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Let J denote the set of nonnegative integers, and when n ¢ J
let In denote the set of nonnegative integers less than or equal to
n. If A g J let A(In) represent the cardinality of the set
{x‘xeAr\In and x>0} I k>2 and A, 2,...,Ak are

+ A2 + ...+ A or z Ai denotes the

subsets of J then A K

1
1<i<k

set { Z ail a, ¢ Ai}. Conditions are found that imply the funda-
1<i<k

mental inequality,

The inequality ~A1(In) + AZ(In) < (A1+A2)(In) is obtained when

Al’ AZ’ and A3

Al tA +A; DI, and ndA +tA +A

are subsets of J satisfying Al(In) < 5,

3" This result is used



to prove the fundamental inequality when k> 2 and Al, AZ. ces Ak

are subsets of J such that at least k- 2 of the sets have less than

—

five nonzero elements less than n, and where Z A, 2 In )
1 -

1<i<k
and n ¢ Z Ai. It is established that a least k-2 of the sets

1<i<k
Al’ AZ' e Ak have less than five nonzero elements less than n
when the following conditions are satisfied: Z Aig I 1’
n-
1<i<k

n ¢ Z A, and either
i

1<i<k

(i) n<14 and k>3,

H
]

(ii) n=15, k>4, and A(I)>0 for i=1,234
= h

i
16, k> 5, and Ai(In)>0 for i

or

n
"

(iii) n 1,2,3,4,5.

Exaﬁlples are given to show that the integers 14 and 15 cannot be
replaced by larger integers in statements (i) and (ii). The above
results are extended to the set of all m-tuples of nonnegative integers.
In 1955 Chio-Shih Lin used a different method to obtain the fundamental
inequality when n < 14 and Al’ AZ, and A3 are subsets of J for
which A +A,+A DI  and n JA +A T A,

The fundamental inequality is also established under certain
other conditions. These results are less substantial.

Four related numerical functions are defined and the evaluation

of one of them is given. Results are obtained concerning the values

for the other functions on certain subsets of their domains.
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A FUNDAMENTAL INEQUALITY IN ADDITIVE NUMBER
THEORY AND SOME RELATED NUMERICAL FUNCTIONS

I. INTRODUCTION

Let N represent the set of natural numbers, and let J
represent the set of nonnegative integers. If a and b are
integers, a <b, then a,...,b appearing in the description of a
set S of integers denotes the fact that S contains all integers x
where a <x <b. For each ne N, let In={0,...,n}. If A is
a set of nonnegative integers, then A(In) represents the cardinality

of A~I{l,...,n}. The sum of k sets of nonnegative integers

is the set { z :«.a.ila.,1 € Ai}’ and either

1<i<k

Al,AZ,...,Ak

A1 + A2 + ...+ Ak or Z A,1 denotes this sum set.
1<i<k

The following theorem was proved by H. B. Mann [7] in 1942.
Theorem A. If A,B (C J, 0¢ A~B, and (A+B)(In) <n,
then

(A+B)(In) A(I)+B(I)

z glb{ __.E_t.:____i_

t{ A+B and t=1,2,...,n}.

A special case of Theorem A occurs when n is the smallest

natural number missing in A + B. Then



(A+B)(1) A(I )+B(I )
n n n

>
n - n
Thus we have
Theorem B. If A,B(C J, A+B O{0,...,n-1}, and

nd A+ B, then
A(I)+B(I )< (A+B}{I )=n-1.
n n — n

Three years after Mann's Theorem A was published,

F.J. Dyson [1] published a paper that contains the result stated next.

k
Theorem C. If AiCJ for 1i=1,2,...,k, Oc¢ m~Ai,
i=1
and ( Z A){I ) <n, then
i""'n
1<i<k
( Z Ai)(In)
; A (L)
<
Ls—l-f—rl:—-—————g_glb{ z —-lz—t— lt=1,2,...,n}

1<i<k

In view of Dyson's theorem, it is of interest to inquire about the
possibility of extending Theorem A to a sum of three or more sets in

the following way.

Statement A. If k >3, Ai CJ for i=1,2,...,k,

k :

0Oe n A, and ( Z A.)(I ) <n, then
i i 'n

=1 1<i<k



<i<
Lsisk >g1b{ z ‘td z A and t=12,..n}

1<i<k 1<i<k

Statement A implies the following extension of Theorem B.

Statement B. If k >3, Ai(: J for i=1,2,...,k,
Z Ai D {0,...,n-1}, and n¢ Z Ai’ then
1<i<k 1<i<k
Z A (1) <( Z A)(I)=n-1.
1 n - 1 n
1<i<k 1<i<k

However, Statement B is not valid, and thus neither is Statement A,
for consider n = 15, A1 = {0,1, 8,10, 12, 14}, A2= {0, 2,8,9,12, 13},

A, =1{0,4,8,9,10,11}, and A ={0} if k>3 and 3<icgk

Then Z AiD{O,...,14} and 15 ¢ Z A, but

1<i<k 1<i<k

Z Ai(Ils) =15 >14 = ( Z Ai)(115).

1<i<k 1<i<k

Chio-Shih Lin [6], in his doctoral dissertation which was written
under the direction of Mann, obtained conditions on three sets of

nonnegative integers A, B, and C that, in addition to the hypothe-

ses A+B+C D {0,...,n-1} and ndA+B+C, imply



A(L) + B(I) + C(I) < (A¥B+C)(L ). ‘These results of Lin are pre-
sented in Theorems D and E. Lin uses Theorem D to prove

Theorem E.

Theorem D. If A,B,C C J, A+B+C 2 {0,...,n-1},

nd A+B+C, and ({x|xc¢ In and x ¢ A+ B})(In) <5, then
A(I )+ B({I)+C(I)<(A+B+C)(L ) =n-1.
n n n — n

Theorem E. If A,B,C (C J, A+B+C D{O,...,n-l},

nd A+B+C, and n <15, then

A(I )+ B(I )+ C(IL) < (A+B+C)(I_) = n-1.
n n n -— n

The next three theorems give limitations on the extension of
Theorems D and E. Lin proves these ‘three theorems by exhibiting
for each integer n >15 a construction of three sets A, B, and
C. The three sets Al’ AZ’ and A3 that we used to provide a

counterexample to Statements A and B are the sets determined by

Lin's construction when n = 15.

Theorem F. For each integer n > 15 there exist sets of non-
negative integers ‘A, B, and C for which A+B+C ) {0,...,n-1},

nd A+B+C, and A(I )+ B(I)+ C(L)>(A+B+C)(I ).
n n n n

Theorem G. If t >0 is given then a positive integer n and



sets of nonnegative integers A, B, and C can be found satisfying
A+B+C D {0,...,n-1}, n{A+B+C, and

A(L) + B(1) + C(L ) > (A+B+C)(L) + ¢.

Theorem H. For each integer r >5 a positive integer n
*

and sets of nonnegative integers A, B, and C exist satisfying

A+B+C D{0,...,n-1}, n{ A+B+C,

A(I )+ B(I )+ C(I ) >(A+B+C)(1 ),
n n n n
and

({x|x ¢ I_ and x¢A+B})(i ) = r.
n n

Let J1= J and for m e N, let Jm be the set of all

m-tuples having nonnegative integer coordinates.

The main purpése of this dissertation is to obtain a theorem for
k >3 sets in I™ whichfor k=3 and m=1 is Lin's Theorem
E. This is done in Chapter IV. The theorem is of particular interest
for k=3 and k =4 because of examples which are given which
show that the theorem is best possible in the same sense that Theorem
F shows that Lin's Theorem E is best possible.

In Chapter II we define a set transformation in Jm which was
used by Lin when m =1, and we give those properties of the trans-
formation that we use later in Chapters III and IV.

In Chapter III we study conditions on two or more sets in J



‘which imply that the sum of the number of nonzero elements in the
given sets is not greater than the number of nonzero elements in the
sum set. The proof of the extension of Theorem E in Chapter IV
depends on one of these resuits. We also obtain an extension of Lin's
- Theorem D in this chapter.

Four related numerical functions are defined in Chapter V.

We evaluate one of these functions completely. Results which we
have obtained earlier, as well as known results, are used to evaluate
the other functions on certain subsets of their domains and to deter-
mine bounds for them elsewhere.

An extension of Theorem F to k sets, k>4, in Jl is
given in Chapter V. This result is due to Allen Freedman, but it is
not in print. Also in Chapter V, we show that an extension of Theorem
Gto k>4 setsin Jl can be obtained directly from a theorem
due to P. Erdds and P. Scherk. No interesting extensions of Theorem
H are apparent to the author.

Two key theorems in extending Theorem E to k > 3 sets in
Jl are Theorems 3.1 and 4.3. Moreover, Theorem 3.1 is basic in
obtaining the extension in Jm, m >1.

Throughout this thesis when the elements of a set are listed

they will be distinct.



II. THE INVERSION TRANSFORMATION

A transformation on certain subsets of the set 77 of all
m-tuples of nonnegative integers is introduced in this chapter. This
transformation, called an inversion, was introduced for J by
A. Khintchine [5] in a paper published in 1932. We have frequent
occasion in Chapters III and IV to use properties of the inversion
transformation for J~ that were found and used for Jl by Lin in
his thesis. These properties are given in Theorems 2.9 and 2. 10.
Theorem 2.11 is not needed later, but it is of interest in itself in the
theory of the inversion transformation.

We begin with some definitions.

Definition 2. 1. Let .]'1 = J denote the set of nonnegative

. m _ .
integers. Let J -{(xl,xz,...,xm)lxie J and i=1,2,...,m}
for m a positive integer. The point x = (XI’XZ’ S ,xm) in 70
with xi= 0 for i=1,2,...,m is denoted by 0.

Definition 2. 2. If x, =(x.,.,%X..,-.--,%x_.,) isin J for

i 11’ 21 mi
i=1,2,...,k, then Z x, or X +x2+ ...+xk represents the
1<i<k
. . m
point ( E X5 Z Kyir oo z Xmi) in J .
1<i<k  1<i<k 1<i<k
Definition 2.3. If x=(x,,%,,.--,%X ) and
1’2 m

y = (Vl’Vz’ ceey ym) are points in Jm, then x <y ifan only if



X <___y,1 for i=1,2,...,m. The notation x <y means X <y

and x#y. If x <y then y—x=(yl-xl,yz-xz,---,ym-xm)-

Definition 2.4. ¥ S,T C J© then

ST ={x|xe¢S and x ¢ T}.

Definition 2. 5. For each z ¢ .]'m such that z >0,

Iz = {x|x € .]'m and 0 < x f_z} and I; = IZ\{Z}-

Definition 2. 6. Let S, T (C J . If the cardinality of T is

finite then S(T) denotes the cardinality of the set (S A T)~A{0}.

Let AI’AZ’ cee, Ak be subsets of 7. The sum set,
z Ai’ is usually defined to be the set { Z ail a, ¢ Ai}. Note
1<i<k 1<i<k

that when 2z ¢ Jm then the set

(2.1) { Z ailaieAi}m Iz

and the set

(2.2) { Z a.|]a, € A, AL and z a, <z}
1 1 1 z -

are equal. In view of the equality of the sets in statements (2.1) and
(2.2) and in order to simplify the proofs of our results in Chapters III

and IV, once the element 2z ¢ 7™ has been specified we choose to



restrict all sets considered, except Jm itself, to be subsets of Iz

and to define set addition in the following way:

Definition 2.7. Let z € J be specified. If AI’AZ’ R ’Ak

are subsets of I, then A +A_+ ...+ A or Z A, denotes
p 1 2 k i

1<i<k
the set { 2 a|a. € A, and Z a. < z}.
i'7i i i—
1<i<k 1<i<k
We remark that 0 ¢ A,1 for i=1,2,...,k whenever

0 e Z Ai. Also, if one of the summands is the empty set then the
1<i<k

sum is empty. With A, B, and C subsets of IZ, it can readily
be verified that A+ B =B+ A and A + (B+C) = (A+B) + C..

We now define the inversion transformation.

Definition 2.8. Let z ¢ J  be specified. If S isa subset

of I, the set
z

S~ ={z - xlx € IZ\S}

is called the inversion of S.

We proceed to list in Theorems 2.9 and 2. 10 those properties of
the inversion transformation that are used in succeeding chapters.
These results are in Lin's thesis for the set .]'1. We establish their
validity for the set 77 where m >1 by using the same arguments

given by Lin for m = 1.



sets

10

m

Theorem 2.9. Let ze€J , z >0, be specified. For any

S, T C Iz the following properties hold:

(a)
(b)
()
(d)

(e)

(f)

(5%)~ = S
T C S~ ifandonlyif z¢S+T.
£ S+T=I' then T ( S~ and S+8~=1I'.
Z Z
~T1Y = ]
S™(I!) = (1 ~S)(1).
E 0¢S and z¢S, then S™(I)+1= (" ~S)(I)

If 0¢S and z¢S, then S(I)+S~(I)=1I(L).
YA YA Zz Z

Proof.

(a)

(b)

(c)

(d)

Now s €S ifandonlyif 2z - s ¢ IZ\S”, which is turn

is equivalent to s =z - (z-s) € (87)~.

First assume T S~. Then S +T C s+ s~. I

z €S +S~, itfollows that z - x ¢ S; for some x € S.

However, 2z - x € S~ implies x ¢ S, a contradiction,

and so we conclude z ¢ S+ S~. Therefore, zdS+T.
Next assume z ¢ S+ T. Let te T. Then z -t ¢S,

for otherwise z = (z-t)+t € S+ T. Hence,

t=2z - (z-t) € S~.

If S+ T-= I; then z ¢ S+ T, and it follows from (b)

that T C S”. Thus, L' (S+T C s+8~ (C L. Since

zdS+S” by (b), then S+5%=1.

We have x € (S~ mlé)\{O} if and only if 0 < x <z and
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x € S¥, which are equivalentto 0<z -x <=z and

Z - X € IZ\S. These last conditions are equivalent to

Z - X € ((IZ\S) r\I;)\{O}. Therefore, S"(I;) = (IZ\S)(I;).
(e) Since 0¢S then z ¢ S~, and so S”(Iz) = S“’(I;).

Since z ¢S then =z ¢ IZ\S, and so

(IZ\S)(IZ) =1+ (IZ\S)(I;). An application of (d) gives the

desired inequality.
(f) Applying (e), we have S”(Iz) = (IZ\S)(IZ) - 1. Further-

more, S(I )+ (I S)(I )=1(I }(I_). Therefore,
z z zZ z' 'z

1}

S(Iz) + S”(Iz) S(Iz), + (IZ\S)(IZ) -1

IZ(IZ) -1= I;(Iz).

Theorem 2.10. Let =z € Jm, z >0, be specified and let

S C I_. Anecessary and sufficient condition for S to satisfy
S+8~ = I; is that, for every x suchthat 0 <x <z, we have

s +{0,x}#S.

Proof. Assume S+S“'=I'Z and 0 <x <z. Then z—er'z

since 0 <z - x <z. Therefore, z = (z-%x) + x € I; + {0, x}, and so

Iz = I; + {0, x}. However, if S+ {0,x} =S then
= 1! = S~ = S~ = 1!
I Iz+{0,x} S~ +S+{0,x}=S~+S I

a contradiction. Thus, S+ {0,x}#S.



Conversely, assume S +{0,x}#S for each x, 0 <x <z

Let vy e I;. Then 0<z-y<z and S+{0,z-y}#S. Hence,
there exists an element s ¢ S such that s+ (z-y) <z and
s+ (z-y) ¢ S. It follows that z - (s+(z-y)) € S” and y €S+ 8”7
since y = s+ (z-(st(z-y))). Therefore, L (C S+ 8S~. Since
z d S+ S5~ by Theorem 2.9(b), then I'z =S+ S~.

This completes the proof.

In the next theorem we show that whenever Al’ AZ’ C.. ,Ak
are subsets of Iz whose sum is -Ié then there exist k

"maximal" sets whose sum is I;.

Theorem 2.11. Let 1z € Jm, z >0, be specified. Let

A.C I for i=1,2,...,k where k>2. If Z A =T
i z - i z
1<i<k
*
then there exist sets A.1 , i=1,2,...,k, for which

Sk
(i) A, C A, G

(ii) Z A =1',
1 YA

1<i<k

12

Proof. Let A = {( Z A~ Since A1+ Z Aj=I‘z, then

2<j<k 2<j<k



% %k
Al C Al C I; and A, + ( A) = I; follow from Theorem

2.9{c).

als
o<

We define A'i recursively, 1 <1i <k, by

A = Z A+ Z A)~.
1 J J
1<j<i-1  i+l<j<k

Next we show Ai C A; C IZ and

ZA+E A =1,
j z

1< <1 1+ls<k

1 <i<k, byinduction. Suppose 1l <t <k and the two results

are valid if 1 <i <t. Since

%k
Y aTe ) a-
J J
t<j<k

1<j<t-1

%k
then from Theorem 2.9(c) it follows that A C A C I and

Z A + Z A =T1'.
J zZ

t+1<j<k

In particular z A = I;. Applying Theorem 2. 9(c) to this last

1<j<k

equality, we obtain

13
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and so

The proof is now complete.

We remark that when A A A.k k >4, are subsets of

I  for which Z A, =1 and A, =( Z A)~ for i=1,2,....k,
z iz i j

1<i<k 1<j<k
j#i

it is not always the case that

Ta (Y ar
1 J

iel jeJ
where I, J is a partition of {1,2,...,k}. For instance, let k = 4,

=9, A= {0, 1,3, 8}, A,=10,3}, and A=A, = {0,2}. Then

= I! = ~ i= 1,2,3,4- How-
A1+A2+A3+A4 19 and Ai ( z Aj) for 1 ow
1<j<4
j#i

ever (A1+A2)~ ={0,2,4,7}, and so (A1+A2)" # A3 + A4-
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III. A FUNDAMENTAL INEQUALITY

Let 2z ¢ Jm and z > 0. We obtain new conditions on k

sets AI’AZ’ c ,Ak in I that imply the inequality
Z A(L) < z AN
1<i<k 1<i<k

In Theorem 3.1 the above inequality is obtained for two sets.
This is an important result since it is used to prove Theorem 3.2,
and in turn Theorem 3.2 is used later in proving Theorems 4.12 and
5.15., Moreover, Theorem 3.2 is the only result of this chapter that
is used in the succeeding chapters.

An extension of Lin's Theorem Dto k >3 sets in 7™ s
obtained in Theorem 3.4.

In the proof of Theorem 3.1 we construct a set which we denote
as Bl- The first step in the construction of a sequence of sets that
was defined by Mann to prove Theorem A, and later used by Lin to
prove Theorem D, provided the motivation for our definition of set
Bl'

Theorem 3.1. Let =z € Jm, z >0, be specified and let

A,B,C(CI . I A+B+C=1 and A(L)<4 then

A(L) + B(L) < (A+B)(I,).
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Proof. If A(IZ) =0 then A ={0}, A+ B =B, andthe theo-
rem follows immediately. Consequently, we restrict our considera-
tion of A(IZ) to the values 1, 2, 3 and 4.

First we show that I'Z\(B+C) is not the empty set. Let
ac¢A, a>0 Then z-ael, and z -adB+C for otherwise
ze A+ B+ C. Thus, 2z -ac¢ I'Z\(B+C).

Let E={b|a+b+c=x, acA, beB, ce C, xc¢ Ié\(B+C)}.
The set E 1is not empty since I'Z\(B+C) is not empty and

A+B+C=I;- For each b e E define

Eb={a+b|a+b+c=x, a€eA, ce C, er;\(B+C)}.

From the definition of Eb it follows that the set Eb is not empty,
0¢ Eb, Eb C A+B, and A(Iz) _?_Eb(Iz). Next choose e ¢ E so
that

Ee(Iz) = max{Eb(Iz)|b e E}.

Let B1 = Ee. From the remarks following the definition of

Eb we have 0¢B1,

(3.1) 0 < B,(I) < A(),
and
(3.2) BuBlgA+B.

If ye B1 then there exist elements a € A, c ¢ C, and
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XGI;\(B‘*‘C) such that y=a+e and x=atet c=y+tc. Now
vy d B, for otherwise x e B+ C; thus,
(3.3) BN B, =4

If Bl(IZ) = A(Iz) we use statements (3.2) and (3. 3) to obtain

A(Iz) + B(Iz) = Bl(Iz) + B(Iz)

"

(BluB)(Iz)

< (A+B)(L),

and the theorem is established.
If Bl(Iz) < A(Iz), then to prove the theorem it suffices to

show the existence of a set B2 having the following properties:

(i) BZQA+B,
(ii) B~ B, =4,

(iii) B, m B, =4,

(iv) Bl(Iz) + BZ(IZ) = A(IZ)-

In order to see that the theorem follows when a set B2 exists
satisfying properties (i), (ii), (iii), and (iv), we note that (i) and (3. 2)

imply Bu B, w B, C A+B and (i), (iii), and (3.3) imply

(BUB uBZ)(Iz) = B(Iz) + Bl(Iz) + BZ(IZ).

1
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Therefore, using property (iv), we have

A(Iz) + B(Iz) BI(IZ) + BZ(IZ) + B(IZ)

(Blu Bzu B)(Iz)

A

(A+B) (Iz ).

Henceforth, assume B_ (I ) < A(I ). Let s=A(I) - B (I).
1=z z z 1z

Since B.(I ) >0 then
172z

l<s=A@)-B(L)<A@)-123

With A(Iz)=t let a_,a

1 e, at denote the t mnonzero ele-

2
ments of A, andlet =z, =2z -a, for j=1,2,...,t. Now

zje’B+C, for otherwise z=aj+zjeA+B+C; also, aj>0

implies zj < z. Therefore,

{zjlj =1,2,...,t} C I! ~~(B+C).

Next we verify the following statement:

(3.4) If z, = a, +x where 1i,je{l,...,t}), then
J
z., = a, tXx.
j i
To see that statement (3.4) is valid let z. =(z..,z2..,..-.,2_.),
i 117 7 2i mi
x = (xl,xz,...,xm), aj = (alj,azj,...,amj), and



= e . i = + = +
z (Wl’ W , wm) Since z, aj x then zki akj Xk for

=1,2,... . = +
k » 2, ,m. It follows that Wk + zki Wk + akj Xk and

- = - + = PP .
Wk akj Wk zki xk for k=1,2, ,m. Thus
z2. =2 «a, = (z-z,)+x=a, +x.
j i i

By relabeling the nonzero elements of A if it is necessary,

we may assume that

B1={aj+e|j= 1,2,...,t-s}.

Since :—_a.,1 +ed B1 for i=t-st+l,...,t, then there do not exist

elements ce C and x ¢ I;\(B+C) for which a, +e+tc=x;

that is,

(3.5) ({ai teli=t-stl,...,t}+ C) ~ (II\(B+C)) = ¢.

Recall that {zi|i =1,2,...,t} C I'<(B+C). Since
I; = A+ B+ C then there exist functions a, B, and y from

{1,...,t} tosets A, B, and C, respectively, such that
(3.6) zi=a(i)+ﬁ(i)+y(i), i=1,2,...,t.

Since zi€'B+C then a(i) >0 for i=1,2,...,¢t.
* *
Define B, = {a(i) + B(i)|i = t-s+1,...,t}. Clearly BZ(IZ) <s.
For each i€ {t-s+l,...,t}, we note that a(i) + B(i) >0 since
a(i) > 0. Also, a(i)+p(i) e A+ B since afi)+ B(i) Szi < z,

a(i) € A, and B(i) € B. Moreover, af(i)+ B(i) ¢ B for otherwise
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zi ¢ B+ C. It follows that

(3.7) 0¢ BZ’
%

(3.8) B, _ A+B,

sk
(3.9) B B2 =g.
We now verify that
3.10 B B* =g
(3.10) ;N B, =4

*
Suppose y ¢ B. ~ B,. Since ye¢B

1 2

1 then vy = aj + e for some

* ‘ )
integer j, 1 <j <t-s, andsince ye B, then y=ali + B(i)
for some integer i, t-s <i <t. Therefore, a(i)+ p(i) = a.j t+e,

and making this substitution in z, = a(i) + B(i) + y(i) we obtain

zi=aj +e + y(i)-

An application of statement (3.4) gives

zj = ai+e + vy(i),

but this is contrary to statement (3.5) since zj € I'z\(B+C), v(i) € C,
a, ¢ A, and t-s <i<t. We conclude that the set B1 N B;“ is
empty.

We proceed to consider each of the possible values that the

integer s may assume.
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Casel. s =1.
sk ES
When s =1 then B, = {a(t) + B(t)}. Since 0 ¢ B, by
* *
statement (3.7) then BZ(IZ) = s, and so Bl(IZ) + BZ(IZ) = A(IZ).

In view of this last inequality and statements (3.8), (3.9), and (3.10),

sk

the theorem follows by setting B2 = BZ.

Case 2. 's = 2.
If a(t-1) + B(t-1) # a(t) + B(t), then B:(Iz) = s since

B: = {a(t-1) + B(t-1), a(t) + B(t)} and O ¢ B; Therefore,

ale

* sk
B (I)+B_.(L)=A(), andthe theorem follows with B, = B,.
172 2z Z 2 2

Assume a(t-1) + B(t-1) = a(t) + B(t). Since aft) e AN{0},

then a(t) = a, for some integer j where 1 <j <t. From state-
J

ment (3.6) we have zt_1 = a(t-1) + B(t-1) + y(t-1) and

zt = a(t) + B(t) + y(t). Therefore,

(3.11) z,_; = alt) + ) + ylt-1)
= 3 + B(t) + y(t-1)

and

(3.12) z =

aj + B(t) + y(t).

Applying statement (3.4) to statements (3.11) and (3.12) respectively,

we obtain

(3.13) z =@ gt B(t) + y(t-1)

and
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(3.14) zj = at + B(t) + y(t).

From statements (3.12), (3.13), and (3.14) we have

Ep(t) D {aj + B(t), at-l + B(t), at + B(t)}.

Since E (I )=B.(I )=t-s <2, then from the definition of E it
e z 17z - e

follows that (Iz) < 2. Therefore, je {t-1,t} and

Eat)

Eﬁ(t) = {a B(t), a, + B(t)}.

Now Eﬁ(t) C A+ B. Furthermore, Eﬁ(t) ~ B =g, for

otherwise statement (3.13) or (3.14) yields Zj e B+ C. Since

(I ) =2 =s, then Bl(IZ) + E (I ) = A(I ). We next show that

ﬁ(t) B(t)
B) N Egy =9 Let ic{t-1,t}, andsuppose 2, +fit) ¢ B,
Then a, + B(t) = ay + e for some integer k, 1 <k <t-2, and

making this substitution in statement (3.13) if i = t-1 and in state-

ment (3.14)if 1i=t, we have

= ak +e + y(i).
This in turn yields
z, = aj + e+ y(i)

k

by an application of statement (3.4). However, zk € I; ~(B+C),
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vy(i) e C, je {t-1, t}, aj e A, and zk = aj + e+ y(i) are contrary

to statement (3.5). Thus, it must be that B1 ~ Eﬁ(t) = ¢g. Let

We have established that B satisfies properties (i),

B, = 2

2~ Eppey

(ii), (iii), and (iv); hence, the theorem follows.
Case 3. s = 3.

Since B. (I )>1, t=A(I ) <4, and A(I )=B . (I)+ s, then
17z — z' - b4 17z

B(I)=1 and A(I )=4. Thus
1 =z Z

B, = {a(2) + B(2),a(3) + B(3),a(4) + B(4)}.

We claim B:(Iz) = 3. Suppose a(i) + B(i) = a(j) + B(j) where

2<i<j<4. Since alj)e AN{0}, then a(j) = a for some

integer k where 1 <k <4. Thus, ali)+ B(i) = a, + B(j), and

making this substitution in zi a(i) + P(i) + y(i) we have

(3.15) z, = a *t B(j) + v(i).
Also,
(3.16) zj = ak + B(j) + v(j)-

Next, applying statement (3. 4) to statements (3.15) and (3.16), we

have

z, =a, +B()+y(i) = 2, + B(j) + v(j)-

Therefore, ) {a.i+[5(j),aj + B(j)}, and so

B ()
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. > = =

Eﬁ(J)(IZ) 1 Bl(Iz) Ee(Iz)
This last inequality, however, is contrary to the choice of e.
Thus, a(i) + B(i) # a(j) + B(j) for 2 <i<j < 4. Moreover,
0d B>i< d * I1)=3

> andso BZ( z) = 3.

S
In view of the equality Bl(IZ) + BZ(IZ) = A(IZ) and statements

sk

(3.8), (3.9), and (3.10), the theorem follows with B2 = BZ.

The proof of the theorem is complete.

Theorem 3.1 is the best possible result obtainable in the sense
that the integer 4 cannot be replaced by a larger integer. To see this
consider the example due to Lin which is given in the Introduction;
namely, m =1, z=15 A={0,1,8,10,12,14}, B = {0, 2,8,9,12,13},

and C =1{0,4,8,9,10,11}. Then A +B+C-= I'15 however,

A(IIS) + B(Il5) =10 >9 = (A+B)(Il5).

We now give an example to illustrate how the sets B, and B2
are found in the proof of Theorem 3.1. Let m =2, z = (3, 3),
A = {(0,0), (0,1)(1, 2), (2, 2)}, B ={(0,0),(0,2),(0,3),(1,3),(2,0), (3, 1)},
and C = {(0,0),(1,0),(0,3),(2,2),(2,3)}. Then A+B+C-= 1; and
A(I) = 3. Now I, ~{B+C) = {(0, 1), (1, 1), (2, 1), (3, 2)}, and the only
representations of the elements of I;\(B+C) in the form

a+tb+c with a€ A, be B, and c € C are those listed below:
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(3,2) =(0,1) +(3,1) + (0,0)
=(1,2) + (2,0) + (0,0)
= (2,2) + (0,0) + (1,0),
(2,1) =(0,1) + (2,0) + (0, 0),

(1,1) =(0,1) + (0,0) + (1, 0),
and
(0,1) =(0,1) + (0,0) + (0, 0).

Therefore E = {(0,0),(2,0),(3,1)}, E = {(0, 1), (2, 2)},

(0, 0)
E, o =320} and Eg )= {(3,2)}. Since
2 = maX{E(O, 0)(12),E(2, O)(Iz)’E(3, 1)(12)}
- E(O, 0)(Iz) = E(Z, 0)(12),

then we may choose e = (0,0) and B1 = E(O 0) or e = (2,0)

and B, = Note that

1 E(Z,O)' We set e =(0,0) and B1 =

(0, 0)°
s = A(Iz) - Bl(Iz) =3-2=1 and t-s = 2. Proceeding, we label
the nonzero elements of A in such a way that B1 = {e + a,,e + az);
say, a; = (0,1), a, = (2,2), and az = (1, 2). Next, we define
zl=z-a1=(3,2), z,2=z-a2=(1,1), and Z3=Z—a3:(2,1).

Since there is only one way in which z, can be expressed as a sum

of the form a+b+c¢ with ae€ A, be B, and ¢ € C, namely,

zy = (0,1) + (2,0) + (0,0),

then it must be that a(3) = (0, 1), B(3) = (2,0), and y(3) = (0,0).
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%
Thus, B, = {a(3) + B(3)} = {(2,1)}. Since s =1 then Casel

£

applies, and we let B2 = BZ.

We now compare the set B1 which we construct to prove
Theorem 3.1 and the first set in the sequence of sets constructed by
Mann to prove Theorem A. Let B and C denote sets of non-

negative integers such that 0 ¢ B~ C and n ¢ B+ C. Thenin

proving the inequality

(B+C)(I) B(I)+C(L,)
>glb{———— | t¢{B+C and t= 1,2,...,n}

Mann considers the set

S, = {bla+b+c=x, ae (B+C)~,be B,ce C,x¢ Ir'l\(B+C)}.

If this set is not empty he defines the first set in a sequence of sets to
be

B! ={a+ e1|a+'e

1 +c=x%,a¢€e (B+tC)",ce C,x ¢ I;l\(B+C)}

1

where e, = min{b|b « Sl}. The set E in J which we define in

the proof of Theorem 3.1 is similar to Mann's set Sl; namely,
E={b|a+b+c=x, aeA beB, ceC, xe¢ I"Z\(B+C)}.

Note that the hypothesis of Theorem 3.1 implies A g (B+C)~, and
sofor m=1 wehave E C Sl- Since the ordering on 7° s

not a linear ordering when m >1, it may not be possible to compare
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each pair of elements from E. Our construction differs from Mann's
construction at this stage, even for m =1, in that we consider the
set E for each b € B and from among these sets we select one

b

having a maximum number of elements. This becomes the set B1

in our construction.

The second set in Mann's construction is determined by a pro-

cedure similar to the one which defines set B'l, the difference
being that in defining set B, the set B s replaced by B U B'1
whenever it occurs in the definitions of S1 and Bl- The second

set in our construction is not defined in this way.
1 .
We next give an example in J  for which our set B1 is not

the same as Mann's set B'l. Let n=15 A={0,1,8,10,12},
B=1{0,2,809,12,13}, and C =1{0,4,8,9,10,11}. Then

(B+C)~ = {0,1, 8,10, 12, 14}, S, = {0,2,9,13}, and B'1 = {1, 10, 14}.
However, E ={0,2,9,13}, E0 = {1, 10}, E2 = {3, 10, 14}, E9 = {10},
and E13 = {14}; therefore, B1 = {3, 10, 14}. In this example there

is no second set in Mann's construction since the set

{blatbtc=xa¢ (BUB))+C)",beBuUB],ceC,x ¢ L' \(BUB|)+C)}

is empty. In our construction B, = {1}.
Before Theorem 3.1 was proved various attempts were made by

the author to use known results to obtain the inequality
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(3.17) A(I )+ B(I ) < (A+B)(I)
n n — n

under the conditions that A+ B + C = 11"1 and A(In) < 5. For
instance, Mann's Theorem A was considered, but it does not seem to
be useful in general in obtaining inequality (3.17). To see this let

n = 8§, S1 ={0,1,5, 7}, S2 = {0, 2,5,6}, and S3 = {0,4}. A direct

computation shows that

S.(I1)+S.(L)
t Tit

. 1
S, (Ig) + Sj(IS)Z 8 - min{ . td s, + Sj’ 1 <t<8}

for each i and j where 1 <i<j<3. Thus, Theorem A does
not appear to lead to a comparison between (Si+Sj)(I8) and

Si(IS) + Sj(IS) since the conclusion of Theorem A states that

Si(It)+S.(It)
(5,+5,)1g) 2 8 min{ ——L—

tdsi+sj, 1 <t <8

Theorem 3.1 is used to prove the next result.

Theorem 3.2. Let z e J , z >0, be specified. Let k >2

and let Ai g_ Iz for i and at

!
>
-
=

12 ]
>
!

least k - 2 of the sets have less than five nonzero elements, then

Y oam) <l ) AN,

1<i<k 1<i<k
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Proof. Firstlet k =3. Let A AZ’ and A be subsets

L’ 3

of Iz such that at least one of the sets has less than five nonzero

_— i < 4.
elements and A1 + A2 + A3 Iz To be definite, say Al(Iz) <4

An application of Theorem 3.1 gives
ALY+ ALI) < (A+A( ).
From Theorem 2.9(c) we have A3 C (A1+A2)”. Furthermore,
(A1+A2‘)(Iz) + (A1+A2)”(Iz) = I’Z(IZ)

by Theorem 2. 9(f). Hence,
A(L) + A1)+ A, (L) < (A AL ) +A(L)

< (AJTAL)(L ) + (A +A,)7(I)

I;(Iz)

(A1+A2+A3)(Iz),

and the theorem is established for k = 3.
Let k >3 be fixed and assume the statement of the theorem

is valid for k. Let Bl’ BZ’ ce, Bk+1 be subsets of Iz such that

at least k-1 of the sets have less than five nonzero elements and
Z Bi = I;. By relabeling the sets if necessary, we may assume
1<i<k+l

that Bi(Iz) <5 for i=1,2,...,k-2 and 1i=k+l. Define
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A =B, for i=1,2,...,k-1 and A =B _*B . Then
z A = Z B.=1' and A(I1)<5 for i=1,2,...,k-2.

1 1 zZ 1 Z |
1<i<k  1<i<k+] ‘
By the induction hypothesis we have

Z' A (1) < ( Z A ).
1 Z 1 Z
1<i<k - 1<i<k
. _ < .
Since ( Z Bi) + Bk + Bk+1 IZ and Bk+1(Iz) 5, it follows

1<i<k-1

from Theorem 3.1 that

B (L) +B,, (L)< (B +B )(L)

kt+l k+1

Therefore,

z B, (L) =( Z B,(I))+ B (L) + B (L)
1<i<k+l 1<i<k-1

<( Z B.(1))+ (BB, ,)(L,)
1<i<k-1

= Z A(L) < Z ANL)

1<i<k 1<i<k

= Z B)(I)

1<i<k+l

and the theorem follows for k >3 by mathematical induction.

Now let k=2 and let A1 and A2 be subsets of IZ for
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which A_. +A_=1'. Define A, ={0}. Then
1 2 Z 3
= = 71! = . i
A1 + A2 + A3 A1 + A2 Iz and A3(Iz) 0. Since the theorem has
been established when k = 3, we obtain
Al(Iz) + AZ(IZ) = Al(Iz) + AZ(Iz) + A3(IZ)
< (A1+A2+A3)(Iz)
= (A +A)(L),

and the proof is complete.

When k >3 it is not possible to delete from the hypotheses of
Theorem 3. 2 the condition that at least k-2 of the sets have less
than five nonzero elements. To see this consider m =1, z = 15,
AE {0,1, 8,10,12, 14}, A, = {0,2,8,9,12,13}, A, = {0,4,8,9,10,11},
and Ai={0} for i=4,...,k if k >3. Then z A =L

- 1<i<k
however, - =

z Ai(Iz) =15 >14 = ( z Ai)(Iz)-

1<i<k 1<i<k
An example with m >1 is m=4, z =(1,1,1,1),
A'l = {0, (1,0, 0, 0), (0,1, ]',]'), (0, 0,1, 1),(0,1,0, 1),(0, 0, 0, 1)},

A, =1{0,(0,1,0,0),(1,0,1,1),(0,0,1,1),(1,0,0,1),(0,0,0, )},

Ay = {0,(0,0,1,0),(1,1,0,1),(0,1,0,1),(1,0,0,1),(0,0,0, 1)},
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and Ai={0} for i=4,...,k if k >3.

It is easy to see that when Z Ai = Ié and k >3 it is not
1<i<k

necessary for at least k-2 of the sets Al’ AZ’ e, Ak to have less
than five nonzero elements in order to have the conclusion of Theorem
3.2 hold. For instance, consider m =1, z = 5k + 1, and
A,1={0,...,5} for 1=1,2,...,k.

A.R. Freedman [3] has proved the following result which is
stronger than Theorem 3.2 when k = 2:

m

Let zeJ , z>0, bespecified. If A and B are subsets

of I for which 0¢e A~ B and z ¢ A+ B, then

m
A(Iz) + B(Iz) <7J (Iz)-

Freedman's result can be obtained directly from the properties
of set inversion. Since z ¢ A+ B then B (A~ by Theorem
2.9(b). Since 0e¢ A and z ¢ A then A(I)+A%(I)S= (L) by

Theorem 2.9(f). Therefore,
AI)+B(I)<AI)+A~(I)=1I(L)<JI L)
YA Z s Z YA zZ Z YA

An analogous result does not exist for three sets even when
m=1, forif z =5 and A=B=C=1{0,2,4} then 0¢A+B+C,

5d A+B+C, and



A(Iy) + B(Iy) + C(Ig) = 6 >5 =T (I;).

The next theorem generalizes Theorem 3.1to k >2 sets.

- Theorem 3.2 is used to prove this result.

Theorem 3.3. Let 2z ¢ J'm, z >0, be specified. Let k >2
andlet A, C I for i=1,2,...,ktl. If Z A, =1' and
i ="z i z
<i<k+t
either 1<igk+l
(i) Ai(Iz) <5 for i=1,2,...,k-1
or

(i) (T Z A)N(I)<5 and A.(I ) <5 for
z R iz
1<i<k

i=1,2,...,k-2, then

A(I) < ( Z AN ).
Z 1 Z
1<i<k 1<i<k

Proof. Let B = ( z Ai)'“. Since Z Ai=1; then
1<i<k 1<i<k+l

33

( z Ai) +B = I'z by Theorem 2.9(c). Furthermore, applying Theo-

1<i<k

rem 2.9(d) we have

B(Iz) = B(I'z) = (Iz\( z A.l))(I;)
1<i<k

AN Z A)L,).

1<i<k
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Thus, in both parts (i) and (ii) of the hypotheses at least k-1 of the

sets B’Al’ K

Theorem 3. 2 it follows that

( Z Ai(Iz))+ B(IZ) < (( zAiHB)(Iz) = I'Z(Iz).
1<i<k 1<i<k

However,

L) = Z AN + B(I,)
1<i<k

by Theorem 2.9(f), and so

Z AL) < ( Z A),)-

1<i<k 1<i<k

The conclusion of Theorem 3.3 cannot be obtained with the

= 1
hypotheses z A,1 Iz, Ak+1(Iz)<5, and Ai(Iz)<5 for

1<i<k+l

i=1,2,...,k-2. For example, with k=2, m =1, z = 15,
Al = {0, 1, 8,10,12, 14}, AZ ={0,2,8,9,12,13}, and A3 = {0, 4, 11},

) <5, and

then A +A2+A = I! A

1 37115 A3l

Al(I ) + A2(115) =10>9 = (A1+A2)(Il5)-

15

Note that 115\(A1+A2) ={4,5,6,7,11, 15}.

AZ’ .o A have less than five nonzero elements. From
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In the next theorem we obtain an extension of Lin's Theorem D.

Theorem 3.2 is used to prove this result.

Theorem 3.4. Let z ¢ Jm, z >0, be specified. Let k>3
andlet A, (C I for i=1,2,...,k. H ZA.=I',
i= "z i z
1<i<k

(Iz\( Z Ai))(Iz) < 5, and atleast k-3 of the sets

1<i<k-1
Al’ AZ’ cee, Ak 1 have less than five nonzero elements, then
z AL) < ( Z AN ).
1<i<k 1<i<k

Proof. Since E A =1' then A, C ( Z A)” by
1 Z k = i
1<i<k 1<i<k-1

Theorem 2.9(c). From Theorem 2.9(d) we have

(Z AJI) = (NG ) AN,

1<i<k-1 1<i<k-1
Therefore,
_ t -~ 1
ALY =A (T) < | Z A)T(L)
1<i<k-1
RN Z AN
Z 1 Z
1<i<k-1

< (1 Z A)NI) <5

1<i<k-1
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Since Ak(IZ) < 5 and at least k-3 of the sets AI’AZ’ e ’Ak-l

have less than five nonzero elements, applying Theorem 3.2 we have

When m=1 and k=3 Theorem 3.4 is Theorem D. Lin's
proof of Theorem D uses properties of Mann's set construction that
are verified by arguments which make use of the linear ordering on
the integers. Thus, it seems unlikely that Theorem 3.4 can be
established when k=3 for m >1 by a proof based on Lin's
proof of Theorem D.

Theorem 3.2 is a stronger result than Theorem 3.4 for consider
k=3 m=1, z=15, {0,1} C A, C {o0,1,8,10,12},
A,=1{0,2,89,12,13}, and Aj-= {0,4,8,9,10,11}. Then

— i . .
A1 + A2 + A3 = 115 and AI(IIS) < 4; thus, applying Theorem 3.2

we have

(3.18) z Al ) < 2 AN 5)-
1<i<3 1<i<3

However,

115\(A1+A2) = {4,5,6,7,11, 15},

Le A +tAg) = {2,3,6,7,13,15},

and
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L \(A,tA,) = {1,3,5,7,14, 15}.

Since each of these sets has more than five nonzero elements, we
cannot apply Theorem 3.4 to obtain inequality (3.18).
We note that if 2z e Jm, z >0, and AI’AZ’ - ’Ak are

subsets of I for which Ai ~ A. = {0} whenever 1 <1i<]j<k,

b
then ( w kAi)(Iz) = z Ai(Iz). Since w Ai Q Z Ai’ we

< <i<
tsig 1<i<k 1gizk 1<i<k

obtain

) A < ) apa,).

1<i<k 1<i<k

In Theorem 3.5 we given conditions that imply the above inequality for
two sets which have one element in common.
The proofs of the next four theorems do not depend on the pre-

vious results in this chapter.

Theorem 3.5. Let 2z € Jm, z >0, be specified and let

AB,C(C L. If A+B+C=1 and (AnB)I) <1, then

A(L) +B() < (A+B)(I ).

Proof. Since 0e¢e A~ B~ C then A C_ A+ B and
B C A+ B. Thus, the conclusion of the theorem is immediate when

A and B have no nonzero elements in common, that is, when
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(A~B)(I,) = 0.
We now consider (A~B)(L)= 1. Let {0,x} = A~ B. With
% sk 3k
B =B~_{x}, wehave A~ B ={0} and AUB =AUB(_ A+B,
3 5k
Assume AU B =A+B. f ye Ao B, then ye¢A or

ye€ B, andso y+txe A+ B.when y +x< z. Thus,
A
(A+B) + {0,x} = (AUB ) + {0,x} C A+ B C (A+B) +{0,x},

and it follows that A+ B+ {0,x} = A+ B. Now A+B+C-= 1;
implies (A+B) + (A+B)~ = I; by Theorem 2.9(c), and this in turn
implies (A+B) + {0,x} # A+ B by Theorem 2.10. Since the assump-
%k
tionthat A+ B =AU B leads to contradictory results, it must be
* *
that A+B D AU B and A+B#A U B . Furthermore,
* * *
A(IZ) + B (Iz) = (AUB )(Iz) since A and B  have no nonzero

elements in common. Thus,

*
(A+B)(L) > (AUB )(L ) + 1

S
A(Iz) +B (Iz) +1

A(Iz) + B(IZ).

We use Theorem 3.5 to prove the following result.

Theorem 3.6. Let 1z ¢ Jm, z >0, be specified and let

A,B,C, C L. I A+B+C=I and (ANB)I,) <1, then
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A(IZ) + B(IZ) + C(IZ) < (A+B+C)(IZ).

Proof. By Theorem 3.5 we have A(Iz) + B(Iz) < (A+B)(Iz).
Since A+B+C=1, then C C (A+B)~ by Theorem 2.9(c).
Also, (A,+B)(Iz) + (A+B)“’(Iz) = I'Z(Iz) by Theorem 2.9(f). There-
fore,

A(L) + B(L) + C(I) < (A+B)(L ) + C(1)
< (A+B)(I) + (A+B)7(L )

= I;(IZ) = (A+B+C)(Iz).

The results obtained in Theorems 3.5 and 3.6 are the best
possible in the sense that each is no longer valid with (Ar\B)(Iz) <1
removed from the hypotheses. This is easily seen by considering the
example z =15, S, = {0,1, 8,10, 12, 14}, S, = {0,2,8,9,12,13},
and s3 ={0,4,8,9,10,11}. Then ~sl +5,+ s3 = 1'15,
(Sif\Sj)(IIS) =2, and

Al

Si(IIS) + Sj(IIS) =10 >9 (Si+Sj)(115)

where 1 <i<j< 3. Also,

Z Si(115)=15>14 ( Z Si)(IIS).

1<i<3 1<i<3
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One generalization of Theorem 3.6 is given in the next theorem.

Theorem 3.7. let z ¢ Jm, z >0, be specified. Let k>3
andlet A, C I for i=1,2,...,k. If Z A =1I' and
i= "z i =z
1<i<k
(Ajr\( E Ai))(Iz) <1 for j=1,2,...,k-2, then
j<i<k

A1) < E AN

1<i<k 1<i<k

Proof. When k=3 Theorem 3.7 is Theorem 3.6.
Let k >3 be fixed and assume the statement of the theorem is

valid for k. Let B.,B

] YRR Bk+1 be subsets of Iz for which
z B-
1

I' and (B, n( Z B))II ) <1 for j=1,2,...k-1.
z J iz —

1<i<k+l j<i<k+l
Define Ai = B.1 for i=1,2,...,k-2, Ak—l = Bk—l + Bk’ and
= . = =71'.
A.k Bk+1 Then Z Ai Z Bi Iz
1<i<k  1<i<k+l
Also, (Aj ~ Z Ai))(Iz) <1 for j=1,2,...,k-2 since
j<i<k
Aj ~ ( Z Ai) is equal to Bj ~ Z Bi). By the induction
j<i<k j<i<k

hypothesis we have



. - 1
Since (( Z Bi) +Bk+1) + Bk—l + Bk I' and (B

! Ll MBI <L

1<i<k-2

it follows from Theorem 3.5 that

)(I_)-

B 1 0,) + B (L) < (B +BI,

Therefore,

Z B.(I) = Z B,(I)+ B, (L) + B (L)+ B +1(L)
1<i<kt+l 1<i<k-2

<( Z B.(1))+ (B,_,+B (L) + By, (T)
1<i<k-2

- Z Al < Z A(L)

1<i<k 1<i<k

1<i<k+l

.The theorem follows by mathematical induction.

Although we do not do so’it is possible to generalize Theorem
3.6 to k >3 sets by using conditions other than those given in the
hypotheses of Theorem 3.7, but which also employ Theorems 3.5 and
3.6. The following example indicates how such generalizations can

- -— !
be made. Let k = 7, Z Ai = Iz, ((A1+A2)r\ (A3+A4))(Iz) <1,

1<i<7



(AlmAZ)(Iz) <1, (A3mA4)(IZ) <1, (ASA(A6+A7))(IZ) <1, and

(A6K\A7)(IZ) < 1. Then applying Theorems 3.5 and 3.6 we have

Z Ai(Iz) < (A1+A2)(Iz) + (A3+A4)(Iz) + AS(IZ) + (A6+A7)(Iz)

1<i<7
< (A+AL) + (A+A (L) + (A5+A6+A7)(IZ)

IA
1
>
~

™

The next theorem generalizes Theorem 3.5to k >3 sets.

Theorem 3.7 is used to prove this result.
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Theorem 3.8. Let ze¢ J, z >0, be specified. Let k >2
andlet A, C I for i=1,2,...,ktl. If z A =1I' and
i z i =z
1<i<k+l

"
it
[\S]

(A.~ ( z A))I )<l for j ., k-1, then
j i’z

j<i<k
}: AL) < Z ANL).

1<i<k 1<i<k

Proof. Let B = ( Z Ai)"'. Since z Ai=I; then
1<i<k 1<i<k+l

( Z Ai) +B = I; by Theorem 2.9(c). From Theorem 3.7 we have

( Z A1)+ B(1,) < Z A)¥B)(L) = I (1),
1<i<k 1<i<k
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and from Theorem 2. 9(f) we obtain
- ]
( Z Ai)(Iz) + B(Iz) = IZ(IZ).
1<i<k
The corollary follows from these two results.
Other theorems can be obtained from the resultswhich have been

‘r previously established in this chapter. The next theorem is presented
|

to illustrate this.

Theorem 3.9. Let z e J, 2z >0, be specified. Let k >4

and let Aig_lz for i=1,2,...,k. Let 2<r <k-2. I
Z A =1I',A(I)<5 for i=1,2,...,r-1, and
1 zZ 1 Z
1<i<k
(Aj ~( z Ai))(Iz) <1 for j=r+l,...,k-1, then
j<i<k
Z A (1) <|( Z ANI)
z - 1
1<i<k 1<i<k

Proof. Since Z A+ ( Z A)=I' and A(I ) <5 for
i i z iz
1<i<r r<i<k

i=1,2,...,r-1, then we have

Z A(L) < ( Z A)(I)
‘ iz iz

lf_isr 1<i<r



by Theorem 3. 3(i). Since Z A,1 + ( Z Ai) = I; and
r+l1<i<k 1<i<r ‘
(Ajr\ ( Z Ai))(lz) <1 for j=r+l,...,k-1, then we have

j<i<k

( Z ANL) + Z Ai(Iz)S(Z A()
1<i<k

1<i<r r+l<i<k <i<

by Theorem 3.7. The theorem follows directly from these two

inequalities.

44
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IV. AN EXTENSION OF THEOREM E

In Theorem 4. 12 we obtain a result for k >3 sets in 7
which for k=3 and m =1 is Lin's Theorem E. Examples are
given to show that it is not possible to improve on the upper bound of
Jm(IZ) in parts (i) and (ii) of Theorem 4. 12.

All of the results in this chapter through Theorem 4.11 are pre-
sented for the purpose of proving Theorem 4.12. Theorem 4.1 is of
special interest in its own right, and the other theorems which pre-
cede Theorem 4. 12 are superseded by Theorem 4.12. We note that
Theorem 3.2 is also used in proving Theorem 4. 12.

We begin with a theorem which is used in the proofs of Theo-

rems 4.3 through 4.9 and also in the proof of Theorem 4.11.

Theorem 4.1. Let =z ¢ Jm, z >0, be specified and let

m

Ai‘g Iz for i=1,2,...,k where k>2. Let n=7J (Iz). If
Z A, =1" then
i z
1<i<k
(i) ( Z Ai)(IZ) <n-1- Al(Iz)’
2<i<k
and whenever Ai(Iz) >0 for i=2,...,j where 2 <j <k then

(ii) ( z ANI) <n-j-A ().
jtl<i<k
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Proof. Since Z A = I, then A, C Z AT by
1<i<k 2<i<k
Theorem 2.9(c). Thus, Al(Iz) < Z Ai)"'(Iz), and applying
2<i<k
Theorem 2. 9(f) we have

This proves part (i) of the theorem.

We claim ( Z ANI) < ( Z A)I ) -1 whenever
1 Z - 1 z

t_<_isk t-1_<_iik
At_l(lz) >0 and 1 <t<k. Let =xe¢ At 1 and x ¥ 0. Since
Z A, =1, then Z A+ ( Z A)~ =1' by Theorem 2.9(c).
i z i i z
1<i<k t<i<k t<i<k

Thus, ( Z Ai)+ {0, x} # ZAi by Theorem 2.10. However, if

t<i<k t<i<k
Z A = Z A, then
1 1
t-1<i<k  t<i<k
z A C( ) A)r{ox
t<i<k t<i<k

- Z A = ZAi’

t-1<i<k t<i<k
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and this in turn implies ( Z Ai) +{0,x%x} = Z Ai. We conclude

t<i<k t<i<k
that z Ai 7 Z Ai. Hence,
t-1<i<k t<i<k
( Z ANL) < ( Z AL - 1.
t<i<k t-1<i<k
Now let k >3, je{2,...,k-1}, and assume Ai(Iz) >0 for
i=2,...,j- We apply the result established in the preceding para-

graph j-1 time to obtain

jt1<i<k j<i<k

< Z ANL) - (-1
2<i<k

However, ( z Ai)(IZ) <n-1- Al(Iz) by part (i), and so
2<i<k

( z Ai)(IZ) <n-j- Al(Iz)- This establishes part (ii) of the

+1<i<k

theorem.

The next lemma is used frequently, however without reference,

in the proof of Theorem 4. 3.
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Lemma 4.2. Let ne Jl, n >0, be specified and let

A,B(C 1. I nd{A+B, acA, {b,...,b+j} C B, and
atbeA+B, then {atb,...,atb+j} A+ B.
Proof. Assume {atb,...,atbtj} is not contained in A + B.

Then from Definition 2.7 it follows that j >0 and a+b+j>n.
Now a+b<n since a+be¢A+B and n¢A+ B. But
a+b<n and a+b+j>n imply a+b+r=n for some integer
r, 0<r<j. Since 0<r<j then b+reB; hence,

n=a+ (btr) € A+ B. However, n ¢ A + B. Thus,

{atb, ..., atb+j} C A + B.

The next seven theorems, namely Theorems 4.3 through 4.9,

are used with the aid of Lemma 4. 10 to prove Theorem 4.11.

Theorem 4.3. Let n € .]'1, n >0, be specified and let

A,B,C,D,E, 1. I A+B+C+D+E=1 andeither

(ii) n =15 and 'D(In) >0 or E(I)>0,
or o
(iiil) n =16, D(I ) >0, and E(I ) >0,
n n

then at least one of the sets A, B, and C has less than five non-

zero elements.

Proof. The theorem is immediate if n < 5. Therefore, we
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restrict our considerationto n € Jl‘ where. 6 <n < 16.
Assume A(I ) >5, B(I ) >5, and C(I ) >5.
n — n - n -

Let Sl’ SZ’ S3 represent a permutation of sets A, B, C

and let S4, S5 represent a permutation . of sets D, E. From

Theorem 4. 1(i} we have

(ZS.)(I)<(ZS_)(I)<n—1-S(I)§_n—6
i n -— i n -— 1''n
2<i<j 2<i<5

‘where j€{2,3,4,5}. If n=15 then either S4(115)>0 or

S_(I

>0. = i : i = 5.
5 15) 0. Let t=4 if 85(115)>0, otherwise, let t

Applying Theorem 4. 1(ii) we have

(S,#53)(1; ;) < (5,485,458 )(I,) <15 - 2 - §,(I,) < 8.

If n=16 then S4(116) >0 and 35(116) >0. Thus, by Theorem

4.1(ii) we have

(SZ+SB)(116) <16 -3 - 51(116) <8

and

( Z 8)(1,,) £16 -2 -8(1;,) <9
2£i§_4

From the above inequalities. it follows that

(SZ+S3)(In) < min{n-6, 8}



and
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(S,#5,+8 (L ) < min{n-6, 9}.

where a; < a, if

labeled b0 =0, bl’bz’ ce ,bV

Finally, let the elements of

Let the elements of A be labeled ag = 0, a aZ’ <, au
0 <i<j<u. Letthe elements of B be
where bi<bj if 0<i<j<wv.
C be labeled CO = 0, cy CZ’ ce, cW
0<i<j<w.

where Ci <c. |if
J

First we establish the existence of an integer p, 1 <p <u,

for which a >a + 1. Assume the contrary. Then a, .=a, +1
ptl ) itl i

for i=1,2,...,u-1, and it follows that A = {0, ag, .- ,a.1+u—1}-

Thus A D) {O,a.l, cee, a.1+4}, and so {n—al—4, ce ,n-a.l} has an

empty intersection with B + C+ D + E. Since

n-a -4¢A+B+C+D+E then a,  <n-a

- 4. Hence,

1 1 1

Za1 +4 <n. Also, recall that (A+B)(In) < 8.
i . i < -2

First let 1§a1_<_2 Since b4<b5<n then b4_n ,

and so a, + b4 e A+ B. However, then (A+B)(In) > 8 since
>

b4 >4 and

A+B D A+ {O,b4} D) {O,al, oo, apt4,a tldb ...,a1+4+b4}.

Next let a, >3 and b1 > a- Then ‘b,2 >4. Furthermore,
b2 <a)t 4, for otherwise

A+ B D{O,al,..

. a1+4,b2, ‘3,b4,b5}
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and (A+B)(In) > 8. Thus, a.1+b2 <a +a1+4 <n, and so

1

a1+ b2 ¢ A+ B. However, then (A+B)(In) > 8 since b2 >4 and

A+B D A+{0,b) D {0,a,,...,a,t4,2 +1+b2,r...,a1+4+b2}.

1

It remains to consider a, >3 and b1 < a,- Now b3 < a1+4,

for otherwise

A+B D {O,bl,a "al+4’b3’ b4’b5}

1

and (A+B)(In) > 8.> Thus, a1+b <_a1+a1+4 <n, andso

3
a1+ b3 ¢ A+ B. However,then (A+B)(In) > 8 since b3 >3 and

A+B ) A+{0,b,}

D) {O’bl’ aps - ,a 4, a t24bg, a +3tb,, a1+4+b3}.

This establishes the existence of an integer p, 1 <p <u,

for which ap+1 > ap + 1. The same kind of arguments establish the

existence of integers q and r for which 1 <q <v, 1 <r <w,

> > .
bq+1 bq+1, and Cr+1 Cr+1

We next show that {1,2} ~ (A+B+C) is not empty. Assume

otherwise. Then {1,2} C D+E. Let p be an integer such that

< > .
1<p<u and ap+1 ap+1 Then

A+D+E D{l,2tu AU {ap+1,au+1,au+2},
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and so (A+ D+E)(In) >10. However, since B(In) >0 then
(A+D4E)(I ) <n -2 - C(L) <n -7 <9
by Theorem 4. 1(ii).

Case 1. (A+B+C) ~ {1, 2} = {1}.

By relabeling sets A, B, and C if necessary, we may
assume le¢ A. Since 2¢ A+B+C+D+E then (D+E) ~ {1,2}
is not empty, and so either D ~ {1,2} or E m {1, 2} 1is not
empty. By relabeling sets D and E if necessary, we may
assume D ~ {l,2} 1is not empty. Thus, {1, 2} Q A+ D. Also,
B~ {1,2} is empty, and so b, > 2.

1

Let q be an integer such that 1 <q <v and bq+1 >bq+1-
Then

+
A+B+D D{l,2 UuBuU {bq+1,bv+1,bv+2},

and so (A+B+D)(In) > 9. However, (A+B+D)(In) < min{ 9, n-6}, and.

we have a contradiction.

Case 2. (A+B+C) ~ {1, 2} = {2}.

Since 1{A+B+C and 1¢A+B+C+D+E, then
le D or le¢eE. Since 2¢ A+B+C and 1/{A+B+C, then
2¢ A, 2¢ B, or 2¢ C. Without loss of generality, we may assume

le D and 2 € A. Also b1_>_2.
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Let q be an integer such that 1 <q <v and bq+1 >bq+1.
Then

A+B+D D {l}u Bu {bq+1,bv+1,bv+2,bv+3}.
Hence,
min{9, n-6} > (A+B+D)(I ) > v + 5 > 10,

and we have a contradiction.

Case 3. Either A, B, or C contains {l,2}.

By relabeling the sets A, B, and C if necessary, we may
assume that {1,2} C A.

Let q be an integer such that 1 <q <v and bq+1 >bq+1.
Then

A+B D BuU {bq+1,bv+1,bv+2},
and it follows that
min{n-6, 8} > (A+B)(I ) >v + 3 > 8.

We immediately have a contradiction when n < 13. Let 14 <n < l16.

Then v =5 and
A+B=Bu {b +1,b +1,b +2}.
q v v

Thus, b =b +2, for otherwise b +2 ¢ A+ B and
qtl q q

bq+2 ¢{B U {bq+1, bv+1, bv+2}. Furthermore, there does
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not exist an integer 1 such that 1 <i <y, ifq,
and b, > b.+1, for otherwise b.+1 ¢ A+ B and
i+l i i
b+tl1¢B o {b +1,b +1,b +2}. Since le¢ A+ B then b, =1. It
i - Tq v v 1
follows that A + B = {0,..., 8}. Since b5 =6 and ag < 8 then

< . F
a.3+b5 < 6t6 < n, and so a.3+b5 e A+ B. However,

a.3+b5 >3+6 = 9, and we have a contradiction.

Case 4. The set {1,2} is a subsetof A+ B+ C, butitis
not a subset of A, B, or C.

By relabeling the sets A, B, and C if necessary, we may
assume that 1 ¢ A and {1,2} C A+ B. Since neither A nor B
contains {1, 2}, then a, > 3, b1 e {1,2}, and b2 >3.

We now assume that bj+1 = bj+1 for 2 <j<v. Thus,

B = {O,bl,bz, . ,b2+v—2}
and
A +BDA{o,1, 2,by, - - ,b2+v—1}.
We claim b. >3. Since a,+3 <a_+l1 and a_ € I', then
2 3 -5 5 n
a,t3 <n. Therefore, if b, =3 then {3,4,5,6} C B and

3

A+B D) {0,...,6,a3+3,...,a3+6}.

But then (A+B)(IZ) > 8 since a, >4.

We claim a.2+b2 >n. If a.2+b2 <n then
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{b2+a2, - ,b2+v-2+a2} C A +B. Butthen (A+B)(Iz) > 8 since

> -1.
b2+v 1

b2+v—2+a 2

> -
2 b2+v 3+a

First suppose a, <_b2. If x¢e A+B and x<a, then

x € {0,1} U {bl,b1+1} C {0,1,2,3}, andso

xtb, € {bz,b2+1,b2+2,b2+3} CA+B

If xe A+B and x>a then x+bZG/In since

2
xtb, >a,tb, >n. Therefore, A+ B + {O,bz} = A+ B. However,
this is contrary to Theorem 2.10.

Next suppose a, >b2. If xe A+B and x < bZ’ then
x e {0,1} U {bl,b1+1}. Let b =1. We have a, <b,+v-1, for

otherwise (A+B)(I ) >8 since a_. >a, >b,tv-1l. Thus,
n 5 4 2

{az} + {O,bl,b1+l} = {az} + {0, 1, 2}

C {aZ,...,a4}
C {bz,...,b2+v-—l}
C A +B.

Let b1 = 2. Then 3 ¢ A+ B. Since (A+B)(IZ) <8 and b2 >3,

it follows that

A+ B = {0, 1,2,3,b,, . --,b2+v-l},

and hence also that a5 <_b2+v-1. Thus,
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{a2}+{0,1,b1,b1+1} = {a2}+{0,1,2,3}
Cfay - ohag)
C fb,, -y bytv-1}
C A+B.

Therefore, x+a2eA+B when x¢ A+ B and x<b2- If

xe A+B and x> bZ’ then x + az ¢ In since

x + > +
a ___b2 a

5 >n. This establishes that (A+B) + {0, az} = A+ B.

2
However, this is contrary to Theorem 2.10.

We conclude that there is an integer j, 2 <j <v for which

bj+l >bj+1- Let

K={k|2 <k <v and b, >b +1}.

k+1

For each k ¢ K, bk < bk+1 < bk+1 and bk+1 ¢ A+ B. Therefore,

A+B Q{o,l,z}u{biiz 5i§v}u{bk+1|keK or k = v},

and so

min{n-6, 8} > (A+B)(L ) >v + 2 + K(I ).

Since v >5 and K(In) >1, we immediately obtain a contradiction
when n < 13. Furthermore, when 14 <n < 16 then
(A+B)(I ) =8, v =5, and K(I )=1.

n n

Henceforth, let 14 < n < 16. Also, let K ={i}. Then
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B={0,b,b,,. -,b,ts, b ¥stt, ... b +2+t}

where s =1i-2 and t = bi+1—b122' Note that 0 < s < 2 since

2<i<4. From leA and (A+B)(In) = 8, it follows that

A+B={0,1,2,b,,...,b,tstl, b +s+t, . . ., b,+3+t}.

We claim t>2. If t=2 then

B = {O,bl,bz, e ,b2+s,b2+s+2, . ,b2+4}
and

A' +B = {0, I:Z,bZ, . ,b2+5}

Thus, b2+a5¢A+B since a_ >6, and so b2+a >n. Since

5 — 5

a f_b2+5 then 2b2+5 2b2+a >n > 14, and so bZZS. There-

5 5

fore, b,+a, >b,+(b,+1) >b, +6. But then b, +a, ¢ A+ B, and so

3

b.+a. >n. Hence, if x¢ A+B and x>b,, then x+a, ¢1I
2 %3 =72 3" 'n

since x+a32b2+a3>n. If xe¢ A+B and x<b2 then

x € {0,1,2}, and so

xtayefagaztl,a 42} C {a,, 0,2}
C {bz’ -+, b,+5}
CA+B.

Thus, (A+B) + {0, a3} = A+ B. However, this is contrary to
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Theorem 2.10.
We now show that b1 >1. Assume b1 = 1. Then
b2+s+1 ¢ A and b2+3+te'A, for otherwise
b,+s+2¢A+B or b,+t4+tcA+B. Recall 2 ¢ A. Thus,
A C B. Furthermore, A =B since A(In) >5 and B(In) = 5.
First consider 0 < s <1l. Then a,6 = b4 = b2 +1+t. Now

4

+ > 1
b2 a4 n since

b,+ta, =b, +b, +1+t2b, +4+¢t

and b2 + 3+t is the largest elementin A + B. Thus, if

. 1 >n.
x€ A+B and xzbz, then x+a4¢In since x+a.42b2+a.4 n

If xe A+B and x<b.2 then x ¢ {0,1,2}, and so

x+a,e{a

P~ (— *
4 4,a4+1,a4+2} {b2+1+t,b2+2+t,b2+3+t} C A+B

Therefore, A + B + {0, a4} =A+B when 0 <s <1l. Nextconsider
s = 2. Then
B = {0, 1,b2,b2+1,b2+2,b2+2+t}
and
A+B=10,1,2,b,,... ,b2+3,b2+2+t,b2+3+t}.

Since A =B then a_ =b =b2+1. Now

3 3 +b2 >n, for other-

a3

wise
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{a3+b2, a +b2+1, a +b2+2} C A+B.

3 3

However, this is not possible since +b2 = b2 +1+ b2 sz +4 and

43
A + B contains only two elements greater than or equal to b2 + 4.
Thus, if xe¢ A+ B and beZ, then x + a, d In since

xta, >b,ta, >n. If x¢A+B and x<b, then x ¢ {0, 1,2},

and so

x+a, e {a3,a +1,a3+2} = {b2+1,b2+2,b2+3}‘g A + B.

3

Therefore, A + B + {0, a3} =A+B when s =2. We have a con-
tradiction, for neither A + B + {0, a4} nor A+ B + {0, a3} is
equal to A+ B by Theorem 2.10.

Since b1=2 then 3¢ A+ B. Thus, b, =3,

B=1{0,2,...,3+s, 3+s+t, ..., 5+t}
and

A+ B={0,...,4+s,3+s+t, ..., 6+t}.

Since 2¢B and t>2 then 3+sdA and 5+td A, for
otherwise 5+se¢ A+B or7+teA+B. f 0<s <1 then
4+teA+B, but 4+tdA, for otherwise
4+t+b,=7+teA+B. Butthen {2, 3+s, 4+t, 5+t} C (A+B)\\A,
and so A(In) <4. If s=2 then 2+sdA, for otherwise

5+8=b,+(2+s) ¢ A+ B. However, 5t+s < 3+st+t since t >2.
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Thus {2, 2+s, 3+s, 5+t} g (A+B)~ A, and so A(In) < 4. Since
A(In) >5, we have a contradiction.

This completes the proof of the theorem.

‘ Theorem 4.3 is used in the proof of Theorem 4.11, but only
for 12<n<16. When n <14 the conclusion of Theorem 4.3 can
‘ be obtained from a direct application of Lin's Theorem E, for if

A+B+C+D+E=11:1 and n <14 then

AI)+B(I)+C(I)<A(I)+ B(I)+ (C+D+E)(1 )
n n n -— n n n

< (A+B+C+D+E)(I ) <n-1 < 14

by Theorem E, and consequently, one of the numbers A(Iz), B(Iz),
or C(Iz) is less than five. However, the proof that we give of
Theorem 4.3 would not be simplified by assuming 12 <n <16 or
even 15 < n < 16.

4 .
The next theorem is a result in J that is analogous to the

result which was just established in Jl for n = 15.

Theorem 4.4. Let z=(1,1,1,1) € J4 and let

AB,C,LDC I. If A+B+C+D=1I' and D(I ) >0 then at
z z z
least one of the sets A, B, and C has less than five nonzero

elements.

Proof. Assume A(Iz) >5, B(Iz) >5, and C(Iz) > 5.
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|
\ From Theorem 4.1(i) we obtain (A+B+D)(IZ) <9
! (A+C+D)(1 ) <9, and (B+C+D)(I) < 9.

Let e, = (1,0, 0, 0), e, = (0,1,0,0), ey = (0,0,1,0), and

e, = (0,0,0,1). A permutation Sl’ SZ’ S3, S4 of sets A, B, C, D

i of the integers 1, 2, 3, 4 must

12, 13, 4

| and a permutation il,

exist such that at least one of the following statements is satisfied:

(i) e, €S, e. €S, e.e€S_, e, S ;

(ii) {eil,eiz} C s, {ei3} Cs,, {ei4} C S5

+
(iii) {eil,eiz} Q‘Sl’ {ei3’ei4} C S, {el,ez,e3,e4} ~ (85%5,)

is the null set;

(iv) {ei e,

1 2,ei3} C S {614} CSZ, {ei e e, } A (S,+5,)

1 2 3

is the null set;

(v) {el,ez,e3,e4} C S {el,ez,e3, e4} ~ (SZ+S3+S4} is the

null set.

It is not possible that el € Sl’ e, ¢ SZ’ e, ¢ S3, and e, ¢ S4,
for otherwise ze¢ A+B+ C+ D.

Next we claim that (ii) cannot occur. Assume otherwise. Then

the sum

{0,e, ,e, }+{0,e, } +{0,e, }
11 ;12 13 ,14
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contains eleven nonzero elements and is a subset of S1 + S2 + S3-
Since (A+B+D)(IZ) <9, (A+C+D)(IZ) <9, and (B+C+D)(IZ) <9,
then Sl’ SZ’ S3 is a permutation of A, B, C. Also, D does

not contain {e. ,e, }, {e. }, or {e, } as a subset. From
11 12 13 14

{0,e, ,e. }+{0,e, }+{0,e, } C A+B+C,
o ) 13 4

we have

D C (A+B+C)~ C ({o,eil,eiz}+ {0,613} + {O,ei4})"

= {0,e. ,e. xH +ei }.
3 4 3 4

Since e, ¢D, e, ¢D, and D(I ) >0, then D ={0,e. +e. }, and

1 1 z 1 1

3 4 3 4
this in turn implies that e, te, ¢ A+ B+ C. Butthen

1 2
e, te, ¢ A+B+C+D, andthisis contrary to A+B+C+D=I;4.
1 2
We now show that (iii) is not possible. Assume otherwise.

. - [ ~
Since S, +S,+S,+§, =1 then S,+S, ( (5;1S,)7. Now

{0,e, ,e, } +{0,e, ,e. } C s +8
11 12 13 i 1 2

implies

S3 + S4 C (Sl+SZ)"' C o, eil, eiz} + {0, ei3, ei4})"'

= {O,el,ez,e3,e4,

Thus, S, + i
us 3t8, C Ao, eil+eiz,ei3+ei4} since e, ¢ S, +S, for
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1 <j <4. This, however, is contrary to S3(Iz) >5 or 5'4(12) >5.
Next we show that (iv) is not possible. Assume otherwise.
Since z¢d A+B+C+D and
{0,e. ,e. ,e. }+{0,e. } CS +5
i i, g i, 1 2

then

1 1 1

{fe.tete, |l <i<j<k <4} u {e. +te. ,e. te. ,e, te. ,z}
i j k - - i i i
1 3 1 2 2 '3

has an empty intersection with S, +S,. Also, e, ¢ S, +8, for
j

1 < j < 3. Butthen (S3+S4)(Iz) < 4 . and this is contrary to
S3(Iz) >5 or S4(Iz) >5.

Finally, we show that (v) cannot occur. Assume otherwise.
Since zdA+B+C+D and eteSI, 1 <t<4, then

ei+ej+eke'SZ+S +S,, 1 <i<j<k<4. Moreover,

3 4’
e. ¢S, +S;+5,, 1<i<4. Thus
<"' .
SZ+S3+S4£ {ei+ej|1_1<_]§4}u{0}

‘ . < . < 4.,
Now S4(Iz)>0 Say eu+eveS4 where 1 <u<v<4. Then

zd A+B+C+D implies e +e ¢S +S,+S, where
X y 1 2 3

{x, v} = {1, 2, 3,4\ {u, v}. Since e + eY d S2 + S3 and either

> .
SZ(IZ) >5 or S3(Iz) >5, it follows that

S, +8,={0} v {ei+ej| 1 <i<j<4,{ij#{&xvy}
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Hence e +e €S_+S
u 2

and this in turn implies that e_+e ¢S, .
v X vy 4

3’

Butthen € +te ¢S. +S.+S., e dS.,e ¢S, and e +e ¢S
X y 1 X 4’ 'y X y 4

2 3 4
imply that ex+eye{A+B+C+D=I'z.
We conclude that A(Iz), B(Iz), or C(Iz) is less than five,

and the proof is complete.

The next five theorems consist of results in J where
2 <m <3 which are analogous to the results obtained in Theorems
4.3 and 4.4 for Jl and J4, respectively. Since the proofs of
these five theorems are long and involve techniques similé.r to those
used in the proof of Theorem 4.3, we have placed them in the Appen-

dices to the thesis.

Theorem 4.5. Let z = (1,3,1) ¢ J3 and let A,B,C,D I

f A+B+C+D-= I; and D(Iz) >0, then at least one of the sets
A, B, and C has less than five nonzero elements.

The proof of Theorem 4.5 is given in Appendix I.

Theorem 4.6. Let z = (7,1) ¢ JZ and let A,B,C,D (C I

If A+B+C+D-= I; and D(Iz) >0, then at least one of the sets
A, B, and C has less than five nonzero elements.

The proof of Theorem 4.6 is given in Appendix II.

Theorem 4.7. Let z = (3,3) ¢ JZ and let A,B,C,D Iz.

If A+B+C+D=1  and D(Iz) >0, then at least one of the sets
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A, B, and C has less than five nonzero elements.

The proof of Theorem 4.7 is given in Appendix III.

Theorem 4.8. Let z = (4,2) ¢ J° andlet A,B,C Cr.

¥ A+B+C-= I; then at least one of the sets A, B, and C has
less than five nonzero elements.

The proof of Theorem 4. 8 is given in Appendix IV.

Theorem 4.9. Let z = (6,1) ¢ JZ and let A,B,C g_ Iz. if

A+B+C-= I; then at least one of the sets A, B, and C has less
than five nonzero elements.

The proof of Theorem 4.9 is given in Appendix V.

oz ) eI™, z2>0, be

Lemma 4.10. Let z=(z1,z2,... m

specified. Let T = {i| z, >0 and 1 <i < m}. Denote the cardinality

of T by k andlet f representa bijective function from

{1,2,...,k} to T. Toeach x-= (xl,xz,...,xm) in Iz corres -
k

pond the element x* = ( ) in J . For S I

Xf(l)’xf(Z)""’Xf(k)
let S*= {x*|xe S}. Then

. m _ .k
(i) T =T,

(ii) S* I, and SHI )= S(,),
and

(iii) Z s*=1 if S.,8,,...,S are subsets of I  for
z % 1’72 n
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which y S, =1'.
) 1 Z
1<i<n

Proof. Let x=(x.,,%x.,...,%x_)eI . Then x, <z, for
1’72 m z i— 1
1 <i<m; in particular, (i) S-zf(i) for 1 <i<k. Thus
x¥ <z* and x¥¢ Iz*. If y=(y1,y2,...,ym)eIz and y ¥ x

then y, # x, for some ie¢T, andso y* # x* since

Yf(f"l(i)) # xf(f‘l(i))' Let w= (WI’WZ’ ce ,wk) € Iz*' Hence,

Wj S-zf(j) for j=1,2,...,k. Define v, = Wf'l(i) if ie T or
v.=0 if idT and 1<i<m. Then v=(v,,v,,...,v_) isin
! - = 1’72 m

Iz and v* =w. The above observations show that the correspond -
ence X — x* 1is a one to one correspondence from Iz -onto Iz>,<-
. m k .

Note that 0 in J corresponds to 0 ¢ J . Thus, if S C I
then S* C I and S(I ) =S*(I ). In particular ~Jm(I ) = Jk(I ).
z % z z% z zZ %
Pysk = 1 .
Also, (Iz) Iz*

let S,S.,...,S ©be subsets of I  for which Z S, =1'.
1”72 n z :

Since (xty)* =x%*+ y* for x,y e Iz, it follows that

The following theorem together with Theorem 3.2 is used to

prove Theorem 4.12.
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Theorem 4.11. Let =z ¢ Jm, z >0, be specified and let

A CI for i=1,2,...,k. If Z A, = I' and either
1 Z 1 Z
1<i<k
() k=3 and JV(1) <14,
(ii) k = 4, Jm(IZ) =15, and A (L) >0 for i=1,234,
or
(i) k = 5, Jm(Iz) =16, and A (1) >0 for i=1,23,4,5,
then at least k-2 of the sets Al’ AZ’ Cee, Ak contain less than
five nonzero elements.
m
Proof. let z=(z,,z,,...,z2 ) andlet n=J (I ). Thus
1’2 m z

n=( M (z,+1)) -1. Note that n >0 since z >0.
1<i<m

The theorem is immediate when 1 < n < 5.
Let n satisfy 6 <n <11. Then k =3. Assume
A(I)>5, A(I1)>5 and A_,(I ) >5. From Theorem 4.1(i) we
17z — 2z = 3Vz' —
have

(Aj+AL)(L) <n-1-AgL) <5

Since A, C A  tA,, A(L) 25 and (A*A)(I) <5, it follows

that A1 = A1 + AZ. Let x ¢ A2 and x 7 0. Then

At A, C (A tA) + {0, x} = ALt {o,x} C ALt A,
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and so A1 + A2 +{0,x} = At AZ. However, this is contrary to
Theorem 2.10. We conclude that either A,(I ), A (I ), or A_(I )

1Yz 2z 3z

is less than five. This establishes the theorem when 6 <n < 11.

Henceforth let 12 <n < 16. When n = 15 then k = 4 and the
theorem follows immediately if one member.ineach of the sets {A’I,AZ,A3}_,
{AI,AZ,A4}, {AI,A3,A4}, ’and {AZ,A3,A4} contains less than five
nonzero elements of Jm. Also, when n =16 then k =5 and the
theorem follows immediately if one member in each of the sets
{Al, AZ! A-3}, {A]., A-Z, A4}, {A].,AZ, AS}, {A-l, A-3, A4}, {A]., A3,A5}:

{A].,A4, A-S}, {A-Z, A-3, A-4}, {A-Z, A-3, A-S}, {AZ,A4, A'S}, and

{A3, A4, AS} contains less than five nonzero elements of Jm. Since

the conditions on the sets .Al, AZ’ v, A are symmetrical, then to

k

prove the theorem when n =15 and n =16 itis sufficient just as
for 12 <n <14 to show that Al(Iz)’ AZ(Iz)’ or A3(Iz) is less
than five.

Since 12 <n<16, then 13 < I (zi+1) < 17. Since the
1<i<m
only unordered factorizations of 17, 16, 15, 14, or 13 into a product of

at least two integers greater than one are 2:2°2°2, 4-22, 82,
4-4, 5.3, and 72, then one of the following occurs:

(a) m >4, n=15 andthere exist indices i, i,, i; and

i

4 such that z.1 =z, =z, =z, =1 and zi=0 when 1 <i<m

1 2 3 4

and i¢ {11, iy ig, 14}.

(b) m >3, n =15, and there exist distinct indices 1i,, iy i3
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such that 2z, =3, z, =2, =1, and z, =0 when 1 <i<m
1 1 —— —_
1 2 3

and id {11, 12,13}.

(¢) m >2, n=15, and there exist distinct indices i1 and

i

5 such that {zi 2, } is equalto {7,1} or {3,3} and z, = 0

1 2
when 1 <i<m and i({il,iz}.

(d) m >2, n =14, and there exist distinct indices i1 and

i suchthat 2z, =4, z, =2, and z. =0 when 1<i<m
2 11 12 i - -

and i¢ {il, iz}.

(¢) m >2, n=13, and there exist distinct indices i, and

1

i such that z, =6, z, =1, and 2z, =0 when 1 <i<m and

2 i i 1 - -

1 2
id {11,12}-
(f) m >1, 12 <n <16, and there exists an index i1 such
that zi =n and zi=0 when 1 <i<m and i#il.
1

In view of Lemma 4.10, to prove the theorem it is sufficient

to consider the following cases:

(1) z=(1,1,1,1),

(2) z=1(1,3,1),
(3) z=1(7,1),
(4) z = (3,3),
(5) z = (4,2),
(6) z = (6,1),

Now J™(I ) =15 in cases (1)through (4); hence, k=4 and
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Ai(Iz) >0 for i=1,2,3,4. In cases (5) and (6) we have
I)<14, andso k=3. Applying Theorems 4.4 through 4.9 in
cases (1) through (6) respectively, we have that Al(Iz)’ AZ(Iz)’ or
A3(Iz) is less than five.

Consider case (7). When z =16 then k=5 and Ai(116) >0

i

for i=1,2,3,4,5. When z =15 then k=4 and Ai(115)>0

i

for i=1,2,3,4. When 12 <z <14 then k = 3. Define A5={0}

when z =15 and A, =A;= {0} when 12 <z < 14. Then apply-
ing Theorem 4.3 we obtain that Al(Iz), AZ(IZ), or A3(Iz) is less

than five.

The proof of the theorem is complete.

Theorem 4.12. Let z¢ J, z >0, be specified. Let k >3
and let Aig Iz for i=1,2,...,k. If Z A,1=I; and either
1<i<k
(i) T < 14,
() JP(1) =15 k>4, and A([)>0 for i=1,234,
or
(i) (1) =16, k>5, and A(I)) >0 for i=1,23,45,

then
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Proof. Wedefine r=3 if J (I)<14, r=4 if

71) =15, and r=5 if 7)) = 16.
Assume that at least three of the sets A1 ,AZ, N ,Ak contain

A

five or more nonzero elements. By relabeling sets AI’A'Z’ T

if necessary, we may assume Al(Iz) >5, AZ(Iz) >5, A3(Iz) 25,

and Ai(IZ)ZO for i=1,2,...,r. Define Bi:Ai for

i=1,2,...,r-1, and B = z A . Since z B = z A =T
r 1 1 1 Z

r<i<k 1<i<r  1<i<k
and Bi(Iz) >0 for i=1,2,...,r, then from Theorem 4.11 it
follows that at least r-2 of thesets B.,B_,..., Br contain less

1" 2

than five nonzero elements. However, since B1 = Al’ B2 = AZ, and
B3 D A3 then Bi(Iz) >5 for i=1,2,3, and we have a contra-
diction.

Since k-2 of the sets AI’AZ’ e ,Ak contain less than five

nonzero elements, then an application of Theorem 3.2 gives

Z AT ) < ( Z AI)
itz — iz

1<i<k 1<i<k

as claimed.

In the special case when m =1 and k =3, Theorem 4.12(i) is
Lin's Theorem E. In our proof of Theorem E we use Theorem 3.2 with
m=1 and k =3 where Lin uses Theorem D in his proof.

For each integer n >15 Lin has constructed three sets of
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nonnegative integers Al’ AZ’ and A satisfying

3

{o,---:n-l}C_j__Al+A2+A and ndAl+A2+A and for

3 3’

which the inequality in Theorem 4. 12 fails. With n = 15+j, j >0,

the sets defined by Lin are

A= {0, 1, 8+j, 10+j, 12+j, 14+j}

A, ={0,2,8, ..., 9+j, 124, 13+j}
and
A, ={0,4, 8+, 9+j, 10+, 114j} .

For each integer n >16, Allen Freedman has constructed four

sets of nonnegative integers Al’ AZ’ A and A4 satisfying

3’

{0,...n-1} C A/ +A +A, +A,, ndA +A, +A +A, and

3 3

Ai(In) >0 for i=1,2,3,4, and for which the inequality of
Theorem 4.12 fails. With n = 16+j, j >0, the sets defined by

Freedman are

A= {0, 1, 9+j, 11+4j, 13+j, 15+j}
A, = 1{0,2,9+j, 10+], 13+, 14+j}
A, = {0,4, 9+j, 10+j, 11+j, 1 2+j}
and
A, = {0,8,...,84j}.
The constructions given in the preceding two paragraphs show
that it is not possible to obtain results analogous to parts (i) and (ii)
m

of Theorem 4.12 by increasing the values of J (Iz)-

It is not possible to delete from the hypotheses of Theorem 4.12(ii)



inequality of Theorem 4.12 fails when A4 = {0} and Al’ A2 and

A3 are the sets determined by Lin's construction when n = 15.

73
the condition that four of the sets have nonzero elements, for the
Also, it is not possible to delete from the hypotheses of Theorem
| 4.12(iii) the condition that five of the sets have nonzero elements,

for the inequality of Theorem 4.12 fails when A = {0} and Al A,

| A and A are the sets determined by Freedman's construction

3’ 4
when n = 16.
We now give a construction of k >3 sets in .]'2' for which

2
J (Iz) = 15+2j, j >0, and the inequality in Theorem 4. 12 fails. Let

z = (7+j,1),

A= {(0,0),(1,0),(4,0), ..., (4+j, 0), (6+j, 0), (4+j, 1), (6+j, 1)},
A, = {(0,0),(2,0), (4+j,0), (5+j, 0), (4+j, 1), (5+j, 1)},

Ag = {(0,0)(0,1), (4,0), ..., (7T+j, 0)},

4,...,k. Then 2 Ai:I;; however,

1<i<k

and Ai={(0,0} for i

z A1) = 15+2j > 14+2j = E A ).

1<i<k 1<i<k

N

1Z >

g m,. . _
Since T (Iz)+1— n (zi+1) where z (z1 URERRL

1<i<m 1 m
then Iz is isomorphic to a set in J  whenever J (IZ) = 16.

Hence, any example to illustrate that Theorem 4.12(ii) is not valid
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when Jm(Iz) = 16 would be essentially a one-dimensional example.
However, when Jm(IZ) = 17+2j where j >0, we have the follow-

ing example in .]'2- Let =z = (8+j,1),

A = {(0,0), (1, 0), (54, 0), (7+j, 0), (5+j, 1), (7+j, 1)},

| AZ = {(0’ 0), (2, 0), (5+j: 0), (6+j, 0), (5+j, 1), (6+j, 1)},

A, = {(0,0),(0,1),(4,0), ...,(8+j,0)},
A, = {(0,0),(4,0),...,(4+j,0)},
and Ai = {(0,0)} for i=5,...,k. Then Z Ai = I;, but
1<i<k

Z A (1) = 1742 > 16+2j = ( Z A)(L).
1<i<k 1<i<k

We do not know if Theorem 4.12(iii) can be improved by
increasing the value of Jm(IZ). Our methods appear to be very long
and involved, and it would be desirable to have more powerful
techniques befor e further investigating this problem. For instance,
to prove a result analogous to Theorem 4.12(iii) by our methods with
Jm(IZ) = 17 would require showing that at least one of any three of
the sets A

A, A., A, and A contains less than five nonzero

1° 7727 3 4 5
elements when z Ai = I; for the cases z =17, z = (2,2,1),
1<i<5

z=(8,1), and =z =(5,2). It seems likely that longer and more

difficult arguments than those used to prove Theorems 4.3 through
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4.9 would be needed.

It may be possible to obtain a stronger result than Theorem 4.12
for k=6 and other larger values of k. For example, if k>r
and Ai(Iz) >0 for i=1,2,...,r, where r is some integer
greater than five, it may be possible to obtain larger values of
Jm(IZ) for which the inequality of the theorem is valid. In Theorem
5.17 from the next chapter with r >4 and 2z >8(r-2) we give a_

1 .
construction due to Allen Freedman of r sets in J for which

Z A =1, A(I)>0 for i=1,2,...,r, and
i z iz

1<i<r
z Ai(Iz) > ( z Ai)(Iz). This construction shows that 8(r-2) - 1
l1<i<r 1<i<r

would be an upper bound for Jm(IZ) in any result analogous to

Theorem 4.12 for k setsif k>r, r >4, and Ai(Iz) >0 for



76

V. FOUR NUMERICAL FUNCTIONS

We begin by defining four related numerical functions, and in
Theorem 5. 12 we evaluate one of them. We obtain evaluations of the
others on certain subsets of their domains by applying Theorem 4.12
in addition to Lin's Theorem F and a result by Allen Freedman which
extends Theorem F to k sets in .]'1. Two important theorems
regarding one of these functions for large values of an argument are
stated at the end of the chapter; the first theorem is due to P. Erdss
and P. Scherk and the other theorem is due to H. Kemperman. We
show that these theorems also apply to one of the other functions.
Furthermore, we show that an extension of Theorem G to k sets in
Jl can be obtainevd from the theorem of Erdos and Scherk.

We no longer specify a point z ¢ 7  and restrict our consid-

eration only to subsets of Iz, and so Definition 2.7 no longer

applies. Throughout this chapter, when Al’ AZ’ ce ,Ak are subsets

of Jm then A1 + A2 + ...+ Ak or Z Ai denotes the sum
1<i<k

set { Z ailaieAi}.

1<i<k

Definition 5.1. With n a positive integer then

J:ln ={z|z ¢« I and Jm(Iz) = n}.

Definition 5. 2. The set of all subsets of J° which
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contain O is denoted by P(Jm). When k is an integer, k > 2,

then Pk(.]'m) denotes the Cartesian product of k copies of P(Jm)-

Definition 5. 3. For each 1z ¢ Jm, z >0, and each integer

k>2 let $z,k’ &z, " and ')42’ | Tepresent the following

subsets of pk(Jm):

. m _ k, _m
(i) eLz’k—{(Al,Az,--.,Ak)e @ (T )|=zd z Ai}’
1<i<k

! A

G) B ={a, A, ... A)c PIEC Z i

z,k 1 2 k 1<i<k
and z ¢ z Ai}’
1<i<k

(iii) "Hz . {(AI,AZ,...,Ak) ¢ (Pk(Jm)|1; C Z A,z ¢ ZAi,

1<i<k 1<i<k

and A(I )>0
iz
for i=1,2,...,k}

The sets i\z Kk and le . are not empty for each 1z € Jm,

z >0, and each integer k >2 since both sets contain

=1I' = i=2,...,k.
(Al’Az"“’Ak) where A, =1 and A {0} for i= 2, k

Note that
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. .. ~
AISQ;& if (AI’AZ’ ce ,Ak) is in ')a,l.z’ I’ &z, o °"z, K then
0e Ai and z ¢ z A, andso zd A, for i=1,2,...,k.
i=1 - 1 !
1<i<k

Definition 5.4. For integers k >2, m >1, and n>1 let

- m ”\
f(k, m, n) = max{ Z Ai(Iz)lz € J = and (AL A, - AL e d'z,k}'

1<i<k

Definition 5.5. For integers k >2, m>1, and n>1 let

}.

- m
g{k, m, n) max{ z Ai(Iz)lzeJn and (AI,AZ,...,Ak)eZLZ’k

1<i<k

Definition 5. 6. For integers k >2, m>1, and n2>1 let

h(k, m, n) = max{ Z Ai(Iz)Ize J;n and (A A, ..., A)c¢ %’k}

1<i<k

if there is an element 2z € J:ln for which ’HZ K # ¢; otherwise,

h(k,m,n) = 0.

Definition 5. 7. For integers k>2 and m>1 let

s(k,m) = lub{nlh(k,m, i) < i-1 and k <i gn} if there is an integer
n, n>k, for which h(k,m,i) <i-1 when k <i<mn; otherwise,

s(k,m) = 0.

The next four theorems consist of result which follow directly
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from the definitions of the functions f, g, h, and s.

Theorem 5.8. If k>2, m>1, and n>1, then

f(k, m,n) >g(k,m,n) >h(k, m,n) > 0.

Proof.- Let k, m, and n be given integers such that k >2,
> > 1. d h
m >1, and n >1. Recall that ’Hz,k C gz,k C °"z,k for eac
zeJ , z>0. If there exists an element z'¢ J;n such that
&z’ K 7 ¢, then the conclusion follows from the definitions of f, g,

and h. If %z K = ¢ for each =z ¢ J;n, then h(k,m,n) =0 and

the conclusion again follows.

Theorem 5.9. If k>2 and m >1, then

(i) g(k,m,n) >n-1 when n >1,

(ii) h(k,m,n) >n-1 when n >k,
and
(iii) h(k,m,n) =0 or h(k,m,n) >k when 1 <n <k.

Proof.- Let k, m, and n be given integers such that k > 2,

m>1, and n>1. For each 1z ¢ J;n the set ﬁ'zk contains

H

- 7! = i= .
(AI,AZ,...,Ak) where AI—IZ and Ai {0} for 1i=2, k

i = - ne >n-1.
Since Z Ai(Iz) Al(Iz) n-1 then g(k,m,n) >n-1

1<i<k
Now restrict n sothat n>k andlet z=(z.,,z.,...,2 )
1’72 m
where 2z, =n and 2z, =0 for i=2,...,m. Thus, zﬁJm- Set

1 i

s
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= - = =2,
A1 {(xl,xz, ,xm)lO ﬁxl < n-k and xj 0 for j m}
and
= . = j = 2, ‘y "
A, = {x), %, x )]0 <x <1 and %, 0 for j m}
for i=2,...,k. Then Ai(IZ)>0 for i=1,2,...,k and
: ' S « o o . 1
Z Ai IZ, and so (AI’AZ’ ,Ak) € ’H'z,k Since
1<i<k

Z Ai(Iz)=n-1, then h(k,m,n) >n-1.
1<i<k

Part (iii) follows directly from the definition of the function h.

Theorem 5.10. If k>2, n>1, and m1>m221, then

(1) f£(k, m,, n) > f(k,mz, n)

(ii) gk, m n)zg(k,mz,n)

1,

(iii) h(k,m,n) >h(k,m,, n)

and
(iv) s(k,ml) _<__s(k,m2).
Proof Iet k, n, m,, and m, be given integers such that
> > > >1. = e i
k>2, n>1, and m, mz__l To each x (ul,uz, u ) in
J we correspond the point x*= (v ,v,,...,V ) in
1’ "2 m
m, 1
J where \ = ui for 1<i _<_m2 and A =0 for

m, <i<m

2 To each set A contained in Jm we correspond

1

the set A% = {x*|x ¢ A} contained in Jm
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m
1 2 .
Let z ¢ Jn and (AI’AZ’ .. .,Ak) € "uz,k' Since
AI )=A(l) for i=1,2,...,k and Z A* = ( z A )k it
i z* iz i i
| 1<i<k 1<i<k
%* * o, * .
follows that (AI’AZ’ ,Ak) € ’Hz*,k Also,
| m,
z¥% e J . Thus,

n
| T m
| 2
| L) A(L)|zeT 7 and (A A, ..., A)c¢ Hz,k}

1<i<k

)
= * . e
{ Z Ai(Iz*)|ze g7 and (A, A, ,Ak)e'l-(z,k}
1<i<k
™
CHq Z B(I)weJ ° and (BB, ...,B)c¢ Hw,k}-
1<i<k

Therefore, hik, m,, n) >hik, m,, n).

laci '
Replacing & .k

) .
by oh 2.k and .21 _— in the above
argument, we obtain parts(i) and (ii), respectively.

If h(k,m,i) <i-1 for k<ig<n, then h(k,m, i) <i-l

for k< i<n when m, < m, by part (iii). Hence,

s(k,m,) >s(k,m follows from the definition of the function s.

2 1)

Theorem 5.11. If m >1, n>1, and kl >k2_>_2, then

f(kl,m,n)zf(kz,m,n) and g(kl,m,n)Zg(kZ,m,n)-

Proof. Let m, n, kl’ and k‘2 be given integers such that
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m>1,n>1, and k >k222. Let ze.T:ln- To

1
(AL,A,...,A )e& we correspond (A¥ A% ..., A% ) where
1 2 kZ z,k2 k1
A’;‘:Ai for i=1,2,...,k, and A* {0} for i=k,tl, ...,k
Then (A* A* ... AF ) e since z A*‘ Z A
k1 z,k1
1<i<k, 1<i<k,
Also, AHI ) = Z A(I ). Thus,
; 1 Z 1 zZ
1<i<k, 1<i<k,
{ Z A(I IzeJ and (AI’AZ""’Ak)€2zz,k}
2 2
1<1<k
sk m
{ z Ai(IZ)I ze¢J ~ and (AI,AZ,...,AkZ) ¢ ﬁz’kz}
1<i<k, |

m
C_;{Z B()lzeJ and (B,By.-,B )edh |}

1<i<k,

which gives g(kl,m,n) > g(kz,m, n).

The above argument with }j replaced by “’Tz K for
'
i

z,k,
1

1<i<2 shows f(k;,m,n)2 f(k,, m,n).

The function h is neither increasing nor decreasing with
respect to the first variable for we show in Theorems 5.16 and 5.18
that h(2,m, 15) = 14, h(3,m, 15) >15, and h(4,m,15) =14 for
m > 1.

Erd8s and Sherk[2, p. 45] have exhibited an upper bound for
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f(k,1,n) when k>2 and n>1; namely, f(k, 1,n) < k(n-1)/2.
When n is an odd integer equality holds since

nt+l

(AI,AZ,---,A)GQ where Ai={0,—£—,...,n-1}, 1<i<k

k n, k
and Z Ai(In) = k(n-1)/2. Using a method of proof which differs

from the method used by Erdds and Scherk, we now proceed to evalu-

ate f(k,m,n) for k>2, m>1, and n2>1.

Theorem 5.12. For k>2, m>1, and n >1 then

kn/2 - k/2 if n 1is odd,
f(k, m,n) =
kn/2 -k+1 if n .is even.
Proof. Let k, m, and n be given integers such that k > 2,
m > 1, and n>1.
We first determine a lower bound for f(k,m,n). Let
z.,...,z2 ) where z,=n and z, =0, 2 <1i<m. Hence,
1’72 m 1 i - -

Z € J:ln. When n is odd define

n+tl
= . = < =
Ai {(Xl’xz’ ’Xm)lxl 0 or > S_xl n, and x, =0
for 2ij<_m}
P [anY .
for i=1,2,...,k. Then (AI,AZ,...,Ak)ecLZ,k since

z ¢ Z A., and consequently,
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f(k, m,n) > Z A(L) = k(n-1)/2.

1<i<k

When n 1is even define

= c ek )x.o = Z<x, < = 2<j<
Bl {(xl,xz, ’xm)'xl 0 or > <%, <m and xj 0 for __J__m},

and for i=2,...,k let
n .
= = - = <3< .
Bi {(xl,xz, ’Xm)lxl 0 or >t 1 <x, <nm, and xj 0 for 2< j < m}
. ()
Since =z ¢ z B. then (BI’BZ’ , Bk) € °Lz,k’ and so

f(k, m,n) > Z Bi(IZ) =n/2 + (k-1)(n/2-1).
1<i<k
Therefore,
kn/2 -k/2 if n is odd,

(5'1) f(k,m,n)z
kn/2 - k+1 if n is-even.

We next determine an upper bound for f(k, m,n). Consider

any z.¢€ J';n and any (AI,AZ,---,A)fora

k z,k

Case 1. Ai(Iz) <n/2 for i=1,2,...,k. In this case

k(n-1)/2 = kn/2 - k/2 if n is odd,
(5.2) A(l) <
k(n/2-1) <kn/2 -k+1 if n is even.

Case 2. Aj(Iz)Zn/Z for some j, 1 <j<k.

Let t= max{Ai(Iz)|i =1,2,...,k}, and assume Aj(Iz) = t.
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If xe Aj ~ IZ and x>0 then 0 < x < z, or equivalently,
0 < z-x <z. Hence, 2z -XE€ I'z and z-x >0. Also,
Z - X € Iz\Ai for 1 <i<k and i #-j, for otherwise
= - . i : A
P x+(zx)eAj+Ai_C_A1+A2+ +Ak Since zeIz\ r

1 < i<k, it follows that

(I NANIDY>A(IY+1=¢t+1
zZ 1 z - J Z
and

m -
A(L) < TL) - ¢+ =n -t -1

for 1<i<k and i#7j. Therefore,

Z Ai(Iz) <t+ (k-1)(n-t-1) = (2-k)t + (k-1)(n-1).

1<i<k

However, the function a defined on the set of real numbers by
a(y) = (2-k)y + (k-1)(n-1) is decreasing since a'(y) = 2-k £ 0.

Since t >n/2 it follows that

(5.3) z A1) < aft) < a(n/2)
= (2-k)n/2 + (k-1)(n-1)

=kn/2 -k + 1.

From inequalities (5. 2) and (5. 3) we have
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kn/2 - k/2 if n is odd,
f(k, m,n) <
kn/2 - k+1 if n is even.
Since the upper and lower bounds which we have found for
f(k, m,n) are equal, then
kn/2 - k/2 if n is odd,

f(k, m,n) =
'Lkn/Z -k+1 if n is even,

and the proof is complete.

To obtain a lower bound for f(k,m,n) in the proof of Theo-
rem 5.12, we consider the point in J:ln which is in
{x,,x,,...,x )|x >0 and x, =0 for i=2,...,m}, a subset

1’72 m 1= i

m . 1 s m
of J isomorphic to J . However, any point in Jn could have
been used to give inequality (5.1) as Theorem 5.14 shows. It follows
that the value of f(k,m,n) is not changed if in Definition 5.4 we

replace J:ln by one of its nonempty proper subsets.

When a and b are integers and a >b, we define

I zi =]
a<i<b
Lernma 5.13. If ZI’ZZ’ z3, is a sequence of real numbers,
then Z Zi( I (z+1) = ( 1 (z,1+1))- 1 for m2>1.
l<i<m i+l <t<m 15_1§_m
Proof. When m =1 then 1 (z +1) = ’1 for i>1 and



87

1

z, = (00 (z.,+1))-1.
1 ) 1
1§_1S1

Z Zi( I (Zt+1))
1

it1<t<l

Assume k >1 and

z z,{ I (zt+1)) =( I (zi+1))— 1.

i
i <t< i<
1<i<k i+t1<t<k 1<i<k

Then

3‘ z 1 (z,+1)) = = + Z z.( Il (z +1))

-~ 1 . t k+]. 1 .,

< +1<t<k+1
1<i<k+l 1+1__t§_k+1 1<i<k itl1<t<k

=z + (z +1)( Z z.( 1 (z +1)))
k+1 k+1 . i i+1<t<k t
1<i<k -

- 2 N (2 41)-1)

+ (=
k+1 k+1 1<i<k

=( M (z4D)-1,
1<i<k+l

and the lemma follows by induction.

Theorem 5.14. Let k>2, m>1, and n>1. If zeJ;n

then there exist sets A, ,A_, .. .,Ak such that O ¢ k A,
17772 i=1 i
z d Z Ai’ and Z A(IZ) = f(k, m, n).
1<i<k 1<i<k

Proof. Let zeJm. With z=(z,,2,,..-,2_) then
n 1’72 m
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n+1l-= n (zi+1).
1<i<m

— —

Case 1. The integer n is even.

Note that n is even implies 'n+l is odd, and so z, is

even for i=1,2,...,m. Let A={i|zi>0 and 1 <i <m}. Since

m £l
zeJn and n>1 then A is notempty. Let u = min{i|i ¢ a}.

Define

B ={x,%x,.-.,x )}x.=2,/2=0 for 1 <i<u if u>1,
u 1°7°2 m i i -

z /2<x <z, 0<x <z, for u<i<m if
u u — u -1 1 -

u < m, and (xl,xz, . ..,xm) # (zl,zz, .. .,zm)},

and for je A, j>u, define

B, = {(x,,x Lx )|x =2./2 for 1<i<j, =z /2<x, <z, and
j 1 m i i = j T

2

0

A

x, Lz, for j<i<m if j <m}

Clearly zd B . Also z¢ B, for j>u since x =2z /2<z
u j u u u

whenever (x. ,x.,...,%x ) € B,. Furthermore,
1’72 m j
z, 2z, zm : f.L
('é-, ?,---,T) (Bj for - j>u since Xj >.2 whenever
(xl’xz’ ’xm) € BJ

Now B, n Bj=¢ when i< j forif x=(x,,x

then x, >zi/2, and so x ¢ Bj- It follows that

2 ..,xrn)eBi
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3 500

ieA

]

( “ Bi)(Iz)
1€ A

Bu-(Iz) + ZBi(Iz)
i€eA
ifu

Zu Zi
-y ( n (zt+1))-1 + Z -é‘( I (zt+1))

utl <t<m . i+1<t<m
—— 1€A -
ifu
1
=—Z z( N (z.+1)) - 1.
2 1, t
) i+1<t<m
1€A _— -
z1 z2 zm
Next define A1 = {0} u (-\:ABi) w {(‘é", ST )}, and
i
Aj={0}u (v Bi) for j=2,...,k. Since zi=0 if idaA and

, i€A

z zi( nm (zt+1)) by Lemma

since n = (‘ n (zi+1))- 1
i+l1<t<m

1<i<m .
- 1<i<m

5.13, thenfor 2 < j <k wehave

AL = (U B,

iea

1
> Z zi( I (zt+1)) -1

. itl<t<m
1€A e

=—1-Z z2( N (z41) -1

2 L itl<t<m °©
1<igm ==

='1'n-1



Furthermore, Al(Iz) = AZ(IZ) +1=n/2. Therefore,

Z AJ.(IZ) =n/2+ (k-1)(n/2-1) =kn/2 - k + L.

1<j<k

Since n is even, then z Aj(Iz) = f(k,m,n) by Theorem 5.

1<j<k

It remains to show that z ¢ Z Aj. Let x € Z Aj-

1<jsk

Then x = E aj where ajeAj. Since ziAj for

1<j<k

then z # x if aj>0 for at most one j, 1 <j <k. Thus,

assume ai>0 and aj>0 where 1 <i<j <k Set

ai=(y1,y2,... 5

,Ym), aj = (wl,w ,---,wm), and

If a . e B and a. ¢ B, then
1 s ] t

(1) ys>zs/2 and wt>zt/2 if s =t

(i1) ys>zs/2 and ws=zs/2 if s <t,

and
= > 1 > t.
(iii) vy, zt/Z and W zt/Z if s>t
> > >
In any case xs_ys+ws z, or Xt—'yt+wt
1 2 “m
z#x. I i=1 and a =(5, 3, 73 )s

> + > + 2 =
X 2y, t W, zt/Z zt/ z,,

~Case 2. The integer n is odd.

Since n is odd then n + 1 is even; consequently, zV

and so again z ¥ x.

90

12.
1<j<k
1<j<k,
x = (XI’XZ""’Xm)'
>zt, and so
then
+1



is even and z, is odd for some v, 1 <v <m. Define

= < < < 71 < i
A, {(XI’XZ’ ,Xm)lo_X._zj for 1 <j<m, j#v, and
(z +1)/2 <x <=z or x = 0}
v - v v v
for i=1,2,...,k. Clearly, Oc¢ Ai. We now show that
z d Z A,. Let xc¢ 5\ A,. Then x = Z a, where
1 Y] 1 1
1<i<k 1<i<k 1<i<k
a.€eA. Set a.=(a,.,a,.,---,a ,) for i=1,2,...,k and
i i 1 1i7 721 mi
x=(x ,%x,,...,x ). If a . >0 for at most one i, then
1’72 m vi
x =a .<z, andso z #x. Thus, assume a . >0 and a .
v vi v vi vj
where 1<i<j<k. Then x_ >a .+a . >z +l, and z7x.
- - v vi vj="v
Now z Ai(Iz)=k(n—1)/2 since for i=1,2,...,k,
1<i<k
(zv+1)
= - -1
Ai(Iz) (ZV > +1)( 0 (zt+1))
lf_tf_m
tfv

f

—;( n (2 +1)- 1
1§t<m

11
|
5
+
—
1
—
I
1
5
1
—

Since n 1is odd, then from Theorem 5.12 we have

91

>0

Z AL )= {(k,m,n), and the proof of the theorem is complete.

1<i<k

In the next two theorems we apply Theorem 4. 12 to evaluate

the functions g and h on certain subsets of their domains.
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Theorem 5.15. Let m >1. Then

(i) g(Z,m,n) =n -1 for n > ].,
and

(ii) gk,m,n)=n -1 for k>3 and 1 <n < 14.

Proof. Let m and n be given integers such that m > 1

m
and n >1. Let ze..Tn and (AI,AZ)eb Then ze’A1+A2

z, 2

and I; C A1 + A From Theorem 3.2 we have

2

m —
A(L) +AL(L) < (A+ALNL) < T (1) = n.

Hence, g(2,m,n) <n - 1. However, g(2,m,n)>n-1 by
Theorem 5.9, and so g(2,m,n) =n - 1.
Next let k, m, and n be given integers such that k >3,
m
Then =z ¢ Z Ai and I'Z C Z Ai. Applying Theorem 4. 12

1<i<k 1<i<k
we have — -

E AL) < Z ANL)=n- 1.

1<i<k 1<i<k

Thus, g(k,m,n) <n -1. Since g (k,m,n)>n -1 by

Theorem 5.9, then g(k,m,n) =n - 1.
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Theorem 5.16. Let m >1. Then

1
—

(i) h(2,m,n) =n for n > 2,

]
o}

i
—

(ii) h(3,m,n) for 3 < n < 14,

(iii) h{(4,m,n) =n -1 for 4 <n < 15,

(iv) h(k,m,n)=n-1 for 5<k <n and n <16,
and
(v) h(k,m,n)=0 for k>n, k>2, and 1 < n < 16.

Proof. Let m >1 and k >3. Assume 1 <n< 14 if

k=3, 1<n<15 if k=4, and 1 <n<16 if k>5. Let z ¢ J

n
e, A ) € ; J . Ihen Z ¢ % A l' ( % A. )
’ ’ k Z,k i, zZ 1

1<i<k 1<i<k

and (A ., A

1’772

and A(L)>0 for i=1,2,...,k. Applying Theorem 4.12 we

A.(Iz) < ( Z Ai)(Iz) <n-1l.

1<i<k 1<i<k

Hence, h(k,m,n) <n - 1. However, h(k,m,n)>n -1 when n >k
by Theorem 5. 9(ii). Parts (ii), (iii), and (iv) of the theorem follow
from these inequalities. Since h(k,m,n) <n -1, then from
Theorem 5. 9(ii) we obtain h(k,m,n) = 0 when k >n. This estab-
lishes part (v) of the theorem when k > 3.

Now let m >1 and n >2. From Theorems 5.8, 5.9(ii),

and 5. 15 we obtain

n - 1 <h(2,m,n) <g(2,m,n) =n - 1.
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This proves part (i) of the theorem.
Finally, consider m >1, k=2, and 1 <n <2. From
Theorem 5. 9(iii) we have h(2,m,n) =0 or h(2,m,n) >2. How-

ever, from Theorems 5.8 and 5.15 we have
h(2,m,n) < g(2,m,n) <n-1<1,

and so h(2,m,n) = 0.

The proof of the theorem is now complete.

The next theorem is due to Allen R. Freedman, but it does not
appear in the literature. We use Freedman's result to obtain a lower
bound for g(k,m,n) and h(k,m,n) and an upper bound for

s(k,m) when k>4, m2>1, and n >8(k-2).

Theorem 5.17. If k >4 and n >8(k-2) then

hik,1,n) >n + (k-4).

Proof. Let k, n, and t be given integers such that k >4,
n = 8(k-2) +t, and t >0.

Note that 4k-7 < 5k-9 < 6k-11 < 7k-13 since k >4. Set

A = {0, 1} U {4k-74t, 5k-9+t, bk-11+t, Tk-13+t)

for i=1,2,...,k-3,
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A" {0,k-2} U {4k-T+t, ..., 5k-10+t, 6k-11+t, ..., Tk-14+t},
A =10, 2k-4) © {4k -T+t, . . ., bk-12+t},
and
Ak = {0, 4k"8; LI ,4k"8+t}.

] .
Now I_ﬂ C }J Ai since
1<i<k

Z A, DI Z {0, 1} + {0, k-2} + {0, 2k-4} + A

1<i<k 1<i<k-3

= {0,...,8k-17+t} = {0, ..., n-1}.

We claim n ¢ Z Ai. Let =x = z a, where a.itsA.1

1<i<k 1<i<k

for i=1,2,...,k. If there are integers i and j such that

1<i<j<k, ai24k-7+t, and a.j >4k-8, then
x_>_a.,1 + a.j > (4k-7+t) + (4k-8) = 8k - 15+t >n.

If akZO and ai<4k-7+t for i=1,2,...,k-1, then

M
H
o]
~®
A

(. z 1) + (k-2) + (2k-4) + (4k-8+t)

1<i<k 1<i<k-3

8k - 17+t <n.

It remains to consider a = 0 and a; > 4k-7+t for exactly one i,

1 <i<k-1. Since
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( 2 {0,1}) + {0, k-2} + {0, 2k -4}
1<j<k-4

={0,...,k-4, k-2,...,2k-6, 2k-4,...,3k-8, 3k-6,...,4k-10},

then n ¢ Aj + Z {0,1} + {0, k-2} + {0, 2k-4} for

1<t<k-4
j=12,.. ., k-3. Since
( Z {0,1}) + {0,2k-4} = {0, ..., k-3, 2k-4,...,3k-T},
1<j<k-3

then n ¢ Ak-Z + ( 2 {0,1}) + {0, 2k-4}. Since
1<j<k-3

( Z {0,1} + {0, k-2} = {0, ..., 2k-5},
1<j<k-3

then ne'Ak_1+( z {0,1}) + {0,k-2}. Thus, x = Z a,?n

1

1<j<k-3 1<i<k
when a = 0 and a, > 4k-7+t for exactly one i, 1 <i <k-1.
This establishes that n ¢ Z A
1<i<k
Since n ¢ Z A, 1 C Z A, and A (I) >0 for
i n i in
1<i<k 1<i<k

i=1,2,...,k, then (A,A, ..., A)c¢ H.n’k‘ Therefore,
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h(k, 1,n) > z A (1)
- in

>5(k-3) + (1+2(k-2)) + (1+(2k-4)) + (1+t)
=9k - 20 +t = (8k-16+t) + (k-4)

=n + (k'4),
and the proof is complete.

It is interesting to observe that Freedman's result gives an
1 . .
extension of Theorem F to k setsin J . To see this consider the
following statement of his result:

Let k >4. For each integer n > 8(k-2) there exist k sets

of nonnegative integers Al’ AZ’ ce, Ak for which
Z A D{0,...,n-1}, nd z A, A(1)>0 for i=12..k
1<i<k 1<i<k
and Z A(I)>n-1-=( Z A (L)
in i'''n
1<i<k 1<i<k

Theorem 5.18. Let m >1. If k>3 and n >15 then

gk, m,n) >h(3,m,n) >n. If k>4 and n > 8(k-2) then

gk, m,n) >h(k,m,n) >n + (k-4).

Proof. In the proof of Theorem F, for each integer n >15
Lin constructs three sets A, B, and C in Jl for which
A(L)>0, B(I)>0, C(I)>0, ndA+B+C, {0,....mn-1} C A+B +C,

and A(In) + B(In) + C(In) >n. Therefore, h(3,1,n)>n when
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n >15. Applying Theorems 5.8, 5.10(iii), and 5.11 we have

gk, m,n) >g(3,m,n) >h(3,m,n) >h(3,1,n) >n

when m >1, k>3, and n >15.

Applications of Theorems 5.8, 5.10(iii), and 5.17 give

g(k,m,n) >h(k,m,n) >h(k,1,n) >n + (k-4)

when m >1, k>4, and n > 8(k-2).

Theorem 5.19. Let m >1. Then

(1) s{2,m) is infinite,
(i)~ s(3,m) = 14,
(iii) s(4,m) = 15,
(iv) s(5,m) > 16,
and

(v) s(k,m) < 8(k-2) for k>5.

Proof. From Theorem 5.16 we have h(2,m,n) =n -1 when
n>2, h(3,m,n)=n-1 when 3 <n<14, h(4,m,n)=n -1 when
4<n<15 and h(5,m,n)=n-1 when 5 <n <16. Thus,
s(2,m) is infinite, s(3,m) > 14, s(4,m) >15, and s(5,m) > 16.
From Theorem 5.18 we have h(3,m,15) >15, h(4,m,16) > 16, and
h(k, m, 8(k-2)) >8(k-2) for k >5. Therefore, s(3,m) < 14,
s(4,m) <15, and s(k,m) < 8(k-2) for k >5. This proves the

theorem.
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It would be of interest to determine if s(k,m) increases as k
increases for k > 3.
In a paper published in 1958, P. Erdgs and P. Scherk [2] gave
upper and lower bounds for g(k, m,n) when m =1. We now state

their result.

Theorem 5.20. If k>3 and n>1 then

1 (k-1)/k 1 (k-1)/k
an-akn <g(k,1,n)<2kn—ykn
| _ 2k-3 _ 1
where ak = (k+1)2 and Yk = /2)+4 R
2 (k-1)!
In order to establish that 1 kn - a n(k_l)/k is a lower bound

2 k

for g(k,1,n) when k>3 and n >1, Erdos and Scherk construct

sets AO’ EE ’Ak-l for which {0, ...,n-1} C Z Ai’
0<i<k-1
nd Z A, and z A (L) >lkn -a n(k_l)/k. However,
i i'n 2 k
0<i<k-1 0<i<k-1
if n> Zk then Ai(In) >0 for i=0,...,k-1 since 2t ¢ Ai;

consequently, 'Lkn -a n(k-l)/k is also a lower bound for

2 k
h(k,1,n). Since h(k,1,n) < g(k,1,n) it follows that

(k-1)/k 1 (k-1)/k
n

1
an-a <h(k,1,n)<2kn—ykn

k

when k_>_3 and n_>_2k.
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An extension of Theorem G to k sets in Jl can be obtained
from the theorem of Erdos and Scherk. Let t be a real number,
t >0, andlet k be an integer, k >3. Inthe above paragraph

we observed that

k (k-1)/k
h(k, 1,n) > > 1 - akn
k
for n>2". The number
k (k-1)/k _ k -1/k
(Z-I)n—akn —n(z—l-akn )

becomes infinite as n becomes infinite since

. k 1/k, _k
11m(27 -a,n )-2-1
n—+
Thus, there exists an integer n such that n_z_Z'k and
-1 .
(’12E -1l)n - akn(k ) >t. From the definition of h(k,1,n) it fol-
lows that there exist k sets of nonnegative integers AI’AZ’ s ,Ak
for which A (I )>0 for i=1,2,...,k, Z Aij{o,...,n-l},
n
1<i<k

n¢ Z Ai’ and zAi(In)=h(k,1,n). Therefore,
1<i<k 1<i<k



101

Z A (I ) =h(k,1,n)
1 n

1<i<k o B kD
n 2 n k

>n t+ t

> ( Z AN )+t

1<i<k

This establishes the following extension of Theorem G:

Let k>3. If t>0 is given then a positive integer n and

k sets of nonnegative integers Al’ AZ’ cee, Ak can be found
satisfying Z A,1 D {0,...,n-1}, nd z Ai’ Ai(In) >0 for
1<i<k 1<i<k
i=1,2,...,k, and A(I)>( Z AT )+t
1 n - 1 n
1<i<k 1<i<k

In the paper in which Theorem 5. 20 is proved, Erdos and
Scherk indicate that when k >3 a constant B might exist for
which

glk,1,n) = %,kn _ (‘3+o(1))n(k-1)/k

as n becomes infinite. In 1964 H. B. Kemperman [4] established

-(k-1)/k

this asymptotic formula with p = k2 by proving the follow-

ing theorem:

Theorem 5.21. If k_23 then
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lim (k(n-1)/2-g(k, 1,n)n” 8D /6 < o= /K,

n—x
An examination of Kemperman's proof of Theorem 5. 21 shows
that a result analogous to Theorem 5. 21 is valid for h(k, 1, n).

Kemperman determines an upper bound for k(n-1)/2 - g(k, 1,n)

where k>3 and n >2 by constructing sets Ak
[4, pp. 46-48] for which C z A, n ¢ z A and
1<i<k 1<i<k

-1 -1/k k-1
ka-1)/z - ) A < kn/2 N Karw L
1<i<k
) k+1 . .
Now if n >2 then p >2 where p is defined to be the
smallest integer for which [-121] < pk - 1. But then Ai(In) >0 for
i=1,2,...,k since the set Ai contains at least p -1 elements
of the set {0, pl-l, Zpl,-l, e, (p-l)pl-l}‘ Therefore,
k+1 .
h(k, 1, n) A, (I ) when n >2 , and it follows that
15_1§_k

k(n-1)/2 - g(k, 1,n) < k(n-1)/2 - h(k, 1,n)

< kn-1)/2 - Z A(L)
- 1 n

1<i<k

(k-1) /k l/kk L

< k(n/2) (1+(n/2)

Thus,
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(k- (k-1
(kn-1)/2 - glie, Lonn S D& & (n-1)/2 - hik, 1, mpn” DK
(k- -1/k k-1
<x2”k 1)/k(1+(n/2) l/k)
k+1 . ‘
for n >2 and k >3. Using Theorem 5. 21 to evaluate the left

side of this inequality as n becomes infinite and noting that

lim (14(n/2)" t/Rk-1 -

n-—"

1,

we obtain

lim (k(n-1)/2 - hik, 1,n)n" D /E oy te-1) /K

n—* o
From Theorem 5.10 we have g(k,ml, n) > g(k,mz, n) and

h(k,ml,n)_>_h(k,m ,n) when m, >m, >1. Thus, lower bounds of

2 1

gh,1,n) and h(k,1,n) are also lower bounds of g(k,m,n) and
h(k, m,n), respectively, for m >1. We have had no success in
obtaining upper bounds for these functions.

The problem of completely evaluating g(k,m,n), h(k,m,n),

and s(k,m) appears to be difficult, even for m = 1.
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APPENDIX I

We now prove Theorem 4.5 which was stated without proof in

Chapter IV.

Theorem. Let z =(1,3,1)c¢ 7° andlet A,B,C,D C L.
If A+B+C+D-= I; ‘and D(Iz) >0, than at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(Iz) >5, B(Iz) >5, and C(Iz) >5.

From Theorem 4.1(i), it follows that none of the sets
A+B+D,A+C+D, and B+ C +D has more than nine nonzero
elements. Moreover, from Theorem 4. 1(ii), it follows that none of
the sets A +B, A+C, A+D, B+C, B+D, and C+ D has more
than eight nonzero elements.

Let e, = (1, 0, 0), e, =(0,1,0), and ey = (0,0,1). Now
either {el,e3} is'a subsetof A+ D, B+ D, or C+ D, or
otherwise {el, e3} ~ D is the empty set and each of the sets A, B,

and C has at most one element in common with {el, e3}..

Case 1. The set {el,e3} is a subset of A +D, B+ D, or
C+D.

To be definite, say {el, e3} C A+D. Now e, is an element
of A+B+D or A+ C + D. By relabeling sets B and C if

necessary, we may assume that e, ¢ A+ C+D.
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If (1,0,1)d A+ D then either {el,e3}C A and
{e],e3}r\D=d or {el,e3}g D and {el,e3}r\A=¢. When-
ever (1,0,‘1)€'A+D, we will let G equal A if {el,e3}gA
and G equal D if {el,e3}_C_ D.
Let R, ={(0,x,0)]1 <x<3} R, = {(0,x,1)]0 < x < 3},
R, ={(1,x,0[0 <x< 3}, and R4={(1,x,1)|0 < x < 3}. For any

o

set S ( Iz denote Sr\Ri by Si’ 1<i<4.
We proceed to establish that Bl(IZ) <1 and Bi(Iz) <2 for

2 <i< 4. Note that
{(1’3’ 1)’ (1’3’ O)’ (O’ 3’1)’(1’2’ 1)}m B = ¢

since {O,el,e 3}£A+C+D and (1,3,1) { A+B+ C+ D.

2’ ¢
Clearly, B4(Iz) < 2.

Assume Bl(Iz) >1. Then there exist integers x and vy

suchthat 1 <x <y <3 and {(0,%,0),(0,y,0)} C B. Thus,

A+B+D D (A+D)+B D {O,el,e3}+B

D {O’ el’ e3’ (O’ X’ O)’ (O’ Y’ O)’ (]"X’ O)’ (]"Y’O)’ (O’X’l)’ (O’Y’l)}'

Now (1,0,1) ¢ A+ D, for otherwise {(1,x,1),(l,y,1)} C A+B+D
and (A+B+D)(Iz) >9. Therefore, with set G as previously
defined, we have B+ G D) B + {0, el,e3}- Also, (B+G)(Iz) < 8.

It follows that



107

B + G = {O, e]_, e3, (O, X, O), (O, Y, O), (]',x, O), (1, Y, O), (O,x, 1), (O, Y, 1)}.

Now {el, e3} ~ B =¢g, for otherwise (1,0,1) ¢ B+ G. Since
B(I,) 25 and B C B+ G, theneither (1,%,0) or (1,y,0) is
an element of B. However, this implies that (1,x,1) or (1,vy,1)
is an element of B + G. We conclude that Bl(Iz) < 1.

Assume BZ(IZ) > 2. Then BZ = {(O, O, 1)! (O, ]-, 1), (O, 2, 1)}

since (0,3,1) ¢ B. Hence,

A+B+D D {0,e}+(B,u{0}

= {O,el, e3, (O, ]', 1), (O, 2, 1), (]', O, 1), (]', ]', 1), (]', 2, 1)}'

Since {(1,x,1)|0<x<2} C A+B+D and (1,3,1) { A+B+C+D,
then {(0,x,0)]1 <x <3} ~n C is empty. Therefore,
{(0,x,00{1 <x <3} C A+B+D. Butthen (A+B+D)(I ) >9. We
conclude that BZ(Iz) < 2.

The argument presented in the preceding paragraph with B2
replaced by B3 shows that B3(IZ) < 2.

Choose E sothat E is one of the sets A, C, or D and
so that e, ¢ E. We now show that (B+E)1(IZ) > Bl(Iz) + 1 and that
(B+E).1(Iz) _>_-B.1(Iz) + 1 when Bi(Iz) >0, 2 <i<4. Assume

B,(L) >0. Let b's= max{b|(0,b,1) ¢ B}. Thus, (0,b'+1,1) ¢ B.

Since (0,3,1) ¢ B then b' <2, and so

(0,b'+1,1) = (0,b',1) + (0,1,0) ¢ (B+E)2.
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Therefore, (B+E).(I )>B_(I )+ 1. Since (1,3,0)¢ B and
2z — "2z 3

(1,3,1) ¢ B,, the same kind of argument gives
(B+E).(I ) >B.(I )+1 when B.(I)>0 and 3 <i<4. If
1 2 — 1 zZ 1z —_— -

(0,1,0) ¢ B,, then (B+E) (I )>B.(I)+1 since e, eE. If
1 1z =71z 2

(0,1,0) ¢ B, then B, = {(0, 1, )} since Bl(Iz) < 1. Hence,

1
(0,2,0) ¢ B+E, andso (B+E)(I)>2=B (L)+]1.
One of the numbers BZ(IZ), B3(Iz), or B4(Iz) is zero, for

otherwise

Z (B+E), (L ) > Z (B, (L )+1)

1<i<4 1<i<4

8 > (B+E)(L )

| = +4>9.
( Z B.(L)) +4 = B(L) 4>9
1<i<4
Let B.(I)=0, je{2,3,4}. Since B(I )>5, B.(I ) <1, and
j =z z - 1"z —~
B(I )<2 for 2<i<4, then B (I)=1, B(I )=2 for
itz — - - 17z iz

2<i<4 and i7j, and B(I) =5 Now

8 > (B+E)(L ) = Z (B+E), (I ) > Z (B+E), (L)
1<i<4 1<i<4
i#j

> Z (B.1<Iz)+1) = ( }: B.1<Iz)) +3=28;
1<i<4 1<i<4
i#j i?j
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hence, (B+E)(I )=B.(I)+1 for 1<i<4 and i #j. It fol-
lows that B1 # {(0, 2, 0)}, for otherwise (B+E)1 = R1 and

. = = 3,0)}.
(B+E) (1) >B (1)) + 1. Thus B ={(0,1,00} or B, {(0, 3, 0)}
Assume B, = {(0,3,0)}. Then (1,0,1) { A+ D, for other-

wise (1,3,1) e A+B+C+D. If B4(Iz)=0 then

B = {0, (0, 3, 0), (l,bl, 0),(1,b2, 0), (0,b3, 1), 0, b4, 1)}

where 0 <b <b,<2 and 0<b, <b, <2 since (1,3,0)¢B

and (0,3,1) ¢ B. This in turn implies that

B+G D B+{0,e,e,}

D {0,e,e5,(0,3,0) (1,3,0,(0,3,1),(1,5,,0),(0,b, 1), (1,b,1), (Lb, 1}

But (B+G)(Iz) < 8, and so we conclude that B4(Iz) >0. Thus,
B4(Iz) =2, and since (1,2,1)¢ B and (1,3,1) ¢ B then

B4 = {(1, 0, 1), (]-, ]-, 1)}' Suppose B3(IZ) = 0. Then
B ={0,(0,3,0),(0,b,,1),(0,b,,1),(1,0,1),(1,1, 1)}

where 0 <b, <b, <2. Since By {(1,3,0),(0,3, 1),61} C B+G
and (B+G)(Iz) < 8, it follows that B+ G =B v {(1,3,0), (0,3,1),61}-
If b2 = 2 then e + (O,bz, 1) =(1,2,1) ¢« B+ G, a contradiction.

Hence, b2 =1, b1 =0, and so

B+G={0,e,e,;(0,3,0),(1,3,0),(0,3,1),(0,1,1),(1,0,1), (1,1, 1)}

5
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Thus,

(B+G)~ = {0, e, (1,1,1),(1, 2,1),(0,1,1),(0,2,1), (1,1, 0)}.

Note that (0,2,0) ¢ B+ G + (B+G)~. Since G=A or G=D and
A+B+C+D-= I’Z, then B+ G + (B+G)~ = I; by Theorem 2.9(c).
Since (0,2,0) ¢ I'Z, we conclude that B3(Iz) >0. By a symmetric

argument we obtain that BZ(Iz) >0. Thus, Bi(Iz) >0 for

2 <i<4, andwe have a contradiction.

Finally, assume B, = {(0, 1, 0)}. Since (B+E)1(Iz') =2 and
e, ¢ E, then (B+E)1 = {(0,1, 0), (0, 2, 0)}. Assume B4(Iz) > 0;

consequently, B, = {(1,0,1),(1,1,1)}. Since

(1,3,1) | B+E + (B+E)~ and

B+E D) B, + {o, e} 2 {(1,0,1),(1,1,1),(1, 2, 1)},

then {(0,1,0),(0,2,0),(0,3,0)} ~ (B+E)~ = ¢. It follows that
(0,3,0)d B+ E + (B+E)~; however, this is contrary to

B+E+ (B+tE)~ = I;. We conclude that B4(Iz) = 0. Therefore,
BZ(IZ) =2 and B3(Iz) = 2. Either B, = {(0,0,1),(0,1,1)} or

B, = {(t0,1,1),(0,2,1)} since (0,3,1) d B, B, (1) = 2, (B+E),(L ) = 3,

and e, € E exclude any other subsets of R_ as possibilities for

2 2

B,. Similarly, B, ={(1,0,0),(1,1,0} or B,= {(1,1,0),(1, 2, 0)}.

Since A+B+D ) {0,e,, e3} +B and (A+B+D)I ) <9, it follows
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that A+ B +D =B + {O,el,e3} whenever (B+{O,e1,e3})(Iz) = 9.
Now with B, = {(0,0,1),(0,1,1)} and B, = {(1,1,0),(1,2,0)}, or
with B, ={(0,1,1),(0,2,1)}, then (B+{0,e;,e,})(1)) =9, and so
A+B+D=3B+{0, e e3}. However, in each instance
A+B+D+{0,(1,1,1)} =A + B + D, which is contrary to Theorem
2.10. With B, = {(0,0,1),(0,1,1)} and B, = {(1,0,0),(1,1,0)}

then

B + {0, ez} = {0, e;r €, €,,(0,2,0),(0,1,1),(0,2,1), (1,1,0), (1,2, 0)}.

2’ €

Since B+E ) B+ {O,ez} and (B+E)(Iz) < 8, then
B+E=B+{0,e2}- If XGIZ,X¥O, and x;‘e2 then

(B+{0, ez,x})(IZ) >8. Thus, E = {0, eZ}', Since A(Iz) >5 and
C(I)>5 then E =D, andthis in torn implies that le), e3} C A.
Therefore,

A+B+D ) {0,e}+ (B+E)

2 {(1,0,1), (1,1, )} U (B+E).

A contradiction follows since this set inclusion implies that

(A+B+D)(IZ) >9.

Case 2. The set {el, e3} ~ D is empty and each of the sets
A, B, and C has at most one element in common with {el, e3}.
By relabeling the sets A, B, and C if necessary, we may

assume that e; ¢ A and e3¢ B.
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Let U ={(x),x,,%,)]0¢ex <1 for i=1,2,3} andlet

2,
Uk = U\{O}.' We proceed to show that D ~ U* is the empty set.
We claim (0,1,0) ¢ D. Assume otherwise. Then

e B, and e, ¢ D. It follows

UC A+B+D since e ¢A, e 5

3

that C C U, for if (xl,x x3)eC‘\U then

2!

(l—xl, 3-x 1-x3) ¢ U and this implies that

2,
(1,3,1) «C+U C A+B+C+D. Inparticular (0,2,0) ¢ C and
(0,3,0) ¢ C. Also, (0,2,0)¢D and (0,3,0)¢ D, for if

(0,%x,0) ¢« D where =xc¢e {2,3} then
A+B+D D U v {0,x%,0),(1,%,0),(0,x, 1)}

and (A+B+D)(Iz) >9. Nowif (0,1,0) € A then

{(0,2,0),(0,2,1)} C A+ B+ D, which in turn implies that

(1,1,1) § C and (1,1,0) ¢ C. Butthen C C UNJ(1,1,1),(1,1,0)}
and C({el,e3}) <1 imply that C(I) < 4. Since C(I)>5, it
must be that (0,1,0) ¢ A. A symmetric argument establishes that

(0,1,0) d B. Also, (0,2,0)d A, for otherwise
A+B+D D Uwu {0,2,0),(0,3,0),(0,2,1)}

and (A+B+D)(Iz) > 9. Similarly, (0,2,0) ¢ B. If (0,3,0)¢ A
then A+B+D D Uwu {(0,3,0),(0,3,1)}, and since

(A+B+D)(Iz) <9 we have
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A+B+D=Uu {(0,3,0),(0,3,1)}

Now (0,3,0)¢B and (0,3,1) ¢ B, for otherwise (1,3,0) or
(1,3,1) 1is an element of A+ B + D. Hence, B ( U. Also,
<1, for otherwise

(x,,1,%x;) ¢ B when 0<x <1 and 0<x

1 3

(x., 2,x3) e A+B+D. But then B (; {O,el,e3,e1+e3}, which is

1
contrary to B(IZ) >5. Thus, (0,3,0) ¢ A, andina symmetrical
way we obtain (0,3,0) ¢ B. Since {(0,2,0),(0,3,0)} ~ (AuUBUWCUD)
is empty and (0,1,0) ¢ A B, then (0,3,0) /{ A+ B+ C +D.
Since A+B+C+D-= I;, we have a contradiction. Thus,
(0,1,0) ¢ D.

We next show that (1,1,0) ¢ D. Assume otherwise. Then
(0,2,1) { A+B+C. Since (0,2,1)¢e A+B+C+D but
(0,2,1) { A+ B+ C, then there is an element w ¢ D such that
0<w<{(0,2,1). If (0,1,0) e C then (0,2,0) ¢ D and
(0,2,1) ¢ D, for otherwise (1,3,1)¢ A+B+C+D. If
(0,1,0) e A B then (0,2,0)¢D or (0,2,1)¢D, for otherwise

(A+B+D)(IZ) >9 since

A+B+D D {O,el,ez, €y e1+e3} + {0, (1,1, 0), (0, 2, 0)}
or

A+B+D D {0,e, ve te } +1{0,(1,1,0), (0,2, 1)}

€2 €3

Now e, ¢ A U B U C since we have shown in the preceding
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paragraph that e, ¢ D. It follows that not only (0,1,0) ¢ D but
also (0,2,0)¢ D and (0,2,1) ¢ D. Consequently, w = (0,1,1),
and this in turn implies (1,2,0) ¢ A+ B + C. Since neither (0,2,1)
nor (1,2,0) isanelementof A+ B+ C and since e, ¢ A and

1

e, € B, then (0,2,0) ¢ A+C and (0,2,0) ¢ B+ C. Thus,

3
(0,1,0) / A~ C, (0,1,0)d B~ C, and (0,2,00)¢d A Bu C.
Furthermore, (0,1,0) ¢ A ~ B, for otherwise (A+B+D)(IZ) >9

since

A + B +D D {o,e e3, e1+e3, (0, 2, 0)} + {0! (1, ]-, 0), (0, ]-, 1)}'

1’ €2’

It follows that (0,2,0) { A+ B+ C+ D. However, this is contrary
to A+B+C+D=I". Thus, (1,1,0)¢D.

An argument symmetric to the one given in the preceding para-
graph establishes that (0,1,1) ¢ D.

Finally, we show that (1,0,1) ¢ D and (1,1,1) ¢ D.
Assume (1,0,1)e¢ D or (1,1,1) ¢ D. Recall that (0,1,0) ¢ D.
Also, (0,3,0) ¢ D, for otherwise (1,3,1)¢ A+B+C+D. If
(0,2,0) ¢ D then {(0,1,0),(0,2,0),(0,3,0)} C A+B+C. However,
(0,3,0) / A+B+C if (1,0,1) e D, and (0,2,00¢ A+B+C
if (1,1,1) ¢ D. It follows that (0,2,0) ¢ D. Since (0,2,0) ¢ D
then (1,1,1) ¢ A+ B + C, and this in turn implies that e, ¢ C

2

since e, ¢ A and e

1 3 €e B. Therefore, e, ¢ A B since

e, ¢ CuU D. Then
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A+B+D ) {0,e e ,el+e3}+{0,x,(0, 2, 0)}

2’ €3

where =x=(1,0,1) or =x=(1,1,1) accordingas (1,0,1)e D or
(1,1,1) e D. A contradiction follows since (A+B+D)(Iz) >9,

We have established that D and U* have no elements in
common. Thus, U (_: A+ B+ C. Since D(Iz) >1 and
D ~ U*x=¢g, then there is an element (yl,yz,y3) € D such that
0_<__yl <1, 2£y2§_3, and Oiy3f_l. But then
(l'Vl’ 3-y2, 1—y3) € U, andso (1,3,1) e U+D (C A+B+C+D.
However, this is not possible since A+ B+ C+ D = Ié.

The proof of the theorem is complete.
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APPENDIX II

We now prove Theorem 4.6 which was stated without proof in

Chapter IV.

Theorem. Let z = (7,1) ¢ JZ and let A,B,C,D Iz. If
A+B+C+D-= I; and D(IZ) >0, then at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(Iz) >5, B(Iz) >5, and C(Iz) >5.

From Theorem 4. 1{i), it follows that none of the sets
A+B+D, A+C+D, and B+ C+D has more than nine nonzero
elements. Moreover, from Theorem 4. 1(ii), it follows that none of
the sets A+B, A+C, A+D, B+C, B+D, and C+D has
more than eight nonzero elements.

Let Ry={(x,0|1 <x<7 and R ={(x1)]0<x<7. For
any set S I, denote S~ R_ by S, rc {1, 2}.

Each of the integers AO(IZ), BO(IZ), CO(IZ), and DO(IZ) is
greater than zero. For instance, if AO(IZ) =0 then
R0 C B+C+D and, since A(Iz) >0, there is an element
(x,1) € A. Butthen (7,1)=(x,1)+(7-%x,0)e A+B+ C+D.

We next show that AO(IZ) >1 whenever (1,0)e¢e B+ C+ D.

Assume A0={(a,0)}. Then Al(IZ)Z4. Let

|
!
’ A D {(al, 1), (az,l), (3.3, 1), (3.4, 1)}
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where a) <a,<a;<a,. Since (7,1) { A+ B+ C + D then
(7-2,,0) ¢ B+ C+ D for 1< i<4. Thus, (B+C+D)y(I )< 3.

However, since

R, = ((B+C+D), v {o}) + {0, (a, 0},

then it follows that (B+C+D)O(Iz) = 3. Let

(B+C+D), = {(1, 0), (%, 0), (y, 0)} where 1 <=x <y. Then

R, = {(1,0), (%, 0), (y, 0), (a, 0), (at1, 0), (atx, 0), (aty, 0)},

and so either x =2, y=3, and a=4, or x=4, y=5, and
a=2 Firstassume x=2, y=3, and a=4. Then A, = {(4,0)}
- i >
and (B+C+D)0 {(1,0), (2, 0), (3,0)}. Since BO(IZ) >0, CO(IZ) 0,
and D (L) >0, then Bj=Cy =D, ={(1,0)}. Butthen
9> (A+B+D)(Iz) = (A+B+D)O(IZ) + (A+B+D)1(Iz)

>5 + (A1+{0, (1, 0)})(12)

>5+ (A (I )+1) >9.
- 17z

Next assume a, =2, x =4, and y=5. Then A0 = {(2,0)} and

2
(B+C+D)O = {(1, 0), (4, 0), (5, 0)}. It follows that one of the sets B,
CO’ or D0 contains {(1,0)} and each of the other two sets is

{(4, 0)}. Now either (1,0) e B+D or (1,0)e C+D. To be
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definite, say (1,0) ¢ B+ D. Then (B+D)0 = (B+C+D)O, and we

have
9 > (A+B+D)(Iz) = (A+B+D)O(Iz) + (A+B+D)1(Iz)

2R(L) +A (L) >9.

Symmetric arguments establish that BO(IZ) >1 when
(1,0) e A+C+D and CO(IZ)>1 when (1,0) € A+ B + D.

Now either {(1,0),(0,1)} is a subsetof A+ D, B+ D, or
C+ D, or otherwise {(1,0),(0,1)} ~ D is empty and each of the
sets A, B, and C has at most one element in common with

{(1, 0, (0, 1)}.

Case 1. The set {(1,0),(0,1)} is a subsetof A+ D, B+ D,
or C +D.

To be definite, say {(1,0),(0,1)} C A + D. Note that if
(1,1) { A+ D then {(1,0),(0,1)} is a subsetof A~.D or D>A.
Henceforth, when (1,1){ A+ D welet G=A if
{(1,0),(0,1)} C AND and G=D if {(1,0),(0,1)} C D~A.

If (1,1) ¢ A+ D then it is not possible for B+ G to equal
{0, (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2,1), (3,1)}. Assume other-
wise. Let H=A if G =D and H=D if G = A. Thus,

(1,00 ¢ H and (0,1) ¢ H; furthermore,

C+H C (B+G)~ ={0,(1,0), (2,0), (3,0), (0,1), (1,1), (2,1)}.
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Since (0,1) ¢ H then (0,1) € C; hence, (3,0)¢H for
(3,1) ¢ C +H. Since H(I) >0, itfollows that H = {(2, 0)}.
This in turn implies that (2,0) ¢ C and (3,0) ¢ C. But then
C(IZ) < 5, which is a contradiction.
We claim BO(Iz) = 2. Assume BO(Iz) >3, andlet

BO D {(bl! 0); (bZ, 0), (b3, 0)} where b]_ < bZ <b Since

3"
(0,1) e A+D then (7,0) ¢ B; hence b3<7- If (1,1){ A+D

then

B+G 2 (Byw{o} +{0,(1,0),(0, 1)}

D {(bi,j)li =1,2,3 and j=0,1} u {0,(0,1), (b, +1, 0)}.

However, this last set is equal to B + G since (B+G)(Iz) < 8.

Since (b,1+1,0) e B+G for i=1 and i=2 and since

(1,0) ¢ B+ G, it must be that b 1, b,=2, and b, = 3. But

1 2 3

then
B + G = {0(1, 0), (2, 0), (3, 0), (4,0), (0,1),(1, 1), (2, 1), (3, 1)},
which is not possible. If (1,1) €« A+ D then

A+B+D D (Bou{o}) + {0, (1, 0), (0, 1), (1, 1)}

Db, ili=0,1,2 and j=0,1} U {0,(0,1) (byt1,0)(bzH,1}.

Since (A+B+D)(Iz) < 9, this last set is equal to B + G. But then
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(A+B+D) + {(0,0),(0,1)} = A+ B + D, which is contrary to Theorem
2.10. Thus, B _(I ) < 3. Recallthat B (I ) >1 since
0 'z 0z

(1,0) e A+ C+D. Hence, BO(IZ) = 2.
where b1 < b2 and b3 < b4 < b5- Since (0,1) ¢ A+ D then
(7,0) ¢ B, and so b2 < 7.

We first show that b1 = 1. Suppose (1,0)¢ B. If
(1,1) ¢ A+ D then

B+G D B+1{0,(1,0),(0,1)}

D {O, (1,0), (b].,O)’ (bz’o)’ (b2+1,0)’ (b3’1)’ (b4’1)! (b5’1)! (b5+1’1)}

However, this last set is equal to B + G since (B+G)(Iz) < 8.
Since (b1+1,0) ¢ B+ G then b2 = b1+1. Since (0,1) e B+ G and

0,

"

(bj+1, 1) e B+G for je {3,4}, then it follows that b3

b,=1, and b

4 = 2. Furthermore, {(bl’ 1), (bz, 1)} g B+ G,

5

and so b1 = 2 and b2 = 3. But then

B + G = {0’ (1’ 0)’ (2’ 0)’ (3’ 0)’ (4’ 0)’ (0’ ]')’ (]" ]')’ (2’ 1)’ (3’ 1)}’

which is not possible. If (1,1) ¢ A+ D then

A+B+D D (Byu{o} +{0,(1,0), (0, 1), (1, 1)}

2 {0,(1,0), (5,0}, (b,,0), (b,+1,0), (0,1), (1,1),(b, 1)b,, 1), (b1, 1)}.
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However, this last set is equalto A + B + D since
(A+B+D)(I ) < 9. But then (A+B+D)+ {(0,0),(0,1)} = A+ B +D,
which is contrary to Theorem 2.10. Therefore, b, = 1.

1

Next we show that b2 = 2. Assume b2 >2. If (1,1) eA+D

then
A+B+D D) (Bou{O}) + {0, (1, 0), (0, 1), (1, 1)}

0 {0,(1,0),(2,0), (bZ’O)’ (b2+1,0), (0,1),(1,1), (2,1), (bZ’l)’ (b2+1,1)}.

Since (A+B+D)(IZ) <9, this last set is equalto A +B + D. But

then (A+B+D) + {(0,0),(0,1)} =A+B+D. If (1,1){ A+ D then

B+G D B+{0,(1,0),(0,1)}

D {0, (1,0), (2, 0), (bz, 0), (b2+1, 0), (b3, 1), (b4, 1), (b5, 1), (b5+1)}.

However, this last set is equal to B + G since (B+G)(Iz) < 8.
Since {(0,1), (by+1,1),(b,+1,1)} C B+ G, then by=0,b, =1,

and b5 = 2. Also, (bZ’ 1) e B+G, and so b2 = 3. But then

B+ G = {0, (1, 0), (2,0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1)},

which is not possible. Therefore, b2 = 2.
Now C.(I )#0, for otherwise C_ (I )>5 and
17z 0z —
(A+C+D)(L) > (C+{0, (0, DH(I,) >9. Recall that C,(I ) >0. Also
{(6,0),(7,0),(6,1),(7,1)} ~ C=4d for {0,(1,0)(0,1),(1,1)} D A+B+D.

Since {(1,0),(2,0)} C B, it follows that

o
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: (B+C)(Iz) = (B+C)O(Iz) + (B+C)1(Iz)
>(C. (I )+2) + (C.(1I )+2)
- 0z 1z

=C(I )+ 4 >8.
b
However, (B+C)(Iz) < 8, and we have a contradiction.

Case 2. The set D ~ {(1,0),(0,1)} is empty and each of the
sets A, B, and C has at most one element in common with
{(1, 0), (0, 1)}

By relabeling the sets A, B, and C if necessary, we may
assume that (1,0) ¢ A and (0,1) ¢ B.

Since {0, (1, 0), (0, 1), (1, 1)} g A+B and
(7, 1) { A+ B+ C+D, then (C+D) ~ {(6,0),(7,0), (6,1),(7,1)} is
empty.

We claim (C+D)O(Iz) < 3. Assume (C+D)O(IZ) > 3. Since
B+C+D D {0,(0,1)} + (C+D),, (B+C+D)(I)) <9, and

({0, (0, )} + (C+D) (1) > 9, then

B+C+D={0,(0,1)}+ (c+D)0

But then

(B+C+D) + {0, (0, 1)} = (C+D)0 + {0, (0, 1)} + 0, (0, 1)}

H

(C+D)0 + {0, (0, 1)}

B+ C+D.
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However, this is contrary to Theorem 2.10.
Recall that CO(Iz) >1 since (1,0)e A+ B+ D. Also,

DO(Iz) >1. Let c, =min{x|(x,0) ¢ CO} and

1

c, = min{x| (x, 0) ¢ C0 and x # cl}.

We now show that c >1. Assume ¢y =1. Let (d,0) e D.

Since {(1,0),(d, 0), (d+1,0)} C (C+D),, d >1, and (C+D)y(I ) <3,
then (C+D), = {(1,0),(d,0), (a+1,0)}. Hence, d <c, <d+l <5.
Also, (c,,0)+(d,0) ¢ (C+D), since c,+d >2+d. Thus, c,+d>7.
But then 9 > (d+1)+d > c2+d >8, and so d=4. Therefore,

D0 = {(4, 0)}. It follows that (3,1) ¢ A+ B + C, and this in turn
implies that (3,0) { A+ C. Since (3,00 ¢ A+B+C, (3,00 /{ A+C,
and (1,0) ¢ B, then (2,0) ¢ B or (3,0) ¢ B. Now (2,0)¢ B,
for otherwise B+ C+D D) RO w ((C+D)O+{(O, 1)}) and so

(B+C+D)(Iz) >9. Thus, (3,0)e¢ B and
B+C+D ) {0,(1,0),(3,0),(4,0),(5,0),(7,0),(0,1),(1,1),(4,1),(5 D}

However, this last set is equalto B + C+ D since
(B+C+D)(I ) < 9. But then (B+C+D) + {0,(4,0} =B + C+ D, which

is contrary to Theorem 2.10. Thus, <, >1.

Next we show ¢, >2. Assume ¢y = 2. Then (4,0) ¢ D

and (5,0) ¢ D, for otherwise (6,0) or (7,0) isin C + D.

If c, = 3 then (2,0) ¢ D, for otherwise (C+D)0(Iz) >3, If

4§_c2<_5 then (2,0) ¢ D, for otherwise (6,0) or (7,0) is
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in C+D. Since 3 <c, <5, itfollows that (2,0) ¢ D. Hence,

2
D ={(3,0)}. Thus, (3,0)¢dC and (4,0) ¢ C, for otherwise
(6,0) or (7,0) isin C+D. It follows that C, = {(2,0), (5,0)}.

Now C(Iz) >5, and so Cl(IZ) >3. Since (1,0) ¢ A then
(A+C+D)(Iz) = (A+C+D)O(IZ) + (A+C+D)1(Iz)

26+ (A+C) (L)

>6 + (C,(I )+1) > 10.
—_— 1 P —

However, (A+C+D)(IZ) < 9. Thus, ) > 2.

Since (C+D)0 C {(x,0)]2 < x < 5}, ) >3, CO(Iz) >2, and

DO(IZ) >1, then one of the following occurs:

(i) ¢ 3 and D0={(5,0)},

1

(ii) Cl =4 and DOC'; {(4’ 0)’ (5’ 0)}'

In either case A+ B+ C ) {(x,0)]0 <x <6}, andso (x,1)¢D
for 1 <x < 7. Therefore, D= D, Since D C {(4,0), (5,0)},
then either (2,1) { A+ B+ C or (3,1) ¢ A+ B+ C. This in turn
implies either (2,1) { A+B+C+D or (3,1){A+B+C+D.

Since A+B+C+D-= I;, we have a contradiction.

The proof of the theorem is now complete.
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APPENDIX III

We now prove Theorem 4.7 which was stated without proof in

Chapter 1IV.

Theorem. Let z=(3,3)¢J° andlet A,B,CDC I. I
A+B+C+D= I; and D(Iz) >0, then at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(Iz) >5, B(Iz) >5, and C(Iz) >5.

From Theorem 4. 1(i), it follows that none of the sets
A+B+D, A+C+D, and B+ C+ D has more than nine nonzero
elements. Moreover, from Theorem 4. 1(ii), it follows that none of
the sets A+B, A+C, A+D, B+C, B+D, and C+D has
more than eight nonzero elements.

Let R, ={(x,00|1<x<3} R = {(x,1)]0 < x < 3},

R2 = {(x, 2)|0 <x 5;3}, and R3 = {(x, 3)|0 i# < 3}. For any set
SCI let S =SAR,0<r<3

Now either {(1,0),(0,1)} is a subsetof A+ D, B+D or
C + D, or otherwise {(1,0),(0,1)} ~ D 1is the empty set and each
of the sets A, B, and C has at most one element in common with

{(1,0), (0, 1)}.

Case 1. The set {(1,0),(0,1)} is a subset of A + D, B + D,

or C + D.
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To be definite, say {(1,0),(0,1)} C A+ D. Note for later use
that if (1,1) ¢ A+ D then {(1,0),(0,1)} 1is a subset of AD or
D~A. Now (0,2) isanelementof A+B+D or A+ C+D.
By relabeling the sets B and C if it is necessary, we may
assume that (0,2) €e A+ C+ D. Since
{(0, 0), (1, 0), (0, 1), (0, 2)} C A+C+D and (3,3) fA+B+C+D,
then B Bas an empty intersection with {(3, 1), (3, 2), (2, 3), (3, 3)}.
Thus, B, C {x,1j0<x<2}, B, C {(x2)|0<x<2}, and
B3 C {(0,3),(1,3)}. We proceed to show that
max{B (I )]0 <r <3} <2,

Assume BO(Iz’) > 2. Then there exist distinct elements

(x5,y,) and (x;,y,) such that ¥, 2v, >0 and

B 2 {(1,0),(2,0), (3,0), (x5 y,), (x), y,)}-

Let W=A if (0,1) ¢ A; otherwise, let W =D. Then

B+W D Ry Ry w {lxyyytsy) (x,y,+8,)}
where
[.O if xoqlx1 and yi>1,
1 if XO # X, and vi =1,
Si:{ 0 if Xy =% and y0>1,
1 if X T X Yo T 1, and vy = 2,
L1-1 if X =%, ¥ =1, and y, =3,
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for i=1,2. But then (B+W)(Iz) > 8, which is a contradiction.
Hence, BO(IZ) < 2.

Assume Bl(IZ) > 2. Then there exist distinct nonzero ele-
ments (xo,yo) and (xl,yl) such that 2} ->-Vo’ A 71, Yo 1,

> i =
X, > X%, if Y17 Yo and

B D {(0, 1), (1, 1), (2, 1), (XO'YO), (Xl’yl)}'

If (x ) = (1,0) then

0’ Yo

A+B+D DR, v RNGB,2) v {(1,0,2,0} v {(x,7,))

where
(
(xl,yl) i y, =3
(x,,7,) = 3 (), y,*1) iy, =2,
(3, 0) if y, =0
.

But then (A+B+D)(Iz) >9, which is not possible. Thus, (1,0) ¢ B,

and

A+B+D D R, v ~(R2\{(3, 2)h v {Q, 0)}u{(xo,yo+s0),(x1+t,y1+sl)}

where t=so=1 and Sl=0 if xO=X1,Y0=2, and Y1:3»

and where otherwise t=0 and
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(O if x ¥x and yi€{0,3},

1 if x, #x, and vy, =2,

I
W

0 if x_ =x

0 1’ y0=0, and yl‘

H
[\N]

K1 if xo—xl,yo=0, and Yl_

Again a contradiction follows since (A+B+D)(IZ) > 9. Hence,
Bl(Iz) < 2.

Assume BZ(IZ) >2. Then B, = {(0, 2), (1, 2), (2, 2)}. Since
(2,2) ¢ B then (1,1){ A+D. Let W=A if

{(1,0),(0,1)} C A\D; otherwise, let W =D. Then

B+W D {(1,0),(0, )} v R, v (R;NA(3,3))

and (B+W)(Iz) > 8, which is not possible. Hence BZ(Iz) <2
Clearly, B,(I ) <2 since B, C {(0,3),(1,3)}. This
establishes that max{Br(Iz)I 0<r<3}<a
Continue to let W =A if (1,0) ¢ A, and W =D other-
wise. We next establish that (B+W)O(Iz) > BO(IZ) +1 and
(B+W) (I )>B (I )+ 1 whenever B (I ) >0 and 1 <r <3. If
rz — r z r z - -
(1,00 d B, then (l1,0) e W\B and (B+W) (I )>B (I )+ 1. If
0 0"z =70z
(1,0) ¢ By then B, is equalto {(1,0)}, {(1,0),(2,0)}, or
. . >
{(1,0),(3,0)}. Inanycase, (B+W) (L) >B,(L)+1. I B (L)>0

where 1 <r < 3, then let br = max{x| (x, r) € B}. Since br <2

then (br+1, 1) ¢ B+ W. However, (br+1’ 1) ¢ B, and so
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(B+W) (I )>B (I )+ 1.
r'z ~"r'z
We now show that BO(IZ) >0 and exactly one of the numbers
. . . S
Bl(Iz)’ BZ(Iz)’ and B3(Iz) is zero. First, assume Br(IZ) 0

for r=1,2,3. Then

3
8> (B+W)I ) = Z (B+W) (1)
- z r oz
r=0

3
> Z (B_(1_)+1)
r=0

"

B(Iz) +4 > 8,

a contradiction. Therefore, for some integer ¢t ¢ {1, 2,3} we have

B(I )=0. Since B(I )>5 and B (I )< 2 for 0<r <3, it
t z z - r z -— - -

follows that Br(Iz) >0 for 0<r<3 and r Ft.
Since Bt_l'r’( ¢ then there is an integer b, 0 < b <2, such

that (b,t-1) e B. Now (1,1) ¢ A+ D, for otherwise

{(b,t), (b+1,8)} C (A+B+D)_ and

f

T asmeo i)
r z
0<r<3

(A+B+D)(I1 )
z

= ( Z (B+W)r(Iz))+ (A+B+D)t(Iz)

0<r<3
r¥t



>( Z (B_(L) + 1)+ 2

OSr£3
r¥t

= B(Iz) +5>9.

Since (1,1) ¢ A+D then W D {(1,0), (0, 1)}. Hence,

(b,t) e B+ W, and so (B+W)t(Iz) >1= Bt(Iz) + 1. Therefore,

8 > (B+W)(L ) = Z (B+W) (L)

0<r<3

> z (B_(1_)+1)

0<r<3

=B(I)+4 >8,
z

which is a contradiction.
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Case 2. The set {(1,0),(0,1)} ~ D is empty and each of the

sets A, B, and C has at most one element in common with
{(1,0), (0, D}

With no loss in generality, we may assume that (1,0) ¢ A
(0,1) ¢ B. Since (3,3) { A+ B+ C + D it follows that
C ~ {(2,2),(2,3),(3,2),(3,3)} is empty; therefore,

c, C {(0,2),(1,2)} and C, C {(0,3),(1,3)} Set ij=Cy(L),

i, = Cl(Iz)’ i2 = CZ(IZ) and i3 = C3(Iz). Thus, i, <2 and i

and

< 2.
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We now show that i0 <2 and i1 < 3. Assume "iO > 2.

"Then C D) RO w {(xo,yo), (xl,yl)} where (xo,yo) # (xl,yl) and

yl > Yo > 0. Therefore,

B+C JRyv R v

1 0’ Yot8g)r x

Yyt

whe re

But then (B+C)(IZ) > 8, which is a contradiction. Thus iO < 2.

Assume i1 >3. Then C D) R1 ‘v {(x,y)} where y 7 1. Butthen

B+C D R, VR, v {(x, y+s)}

where s=1 if y=2 and s=0 if y#2. Again,
(B+C)(Iz) > 8. Hence i1 < 3.

We claim that (A+C) (I )>C. (I )+ 1 and

0'z"— 0"z

(A+C) (I )>C (I )+1 when C (I )>0 for 2<r<3. If

r z - r z r z — -—
(1,0) § C then (A+C)O(Iz) > CO(IZ) +1 since (1,0) € A. If
(1,0) ¢ C then CO is equal to {(1, 0)},‘ {(r,0),(2,0)}, or
{(1,0), (3,0)}. Inany case, (A+C),(L) 2Cy(l ) + 1. Assume
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Cr(Iz) >0 where 2 <r <3. Let X = max{x| (x,r) € C}. Then
X <1, and (Xr+1’ r) ¢ (A+C)~.C. Hence,
(A+C)r‘(1z) > Cr(Iz) + 1.

We next show that if (3,1) ¢ C and (0,1) ¢ C, then
C1 = {(1,1),(3,1)}. Since (3,1)e¢ C then (0,2) f A+ B+D, and
this in turn implies that (0,1) ¢ C or (0,2) e C. Thus (0,2) ¢ C,
and so {x ¢ lex < (1, 3)} g A+B+C. Then D has no elements
in common with {(x,y)]|2 <x <3, 0<y<3}, forotherwise
(3,3) c A+ B+ C+D. Assume (1,1)¢ D. Then (RouRl) ~ D=¢
and RO w R1 g A+ B+ C. Since D(Iz) >0, there is an ele-

ment (x,y)eD with 0<x <1 and 2 <y < 3. Butthen

(3-x,3-y) e R, v Rl’ and so (3-%,3-y) e A+ B + C. Since

0
(3,3) f A+ B+ C+ D, we conclude that (1,1) ¢ D. Now (2,1)¢ C
since (1,2) = (0,1)+ (1,1) ¢« B+ D. Assume C1 = {(3,1)}. Then
(A+C+D), D {(1,1),(2,1),(3,1)} and so (A+C+D) (L ) Zil+z.

Since (0,2) ¢ C then (A+C)2(Iz) 2i2+1. Since

(1,3)=(0,2) +(1,1) e C+ D, then

(A+C+D),(L ) > max{(C+D)3(Iz), (A+C), (L)} > i +]

whether i3 =0 or i3 > 0. But then
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3
(A+C+D)(I ) = z (A+C+D) (1)
z r 'z

r=0

> (A+C)O(IZ) + (il+2) + (A+C)Z(IZ) + (i3+1)
> (io+1) + (il+2) + (i2+1) + (i3+1)

=C(IL)y+5>09.
z

Thus, it is not possible that C1 = {(3,1)}. Since (3,1) ¢ C,
(0,1)d C, and (2,1) ¢ C, then C, = {(1, 1), (3, D}

We claim (A+C)1(Iz) 2i1+1 whenever i1 >0. If i1 >0

and (3,1) ¢ C then (x1+1, 1) ¢ (A+C)~C where

x = max{x|(x,1) ¢ C}. If (3,1) ¢ C and (0,1) ¢ C then

C1 ={(1,1),(3,1)}; hence, (2,1) ¢ (A+C)C. If (3,1) € C and
(0,1) € C, then either (1,1) § C or (1,1) e C and (2,1)dC
since i1 < 3. But then either (1,1) or (2,1) is an element of

(A+C)\C.

or 1 is zero, for otherwise

One of the numbers il’ i 3

2’

(A+C)(I ) = Z (A+C) (1) > Z (C (I )+1) > 8.
Z r z r z
0<r<3 0<r<3

If i, =0 then C(Iz)25,i <2, and i, £2 imply

1 <2, i

3

0 2

i, >0, i # 0 we proceed to show that not

0 2

both i2 =0 and i3 = 0. Assume i2 =0 and i3 = 0. Then from

> 1 . 1
0, and 13>0 If 11
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C(IZ)ES,i <2, and i, <3 wehave i,=2 and il=3.

0 1 0

Since (A+C)0(Iz) > 1O+1 =3 and (A+C)1(Iz) > 11+1 = 4 then
RO w R1 g A+ C. Hence, (0,1)e C. Now A(Iz) >5 implies
there exist distinct elements (xo, yo) and (xl,yl) ¢ A such that

2 zyo >0, and so

A+C JRyv R U {(xo,y0+so),(x1,y1+sl)}

1
where
a .
>
0 if xoafx1 and Y, 1,
1 i =
if xoa‘x1 and vy, 1,

s =J 0 if x_=x, and y0>1,

1 = = =1
1 if x xl,yl 2, and YO )

]_- 1 = - - .
t if x X5 Y, 3, and Yo 1

" But then (A+C)(Iz) > 8, which is a contradiction. Thus, i2 >0

or i3 >0.

The preceding paragraph establishes that exactly one of the

numbers il, iz, and i3 18 zero.

We show that the element (2,0) ¢ D. Assume (2,0) ¢ D.
Then (1,3) ¢ A+ B+ C, and this implies that

{(x,y})]0 <x <1, 2<y <3} ~ C isempty. Butthen i2=0 and

i3=0.

Next we show that (3,0) § D. Assume (3,0) ¢ D. Then
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(0,3) / A+B+C, andso (0,2) ¢ D or (0,3) ¢D. This in turn
implies that (2,0) ¢ C and (3,0) ¢ C. Thus, S, C {(1,0)}

and i, < 1. Furthermore, since (3,0) ¢ D then (0,2) d C and

0
(0,3) ¢ C. Hence iZ <1 and i3 < 1. Recall that i1 < 3,
C(Iz) >5, and exactly one of the numbers il, iz, and i3 =0.
It follows that io =1 and i1 = 3. Since i1 = 3, then
(A+C) (L) = 4. Thus, (A+C), =R,, andso (0,1)¢ A C. Since

'10 =1 then C0 = {(1, 0)}. But then {(1,0),(0,1)} is a subset of

A or C.
We now claim that (2,1) ¢ D. Assume (2,1) ¢ D. Then
(1,2) ¢ A+ B + C, and this implies that

{(0! 1), (1, 1), (O, 2)! (1, 2)} M C is empty- Thus, iz =0 and

C, C 1(2,1),(3,1)}. Since (0,1) ¢ C then (3,1) ¢ C, for other-
wise C, = {(1,1),(3,1)}. Since (1,2)d A+ B + C, then

{(1,1),(0, 2), (1, 2)} has a nonempty intersection with D. It follows
that (2,1) ¢ C, for otherwise (3,3) ¢ A+ B+ C+ D. But then

11=O and 12=O.

Next, (3,1) ¢ D. Assume (3,1) ¢ D. Then (0,2) d A+ B + C,
and this implies that (0,2) ¢ D, (0,2) ¢ C, and (0,1) ¢ C. Since
(0,2) e D then {(x, y)|2 <x<3,0<y< 1} ~ C 1is empty, for

otherwise (3,3) ¢ A+ B+ C+ D. Thus, i <1, i

0 <1, and

1

i2 < 1. However, this is not possible since C(Iz) >5, i3 <2, and

either i or i3 is zero.

1, 12,



Finally (1,1) ¢ D. Assume (1,1) € D. Then
{(1,1),(2,1),(1,2} A C isempty. Thus, C; C {(0,1),(3, 1)}
and C, C {(0,2)}. We have previously established that

C, = {(t1,1),(3,1)} if (3,1) e C and (0,1)¢d C. It followé that
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(0,1) ¢ C if i >0. If i,=0 then i,70, andso cz={(0,2)}

1 3

and (A+C+D), ) {(1,3),(2,3)}. If i, =0 then i, # 0, and so
(0,1) e C and (A+C+D), D {(1,2),(2,2)}. Also,
(A+C+D)1 D U1,1),(2,1)}. Nowlet te{l,2,3} be such that

Ct(Iz) = 0. Then (A+C+D)t(Iz) >2 and

(A+C+D)(1 ) z (A+C+D) (1))
z r'z

0<r<3

Hi

( z (A+C+D)r(Iz)) + (A+C+D)t(Iz)

0<r<3

r#t

> ( Z (A+C) (1)) + 2

0iri3
r¥t

> ( Z (C (L)+1))+ 2
= rz

0£ri3
r#t

>C(I)+5>9,
- Z

which is a contradiction.
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We have established that D ~ (Rou Rl) is the empty set.

Thus, A+B+C D) R.o < R Now, D(IZ) >0 and so there is an

L
element (x,y) € D suchthat 0<x<3 and 2 <y <3. But

then (3-x,3-y)e¢R_ U R and it follows that

0 1’
(3,3) ¢ A+ B+ C+D. However, this is contrary to
A+B+C+D-= Ié.

The proof of the theorem is now complete.
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APPENDIX IV

We now prove Theorem 4. 8 which was stated without proof in

Chapter IV.

Theorem. ILet z = (4,2) ¢ JZ and let A,B,C ( Iz. If
A+B+C-= I; then at least one of the sets A, B, and C has less

than five nonzero elements.

Proof. Assume A(Iz) >5, B(IZ) >5, and C(Iz) >5.

Now {(1,0),(0,1)} C A UB _C. Relabel sets A, B, and C
if necessary so that (1,0) ¢ A and (0,1) ¢ A U B.

Since A+ B+ C = I;, it follows from Theorem 4. 1(i) that
(A+B)(IZ) <13 - C(Iz) < 8.

Define RO={(x,O)|1 < x < 4}, R1={(x,1)|0 < x <4}, and

R2={(x,0)|0 <x<4}. Let S =Sr\Rt for any set S(;'Iz

t

and te {0,1,2}. Set i.-= BO(IZ), i =B1(Iz), and i

0 =B,(1).

2
Now B, C {(0,2),(1,2),(2,2)}, for otherwise (4,2) ¢ A + B.

It follows that i2 < 3.

We claim io < 3. Assume io >3; hence R0 = BO. Now

A2 is empty, for otherwise if (t,2) e A with 0 <t <4 then

(4,2) = (t,2) + (4-t,0) ¢e A+ B. Also (0,1)d A, for otherwise

A +B DBy u (ByH(0, D) v {(0, )} =Ry v R,
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and (A+B)(Iz) >8. Thus, (0,1) ¢ B. Since A(Iz) >5, AO(IZ) < 4,
and AZ(Iz) = 0, then Al(Iz) >1. Choose (a,l) ¢ A. Now a <4,
for otherwise (4,2) =(4,1)+(0,1) isin A+ B. Also, a>1

since (0,1) ¢ A. Then

A+B D {0,(1,0),(a;1)} + (Rou{O, (0, 1)})

2 Ry {(0,1), (a, 1), (a+1, 1), (a, 2), (x, 1)}

where x=1 if a>1 and x=3 if a=1. But then

(A+B)(Iz) > 8. Hence, iO < 3.

We now show i1 < 3. Assume i1 >3. Then (0,1)e¢ B, for

otherwise (0,1) ¢ A and B = {(x,1)]1 < x < 4}, which imply

(4,2) e A+ B. Since (1,0)e¢ A, (0,1) e B, and i1 >3, then

(A+B)1=R1- If (x,1)¢e B and 0<x <4 then (4-x,1) d A.

Thus, Al(Iz) SRI(IZ) - Bl(Iz) < 1. Since A(Iz) >5 and
A(I)<1l then A (I )+A_(I )>4. Butthen (A+B)(I ) >38
17z — 0z 2z — z

since A+B ) A, v R, u A,. Therefore, i, <3.

We claim (A+B) (L) 2i +1. This is immediate if (1, 0) { B.

If (1,0) € B then there is an integer b' such that 1 <b' <3,

(b',0) e B, and (b'+1,0) ¢ B, for otherwise io >3. But A+ B

contains (b'+1,0), and so (A+B)0 > i0+1-

We next claim (A+B)1(Iz) > i1+1, and (A+B)1(iz) > il+2

if (0,1) ¢ B. Let i, =0. Then (0,1) ¢ A. Also iy >2 since
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B(I)>5 and i, <3. With {(bl,O),(bZ,O)} C B, where

b, <b

] ,» then {(b,1),(b,,1)} C A+ B. Thus (A+B),(L) >i,+2.

1

Let il >1. I¥ (0,1) ¢ B then there is an integer b" for which

0<b"<2 (b",1) ¢ B, and (b"+1,1) ¢ B, for otherwise '11 > 3.

Thus, (A+B) (I )>1i +l since (b"+1,1)¢ A+B. If (0,1) ¢ B

then (0,1) € A, and so (4,1) ¢ B. Let b, = max{b|(b,1) ¢ B}.

1
Then 0 <b, <4 and {(b1+1, 1),(0,1)} C (A+B)B. Therefore,

(A+B) (L) > i +2.

0 . . ' 0 > .
We claim (A+B)2(IZ)_Z12+1 Let i, 0. Let

b, = max{b|(b, 2) ¢ B}. Since b, <2 then (b,+1,2)¢A+B.

> . i. = 0. i
Thus, (A+B)2(IZ)_12+1 Let i, 0. If A2 is not empty then

>1 =i ) i >1;
(A+B)2(IZ) _>_A2(IZ) >1 12+1 If A2 is empty then A (IZ) >1

1
also Bl(Iz)zl. Let (a,1) e A and (b,1) ¢ B. Since

(0,1) ¢ A B, then either (a,2) e A+B or (b,2) e A+ B, and

50 (A+B)2(Iz) >1-= 12+1.

We conclude that B(Iz) = 5, (A+B)0(Iz) =i +1,

0

(A+B)1(Iz) =i +1l, and (A+B)2(Iz) =i +1 since

1 2

8 > (A+B)(I)) = Z (A+B),(1,)
0<j<2

> (i0+1) + (il+1) + (i2+1)

=B(I )+ 3>8.
z =
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In addition, (0,1) ¢ B, for if not then (A+B)1(IZ) > il+1.

We claim '12 > 0. To establish this we show that the assump-

tion iz = 0 implies A+ B +{0,(4,0)} = A+ B, which is contrary

to Theorem 2.10. Assume iz = 0. Then (A+B)2(Iz) = '12+1 =1,

and so A(L)<1. Also, A (1)<, forif {(a D), @@, 1D} C A
with a <a' then {(a,2),(a',2)} C A+B and (A+B),([)>1.

Now A (I ) < 3, for otherwise A, =R,. Butthen
0z — 0 0

A+B D RO v R1 and (A+B)(IZ) > 8. Since A(Iz) >5, it follows
that AO(IZ) =3 and AI(IZ) =1= AZ(IZ). Let A, = {(al, 1)} and

A, = {<a2, 2)}. We have a, <4 and a, <4. Now (1,0) ¢ B, for

otherwise A+ B ) {(az, 2), (a2+1, 2)} and (A+B)2(Iz) >1. Also
(1,1) ¢ B, for otherwise A+ B D) {(al, 2), (a;*1,2)} and

(A+B)2(Iz) >1. Recall 10+11 =5, i

(1,0) ¢ A, (1,0) ¢ B, (A+B)(I ) =i +], and 2 <ij<3 imply

either B, = {(2,0),(3,0),(4,0)} or B, = {(3,0), (4,0)}. In any

<3, and il < 3. Now

case, (4,0) ¢ A+ B. Furthermore, (0,1)¢ B, (1,1) ¢ A+ B,
(1,1) ¢ B, (A+B) (1) = i,t1, and 2<i; <3 imply either

B, = {to, 1), (4, 1)} or B, = {(0, 1), (3,1), (4,1)}. In any case,
(4,1) ¢ A + B. . Since AZ(Iz) =1 = (A+B)2(Iz) then A2= (A+B)2.
Thus, (0,2) ¢ (A+B)2 since (4,0) € B. It follows that
A+B+1{0,(4,0)}) = A+ B since {(4,0),(4,1)} C A+B and
(0,2) { A+ B. |

We proceed to obtain a contradiction in each of the cases io =0,
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i. =1, i, =2, and io=3.

Case 1. BO(IZ) = 0. |
Since io = 0 then R.O C A+ C. Since iZ # 0 there is an
integer b such that (b,2) ¢ B. Thus,

(4,2) = (4-b,0) + (b, 2) ¢ (A+C) + B. However, A+ B+ C = I;

and (4, 2) ¢ I;.

Case 2. B,(I )= 1.

Since (A+B)O(Iz) = io+1 =2 and (1,0) ¢ A, then either

B, = {(1,0)} and (A+B), = {(1,0),(2,0)} or B, = {(4,0)} and
(A+B), = {(1,0), (4, 0)}.
First consider B0 = {(1,0)} and (A+B)0 = {(1, 0), (2, 0)}.

Then AO(IZ) = {(1,0)} and AO(IZ) = 1. Assume i, = 1 and let

B_2 = {(b, 2)}. 1t follows that (A+B)2 = {(b, 2), (b+1, 2)} since

(A+B)2(Iz) = 12+1 =2 and (b+1,0)=(1,0)+ (b,2) ¢ A+ B. Now

(b+1,2) ¢ A, for otherwise (b+2,2) = (b+1,0)+ (1,0) ¢ A+ B since
b<2. Thus, A_ (I )< 1. Since A(I)>5, A (I )=1, and

- 2z — A 0z
A1) <1, then A (I)>3. Let {(aj,1),(a,,1), (a1} C A

with a, <a, <a;. Then {(al, 2), (aZ, 2), (a3, 2} C A+ B since

(0,1) ¢ B. But this is contrary to (A+B)2(IZ) = iZ+1 = 2. Next

assume i, = 2, and let B2 = {(bl’ 2), (bZ’ 2)} where b1 < bZ.

Since 0 Sbl < b2 <2,(1,0) e A, and (A+B)2(Iz) = 12+1 = 3,

it follows that b, = b,+1 and (A+B), = {(b1,2), (b1+1,2), (b1+2,2)}-
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But then A + B + {0, (bl, 2)} = A+ B, which contradicts Theorem
2.10. Finally, assume i, =3. Then B, = {10, 2), (1, 2), (2, 2)}
and A+ B +{0,(0,2)} = A+ B. Again, we have a contradiction.

Consider B, = {(4,0)} and (A+B)0 = {(1, 0), (4, 0)}. Then
{(1,0),(2,0), (3,00} C A+C, andso B, C {(0,2)}. Since i, >0
then B, ={(0,2)}. Thus, (A+B)2 = {(0, 2),(1,2)}. From (0,1)¢ B
and (A+B), = {(0,2), (1, 2)}, we have Al C {(0,1),(1,1)}. Also,
(0,2) ¢ A and (4,0) ¢ A since {(4,0),(0,2)} C B. Thus,

A C {0,(1,0),(0,1),(1,1),(1,2)}, but this contradicts A(L ) >5.

Case 3. BO(IZ) = 2.

Since (1,0) ¢ A and (A+B)0(Iz) = io+1 = 3, then either

B0 ={(1,0),(2,0)} and (A+B)O = {(1, 0), (2, 0), (3, 0)}, B0= {(1,0),(4,0)}
and (A+B)O = {(1, 0), (2, 0), (4, 0)}, or B0 = {(3,0), (4,0)} and

(A+B)0 = {(1,0), (3, 0), (4, 0)}. Also igti t, = 5, i, =2, i, >1, and

S . . - . A
12_1 imply that . i 1 and i, 2 or i 2 and i, 1

-

Assume i1 =1 and i2 = 2. Then B1 = {(0,1)} and

(A+B), = {(0,1),(1,1)}. This in turn implies A= {(1,0)}, for
otherwise (x,1) =(x,0)+(0,1)e A+B if (x,0) ¢ A and
2 <x <4. Since (A+B)1 ={(0,1),(1,1)} and (2,0) or (4,0) is

in BO, then (0,1) ¢ A. Since (A+B)1={(0,1),(1,1)} and (1,0)

or (3,0) isin BO’ then (1,1) ¢ A. Thus, A1 is empty.

However, AO(IZ) =1, Al(Iz) =0, and AZ(IZ) < (A+B)2(Iz) = 12+1 =3
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are contrary to A(Iz) >5.

Next assume i1 = 2 and i2 = 1.. Since (1,0) ¢ A, (0,1) ¢ B,
Bl(Iz) =2, and (A+B)1(IZ) = i1+1 = 3, then either
B = {(0,1),(1,1)} and (A+B), = {(0,1),(1,1),(2,1)} or
B, = {(0,1),(4,1)} and (A+B), ={(0,1),(1,1), (4, 1)}. Now (2,0) ¢ A,
for otherwise in the first case (3,1) ¢ A+ B and in the second case
(2,1) ¢ A+B. Also (3,0) ¢ A, for otherwise (3,1)e¢ A+ B in
either case. Thus, A0 C {(1,0),(4,0)}. Since i2 =1 then
B, ={(b,2)} where 0<b<2 and (A+B), = {(b, 2), (b¥1,2)}. We
proceed to show that AO(IZ) + Al(Iz) + AZ(IZ) < 5, which contradicts
A(Iz) >5.

Consider B, = {(0,2)}; hence, (A+B), ={(0,2),(1,2)}. It
follows that (0,2) ¢ A since either (2,0) ¢ B or (4,0) is in B;
also, (1,2) ¢ A since either (1, 0) or‘ (3,0) isin B. Thus,
AZ(IZ) = 0. Moreover, (4,0)d A since (0,2) ¢ B. Thus,

A,=1{(1,00} and A (I)=1. Since A; C (A+B) then

A (I)<i+1=3. Therefore, A(I) < 4.
1"z =71 ]z =

0<js2

Consider B2 = {(1, 2)}; hence, (A+B)2 ={(1,2),(2,2)}. If
(1,0) e B then (2,2)¢ A, andif (1,0)¢B then (3,0) ¢ B and
so (1,2) ¢ A. Therefore, AZ(IZ) < 1. Since (0, 2) ¢A+B and
(0,1) ¢ B, then (0,2)¢A and (0,1) ¢ A. This in turn implies

that (0,2) ¢ B+C. Since A, ( (A+B); and (0,1) ¢ A, then
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Al(Iz) < 2. Since (0,2) ¢ B+ C then (4,0)¢ A, and so

A (I ) <1. Therefore, Z A(l)<4.
0"z - jal =
0<j<2
Finally consider B2 = {(2, 2)}; thus, (A+B)2 = {(2, 2), (3, 2)}

Since (0,1) ¢ B it follows that (0,1) ¢ A and (1,1) ¢ A.
Therefore, AI(IZ) < 1. Since (0,1) ¢ A and (0,2) ¢ A, then
(0,2) ¢ B + C. This in turn implies (4,0) ¢ A. Thus, A, ={(1,0)}

and AO(IZ) = 1. Furthermore, AZ(IZ) <i,*1 = 2. Therefore,

2
Z AJ.(IZ) < 4.

0<j<2
Case 4. B (I ) = 3.
0z
Since 10+11+i2 =5, io = 3, i1 >1, and 12 >1, then
i, = i, = 1. Thus, 131 = {(0,1)} and (A+B)1 = {(0,1),(1,1)}. Now

(1,1) { A, for otherwise (2,1) e A+ B or (3,1) ¢ A+ B since
(1,0)¢ B or (2,0)¢ B. Hence, A (I)<1. Also, (x,0)¢A
for 2 <x <4, for otherwise (x,1)=(x,0)+ (0,1) ¢ A+ B. Thus,

AO(IZ) < 1. Moreover, AZ(Iz) < (A+B)2(Iz) <i,tl1 =2, and so

2
Z Aj(Iz) < 4. However, this is contrary to A(Iz) >5.
0<js2

- The proof of the theorem is now complete.
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"APPENDIX V

We now prove Theorem 4.9 which was stated without proof in

Chapter IV.

2
Theorem. Let z = (6,1) ¢ J and let A,B,C (C Iz- if
A+B+C-= I; then at least one of the sets A, B, and C has less

than five nonzero elements.

Proof. Assume A(IZ) >5, B(IZ) >5, and C(Iz) > 5.

Now {(1,0),(0,1)} C A w B u C. Relabel sets A, B, and
C if necessary sothat (1,0) ¢ A and (0,1) ¢ A u B.

Since A+ B+ C = I; then from Theorem 4. 1(i) we have
(A+B)(Iz) <12 - C(Iz) <7

Define R, ={(x,0)1 <x <6}, R, = {lx, 1)]0 < x <6}, and
5, =5 R, for any set S C I and te {0, 1}.

Now B, C {(x,1)]0 <x <4} since (1,0)¢ A and
(6,1) ¢ A + B.

We proceed to show that 1 < Bi(Iz) <4 for i=0 and i=1.
Assume BO(IZ) >4. Then (A+B)O = RO, and
A+B D) RO v {o,nurT where T = {(o, 1)} + BO if (0,1) e A
and T ={(1,1)} if (0,1) e B~A. But then (A+B)(L) > 8;
hence, B, (I ) <4. Assume B, (I)>4. Thus, B, = {(x,1)|0 <x <4}
.Since (A+B)(Iz) <7 and (1,0) ¢ A, then

A+B={0,(1,0} v {(x,1)|]0 < x < 5}.
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But then A + B +{0,(0,1)} = A+ B, which is contrary to
Theorem 2.10. Hence, Bl(Iz) < 4. Since
B(I)+B (I)=B(I)>5 and B (I )<4 for i=0 and i=1,
0z 1z z - iz -
then 1 <B.(I) < 4.
A
Next we show that B(Iz) =5, (0,1) ¢ B, and
(A+B)i(Iz) = Bi(Iz) +1 for i=0,1. If (1,0) ¢ B then
(A+B)O(Iz) > BO(IZ) +1 since (1,0) e A. If (1,0) ¢ B then there
exists an integer b' such that 1 <b'<4, (b',0) ¢ B, and
(b'+1,0) ¢ B, for otherwise BO(IZ) >4. However, (b't+1,0) ¢ A+ B,
and so again (A+B)(I ) >B,(I)+1. Let b"= max{b| (b, 1) ¢ B}.

Since (b"+1,1) € (A+B)™\\B, then (A+B) (I ) 2B,(I ) +1. Further-

more, (A+B) (I )>B,(L)+2 if (0,1) ¢ B. Since
7> (A+B)(IZ) = (A+B)O(Iz) + (A+B)1(Iz)
2By(L)+ 1+ (A+B) (L)
2Bo(L)+1+B(L)+]
=B(L)+22>7,
then B(I ) =5 and (A+B)(I )=B.(I)+1 for i=0,1. Also,
Z 1 Z 1 Z
(0,1) e B, for otherwise (A+B)1(Iz) >B1(IZ) + 1.
Since (0,1) € B, (1,0) ¢ A, and (A+B)1(Iz) = Bl(Iz) +1,

then B, = {(x,1)]0 < x <j-1} and (A+B), ={(x,1)|]0 < x < j}

where j=B,(L). Recall that j<4. Now Aj ={(1,0)}, for




148
otherwise (x,0) € A for xome x where 2 <x <6. Butthen
(x,0) + (j+1-x,1) = (j+1,1) isin A+B if 2<x<]j, or
(%x,0)+(0,1) =(x,1) isin A+ B if j+l <x <6. Since A(Iz) >5
and AO(Iz) =1, then Al(Iz) >4. Thus, j>3 since
jtl = (A+B)1(Iz) ZAI(IZ) >4. Assume j = 3. Then
A1 = (A+B)1 = {(x, 1)|0 < x < 3}. Since BO(Iz) >0 there is an
integer b such that (b,0) € B. But then (b,1) =(0,1) + (b, 0)
isin A+B if 4<b<6 and (4,1)=(4-b,1)+ (b,0) isin
A+B if 1 <b<3. Thus, j=4, andso BO(IZ) = 1. Since
Ay={1,0}, By(1)=1, and (A+B) (I))=By(I)+1, then
B0 = {(1,0)} or B0 = {(6, 0)}. In either case

A+B+{0,(1,1)} = A+ B, whichis contrary to Theorem 2.10.

It follows that A(L ) <5, B(I ) <5, or C(I,)<5.





