the calibration study is 

increased, even when the measurement error variance is large. Second, the behavior of 

the RC estimator depended mostly on the value of 2
ˆ1α ατ α σ= . Settings with similar 

values of this parameter (Table G.2, appendix G) have similar distributional 

characteristics (Table G.3, appendix G). Third, when the probability of a negative 

estimate of the 2
|Y Xσ  is small, the RC estimator and MLE are about the same, as the 

results for 1 2β =  and Corr(X | W) = 0.76, and for 1 1/ 2β = , Corr(X | W) = 0.50, and 

300m ≥ , indicate.  

The MLE is substantially more efficient and less erratic than the RC estimator 

when the correlation between X and W is low or moderate and the calibration sample 

size small, as evident in figure 2.4. The bias of the MLE, and its RMSE to a much 

greater degree, are smaller than those of the RC estimator (Figs. 2.3 and 2.4), mostly 

because the distribution of the RC estimator has heavy tails and some very large 

values. This is reflected in the quantiles of the respective distributions (Fig. 2.5). The 

2.5% percentile and the median of the distributions are virtually identical, but the 

97.5% percentile of the distribution of the RC estimator is always much larger than 

that of the MLE. Large values of the RC estimator correspond to small values of 1α̂ , 

which are more likely to occur when m is small and 2
|X Wσ  is large. Those values also 

result in negative estimates of 2
|Y Xσ , so the MLE is one of the roots of eq. (2.7) instead 

of being identical to the RC estimator. 



 30

Even though the MLE is more efficient than the RC estimator when 2
|ˆ 0Y Xσ ≤ , 

estimators based on the likelihood function with 2
|Y Xσ  set to 0 are not consistent and 

their distribution is not asymptotically normal, as apparent in figure 2.6. In the 

situation shown there, with n fixed at 1000, ( )2
|ˆ 0 0.20m

Y XP σ →∞≤ ⎯⎯⎯→ , and the MLE 

is frequently based on ( )2 2
| |, 0,Y X X Wl σ σ=β,α  even for very large m. The distribution of 

the RC estimator is very skewed for m=100, but is nearly normal for m=1000, while 

that of the MLE does not approach normality. Figure 2.6 also illustrates the superior 

performance of the MLE: its spread is less than that of the RC estimator, and the 

proportion of samples greater than the upper limit of the parameter space was much 

smaller. 

 

2.6.2. Performance of the confidence intervals 

Since the sampling distributions of estimators in this model are often skewed, 

there is some concern about tests and confidence intervals based on approximate 

normality and estimated standard errors. Simulations were used here to compare 

confidence intervals based on the approximate normality of the regression calibration 

estimator (labeled as “RC-Wald” in the figures), bootstrap confidence intervals for the 

RC estimator (labeled as “RC-bootstrap” in the figures), and confidence intervals 

derived by inverting the likelihood ratio test (see Appendix G for details). Figure 2.7 

shows that likelihood ratio-based 95% confidence intervals tend to be substantially 

narrower than the other two, except when the correlation between X and W was large 

and, therefore, the measurement error small. 

In general, RC-Wald intervals are shorter than RC-bootstrap intervals, 

especially for small m. However, the lengths of both intervals are very variable for 

moderate and large measurement error and small sample sizes. The asymptotic 

variance of the sampling distribution of the RC estimator (eq 2.5) depends on 4
1ˆ1 α , 

and so can become very large for 1α̂  close to 0. The bootstrap intervals also perform 
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Figure 2.3. Relative bias of the RC and ML estimators of the slope in simple 
linear regression with measurement error. The distributions of Y|X and X|W are 
normal, the primary sample size is n = 1000 the calibration sample size is m. 
The results are based on 2500 simulated primary and calibration samples.   
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Figure 2.4. Relative root mean squared error of the RC and ML estimators of 
the slope in simple linear regression with measurement error. The distributions 
of Y|X and X|W are normal, the primary sample size is n = 1000 the calibration 
sample size is m. The results are based on 2500 simulated primary and 
calibration samples.   
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Figure 2.5. Median and 2.5% and 97.5% percentiles of the Monte Carlo 
sampling distribution of the RC and ML estimators of the slope in simple 
linear regression with measurement error. The distributions of Y|X and X|W are 
normal, the primary sample size is n = 1000 the calibration sample size is m. 
The results are based on 2500 simulated primary and calibration samples.  The 
2.5% percentile and median were almost identical for both estimators, only the 
97.5 % percentile differed.  
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Figure 2.6. Histogram of the estimated sampling distribution of the RC and 
ML estimators of slope in simple linear regression with measurement error. 
The distributions of Y|X and X|W are normal, the primary sample size is n = 
1000, Cov(X,W)=0.36, 1 2β = , and the calibration sample size is m. The results 
are based on 2500 simulated primary and calibration samples. The solid line is 
the density of a normal distribution with the same moments as the estimated 
distribution. The vertical dashes line defines the upper limit of the parameter 
space of 1β .   
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poorly in that situation, because of the lack of moments of sampling distribution of the 

RC estimator. Surprisingly, the BCa bootstrap confidence intervals do not perform 

better than the much simpler intervals based on the percentiles on the bootstrapped 

distribution, even though the former is based on a higher order approximation to the 

true distribution function of the RC estimator (Tables G.7 and G.7) (Efron and 

Tibshirani 1993).   

Of somewhat more concern, though, is the actual coverage rate and, in light of 

the skewness involved, the one-sided error rates on either side individually. Figures 

2.8 and 2.9 show the non-coverage rates of the 95% confidence intervals on the upper 

and lower sides (corresponding to the separate upper and lower type I error rates).   

The coverage of the LRT and RC-bootstrap intervals tend to be closer to the 

nominal coverage rates than that of the RC-Wald intervals. The error rate of the RC-

Wald confidence interval is greater than the nominal 5% for sample sizes up to 300 

when the correlation between X and W is low or moderate, while the RC-bootstrap and 

LRT intervals tend to be conservative for small sample sizes. As the calibration 

sample size increased, the three methods converge to the nominal error rate. The only 

exception is the error rate for the LRT interval for 1 2β =  and Corr(X, W) = 0.36, 

which remained at approximately 3% even as m increased to 1000 and further (data 

not shown). In this scenario, the asymptotic distribution of the MLE is not 

approximately normal and, therefore, it is not surprising that the null distribution of 

the LRT statistic is not well approximated by a χ2 distribution. However, even though 

the error rate of the LRT-based intervals is conservative, they were substantially 

shorter than intervals based on the RC estimator. At m=1000, the mean and median 

length of the intervals based on the RC estimator is approximately 40% greater than 

that of the LRT based interval. The difference is even greater for smaller calibration 

sample sizes (Tables G4-G8, appendix G).  
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Figure 2.7. Median of the Monte Carlo distribution of length of the estimated 
95% confidence interval of slope in simple linear regression with measurement 
error. The distributions of Y|X and X|W are normal, the primary sample size is 
n = 1000 the calibration sample size is m. The results are based on 2500 
simulated primary and calibration samples.  The intervals are based on a Wald 
approximation, bootstrap percentile, and inversion of the likelihood ratio test. 
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Figure 2.8. Percent of samples for which the true slope in simple linear 
regression with measurement error is greater than the upper limit of a 95% 
confidence interval. The distributions of Y | X and X | W are normal, with a 
primary sample size of n = 1000 and a calibration sample size of m. The results 
are based on 2500 simulated primary and calibration samples. The intervals are 
based on a Wald approximation, bootstrap percentile, and inversion of the 
likelihood ratio test.  
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Figure 2.9. Percent of samples for which the true slope in simple linear 
regression with measurement error is less than the lower limit of a 95% 
confidence interval. The distributions of Y | X and X | W are normal, with a 
primary sample size of n = 1000 and a calibration sample size of m. The results 
are based on 2500 simulated primary and calibration samples. The intervals are 
based on a Wald approximation, bootstrap percentile, and inversion of the 
likelihood ratio test.  
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 The most striking difference, however, is that most of the ‘misses’ of the RC-

Wald intervals are in one direction, even in the best case scenario of small 

measurement error variance and large calibration sample size (Figs. 2.8 and 2.9). The 

true value of the parameter tends not to be included in the RC-Wald confidence 

interval when greater than the RC estimator. This may have important consequences in 

the interpretation of the results of epidemiological studies. For example, the 

calibration sample size for the Nurse’s Health Study was 173 nurses (Willett et al 

1992). For m = 150, 1 2β =  and a correlation between true and surrogate 

measurements of 0.75, these simulations show that the actual overall error rate of  

95% CI is 5.4%, but the true parameter is greater than the upper bound of the interval 

4.0% of the time, and smaller only 1.4% on the time. When the correlation is 

decreased to 0.50, those figures are 4.8% and 0.1%, respectively, and when the 

correlation is decreased further to 0.36, they are 6.9% and 0.0%.  Therefore, for the 

settings considered here, there will be a tendency to report erroneous results when the 

estimated effects are less than the true effect. Intervals that allowed for asymmetric 

sampling distribution of the estimator, such as RC-bootstrap and LRT intervals, tend 

to have a more even rejection rate.  In the case of the RC-bootstrap, the better 

performance in terms of symmetry and coverage came with decreased efficiency in 

terms of length, compared with the RC-Wald and, specially, the LRT interval. 

  

2.7. Conclusions 

Regression calibration is a transparent and straightforward method to estimate 

the parameters of regression models with measurement error in the explanatory 

variables when information about the measurement error process comes from an 

independent calibration study. In addition, if the distribution of Y | X and X | W are 

both normal, and the RC estimate of var(Y|X) is positive, RC and ML estimators are 

equivalent. However, if the RC estimate of var(Y|X) is negative, the RC estimator of 

the slope of the regression of Y on X can be very unstable and attain unreasonably 

large values, while the MLE is bounded and closer to the target parameter. Therefore, 
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in practice, one may compute the RC estimator and verify that the estimate of 

var(Y|X)>0. If not, then one may switch to the MLE, which can be calculated with the 

formulae provided in this study or a maximization routine from standard software. 

Negative estimates of var(Y|X) are likely for small calibration sample size and large 

measurement error, but are also likely if 1β  is close, in magnitude, to 2 2
| |Y W X Wσ σ .  

Even though the RC and ML estimator may be equivalent in some instances, 

likelihood ratio inferences can be substantially more accurate and powerful than those 

based on approximate normality and estimated standard errors. The sampling 

distribution of the RC estimator converges to a normal distribution centered on the 

target parameter but, for finite sample sizes, it can be very skewed. As a result, one-

sided error rates of confidence intervals based on the asymptotic normality are 

inaccurate. Confidence intervals calculated from the percentiles of the bootstrapped 

sampling distribution of the RC estimator were more accurate than those based on 

approximate normality, in terms of symmetry and overall error rate, with only a 

relatively small increase in length.  

Inverting a likelihood ratio test resulted in the shortest confidence intervals, 

while keeping an error rate close to the nominal rate. The efficiency gains where a 

consequence of the skewness of the sampling distribution of the RC estimator, and of 

the bound imposed by the constraint that the estimated Var(Y | X)>0. However, under 

this constraint and for some values of the parameters, the sampling distribution of the 

LRT statistic cannot be approximated by a 2χ distribution, even for large sample sizes. 

This problem is apparent for small sample sizes in general, but becomes increasingly 

important when the true slope of the regression of Y on X is close, in magnitude, to the 

ratio of the standard deviations of Y and X, given the surrogate variable. Simulations 

indicated that, in those cases, LRT confidence intervals were conservative.  

Although this study focuses on RC inference when both the distribution of Y 

given X and of X given its surrogate are normal, the findings apply more generally. 

The RC estimator can often be written as the ratio of the slope of the regression of Y 
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on W to the slope of the regression of X on W.  Whenever the estimators of those 

slopes are approximately normal, such as when the regression of interest is a 

generalized linear model, the results in this paper regarding the sampling distribution 

of the RC estimator and implications for inference remain approximately valid. In 

those cases, however, the RC and ML estimators may not be equivalent. Furthermore, 

since the superior efficiency of the MLE depends to a large degree on the positiveness 

of the estimated Var(Y | X), it is not clear how its relative performance would be when 

the regression of Y on X is not normal. 

There is a natural concern over the robustness of maximum likelihood 

inferences against possible distributional misspecifications. However, the existence of 

a calibration study in which both the true explanatory variable and its surrogate are 

observed should alleviate some of those concerns. While full likelihood analysis in 

measurement error problems typically requires the specification of three probability 

distributions (the response distribution, Y | X, the measurement error distribution, W | 

X, and the distribution of the true explanatory variable, X), when a calibration study is 

available, only the response distribution and the distribution of the explanatory 

variable, conditional on the surrogate, have to be specified. Furthermore, the adequacy 

of the assumed distributions can be assessed with the calibration data. Likelihood 

analysis can be challenging computationally for realistic distributional assumptions 

but, given the potential for substantial gains in efficiency and accuracy, we believe 

that likelihood inference should be considered for the scenarios discussed in this study.  
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3.1 Abstract 

Regression calibration has emerged as a major tool to estimate regression 

models with measurement error in explanatory variables. The mismeasured 

explanatory variable is replaced by its conditional expectation, given a surrogate 

variable, in an estimation procedure that would have been used if the explanatory 

variable were known exactly. This study examines the effect of the uncertainty in the 

estimation of this conditional expectation on inference about regression parameters in 

the linear model, and the relative performance of regression calibration and likelihood 

inference, when the true explanatory variable is observed in a subset of the data. The 

estimator proposed by Spiegelman, Carroll and Kipnis (2001), defined as an inverse-

variance weighted average of the estimator of the regression parameters obtained from 

the calibration data alone, and the regression calibration estimator obtained by treating 

the internal calibration data as an external calibration study, is almost as efficient as 

the maximum likelihood estimator (MLE). Other regression calibration estimators are 

less efficient, often substantially so, and can be less efficient than the estimator of the 

regression parameters obtained from the calibration data alone. The estimators are not 

affected by moderate departures from the assumption of normality of the regression of 

the true explanatory variable on its surrogate. For small sample sizes, inference based 

on the asymptotic normality of the sampling distribution of the regression calibration 

estimators can be improved by using the bootstrap or likelihood ratio tests and 

confidence intervals.         
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3.2. Introduction 

Regression calibration (RC) has received increasing usage for problems that 

involve estimation of regression parameters in the presence of explanatory variable 

measurement errors, largely because of its simplicity, transparency and intuitive 

appeal. Suppose interest is in the regression of a response variable, Y, on an 

explanatory variable, X, which is observed only through an imprecise measurement or 

surrogate variable, W. The RC estimator uses whatever method of estimation would 

have been appropriate if X were observed exactly, but with the missing X replaced by 

E(X|W) (Carroll et al. 1995, Chapter 3). Versions of the RC estimator were proposed 

by Prentice (1982) for Cox proportional hazards regression models, Armstrong (1985) 

for generalized linear models, and Rosner, Willet and Spiegelman (1989) for logistic 

regression. 

Regression calibration has seen considerable use in nutritional and 

occupational epidemiology, where the exposure variables associated with a disease are 

difficult to measure precisely. For example, in a prospective study of the effect of fat 

intake on the risk of breast cancer, X was the long-term average intake of fat, assessed 

with a semi-quantitative food questionnaire administered to over 90,000 women 

(Willett et al. 1992). A validation study was conducted on 173 participants, who 

completed four, one-week diet records. The model for E(X|W) was estimated from this 

subset with values of both X and W, and then used to estimate E(X|W) for the 90,000 

individuals in the primary data, for whom only W was available. As typical with this 

type of study, the correlation between nutrient intakes calculated from the 

questionnaire and the ‘gold standard’ was relatively low, ranging between 0.4 and 0.6 

(Willett et al. 1988). Other examples include the effect of dietary fiber in the incidence 

of colon cancer (Binham et al. 2003), and of radiation exposure for the atomic bomb 

survivors (Pierce et al. 1990) or uranium miners (Stram et al. 1999). 

 Regression calibration emerges naturally when the regression of Y on X is 

linear, because if ( ) 0 1|E Y X Xβ β= + , then ( ) ( )| | |E Y W E E Y X W= =⎡ ⎤⎣ ⎦  
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( )0 1 |E X Wβ β+ .  If E(X|W) is known, usual regression tools for the regression of Y 

on E(X|W) may be used to estimate β0 and β1, with appropriate attention to weights 

dictated by Var(X|W). However, if the regression of Y on X is not linear, this form of 

RC is, in general, an approximation to the model of interest and the RC estimator is 

usually inconsistent. The conditions under which the approximation is almost exact 

depend on the particular model. When the degree of non-linearity in the regression of 

Y on X is large, several improvements to the simple RC estimator have been proposed, 

based on Taylor expansions and the assumption of small measurement error variance 

(Carroll and Stefanski 1990, Kuha 1994).  

In some instances, if E(X|W) is known, the RC and maximum likelihood (ML) 

estimators are the same or very close. For example, if the regressions of Y on X and of 

W on X are both linear, and Y | X, W | X and X are all normally distributed, or if Y | X is 

Bernoulli and the regression of Y on X is linear in X, then the RC and ML estimators 

are identical. They give approximately the same results for linear hazard regression 

models (Prentice 1982, Pepe et al. 1989, and Schafer et al. 2001).   

These equivalences of RC and ML estimators, and the unbiasedness of the RC 

estimator when E(Y|X) is linear in X, are only true if the conditional mean E(X|W) is 

known, which is seldom the case. Problems with the simple version of RC when the 

degree of non-linearity in the regression of Y on X or the measurement error variance 

are large, may also be magnified if E(X|W) is not known. While standard errors of 

estimated regression coefficients can be adjusted to account for the additional 

uncertainty in the estimate of E(X|W), the effect on the estimator’s properties has not 

received much attention. This paper focuses on the role of uncertainty in E(X|W) in 

regression calibration inference.   

 Estimating measurement error models, whether using RC or other techniques, 

requires additional information about the measurement error process. It is well known 

that for the classical error model, if Y | X, W | X, and X are all normal, the parameters 

of the distribution of Y | X are not identifiable without additional assumptions or data 
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(Fuller 1987). Although for other distributional assumptions the parameters of the 

simple linear regression model with measurement error are identifiable (Reiersol 

1950), additional information is necessary to practically estimate the parameters of 

interest. This information can take several forms, including replicate measurements on 

some observations or a calibration study in which the true X is observed. In either 

case, the study can be an internal study, in which Y and either replicate measurements 

or the true X and W are observed in a subset of the data, or an external study, in which 

Y is not observed. An internal calibration dataset allows for increased precision, the 

assessment of both the model relating Y to X and the error structure and eliminates 

concerns about transportability of models for E(X|W ).   

Regression calibration is often easy to implement and transparent, and relies on 

minimal assumptions on the distribution of the explanatory variables. Alternatives 

such as maximum likelihood, on the other hand, usually require difficult computations 

and stronger assumptions, although several approaches for flexible structural and 

semiparametric modeling have been developed (Roeder et al. 1996; Carroll et al. 

1999; Schafer 2001, 2002). However, ML may efficiently and automatically combine 

the information from several sources, such as primary and calibration studies. Because 

RC is becoming increasingly popular, we believe it is appropriate to critically examine 

its properties and performance, relative to likelihood-based approaches, in light of the 

uncertainty in estimating E(X|W). We are interested in complex models for E(Y|X), but 

in this study we consider linear regression of Y on X, with a model for E(X|W) 

estimated from an internal calibration data set. The term “internal calibration dataset” 

establishes an analogy with the closely-related data structure in which there is a 

primary dataset (with observations on Y and W) and an independent “external 

calibration dataset” (with observations on X and W). In fact, a more sensible 

terminology for the problem of interest here specifies a single dataset of observations 

Y and W, with true X available in a subset. Nevertheless, we will use the terminology 

“internal calibration” to be consistent with recent studies on this topic. 
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This paper is organized as follows. Section 3.3 describes the model and 

reviews alternative regression calibration estimators and the methods typically used to 

estimate their standard error for approximate tests and confidence intervals. Section 

3.4 discusses likelihood-based inference and compares the asymptotic efficiency of the 

RC and ML estimators. Section 3.5 presents the results of a set of simulations devised 

to explore the effect of the uncertainty in E(X | W) on the performance of the RC and 

ML estimators and associated confidence intervals, and the robustness of RC and ML 

inference to departures from the specified assumptions. Section 3.6 summarizes the 

main conclusions of this report.  

 

3.3. The regression calibration estimator for linear regression 
Consider the model: 

0 1Y Xβ β ε= + +                (3.1)

 0 1X Wα α δ= + +                (3.2) 

where Y is the response variable; X is the explanatory variable; W is a surrogate for X; 

( )0 1 0 1, , ,β β α α  are unknown regression coefficients; and ( ),ε δ are random variables. 

Suppose that (1) there is a primary sample consisting of observations ( ),i iy w , 

1,...,i n= , and an internal calibration sample consisting of observations ( ), ,i i iy x w , 

1,...,i n n m= + + ; (2) ( ),ε δ are independent random errors with means equal to 0 and 

variances 2
|Y Xσ  and 2

|X Wσ , respectively; (3) random variables with different values of i 

are independent; and (4) the error structure is non-differential, meaning  f(Y | X, W) = 

f(Y | X). It follows that: 

( ) ( )0 0 1 1 1 1Y Wβ α β α β ε β δ= + + + +               (3.3) 

Let γ0 = β0 + α0β1 and γ1 = α1β1 be the coefficients of the regression of Y on W, 

and 2 2 2 2
| | 1 |Y W Y X X Wσ σ β σ= + .  
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There may be additional explanatory variables Z, free of measurement error. 

Then all expectations and probability densities should also be conditional on Z, but 

that notation will be suppressed. 

There is not a universally accepted approach for defining the RC estimator for 

internal calibration data. Several estimators have been proposed (Rosner et al. 1989, 

1990; Carroll et al. 1995; Spiegelman et al. 2001), but all of them are weighted 

averages of the estimators of β obtained from the calibration data alone ( ˆ
INTβ ), and the 

RC estimator obtained by treating the internal calibration data as an external 

calibration study ( ˆ
EXTβ ) (Thurston et al. 2005). Neither ˆ

INTβ nor ˆ
EXTβ makes full use of 

the available information, but both are consistent, the latter as n →∞ and n m k→ , k 

a positive constant (Carroll and Stefanski 1990). Therefore, as long as all the elements 

are consistent, the resulting weighted average will also be consistent and could be 

more efficient than either ˆ
INTβ or ˆ

EXTβ .  

The estimators that will be considered here are the ‘as external’ estimator, 

ˆ
EXTβ , proposed by Rosner, Willet and Spiegelman (1989); the estimator proposed by 

Carroll, Ruppert and Stefanski (1995), denoted by ˆ
CRSβ ; and the estimator proposed by  

Spiegelman, Carroll and Kipnis (2001), denoted by ˆ
SCKβ . In what follows, let Xc, Wc 

and Wp be the design matrices for the calibration and primary data, 

respectively, 0

1

1
0

Α
α
α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, and Α̂ the matrix A with the unknown parameters 

substituted by their estimators. The estimator of β based on the calibration data alone 

is ( )ˆ -1
INT c c c cβ X X X y′ ′= , and ( ) ( )2

|
ˆ -1

INT c cβ X XY XVar σ ′= .  

‘As external’ estimator, ˆ
EXTβ  

The ‘as external’ estimator is obtained by first estimating ( )0 1,α α  by ( )0 1ˆ ˆ,α α  

from the calibration sample, calculating 0 1ˆ ˆ ˆi ix wα α= +  for each observation in the 
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primary sample, and estimating the slope of the regression of iy  on ˆix  using least 

squares. The design matrix for this model can by written as ˆ
pX W Α= , so that: 

( )ˆ ˆ ˆ ˆ
-1-1 -1

EXT p p p pβ Α W W W y Α γ′ ′= =               (3.4) 

where γ̂  is the least squares estimators of the slope of Y on W, based on the primary 

data (Rosner et al. 1989, Carroll et al. 1995, Thurston et al. 2003, Chapter 2 of this 

Dissertation). Using the delta method, the variance of ˆ
EXTβ can be approximated by 

     ( ) ( ) ( )2 2 2
1, | |

ˆ -1-1-1 -T
EXT c c p pβ Α W W W W ΑEXT X W Y WVar β σ σ⎡ ⎤′ ′≈ +⎢ ⎥⎣ ⎦

            (3.5) 

 In epidemiology, this estimator has been used mostly for logistic models for 

binary health responses, when the calibration sample is relative small and the disease 

rare (for example, Willett et al. 1992). Since there are only a few health events in the 

calibration sample, the efficiency gains from incorporating information provided by 

ˆ
INTβ  may be negligible. However, Spiegelman et al. (1997) also advocated the use of 

this estimator for linear and failure time regression. 

 The moments of the sampling distribution of 1,
ˆ

EXTβ and of its estimated 

variance are not defined (Chapter 2, this Dissertation), because the sampling 

distribution of 1α̂  has positive mass at 0. For small calibration sample sizes and large 

measurement error variance, this results in an erratic behavior of 1,
ˆ

EXTβ  and associated 

confidence intervals. However, as the calibration sample size increases, the sampling 

distribution of 1,
ˆ

EXTβ converges to a normal centered on the target parameter.  

Carroll, Ruppert and Stefanski (CRS) estimator, ˆ
CRSβ   

This estimator is obtained by fitting a single regression of Y to the true X when 

available, and to the estimated E(X|W) otherwise. The parameters of the regression of 

X on W are estimated from the calibration data. Carroll et al. (1995) also suggest 

including a dummy variable indicating whether X is observed or not. The model under 

consideration is: 
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ˆ
p p

CRS
c c

y W Α β
y X

E
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

Therefore, 

( ) ( )
( ) ( )

1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

CRS p p c c p p c c

p p c c p p EXT c c INT

  β Α W W Α + X X Α W y + X y

Α W W Α + X X Α W W Αβ + X X β

−

−

′ ′ ′ ′ ′ ′= =

′ ′ ′ ′ ′ ′
             (3.6) 

The asymptotic variance of this estimator is (Thurston et al. 2005): 

( ) ( )
( ) ( )( ) ( ) ( )( )

( )

1

1

ˆ

ˆ ˆ

p p c c

p p EXT p p c c INT c c

p p c c

                          β Α W W Α + X X

Α W W Α β Α W W Α X X β X X

                                     Α W W Α + X X

Var

Var Var

−

−

′ ′ ′= ×

⎡ ⎤′ ′ ′ ′ ′ ′+ ×⎣ ⎦

′ ′ ′

         (3.7) 

Spiegelman, Carroll and Kipnis (SCK) estimator, ˆ
SCKβ . 

This estimator is an inverse-variance weighted average of ˆ
INTβ and ˆ

EXTβ : 

( ) ( ) ( ) ( )
11 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

EXT INT EXT EXT INT INTβ β β β β + β βSCK Var Var Var Var
−− − − −⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

         (3.8) 

 
Spiegelman et al. (2001) note that, as long as the weights are estimated 

accurately, this choice of weights gives the estimator with the minimum asymptotic 

variance among all unbiased linear combinations of ˆ
INTβ and ˆ

EXTβ . The approximate 

asymptotic variance is (Spiegelman et al. 2001): 

( ) ( ) ( )

( ) ( ) ( )

11 1

11
2 2 2 2

1, | | |

ˆ ˆ ˆ
EXT INT

-1-1
c c p p c c

              β β β

Α W W W W Α X X

SCK

EXT X W Y W Y X

Var Var Var

β σ σ σ

−− −

−−
−

⎡ ⎤= + =⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤′ ′ ′ ′+ +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

            (3.9) 

 
 Focusing only on the slope 1β , the SCK estimator and its estimated variance 

are: 
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1, 1 1

1 1 1 11, 1,

3 2 2 2 2 2
ˆ1 ˆ ˆ1 1

1, 1 1,2 2 2 2 4 2 2 2 2 2 4 2
ˆ ˆˆ ˆ ˆ ˆ1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

INT

INT INT

SCK INT
β α γ

α γ α γβ β

α σ γ σ α σ
β γ β

γ σ α σ α σ γ σ α σ α σ
+

= +
+ + + +

          (3.10) 

( ) ( )1 11,

1 1 1,

2 2 2 2 2
ˆ ˆ ˆ1 1

1, 2 2 2 2 4 2
ˆˆ ˆ1 1 1

ˆ ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
INT

INT

SCKVar
α γβ

α γ β

σ γ σ α σ
β

γ σ α σ α σ

+
=

+ +
           (3.11) 

where
1,

2
ˆˆ

INTβ
σ , 

1

2
ˆˆασ  and 

1

2
ˆˆγσ are the estimated variances of 1,

ˆ
INTβ , 1α̂  and 1̂γ , 

respectively. Note that as 1ˆ 0α → , 1,
ˆ

SCKβ  converges to 1,
ˆ

INTβ . The moments of the 

sampling distribution of 1,
ˆ

SCKβ  may not be defined, however, because the joint 

sampling distribution 1α̂  and 1̂γ  has positive mass at (0, 0). In practice, it is unlikely 

that both 1α̂  and 1̂γ  become close to 0, unless 1γ  and, therefore, 1β  is close to 0.  

Regression calibration test and confidence intervals are usually based on the 

asymptotic normality of the sampling distribution of the estimators, with the unknown 

parameters of their asymptotic variances substituted by their estimators. Bootstrap 

inferences can also be used (Carroll et al. 1995).  

Thurston et al. (2005) compared the asymptotic efficiency of the RC estimators 

when the regressions of Y on X and X on W are linear. Asymptotically, they found that 

the SCK estimator is uniformly more efficient than the ‘as external’ and CRS 

estimators. The asymptotic standard errors of the three estimators are approximately 

the same when the correlation between X and W is close to 1, otherwise 1,
ˆ

EXTβ  is less 

efficient than 1,
ˆ

SCKβ and 1,
ˆ

CRSβ . When the correlation between Y and X is low and the 

proportion of data in the validation study is large, the standard error of 1,
ˆ

CRSβ  was 

approximately the same as that of 1,
ˆ

SCKβ . Thurston et al. (2005) do not study the finite 

sample performance of the alternative RC estimators, or compare their performance to 

the ML or internal estimators. 
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Spiegelman et al. (2000, 2001) compared the bias, mean squared error, size, 

power and coverage probabilities of 1,
ˆ

SCKβ , 1,
ˆ

EXTβ and the MLE for a logistic regression 

with covariate misclassification and measurement error, using simulation. The MLE 

was generally superior to the RC estimators for all the examined criteria, but 1,
ˆ

SCKβ was 

a clear improvement over 1,
ˆ

EXTβ . The SCK estimator was nearly as efficient as the 

MLE for the largest validation sample size that they examined (346 subjects). In their 

simulations, likelihood inference relied upon the asymptotic normality of the sampling 

distribution of the MLE, with the asymptotic standard error estimated from the 

empirical information matrix. If the profile likelihood is asymmetric, inference based 

on the likelihood ratio may perform better, in terms of efficiency and coverage, than 

Wald-based inference. 

 

3.4. Regression calibration and maximum likelihood in the normal-normal model 
 
3.4.1. Maximum likelihood in the normal-normal model 

The joint density function of Y, observed in the primary study, and Y and X, 

observed in an internal calibration dataset, conditional on the observed values of W, 

can be decomposed as: 

( ) ( ) ( ) ( )
1 1

| | |y,x | w
n n m

i i i i i i
i i n

f f y w f y x f x w
+

= = +

=∏ ∏  

 Typically, ( )|f Y W cannot be obtained analytically, so numerical integration 

may be necessary. However, if the conditions stated in section 3.3 hold and, in 

addition, ( ),ε δ from equations 3.1 and 3.2 are normally distributed, the log likelihood 

function is:  
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2 2 2
| | | 1 | | |

2

, 0 1 0 1 12 2 2
1| 1 |

2 2
0 1 0 12 2

1 1| |

, , log log log
2 2 2

1              
2

1 1        
2 2

β,α Y X X W Y X X W Y X X W

n

p i i
iY X X W

n m n m

i i i i
i n i nY X X W

n m ml

y w

y x x w

σ σ σ β σ σ σ

β β α β α
σ β σ

β β α α
σ σ

=

+ +

= + = +

= − + − −

− − − −
+

− − − − − −

∑

∑ ∑

          (3.12) 

There is not a closed form solution for the MLE, but equation (3.12) can be 

easily maximized using standard software (such as the S-Plus ‘nlmin’ or R ‘nlm’ 

functions).   

When inference is based on an external, rather than internal, calibration study, 

the estimator of 2
|Y Xσ obtained by maximizing the likelihood function can be negative. 

If 2
|ˆ 0Y Xσ > , the RC and ML estimators are equivalent. Otherwise, imposing the 

constraint that 2
|ˆ 0Y Xσ >  induces a bound on the MLE, while the RC estimator can 

behave erratically (Chapter 2, this Dissertation). As a result, the MLE is more efficient 

than the RC estimator but, for some values of the parameters, the null sampling 

distribution of the likelihood ratio test statistic cannot be approximated by a 2χ  

distribution, even for large sample sizes. When an internal calibration dataset is 

available, however, the estimator of 2
|Y Xσ obtained by maximizing equation (3.12) is 

always positive. Therefore, neither the bound, nor the problems with inference 

associated with setting 2
|Y Xσ to 0 would be present in this case. 

 The profile log likelihood function of β1 can be obtained by evaluating the log 

likelihood at the conditional MLE of ( )2 2
0 1 0 | |, , , ,Y X X Wα α β σ σ for fixed 1β . Figure 3.1 

shows some examples of the profile likelihood for simulated data. Although the profile 

likelihood can be bimodal for small sample sizes, it becomes unimodal as the 

calibration sample size is increased. Even for relatively large sample sizes, however, 

the profile likelihood can be relatively asymmetric around the MLE, suggesting that 

inference based on the asymptotic normality of the MLE may not be adequate 
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(Fig.3.1). For very small sample sizes, a confidence interval obtained by the set of 

values of β1 ‘not rejected’ by a likelihood ratio test may include two disjoint intervals. 
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Figure 3.1.  Log profile likelihood of 1β  for simulated data with different 
calibration sample sizes (m) and correlations between Y and X, and X and W. In 
this example, the true value of 1β  is 1. The vertical lines indicate the location 
of the ML, SCK and CRS estimators. 
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In simulations, this occurred about 13% of the time when the correlation between Y 

and X and X and W were both low, and the calibration sample consisted of 10 

observations.  As the sample size increased to 25 observations, or the correlation 

between Y and X to 0.75, the proportion of simulated samples with disjoint intervals 

decreased to approximately 1%, and it was 0 for all other scenarios. 

 
3.4.1. Asymptotic relative efficiency of the regression calibration and maximum 
likelihood estimators 

 Thurston et al. (2005) provide formulae for the asymptotic variance of the ‘as 

external’, CRS and SCK estimators of β1 (Appendix H). The asymptotic variances are 

functions of the correlation between Y and X, YXρ , between X and W, XWρ , and the 

ratio of the sample sizes of the calibration and primary datasets, scaled 

( ) ( )/Var Y nVar X⎡ ⎤⎣ ⎦ . They showed that the ‘as external’ estimator is uniformly less 

efficient that the CRS and SCK, and therefore will not be considered here. 

When internal calibration data is available, it is always possible to estimate the 

coefficients of the regression of Y on X with the calibration data alone, but the primary 

data can contribute additional information and result in increased efficiency. 

Therefore, 1,
ˆ

INTβ  provides a useful baseline to compare the relative efficiency of the 

other estimators, and to judge the gains incurred by adding the primary study data. The 

variance of 1,
ˆ

INTβ can be written as: 

( ) ( )
2

2
1, 2

ˆ 1Y
INT YX

X

nVar
n m
σβ ρ
σ

⎡ ⎤= −⎢ ⎥⎣ ⎦
 

The asymptotic standard error of the MLE can be approximated through a Monte 

Carlo simulation, setting a very large m and n. Figure 3.2 shows the asymptotic 

standard deviation of the CRS, SCK, and the estimated standard error of the MLE, 

relative to the standard deviation of 1,
ˆ

INTβ , when m / n = 1/5. Asymptotically, the MLE 

is more efficient than any of the RC estimators. As the measurement error decreases, 

the efficiency of the CRS and SCK estimators approaches that of the MLE. The most 
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surprising result, though, is that the CRS estimator can be less efficient than the 

estimator calculated from the internal validation alone, ignoring the information from 

the primary study altogether, if the correlation between Y and X is medium to high. 
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Figure 3.2. Asymptotic standard deviations of the CRS, SCK estimators, and 
standard errors of the MLE, relative to the standard deviation of the estimator 
based on the calibration data alone. The ratio of the calibration to primary 
study sample size is 1/5. The standard error of the MLE is estimated from a 
Monte Carlo simulation with a calibration sample size of 5000. 
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3.5. Simulations 

3.5.1. Study design 

 The goal of this simulation is to investigate how the properties of the 

estimators and confidence intervals varied with the sample size of the calibration study 

and strength of the association between Y and X, and X and W, measured by their 

correlations. Since all estimators incorporate information from the calibration and 

primary data, we designed a complete factorial study in which the correlation between 

Y and X, and between X and W was approximately 0.36 or 0.75. These values 

correspond to the low and high ends of the correlations between the gold standard and 

surrogate observed in studies of association between diet and disease (Willet et al. 

1988). The calibration sample size ranged between 10 and 500 observations. The 

values of the parameters used in the simulations are shown in Table 3.1. 

For each scenario, we calculated the internal, ‘as external’, CRS, SCK and ML 

estimators. We also estimated confidence intervals based on the asymptotic normality 

and approximate asymptotic standard errors of the sampling distribution of the various 

RC estimators (denoted by ‘Wald’), on the percentiles of the bootstrap distribution of 

the RC estimators (Efron and Tibshirani 1993), and on the inversion of a likelihood 

ratio test. The results are based on 2000 simulated primary and calibration samples. 

Detailed results from the simulations are included in tables I.1 – I.6, appendix I. 

 

 

Table 3.1. Model parameters of the simulation scenarios. The parameters not shown in 
the table are ( ) ( )0 1 0 1, , , 0,1,1,1α α β β = , n = 1000 and m = (10, 25, 50, 100, 200, 500). 

 
Corr(X , W) 2

|X Wσ  Corr(Y , X) 2
|Y Xσ  

High – 0.75 0.342 High – 0.75 0.252 
Low – 0.36 1.002 
High – 0.75 0.702 Low – 0.36 0.752 Low – 0.37 2.002 

. 
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3.5.2. Performance of the estimators. 

 The SCK and ML estimators are at least as efficient as the alternatives in all 

the scenarios examined, but are not very different from each other (Fig. 3.3-3.5).  In 

terms of RMSE (Fig. 3.4) and the spread of the sampling distribution (Fig. 3.5), the 

MLE is slightly more efficient than the SCK estimator when the correlation between X 

and W is 0.36, but indistinguishable when the correlation is 0.75. However, when the 

calibration sample size is small, the MLE tends to be positively biased, while the SCK 

tends to be negatively biased. If Corr(X, W) is low, these biases can be relatively large. 

The SCK estimator is an inverse-variance weighted average of  1,
ˆ

INTβ  and 1,
ˆ

EXTβ . The 

latter is proportional to 1
1α̂
− , so large values of 1,

ˆ
EXTβ  are associated with small values 

of 1α̂ . However, its estimated variance is proportional to 4
1α̂
− . Therefore, smaller values 

of 1,
ˆ

EXTβ would tend to receive a greater weight than large values, which would 

explain the negative bias.  

 The estimator of 1β  from the calibration data alone performs relatively well, 

and often better than some of the other estimators. Of course, 1,
ˆ

INTβ  is unbiased for all 

sample sizes, while the other estimators are not. The RC estimators were clearly more 

efficient than 1,
ˆ

INTβ  only when the correlation between Y and X is low and that 

between X and W high. In all other cases, the RMSE of 1,
ˆ

INTβ  is less than that of 1,
ˆ

EXTβ  

for all sample sizes, often substantially so, and close to or less than that of the CRS 

estimator. While the RMSE of the SCK and ML estimators is less than that of 1,
ˆ

INTβ , 

the improvement is sometimes negligible.  
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Figure 3.3. Relative bias of the internal, ‘as external’, CRS, SCK and ML 
estimators of the slope in simple linear regression with measurement error. The 
distributions of Y|X and X|W are normal, with a primary sample size of   n = 
1000 and a calibration sample size of 25m ≥ . The results are based on 2000 
simulated primary and calibration samples.   
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Figure 3.4. Relative root mean squared error of the internal, ‘as-external’, 
CRS, SCK and ML estimators of the slope in simple linear regression with 
measurement error.  The distributions of Y|X and X|W are normal, with a 
primary sample size of n = 1000 and a calibration sample size of 25m ≥ . The 
results are based on 2000 simulated primary and calibration samples.     
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Figure 3.5. Selected percentiles of the Monte Carlo sampling distribution of the 
SCK and ML estimators of the slope in simple linear regression (with true 
slope equal one) with measurement error. The distributions of Y|X and X|W are 
normal, with a primary sample size of n = 1000 and a calibration sample size 
of 25m ≥ . The results are based on 2000 simulated primary and calibration 
samples.   
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 3.5.3. Performance of the confidence intervals. 

Intervals based on inverting a LRT test are, on average, shorter than intervals 

based on the asymptotic normality of the sampling distribution of the SCK estimator 

or the bootstrap, even though sometimes they can be very close (Fig 3.6). The average 

length of the exact interval of 1,
ˆ

INTβ  is always greater that that of the SCK or ML 

estimators. However, the shorter CIs of the SCK and ML estimators are associated 

with a substantial increase in their error rate, especially for small sample sizes (Figs. 

3.7-3.8). For example, when the correlation between X and W is low and m=50, the 

total error rate of the Wald-based 95% confidence interval is almost 10%, even though 

the average length of the exact confidence interval of 1,
ˆ

INTβ  is only 35% greater than 

that of the Wald-based confidence interval. Likelihood ratio and bootstrap confidence 

intervals have coverage rates that are closer to their nominal rates.  

When the calibration sample is small, the ‘misses’ of the SCK and LRT 

confidence intervals tend to be greater in one direction. However, the true value of the 

parameter tends not to be included in the SCK intervals when greater than the SCK 

estimator, while the opposite is true for the LRT intervals. This difference may be 

explained by the negative and positive bias of the SCK and ML estimators, 

respectively.   
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Figure 3.6. Average length of the estimated 95% confidence interval of the 
slope in simple linear regression with measurement error. The distributions of 
Y|X and X|W are normal, the primary sample size is n = 1000 the calibration 
sample size is m. The intervals are based on the t-distribution for the internal 
estimator; on a Wald approximation and bootstrap percentile for the SCK 
estimator; and on inverting the likelihood ratio test. The results are from 2000 
simulated primary and calibration samples.   
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Figure 3.7. Percent of samples for which the true slope in simple linear 
regression with measurement error is greater than the upper limit of a 95% 
confidence interval. The distributions of Y | X and X | W are normal, with a 
primary sample size of n = 1000 and a calibration sample size of m. The 
intervals are based on a Wald approximation and bootstrap percentile for the 
SCK estimator, and inversion of the likelihood ratio test. The results are from 
2000 simulated primary and calibration samples. 
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Figure 3.8. Percent of samples for which the true slope in simple linear 
regression with measurement error is less than the lower limit of a 95% 
confidence interval. The distributions of Y | X and X | W are normal, with a 
primary sample size of n = 1000 and a calibration sample size of m. The 
intervals are based on a Wald approximation and bootstrap percentile for the 
SCK estimator, and inversion of the likelihood ratio test. The results are from 
2000 simulated primary and calibration samples. 
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3.5.4. Robustness. 

There is a natural concern over the robustness of maximum likelihood 

inferences against distributional misspecifications. The existence of a calibration study 

in which the response, explanatory and surrogate variables are observed alleviates 

those concerns somewhat, because the assumed distributions can be checked against 

observed data. Nevertheless, the assessment may be difficult if the sample size and 

departures from the assumed distribution are small. In this section, we check the 

performance of the RC and ML estimators when the distribution of the error term of 

the regression of X on W follows a t-distribution with 5 degrees of freedom, or a 

lognormal distribution. The settings are the same as in the previous sections, and the t 

and lognormal distributions have been scaled to keep the same correlation between X 

and W and Y and X as before. Figure 3.9 shows the normal probability plot of those 

distributions when 2 2
| 0.75X Wσ = .  

The misspecifications of the distribution of the error term of the regression of 

X on W considered in this study have very little effect in any of the measurement of 

performance examined (Fig. 3.10-3.14 and tables I.5-I.7). Although there is a slight 

increase in bias and decrease in efficiency, which tends to be greater for the lognormal 

than for the t-distribution, the magnitude of the changes are minimal. Compared with 

the scenarios when the distribution of X on W was correctly specified, the relative 

performances of the estimators remain unchanged. Therefore, likelihood inference 

does not seem to be affected by small departures from the normal assumption of the 

distribution of X given W examined in this study. 
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Figure 3.9. Normal probability plots of the distribution of the error term in the 
regression of X on W.
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Figure 3.10. Robustness results: Relative bias of the internal, RC and ML estimators 
of the slope in simple linear regression with measurement error. The distributions Y|X 
is normal, and the distribution of the regression error of X|W is either a t-distribution 
with 5 d.f. or a lognormal distribution. The primary sample size is          n = 1000 and 
the internal calibration sample size is m. The results are based on 2000 simulated 
primary and calibration samples. 
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Figure 3.11. Robustness results: Relative root mean squared error of the internal, RC 
and ML estimators of the slope in simple linear regression with measurement error. 
The distributions Y|X is normal, and the distribution of the regression error of X|W is 
either a t-distribution with 5 d.f. or a lognormal distribution. The primary sample size 
is n = 1000 and the internal calibration sample size is m. The results are based on 2000 
simulated primary and calibration samples. 
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Figure 3.12. Robustness results: Average length of the estimated 95% confidence 
interval of the slope in simple linear regression with measurement error. The 
distributions Y|X is normal, and the distribution of the regression error of X|W is either 
a t-distribution with 5 d.f. or a lognormal distribution. The intervals are based on the t-
distribution for the internal estimator; on a Wald approximation and bootstrap 
percentile for the SCK estimator; and on inverting the likelihood ratio test. The results 
are from 2000 simulated primary and calibration samples.   
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Figure 3.13. Robustness results: Percent of samples for which the true slope in 
simple linear regression with measurement error is greater than the upper limit 
of a 95% confidence interval. The distributions Y|X is normal, and the 
distribution of the regression error of X|W is either a t-distribution with 5 d.f. 
or a lognormal distribution. The primary sample size is n = 1000 and the 
internal calibration sample size is m. The intervals are based on a Wald 
approximation and bootstrap percentile for the SCK estimator, and inversion of 
the likelihood ratio test. The results are from 2000 simulated primary and 
calibration samples. 
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Figure 3.14. Robustness results: Percent of samples for which the true slope in 
simple linear regression with measurement error is less than the lower limit of 
a 95% confidence interval. The distributions Y|X is normal, and the distribution 
of the regression error of X|W is either a t-distribution with 5 d.f. or a 
lognormal distribution. The primary sample size is n = 1000 and the internal 
calibration sample size is m. The intervals are based on a Wald approximation 
and bootstrap percentile for the SCK estimator, and inversion of the likelihood 
ratio test. The results are from 2000 simulated primary and calibration samples. 
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3.6. Conclusions 

 If the distribution of the response variable given the true explanatory variable, 

and the explanatory variable given the surrogate are both normal, the maximum 

likelihood estimator is asymptotically more efficient than the proposed regression 

calibration estimators. However, simulation results indicate that the estimator 

proposed by Spiegelman, Carroll and Kipnis (2001) is nearly as efficient as the 

maximum likelihood estimator, particularly when the measurement error is small. This 

estimator is defined as an inverse-variance weighted average of the estimator of the 

regression parameters obtained from the calibration data alone, and the regression 

calibration estimator obtained by treating the internal calibration data as an external 

calibration study. It is easy to compute with existing software, and does not require 

special iterative calculations, even when the distributions involved are not normal. 

Therefore, from a practical point of view, it is a sensible alternative to the maximum 

likelihood estimator. 

 Confidence intervals based on the asymptotic normality and estimated standard 

errors of Spiegelman’s et al. (2001) estimator, however, tend to have a high error rate 

for small calibration sample sizes. Inferential properties can be improved by using the 

bootstrap, but this reduces the simplicity and appeal of the estimator. Confidence 

intervals calculated by inverting a likelihood ratio test are somewhat more efficient 

and accurate than the bootstrap. 

  Other seemingly sensible estimators can be substantially less efficient than the 

MLE, and may even result in an actual loss of efficiency compared with estimators 

obtained from the calibration data alone. This is the case, for example, with the 

estimator obtained from the regression of Y on X when available, and on the estimated 

E(X | W) otherwise. If the correlation between the response and true explanatory 

variable is high, this estimator is less efficient than the estimator that ignores the 

primary study altogether.  

Maximum likelihood inference requires the specification of the distributions of 

Y|X and X|W, while regression calibration only requires specification of the moments 
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of the distributions. Simulations show that the maximum likelihood estimator, 

however, does not seem to be affected by small misspecification of the error of the 

regression of X on W. Its efficiency, both in overall terms and relative to the other 

estimator considered here, remained virtually unchanged. Although Spiegelman’s et 

al. (2001) estimator is simple and transparent, because of the better inferential 

properties and relative robustness, we believe that likelihood inference may be worth 

the extra difficulty.  
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4. CONCLUSIONS 

 

Regression calibration is a simple, transparent and intuitive approach to 

estimate regression models with measurement error. In their monograph, Carroll, 

Ruppert and Stefanski (1995, p.142) note that “traditional folklore” suggests that, in 

many statistical models, simpler methods such as regression calibration perform just 

as well as likelihood methods, but they remark that there is little documentation to 

support this belief. Since Carroll et al. (1995) made this observation, a few studies 

have compared versions of regression calibration and likelihood methods, some 

supporting the folklore (for example, Spiegelman et al. 2001, Thoresen and Laake 

2000), while others indicating that the maximum estimator can be substantially more 

efficient (for example, Spiegelman et al. 2000, Suh and Schafer 2002). Those studies 

rely on simulation of a limited number of scenarios, because analytical results or 

extensive simulation are not feasible in the complex settings that they consider.  

 The results from chapter 2 partially support this folklore, because for normal 

linear regression with an independent calibration dataset, the regression calibration 

estimator is equivalent to the maximum likelihood estimator, provided a natural 

estimate of variance is non-negative. In practice, this result offers a check for judging 

the suitability of regression calibration. However, if the estimate of this variance is 

negative, the regression calibration estimator can be very unstable and attain 

unreasonably large values, while the MLE is bounded and closer to the target 

parameter. Negative variance estimates are likely if the uncertainty on the estimation 

of E(X | W), the conditional expectation of the true explanatory variable given its 

surrogate, is large. However, they are also likely if 1β  is close, in magnitude, 

to 2 2
| |Y W X Wσ σ , where 1β is the slope of the regression of the response variable Y on 

the true explanatory variable X, and 2
|Y Wσ  and 2

|X Wσ  the variance of the regression of Y 

on the surrogate variable W and the measurement error variance, respectively. This 
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situation reflects a strong relationship between Y and X, and a relatively large 

measurement error variance.  

Asymptotically, the regression calibration and maximum likelihood estimators 

and their sampling distributions are equivalent, and converge to a normal distribution. 

However, for finite sample sizes, the sampling distribution of the regression 

calibration estimator can be very skewed, and even bimodal. One-sided error rates of 

confidence intervals based on the asymptotic normality and estimated standard errors 

are inaccurate. Two-sided type I error rates may be more accurate, but this is 

misleading because it is due to the one-sided error rates tend to be too high in one tail 

and too low in the other. In addition, the moments of the sampling distribution of the 

estimated asymptotic variance are not defined, resulting in large and erratic values for 

small calibration sample sizes. Confidence intervals calculated from the percentiles of 

the bootstrapped sampling distribution of the regression calibration estimator is more 

accurate than those based on approximate normality, in terms of symmetry and overall 

error rate, with only a relatively small increase in length.  

Inference based on the likelihood ratio results in the shortest confidence 

intervals, while keeping a coverage rate close to the nominal rate. The efficiency gains 

arise in part from the bound imposed by constraining that the estimated variance of the 

conditional distribution of Y on X to be positive. However, under this constraint and 

for some values of the parameters, the sampling distribution of the LRT statistic 

cannot be approximated by a 2χ distribution. This problem is apparent for small 

sample sizes in general, but becomes increasingly important when the true slope of the 

regression of Y on X is close, in magnitude, to the ratio of the standard deviations of Y 

and X, given the surrogate variable. Simulations indicated that, in those cases, LRT 

confidence intervals were conservative.  

Chapter 3 discusses the case when the true explanatory variable is observed in 

a subset of the data. The maximum likelihood estimator is asymptotically more 

efficient than the proposed regression calibration estimators, but the difference 

decreases as the measurement error variance decreases. Through an extensive 
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simulation study, we show that if the distribution of the response variable given the 

true explanatory variable, and the explanatory variable given the surrogate are both 

normal, the estimator proposed by Spiegelman, Carroll and Kipnis (2001) is nearly as 

efficient as the maximum likelihood estimator for a range of calibration sample sizes. 

This estimator is defined as an inverse-variance weighted average of the estimator of 

the regression parameters obtained from the calibration data alone, and the regression 

calibration estimator obtained by treating the internal calibration data as an external 

calibration study. Spiegelman’s et al. (2001) estimator can be computed with little 

more than standard software and, therefore, from a practical point of view, it is a 

sensible choice. However, confidence intervals based on the asymptotic normality and 

estimated standard errors of Spiegelman’s et al. (2001) estimator, tend to have a high 

error rate for small calibration sample sizes. Inferential properties can be improved by 

using the bootstrap, but this reduces the simplicity and appeal of the estimator. 

Confidence intervals calculated by inverting a likelihood ratio test are somewhat more 

efficient and accurate than the bootstrap. 

  Other seemingly sensible versions of the regression calibration estimator can 

be substantially less efficient than the MLE, and may even result in an actual loss of 

efficiency compared with simple estimators obtained from the calibration data alone. 

If the correlation between the response and true explanatory variable is high, the 

estimator derived from the regression of Y on X when available, and on the estimated 

E(X | W) otherwise, is less efficient than the estimator that ignores the primary study 

altogether.  

Although this study focuses on regression calibration inference when both the 

distribution of Y given X and of X given its surrogate are normal, the findings apply 

more generally. For generalized linear models with an external calibration dataset, the 

regression calibration estimator can be written as the ratio of the slope of the 

regression of Y on W to the slope of the regression of X on W.  Since the estimators of 

those slopes are approximately normal, the results in this paper regarding the sampling 

distribution of the regression calibration estimator and implications for inference 
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remain approximately valid. However, in those cases, as when the calibration dataset 

is internal, the regression calibration and maximum likelihood estimators may not be 

equivalent.  

Even though regression calibration estimators are simple and, in some 

instances, equivalent to the maximum likelihood estimator, likelihood ratio inference 

is shown to be more accurate and efficient than inference based on the approximate 

normality of the regression calibration estimator. The existence of a calibration study 

in which both the true explanatory variable and its surrogate are observed alleviate 

some of the concerns over the robustness of maximum likelihood inferences against 

possible distributional misspecifications. When a calibration study is available, the 

distribution of the true explanatory variable does not have to be specified, and the 

adequacy of all the assumed distributions can be assessed with the calibration data. 

For complex cases, however, likelihood analysis can be challenging computationally 

for realistic distributional assumptions. However, if data collection and study involved 

significant time and cost, the additional effort in doing a likelihood analysis would be 

small for realizing greater efficiency and more powerful tests and confidence intervals. 
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Appendix A. Regression calibration and method of moments 

Suppose that ( ),i iy w , 1,...,i n= , are observed, and that 

0 1i i iy xβ β ε= + +  

with ( ) 0iE ε = , ( ) 2
|i Y XVar ε σ= , and ( ), 0i jCov ε ε =  for i j≠ . 

Suppose a classical error structure, with i i iw x δ= + , ( ) 0iE δ = , ( ) 2
i MVar δ σ= , 

( ), 0i jCov δ δ =  for i j≠ , and iε  and iδ  independent of each other.  

Suppose that ( ) 0 1|i i iE x w wα α= + , known. Let 1w∗  represent ( )|i iE x w . 

Then, the RC estimator of 1β  is 1,
ˆ W Y

RC
W W

S
S

β ∗

∗ ∗

= , where ( )( )
1

1
1

n

i iW Y
i

S w w y y
n∗

∗ ∗

=

= − −
− ∑  

and ( )2

1

1
1

n

iW W
i

S w w
n∗ ∗

∗ ∗

=

= −
− ∑ . This is equivalent to 1,

1

1ˆ WY
RC

WW

S
S

β
α

= . If and iε  and iδ  

normally distributed, then 
2

1 2 2
X

X M

σα λ
σ σ

= =
+

, the reliability of the measurements, and 

2
1

2 2
WY X

WW X M

SE
S

β σ
σ σ

⎛ ⎞
=⎜ ⎟ +⎝ ⎠

. Therefore, if ( )|i iE x w  or 1α  are known, ( )1, 1
ˆ

RCE β β= . In 

addition, the RC and ML estimators are equivalent. 

Without any distributional assumptions, 1,
ˆ

RCβ  is a method of moments 

estimator, because ( ) 2
1WY XE S β σ=  and ( ) 2 2

WW X ME S σ σ= + , so ( ) 2
WW XE Sλ σ= . 
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Appendix B. Derivation of the regression calibration estimator. 

B.1. Linear model 

Let Y denote the response variable, X the explanatory variable measured with 

error, W a surrogate variable for X, and Z a set of q other explanatory variables. 

Suppose that: 

0 1Y Xβ β ε′= + + +zZ β               (B.1) 

0 1X Wα α δ′= + + +zZ α               (B.2) 

0 1Y Wγ γ ζ′= + + +zZ γ               (B.3) 

where ( )0 1, ,β β ′′= zβ β ,  ( )0 1, ,α α ′′= zα α  and ( )0 1, ,γ γ ′′= zγ γ are unknown regression 

coefficients; and ( ), ,ε δ ζ are random variables. 

Interest is in inference about 1β . The study data consists on a primary sample 

( ), ,i i iy w ′z , 1,...,i n= , and an independent calibration sample consisting of 

observations ( ), ,i i ix w ′z , 1,...,i n n m= + + . Assume that observations with different 

values of i are independent. The subindex p indicates the primary study, and c the 

calibration study.  Thus, the available data are ( )p p, py ,w Z  and ( )c c, cx ,w Z .  

The RC estimator is obtained after substituting ,p ix  in (B.1) by an estimator of 

its expectation, given ,p iw  and ,p iz . Let this estimator be , 0 1 , ˆˆ ˆ ˆp i p ix wα α ′= + + p,i zz α , 

where ( )0 1ˆ ˆˆ ˆ, ,α α ′= zα α is an estimator ofα . Then, the model actually fitted is: 

( ) ( )0, 1, , , ,ˆ| , 1i z,RC p,i RCZ = z z β z Αβi RC RC p i p i p iE Y W w x wβ β ′ ′= = + + =  

where
0

1

ˆ1
ˆ ˆ0

ˆ qI

α
α

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1xq

1xq

qx1 z

0
Α 0

0 α
, which will be assumed to be positive definite w.p.1, and 

( )0, 1,, ,RC z,RCβ βRC RCβ β ′′= . Let ( )p p, pW = 1,w Z . The RC estimator is: 
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( ) ( )1 11ˆ ˆ ˆ ˆ ˆ ˆ ˆ
− −−′ ′ ′ ′ ′ ′= = = -1

RC p p p p p p p pβ Α W W Α Α W y Α W W W y Α γ  
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γ αβ

 

 

B.2. Generalized linear model with canonical link  

 Suppose that Y|X, Z follows a distribution from a regular exponential family 

with mean ( )| ,E Y X Z  and a scale parameter φ. Let  

( ) 0 1| ,i ig E Y X x xβ β ′= = + +⎡ ⎤⎣ ⎦i i zZ = z z β  

0 1X Wα α δ′= + + +zZ α  

where ( )g ⋅ is the canonical link function for the distribution of Y | X, Z, and the symbol 

definitions and data structure are as in the previous section.  

 Let ( )1 iw ′′=i iw z . Write the log likelihood for the regression of Y on W 

and Z, based on the primary data, is: 

( ) ( ) ( ){ }
1

n

i i
i

l y b vϕ
=

′ ′∝ −⎡ ⎤⎣ ⎦∑ i iγ w γ w γ  

where ( )b ⋅  is the cumulant generating function and vi is a known weight. 

Note that  
( ) ( )0 1 ,

ˆ ˆˆˆ ˆ ˆ1 1 | ,i p,i z p,i i p,i iw Α z α z Z = z z xp i iw E X W wα α ⎡ ⎤′ ′ ′ ′ ′= + + = = =⎣ ⎦   

 
Multiply terms in ( )l γ  by ˆ ˆ -1ΑΑ , as shown below:  

( ) ( ) ( ){ } ( ) ( ){ }
1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ-1 -1 -1 -1
i i i iγ w ΑΑ γ w ΑΑ γ x Α γ x Α γ

n n

i i i i
i i

l y b v y b vϕ ϕ
= =

⎡ ⎤ ⎡ ⎤′ ′ ′ ′∝ − = −⎣ ⎦ ⎣ ⎦∑ ∑  

 Therefore, the coefficients of the generalized lineal model 
( )ˆ| ,ig E Y X x=⎡ ⎤⎣ ⎦iZ = z , i.e., the RC calibration estimator, are ˆ -1Α γ . An alternative 

proof was given by Thurston et al (2003). 
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Appendix C. Distribution of the ratio of two independent, normally distributed 
random variables 

C.1. Density and cumulative distribution functions 

Let ( )2
ˆ1 1ˆ ~ ,N γγ γ σ , ( )2

ˆ1 1ˆ ~ ,N αα α σ , independent, where 

( ) ( )

2
|2

ˆ 1 2
ˆ

1
p

Y W

W

Var
n Sγ

σ
σ γ= =

−
, ( ) ( )

2
|2

ˆ 1 2ˆ
1

c

X W

W

Var
m Sα

σ
σ α= =

−
, ( )22

1

1
1p

n

W i p
i

S w w
n =

= −
− ∑  and 

( )22

1

1
1c

n m

W i c
i n

S w w
m

+

= +

= −
− ∑  

  Then, 1, 1 1
ˆ ˆ ˆRCβ γ α=  is the ratio of two independent normal variables. The 

distribution of this ratio has been discussed by Hinkley (1969) and Marsaglia (1965). 

Here, I will discuss a different parametrization. 

The joint distribution of 1̂γ  and 1α̂  is:  

( ) ( ) ( )2 2
1 1 1 1

1 1 2 22 2
ˆ ˆˆ ˆ

ˆ ˆ1 1ˆ ˆ, | exp
22

f W
γ αγ α

γ γ α α
γ α

σ σπ σ σ

⎧ ⎫⎡ ⎤− −⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

The probability density function of 1,
ˆ

RCβ is obtained by solving: 

( ) ( ) ( )
2

2
1, 1 1 1 1

1, 1 12 22 2
ˆ ˆˆ ˆ

ˆ ˆ ˆ1 1ˆ ˆ ˆ| exp
22

RC
RCf W d

γ αγ α

β α γ α α
β α α

σ σπ σ σ

∞

−∞

⎧ ⎫⎡ ⎤− −⎪ ⎪⎢ ⎥= − +⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
∫  

which yields 



 92

( )
2 2
1 1
2 2
ˆ ˆ

2

ˆ 1 1
1,

ˆ ˆ ˆ

2
2ˆ

1,2
ˆ

1
2ˆ

1, 2
ˆ 2ˆ

1,2
ˆ

ˆ
1

ˆ ˆ1 1 2
ˆ1, 11

ˆ ˆ ˆ ˆ

2
2ˆ

1,2
ˆ

1ˆ |
ˆ 1

ˆ ˆ

1 2
2 ˆ 1

RC

RC

RC

RC

RC

RC

f W e

e

γ α

α

γ γ α

α

γ

γ α
σ σα

γ α

γ

σ γ αβ
σ σ σ

α ασ β
σγ γ α γ

α

γ

σβ
σ σπ β

σ

σ σγ αβ β
σ σ σ σπ

σ β
σ

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎝ ⎠

= ×
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+
⎜ ⎟

+ Φ⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

1 1
,

ˆ ˆ

2
2ˆ

1,2
ˆ

1
ˆ 1

RC

RC

γ α

α

γ

γ α
σ σ

σ β
σ

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟+
⎪ ⎪⎢ ⎥⎜ ⎟

−⎨ ⎬⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟+⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪
⎩ ⎭

 

where ( )tΦ is the cumulative distribution function of a standard normal random 
variable.  
 

This function depends only on 3 parameters, 2
ˆ1γ γτ γ σ= , 2

ˆ1α ατ α σ=  and 

the scale parameter 2 2
ˆ ˆα γη σ σ= . Therefore, it can be re-expressed as: 

( ) ( )

( )
2 2

2

1,

2 2
1,

1
2

1, 2 2
1,

ˆ1
2 ˆ 11, 1,

2 2 2 2
1, 1,

1ˆ |
ˆ 1

ˆ ˆ
1 2 1

2 ˆ ˆ1 1

RC

RC

RC
RC

RC RC

RC RC

f W e

e

γ α

γ α

τ τ

τ ηβ τ

η βγ α γ α

β η
π η β

τ ηβ τ τ ηβ τπ

η β η β

− +

⎛ ⎞+⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

= ×
+

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ +⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟+ Φ −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 

 

 The cumulative distribution function can be obtained by integrating the 

density: 

( )
( ) ( )

( ) ( )

1, 1,
1, 1 2 1 2

2 2 2 2
1, 1,

1, 1,
1 2 1 2

2 2 2 2
1, 1,

ˆ ˆ
ˆ | , ;

ˆ ˆ1 1

ˆ ˆ
, ;

ˆ ˆ1 1

RC RC
RC

RC RC

RC RC

RC RC

F W L

L

γ α
α

γ α
α

τ τ ηβ ηβ
β τ

η β η β

τ τ ηβ ηβ
τ

η β η β

⎧ ⎫
−⎪ ⎪= −⎨ ⎬

⎪ ⎪+ +⎩ ⎭
⎧ ⎫

−⎪ ⎪+ −⎨ ⎬
⎪ ⎪+ +⎩ ⎭

 

where L is the cumulative distribution function of a standard bivariate normal 

distribution:  
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 { } ( )
2 2

22

1 2, ; exp
2 12 1

h k x xy yL h k dxdyγγ
γπ γ −∞ −∞

⎧ ⎫− +⎪ ⎪= −⎨ ⎬
−− ⎪ ⎪⎩ ⎭

∫ ∫ .  

 

C.2. Asymptotics 

There are two asymptotic distributions of interest: when m →∞  and when 

ατ →∞ . Note that when both n →∞  and m →∞ , the RC estimator converges to 1β , 

since 1 1γ̂ γ→  and 1 1α̂ α→ . When n →∞ , 1 1γ̂ γ→ , but the distribution of the RC 

estimator is proportional to the inverse of a normal distribution. 

If m →∞ , assuming that the variance of W is finite,  
 

( )
( )

( )
( )

2 22 2
||ˆ

2 2 2 2
ˆ | |

11
0

1 1
pc

p c

W X WX W W

Y W W W Y W

n Sm S
n S m S

α

γ

σσση
σ σ σ

−−
= = = →

− −
 

( )
1 1

2 2
ˆ | 1

cX W Wm S
α

α

α ατ
σ σ

= = →∞
−

 

 

( ) ( )
1, 1, 1

1,1 2 1 2
2 2 2 2 ˆ

1, 1,

ˆ ˆ
ˆ, ;

ˆ ˆ1 1

RC RC
RC

RC RC

L γ α
α γ

γ

τ τ ηβ ηβ ατ τ β
ση β η β

⎧ ⎫ ⎛ ⎞−⎪ ⎪− →Φ − +⎜ ⎟⎨ ⎬ ⎜ ⎟⎪ ⎪+ + ⎝ ⎠⎩ ⎭

 

( ) ( )
1, 1,

1 2 1 2
2 2 2 2

1, 1,

ˆ ˆ
, ; 0

ˆ ˆ1 1

RC RC

RC RC

L γ α
α

τ τ ηβ ηβ
τ

η β η β

⎧ ⎫
−⎪ ⎪− →⎨ ⎬

⎪ ⎪+ +⎩ ⎭

 

Then, ( ) 1
1, 1,

ˆ

ˆ ˆ|RC RCF W γ
γ

αβ τ β
σ

⎛ ⎞
→Φ − +⎜ ⎟⎜ ⎟

⎝ ⎠
 and 

2
ˆ

1, 1 2
1

ˆ ,RC N γσβ β
α

⎛ ⎞
→ ⎜ ⎟⎜ ⎟

⎝ ⎠
 

As ατ →∞ : 

( ) ( )
1, 1,

1 2 1 2
2 2 2 2

1, 1,

ˆ ˆ
, ; 0

ˆ ˆ1 1

RC RC

RC RC

L γ α
α

τ τ ηβ ηβ
τ

η β η β

⎧ ⎫
−⎪ ⎪− →⎨ ⎬

⎪ ⎪+ +⎩ ⎭

 

 So that: 

( )
( )

1 1, 1
1, 1 2

2 2 2
ˆ ˆ1,

ˆ
ˆ |

ˆ
RC

RC

RC

F W
α γ

α β γ
β

σ β σ

⎧ ⎫
−⎪ ⎪→Φ⎨ ⎬

⎪ ⎪+⎩ ⎭
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The median of this distribution is 1β , because for 1, 1 1

ˆ
RCβ γ α= , 

( )
( )( )
1 1 1 1

1 222 2
ˆ ˆ1 1

0
α γ

α γ α γ

σ γ α σ

−
=

+
 and

( )
{ }1 1, 1

1 2
2 2 2
ˆ ˆ1,

ˆ
0

ˆ
RC

RCα γ

α β γ

σ β σ

⎧ ⎫
−⎪ ⎪Φ = Φ⎨ ⎬

⎪ ⎪+⎩ ⎭

. This distribution is a 

useful approximation to the true sampling distribution for large ατ but, for finite ατ , it 
is an improper distribution (Hinkley 1969).  
 
 
C.3. Alternative form of ατ  

The parameter ατ was defined as 2
ˆ1α ατ α σ= , where 1α  is the slope of the 

regression of X on W and 2
α̂σ  is the variance of the estimator of 1α . Then, 

( )
( )1

,Cov X W
Var W

α = , 
( )

2
|2

ˆ 21
X W

Wcn Sα

σ
σ =

−
, ( ) ( )

( )

2
2

|

,
X W

Cov X W
Var X

Var W
σ = −  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 22 2
2 21

22 2
ˆ

,
1 1

1,
Wc

Wc

Cov X W Var W Sm S m
Var WVar X Var W Cov X Wα

α

α ρτ
σ ρ

= = − = −
−−

, 

where ρ is the correlation between X and W. 
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Appendix D. Maximum likelihood estimation 

D.1. Unrestricted likelihood 
 

Suppose that: 

0 1| , ,i i i i iy x w xβ β ε′= + + +i i zz z β ,  1,...,i n=  

0 1| ,i i i ix w wα α δ′= + + +i i zz z α , 1,...,i n n m= + +  

where iz  is a vector of explanatory variables measured without error, and ( ),i iε δ are 

distributed normally and independently, with mean (0, 0) and variances ( )2 2
| |,Y X X Wσ σ . 

Then, | ,i iy w iz is normally distributed with mean and variance: 

( ) ( ) ( )0 1 0 1 1 1| ,i i iE y w wβ β α β α β′= + + +i i z zz z α +β  

( ) 2 2 2
| 1 || ,i i Y X X WVar y w σ β σ= +iz  

Denote the coefficients the regression of  iy  on iw  and iz  as 0 0 1 0γ β β α= + , 

1 1 1γ β α= , 1β=z z zγ α +β . 

The log-likelihood is: 

( ) ( ) ( ) ( )

( ) ( ){ }

( ){ }

2 2 2 2 2 2
| | | 1 | |

2

0 1 0 1 1 12 2 2
1| 1 |

2
0 12

1|

, , log 2 log log
2 2 2

1
2

1
2

Y X X W Y X X W X W

n

i i
iY X X W

n m

i i
i nX W

m n n ml

y w

x w

σ σ π σ β σ σ

β β α β α β
σ β σ

α α
σ

=

+

= +

+
= − − + −

′− − + + +⎡ ⎤⎣ ⎦+

′− − + +

∑

∑

i z z

i z

β,α

z α +β

z α

          (D.1) 

Taking derivatives with respect to ( )2 2
0 1 0 1 | |, , , , , , ,Y X X Wβ β α α σ σz zβ α  and 

equating to 0, the likelihood equations are: 

( )0 1 0 1 1 1
ˆ ˆ ˆ ˆ ˆˆˆ ˆ 0p py wβ β α β α β′− − − − =p z zz α +β                (D.2) 
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( )( )
( )( )

( )( )

2 2
1 |2

1 | 0 1 0 1 1 12 2 2
1| 1 |

0 0 1 0 1 1 1

1 0 1 0 1 1 1
1

0 1 0 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆˆˆ ˆ

ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

n
X W

X W i i
iY X X W

p p

n

i i i
i

i

n y w

n y w

w y w

y w

β σ
β σ β β α β α β

σ β σ

α β β α β α β

α β β α β α β

β β α β α

=

=

′− + − − − −
+

′+ − − − −

′+ − − − −

′+ − − −

∑

∑

p,i z z

p z z

p,i z z

z i

z α +β

z α +β

z α +β

α z ( )( )1
1

ˆ ˆˆ 0
n

i
i

β
=

′− =∑ i z zz α +β

           (D.3) 

( )( )0 1 0 1 1 1
1

ˆ ˆ ˆ ˆ ˆˆˆ ˆ 0
n

i i
i

y wβ β α β α β
=

′− − − − =∑ i i z zz z α +β               (D.4) 

( )( )
( )

1
0 1 0 1 1 12 2 2

| 1 |

0 12
|

ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆˆ ˆ

ˆˆ ˆ 0
ˆ

p p
Y X X W

c c
X W

n y w

m x w

β β β α β α β
σ β σ

α α
σ

′− − − −
+

′+ − − − =

p z z

c z

z α +β

z α
             (D.5) 

( )( )
( )

1
0 1 0 1 1 12 2 2

1| 1 |

0 12
1|

ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆˆ ˆ

1 ˆˆ ˆ 0
ˆ

n

i i i
iY X X W

n m

i i i
i nX W

w y w

w x w

β β β α β α β
σ β σ

α α
σ

=

+

= +

′− − − −
+

′+ − − − =

∑

∑

i z z

i z

z α +β

z α
            (D.6) 

( )( )
( )

1
0 1 0 1 1 12 2 2

1| 1 |

0 12
1|

ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆˆ ˆ

1 ˆˆ ˆ 0
ˆ

n

i i
iY X X W

n m

i i
i nX W

y w

x w

β β β α β α β
σ β σ

α α
σ

=

+

= +

′− − − −
+

′+ − − − =

∑

∑

i i z z

i i z

z z α +β

z z α
            (D.7) 

( )( )2

0 1 0 1 1 12 2 2
1| 1 |

1 ˆ ˆ ˆ ˆ ˆˆˆ ˆ 0ˆˆ ˆ

n

i i
iY X X W

n y wβ β α β α β
σ β σ =

′− + − − − − =
+

∑ i z zz α +β            (D.8) 

( )
( )

( )
( )( )

2
21

0 1222 2 2 2 1|| 1 | |

2 2
1

0 1 0 1 1 12
2 2 2 1
| 1 |

ˆ 1 ˆˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ 0
ˆˆ ˆ

n m

i i
i nX WY X X W X W

n

i i
i

Y X X W

n m x w

y w

β α α
σσ β σ σ

β β β α β α β
σ β σ

+

= +

=

′− − + − − −
+

′+ − − − − =
+

∑

∑

i z

i z z

z α

z α +β
           (D.9) 
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D.1.1. Solution to likelihood equations for ( )2
0 1 |, , , X Wα α σzα  

Substituting eq. (D.2) on eq. (D.5), eq. (D.4) on eq. (D.7), eq. (D.8) on eq. 

(D.9), and assuming that 2
|ˆ 0X Wσ ≠ , the following equations are obtained: 

0 1 ˆˆ ˆ 0c cx wα α ′− − − =c zz α                (D.10) 

( )0 1
1

ˆˆ ˆ 0
n m

i i
i n

x wα α
+

= +

′− − − =∑ i i zz z α               (D.11) 

( )2
0 12

1|

1 ˆˆ ˆ 0
ˆ

n m

i i
i nX W

m x wα α
σ

+

= +

′− + − − − =∑ i zz α              (D.12) 

Substituting eqs. (D.2), (D.4) and (D.7) on eq. (D.3) yields: 

( )( )1 0 1 0 1 1 1
1

ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ 0
n

i i i
i

w y wα β β α β α β
=

′− − − − =∑ i z zz α +β             (D.13) 

Then, under the additional assumption that 1ˆ 0α ≠ , substituting eq. (D.13) on 

eq. (D.6) yields: 

( )0 1
1

ˆˆ ˆ 0
n m

i i i
i n

w x wα α
+

= +

′− − − =∑ i zz α               (D.14) 

Equations (D.10), (D.11), (D.12) and (D.14) are the likelihood equations for 

( )2
0 1 |ˆˆ ˆ ˆ, , , X Wα α σzα  based on the calibration data alone. Therefore, the estimator is 

obtained by ignoring the primary data and relying on the calibration study alone. 

 

D.1.2 Solution to likelihood equations for ( )2
0 1 |, , , Y Xβ β σzβ  

Equations (D.2), (D.13), (D.4) and (D.8) are the likelihood equations for the 

regression of Y on W and Z. If the estimators of the parameters of that regression 

are ( )2
0 1 |ˆˆ ˆ ˆ, , , Y Wγ γ σzγ , then from the definition of ( )0 1, ,γ γ zγ and the invariance property 

of the MLE, it follows that:  

1 1 1
ˆ ˆ ˆβ γ α=              (D.15) 

0 0 1 0
ˆ ˆˆ ˆβ γ β α= −              (D.16) 
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1
ˆ ˆˆ ˆβ= −z z zβ γ α              (D.17) 

2 2 2 2
| | 1 |

ˆˆ ˆ ˆY X Y W X Wσ σ β σ= −             (D.18) 

Therefore, if 2 2 2
| 1 |

ˆˆ ˆ 0Y X X Wσ β σ+ ≠ , 2
|ˆ 0X Wσ ≠ , and 1ˆ 0α ≠ , the solutions to the 

likelihood equations for ( )2
|, X Wσα are the MLEs obtained from the calibration data 

only. The solutions to the likelihood equations for ( )2
|, Y Xσβ  are the RC estimators. 

However, these estimators are the MLEs only if ( )22 2 2
| | 1 1 |ˆ ˆ ˆ ˆ ˆ 0Y X Y W X Wσ σ γ α σ= − > .  

 

D.2. Likelihood equations when 2
|ˆ 0Y Xσ <  

If 2
|ˆ 0Y Xσ < , typically 2

|Y Xσ  is set to 0 and the remaining parameters are 

estimated under this assumption. This is equivalent to maximizing the log-likelihood 

under the restriction that 2
|ˆ 0Y Xσ > . For simplicity, I will derive the estimator when 

there are no additional covariates z. Then, the log likelihood becomes: 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2
| | 1 | |

2 2
0 1 0 1 1 0 12 2 2

1 11 | |

2 2
1 |

2 2
, 0 1 0 1 1 , 0 12 2 2

1 11 | |
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Y X X W X W X W

n n m

i i i i
i i nX W X W

X W
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p i p i i i
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n n m

y w x w

σ σ β σ σ

β β α β α α α
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β β α β α α α
β σ σ

+

= = +

= = +

= = − −

− − + + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+
= − −

− − − − − − −

∑ ∑

∑

β,α

m+

∑

         (D.19) 

Taking derivatives and simplifying under 2
1 |

ˆ ˆ 0X Wβ σ ≠ , the likelihood equations 

are: 

0 1 0 1 1
ˆ ˆ ˆˆ ˆ 0p py wβ β α β α− − − =                (D.20) 
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( )

( )

2

0 1 0 1 12
11 |

1
0 1 0 1 12

11 |

1 ˆ ˆ ˆˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ 0ˆ ˆ

n
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n
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β β α β α
β σ

α β β α β α
β σ
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∑

∑
              (D.21) 

0 1ˆ ˆ 0c cx wα α− − =                 (D.22) 

( ) ( )0 1 0 1 1 0 1
1 11

1 ˆ ˆ ˆˆ ˆ ˆ ˆ 0ˆ
n n m

i i i i i i
i i n

w y w w x wβ β α β α α α
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+
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− − − + − − =∑ ∑           (D.23) 

( ) ( )

( )

2
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1|

1 ˆ ˆ ˆˆ ˆˆ ˆ

1 ˆ ˆ 0
ˆ

n

i i
iX W

n m

i i
i nX W

n m y w

x w

β β α β α
β σ

α α
σ

=

+

= +

− + + − − −

+ − − =

∑

∑
            (D.24) 

 The solution to these equations is tedious, but after some algebra they yield: 

( ) ( )

( )

2 2
1 1

2

ˆ ˆ

0

XWc XX WpWp WcWc XWc YWp

YWp YY WpWp WcWc

n SS SS SS SS n m SS SS

m SS SS SS SS

β β⎡ ⎤− + + −⎣ ⎦
⎡ ⎤− − + =⎣ ⎦

           (D.25) 

1
1

1
ˆ

ˆ
YWp XWc

WpWp WcWc

SS SS

SS SS
βα

+
=

+
                (D.26) 

2 1
|

ˆˆ XX XWc
X W

SS SS
m
ασ −

=                (D.27) 

0 1ˆ ˆc cx wα α= −                  (D.28) 

0 1 0 1 1
ˆ ˆ ˆˆ ˆp py wβ β α β α= − −                (D.29) 

where SS denote sum of cross products indicated by their subscripts. 

 

D.3. The MLE of 1β  is bounded 

Define the MLE of 1β  as 1 1 1
ˆ ˆ ˆβ γ α=  if ( )22 2

| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− > , or the solution 

to (D.25):  
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( ) ( )

( )

2 2
1 1

2

ˆ ˆ

              0

XWc XX WpWp WcWc XWc YWp

YWp YY WpWp WcWc

n SS SS SS SS n m SS SS

m SS SS SS SS

β β⎡ ⎤− + + −⎣ ⎦
⎡ ⎤− − + =⎣ ⎦

 

if ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− ≤ . ( )2

1 |ˆ ˆ, Y Wγ σ  and ( )2
1 |ˆ ˆ, X Wα σ are the MLEs of the parameters of 

the distribution of Y given W, based on the primary data only, and of X given W, based 

on the calibration data only, respectively. 

Then, assuming that the cross products 0XXSS > , 0WpWpSS >  and 0WcWcSS > , 

the MLE of 1β  is bounded. 

Proof: 

The proof has three parts. First, it will be shown that the roots of equation 

(D.25), are both real, one positive and one negative. Second, it will be shown that the 

MLE is the smallest, in magnitude, of 1 1ˆ ˆγ α or one of the roots of (D.25). Third, it will 

be show that the roots of (D.25) are finite. 

Let ( )2
XWc XX WpWp WcWcA n SS SS SS SS⎡ ⎤= − +⎣ ⎦ , ( ) XWc YWpB n m SS SS= − , and 

( )2
YWp YY WpWp WcWcC m SS SS SS SS⎡ ⎤= − +⎣ ⎦ . 

(1) Existence of real roots of eq. (D.25). By Holder’s inequality, 
2
XWc XX WcWcSS SS SS≤  and 2

YWp YY WpWpSS SS SS≤ . Therefore, A<0 and C<0.   

The argument of the square root of the formula for the roots to equation (D.25) 

is 2 4 * 0B A C+ ≥ , so both roots are real numbers. In addition, B is smaller 

than or equal to the positive solution of 2 4 *B A C+ . Therefore, one root is 

positive and the other negative. 

(2) MLE is the smallest, in magnitude, of 1 1ˆ ˆγ α  or the solution to (D.25). Let 

( ) ( ) ( )

( )

2 2
1 1 1

2                      

XWc XX WpWp WcWc XWc YWp

YWp YY WpWp WcWc

f n SS SS SS SS n m SS SS

m SS SS SS SS

β β β⎡ ⎤= − + + −⎣ ⎦
⎡ ⎤− − +⎣ ⎦

       (D.30) 

Re-express the condition ( )22 2
| 1 1 |ˆ ˆ ˆ ˆY W X Wσ γ α σ−  in terms of sums of squares as: 
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( ) ( )
22 21

0 1 0 1 1 0 12
1 11

22 2

ˆ1 1ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ

1 1

n n m

i i i i
i i n

YWp YWp WpWp XWc
YY XX

WpWp XWc WcWc WcWc

y w x w
n m

SS SS SS SSSS SS
n SS SS SS m SS

γβ β α β α α α
α

+

= = +

− − − − − − =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑

 ( ) ( )
2

2 2
2

YWp WcWc
YY WpWp YWp XX WcWc XWc

XWc WpWp

SS SS
m SS SS SS n SS SS SS

SS SS
− − −          (D.31) 

because 1

1

ˆ
ˆ

YWp WpWp

XWc WcWc

SS SS
SS SS

γ
α

= . 

Then, 

    
( ) ( )

( ) ( )

2
21

1 1
1

21

1

ˆˆ ˆ             
ˆ

ˆ
      

ˆ

XWc XX WpWp WcWc

XWc YWp YWp YY WpWp WcWc

f n SS SS SS SS

n m SS SS m SS SS SS SS

γγ α
α

γ
α

⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎣ ⎦⎝ ⎠

⎡ ⎤+ − − − + =⎣ ⎦

 

    ( ) ( )
2

2 2
2 1YWp WcWc WcWc

YY WpWp YWp XX WcWc XWc
XWc WpWp WpWp

SS SS SSm SS SS SS n SS SS SS
SS SS SS

⎡ ⎤ ⎛ ⎞
− − − +⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

   

    ( ) ( )22 2
1 1 | 1 1 |ˆ ˆ ˆ ˆ ˆ ˆ 1 WcWc

Y W X W
WpWp

SSf
SS

γ α σ γ α σ
⎛ ⎞

⎡ ⎤= − +⎜ ⎟⎜ ⎟⎣ ⎦
⎝ ⎠

          (D.32) 

The second derivative of ( )1f β  is negative, therefore, the quadratic function 

has a maximum. Since both roots are real, the value of ( )1f β  at the maximum is 

positive. Therefore, if ( )1 1ˆ ˆ 0f γ α > , 1 1ˆ ˆγ α is bounded by the roots of (D.25). If 

( )1 1ˆ ˆ 0f γ α < , 1 1ˆ ˆγ α is smaller than the smallest root of (D.25), or greater than the 

greatest root.   

If ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− > , then 1 1ˆ ˆγ α is the MLE and, by (D.32), is bounded 

by the roots of (D.25). The opposite holds if ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− < . 

(3) The roots of (D.25) are bounded. The denominator of the formula for the roots 

of the quadratic equation (D.25) is:  
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( )22 2XWc XX WcWc XX WpWp XX WpWpn SS SS SS SS SS nSS SS− − ≥  

because 2
XWc XX WcWcSS SS SS≤ . Since the numerator is finite, the roots are of D.25 are 

bounded.  
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Appendix E. ( )( )ˆ ˆˆ ˆ22 2
Y|W 1 1 X|WP σ - γ α σ >0  

The expression above can be restated as 

( )( )
2 2

22 2 1 1
| 1 1 | 2 2

| |

ˆ ˆˆ ˆ ˆ ˆ 0
ˆ ˆY W X W

Y W X W

P P γ ασ γ α σ
σ σ
⎛ ⎞

− > = <⎜ ⎟⎜ ⎟
⎝ ⎠

 

Under the assumption of section 2.3.1., the distributions of 

( )2 2 2 2
1 1 | |ˆ ˆ ˆ ˆ, , ,X W Y Wα γ σ σ are: 

( ) ( )2 2 2
12 2

12 2
| |

1 1
ˆ ~ 1,Wc Wc

X W X W

m S m S α
α χ

σ σ
⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

, 
( ) ( )2 2 2

12 2
12 2

| |

1 1
ˆ ~ 1,Wp Wp

Y W Y W

n S n S γ
γ χ

σ σ
⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

 

( )

2
| 2

22
|

ˆ
~X W

m
X W

mσ
χ

σ − . ( )

2
| 2

22
|

ˆ
~Y W

n
Y W

nσ
χ

σ −  

 Then,  

( )
( )

( )2 2 2 2
1 1

22
||

ˆ1 1
~ 1, 2,

ˆ2
Wp Wp

Y WY W

n S n S
F n

n n
γ γ

σσ
⎛ ⎞− −

−⎜ ⎟⎜ ⎟−⎡ ⎤⎣ ⎦ ⎝ ⎠
  

( )
( )

( )2 2 2 2
1 1

22
||

ˆ1 1
~ 1, 2,

ˆ2
Wc Wc

X WX W

m S m S
F m

m m
α α

σσ
⎛ ⎞− −

−⎜ ⎟⎜ ⎟−⎡ ⎤⎣ ⎦ ⎝ ⎠
 

 As m →∞ , 

( ) ( )
( )

2 2 2 2
1 1 1 1
2 2 2 2
| | | |

2 2 2 2
1 1

2 2
| |

ˆ ˆ ˆ
ˆ ˆ ˆ

1 1
1, 2,

2

m

Y W X W Y W X W

Wp Wp

Y W X W

P P

n S n S
P F n

n n

γ α γ α
σ σ σ σ

γ α
σ σ

→∞
⎛ ⎞ ⎛ ⎞

< ⎯⎯⎯→ <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞− −

= − <⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎡ ⎤⎣ ⎦⎝ ⎠⎝ ⎠

 

 

This asymptotic probability of ( )22 2
| 1 1 |ˆ ˆ ˆ ˆ 0Y W X Wσ γ α σ− < can be large. For 

example, for the simulations of section 2.6, if 1 2β = , the asymptotic probability as 

m →∞  is negligible for 2 2
| 0.25X Wσ = , 0.01 for 2 2

| 0.5X Wσ = , and 0.20 for 

2 2
| 0.75X Wσ = . If 1 0.5β =  and 2 2

| 0.75X Wσ = , the asymptotic probability is negligible. 



 104

 

Appendix F. Profile likelihood for 1β  

 The profile likelihood for 1β  is obtained by first solving equations (D.2) and 

(D.4)-(D.9) as a function of 1β , and then substituting in (D.1). For simplicity, it will be 

assumed that there are no additional covariates iz . Solving those equations, the 

estimator ( )1 1α̂ β  is obtained from the following cubic equation 

( )

( ) ( )

( )

2 3
1 1

2 2
1 1 1

2
1 1 1

1

ˆ                   

ˆ  2 2

ˆ2

                0

c c p p

c c p c p p

p p c p c c

p c

W W W W

W W YW XW W W

XX W W XW YW YY W W

XX YW YY XW

n m SS SS

n m SS SS n m SS SS

n S SS n m SS SS mSS SS

n S SS mSS SS

β α

β β α

β β α

β

⎡ ⎤− +⎣ ⎦
⎡ ⎤+ + + +⎣ ⎦

⎡ ⎤− + + +⎣ ⎦
⎡ ⎤+ + =⎣ ⎦

           (F.1) 

 Then, the estimators of the remaining parameters, as a function of 1β  are 

0 1ˆ ˆc cx wα α= −                (F.2) 

( )0 1 1 1
ˆ ˆp c p cy x w wβ β β α= − − −              (F.3) 

( )
2

2
| , 0 1 ,

1

1ˆ ˆ ˆ
m

X W c j c j
j

x w
m

σ α α
=

= − −∑              (F.4) 

( )2
2 2 2
| , 0 1 0 1 1 , 1 |

1

1 ˆˆ ˆ ˆ ˆ
n

Y X p i p i X W
i

y w
n

σ β β α β α β σ
=

= − − − −∑             (F.5) 

 Substituting in (D.1), the unrestricted profile likelihood for 1β  is 

( ) ( )
( )

2 2
1 1 1 1 1

2
1 1

ˆ ˆ2 log 2

ˆ ˆ        log 2

p p p

c c c

YY W W YW

XX W W XW

pl n SS SS SS

m S SS SS

β β α β α

α α

∝ − + −

− + −
            (F.6) 

For some values of 1β , eq. (F.5) may yield a negative estimate of 2
|Y Xσ . Then, 

2
|Y Xσ  can be set to 0 and the resulting likelihood equations solved to yield 

( )1
1

1ˆ YWp WcX WpWp WcWcSS SS SS SSα
β

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠
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0 1ˆ ˆc cx wα α= −  

0 1 0 1 1
ˆ ˆ ˆp py wβ β α β α= − −  

( )
2

2
| 2

11

1 1 1ˆX W YY XX YWp XWc WpWp WcWcSS SS SS SS SS SS
m n

σ
ββ

⎡ ⎤⎛ ⎞
= + − + +⎢ ⎥⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦

 

Substituting in (D.19), the profile likelihood becomes 

( ) ( ) ( ) ( )

( )
( )

2 2
1 1 |

2 2
1 12

1 2

ˆ2 log log

2
log log

X W

XWc XX WpWp XX WcWc YWp XWc

YWp YY WpWp YY WcWc

pl n m n

SS SS SS SS SS SS SS
m n m

SS SS SS SS SS

β β σ

β β
β

= − − + ∝

⎧ ⎫− + + +⎪ ⎪− + ⎨ ⎬
− + +⎪ ⎪⎩ ⎭
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Appendix G. Simulation details from the external calibration study   

The focus of this study is the effect of the uncertainty in estimating E(X | W) 

on regression calibration inference. In section 2.3, ( )1 1ˆVarατ α α=  was identified as 

a key factor influencing the performance of the RC estimator. ατ depends on the size 

of the calibration sample, the values of 1α  and 2
|X Wσ , and the sample variance of W in 

the calibration study. The simulations explore the effect of the size of the calibration 

sample and 2
|X Wσ , while holding the other two parameters constant.  

Since the main interest is in the calibration component of the study, the 

parameters of the distribution of Y given X were chosen to reflect a strong (large 1β ) 

and tight (small 2
|Y Xσ ) relationship between those variables. For all the situations 

examined, the intercept of the regression of Y on X was set to 0 1β = , the variance of Y 

given X to 2 2
| 0.6Y Xσ = , and the primary sample size to 1000n = . The intercept and 

slope of the regression of X on W were set to 0 0α =  and 1 1α = , respectively. Inference 

is conditional on the values of W, so it was chosen to be regularly spaced in (0, 1) for 

all scenarios. Although this is a rather artificial distributional choice, it can be thought 

as a most favorable scenario, because the performance of the RC estimator decreases 

as the sample variance of W in the calibration study increases. If the distribution of W 

is skewed, a more realistic scenario, the sample variance of W would be greater than if 

it is regularly distributed. 

The first set of simulations fixed the slope of the regression of Y on X at 1 2β =  

and examined a combination of three values of the variance of X given W, 

( )2 2 2 2
| 0.25 ,0.5 ,0.75X Wσ =  and six calibration sample sizes, m = 50, 100, 150, 300, 500 

or 1000. The values of 2
|X Wσ  were chosen so that the correlations between X and W 

cover the range typically observed between reference and surrogate variables in 

epidemiologic studies of diet-disease associations (Table G.1). A second set of 
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simulations examined the effect of the value of 1β , which may affect the probability of 

negative estimates of the variance of Y | X. The slope of the regression of Y on X was 

set to 1 1 2β = , the variance of X | W at 2 2
| 0.75X Wσ = , and the calibration sample sizes 

were maintained at m = 50, 100, 150, 300, 500 or 1000. A summary of the parameters 

of the simulation scenarios is included in table G.1. The parameters of the sampling 

distribution of the regression calibration estimator for each simulation situation are 

included in Table G.2.   

For each of the 24 settings described, 2500 simulations were run. Primary and 

calibration samples were generated from normal distributions with the set parameters. 

From each sample, we calculated the RC and ML estimators and several types of 

confidence intervals. The performance of different estimators is typically compared in 

terms of bias and root mean square error (RMSE). However, given the lack of 

moments of the sampling distribution of the RC estimator, those measures of 

performance may behave erratically and lack a direct interpretation, especially for 

small sample sizes. As the calibration sample size increases, the sampling 

 

 

Table G.1. Summary of the parameters and features of the simulation scenarios. The 
parameters not shown in the table are ( ) ( )2 2

0 1 0 |, , , 0,1,1,0.6Y Xα α β σ = ,  n = 1000 and m 
= (50, 100, 150, 300, 500, 1000). 
 

  Corr(X, W) Corr(Y, X) (1) ( )2
|ˆ 0m Y XP σ→∞ <

2 2
| 0.25X Wσ =  0.76 0.79 2.00 0 (approx.) 

2 2
| 0.50X Wσ =  0.50 0.88 2.96 0.01 1 2β =  

2 2
| 0.75X Wσ =  0.36 0.94 4.12 0.20 

1 1 2β =  2 2
| 0.75X Wσ =  0.36 0.55 1.03 0 (approx) 

(1) Difference between ( )|E Y X at the 90th and 10th percentile of the distribution of X . 
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Table G.2. Parameters of the sampling distribution of the RC estimator. The three 
parameters are ( )1 1̂Varγτ γ γ= , ( )1 1ˆVarατ α α=  and the scale parameter 

( ) ( )1 1ˆ ˆVar Varη α γ= . ( )1 1ˆ ˆ,γ α  are the least squares estimators of the regression of Y 
on W and X on W, respectively. 
 

 1 2β =  1 1 2β =  
 2 2

| 0.25X Wσ =  2 2
| 0.50X Wσ =  2 2

| 0.75X Wσ =  2 2
| 0.75X Wσ =  

γτ  23.38 15.66 11.30 6.45 
M ατ    η  

ατ    η  
ατ    η  

ατ    η  

       50      8.16 1.54      4.08 1.92      2.72 2.08      2.72 4.74 
     100    11.55 1.01      5.77 1.36      3.85 1.47      3.85 3.35 
     150    14.14 0.83      7.07 1.11      4.71 1.20      4.71 2.74 
     300    20.00 0.58    10.00 0.78      6.67 0.85      6.67 1.94 
     500    25.82 0.45    12.91 0.61      8.61 0.66      8.61 1.50 
   1000    36.51 0.32    18.26 0.43    12.17 0.46    12.17 1.06 
 

 

distribution of the RC estimator converges to a normal distribution and the mean and 

RMSE become more stable. Thus, we report the median and 2.5 and 97.5 percentiles 

of the distribution of the estimator, and the mean and RMSE when they stabilized.  

The performance of the 95% confidence intervals was measured in terms of 

total coverage, left- and right-side coverage, and length. As with the estimator itself, 

the expected value of the length of the RC confidence intervals is not defined, so we 

report the median and the 2.5 and 97.5 percentiles of its distribution, and the mean and 

RMSE when appropriate. We computed the following confidence intervals: 

(1) RC-Wald, based on the asymptotic normality of the sampling distribution 

of the RC estimator and the asymptotic variance of this distribution, calculated with 

the Delta method (eq. 2.5). 

 (2) RC-bootstrap: we computed two types of bootstrap confidence intervals for 

the RC estimator, based on the percentiles on the bootstrapped distribution and the 
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BCa method (Efron and Tibshirani 1993).  The confidence intervals were based on a 

total of 2500 bootstrapped samples.  

 (3) LRT: obtained by inverting a 2χ  likelihood ratio test. The likelihood ratio 

test was calculated on a grid of values around the MLE. The set of values not rejected 

by this test defined the confidence interval. Grid spacing was 0.01 units. 

Tables G3-G9 show detailed summaries of the results of the simulations. 
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Table G.3. Summary statistics of the Monte Carlo sampling distributions of the RC 
estimator of the slope in a simple linear regression with measurement error. The 
distributions Y|X and X|W are normal, with a primary sample size of n = 1000 and a 
calibration sample size of m. The results are based on 2500 simulated primary and 
calibration samples.   
 

   Percentiles 
m Average RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

     50   2.0298 0.28 1.38 1.59 1.9964 2.66 4.61 
   100 2.0158 0.20 1.48 1.68 2.0034 2.44 2.80 
   150 2.0129 0.17 1.50 1.71 2.0061 2.37 2.76 
   300 2.0105 0.13 1.61 1.78 2.0035 2.28 2.49 
   500 2.0062 0.12 1.64 1.79 2.0017 2.24 2.42 
 1000 2.0015 0.10 1.71 1.81 1.9969 2.21 2.36 
 2 2

1 |2,  0.50X Wβ σ= =  
     50   2.1667 1.66 1.06 1.32 1.9819 3.77 77.37 
   100 2.0623 0.42 1.12 1.46 1.9928 3.07 4.70 
   150 2.0539 0.34 1.24 1.52 2.0160 2.83 3.61 
   300 2.0181 0.25 1.37 1.59 1.9973 2.54 3.09 
   500 2.0098 0.20 1.34 1.65 1.9978 2.43 2.75 
 1000 2.0090 0.17 1.40 1.70 2.0012 2.38 2.63 
 2 2

1 |2,  0.75X Wβ σ= =  
     50   2.6738 8.07 -55.32 1.14 1.9733 6.52 277.87 
   100 2.1822 0.78 0.92 1.26 2.0148 4.09 8.15 
   150 2.1002         0.59 1.01 1.32 1.9933 3.47 9.10 
   300 2.0433 0.38 1.18 1.44 1.9984 2.90 4.24 
   500 2.0297 0.30 1.10 1.52 1.9989 2.68 3.49 
 1000 2.0073 0.25 1.29 1.55 2.0005 2.55 2.98 
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50   0.3555  12.16 -600.65 0.26 0.4922 1.78 24.99 
   100 0.5570 0.27 0.19 0.29 0.5076 1.12 5.99 
   150 0.5295 0.16 0.21 0.30 0.5009 0.92 1.71 
   300 0.5139 0.12 0.22 0.32 0.5001 0.77 1.56 
   500 0.5096 0.10 0.20 0.34 0.5020 0.72 0.93 
 1000 0.5024 0.09 0.17 0.34 0.5002 0.68 0.82 
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Table G.4. Summary statistics of the Monte Carlo sampling distributions of the MLE 
of the slope in a simple linear regression with measurement error. The distributions of 
Y|X and X|W are normal, with a primary sample size of n = 1000 and a calibration 
sample size of m. The results are based on 2500 simulated primary and calibration 
samples. 
 

  Percentiles 
m Mean RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

      50       2.0289 0.27 1.38 1.59 1.9963 2.66 3.54
    100 2.0158 0.20 1.48 1.68 2.0033 2.44 2.80
    150 2.0129 0.17 1.50 1.71 2.0061 2.37 2.76
    300 2.0105 0.13 1.61 1.78 2.0035 2.28 2.49
    500 2.0062 0.12 1.64 1.79 2.0017 2.24 2.42
  1000 2.0015 0.10 1.71 1.81 1.9969 2.21 2.36
 2 2

1 |2,  0.50X Wβ σ= =  
      50       1.9832 0.37 1.06 1.32 1.9749 2.69 3.53
    100 1.9933 0.29 1.12 1.46 1.9906 2.54 2.87
    150 2.0109 0.26 1.24 1.52 2.0155 2.48 3.02
    300 2.0011 0.22 1.37 1.59 1.9972 2.40 2.63
    500 2.0023 0.19 1.34 1.65 1.9978 2.35 2.49
  1000 2.0056 0.17 1.40 1.70 2.0011 2.33 2.51
 2 2

1 |2,  0.75X Wβ σ= =  
     50       1.8788 0.41 0.88 1.14 1.9148 2.58 2.94
   100 1.9211 0.32 0.92 1.26 1.9677 2.42 2.87
   150 1.9237 0.29 1.01 1.32 1.9717 2.37 2.61
   300 1.9430 0.24 1.18 1.44 1.9852 2.29 2.48
   500 1.9601 0.21 1.10 1.52 1.9942 2.27 2.45
 1000 1.9629 0.19 1.29 1.55 1.9993 2.24 2.39
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50       0.5492 0.2164 0.1679 0.2644 0.4958 1.0288 1.2590
   100 0.5401 0.1769 0.1917 0.2891 0.5076 0.9494 1.2173
   150 0.5261 0.1488 0.2050 0.2953 0.5009 0.8896 1.1081
   300 0.5134 0.1162 0.2249 0.3191 0.5001 0.7727 1.0197
   500 0.5096 0.0989 0.2016 0.3350 0.5020 0.7183 0.9284
 1000 0.5024 0.0888 0.1739 0.3357 0.5002 0.6814 0.8166
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Table G.5. Summary statistics of the Monte Carlo sampling distributions of the length 
of a 95% Wald confidence interval of the slope in a simple linear regression with 
measurement error. The interval is based on the asymptotic normality of the sampling 
distribution of the RC estimator. The distributions Y|X and X|W are normal, the 
primary sample size is n = 1000 and the calibration sample size is m. The results are 
based on 2500 simulated primary and calibration samples. (**** indicates that the 
value is >1000.) 
 

   Percentiles 
m Mean RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

     50   1.06 0.292 0.51 0.64 1.01 1.76 4.77 
   100 0.77 0.136 0.46 0.56 0.76 1.08 1.44 
   150 0.66 0.089 0.39 0.51 0.65 0.86 1.09 
   300 0.52 0.045 0.40 0.44 0.52 0.62 0.75 
   500 0.45 0.028 0.37 0.40 0.45 0.51 0.56 
 1000 0.40 0.016 0.35 0.37 0.40 0.43 0.46 
 2 2

1 |2,  0.50X Wβ σ= =  
     50   3.57 56.014 0.56 0.91 1.95 6.68 **** 
   100 1.58 0.646 0.55 0.83 1.44 3.24 7.86 
   150 1.30 0.392 0.53 0.77 1.23 2.23 4.04 
   300 0.95 0.182 0.60 0.68 0.93 1.36 1.89 
   500 0.80 0.106 0.53 0.62 0.78 1.03 1.29 
 1000 0.67 0.058 0.51 0.57 0.66 0.79 0.88 
 2 2

1 |2,  0.75X Wβ σ= =  
     50   51.45 **** 0.69 1.04 2.85 31.58 **** 
   100 2.82 2.507 0.63 0.97 2.18 8.69 39.48 
   150 2.10 1.453 0.67 0.93 1.79 4.97 38.06 
   300 1.45 0.459 0.71 0.86 1.36 2.59 5.16 
   500 1.19 0.252 0.60 0.82 1.15 1.75 2.84 
 1000 0.96 0.126 0.61 0.75 0.94 1.26 1.56 
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50   479.89 **** 0.20 0.29 0.76 10.43 **** 
   100 0.83 1.650 0.18 0.29 0.61 2.42 62.76 
   150 0.59 0.320 0.20 0.29 0.51 1.41 5.12 
   300 0.45 0.126 0.24 0.29 0.42 0.74 2.24 
   500 0.39 0.071 0.23 0.29 0.38 0.55 0.84 
 1000 0.35 0.037 0.25 0.28 0.34 0.43 0.50 
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Table G.6. Summary statistics of the Monte Carlo sampling distributions of the length 
of a 95% percentile bootstrap confidence interval of the slope in a simple linear 
regression with measurement error. The interval is based on the percentile bootstrap 
method applied to the RC estimator from bootstrap sample of size 2500. The 
distributions of Y|X and X|W are normal, the primary sample size is n = 1000 and the 
calibration sample size is m. The results are based on 2500 simulated primary and 
calibration samples. (**** indicates that the value is >1000.) 
 

   Percentiles 
m Mean RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

     50   1.12 0.361 0.52 0.64 1.05 1.95 6.93 
   100 0.79 0.153 0.44 0.55 0.77 1.15 1.51 
   150 0.67 0.098 0.37 0.51 0.65 0.88 1.10 
   300 0.52 0.049 0.39 0.44 0.52 0.63 0.77 
   500 0.46 0.031 0.36 0.40 0.45 0.52 0.59 
 1000 0.40 0.019 0.34 0.36 0.40 0.44 0.48 
 2 2

1 |2,  0.50X Wβ σ= =  
     50   4.67 12.564 0.58 0.94 2.47 17.56 390.61 
   100 1.84 1.012 0.56 0.86 1.60 4.34 16.49 
   150 1.42 0.512 0.53 0.79 1.31 2.62 6.25 
   300 0.98 0.202 0.56 0.68 0.96 1.46 2.13 
   500 0.81 0.115 0.52 0.62 0.80 1.06 1.38 
 1000 0.67 0.061 0.50 0.56 0.66 0.80 0.90 
 2 2

1 |2,  0.75X Wβ σ= =  
     50   17.95 32.100 0.74 1.18 5.05 120.30 271.95 
   100 5.87 12.921 0.67 1.06 2.88 32.97 175.49 
   150 3.05 6.204 0.66 1.00 2.10 9.68 185.99 
   300 1.60 0.612 0.70 0.88 1.47 3.11 7.66 
   500 1.24 0.289 0.62 0.84 1.19 1.92 3.49 
 1000 0.97 0.134 0.60 0.76 0.96 1.29 1.67 
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50   4.82 8.579 0.20 0.33 1.31 33.29 60.134 
   100 1.73 4.271 0.20 0.31 0.78 11.42 72.98 
   150 0.83 1.305 0.21 0.30 0.59 2.37 33.65 
   300 0.49 0.171 0.24 0.30 0.45 0.85 3.57 
   500 0.41 0.080 0.23 0.29 0.39 0.60 0.98 
 1000 0.35 0.040 0.25 0.28 0.35 0.43 0.52 
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Table G.7. Summary statistics of the Monte Carlo sampling distributions of the length 
of a 95% BCa bootstrap confidence interval of the slope in a simple linear regression 
with measurement error.  The interval is based on the BCa bootstrap method applied to 
the RC estimator from bootstrap sample of size 2500. The distributions of Y|X and 
X|W are normal, the primary sample size is n = 1000 and the calibration sample size is 
m. The results are based on 2500 simulated primary and calibration samples. (**** 
indicates that the value is >1000.) 
 

   Percentiles 
m Mean RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

     50   1.11 0.362 0.52 0.64 1.05 1.94 6.93 
   100 0.79 0.152 0.44 0.55 0.77 1.14 1.50 
   150 0.67 0.098 0.37 0.50 0.65 0.88 1.10 
   300 0.52 0.049 0.39 0.44 0.52 0.63 0.76 
   500 0.46 0.031 0.36 0.40 0.45 0.52 0.59 
 1000 0.40 0.019 0.33 0.36 0.40 0.44 0.47 
 2 2

1 |2,  0.50X Wβ σ= =  
     50   47.69 **** 0.59 0.94 2.41 19.59 **** 
   100 1.83 1.014 0.60 0.86 1.59 4.28 18.53 
   150 1.42 0.510 0.53 0.79 1.31 2.61 6.00 
   300 0.98 0.203 0.58 0.68 0.95 1.46 2.09 
   500 0.81 0.115 0.52 0.63 0.80 1.07 1.37 
 1000 0.70 0.061 0.50 0.56 0.66 0.80 0.90 
 2 2

1 |2,  0.75X Wβ σ= =  
     50   **** **** 0.72 1.18 4.84 465.39 **** 
   100 6.92 26.032 0.67 1.05 2.83 32.69 687.81 
   150 3.28 12.951 0.66 1.00 2.10 9.32 513.83 
   300 1.60 0.611 0.70 0.88 1.47 3.09 7.50 
   500 1.24 0.288 0.62 0.84 1.20 1.92 3.34 
 1000 0.97 0.134 0.60 0.75 0.96 1.29 1.67 
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50   66.93 **** 0.20 0.32 1.27 150.92 **** 
   100 4.07 68.058 0.20 0.31 0.78 12.04 **** 
   150 0.86 2.160 0.21 0.30 0.59 2.38 70.60 
   300 0.49 0.170 0.24 0.30 0.45 0.86 3.62 
   500 0.41 0.081 0.23 0.29 0.39 0.60 0.98 
 1000 0.35 0.040 0.25 0.28 0.35 0.44 0.53 
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Table G.8. Summary statistics of the Monte Carlo sampling distributions of the length 
of a 95% likelihood-ratio confidence interval of the slope in a simple linear regression 
with measurement error. The interval is calculated by inverting the likelihood ratio 
test. The distributions of Y|X and X|W are normal, the primary sample size is n = 1000 
and the calibration sample size is m. The results are based on 2500 simulated primary 
and calibration samples. 
 

   Percentiles 
m Mean RMSE Min. 2.5% Median 97.5% Max. 

 2 2
1 |2,  0.25X Wβ σ= =  

     50   1.07 0.236 0.52 0.66 1.06 1.52 1.83 
   100 0.79 0.137 0.47 0.57 0.77 1.09 1.31 
   150 0.67 0.092 0.39 0.52 0.65 0.88 1.04 
   300 0.52 0.047 0.40 0.44 0.52 0.62 0.75 
   500 0.46 0.029 0.37 0.41 0.45 0.52 0.56 
 1000 0.40 0.017 0.34 0.36 0.40 0.43 0.46 
 2 2

1 |2,  0.50X Wβ σ= =  
     50   1.34 0.197 0.58 0.94 1.35 1.73 1.96 
   100 1.07 0.143 0.56 0.77 1.09 1.32 1.47 
   150 0.95 0.123 0.55 0.68 0.96 1.16 1.33 
   300 0.79 0.096 0.42 0.56 0.80 0.94 1.02 
   500 0.70 0.079 0.39 0.50 0.71 0.83 0.90 
 1000 0.61 0.063 0.31 0.44 0.62 0.70 0.77 
 2 2

1 |2,  0.75X Wβ σ= =  
     50   1.43 0.226 0.74 0.99 1.43 1.88 2.30 
   100 1.15 0.182 0.61 0.80 1.16 1.48 1.67 
   150 1.02 0.171 0.54 0.68 1.04 1.32 1.48 
   300 0.85 0.156 0.43 0.54 0.87 1.11 1.31 
   500 0.76 0.148 0.36 0.46 0.79 1.00 1.10 
 1000 0.67 0.138 0.27 0.39 0.70 0.89 0.96 
 2 2

1 |0.5,  0.75X Wβ σ= =  
     50   0.73 0.163 0.23 0.33 0.75 1.00 1.33 
   100 0.61 0.134 0.19 0.32 0.64 0.82 0.93 
   150 0.54 0.116 0.21 0.30 0.56 0.73 0.85 
   300 0.45 0.089 0.24 0.30 0.45 0.62 0.74 
   500 0.40 0.065 0.24 0.29 0.39 0.54 0.64 
 1000 0.35 0.038 0.26 0.29 0.35 0.43 0.51 
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Table G.9. Error rate of a 95% confidence interval for the slope in a simple linear 
regression with measurement error. m denotes calibration sample size ; “L” the percent 
of samples for which the true slope was greater than the upper limit of a 95% CI; “R” 
the percent for which the true slope was smaller than the lower limit of a 95% CI; and 
“Tot” the total error rate. The confidence intervals are based on the asymptotic 
normality of the sampling distribution of the RC estimator (Wald), the percentile BCa 
bootstrap methods, and inverting a LRT. The results are based on 2500 simulated 
primary and calibration samples. 
  
 Wald Boots.  Percentile Bootstrap BCa LRT 
m L R Tot L R Tot L R Tot L R Tot 
   2 2

1 |2,  0.25X Wβ σ= =  
    50  5.36 0.36 5.72 2.76 3.00 5.76 3.08 2.88 5.96 2.72 2.72 5.44
  100 3.92 0.72 4.64 2.52 2.76 5.28 2.48 2.60 5.08 2.32 2.32 4.64
  150 3.96 1.36 5.32 2.48 2.72 5.20 2.60 2.68 5.28 2.52 2.76 5.28
  300 2.48 1.56 4.04 1.88 2.76 4.64 1.72 2.80 4.52 1.64 2.68 4.32
  500 2.80 2.04 4.84 2.48 2.72 5.20 2.44 2.60 5.04 2.52 2.80 5.32
1000 2.68 2.28 4.96 2.44 2.64 5.08 2.48 2.56 5.04 2.48 2.60 5.08
 2 2

1 |2,  0.50X Wβ σ= =  
    50  6.80 0.00 6.80 2.92 1.08 4.00 3.12 0.96 4.08 2.76 0.56 3.32
  100 6.12 0.00 6.12 2.68 2.84 5.52 2.84 2.56 5.40 2.36 0.88 3.24
  150 4.76 0.08 4.84 2.56 2.80 5.36 2.60 2.88 5.48 2.44 1.24 3.68
  300 4.96 0.72 5.68 3.16 2.48 5.64 3.28 2.48 5.76 3.24 1.68 4.92
  500 3.36 0.72 4.08 2.52 2.24 4.76 2.40 2.36 4.76 2.36 1.76 4.12
1000 3.08 2.00 5.08 2.44 2.92 5.36 2.40 2.72 5.12 2.20 2.80 5.00
 2 2

1 |2,  0.75X Wβ σ= =  
    50  8.88 0.00 8.88 2.76 0.00 2.76 3.04 1.08 4.12 2.72 0.04 2.76
  100 6.24 0.00 6.24 2.84 0.64 3.48 2.84 0.88 3.72 3.00 0.12 3.12
  150 6.92 0.00 6.92 3.16 1.48 4.64 3.00 1.48 4.48 3.08 0.00 3.08
  300 5.48 0.00 5.48 3.16 2.24 5.40 3.00 2.24 5.24 2.96 0.04 3.00
  500 4.12 0.44 4.56 2.28 2.28 4.56 2.28 2.36 4.64 2.32 0.08 2.40
1000 4.60 1.48 6.08 3.24 2.84 6.08 3.16 2.80 5.96 2.92 0.40 3.32
 2 2

1 |0.5,  0.75X Wβ σ= =  
    50  8.08 0.00 8.08 3.00 0.00 3.00 3.40 1.28 4.68 2.52 2.00 4.52
  100 6.76 0.00 6.76 2.88 0.96 3.84 2.80 1.00 3.80 2.60 2.88 5.48
  150 6.12 0.00 6.12 3.36 2.28 5.64 3.52 2.28 5.80 3.20 2.80 6.00
  300 3.96 0.24 4.20 2.40 2.76 5.16 2.44 2.72 5.16 2.44 2.68 5.12
  500 3.36 0.76 4.12 2.12 2.52 4.64 2.28 2.68 4.96 2.20 2.52 4.72
1000 3.24 1.40 4.64 2.76 2.64 5.40 2.80 2.64 5.44 2.72 2.52 5.24
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Appendix H. Asymptotic variance of the regression calibration estimators for  
designs with internal calibration data (from Thurston et al., 2005) 

 The following results are provided by Thurston et al., 2005: 
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where the subscripts in 2σ  and 2ρ  denote the variance and correlation between the 

subscripted variables, respectively, and n and m the sample size of the primary and 

calibration datasets. 
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Appendix I. Simulation details from the internal calibration study   

Table I.1. Relative bias and RMSE the RC and ML estimators of the slope in a simple 
linear regression with measurement error and an internal calibration study. The true 
value of the parameter is 1. The distributions Y|X and X|W are normal, with a primary 
sample size of n = 1000 and an internal calibration sample size of m. The results are 
based on 2000 simulated primary and calibration samples. (**** indicates that the 
value is >100.) 
.  
 Internal External CRS SCK MLE 
   m Rel. 

Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse 

 ( ) ( ), 0.75, , 0.75 Corr Y X Corr X W= =  
  10 0.88 0.32 12.16 1.09 9.19 0.51 -1.28 0.23 6.23 0.24
  25 -0.79 0.19 3.29 0.20 2.98 0.19 -0.86 0.13 2.12 0.13
  50 -0.26 0.13 1.68 0.14 1.41 0.13 -0.43 0.09 1.13 0.09
100 -0.14 0.09 0.46 0.10 0.28 0.09 -0.44 0.07 0.39 0.06
200 0.32 0.07 0.59 0.08 0.45 0.06 0.15 0.05 0.51 0.05
500 -0.09 0.04 0.10 0.06 -0.02 0.04 -0.12 0.03 -0.01 0.03
 ( ) ( ), 0.75, , 0.36 Corr Y X Corr X W= =  
  10 -0.65 0.32 **** **** -11.5 0.98 -10.1 0.33 7.48 0.30
  25 0.14 0.18 25.3 17.56 3.95 0.45 -4.40 0.18 3.09 0.14
  50 -0.08 0.13 10.9 4.93 2.27 0.26 -2.69 0.13 1.53 0.09
100 0.11 0.09 10.2 0.57 0.94 0.15 -1.04 0.09 0.84 0.07
200 0.02 0.06 3.40 0.25 -0.25 0.09 -0.61 0.06 0.31 0.05
500 -0.10 0.04 1.55 0.17 -0.16 0.05 -0.27 0.04 0.06 0.03
 ( ) ( ), 0.36, , 0.75 Corr Y X Corr X W= =  
  10 -1.25 0.95 16.2 2.85 8.39 0.45 1.49 0.35 9.88 0.43
  25 -2.34 0.53 2.87 0.23 2.51 0.22 0.62 0.20 2.68 0.21
  50 0.62 0.38 1.80 0.18 1.60 0.17 0.89 0.16 1.83 0.16
100 0.09 0.26 1.11 0.15 0.86 0.13 0.45 0.13 0.96 0.13
200 0.03 0.19 0.23 0.13 0.11 0.11 -0.10 0.11 0.25 0.10
500 -0.02 0.12 0.21 0.12 0.06 0.08 -0.02 0.08 0.13 0.08
 ( ) ( ), 0.37, , 0.36 Corr Y X Corr X W= =  
  10 -3.58 0.97 **** **** -11.4 1.05 -18.0 0.69 7.95 0.88
  25 2.52 0.54 **** **** 4.22 0.54 -6.35 0.41 6.71 0.41
  50 -0.23 0.37 44.9 8.47 2.74 0.33 -5.59 0.29 3.04 0.27
100 -0.26 0.25 7.07 0.42 0.22 0.22 -2.98 0.20 1.46 0.19
200 -0.20 0.18 4.81 0.34 0.12 0.16 -1.35 0.16 0.60 0.15
500 -0.37 0.11 1.84 0.27 -0.33 0.10 -0.70 0.10 0.09 0.10



 119

 
 
Table I.2. 2.5 and 97.5 percentiles of the Monte Carlo sampling distribution of the RC 
and ML estimators of the slope in a simple linear regression with measurement error 
and an internal calibration study. The true value of the parameter is 1. The 
distributions Y|X and X|W are normal, with a primary sample size of n = 1000 and an 
internal calibration sample size of m. The results are based on 2000 simulated primary 
and calibration samples. (**** indicates that the value is >100.) 
.  
 Internal External CRS SCK MLE 
   m 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5
 ( ) ( ), 0.75, , 0.75 Corr Y X Corr X W= =  
  10 0.36 1.63 0.63 2.18 0.64 2.13 0.62 1.53 0.70 1.59
  25 0.62 1.35 0.74 1.53 0.75 1.49 0.76 1.29 0.80 1.30
  50 0.75 1.26 0.79 1.33 0.80 1.29 0.84 1.20 0.85 1.19
100 0.82 1.18 0.82 1.23 0.84 1.19 0.87 1.13 0.88 1.13
200 0.88 1.13 0.86 1.17 0.90 1.13 0.91 1.10 0.92 1.10
500 0.92 1.08 0.89 1.13 0.93 1.07 0.93 1.07 0.94 1.06
 ( ) ( ), 0.75, , 0.36 Corr Y X Corr X W= =  
  10 0.36 1.64 -6.15 9.99 -1.67 2.91 0.37 1.52 0.57 1.66
  25 0.65 1.36 0.30 6.91 0.46 2.00 0.62 1.32 0.77 1.33
  50 0.75 1.25 0.53 2.99 0.60 1.55 0.73 1.22 0.85 1.21
100 0.83 1.18 0.63 2.08 0.73 1.32 0.82 1.17 0.89 1.15
200 0.88 1.12 0.67 1.59 0.82 1.18 0.88 1.11 0.91 1.10
500 0.92 1.07 0.72 1.39 0.91 1.09 0.92 1.07 0.94 1.06
 ( ) ( ), 0.36, , 0.75 Corr Y X Corr X W= =  
  10 -0.75 2.96 0.60 2.13 0.60 2.12 0.56 1.84 0.60 2.26
  25 -0.07 2.04 0.69 1.57 0.70 1.53 0.71 1.47 0.71 1.52
  50 0.26 1.76 0.73 1.42 0.74 1.38 0.74 1.35 0.75 1.37
100 0.49 1.52 0.75 1.32 0.77 1.28 0.78 1.27 0.78 1.28
200 0.63 1.37 0.75 1.27 0.80 1.22 0.80 1.21 0.81 1.21
500 0.77 1.24 0.77 1.25 0.84 1.17 0.84 1.17 0.84 1.17
 ( ) ( ), 0.37, , 0.36 Corr Y X Corr X W= =  
  10 -0.93 2.84 -10.3 10.94 -1.65 3.10 -0.44 2.31 -1.29 2.72
  25 -0.10 2.06 -3.91 7.11 0.28 2.18 0.26 1.83 0.45 1.90
  50 0.28 1.73 0.43 3.37 0.51 1.77 0.47 1.59 0.56 1.59
100 0.51 1.52 0.50 2.12 0.62 1.47 0.60 1.39 0.66 1.40
200 0.65 1.35 0.48 1.78 0.69 1.33 0.68 1.31 0.71 1.30
500 0.78 1.21 0.54 1.63 0.80 1.21 0.80 1.20 0.82 1.19
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Table I.3. Average length of a 95% confidence interval of the slope in a simple linear 
regression with measurement error and an internal calibration study. The distributions 
Y|X and X|W are normal, the primary sample size is n = 1000 and the calibration 
sample size is m. The results are based on 2000 simulated primary and calibration 
samples. (**** indicates that the value is >100.) 
 
  Wald Bootstrap  
 Int. Ext. CRS SCK Ext CRS SCK LRT 
 ( ) ( ), 0.75, , 0.75 Corr Y X Corr X W= =  
    10 1.35 2.36 1.64 0.77 2.42 3.96 0.99 0.69
    25 0.75 0.77 0.74 0.50 0.87 0.87 0.52 0.45
    50 0.51 0.54 0.49 0.36 0.57 0.51 0.36 0.33
  100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
  200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
  500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
 ( ) ( ), 0.75, , 0.36 Corr Y X Corr X W= =  
    10 1.39 **** 9.12 1.00 18.00 4.20 1.37 0.87
    25 0.75 **** 2.91 0.64 16.36 1.97 0.72 0.53
    50 0.51 40.67 1.31 0.46 9.02 1.01 0.50 0.36
  100 0.35 1.61 0.68 0.33 3.07 0.57 0.34 0.26
  200 0.24 0.93 0.37 0.23 1.11 0.34 0.24 0.19
  500 0.15 0.66 0.18 0.15 0.68 0.18 0.15 0.13
 ( ) ( ), 0.36, , 0.75 Corr Y X Corr X W= =  
    10 3.99 12.11 1.65 1.23 3.84 2.48 1.78 1.28
    25 2.21 0.87 0.84 0.79 1.01 0.93 0.83 0.81
    50 1.50 0.68 0.63 0.61 0.71 0.65 0.62 0.62
  100 1.04 0.57 0.51 0.50 0.58 0.51 0.50 0.50
  200 0.73 0.51 0.42 0.41 0.51 0.42 0.41 0.41
  500 0.46 0.47 0.33 0.33 0.47 0.33 0.33 0.33
 ( ) ( ), 0.37, , 0.36 Corr Y X Corr X W= =  
    10 3.97 **** 9.70 2.23 4.61 18.35 2.87 2.03
    25 2.15 **** 3.18 1.48 9.63 9.44 1.63 1.24
    50 1.44 67.02 1.53 1.07 9.54 1.32 1.12 0.95
  100 1.00 1.65 0.92 0.79 2.96 0.86 0.81 0.73
  200 0.70 1.27 0.63 0.60 1.47 0.62 0.60 0.55
  500 0.44 1.05 0.41 0.40 1.09 0.40 0.40 0.38
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 Table I.4. Error rate of a 95% confidence interval for the slope in a simple linear 
regression with measurement error and an internal calibration study. m denotes 
calibration sample size ; “L” the percent of samples for which the true slope was 
greater than the upper limit of a 95% CI; “R” the percent for which the true slope was 
smaller than the lower limit of a 95% CI; and “Tot” the total error rate. The results are 
based on 2000 simulated primary and calibration samples. 
  
  Wald intervals 
 Internal External CRS SCK 
m L R Tot L R Tot L R Tot L R Tot 
   ( ) ( ), 0.75, , 0.75 Corr Y X Corr X W= =  
  10 2.9 2.8 5.6 10.1 0.0 10.1 10.1 0.0 10.1 11.2 3.2 14.3
  25 3.3 2.4 5.6 5.1 0.1 5.1 5.2 0.1 5.2 5.9 1.9 7.8
  50 2.2 2.4 4.6 4.6 0.4 4.9 4.6 0.4 5.0 4.5 2.3 6.8
100 2.9 2.7 5.6 5.3 0.9 6.2 5.4 1.0 6.4 4.8 2.0 6.7
200 2.4 3.3 5.7 3.9 1.4 5.3 3.1 1.5 4.6 2.7 2.4 5.1
500 2.8 2.5 5.3 3.0 1.8 4.8 3.0 2.3 5.3 3.2 2.5 5.7
 ( ) ( ), 0.75, , 0.36 Corr Y X Corr X W= =  
  10 2.9 2.2 5.0 17.6 0.0 17.6 17.6 0.0 17.6 17.2 2.3 19.5
  25 2.3 2.5 4.8 11.3 0.0 11.3 11.0 0.0 11.0 9.4 2.2 11.5
  50 2.8 2.2 5.0 9.5 0.0 9.5 9.5 0.0 9.5 7.5 1.8 9.3
100 2.7 2.7 5.4 6.3 0.0 6.3 6.0 0.0 6.0 5.0 2.2 7.2
200 2.4 2.4 4.8 6.2 0.0 6.2 5.1 0.1 5.2 3.8 1.7 5.5
500 2.5 2.0 4.5 4.4 0.6 5.0 3.7 1.9 5.6 3.5 2.0 5.5
 ( ) ( ), 0.36, , 0.75 Corr Y X Corr X W= =  
  10 2.6 2.8 5.4 8.9 0.1 8.9 8.8 0.1 8.9 9.3 1.3 10.6
  25 2.6 2.3 4.9 5.0 0.1 5.1 5.2 0.1 5.2 5.5 0.7 6.2
  50 2.3 2.9 5.2 3.8 0.7 4.4 4.0 0.8 4.8 3.9 1.2 5.1
100 2.3 2.3 4.6 3.6 1.7 5.2 3.1 1.7 4.8 3.1 1.9 5.0
200 2.6 2.5 5.1 3.4 2.2 5.5 3.0 2.0 5.0 2.9 1.9 4.8
500 2.9 3.2 6.0 2.5 2.7 5.2 2.4 2.7 5.1 2.3 2.5 4.7
 ( ) ( ), 0.37, , 0.36 Corr Y X Corr X W= =  
  10 2.9 2.7 5.5 16.6 0.0 16.6 16.3 0.0 16.3 17.4 1.8 19.2
  25 2.8 2.6 5.4 10.0 0.0 10.0 9.4 0.0 9.4 10.3 1.5 11.8
  50 2.8 2.8 5.6 8.6 0.0 8.6 8.1 0.0 8.1 7.6 1.8 9.4
100 2.3 2.7 5.0 5.3 0.0 5.3 4.4 0.1 4.4 4.6 1.5 6.0
200 2.2 2.6 4.8 4.8 0.1 4.8 4.1 1.2 5.3 4.2 2.0 6.2
500 2.8 2.1 4.9 3.2 1.6 4.8 2.7 2.3 5.0 3.0 2.2 5.2
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Table I.4 (Cont). 
  
 Bootstrap percentile intervals     
 External CRS SCK LRT 
m L R Tot L R Tot L R Tot L R Tot 
   ( ) ( ), 0.75, , 0.75 Corr Y X Corr X W= =  
  10 5.2 1.9 7.1 5.1 2.0 7.0 5.4 1.6 6.9 3.2 7.2 10.4
  25 2.7 3.2 5.9 2.8 3.1 5.9 4.6 2.1 6.6 2.4 4.0 6.4
  50 2.9 3.3 6.2 2.9 3.1 6.0 3.2 2.3 5.4 2.6 3.7 6.2
100 3.9 2.7 6.6 3.9 2.4 6.3 4.0 2.2 6.2 2.9 3.0 5.8
200 2.9 2.9 5.8 2.2 2.9 5.1 2.6 2.9 5.5 2.3 3.0 5.3
500 2.7 2.6 5.3 2.9 2.6 5.4 3.0 2.8 5.7 2.6 2.6 5.1
 ( ) ( ), 0.75, , 0.36 Corr Y X Corr X W= =  
  10 5.5 0.0 5.5 5.4 0.0 5.4 10.6 0.1 10.7 2.2 6.2 8.4
  25 3.7 0.0 3.7 3.9 0.0 3.9 6.5 0.6 7.1 1.6 5.0 6.5
  50 3.7 0.0 3.7 3.5 0.1 3.5 6.0 1.3 7.3 2.0 3.6 5.6
100 2.2 0.3 2.5 2.6 0.7 3.3 4.8 1.8 6.6 2.2 3.7 5.9
200 2.9 2.6 5.5 3.2 2.3 5.5 4.3 1.4 5.6 2.4 3.0 5.4
500 2.7 3.0 5.6 3.2 2.8 5.9 4.1 1.7 5.8 2.6 2.6 5.2
 ( ) ( ), 0.36, , 0.75 Corr Y X Corr X W= =  
  10 4.8 1.4 6.2 4.7 1.4 6.1 5.4 1.2 6.6 4.4 4.1 8.4
  25 2.8 3.0 5.8 2.8 3.0 5.8 3.3 1.3 4.6 2.6 3.0 5.6
  50 2.1 3.2 5.3 2.1 3.0 5.1 2.6 2.2 4.8 2.3 3.0 5.2
100 2.4 3.4 5.8 2.5 3.2 5.7 2.8 3.1 5.9 2.5 3.2 5.7
200 3.0 2.9 5.9 2.9 2.4 5.3 2.7 2.2 4.9 2.5 2.5 5.0
500 2.6 3.0 5.5 2.3 2.9 5.2 2.3 2.9 5.2 2.2 2.6 4.8
 ( ) ( ), 0.37, , 0.36 Corr Y X Corr X W= =  
  10 5.7 0.0 5.7 5.4 0.0 5.4 11.4 0.0 11.4 5.4 6.5 11.8
  25 3.5 0.0 3.5 3.8 0.0 3.8 7.5 0.3 7.8 2.9 4.0 6.9
  50 3.2 0.1 3.2 3.3 0.3 3.6 6.5 1.0 7.5 2.5 3.6 6.1
100 2.4 1.2 3.6 2.6 1.3 3.9 4.1 1.0 5.1 1.8 3.1 4.9
200 3.0 2.5 5.5 3.4 2.2 5.5 4.2 1.6 5.8 2.9 3.3 6.1
500 2.2 3.0 5.2 2.5 2.4 4.9 3.1 2.0 5.1 2.1 2.6 4.7
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Table I.5. Robustness study: relative bias and RMSE of the RC and ML estimators of 
the slope in a simple linear regression with measurement error. The true value of the 
parameter is 1. The distributions Y|X is normal, and the distribution of the regression 
error of X|W is either a t-distribution with 5 d.f. or a lognormal distribution. The 
primary sample size is  n = 1000 and the internal calibration sample size is m. The 
results are based on 2000 simulated primary and calibration samples. 
  
 Internal External CRS SCK MLE 
   m Rel. 

Bias 
(%) 

rmse Rel. 
Bias 
(%). 

rmse Rel. 
Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse Rel. 
Bias 
(%) 

rmse 

 ( ) ( ), , 0.75, , 0.75 t distribution Corr Y X Corr X W− = =  
  25 0.25 0.19 3.94 0.22 3.60 0.20 -0.07 0.13 2.40 0.13
  50 0.43 0.13 1.84 0.14 1.60 0.13 0.03 0.09 1.25 0.09
100 0.35 0.09 1.09 0.10 0.89 0.09 0.17 0.07 0.79 0.06
200 -0.16 0.06 0.19 0.08 0.03 0.06 -0.28 0.05 0.04 0.05
500 0.00 0.04 0.13 0.06 0.03 0.04 -0.06 0.03 0.10 0.03
 ( ) ( ), , 0.36, , 0.35 t distribution Corr Y X Corr X W− = =  
  25 0.81 0.55 -14.7 11.3 3.87 0.51 -7.35 0.40 8.24 0.39
  50 -0.50 0.38 19.3 1.34 2.31 0.32 -5.60 0.29 2.70 0.27
100 -0.64 0.25 6.99 0.50 -0.63 0.22 -3.67 0.21 0.73 0.19
200 -0.59 0.18 3.92 0.33 -0.37 0.16 -1.79 0.15 0.47 0.14
500 0.08 0.11 1.74 0.27 -0.01 0.10 -0.35 0.10 0.14 0.10
 ( ) ( ), , 0.75, , 0.75  lognormal distribution Corr Y X Corr X W= =  
  25 -1.06 0.18 3.58 0.21 3.22 0.20 -1.02 0.13 1.87 0.13
  50 0.61 0.13 1.67 0.14 1.45 0.13 -0.02 0.09 1.27 0.09
100 -0.40 0.09 0.78 0.10 0.52 0.09 -0.42 0.07 0.32 0.06
200 0.08 0.06 0.49 0.08 0.32 0.06 -0.01 0.05 0.34 0.05
500 -0.06 0.04 0.04 0.06 -0.03 0.04 -0.11 0.03 0.04 0.03
 ( ) ( ), , 0.36, , 0.35  lognormal distribution Corr Y X Corr X W= =  
  25 -2.29 0.53 6.41 16.1 2.55 0.50 -11.4 0.40 5.12 0.39
  50 -1.55 0.36 27.6 4.09 2.44 0.33 -6.11 0.28 2.51 0.27
100 0.31 0.25 5.54 0.42 -0.10 0.21 -2.86 0.20 1.31 0.19
200 0.17 0.18 3.85 0.34 -0.04 0.16 -1.36 0.15 0.80 0.15
500 -0.31 0.11 0.70 0.26 -0.48 0.10 -0.79 0.10 -0.13 0.09
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Table I.6. Robustness study: average length of a 95% confidence interval of the slope 
in a simple linear regression with measurement error. The distributions Y|X is normal, 
and the distribution of the regression error of X|W is either a t-distribution with 5 d.f. 
or a lognormal distribution. The primary sample size is  n = 1000 and the internal 
calibration sample size is m. The results are based on 2000 simulated primary and 
calibration samples. (**** indicates that the value is >100.) 
 
  Wald Bootstrap  
 Int. Ext. CRS SCK Ext CRS SCK LRT 
 ( ) ( ), , 0.75, , 0.75 t distribution Corr Y X Corr X W− = =  
    25 0.76 0.78 0.74 0.49 1.01 0.81 0.51 0.45
    50 0.52 0.53 0.49 0.35 0.58 0.51 0.36 0.33
  100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
  200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
  500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
 ( ) ( ), , 0.36, , 0.35 t distribution Corr Y X Corr X W− = =  
    25 2.23 **** 2.96 1.47 15.09 2.28 1.61 1.27
    50 1.46 4.89 1.52 1.07 9.11 1.31 1.11 0.95
  100 1.01 1.73 0.91 0.79 3.19 0.86 0.81 0.74
  200 0.70 1.26 0.63 0.60 1.48 0.62 0.60 0.56
  500 0.44 1.05 0.41 0.40 1.08 0.41 0.40 0.38
 ( ) ( ), , 0.75, , 0.75  lognormal distribution Corr Y X Corr X W= =  
    25 0.75 0.77 0.74 0.49 0.96 0.82 0.51 0.45
    50 0.51 0.54 0.49 0.36 0.57 0.51 0.36 0.33
  100 0.36 0.39 0.34 0.26 0.40 0.34 0.26 0.24
  200 0.25 0.30 0.23 0.19 0.31 0.23 0.19 0.18
  500 0.16 0.24 0.15 0.13 0.24 0.15 0.13 0.12
 ( ) ( ), , 0.36, , 0.35  lognormal distribution Corr Y X Corr X W= =  
    25 2.16 **** 2.98 1.44 15.40 2.25 1.58 1.25
    50 1.46 34.24 1.51 1.07 8.93 1.30 1.11 0.96
  100 1.00 1.61 0.91 0.79 2.89 0.86 0.81 0.73
  200 0.70 1.28 0.63 0.60 1.50 0.62 0.60 0.56
  500 0.44 1.05 0.41 0.40 1.08 0.40 0.40 0.38
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Table I.7. Robustness study: error rate of a 95% confidence interval for the slope in a 
simple linear regression with measurement error. The distributions Y|X is normal, and 
the distribution of the regression error of X|W is either a t-distribution with 5 d.f. or a 
lognormal distribution. Error rate of a 95% confidence interval for the slope in a 
simple linear regression with measurement error. m denotes calibration sample size ; 
“L” the percent of samples for which the true slope was greater than the upper limit of 
a 95% CI; “R” the percent for which the true slope was smaller than the lower limit of 
a 95% CI; and “Tot” the total error rate. The results are based on 2000 simulated 
primary and calibration samples. 
  
  Wald intervals 
 Internal External CRS SCK 
m L R Tot L R Tot L R Tot L R Tot 
 ( ) ( ), , 0.75, , 0.75 t distribution Corr Y X Corr X W− = =  
  25 1.7 3.0 4.6 6.2 0.2 6.4 6.2 0.2 6.4 5.8 2.6 8.4
  50 2.4 2.5 4.8 4.5 0.4 4.9 4.4 0.4 4.7 4.0 2.2 6.2
100 2.5 2.4 4.9 2.9 0.7 3.6 3.2 0.8 3.9 3.0 2.5 5.5
200 2.5 2.5 5.0 3.6 1.3 4.8 3.7 1.0 4.7 3.3 1.7 4.9
500 2.8 2.4 5.2 2.9 1.7 4.6 2.8 1.5 4.3 2.6 2.0 4.6
 ( ) ( ), , 0.36, , 0.35 t distribution Corr Y X Corr X W− = =  
  25 2.3 2.2 4.4 9.9 0.0 9.9 9.5 0.0 9.5 9.6 1.3 10.9
  50 2.3 2.2 4.5 8.2 0.0 8.2 7.9 0.0 7.9 8.3 1.6 9.9
100 2.8 2.7 5.5 6.9 0.0 6.9 5.7 0.4 6.0 5.8 1.6 7.4
200 2.6 2.4 5.0 4.6 0.2 4.7 3.3 1.1 4.4 3.8 1.5 5.2
500 2.5 2.8 5.3 3.1 1.1 4.2 3.0 2.5 5.5 3.4 2.3 5.7
 ( ) ( ), , 0.75, , 0.75  lognormal distribution Corr Y X Corr X W= =  
  25 3.1 1.8 4.8 6.2 0.2 6.3 6.1 0.2 6.3 6.4 1.6 8.0
  50 2.1 2.6 4.7 4.8 0.4 5.2 4.6 0.4 5.0 4.1 2.1 6.1
100 3.1 2.4 5.4 4.7 0.9 5.6 4.4 0.9 5.3 4.3 1.7 6.0
200 2.3 3.2 5.5 4.0 1.5 5.4 3.7 1.4 5.1 3.6 2.7 6.3
500 2.3 2.3 4.6 3.0 1.7 4.7 3.2 1.8 5.0 3.1 2.3 5.4
 ( ) ( ), , 0.36, , 0.35  lognormal distribution Corr Y X Corr X W= =  
  25 3.0 1.9 4.8 13.0 0.0 13.0 12.6 0.0 12.6 12.8 1.1 13.9
  50 2.8 1.9 4.6 8.5 0.0 8.5 7.8 0.0 7.8 8.5 1.5 10.0
100 2.1 2.5 4.6 4.7 0.0 4.7 4.3 0.2 4.5 5.0 1.1 6.1
200 2.4 2.6 5.0 4.2 0.1 4.3 3.1 1.5 4.6 3.6 2.1 5.6
500 2.3 2.2 4.5 2.9 1.1 4.1 2.2 1.7 3.9 2.3 1.7 4.0
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Table I.7 (Cont). 
  
 Bootstrap percentile intervals     
 External CRS SCK LRT 
M L R Tot L R Tot L R Tot L R Tot 
 ( ) ( ), , 0.75, , 0.75 t distribution Corr Y X Corr X W− = =  
  25 3.5 4.0 7.4 3.4 3.9 7.3 4.2 2.6 6.8 3.5 5.1 8.6
  50 3.0 3.5 6.5 2.9 3.5 6.4 2.8 2.5 5.3 3.0 4.1 7.0
100 1.9 2.6 4.4 1.9 2.7 4.5 2.7 3.0 5.6 2.5 3.7 6.2
200 2.5 2.4 4.9 2.5 2.2 4.7 2.7 2.0 4.7 3.0 2.9 5.8
500 2.5 2.5 5.0 2.5 1.8 4.3 2.6 2.1 4.7 2.7 2.6 5.3
 ( ) ( ), , 0.36, , 0.35 t distribution Corr Y X Corr X W− = =  
  25 2.5 0.0 2.5 2.6 0.0 2.6 5.9 0.1 6.0 2.2 3.3 5.5
  50 3.4 0.2 3.5 2.8 0.5 3.3 6.3 0.9 7.2 2.6 3.6 6.2
100 2.7 1.0 3.6 3.3 1.4 4.7 5.1 0.9 6.0 2.3 2.7 5.0
200 3.1 2.2 5.3 2.8 2.0 4.8 3.7 1.4 5.1 2.1 2.9 5.0
500 2.4 2.2 4.5 2.9 2.6 5.4 3.5 2.1 5.6 2.9 2.8 5.7
 ( ) ( ), , 0.75, , 0.75  lognormal distribution Corr Y X Corr X W= =  
  25 3.4 3.6 7.0 3.5 3.3 6.8 5.3 1.9 7.1 3.0 4.0 7.0
  50 3.3 3.0 6.3 3.2 3.0 6.1 3.3 2.4 5.7 2.4 3.4 5.8
100 2.9 2.7 5.6 3.1 2.8 5.9 3.8 1.9 5.7 3.4 3.4 6.8
200 2.6 2.4 5.0 2.8 2.7 5.5 2.9 2.7 5.6 2.5 3.3 5.7
500 2.5 2.7 5.2 3.0 2.1 5.1 2.9 2.4 5.3 2.9 2.4 5.3
 ( ) ( ), , 0.36, , 0.35  lognormal distribution Corr Y X Corr X W= =  
  25 4.7 0.0 4.7 5.3 0.0 5.3 9.0 0.3 9.3 3.5 3.5 7.0
  50 3.1 0.2 3.2 3.9 0.3 4.2 6.6 0.7 7.3 2.6 3.5 6.1
100 2.3 0.9 3.2 2.8 1.1 3.9 4.4 0.6 4.9 2.3 2.4 4.6
200 2.4 2.9 5.3 2.4 2.4 4.7 3.9 1.5 5.4 1.9 3.2 5.1
500 2.4 2.1 4.5 2.4 2.1 4.5 2.7 1.8 4.5 2.3 2.3 4.6
 
 
 

 


