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Let J denote the set of nonnegative integers, and when n E J

let I denote the set of nonnegative integers less than or equal to

n. If A C 3 let A(I ) represent the cardinality of the set

{x Ix E A (Th In and x > 0}. If k > 2 and Al ' A.2' Ak are

subsets of J then A.1 + A2 + ...+ Ak or A. denotes the

1<i<k

set ail ai E Ad. Conditions are found that imply the funda-

1<i<k

mental inequality,

/ A.(I ) < ( / A.)(I
1

1 <i<k 1 <i<k_ _

The inequality Al(In) + A2(In) < (A1+A2)(In) is obtained when

Al' A2' and A3 are subsets of J satisfying Al(In) < 5,

A1
+ A2 + A3 and nVA1 +A2 +A3 . This result is used
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to prove the fundamental inequality when k> 2 and A1, A2... ,
Ak

are subsets of J such that at least k- 2 of the sets have less than

five nonzero elements less than n, and where 2, Ai I

l< i< k
and n I A. It is established that a least k- of the sets

l< i< k

Ai, A2, Ak have less than five nonzero elements less than

when the following conditions are satisfied: 2i Ai 2 In_

1< i< k

results are extended to the set of all m-tuples of nonnegative integers.

In 1955 Chio-Shih Lin used a different method to obtain the fundamental

inequality when n< 14 and A1'
A2,

A3
are subsets of J for

which Al
+A2 +

A3
D In-1 and n qA1 +A2 + A3.

The fundamental inequality is also established under certain

other conditions. These results are less substantial.

Four related numerical functions are defined and the evaluation

of one of them is given. Results are obtained concerning the values

for the other functions on certain subsets of their domains.

n A., and either

l< i< k

(i) n < 14 and k > 3,

(ii) n = 15, k > 4, and A (I ) > 0 for
nor

(iii) n= 16, k > 5, and ) > 0 forin

i 1,

i = 1,

2,

2,

3, 4,

3, 4, 5.

Examples are given to show that the integers 14 and 15 cannot be

replaced by larger integers in statements (1) and (ii). The above
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A FUNDAMENTAL INEQUALITY IN ADDITIVE NUMBER
THEORY AND SOME RELATED NUMERICAL FUNCTIONS

I. INTRODUCTION

Let N represent the set of natural numbers, and let J

represent the set of nonnegative integers. If a and b are

integers, a < b, then a, ... ,b appearing in the description of a

set S of integers denotes the fact that S contains all integers

where a < x < b. For each n E N, let I = {0, If A is

a set of nonnegative integers, then A(In)
represents the cardinality

of A r-N {1, The sum of k sets of nonnegative integers

A1, Az, Ak is the set { a. I a. E A.},
1 1 1

and either

1<i<k

Al + A2 + ...+ Ak or A. denotes this sum set.

1<i<k

The following theorem was proved by H. B. Mann [71 in 1942.

Theorem A. If A, B 3, OE A r. B, and (A+B)(In)
<n

then

(A+B)(I) A(It)+B(It)n > glb{ t A+ B and t = 1, 2, ,n

A special case of Theorem A occurs when n is the smallest

natural number missing in A + B. Then



Thus we have

Theorem B. If A, B C J, A + B {0, , n-1}, and

n fi A + B, then

A(I) + B(I ) < (A+B)(I ) = n - 1
n

.
n

Three years after Mann's Theorem A was published,

F. J. Dyson [1] published a paper that contains the result stated next.

Theorem C. If A. C J for i = 1, 2, ... ,k, 0 E (Th A.,
i=1

and ( A.)(I ) < n, then
i. n

1<i<k_

In view of Dyson's theorem, it is of interest to inquire about the

possibility of extending Theorem A to a sum of three or more sets in

the following way.

Statement A. If k > 3, A. C3 for i = 1, 2, ...,

(A+B)(In) A(In)+B(In)

A.)(I )n
1

> glb{

1<i<k

= 1, 2, ...,n}.

2

OE eTh A., and ( A.)(I ) < n, then
i=1 1 1<i<k



A.)(I )
1 n

> glb{

< ( A.)(I

1<i<k

n-1.

3

However, Statement B is not valid, and thus neither is Statement A,

for consider n = 15, Ai = {0, 1, 8, 10, 12, 14}, A2= {0, 2, 8, 9, 12, 13},

A3 = {0, 4, 8, 9, 10, 11}, and A. = {0} if k >3 and 3 < i < k.

Then / A. J {0, , 14} and 15 ,/ A., but

1<i<k 1<i<k_

1<i<k

A.(I1 = 15 > 14 = ( Ai)(I15).
1<i<k 1<i<k

Chio-Shih Lin [6], in his doctoral dissertation which was written

under the direction of Mann, obtained conditions on three sets of

nonnegative integers A, B, and C that, in addition to the hypothe-

ses A+B+C {0, , n-1} and nVA+B+ C, imply

A. and t = 1,2,, ..,n}.
1

1 < i<k 1<i<k

Statement A implies the following extension of Theorem B.

Statement. B. If .k .> 3, A. J for i = 1, 2, ...

A. {0, , and n .A., then

1 <i<k 1<i<k



A(In) + B(In)
+ C(I ) < (A+B+C)(I). These results of Lin are pre-

n n

sented in Theorems D and E. Lin uses Theorem D to prove

Theorem E.

Theorem D. If A, B, C C J, A+B+C

n A + B + C, and ({xl x E
In

and x A + B})(I ) < 5, then

A(I ) + B(I ) + C(I ) < (A+B+C)(I ) n-1.
ii n n

Theorem E. If A, B, C C J, A+B+C {0, ...,n-1},

n fi A + B + C, and n < 15, then

A(In)
+ B(I ) + C(I ) < (A+B+C)(In) = n-1.

n

The next three theorems give limitations on the extension of

Theorems D and E. Lin proves these three theorems by exhibiting

for each integer n > 15 a construction of three sets A, B, and

C. The three sets Al' A2' and A3
that we used to provide a

counterexample to Statements A and B are the sets determined by

Lin's construction when n = 15.

Theorem F. For each integer n> 15 there exist sets of non-

negative integers A, B, and C for which A+B+C {0,...,n-1},

n it A + B + C, and A(In)
+ B(In) + C(I ) > (A+B+C)(In).

Theorem G. If t > 0 is given then a positive integer n and



sets of nonnegative integers A, B, and C can be found satisfying

A+B+C nVA+B+C, and

A(In) + B(In) + C(In) > (A+B+C)(In)+ t.

Theorem H. For each integer r > 5 a positive integer n

and sets of nonnegative integers A, B, and C exist satisfying

A+B+C {0,...,n-1}, riVA+B+C,

A(In)
+ B(In) + C(In) > (A+B+C)(I ) ,

and

({xl x In
and x it A + B})(In) = r.

1Let J = J and for m e N, let Jm be the set of all

m-tuples having nonnegative integer coordinates.

The main purpose of this dissertation is to obtain a theorem for

k > 3 sets in 3mwhich for k = 3 and m = 1 is Lin's Theorem

E. This is done in Chapter IV. The theorem is of particular interest

for k = 3 and k = 4 because of examples which are given which

show that the theorem is best possible in the same sense that Theorem

F shows that Lin's Theorem E is best possible.

In Chapter II we define a set transformation in Jm which was

used by Lin when in = 1, and we give those properties of the trans-

formation that we use later in Chapters III and IV.

In Chapter III we study conditions on two or more sets in J

5



which imply that the sum of the number of nonzero elements in the

given sets is not greater than the number of nonzero elements in the

sum set. The proof of the extension of Theorem E in Chapter IV

depends on one of these results. We also obtain an extension of Lin's

Theorem D in this chapter.

Four related numerical functions are defined in Chapter V.

We evaluate one of these functions completely. Results which we

have obtained earlier, as well as known results, are used to evaluate

the other functions on certain subsets of their domains and to deter-

mine bounds for them elsewhere.

An extension of Theorem F to k sets, k > 4, in J1 is

given in Chapter V. This result is due to Allen Freedman, but it is

not in print. Also in Chapter V, we show that an extension of Theorem

G to k > 4 sets in J1 can be obtained directly from a theorem

due to P. ErdOs and P. Scherk. No interesting extensions of Theorem

H are apparent to the author.

Two key theorems in extending Theorem E to k > 3 sets in

1J are Theorems 3.1 and 4.3. Moreover, Theorem 3.1 is basic in

obtaining the extension in Jm, m > 1.

Throughout this thesis when the elements of a set are listed

they will be distinct.



II. THE INVERSION TRANSFORMATION

A transformation on certain subsets of the set J of all

m-tuples of nonn.egative integers is introduced in this chapter. This

transformation, called an inversion, was introduced for J1 by

A. Khintchine [51 in a paper published in 1932. We have frequent

occasion in Chapters III and IV to use properties of the inversion

transformation for J that were found and used for J1 by Lin in

his thesis. These properties are given in Theorems 2.9 and 2.10.

Theorem 2.11 is not needed later, but it is of interest in itself in the

theory of the inversion transformation.

We begin with some definitions.

Definition 2.1. Let 1 = J denote the set of nonnegative

integers. Let J = {(x1, x2, .. , xm)1 Xi E J and i = 1,2, . . ,m}

for m a positive integer. The point x = (x x2' .. ,x ) in

with x. = 0 for i = 1,2, ... ,m is denoted by 0.
1

Definition 2.2. If x. = (x i
, 2i'x ,x .) is in J for

l m 1

= 1,2, ... ,k, then / xi Or Xi + X2 + . +
Xk

represents the

1<i<k

point ( x1, x2i, x)1111
in JM

1<i<k 1 < i<k 1<i<k

Definition 2.3. If x = (x1' x2' . , xm) and

y = (y1, yz, ym) are points in Trn, then x < y if an only if

7



x. < y. for i = 1, 2, ... ,rn. The notation x <y means x <y-
and x y. If x < y then y - x = (yi-xi, y2-x2, ...,ym-xm).

Definition 2.4. If S, T C Jm then

S = {xlx E S and x T}.

Definition 2. 5. For each z E Jrn such that z > 0,

Iz = {xl X E
3m and 0 < x < z} and I' = Iz z

Definition 2. 6. Let S, T C 3m If the cardinality of T is

finite then S(T) denotes the cardinality of the set (SnT)----,{0}.

Let Al' A2' . .. ,A be subsets of Jm The sum set,
k/.I . .}. NoteA., is usually defined to be the set { a a E A

1 1 1 1

1<i<k

that when z E Jm then the set

(2. 1)

and the set

(2. 2)

1<i<k

a. I a. E A.} (Th I
1. 1 1 Z

1<i<k

a. I a. E A. nI and < z}
1 1 z1 1 -

1 <i<k 1 <i<k

are equal. In view of the equality of the sets in statements (2.1) and

(2. 2) and in order to simplify the proofs of our results in Chapters III

and IV, once the element z E has been specified we choose to

8



the set a. I a. E A. and a. < z}.
1 1 1

9

restrict all sets considered, except J itself, to be subsets of Iz

and to define set addition in the following way:

Definition 2.7. Let z E Jm be specified. If Ai, A2, . . , Ak

are subsets of Iz,
then

A1

+
A2

+ ...+
Ak

or A. denotes

1<i<k

1<i<k1 <i<k
We remark that 0 E A. for i = 1, 2, ... ,k whenever

1

0 E A.. Also, if one of the summands is the empty set then the
3.

1<i<k

sum is empty. With A, B, and C subsets of Iz,
it can readily

be verified that A+B=B+A and A + (B+C) = (A+B) + C.

We now define the inversion transformation.

Definition 2. 8. Let z E Jm be specified. If S is a subset

of Iz, the set

S' = {Z -- XIX E Iz S}

is called the inversion of S.

We proceed to list in Theorems 2.9 and 2.10 those properties of

the inversion transformation that are used in succeeding chapters.

These results are in Lin's thesis for the set J. We establish their

validity for the set Jm where m > 1 by using the same arguments

given by Lin for m 1.



Theorem 2.9. Let z E Jrn, z > 0, be specified. For any

sets S, T C Iz the following properties hold:

(S-)- S

T C S- if and only if z S + T.

If S + T = then T C S- and S + S- = 1'.

S-(Iz' ) =

If 0 E S and z d S, then S-(Iz) + 1 = (I ).
z z

(0 If 0 E S and z I S, then S(Iz) + S- (Iz) = Iz' (Iz).

Proof.

Now s E S if and only if z - s E which is turn

is equivalent to s = z - (z-s) E (S-)-

First assume T C S. Then S +T C S+ S-. If

Z e S S-, it follows that z - x E S- for some x E S.

However, z - X E S- implies x I S, a contradiction,

and so we conclude z I S + S. Therefore, z I S + T.

Next assume z I S + T. Let t E T. Then z t I S,

for otherwise z = (z-t) + t E S + T. Hence,

t = z - (z-t) e S'.

If S + T = I' then z I S + T, and it follows from (b)

that T C S. Thus, I' + T C S + S- C I Since

z I S + S- by (b), then S + S- = I.

We have x E (5- rThrz)'--...{0} if and only if 0 <x < z and

10



x E S-, which are equivalent to 0 < z - x < z and

z-xEI These last conditions are equivalent to

Z - x E ((I-S) Therefore, S-(I' ) = (I ).
z z z

Since 0 E S then z S-, and so 51Iz) = S-(c).

Since z S then z E and so

= 1 + (Iz"----S)(Izt). An application of (d) gives the

desired inequality.

Applying ), we have S-(I ) = (IS)( I) - 1. Further-

more, S(Iz) + = (Iz)(Iz). Therefore,

S(Iz) + S- I =z)_ + - 1

= I (I ) - 1 = I' (I ).
z z z z

Theorem 2.10. Let zE J , z> 0, be specified and let

C I. A necessary and sufficient condition for S to satisfy

+ S- = I is that, for every x such that 0 < x < z, we have

+ {0, x} S.

Proof. Assume S + S- = I' and 0 < x < z. Then z - x E Ii
Z z

since 0 <z - x < z. Therefore, z = (z-x) + x E I' + {0, x}, and so

I = I' + {0, x}. However, if S + {0, x} = S then
z z

I =+ {o, = s- + s + {o, = s- + s = ,

Z Z

11

a contradiction. Thus, S + {0, x}



Conversely, assume S + {0,4 S for each x, 0 < x < z.

Let y E Then 0 < z - y < z and S + {0, z-y} S. Hence,

there exists an element s E S such that s + (z-y) < z and

s + (z-y) I S. It follows that z - (s+(z-y)) S- and y E S S-

since y = s + (z-(s+(z-y))). Therefore, I C S + S. Since

z I S + S- by Theorem 2.9(b), then Itz = S + S.

This completes the proof.

In the next theorem we show that whenever A A2' .. A
' k

are subsets of Iz
whose sum is I' then there exist k

IImaximal" sets whose sum is II

Theorem 2.11. Let z E J z >0, be specified. Let

A. I for i = 1,2,... ,k where k> 2. If / Ai =
1 Z

1<i<k

then there exist sets A., i = 1,2, ...,k, for which

(i) A. C

A. = I' ,
3. z

1<i<k_

A. = (
1<j<k
jii

Proof. Let Al = ( A.)- Since Al + / A. = I' , then
Z

2<j<k 2j<k

12



* *
A1 C A If and Al + ( A.) = If follow from Theorem

z 3 z
2Sj<k

2.9(c).

We define A. recursively, 1 < i < k, by

.A. = ( A. +-A.) .
1 3 J

1. j<i-1 i+1<j<k

*-

Next we show A. CA1 C I andz

/ A+ A. = I' ,
3 z

1Sj<i i+1<j<k

1 < < k, by induction. Suppose 1 < t <k and the two results

are valid if 1 < i < t. Since

/ A* + A. = ,
3 Li3 z

1<j<t-1 tSj<k

then from Theorem 2.9( ) it follows that At C

A.+ A. = I' .

J z
1S3' <t t+1 Sj<k

In particular A. = I'. Applying Theorem 2.9(c) to this last
3 z

lsj<k
equality, we obtain

Iz and

13



ever

15_j<k
jii

for 1 <1 < k. Since S- T- if SC T C Iz, then

* , *
(A.= A. + A)- D ( -A,) ,

i J J 3

i+1<j<k 1<j<k

and so

* -..,
A. = ( A. )- .

1 L 3

1...j<k
.i i

The proof is now complete.

We remark that when A1, A2, ...,Ak, k ?_ 4, are subsets of

I for which
z

/ Ai = Iz
1

' and A. (= A.)- for i
=LiJ

1<i<k 1:3 <kjiit is not always the case that

A. = A.)-
1

iE I

where I, J is a partition of {1, 2, ...,k}. For instance, let k = 4,

z = 9, A1 = fo, 1, 3, 81, A2 = {0, 3}, and A3 = A4 = {0, 21. Then

Al +A2 +A3 +A4 = I and A. = ( A.)- for i = 1, 2, 3, 4. How-
9 a

1<j<4

(A1+A2)- = {0, 2, 4, 71, and so (A1+A2)-

14

+ A4.



III. A FUNDAMENTAL INEQUALITY

Let z E ,T and z > 0. We obtain new conditions on k

sets Al' A2' '
Ak in Jm that imply the inequality

/ z
A.(I ) A.)(I ).

z< (

1<i<k 1 <i<k_

In Theorem 3.1 the above inequality is obtained for two sets.

This is an important result since it is used to prove Theorem 3.2,

and in turn Theorem 3.2 is used later in proving Theorems 4.12 and

5.15. Moreover, Theorem 3.2 is the only result of this chapter that

is used in the succeeding chapters.

An extension of Lin's Theorem D to k > 3 sets in JM. is

obtained in Theorem 3.4.

In the proof of Theorem 3.1 we construct a set which we denote

as B1.
The first step in the construction of a sequence of sets that

was defined by Mann to prove Theorem A, and later used by Lin to

prove Theorem D, provided the motivation for our definition of set

B1.

Theorem 3.1. Let z Em, z >0, be specified and let

A, B, C C I . If A + B + C = I' and A(I ) <4 then
z

A(Iz) + B(I ) < (A+B)(I).
z z

15



If y E B1 then there exist elements a E A, c E C, and

16

Proof. If A(I ) = 0 then A = {0}, A + B = B, and the theo-

rem follows immediately. Consequently, we restrict our considera-

tion of
A(Iz)

to the values 1, 2, 3 and 4.

First we show that I' ---,(B+C) is not the empty set. Let

a E A, a > 0. Then z - a E I, and z-aVB+C for otherwise

zEA+B+ C. Thus, z - a E I' ---,(B+C).

Let E = {b1 a + b + c = x, a E A, b E B, c E C, X E Iz' N(B+C)}.

The set E is not empty since I'z'...(B+C) is not empty and

A + B + C = I' . For each b E E define

Eb
= {a + bl a + b + c = x, a E A, c E C, X E It (B+C)}.

From the definition of
Eb

it follows that the set
Eb

is not empty,

0 1 EE A + B, and A(I ) >E (I ). Next choose e E E so
b' b b z

that

Ee(Iz) = max{Eb(Iz)
lb E E}.

Let
B1

=
Ee.

From the remarks following the definition of

E we have 01B1,

(3. 1) 0 < B (I ) < A(I ),1z
and

(3. 2) B j
B1

C A + B.



17

X e I' .,(B+C) such that y = a + e and x=a+e+ c=y+ c. Now

y B, for otherwise x E B + C; thus,

(3.3) B B1

If B I = A we use statements 3. 2) and (3.3) to obtain

A(I) + B(I) = B + B(I z)

(B1 B)(I )
z

< (A+B)(Iz),

and the theorem is established.

If B1(I) < A(I), then to prove the theorem it suffices to

show the existence of a set B2
having the following properties:

B2 C A + B,

B n B2 = ¢,

B1 n B2 =

B1
(I ) + B2 (I ) = A(I).

z z

In order to see that the theorem follows when a set B2 exists

satisfying properties (i), (ii), (iii), and (iv), we note that (i) and (3.2)

imply B v B1 B A+B and (ii), (iii), and (3.3) imply

(BL.) B2)(Iz) B(Iz ) + B (I ) + B I



Therefore, using property , we have

A(1 + B(I) = B (I + B (I ) + B(I
z

)
2 z z

= (B12vB)(I )z

< (A+B)(I ).

Henceforth, assume B1(Iz) < A(I ). Let s Aa - B1(Iz).

Since B (I ) > 0 then
1 z

1 < s = A(I) B (I) < A(I ) - <3.
z 1 z z

=WithA(I) t let a1, a2, , a denote the t nonzero ele-
t

ments of A, and let z. = z - a. for j = 1, 2, ... , t. Now
J J

z. V B + C, for otherwise z = a. + z, E A + B + C; also, a, > 0
J j 3 J

implies z. < z. Therefore,
J

j = 1, 2, . , t} C I' ------(B+C).

Next we verify the following statement:

(3.4) If z. = a. + x where E {1, . . , t}, then
1 j

+ x.

To see that statement (3.4) is valid let z. = (z ,z zli 2i' mi

x = (xxl' 2' ' x ), a. = (a aj' 2j, ' ,amj), and

18



z = (ww w ). Sincel' 2' m = a. + x then zki = aki + xk for
3

k = 1, 2, . .,m. It follows that wk + zki = wk + aki + xk and

Wk kj = vrk zki xk for k = 1, 2, ,m. Thus

+z.= z - a. = (z-z.) x = a. + x.
1 1

By relabeling the nonzero elements of A if it is necessary,

we may assume that

B1 = {a, + el j = 1 ...,t-s}.j

Since a. + e B for i = t-s+1, t, then there do not exist
1 1

elements c E C and x E ...,(B+C) for which a. + e + c =
x;1.

that is,

(3.5) ({a. + el i = -s+1, . . . , t} + C) \,(B+C)) = 4

Recall that {z
1

i = 1, 2, . . . , t} IzI \.(B+C). Since

= A + B + C then there exist functions a., 13, and y from

{1, .., t} to sets A, B, and C, respectively, such that

(3.6) z. = a(i) + 13(1) + y(i), i =

Since z. q1 B + C then a(i) >0 for i = 1, 2, . ., t.
* *

Define B2 = {a(i) + 13(1) 1 1 = t- s+1, . . . , t}. Clearly B2 (I ) < s.
z

For each i E {t-S+1, ., t}, We note that a(i) + 13(1) > 0 since

a(i) > 0. Also, a(i) + 13(1) E A + B since a(i) + 13(i) < z. < z,

a(i) e A, and 13(i) E B. Moreover, a(i) + 13(1) 1 B for otherwise

19



Z. E B + C. It follows that
1

(3.7)

(3.8)

(3.9)

We now verify that

(3.10)

o B,

B2
C A + B,

B B2 =

B1 cm B2 =

Suppose y E 131 r B. Since y E B1 then y = e for some

integer j, 1 <j <t-s, and since y E B2 then y = a(i) + P(i)

for some integer i, t-s < i < t. Therefore, a(i) + P(i) = a, + e,

a(i)making this substitution in z. = (i) + (3(i) + ) we obtain

z. = a. + e + y(i).
1 j

An application of statement (3.4) gives

z. = a. + e + y(i),
j 1

but this is contrary to statement (3.5) since z. e I' \(B+C), y(i) E C,
j Z

a. E A, and t-s < i < t. We conclude that the set B1 cmB*is
1 2

empty.

We proceed to consider each of the possible values that the

integer s may assume.
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(3.11)

and

and

Case 1. s = 1.

When s = 1 then B2 = {a(t) +13(t)}. Since 0 V B2 by

statement (3.7) then B2(Iz) = s, and so B1(Iz) + B2(Iz) = A(Iz).

In view of this last inequality and statements (3.8), (3.9), and (3.10),

the theorem follows by setting B2 = B.

Case 2. s = 2.

If a(t-1) +13(t-1) a(t) + p(t), then B2(I) = s since

* *
B2 = {a(t-1) +13(t-1), a(t) + P(t)} and 0 V B. Therefore,

2

* ..,
-,..

Biaz ) + B2
z

2(I ) = A(I), and the theorem follows with B = B2.

Assume a(t-1) + f3(t-1) = a(t) + P(t). Since a(t) e A{0},

then a(t) = a. for some integer j where 1 <j < t. From state-

ment (3.6) we have z = a(t-1) + p(t-1) + y(t-1) and
t-1

z = a(t) + 13(t) + y(t). Therefore,

z = a(t) + 13(t) + y(t-1)t-1
= a. + P(t) + y(t-1)

(3.12) z =
aj

+ f3(t) + y(t).
t

Applying statement (3.4) to statements (3.11) and (3.12) respectively,

we obtain

(3.13) z. =
t 1

+ 13(t) + -y(t-l)
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(3.14)

From statements (3.12), (3.13), and (3.14) we have

Ep(t) Iaj + P(t), ai + 13(t), at + 13(t)}.

Since Ee(Iz) = Bl(Iz) = t-s < 2, then from the definition of Ee it

follows that
EP(t)

(Iz) < 2. Therefore, j E It-1,0 and

EP(t) = fat-1 + P(t), at + P(t)}.

NowP(t) C A + B. Furthermore,EP(t) n B ci, for

otherwise statement (3.13) or (3.14) yields z. e B + C. Since

E¢(t)az
) = 2 = s' then B (I ) + E (I ) = Aa). We next show that

1 z P(t) z z

B1 n E(t) = 4. Let i *{t-1, t}, and suppose a. + P(t) E Bl.

Then a. + P(t) = ak + e for some integer k, 1 < k < t-2, and

making this substitution in statement (3.13) if i = t-1 and in state-

ment (3.14) if i = t, we have

z. =
a,K

+ e + y(i).
J

This in turn yields

zk
= a. + e + y(i)

j

by an application of statement (3.4). However, zk
* I' \(B+C),

z

z. = a + p(t) + y(t).
3 t
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y(i) E C, j E {t-1, t}, a. E A, and zk = a. + e + y(i) are contrary

to statement (3.5). Thus, it must be that B1 (- E13(t) = Let

B2 = EP(t). We have established that B2
satisfies properties (i),

(ii), (iii), and (iv); hence, the theorem follows.

Case 3. s = 3.

Since. 131(Iz) t A(I ) < 4, and M1=- B (I) + s, then
z z

B1(Iz = 1 and A(Iz) = 4. Thus

B { a(2) + 13(2), (3) + 13(3), a(4) + 13(4)} .

We claim B(I) = 3. Suppose a(i) +13(i) = a(j) + P(j) where

2 < i < j < 4. Since a(j) e A".{0}, then a(i) ak for some

integer k where 1 <k <4. Thus, a(i) + 13(i) = a + p(j), and

a(i)this substitution in z. = (i) +13(i) + y(i) we have

z. = a + P(j) + Y(i)
1 k

z. = a +13(j) + -y(j).

Next, applying statement (3.4) to statements 3.15) and (3.16), we

have

z = a. +13(j) + y(i) = a. + 13(j) +
k

Therefore, Er {ai+ P(j), ai + MD}, and so
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E . (I ) > 1 = B1(I ) = E (I )

PO) z e z

This last inequality, however, is contrary to the choice of e.

Thus, a(i) + a(j) + 13(j) for 2 < i < j < 4. Moreover,

0 V B2' and so B2(Iz) = 3.

In view of the equality B1(I) + B(I) = A(I ) and statements

(3. 8), (3. 9), and (3.10), the theorem follows with B2 = B.

The proof of the theorem is complete.

Theorem 3.1 is the best possible result obtainable in the sense

that the integer 4 cannot be replaced by a larger integer. To see this

consider the example due to Lin which is given in the Introduction;

namely, m = 1, z = 15, A = 10, 1, 8, 10, 12, 141, B ={0, 2, 8, 9, 12, 13},

and C = 10, 4, 8, 9, 10, 1 1/. Then A + B + C = 5 however,

A(115) + B(I15) = 10 >9 = (A+B)(I15 ).

We now give an example to illustrate how the sets B1 and B2

are found in the proof of Theorem 3.1. Let m = 2, z = (3, 3),

A =1(0, 0), (0,1),(1, 2), (2, 2)}, B =1(0, 0), (0, 2), (0, 3), (1, 3), (2, 0), (3, 1)1,

and C = 1(0, 0), (1, 0), (0, 3), (2, 2), (2, 3)). Then A + B + C = I' and

A(I) = 3. Now Iz"....jB+C) = {(0, 1), (1, 1), (2, 1), (3, 2)1, and the only

representations of the elements of I' \(B+C) in the form

a + b + c with a e A, b E B, and c E C are those listed below:
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E(2 0)
= {(3, 2), (2, 1)}, and E(3, 1)

= {(3, 2)}. Since
,

2 = max{E(0, 0)(1z)' E(2, 0)(iz)' E(3, 1)(iz)}

= E(0, 0)az) = E(2, 0)az),

then we may choose e = (0, 0) and B1 = E(0, 0) or e = (2, 0)

and B1 = E(2, Or We set e = (0, 0) and B1 = E(0 Or Note that

s = A(I) - B1(I) = 3 - 2 = 1 and t-s = 2. Proceeding, we label

the nonzero elements of A in such a way that B1 = + al, e + a

say, a1 = (0, 1), a = (2, 2), and 33 = (1, 2). Next, we define

1
= z - a1 '

= (3 2) z
' 2

- a2 = (1, 1), and z3 = z - a3 = (2, 1).

Since there is only one way in which z3
can be expressed as a sum

of the form a + b + c with a E A, b E B, and c E C, namely,

z3 = (0,1) + (2,0) + (0, 0),

then it must be that a(3) = (0, 1), (3(3) = (2, 0), and y(3) = (0, 0).

25

and

Therefore E = {(0,

(3,

(2,

(1,

(0,

0),

2)

1)

1)

1)

(2,

=

=

=

=

=

=

0),

(0, 1) + (3, 1) + (0,0)

(1,2) + (2,0) + (0,0)

(2,2) + (0,0) + (1, 0),

(0, 1) + (2,0) + (0, 0),

(0, 1) + (0,0) + (1, 0),

(0, 1) + (0,0) + (0, 0).

(3, 1)}, E(0 0)
= {(0,

,

1), (2, 2)},



Thus, B = {a(3) + p(3)} = {(2, 1)}. Since s = 1 then Case 1
2

applies, and we let B2 = B2.

We now compare the set B1 which we construct to prove

Theorem 3.1 and the first set in the sequence of sets constructed by

Mann to prove Theorem A. Let B and C denote sets of non-

negative integers such that OEB(mC and n 13 + C. Then in

proving the inequality

(B+C)(In) > glb{ t tB(I )+C(I )
B + C and t = 1, 2, ...,n)

Mann considers the set

S ={bla+b+ c =x, a E (B+C)-,bE B,c E C, X E .(31-C)}.
1

If this set is not empty he defines the first set in a sequence of sets to

be

+ ella+ e1
+ c = x, a E (B+C), C E C, X E \(B+C)}

where el = min{b lb E S }. The set E in J which we define in
1

the proof of Theorem 3.1 is similar to Mann's set S1" namely,

E = {13 la+b+c= x, a E A, b E B, c E C, XE Iz' \(B+C)}.

Note that the hypothesis of Theorem 3.1 implies A C (B+C)-, and

26

so for m = 1 we have E C Si. Since the ordering on 3111 is

not a linear ordering when m > 1, it may not be possible to compare
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each pair of elements from E. Our construction differs from Mann's

construction at this stage, even for m = 1, in that we consider the

set Eb for each b E B and from among these sets we select one

having a maximum number of elements. This becomes the set B1

in our construction.

The second set in Mann's construction is determined by a pro-

cedure similar to the one which defines set B' the difference

being that in defining set B the set B is replaced by B i Bi

whenever it occurs in the definitions of S1
and B1.

The second

set in our construction is not defined in this way.
1We next give an example in J for which our set B1

is not

the same as Mann's set B. Let n = 15, A = {0, 1, 8, 10, 12},
1

B = {0, 2, 8, 9, 12, 13}, and C = {0, 4, 8, 9, 10, 11}. Then

(B+C)- = {0, 1, 8, 10, 12, 14), S1 = {0, 2, 9, 13}, and B1 = {1, 10, 14}.

However, E = {0, 2, 9, 13}, E0 = {1, 10), E2 = {3, 10, 14), E9 {10},

and E13 = {14}; therefore, B1 = {3,10, 14). In this example there

is no second set in Mann's construction since the set

{bia+b-Fc = x, a E ((13_J B)+C)-,b E BVBi, C E C, X E Int (BL/Bi)+C)}

is empty. In our construction B2 = {1}.

Before Theorem 3.1 was proved various attempts were made by

the author to use known results to obtain the inequality



(3.17) Aa + B I < (A+B)(I
n

)
n n

under the conditions that A + B + C = I' and A(In)
< 5. For

instance, Mann's Theorem A was considered, but it does not seem to

be useful in general in obtaining inequality (3.17). To see this let

n = 8, S1 {0,1,5,7}, S2 = {0,2,5,6}, and S {0,4). A direct

computation shows that

S.(I )+S.a )it 3 t
S.(I ) + S,(I)> 8 min{

I. 8

S.(I )+S.(I )
(S.+S.)(I ) > 8 .min{ 1 t t

for each i and j where 1 < i < j < 3. Thus, Theorem A does

not appear to lead to a comparison between (S.+S.3)(I8
) and

3.

) + S.(I ) since the conclusion of Theorem A states that
I. 8 8

V S. + S., 1 < t < 81.
1

Theorem 3.1 is used to prove the next result.

Theorem 3.2. Let z E 311-1, Z > 0, be specified. Let k > 2_

and let A. C I for i = 1,2, ... ,k. If A. = I' and at
1 z

1<i<k

least k - 2 of the sets have less than five nonzero elements, then

A.(I ) < (
z

A.)(I

1<i<k 1 <i<k

q S -I- S., t < 8}
3
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Proof. First let k = 3. Let Al' A2' and A3 be subsets

of Iz such that at least one of the sets has less than five nonzero

elements and A1
+ A2 + A3 = I'. To be definite, say A1(I) < 4.z

An application of Theorem 3.1 gives

A I +A I <(A +A )(I ).iz 12 z

From Theorem 2.9(c) we have

(A1+A )(I + (A1+A2 )-(I) = I' az)

by Theorem 2.9(f). Hence,

A1(I) + A2(I) + A3(I) < (Ai+A )(Iz) + A3(I)

< (A1 +A2 )(I ) +
(A1 +A2

)-(I )
z

= I' (I )
z z

= (A1+A2+A3)(Iz),

and the theorem is established for k = 3.

Let k > 3 be fixed and assume the statement of the theorem

is valid for k. Let B, B2, B be subsets of I such that12 z

at least k-1 of the sets have less than five nonzero elements and

/ B. = I'. By relabeling the sets if necessary, we may assume
i. z

1<i<k+1

that B.(I ) < 5 for i = 1, 2, ... ,k-2 and i = k+1. Define
1 z

3 (A1+A2)-. Furthermore,
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A. = B. for i = 1, 2, and Ak = Bk + Bk+1. Then
1 1

A. = B. = It and A.(I ) < 5 for i = 1, 2, .. . , k-2.
1 1 z 1Z

1<i<k1 <i<k+1..... _ ..._

By the induction hypothesis we have

A.(I ) < ( A.)(I
1 z Li 1

1<i<k 1 <i<k

Since (B/B. + = I'
1) k + Bk+1 z

and Bk+1
I < 5, it follows

1<i<k-1

from Theorem 3.1 that

+B ) < (B +B )(I )
k+1 z k k+1 z

Therefore,

) =
z

1 < i<k+1 1 <i<k -1

< ( B.(I ))+ Bk+Bk+1)(Iz)z
1<i<k-1

A.(I ) < ( A.)(I )
z

1<i<k 1<i<k

=( B.)(I )
Li 1 z

1<i<k+1

and the theorem follows for k > 3 by mathematical induction.

B.(I ))+ Bk (I ) + Bk+1 (I )
1 z z z

Now let k = 2 and let Al and A2 be subsets of I for
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> 1 = =is m 4, z

31

which
A1

+ A2 = I'. Define A = {0}. Then
z

A +A + A = A +A = I' and A(I) = 0. Since the theorem has
1 2 3 1 2 z 3z

been established when k = 3, we obtain

A I + A2 (I ) = A1 (I ) + A2( + A3 (I )
z z z

(Ai+A2+A3)(Iz)

= (A1+A2)(Iz),

and the proof is complete.

When k > 3 it is not possible to delete from the hypotheses of

Theorem 3. 2 the condition that at least k-2 of the sets have less

than five nonzero elements. To see this consider m= 1, z = 15,

A1 = {0, 1, 8, 10, 12, 14}, A2 = {0, 2, 8, 9, 12, 13}, A3 0,4, 8, 9,10, 11},

and A. = {0} for i = 4, ... , k if k >3. Then A. = I'15'
1<i<khowever, - -

A.(I ) - 15 > 14 =(
z A.)(I )z

1<i<k 1<i<k_

An example with m

A1 = {0, (1, 0, 0, 0), (0, 1, 1, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 0, 0, 1)},

A = {0 (0 1 0 0) (1 ,0, 1 1) (0 0 1 1) (1 0 0 1) (0 0 0 1)}

A3 = {0, (0, 0, 1, 0), (1, 1, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 0, 1)},



and A. = {0} for i = 4, ..., k if k > 3.

It is easy to see that when A. = I' and k > 3 it is not
1 z

1<i<k

necessary for at least k-2 of the sets A1' A2' .., A to have lessk

than five nonzero elements in order to have the conclusion of Theorem

3. 2 hold. For instance, consider m = 1, z = 5k + 1, and

{A.= 0, , 5} for i= 1, 2, ...,k.

A.R. Freedman [3] has proved the following result which is

stronger than Theorem 3. 2 when k = 2:

Let zEJ ,z> 0, be specified. If A and B are subsets

of Iz for which 0 E A r-N B and z q'A + B, then

A(l) + B(I) <m I

Freedman's result can be obtained directly from the properties

of set inversion. Since zIA+B then B C A- by Theorem

2.9(b). Since 0 E A and z IA then A(I) + A-I) = I' (I ) by
z z

Theorem 2. 9 (f ) . Therefore,

A(I) + B(I) < A(I ) + A-(I ) = I' (I ) < Jmaz).
z z z z z

An analogous result does not exist for three sets even when

rn = 1, for if z = 5 and A = B = C = {0, 2,4} then 0 E A + B + C,

5VA+B+C, and
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either

or

A(I ) + B I + Ca = 6 > 5 = 31(15).

The next theorem generalizes Theorem 3.1 to k > 2 sets.

Theorem 3. Z is used to prove this result.

Theorem 3.3. Let z E 3m, z > 0, be specified. Let k >

and let A. C I for i = 1, 2, ...,k+1. If
1

A.a < 5 for i = 1, 2, . ,k-11z

(I\( A.))(I ) < 5 and A. (I
z z

1<i<k

i = 1, 2, . , k-2, then

Proof. Let B = (

1<i<k

1<i<k+1

for

A. = I' and
1 z

-A.) . Since / A. = I then
1 1 z

1<i<k+1

33

+A.) B = I' by Theorem Z. 9(c). Furthermore, applying Theo-
].

1<i<k

rem 2.9(d) we have

B(I) = B = AM(I' )z
1<i<k

az \( A.))(I )z
1 <i<k

1<i<k 1<i<k

A.,(I ) < ( A )(I
1 z
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Thus, in both parts (i) and (ii) of the hypotheses at least k-1 of the

sets B' Al' A2' ... ,A have less than five nonzero elements. From
k

Theorem 3.2 it follows that

A.(' )) + B(I ) < (( A.) + B)(I ) = I' (I ).
z z z z z

1<i<k 1<i<k

However,

I' (I ) =( A.)(I ) + Wiz)z z z
1<i<k

by Theorem 2.9(f), and so

A.(I ) < (
z

A.)(I )
z

1<i<k 1<i<k

The conclusion of Theorem 3.3 cannot be obtained with the

hypotheses A. = I', A (I ) < 5, and A.(I ) < 5 for
1 z k+1 z z

1<i<k+1

= 1,2, ...,k-2. For example, with k 2, m 1, z = 15,

A = {0 1 8 10 12 14} A = {0,2,8,9,12,13}, and A3 = {0,4,11},

then A1 + A2 + A3 = 1151 A (I ) < 5, and

A1(115)
+ A (I ) = 10 >9 = (A1+A2)(115).

Note that
I1
\

(A1
+A ) = 4,5, 6, 7, 11, 15}.
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In the next theorem we obtain an extension of Lin's Theorem D.

Theorem 3. 2 is used to prove this result.

Theorem, 3. 4. Let zEJ ,z> 0, be specified. Let k > 3

and let A. C I for i = 1, 2, .. ,k. A. = ,
1 z 1 z

1<i<k

Ai))(Iz) < 5, and at least k-3 of the sets

1<i<k-1

A1, A2, ... , Ak_i have less than five nonzero elements, then

A.(I ) < (z
A.)(I ).

1 z
1<i<k 1<i<k

Proof. Since / A. = I' then A C (i z k
1<i<k

Theorem 2.9(c). From Theorem 2.9(d) we have

( )= (I \( ).
z z z

1<i<k-1 1 <i<k -1

Therefore,

A I = A (I' ) < (A.)-(I' )kzk z
1<i<k-1

= (Iz\( A.))(I' )
z

1<i<k-1

< \.( A.))(I ) <
z

1<i<k-1_

A.)- by

1 <i<k- 1



Since Akz 1 2(I) < 5 and at least k-3 of the sets A, A, , Ak_i

have less than five nonzero elements, applying Theorem 3.2 we have

/ A.(I ) < ( A.)(I ).
i. z

1<i<k 1<i<k_ _ _ _

When m = 1 and k = 3 Theorem 3.4 is Theorem D. Lin's

proof of Theorem D uses properties of Mann's set construction that

are verified by arguments which make use of the linear ordering on

the integers. Thus, it seems unlikely that Theorem 3.4 can be

established when k = 3 for m > 1 by a proof based on Lin's

proof of Theorem D.

Theorem 3.2 is a stronger result than Theorem 3.4 for consider

k = 3, m = 1, z = 15, {0,1} C A1 C {0,1,8,10,12),

A = {0 2 8 9 12 13) and A3 = {0,4,8,9,10,11). Then

A1 + A2 + A3 = 11.1 5 and A1(I15) <_ 4; thus, applying Theorem 3.2

we have

(3.18) Ai(I15) Ai)(115).
1<i<3 1<i<3

However,

115 'N(A1+A
= {4,5,6,7,11,15),

115 \(A1+A ) = {2,3,6,7,13,15},

and
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I15 'N,..(A2+A3) = {1, 3, 5, 7, 14, 15}.

Since each of these sets has more than five nonzero elements, we

cannot apply Theorem 3.4 to obtain inequality (3.18).

mWe note that if z E j , Z >0, and Ai, Az, ...,Ak are

subsets of 1 for which A. (Th A. ={0} whenever 1 < i < j < k,
z 1 j

then ( v A.)(I ) = A.(I ). Since v A. A., we
1 Z 1 Z 1 1

1<i<k 1<i<k
1 <i<k <i<k

obtain

A.(I ) < (
1 Z

Ad(Iz).

1<i<k 1<i<k_

In Theorem 3.5 we given conditions that imply the above inequality for

two sets which have one element in common.

The proofs of the next four theorems do not depend on the pre-

vious results in this chapter.

Theorem 3.5. Let z E jrn, , be specified and let

A, B, C C Iz. If A + B + C = Itz and (Ar-N13)(Iz) <1, then

+A(I) B(Iz) < (A+B)(Iz).

Proof. Since 0EAnBnC then AC A+B and

B C A + B. Thus, the conclusion of the theorem is immediate when

A and B have no nonzero elements in common, that is, when
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(AnB)(Iz) = 0.

We now consider (AnB)(Iz) = 1. Let {0, x} = A n B. With

B = B \A/4, we have A n B = {0} and A vB = A vB C A+ B.

Assume Av B =A+ B. If yEAvB, then y E A or

B, and so y+xE A+ B.when y +x < z. Thus,

(A+B) + {0,4 = (AB*) + {0,x} C A+B C (A+B) + {0, x},

and it follows that A + B + fo, 4 = A + B. Now A + B + C = I'z

implies (A+B) + (A+B)- = rz by Theorem 2.9(c), and this in turn

implies (A+B) + {0,x} A + B by Theorem 2.10. Since the assump-

tion that A+B=AvB leads to contradictory results, it must be

that A+B DAvB and A + B A B . Furthermore,

A(Iz) + B (Iz) = (AvB )(Iz)since A and B have no nonzero

elements in common. Thus,

(A+B)(I ) > (AvB*)(Iz) + 1

= A(I) + B(I) + 1

= A(I ) + B(1 z).

We use Theorem 3.5 to prove the following result.

Theorem 3.6. Let z E z > 0, be specified and let

A,B,C, C I. If A+B+C= and (AnB)(Iz) < 1, then



1
= 15 > 14 = ( S.)(115).

I. 15
1<i<31<i<3
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A(Iz) + B(Iz) + C I < (A+B+C)(I

Proof. By Theorem 3.5 we have A(I ) + B(I) < (A+B)(Iz).

Since A + B + C = I', then C C (A+B)- by Theorem 2.9(c).

Also, (A+B)(Iz) (A+B)-(Iz) = Ilz(Iz) by Theorem 2.9(f). There-

fore,

A(I ) + B(Iz) + C(I ) < (A+B)(I ) + C(I )
z z z z

< (A+B)(Iz) + (A+B)-(Iz)

= I' (I ) = (A+B+C)(I ).
z z

The results obtained in Theorems 3.5 and 3.6 are the best

possible in the sense that each is no longer valid with (ArThB)(Iz) < 1

removed from the hypotheses. This is easily seen by considering the

example z = 15, S1 = {0,1,8,10,12,14}, S2 = {0,2,8,9,12,13},

and S = {0 4 8 9 10 11}. Then S1
+ S + S3 = I'

1 '

(S.r-NS.)(I ) = 2, and

S.(I153) + S.(I15 ) = 10 > 9 (S.+S.)(I15 )
1. 3

where 1 < i < j < 3. Also,



A.(I ) < (
z

1<i<k

B. = I' and (B.
1 z

A.)(I ).
1 z

1<i<k

Proof. When k = 3 Theorem 3.7 is Theorem 3.6.

Let k > 3 be fixed and assume the statement of the theorem is_

valid for k. Let BB . be subsets of I for whichl' 2' ' , Bk+1 z

B ))(Iz) < 1 for j = 1,2,...,k-1.

1<i<k+1 j<i<k+1

Define A. = B. for i = 1, 2, ...,k-2, Ak-1 = Bk-1 + Bk. and
1 1

A = B . Then
k+1

/ A. =
i

B. = I'.
i z

1<i<k 1<i<k+1_ _ _
Also, (A. ( Ai))(Iz) < 1 for j = 1, 2, ...,k-2 since

J
j<i<k

(A.cm cmis equal to B. ( B.). By the induction
J i J i

j<i<k j<i<k
hypothesis we have

i z 1 zA (I ) < ( A.)(I ).

1<i<k 1<i<k
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One generalization of Theorem 3.6 is given in the next theorem.

Theorem 3.7. Let z E , , be specified. Let k > 3

and let A. C I for i = , 2, ...,k. If A. = I' and
1 1 z

1 <i.<k

(A.rm ( A.))(I ) < 1 for j = 1, 2, ... , k-2, then
J 1 Z

j<i<k



Since (( Bi) +Bk+i) + Bk_i + Bk = I'z and (Bk_i Bk)(Iz) < 1,

1<i<k-2

it follows from Theorem 3. 5 that

B (I ) + Bk-1 z k

Therefore,

be made. Let k = 7,

1<i<k-2

/ B.(I ) =
1 z

B.(I ))+ B
1 z k- z

+
Bk

(I ) + Bk+1 (I )
z

1<i<k+1 1 <i<k- 2_....... ......_

= A..(I)< (z
<i<k

B.(I ))+ (B+B )(I ) + B
1 z k-1 k z k+1 z

= ( Bi)(Iz).

1<i<k+1

.The theorem follows by mathematical induction.

Although we do not do so it is possible to generalize Theorem

3. 6 to k > 3 sets by using conditions other than those given in the

hypotheses of Theorem 3.7, but which also employ Theorems 3.5 and

3.6 The following example indicates how such generalizations can

<(B +Bk-1

1<i<k

A.)(I )
1 z

A. = I', ((A1+A2) n (A3 +A4))(I ) < I,
z z

1<i<7
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(AI r-A.2)(Iz) <1, (A3rmA.4)(Iz) <1, (A5rm (A6+A7))(Iz) <1, and

(A6r-- A,7)(Iz) 5_ 1. Then applying Theorems 3.5 and 3.6 we have

A.(I ) <
z

+A.a)(Iz) + (A +A4)(Iz) + A5(I) + (A6+A )(I )

1<i<7
A +A )(I ) + (A3+A4)(Iz) + (A5 +A6 +A7 )(I )

z

(A. r-\ (

A.) + B = I'
1

1<i<k

A.)(I ).
1 z

1<i<7

The next theorem generalizes Theorem 3.5 to k > 3 sets.

Theorem 3.7 is used to prove this result.

Theorem 3. 8. Let z e 3m, z > 0, be specified. Let k > 2

A. = I' and
1 z

1<i<k+1

) < 1 for j = 1, 2, ...,k-1, then
z

j<i<k

A.(I ) <( A.)(I ).
z

1 <i<k 1 <i<k

and let A, C I for i = 1, 2, ... , k+1. If
z

Proof. Let B = ( A.
1

Since / A. = I'
1 z

then

1<i<k 1<i<k+1

by Theorem 2.9(c). From Theorem 3.7 we have

BA.(I))+ B(I ) < (( A.)+ )(I ) = (I ),
Z Z z z

1<i<k 1<i<k
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and from Theorem 2. 9(f) we obtain

( A.)(I ) + 13(I ) = (I ).
1 z z z z

1<i<k

The corollary follows from these two results.

Other theorems can be obtained from the resultswhich have been

previously established in this chapter. The next theorem is presented

to illustrate this.

Theorem 3. 9. Let z e , z > 0, be specified. Let k > 4

and let A. C I for i = 1, 2, ...,k. Let 2 < r < k-2. If
z

A. = I', A.(I ) < 5 for i = 1, 2, ..., r-1, a,nd
1 z 1Z

1<i<k

(A. ( A.))(I ) <1 for j = r+1, then
z

j<i<k

1<i<k_ _

A.(I ) < ( A.)(I ).
z

1<i<k
z

Proof. Since / Ai + ( A.) = I' and A.(I < for
z z

1 <i<r r<i<k
i = 1, 2, ..., r-1, then we have

A.(I ) < ( A.)(I )
z

1<i<r 1<i<r
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by Theorem 3. 3(i). Since / A. + (
i A.i) = I and

z
r+1<i<k..... _

(A. n ( A.))(I ) < 1 for j = r+1, ... , k-1, then we have
J Li 1 z

j<i<k

A.)(I ) + A.(I ) <
z z

1<i<r r+1<i<k

1<i<r

by Theorem 3.7. The theorem follows directly from these two

inequalities.
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A.)(I )
1 z

1<i<k



(i)

IV. AN EXTENSION OF THEOREM E

In Theorem 4.12 we obtain a result for k > 3 sets in J

which for k = 3 and m = 1 is Lin's Theorem E. Examples are

given to show that it is not possible to improve on the upper bound of

J
(1z)

in parts (i) and (ii) of Theorem 4.12.

All of the results in this chapter through Theorem 4.11 are pre-

sented for the purpose of proving Theorem 4.12. Theorem 4.1 is of

special interest in its own right, and the other theorems which pre-

cede Theorem 4.12 are superseded by Theorem 4.12. We note that

Theorem 3.2 is also used in proving Theorem 4.12.

We begin with a theorem which is used in the proofs of Theo-

rems 4.3 through 4.9 and also in the proof of Theorem 4.11.

Theorem 4.1. Let z E 31n, z >0, be specified and let

A. C I for i = 1,2, ... ,k where k >2. Let n = Jrn(1z). If
1 Z

A. = I' then
1 Z

1<i<k

A.)(I ) < n - Al (I z)'z
2<i<k

and whenever A.(I ) > 0 for i = 2, .. ,j where 2 < j < k then
1 Z

( A.)(I ) <n - j - A (Iz).
1 Z

j+1 < i<k
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Proof. Since

1 <i<k_
Theorem 2.9(c). Thus, A (I ) < ( A.)-(I), and applying

z

Theorem 2.9(f) we have

A. =then C ( A.)- by
1 z' Al

2<i<k

2<i<k_

Adaz) = n - 1 - (

2<ik 2<i<k

<n - 1 - Al(Iz).

This proves part (1) of the theorem.

At-1(1z) >0 and 1 <t < k. Let x E At-1 and x 0. Since

/ Ai = F, then A (.+

1<i<k

Thus, ( A.)+ {0, x} A. by Theorem 2.10. However, if
t<i<k t<i<k

A. = A. then

t-1<i<k t<i<k

/ A.( Ai)+ {0, x}

t<i<k t(i<k

Ai,

t-1<i<k t<i<k

t<i<k t<i<k

A.)-(I )
1 Z

by Theorem 2.9( ).
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We claim ( / Viz) < ( Adaz - 1 whenever

t<i<k t-1<i<k



+andthis in turn implies ( A.) {0, =

t<i<k
that / A. A.. Hence,

t-1<i<k t<i<k

However, ( A.)(I ) < n - 1 - A
Lj 1 z

2<i<k

A.)(I ) < n - j - A1az . This establishes part (ii) of the
z

j+1<i<k

theorem.

The next lemma is used frequently, however without reference,

in the proof of Theorem 4.3.

tei<k
AM' ) < ( A.)(I ) - 1.

1 Z 1 z
t-1<i<k

Now let k > 3, j E {2, . k-1}, and assume A.(I ) >0 for
z

i = 2, j. We apply the result established in the preceding para-

graph j-1 time to obtain

A.)(I ) < ( A.)(I ) - 1
z

j+1<i<k j<i<k

< ( A..)(I) -2
z

j-1<i<k

< ( &)(I) - (j-1).
z

2<i<k

by part (i), and so
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A.. We conclude
1

t<i<k



1Lemma 4.2. Let nEJ,n , be specified and let

A, B C I. If n 9' A + B, a E A, {b, ,b+j} C B, and

a+bEA+B, then {a+b, , a+b+j} C A + B.

Proof. Assume {a+b, . , a+b+j} is not contained in A + B.

Then from Definition 2.7 it follows that j > 0 and a + b + j > n.

Now a+b<n since a+bEA+B and nVA+B But
a + b < n and a+b+j>n imply a + b + = n for some integer

r, 0 < r < j. Since 0 < r < j then b + r E B; hence,

n = a + (b+r) E A + B. However, n IA + B. Thus,

{a+b, a+b+j} C A + B.

The next seven theorems, namely Theorems 4.3 through 4.9,

are used with the aid of Lemma 4.10 to prove Theorem 4.11,

Theorem 4.3. Let n E J1, n > 0, be specified and let

A,B,C,D,E, C
In.

If A+B+C+D+E=I1 and either

n < 14,

n = 15 and D(In) >0 or E(I ) > 0,
or

n = 16, D(In) >0, and E(In)
>0,

then at least one of the sets A, B, and C has less than five non-

zero elements.

Proof. The theorem is immediate if n < 5. Therefore, we
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and

(S +S )(I ) <(S +S +S )(I
2 3 15 t 1

( S )(I ) < 16 - 2
2<i<4

From the above inequalities it follows that

(S2 +S3
) I < min{n-6, 8}

< 15 - 2 - S1 (I15 ) < 8.

< 9.

6)
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restrict our consideration to n E where 6 < n < 16.

Assume A(I ) >5, B(I ) >5, and C(I ) >5.
n n n

Let S1' S2' S3 represent a permutation of sets A, B, C

and let S4' S5 represent a permutation of sets D, E. From

Theorem 4.1(i) we have

S.)(I < ( S.)(I ) < n - -S (I) < n - 6
1 n 1 n

2<iSj 2<i<5

where j E 12, 3, 4, 5}. If n = 15 then either S4 (I1
) > 0 or

S5(115) > O. Let t = 4 if S5(I15) > 0; otherwise, let t = 5.

Applying Theorem 4. 1(ii) we have

If n = 16 then >0 and
S5 (I16

) >0. Thus, by Theorem

4. 1(ii) we have

(S2 +S3 )(I16
) < 16 - 3 - S (I ) < 8



and

(S +S +S )(I ) < rnin{n-6, 9}.
2 3 4 n

Let the elements of A be labeled ao = 0, al, a2, , au

where a. < a. if 0 < i < j < u. Let the elements of B be

labeled b, 1 2= 0 b b b where b. < b. if 0 <1 <j < v.0 3 1v 1 j

Finally, let the elements of C be labeled co = 0, C1, C2, cw

where c. < c. if 0 < < j < w.
1 j

First we establish the existence of an integer p, 1 < p < u,

for which a >a + 1. Assume the contrary. Then a. = a. + 1
p+1 p 1+1 1

for i = 1,2, ...,u-1, and it follows that A = {0, al, , a1+u-1},

Thus A {0, al, , a +4}, and so {n-a1-4, ...,n-a } has an

empty intersection with B + C + D + E. Since

n-a1-4A+B+C+D+E then al < n - a - 4. Hence,

2a + 4 < n. Also, recall that (A+B)(In) < 8.
1

First let 1 <a1 < 2. Since b4 <b5 < n then b4 < n - ,

and so al + b4 E A + B. However, then (A+B)(I ) > 8 since

b4 > 4 and

A+BD A+ {0, b4} {0, , , a +4, ai+1+b4, +4+b4}.

Next let a1 > 3 and b1 > a1 . Then b >4. Furthermore,

b2 < a + 4, for otherwise

A + B {0, al, , a1+4, b2, b3, 'b5}
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and (A+B)(In) > 8. Thus,
1

< a1+ 1+4 < n, and so

al+ b2 E A + B. However, then (A+B)(In) > 8 since b >4 and
2

A+B D A+ {0,bz) D 10, al, ...,a1+4,a1+1+b2, ai+4+bd.

It remains to consider al 3 and b1 < al. Now b3 <.a1+4,

for otherwise

A + B {o, b , a , , b3, b4, b }

and (A+B)(In) > 8. Thus, a1 +b3 <a1+a1+4 n, and so

al+ b3 E A + B. However, then (A+B)(In) > 8 since b3 > 3 and

A+B DA+ {0,b3}

10, b , al, +4, a +2+b , a1+3+b , a +4+b31.

This establishes the existence of an integer p, 1 <p < u,

for which a > a + 1. The same kind of arguments establish the
p+1 p

existence of integers q and r for which 1 < q < v, 1 < r < w,

b >b +1, and c >c +1.
q+1 q r+1 r

We next show that {1, 2) (A+B+C) is not empty. Assume

otherwise. Then {1, 2} C D + E. Let p be an integer such that

1 <p <U and ap+1 > ap+1. Then

A+D+E 11,2) A L.) la +1,a +1,a +2),
p u u
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and so (A+ D+E)(i ) >10. However, since B(I) >0 thenn_ n

(A+D+E)(I ) <n - 2 - C <n - 7 < 9
n

by Theorem 4. 1(u).

Case 1. (A+B+C) {1,2} = {1}.

By relabeling sets A, B, and C if necessary, we may

assume 1 E A. Since 2 EA+B+C+D+E then (D+E) rTh {1, 2}

is not empty, and so either D {1, 2} Or E {1,2} is not

empty. By relabeling sets D and E if necessary, we may

assume D {1,2} is not empty. Thus, {1,2} C A + D. Also,

B n {1,2} is empty, and so b1 > 2.

Let q be an integer such that 1 <q < v and b1 > b q+1.q+

Then

A+B+D 2) B {b +1, b +1, b +2),
q v v

and so (A+B+D)(In) > 9. However, (A+B+D)(I ) < min{9,n-6L andn

we have a contradiction.

Case 2. (A+B+C) {1,2} = {2}.

Since 1 /A+B+C and lEA+B+C+D+E, then

lED or lEE. Since 2EA+B+C and 1 VA+B+C, then

E A, 2 E B, or 2 E C. Without loss of generality, we may assume

1 E D and 2 E A. Also
b1

> 2.
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Let q be an integer such that 1 <q <v and bq+1
>bq+1.

Then

A+B+D {i} B {b +1, b +1, b +2, b +3}.
q v v v

Hence,

min{9, n-6} > (A+B+D)(In) > v + 5 > 10,

and we have a contradiction.

Case 3. Either A, B, or C contains {1, 2}.

By relabeling the sets A, B, and C if necessary, we may

assume that {1, 2} A.

Let q be an integer such that 1 <q < v and bq+1 >bq+1

Then

A+B B {bq+1, bv+1, bv+2},

and it follows that

min{n-6, 8)> (A+B)(I ) >v + 3 >8.

We immediately have a contradiction when n < 13. Let 14 < n < 16.

Then v = 5 and

A+B=Bv {bq+1, bv+1, bv+2}.

Thus, b = b +2, for otherwise b +2 E A + B and
q+1 q

b +2 B v {b +1, b +1, b+2}. Furthermore, there does
q v v



not exist an integer i such that 1 < i < v,__.
i i q,

and bi+1 > b.+l, for otherwise b.+1 E A + B
1 1

and

b.+1 til3 {b +1,b +1,b +2}. Since 1 E A + B then
1

= 1. It
1 q v v

follows that A + B = {0, ..., 8). Since b5 = 6 and a5 < 8 then

a3 +b5
< 6+6 < n, and so a3+b5 E A + B. However,

a3 +b5 > 3+6 = 9, and we have a contradiction.

Case 4. The set {1, 2} is a subset of A + B + C, but it is

not a subset of A, B, or C.

By relabeling the sets A, B, and C if necessary, we may

assume that 1 E A and {1, 2} C A + B. Since neither A nor

contains {1, 2}, then a2 > 3, b1 {1, 2}, and b2 > 3.

We now assume that b.+1 = bi+1
for 2 < j < v. Thus,

B = {0, b1 ' b2' . . , b2+v-2}

and

A + B {o, 1, 2,b2, . . , b v-1

We claim b2 > 3. Since a +3 < a +1 and a E , then3 5 5 n

a +3 < n. Therefore, if b = 3 then {3, 4, 5, 6) C B and

A + B a3+3, ...,a3+6).

But then (A+B)(Iz) > 8 since a3 > 4.

We claim a2+b >n. If a2 +b2
<n then

54



{b2+a2, ...,b2+v-2+a2} C A + B. But then (A+B)(I ) >8 since

b2+v-2+a2 > b+v-3+a2 >b2+v-1.

First suppose a2 <b2. If xEA+B and x < a2 then

x E {0, 1} {b1, b1+1} {0, 1, 2, 3}, and so

x+b2 E {b2''b +1 b2 +2' b2 +3} C A + B

If xEA+B and x > a then x + b2si In since
2

x +b2 > a +b > n. Therefore, A + B + {0, b2 = A + B. However,

this is contrary to Theorem 2.10.

Next suppose a2 > b2. If xEA+B and x b2, then

x E {0, 1} L.) {b1, b1+1}. Let b1 = 1. We have a4 <b2+v-1, for

otherwise (A+B)(I) >8 since a >a >b +v-1. Thus,
n 5 4 2

{a2} + {0, b , +1} = {a2} + {0, 1, 2}

C{a , ..., a

{b2, ...,b +v-1}

C A + B.

Let b1 = 2. Then 3 E A + B. Since (A+B)(Iz) < 8 and b >3,

it follows that

A + B = {0, 1, 2, 3,b2, , b2+v-1},

and hence also that a <132+v-1. Thus,
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{a2} + {0, 1, by bi+1} + {0, 1, 2, 3}

C{a2'

{b2,

C A + B.

Therefore, x+a2E A + B when xE A+B and x < b2. If

xe A +B and x > bthen2' a2 In since

x+ a2 >b2 +a2 > n. This establishes that (A+B) + {0, a2} = A + B.

However, this is contrary to Theorem 2.10.

We conclude that there is an integer j, 2 <j < v for which

b. > b.+1. Let
3+1 3

K = {k12 <k < v and bk+1 > bk +1}.

For each k E K, bk < bk+1 < bk+1 and b +1 E A + B. Therefore,

A + B {o, 1, a) {bil 2 < i < L.) tbk+11k E K or k = v},

and so

min{n-6, 8) > (A+B)(in) > v + 2 + K(In).

Since v > 5 and Ka ) > 1, we immediately obtain a contradictionn_
when n < 13. Furthermore, when 14 <n < 16 then

(A+B)(In) = 8, v = 5, and K(In) = 1.

Henceforth, let 14 < n < 16. Also, let K = {i}. Then



and

a < b +5 then 2b +5 >b +a
5 2 5

>n > 14,

fore, b2 +a3 > b2 +(b2+1) >b2+6. But then b2 + a3
V A + B, and so

b2+a3 >n. Hence, if x E A + B and x >b then x + a3 V I2 n

since x+a >b2 +a3 > n. If x E A + B and x <b2 then

x E {0, 1, 2}, and so

x + a3 E , a +1, a3+21 C {a2, ,

C {b2, +5}

C A + B .

and so b2 > 5. There-

Thus, (A+B) + {0, a3} = A + B. However, this is contrary to
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B = {0, b1' b2' +s, b2+s+t, . . . , b2+2+t}

where s = i-2 and t = b -b. > 2. Note that 0 < s < 2 since
i+1

Z < i < 4. From 1 E A and (A+B)(In) = 8, it follows that

A + B = {0, 1, 2, b2, . . , b2+s+1, b2+s+t, , b2+3+t}.

We claim t > 2. If t = 2 then

B = {0, , 132, .. , b2+s, b2+s+2, , b2+4}

A + B 0, 1, 2, b , ,b2+5}.

Thus, b2 + a5 VA +B since a5 > 6 and so b2+a5 > n. Since



Theorem 2.10.

We now show that b1 > 1. Assume b1 = 1. Then

b2+s +1 VA and b2 + 3 + t V A, for otherwise

b2+s+2EA+B or b2+4+tE A+ B. Recall 2 V A. Thus,

A C B. Furthermore, A = B since A(In) > 5 and B(In) = 5.

First consider 0 < s < 1. Then a4 = b4 = b2 + 1 + t. Now

+a >n since

b2 +a =b2 +b2+1 +t>b2 + 4 +t

and b2 + 3 + t is the largest element in A + B. Thus, if

xEA+B and x>b2'

wise
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then x + a4 V In since x+a4 >b2 +a4 > n.

If xEA+B and x < b2 then x E {0, 1, 2}, and so

x + a4 E {a4, a4+1, a4+2} = {b2 +1+t, b +2+t, b2+3+0 C A + B.

Therefore, A + B + {0, a4} A + B when 0 < s < 1. Next consider

s = 2. Then

B = 0, 1, b2, b2+1, b2+2, b +2+t}

and

A + B = {0, 1, 2, b2, , b2+3, b2+2+t, b +3+t}.

Since A = B then a3 = b3 = b2 + 1. Now > n, for other-



and

{a3+b2' a +b +1' a3 +b2+2} C A + B.

However, this is not possible since a3+b2 = b2 + 1 + b2 > b2 + 4 and

A + B contains only two elements greater than or equal to b2
+ 4.

Thus, if xEA+B and x > bthen x + a3 I since2 n

x+a3 > b2+a > n. If xEA+B and x <b2 then x {0, 1, 2},

and so

x + a3 E {a3' a3 +1' a3+2} =
{b2 +1' b2

+2, b2
+3} C A + B.

Therefore, A + B + {0, a3} = A + B when s = 2. We have a con-

tradiction, for neither A + B + {0, a4} nor A + B + {0, a3} is

equal to A + B by Theorem 2.10.

Since b1 = 2 then 3 E A + B. Thus, b2 = 3,

B = {0, 2, ... , 3+s, 3+s+t, , 5+t}

A + B = {0, , 4+s, 3+s+t, , 6+t}.

Since 2 E B and t > 2 then 3 + s A and 5 + t A, for

otherwise 5+sE A+B or 7 + t E A + B. If 0 < s < 1 then

4 + t E A + B, but 4 + t A, for otherwise

4+t+b2 =7+t E A+ B. But then {2, 3+s, 4+t, 5+t} C (A+B)s., A,

and so A(I ) < 4. If s = 2 then 2 + s V A, for otherwise
n

5 + s = b2 + (2+s) e A + B. However, 5+$ < 3+s+t since t > 2.
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Thus {2,2+s, 3+s, 5+t} (A+B)A, and so A(I ) <4. Sincen

A(I ) > 5, we have a contradiction.n

This completes the proof of the theorem.

Theorem 4.3 is used in the proof of Theorem 4.11, but only

for 12 <n <16. When n < 14 the conclusion of Theorem 4.3 can

be obtained from a direct application of Lin's Theorem E, for if

A+B+C+D+E=I' and n< 14 then

A(I) +
B(In)

+ C(I ) < A(I ) + B(I ) + (C+D+E)(In
)

n n n n

< (A-FB+C+D+E)(I ) <n-1 < 14n

by Theorem E, and consequently, one of the numbers A(I ), B(I),

or C(I) is less than five. However, the proof that we give of

Theorem 4.3 would not be simplified by assuming 12 < n < 16 or

even 15 < n < 16._

The next theorem is a result in J4 that is analogous to the

result which was just established in J1 for n = 15.

Theorem 4.4. Let z = (1,1,1,1) E J4 and let

A, B, C,D C Iz. If A+B+C+D= I' and D(I) >0 then at

least one of the sets A, B, and C has less than five nonzero

elements.

Proof. Assume A(I ) > 5, B(I ) > , and C I >
z z
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is the null set;

(iv) {e. , e. , e. } C
11 12 13

{e } C S {e , e. , e. } S )

i4 2' i
12 13

is the null set;

(v) {el, e2, e3, e4} C le , e2, e3, e41 fm (S2+53+54 is the

null set.

It is not possible that el E S1, e2 E S2, e3 E S , and e4
E S ,

for otherwise z E A +B+ C+ D.

Next we claim that (ii) cannot occur. Assume otherwise. Then

the sum

{0, e. , e. } + {0, e. } + {0, e. }
11 12 13

14
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From Theorem 4. 1(i) we obtain (A+B+D)(Iz) < 9,

(A+C+D)(I ) < 9, and (B+C+D)(Iz) < 9.

Let e = (1 ,0, 0 0) e = (0 1 0 0) e = (0 ,0, 1 0) and

e4 (0, 0, 0, 1). A permutation S1, 52, 53, S4 of sets A, B, C, D

and a permutation i1, i2, i3, i4 of the integers 1, 2, 3, 4 must

exist such that at least one of the following statements is satisfied:

el E 51' E S2, e3 E S3, e4 E 54;

{e. , e. } S , {e. } C 52, {e. } C S3;
13

11 12 4

{e. ,e. } C Si, {e. , e. } C 5' {er ea, e3, e4} (Th
(S3

+S )
4

11 12 13 14



contains eleven nonzero elements and is a subset of SI
+

S2
+ S3.

Since (A+B+D)(Iz) < 9, (A+C+D)(Iz) < 9, and (B+C+D)(I ) < 9,

then S1' S2' S3 is a permutation of A, B, C. Also, D does

,notcontain {e. , e. }, {e. } or {e. } as a subset. From
11 12 13

{0, e. , e. } + {0, e. } + {0, e. } C A + B + C,
11 /2 14

we have

)C(A+B+C)- ({0, e. , e. } + {0, e. } + {0, e. }
1

12 13 14

= {0, e. , e. , e. +e. }.
13 14 13 14

Since ei V D, e. V D, and D(I) > 0, then D = {0, e. +e. }, and
14

z
13 14

this in turn implies that e. + e. V A + B + C. But then
11 12

e. + e. V A + B + C + D, and this is contrary to A + B + C + D =I' .
11

12 z

We now show that (iii) is not possible. Assume otherwise.

Since S1 + S2 + S3 + S = Iz' then S3 + S4 (S1+S2)-. Now

{0, e. , e. } + {0, e. , e. } C S + S2
2

1 2 13 14

implies

S3 + 54 C S + C ({0, e. , e. } + 0, e. , e. })-
11 12 13 14

= {0, ei, e , e , e , ei +ei ,e. }

1 2 3 4

Thus, S3 + S4 C {0, e. +e. , e. +e. } since e. S3
+ S4 for

311 12 13 14
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1 < j < 4. This, however, is contrary to S3(Iz) >5 or S (I ) > 5.4z
Next we show that (iv) is not possible. Assume otherwise.

Since z A.+B+C+D and

{0, e. , e. , e. } + {0, e. }

11 12 13 14
S2

then

e.+e.+e I1<i<j<k < 4} {e. +e. ,e. +e. ,e. +e. ,z}
1 j k 11 13 11 12 13

has an empty intersection with
S3

+ S. Also, e S3
+

S4
for

1 < j < 3. But then (S3+S4)(Iz) < 4 and this is contrary to

S3(Iz) 5 or S4(Iz) 5.

Finally, we show that (v) cannot occur. Assume otherwise.

Since zVA+B+C+D and e ES 1 <t<4, then
t

e. + e. +e IS +S +S1<i<j<k< 4. Moreover,
1 j k 2 3 4'

e.VS +S +S1 <i<4. Thus
2 3 4'

S2 +S3 +S4 C {e. +e. I 1 < j < j < 4} v {0}.

Now S4z(I) >0. Say e + e E S where 1 < u< v < 4. Then
u v 4

zVA+B+C+D implies e +e IS +S S where
x y 1 2 3

y} = {1, 2, 3, 4}\{u, v}. Since e+ e+S3 and eitherx y 2

Sz(Iz) 5 or S3(Iz) 5, it follows that

S2 + S = {0} {e. + e. I 1 < < j < 4, {i, j} {x, y} }.
j
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Hence e +e
v

ES
2
+5,3 and this in turn implies that e +e S.x y 4

But then e +e VS +S +S e S e S and ex + e
y

S
4x y 1 2 3' x 4' y 4'

implythat e +e VA+B+C+D=I'.x y

We conclude that A(I ), B(I ), or Ca) is less than five,
z z z

and the proof is complete.

The next five theorems consist of results in Jm where

2 < m < 3 which are analogous to the results obtained in Theorems

4. 3 and 4.4 for J1 and J4, respectively. Since the proofs of

these five theorems are long and involve techniques similar to those

used in the proof of Theorem 4. 3, we have placed them in the Appen-

dices to the thesis.

3Theorem 4.5. Let z = (1, 3, 1) E and let A, B, C, D C I.

If A+B+C+D= I' and D(Iz)
>0, then at least one of the sets

A, B, and C has less than five nonzero elements.

The proof of Theorem 4.5 is given in Appendix I.

Theorem 4.6. Let z = (7,1) E J2 and let A, B, C, D C I.

If A+B+C+D= I' and D(Iz) >0, then at least one of the sets

A, B, and C has less than five nonzero elements.

The proof of Theorem 4.6 is given in Appendix II.

Theorem 4.7. Let z = (3,3) E J2 and let A, B, C, D C Iz.

If A + B + C + D = Iz' and D(Iz) >0, then at least one of the sets



and

pond the element

let S = {x*I x E S}. Then

= Jk(I ),z*

(ii) S* Iz* and S*(Iz*) = S I ,

x* (xf(1)'xf(2)' xf(k))
. kJ . For S Iz

S* = F if S1' S2' ,S are subsets of I for
1 z* n z

1<i<n_
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A, B, and C has less than five nonzero elements.

The proof of Theorem 4.7 is given in Appendix III.

Theorem 4.8. Let z = (4,2) E J2 and let A, B, C C I .

If A + B + C = I then at least one of the sets A, B, and C has

less than five nonzero elements.

The proof of Theorem 4.8 is given in Appendix IV.

Theorem 4.9. Let z = (6,1) c J2 and let A, B, C C Iz. If

A + B + C = I' then at least one of the sets A, B, and C has less

than five nonzero elements.

The proof of Theorem 4.9 is given in Appendix V.

Lemma 4.10. Let z (z1, z2, z 0, be

specified. Let T z. > 0 and 1 < i < Denote the cardinality

of T by k and let f represent a bijective function from

{1,2, ,k} to T. To each x = (xi, x2, ,x) in Iz corres-



x* < z* and

then yi x. for some i E T, and so y* x* since

yf(f_i(i)) xf(f_1(m . Let w = (w1, w2, , wk) E Iz *. Hence,

wi zi.(i) for j = 1,2, ...,k. Define vi = wf_1(i) if i e T or

v. = 0 if i T and 1 < i < m. Then v = (v1 , vz, . , v) is in
1

Iz and v*= w. The above observations show that the correspond-

ence x x* is a one to one correspondence from Iz onto Iz*.

Note that 0 in Jm corresponds to 0 E
3k

. Thus, if S C Iz

then S* C I and S(I) = S*(Iz*). In particular Jrna ) = Jk(I ).
z* z z

Also, (I' )*= I' .z*

Let S SS be subsets of I for which
2' ' n z

Since x+y)*= x* + y* for x, y E I, it follows that

X* E I If y = (y1, y2, . . . 'm E Iz and y x
z*

I' = (I' *= ( 2 S.)* =z*
1<i<n

The following theorem together with Theorem 3.2 is used to

prove Theorem 4.12.

1<i<n

1<i<n

= I'.
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which S. = I' .
1 z

1<i<n

Proof. Let x = (x1' x ) E I . Then x. < z. form z 1 - 1
1 < i < m; in particular, xf(i) ..,zf(i) for 1 < i < k. Thus



or

Theorem 4.11. Let z e Jm, z >0, be specified and let

A. C I for i = 1,2, ... , k. If
z

1<i<k

k = 3 and Jrn(1z) < 14,

k = 4, Jm(I ) = 15, and A.(I) >0 for i = 1, 2,3,4,
z

A. = I' and either
1 Z

k = 5, Jni(Iz)= 16, and A. (I) >0 for i = 1,2,3,4,5,
1 Z

then at least k-2 of the sets Al' A2 ... Ak contain less than

five nonzero elements.

Proof. Let z = (zi, z2, , zm) and let n = I Thus

n = ( 11 (zi+1)) -1. Note that n > 0 since z >0.
1<i<rn

The theorem is immediate when 1 < n <_

Let n satisfy 6 < n < 11. Then k = 3. Assume

A (I ) >
5'

A (I ) > 5' and A (I ) > 5. From Theorem 4.1(i) we
1 2 z

have

(A +A )(I ) < n - 1 - A (I) < 5.
1 2 z

Since A1 C A1 + A2, A1(I) 5, and (A1+A2)(Iz) .< 5, it follows

that Al = Al +
A2*

Let x E A2 and x 0. Then

= A + {0,4 C + A2,
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and so A1 + A2 + {0,x} =A1 + A2. However, this is contrary to

Theorem 2.10. We conclude that either Ai(Iz), A2(Iz), or A3(I)

is less than five. This establishes the theorem when 6 <n < 11._

Henceforth let 12 < n < 16. When n = 15 then k = 4 and the

theorem follows immediately if one member .in each of the sets {A1,A2,A3},

{A1, A2' A4}, {A1' A3' A4}, and {AZ' A3' A4}
contains less than five

nonzero elements of rnJ . Also, when n = 16 then k = 5 and the

theorem follows immediately if one member in each of the sets

{A1, A2, A }, {A1, A2, A4}, {A1, A2, Ad, {A1, A3, A4}, {A1, A3, A

{A1, A4, A5}, {A2, A3, A4}, {A2, A3, A5}, {A2, A4, A5}, and

{A3' A4' A5} contains less than five nonzero elements of 3111 Since
,

the conditions on the sets Ai, A2, ,A are symmetrical, then to

prove the theorem when n = 15 and n 16 it is sufficient just as

for 12 < n < 14 to show that Al(Iz), A2(Iz), or A3(Iz) is less

than five.

Since 12 < n < 16, then 13 < n (z.+1) < 17. Since the
1 <i<m

only unordered factorizations of 17,16, 15, 14, or 13 into a product of

at least two integers greater than one are 2 2 2, 4 2, 8 2,

4 4, 5 3, and 7 2, then one of the following occurs:

(a) > 4, n = 15, and there exist indices i1, i2' i3 and

when 1 < i < m
1 12 14

1 -
i.°I {11'12'13'14}.

(b) m >3, n = 15, and there exist distinct indices il' i2, i3

14

and



such that z. = 3, z..-- z. 1, and z. = 0 when 1 < i < m
11 12 13

1

and i V {ii, i2, 13}.

m >2, n = 15, and there exist distinct indices i1
and

i2 s
1

11 12

when 1 << i m and
41

{i1,

in > 2, n = 14, and there exist distinct indices i1
and

i2 such that z. = 4, z. = 2, and z. = 0 when 1 < i < m
11 12

and i Ill' id'
m > 2, n = 13, and there exist distinct indices i1 and

i2 such that z, = 6, z. = 1, and z. = 0 when 1 < < m and
11

i ci {ii , i2}.

m , 12 <n < 16, and there exists an index i1 such

that z. n and z. = 0 when 1 < i < m and i1.
11

1

In view of Lemma 4.10, to prove the theorem it is sufficient

to consider the following cases:

z = (1,1,1,1),

z = (1,3,1),

z = (7,1),

z = (3,3),

z = (4,2),

z = (6,1),

12 <z <16.

Now Jni(lz) = 15 in cases (1) through (4); hence, k 4 and

69



70

A.(I ) >0 for i = 1,2,3,4. In cases (5) and (6) we have
z

Jrn(I ) < 14, and so k = 3. Applying Theorems 4.4 through 4.9 in
z

cases (1) through (6) respectively, we have that A1
(I ), A (I ), or

A3(I) is less than five.

Consider case (7). When z = 16 then k = 5 and Ai (I16
) > 0

for i = 1,2,3,4,5. When z = 15 then k = 4 and A. (I15 ) >0

for i = 1,2,3,4. When 12 < z < 14 then k = 3. Define A5 = {0}

when z = 15 and A4 = A5 = {0} when 12 < z < 14. Then apply--
ing Theorem 4.3 we obtain that A1 (I ), A (Iz), or A3(I) is less

z

than five.

The proof of the theorem is complete.

Theorem 4.12. Let z E PI, Z > 0, be specified. Let k > 3

and let A. C I for i = 1,2, ...k. If, A. = I' and either
1 Z >i 1 z

1<i<k.... _

or

then

Jrn(1 ) < 14,
z

Jm(I) = 15, k >. 4, and A.(I ) >0 for
z 1 Z

(iii)m(1 ) = 16, k >5, and A. (I ) >0 for i = 1,2,3,4,5,
z 1 Z

A.(I ) < ( A.)(I ).
1 Z 1 z

1<i<k 1<i<k

1,2,3,4,



Proof. We define r = 3 if Jm(I ) < 14, r = 4 if
z

,Trn(1z) = 15, and r = 5 if Jrn(Iz) = 16.

Assume that at least three of the sets Ai ,A2, ... ,A contain

five or more nonzero elements. By relabeling sets A1, A2, ... , Ak

if necessary, we may assume Ai (Iz) > 5, Az(Iz) > 5, A3(Iz) > 5,

and A.(I ) >0 for i = 1,2, ... , r. Define B. = A. for
1 z 1 1

i = 1,2, . . . r -1, and Br =
r<i<k

A.. Since

1<i<r

B. = A. = I'
1 L.i 1 z

1<i<k

and B.(' ) >0 for i = 1,2, ... , r, then from Theorem 4.11 it
z

follows that at least r-2 of the sets B1, B , Br contain less

than five nonzero elements. However, since B1 =A1 ,B2 A2, and

B3
A then B.(' ) > 5 for i = 1,2,3, and we have a contra-

3 z

diction.

Since k-2 of the sets Al' A2' .. Ak contain less than five

nonzero elements, then an application of Theorem 3.2 gives

/ A.(' ) < (
1. z

A.)(I )
1 z

1<i<k 1<i<k

claimed.

In the special case when in = 1 and k = 3, Theorem 4.12(i) is

Lin's Theorem E. In our proof of Theorem Ewe use Theorem 3.2 with

in = 1 and k = 3 where Lin uses Theorem D in his proof.

For each integer n > 15 Lin has constructed three sets of
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nonnegative integers A1, A2, and A3 satisfying

{0, , n-1} C A1 + A2 + A3 and n A1 + A2 + A3' and for

which the inequality in Theorem 4.12 fails. With n = 15+j, j > 0,

the sets defined by Lin are

A1 = {0,1,8+j, 10+j, 12+j, 14+j}

and
A2 = {0,2,8, . , 9+j, 12+j, 13+j}

A3 = {0,4,8+j, 9+j, 10+j, 11+j} .

For each integer n > 16, Allen Freedman has constructed four

sets of nonnegative integers A1, A2, A3, and A4 satisfying

{0, ... ,n-1} C Al + A2 + A3 + A4, n V A1 + A2 + A3 + A4, and

A.(I ) > 0 for i = 1,2,3,4, and for which the inequality ofn

Theorem 4.12 fails. With n = 16+j, j > 0, the sets defined by

Freedman are

Al = {0,1,9+j,11+j,13+j, 15+j}

A2 = {0,2,9+j, 10+j, 13+j, 14+j}

and
A3 = {0,4,9+j, 10+j, 11+j, 12+j}

The constructions given in the preceding two paragraphs show

that it is not possible to obtain results analogous to parts (i) and (ii)

of Theorem 4.12 by increasing the values of Jm(1z)

It is not possible to delete from the hypotheses of Theorem 4.12(ii)
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the condition that four of the sets have nonzero elements, for the

inequality of Theorem 4.12 fails when A4 = {0} and A1, A2 and

A3 are the sets determined by Lin's construction when n = 15.

Also, it is not possible to delete from the hypotheses of Theorem

4. 12(111) the condition that five of the sets have nonzero elements,

for the inequality of Theorem 4.12 fails when A5 ={0} and Al, A2,

A3' and A4 are the sets determined by Freedman's construction

when n = 16.

We now give a construction of k >3 sets in J2 for which

J2(I) = 15+2j, j > 0, and the inequality in Theorem 4.12 fails. Let

z = (7+j,1),

A1 = {(0,0), (1,0), (4,0), , (4+j, 0), (6+j, 0), (4+3, 1), (6+j, 1)},

Az = {(0, 0), (2, 0), (4+j,0), (5+j, 0), (4+j,1), (5+3,1)},

A3 = {(0,0)(0,1), (4,0), ... ,(7+3,0)},

and A. = {(0,0} for i = 4, ... ,k. Then/ A. = I'; however,
1 i z

1<i<k_ _

/ A..(I ) = 15+2j > 14+23 = (
i z

A.)(I ).
1 z

1<i<k 1<i<k..... _

Since Jrn(1z)+1 = TI (z.+1) where z = (z , z2, , z ),
1<i<m

then Iz is isomorphic to a set in J1 whenever .1(1) = 16.

Hence, any example to illustrate that Theorem 4. 12(11) is not valid
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when J (1z) = 16 would be essentially a one-dimensional example.

However, when Jm(Iz) = 17+2j where j > 0, we have the follow-

ing example in J2. Let z = (8+j, 1),

A1 = 1(0,0), (1,0), (5+j, 0), (7+j, 0), (5+j,1), (7+j,1)},

2
= 1(0, 0), (2,0), (5+j, 0), (6+j, 0), (5+j, 1), (6+j, 1)1,

A3 = {(0, 0), (0, 1), (4,0), .. , (8+j, 0)1,

A4 = 1(0,0), (4,0), . . . , (4+j, 0)1,

and A. = {(0,0)} for i = 5, ... , k. Then / A. = I' , but
I 1 z

1<i<k_ _

/ A,(I ) =- 17+2j > 16+2j =(
1 z

(A.) I

1

1<i<k 1<i<k_ .._

We do not know if Theorem 4.12(iii) can be improved by

increasing the value of Jm(1z) Our methods appear to be very long

and involved, and it would be desirable to have more powerful

techniques before further investigating this problem. For instance,

to prove a result analogous to Theorem 4.12(iii) by our methods with

Jm(1z) = 17 would require showing that at least one of any three of

the sets A1, A2, A3, A4, and A5
contains less than five nonzero

elements when A. = I'
1 z

for the cases z = 17, z = (2,2,1),
1<i<5

z = (8,1), and z = (5,2). It seems likely that longer and more

difficult arguments than those used to prove Theorems 4.3 through



4.9 would be needed.

It may be possible to obtain a stronger result than Theorem 4.12

for k = 6 and other larger values of k. For example, if k >r

and A.(I ) >0 for i = 1, 2, ... ,r, where r is some integer1z
greater than five, it may be possible to obtain larger values of

Jrn(1z) for which the inequality of the theorem is valid, In Theorem

5.17 from the next chapter with r >4 and z > 8(r-2) we give a

construction due to Allen Freedman of r sets in J1 for which

A. = Ir , A.(I ) >0 for i 1, 2, ... ,r, and
Z 1 z

1<i<r

A.(I ) > (
z

1<i<r 1<i<r

would be an upper bound for J (Iz) in any result analogous to

Theorem 4.12 for k sets if k > r, r >4, and A.(I ) >0 for
1 Z

i = 1, 2, . . . , r.

Ai)(Iz). This construction shows that 8(r-2.) - 1
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set a. I a. E A.}.
1 1

1<i<k

FOUR NUMERICAL FUNCTIONS

We begin by defining four related numerical functions, and in

Theorem 5.12 we evaluate one of them. We obtain evaluations of the

others on certain subsets of their domains by applying Theorem 4.12

in addition to Lin's Theorem F and a result by Allen Freedman which

extends Theorem F to k sets in J. Two important theorems

regarding one of these functions for large values of an argument are

stated at the end of the chapter; the first theorem is due to P. Erd'Os

and P. Scherk and the other theorem is due to H. Kemperman. We

show that these theorems also apply to one of the other functions.

Furthermore, we show that an extension of Theorem G to k sets in

J1 can be obtained from the theorem of Eras and Scherk.

We no longer specify a point z E j and restrict our consid-

eration only to subsets of Iz, and so Definition 2.7 no longer

applies. Throughout this chapter, when A1, A2, ... , Ak are subsets

Jm then Al + A2 + ...+
Ak or A. denotes the sum

1<i<k

Definition 5.1. With n a positive integer then

Jn = {z lz E J and Jm(Iz) = n}.

Definition 5.2. The set of all subsets of 3m
which
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contain 0 is denoted by p (jm). When k is an integer, k > 2,

then p k
(3m) denotes the Cartesian product of k copies of 9(Jm).

Definition 5. 3. For each z E jrn Z > 0, and each integer

k > 2 let g , 2a. ,z, k z, k
tpk(Jm):subsets of

and
k

represent the following

m
(i) z, k = {(A , , A kk)E ) A. },

1<i<k

( .11 z, k = {(A1' A2' Ak) E Fik (3111) C
A.

1<i<k

and z A. },

1<i<k

(iii) 14z, k = {(A1' A2' .. . , A ) E (plc(,rm) itz A., z A.,

1<i<k 1<i<k

and A.(I ) > 0
1 Z

for i = ...,k}.

The setsk and 2j. ,k are not empty for each z E ,
12z, z

z > 0, and each integer k > 2 since both sets contain

(Ai , A2, . , Ak) where A1 = F and A. = {0} for i = 2, . . . ,

Note that

z, k z, k z k
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f(k, m, n) = max

g(k, m, n) = max

h(k, rn, n) = max

1<i<k

Definition 5.6. For integers k > 2, in >1, and. n > 1 let

1<i<k_

if there is an element z E for which 1 k)z otherwise,
,

h(k, m, n) = 0.

Definition 5.7. For integers k > 2 and >1 let

s(k, m) = lubln 1 h(k, m, i) < i -1 and k < i < n} if there is an integer

n, n > k, for which h(k, m, i) <i-.l when k < i < n; otherwise,

s(k, m) 0.

The next four theorems consist of result which follow directly

A.(I )1z E jrn and (A1' A2' ...,Ak) E }.
1 z z, k

A.(I )1z e Jin and (Al, A2,
...,A ) E

1 z

) z ETrn and (A 1,A2, ... A ) E Wz,
1 z ' 2" k
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,;1ti '4z, kAlso, if (Ai, A2, ...,A z, k' z, k'k) is in lal. or then
k

0 rTh A. and z V A., and so z V A. for i = 1, 2, ...,k.
i=1 1<i<k

I

Definition 5.4. For integers and n>1 let

1<i<k

Definition 5.5. For integers and n>1 let



from the definitions of the functions f, g, h, and

Theorem 5. 8. If k >1, and n > 1, then

f(k, m, n) > g(k, m, n) > h(k, m, n) >

Proof. Let k, m, and n be given integers such that k > 2,

m > 1, and n> Recall that k k
for each

k , C `2z,
z e , z >0. If there exists an element z' E Jrn such that

41,
k '

then the conclusion follows from the definitions of f, g,

and h. If 14z, k
for each z E Jn then h(k, m, n) = 0 and

the conclusion again follows.

Theorem 5. 9. If k > 2 and m > 1, then

g(k, m, n) > n-1 when n > 1,

h(k, m, n) >n-1 when n > k,
and

h(k, m, n) = 0 or h(k, m, n) > k when 1 <n < k.

Proof. Let k, m, and n be given integers such that k 2,

in > 1, and n >1. For each z E J the set21,, containsz, k

(Ai, A2, ...,Ak) where Ai = I'z and A. = {0} for i = 2, ..,k.

Since A.(I ) = Aiaz) = n-1 then g(k,m,n) >n-1.
1 z

1<i<k

Now restrict n so that n >k and let z = (z , z z2, ,
in

where z n and z. 0 for i.= 2, ... ,m. Thus, z E Jin . Set
1 1
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and

A = {(x x x ) 0 < x < n-k and x. = 0 for j =
1 l' 2'

{A.= {(x 1,x2, x )10 <x1 < 1 and x. = 0 for j =
,

for i = 2, ...,k. Then A.(I ) >0 for i = 1, 2, ...,k and
z

A. = I', and so (A , A2' ..., Ak) E k
74. Since

1 Z Z

1<i<k

A.(I ) = n-1, then h(k, m, n) >n-i.
z

1<i<k

Part (iii) follows directly from the definition of the function h.

Theorem 5.10. If k> 2, n , and m >m2 > 1, then

(i) f(k, n) f(k, m2, n)

(a) g(k, mi, n) > g(k, m2, n)

h(k, m1 , n) > h(k, rn2 , n)

(iv) s(k,mi) < s(k,m2).

Proof Let k, n, m1, m2 be given integers such that

k > 2, n > 1, and m1 >rn2 .....> 1. To each x = (u1,u2, ..., um ) in
m2

J we correspond the point *= (vi, v2, ..., v ) in
ml

and

ml where v. = u. for 1 < mand v. = 0 for
1 1 2 1

m < i < . To each set A contained in J
1

2

the set A* = {x*I x contained in J

,...,m}

we correspond
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C
m1B.(' )1w E J and (B B . . , B

1 W 1 k
1<i<k

4w, k}

Therefore, h(k, mi, n) > h(k, ma, n).

Replacing ')4 z, k by k and z, k in the above

argument, we obtain parts (i) and (ii), respectively.

If h(k,rni, i) i-1 for k < i < n, then h(k, m2, i) i-1

for k < i <n when m2 <m1 by part (iii). Hence,

s(k, m2) > s(k, m1) follows from the definition of the function s.

Theorem 5. 11. If m > 1, n > 1, and k > k2 > , then
1

f(ki, m, n) > f(k2, m, n) and g(ki, m, n) > g(k2, m, n).

Proof. Let m, n, k1, and k2 be given integers such that

81

Let z E JIm `..," and (AI, A2, . . . ,A) E ltz, k. Since
n

A'(I ) = A. (I ) for i = 1, 2, . . . , k and A.* = (1 z* I. z ].

A.)*, it
i

1<i<k 1<i<k

follows that . , Az) E 74z*, k. Also,
m

z* E Jn
,

. Thus,

m2

i
A (I )1 z E 3n and (A1, A2, . . . , Ak) E 94z, k}

z
1 <i<k

m2
= ANI )1z E Jn and (Ai, A2, .. , Ak) E Wz,k}

1 Z*
1<i<k



m > , n > I, and ki >k >2. Let z E
3m To

(Ai, Az, . . . , A.k ) E
214z , k2

we correspond(A* A* . .' A* where
kl

AI = Ai for i = 1,2, ... ,k2 and A.):1/4 = {0} for i = k2+1, . ,k1.
1

Then(A* A* ... ) E
, k

1 1

Also,

1<i<k

{ A.(I )1z E andA , A2, , A ) E

Z 2
1<i<k

2

1<i<k
1

) Z E
1 z

and B , . ,B) E

1

1<i<k
1

which gives g(ki, m, n) > g(k2, m, n).

The above argument with tit k replaced by 04k.z, .

1 < i < 2 shows f(k m, n) > f(k2' n).

The function h is neither increasing nor decreasing with

respect to the first variable for we show in Theorems 5.16 and 5.18

that h(2, m, 15) = 14, h(3, m, 15) > 15, and h(4, m, 15) = 14 for

m >

Erns and Sherk [2, p. 45} have exhibited an upper bound for

A4.((i )
1 Z

1<i<k
2

since

A.(I ). Thus,
1 Z

1<i<k

= A..
1

<_k2

A(I)IZEJm and (A A . . A ) E }
21 z k z'k2

for
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(A1' A2' . . . ,A) E an, k

and

{0, n+1where A.
1 2 , n-1}, 1 < I < k

A.(I ) = k(n-1)/2. Using a method of proof which differs
n

1<i<k

from the method used by ErdOs and Scherk, we now proceed to evalu.-

ate f(k, m, n) for k > 2, m > 1, and n > 1.

Theorem 5.12. For k > 2, m >1, and n > 1 then

kn/2 - k/2 if n is odd,
f(k, m, n) =

kn /2 k+1 if n is even.

Proof. Let k, m, and n be given integers such that k > 2,

m > , and n > 1.

We first determine a lower bound for f(k, m, n). Let

z = (zz z ) where z =n and z. = 0, 2 < < m. Hence,l' 2' ' 1 1

Z E 3 . When n is odd define

n+1= 0 or <
x1

< n, and
2

for ' < m}

for i = 1,2, ... , k. Then (Ai, Az, , Ak z,k since

z A., and consequently,

1<i<k

=0
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f(k, 1, n) when k > 2 and n > 1; namely, f(k, 1, n) < k(n-1) /2.

When n is an odd integer equality holds since



When n is even define

for 2 < j < m},
1 2' m 1 2 3

and for i = 2, ... k let

= (x1,x2' ..'xm)Ix1= 0 or + 1 < x1 '
< n and x.= 0 for 2 < j < ml.

2

Since z ii B1
1

(B1, B2, ... , B ) E .2z, k' and so

1<i<k.... _

Therefore,

f(k, m, n)

(5.1) f(k,m, n

(5. 2)

f(k, m, n) >

1<i<k

1<i<k

A.(I ) = k(n-1)12.
Z

B.(I ) = n/2 + (k-1)(n/2-1).1z

kn/2 - k/2 if n is odd,

kn/2 - k + 1 if n is even.

We next determine an upper bound for f(k,m,n). Consider

any z E J and any (A A2, Ak) E 4-tz, k

Case 1. A.(I ) < n/2 for i = 1, 2, , k. In this case

Case 2. A.(' ) > n/2 for some j, 1 <j < k .
J z

Let t = max{A.(I )Ii 1 ,k}, and assume A.(I ) = t.
z z
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1 z

A.(I ) <
k(n-1)/Z = kn/2 - k/2 if n is odd,

z
1<i<k k(n/2-1) <kn/2 - k+ 1 if n is even.



If x E A. em I and x > 0 then 0 < x < z, or equivalently,
z

0 < z-x < z. Hence, z - x E V and z-x > 0. Also,

z-xEI A. for 1 < i < k and i j, for otherwiseZ1 MINM., MO.

Z X + (Z -X) E Ai + Ai c_ + A2 + ..+ Ak. Since z E z 1

1 < 1< k, it follows that

(1. .",A.)(I > A.(I ) + 1 = t+ 1
Z Z

and

A.(I < Jm I - (t+1) = n - t - 1
1 Z Z

for 1 < i < k and i Ij. Therefore,

A.(I ) <t + (k-1)(n-t-1) = (2-k)t + (k-1)(n-1).z
1<i<k

However, the function a defined on the set of real numbers by

a(y) = (2-k)y + (k-1)(n-1) is decreasing since a'(y) = 2-k < 0.

Since t >n/2. it follows that

(5.3) A.(I ) < a(t) < a(n/2)
1 Z

1<i<k

= kn/2 - k + 1.

= (2-k)n/2 + (k-1)(n-1)

From inequalities (5. 2) and (5.3) we have
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kn/2 - k/2 if n is odd,
f(k, m, n) <

kn/2 - k +1 if n is even.

Since the upper and lower bounds which we have found for

f(k, m, n) are equal, then

kn/2 - k/2 if n is odd,
f(k, m, n) =

Lkn/2 - k + 1 if n is even,

and the proof is complete.

To obtain a lower bound for f(k,m,n) in the proof of Theo-

mrem 5.12, we consider the point in T which is in
n

{(xx ..., x ) Ix > 0 and x. = 0 for i = 2, ... , a subset
11 2' m l 1

in 1 III
of J isomorphic to J . However, any point in J could haven

been used to give inequality (5.1) as Theorem 5.14 shows. It follows

that the value of f(k,m,n) is not changed if in Definition 5.4 we

replace Jn by one of its nonempty proper subsets.

When a and b are integers and a >b, we define

11 zi = 1.
a<i<b

Lemma 5.13. If z1, z2, z3, ... is a sequence of real numbers,

then z.( 11 (z +1)) = ( n (z.+1)) - 1 for in > 1.

1<i<al i.+1<t<In 1 <i<Trl

Proof. When in = I then 11 (z +1) = 1 for i > 1 and
i+1<t<1
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z.( U (z+1)) = z1 = ( U (z.+1)) - 1.

1 <i<1
i+1<t<1 1<i<1 1

Assume k > 1 and

z.( fl (zt+1)) = ( TI (z +1)) -
I. i+1<t<k 1<i<k

1<i<k

Then

z.(TI (z +1)) = z + z.( n (zt+1))
1<i<k1+1<t<k+1

k+1t 1+1<t<k+1
1<i<k+ 1

=z + (zk+1
+1)( z.( II (z +1)))

i+1<t<k tk+1 i.

1<i<k
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=z
k+1 zk+1+1)((

n (z.4-1))-1)
1<i<k

=( TI (z.+1)) - 1,
1<i<k+1 1

and the lemma follows by induction.

Theorem 5,14. Let k > 2, m>1, and n >1. If z e

then there exist sets A1, Az, , Ak such that 0 E rTh A.,
i=1 1

z A., and A(I ) = f(k, m, n).

1<i<k 1<i<k

Proof. Let z E Jm. With z = ,z , ...,zm) then
n 12

j171



n+ 1 = 11 (z.+1).
1<i<rn

Case 1. The integer n is even.

Note
1

even for i = 1, 2, ... Let A ' {i I z >0 and 1 <i < m}. Since
1

_ _
Z E Jnm and n > 1 then A is not empty. Let u = min{il i E A}.

Define

= {(xi, x2, . . . 2 = 0 for 1 < i < u if u > 1,

zu/2 <x < z , 0 < x. < z. for u < i <m if
u 1 1

u < m, and (xi, x2, ,x ) (z1, z2,

and for j E A, j >u, define

B. = {(x1,x2, ...,x ) = z./2f or 1 < < j, z./2 < x. < z.,
andml1 ./ J

0< x. < z. for j < < m if j < m}.

zuClearly z fi B . Also z V B. for j > u since /2 <=

whenever (x1, x2, . .. , x ) ( B.. Furthermore,m j
zi z2 z.

zm% j .0(2 p 2 2 IT B. for j > u since x, > 1- whenever
3 2

(x1' x2' j,x ) E B..

Now B n B. ci when i <j for if x = (x ,x , ,x ) E B.
i j m 1

then x. > z. /2, and so x V B.. It follows that
1 1 J
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(i B.)(I )
Z

jE

B.(I )1z
ietS

= B (Iu z

A.(I ) = ( i B . )(I )
Z 1 Z

E

1

2
z.( 11 (z+1)) _ 1

i+1<t<m

1 z.(11 (z +1)) - 1

1 <i<m
1 i+1<t<m

-n - 1.

11 z +1))-1 +
u+1<t<m t

jEts
iiu

=L z.( 11 (z+1)) - 1.
2 i+1<t<mE A-

zl, 2
zmz

1 1
- - 2 2 , .. 2 )}, andNext define A = {0} L.) ( L./ B.) f(

if A
A. = {0} ( L) B.) for j = 2, ...,k. Since z. = 0 if i ii A and

J jezi 1

11 (z +l))
i+1<t<m

z.( fl (z +1)) by Lemma
i+1<t<m
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since n = ( fl (z.+1))- 1 =
1<i<m 1<i<rn

5.13, then for 2 <j <k we have



Furthermore' A1(I) = A2(I ) + 1 =n12. Therefore,

A.(I ) = n/2 + (k-1)(n/2-1) = kn/2 - k + 1.
j z

1.<_j<k

Since n is even, then A.(I ) = f(k, m, n) by Theorem 5.12.
j z

l< j<k
It remains to show that z A.. Let x e A..

3

1<j<k

J J
Then x = a. where a. E A.. Since z 1A. for 1 <j <

l< j<k

I< j<k_ ....
then z 4 x if a. > 0 for at most one j, 1 < j < k. Thus,

J

assume a. > 0 and a. > 0 where 1 < i <j < k. Set
I J

ai = (y 1 f y2f . ' ' I Ym), a, = (w1' w2' ...,wm), and x = (x ,x
J

If a. E B and a. E B , then
1 s j t

ys >z/2 and w > z /2 if s = t,

ys > s
/2 and ws=zs /2 if s < t,

and

yt = zt/2 and w >z/2 if s > t.

In any case x >yss>z or x >y +w >z, and so
s t t t t

z z z
1 2a= ( -- ),

1 2 2 ' 2z x. If i = 1 and

xt >yt >z 2 + zt/2 = zt't t
and so again

Case 2. The integer n is odd.

Since n is odd then n + 1 is even; consequently, zv+I

z x.

then
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is even and zv is odd for some v, 1 < v < m. Define

{A.= (x x 'x )10 < < z. for 1 < j < m, j v, and
13 2' m j j

(zv+1)12 < x < z or x 0}
v v v

for 1, 2, ...,k. Clearly, 0 E Ai. We now show that

1 1 i 1
z V A.. Let x E A.. Then x = a. where

1<i<k 1<i<k 1<i<k

a. E A.. Set a. = (a .,a ., ... ,a .) for i = 1,2, ...,k and
mi

x = (x ,x x ). If a . > 0 for at most one then" m vi.

x ' a . < z , and so z 4 x. Thus, assume a . > 0 and a . > 0
vi vi

where 1 < i < j < k. Then x > a .+ a . > z +1, and z i x._ v vi. vj

Now A.(I ) = k( -1)/2 since for i = 1,2, ...,k,
1 z

1<i<k

(z
V+1)A.(I ) = (z -

1 Z V

1
= (z +1)) - 1

2 1<t<ra t

2

1 1
= (n+1) - 1

2

Since n is odd, then from Theorem 5.12 we have

/ A.(I ) = f(k,m,n), and the proof of the theorem is complete.
1 z

1<i<k

In the next two theorems we apply Theorem 4.12 to evaluate

the functions g and h on certain subsets of their domains.
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and

Theorem 5.15. Let m > . Then

g(2, m, n) = n - 1 for n 1,

g(k, m, n) = n - 1 for k> 3 and 1 <n < 14.

Proof. Let in and n be given integers such that in > 1

m
and n > 1. Let z E and (A A )- 4 E 21 z, 2 Then z 61 Al + A2

Jn 1, ..

and I' C A + A2. From Theorem 3.2 we have
z

A1(I) + A2 (I ) <
(A1 +A2

)(I < Jn = n.
z

Hence, g(2, m, n) <n - 1. However, g(2, m, n) >n - 1 by

Theorem 5.9, and so g(2, m, n) = n - 1.

Next let k, m, and n be given integers such that k > 3,

m .>. 1, and 1 < n < 14. Let_ ....

Then z fi / Ai and Il C
z

1 <1<kwe have .... .....

A.(I ) < (z

6Jrn and (Ai, Az, ...,Ak) z, k*

A.. Applying Theorem 4.12

1<i<k

A.)(I ) = n 1.
z
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1<i<k 1<i<k

Thus, g(k, m, n) <n - 1. Since g (k, m, n) > n 1 by

Theorem 5.9, then g(k, rn, n) = n - 1.



Theorem 5.16. Let m > 1. Then

h(2, m, n) = n - 1 for n > 2,

h(3, m, n) = n - 1 for 3 < n < 14,

h(4, m, n) = n 1 for 4 < n < 15,

h(k,m,n) = n - 1 for 5 <k <n and n < 16,
and

h(k,m,n) = 0 for k >n, k > 2, and 1 < n < 16,

Proof. Let in > 1 and k >3. Assume 1 <n < 14 if

k = 3, 1 < n < 15 if k = 4, and 1 < n < 16 if k > 5. Let

and (Ai , A2, . , Ak) E
74z, k. zThen z A., It C A.,

1.

and A.(I ) >0 for i = 1,2, ... ,k. Applying Theorem 4.12 we1z

1<i<k

/ A.(I ) <(
1 Z

A. )(I ) <n - 1.
1 Z

1<i<k 1<i<k

Hence, h(k, m, n) <n 1. However, h(k, m, n) > n -1 when n >k

by Theorem S. 9(u). Parts (ii), (iii), and (iv) of the theorem follow

from these inequalities. Since h(k,m,n) < - 1, then from

Theorem 5.9(ii) we obtain h(k,m,n) = 0 when k > n. This estab-_

lishes part (v) of the theorem when k > 3.

Now let m > 1 and n > 2. From Theorems 5.8, 5. 9(u),

and 5.15 we obtain

n - 1 < h(2, m, n) < g(2, n) = n - 1.

1<i<k
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This proves part (i) of the theorem.

Finally, consider m > 1, k = 2, and 1 <n < 2. From

Theorem 5.9(iii) we have h(2, n) = 0 or h(2, m, n) >2. How-

ever, from Theorems 5.8 and 5.15 we have

h(2,m,n) < g(2,m,n) <n 1 < 1,

and so h(2, m, n) = 0.

The proof of the theorem is now complete.

The next theorem is due to Allen R. Freedman, but it does not

appear in the literature. We use Freedman's result to obtain a lower

bound for g(k, m, n) and h(k,m,n) and an upper bound for

s(k, m) when k > 4, m > 1, and n > 8(k-2).

Theorem 5.17. If k>4 and n > 8(k-2) then

h(k, 1, n) >n + (k-4).

Proof. Let k, n, and t be given integers such that k > 4,

n = 8(k-2) + t, and t > 0.

Note that 4k-7 < 5k-9 < 6k-11 < 7k-13 since k >4. Set

for i -7-1,2, ,k-3,

A. = {0,11 {4k-7+t, 5k-9+t, 6k-11+t, 7k-13+t}
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and

Ak-2 0, k-21 {4k-7+t, . . . , 5k-10+t, 6k-1 l+t, . . . , 7k-14+t},

Ak- 1 = {0 2k-4} {4k -7+t, . . . , 6k -12+0,

= {0,4k-8, . . . , 4k-8+t}.

Now I' A. since

1<i<k

{0,1}) + {0, k-2} + {0,2k-4} + Ak
1<i<k 1<i<k-3

= {0, ...,8k-17+t} = {0, ...,n-1}.

We claim nV 1
1

A.. Let x = a. where a. E
A.Li1 1 1

1 <i<k 1 __.<i<k

for i = 1,2, ...,k. If there are integers i and j such that

1 < i < j < k, a. > 4k-7+t, and a. > 4k-8, then

x > a. + a. > (4k-7+t) + (4k-8) .77 8k - 15 + t >

If ak >0 and ai < 4k-7+t for i = 1,2, ...,k-1, then

X = a. < ( 1) + (k-2) + (2k-4) + (4k-8+t)

1<i<k 1<i<k-3

= 8k - 17 + t < n.

It remains to consider a = 0 and a. > 4k-7+t for exactly one

1 <1 < k-1. Since
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{o, 1}) + {0, k-2} + {0, 2k-4}

15j<k-4

= {0, , k-4, k-2, 2k-6, 2k-4, ,3 k-8, 3k-6, , 4k-10},

then n IA. + ( {0, 1}) + {0, k- 2} + {0, 2k-4} for

1<t<k-4
j= 1, 2, ... ,k-3. Since

/ {0, 1}) + {0,2k-4} = {0, , k-3, 2k-4, ..., 3k-7},
1<j<k -3

then n Ak-2
+ ( 10, 11) + {0, 2k-4}. Since

1<j<k-3

/ {0, 1}) + {0,k-2} = {0, , 2k-5},

1<j<k-3

then n I Ak-1 + ( {0, 1}) + {0,k-2}. Thus, x = a. n
1

1<i<k1j<k-3 _ _
when ak = 0 and a. > 4k-7+t for exactly one i, 1 < i < k-1.

This establishes that n I A..
Li 1

1<i<k

Since n I A., I' C A., and A..(I ) > 0 for
n n

1<i<k 1<i<k

i = 1, 2, ... , k, then (A A ... ) E Therefore,
2' ' kn, k
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h(k, 1, n) > A.(I )in
1<i<k

>5(k-3) + (1+2(k-2)) + (1+(2k-4)) + (l+t)

= 9k - 20 + t = (8k-16+t) + (k-4)

n + (k-4),

and the proof is complete.

It is interesting to observe that Freedman's result gives an

extension of Theorem F to k sets in J1. To see this consider the

following statement of his result:

Let k >4. For each integer n >8(k-2) there exist k sets

of nonnegative integers A1, A2, ..., Ak for which

Y.r
A. {0, ... -11, n Vi , A., A.(I ) > 0 for i = 1,2,...,k,

i i n
1<i<k 1<i<k.._ .....

and / A.(I ) >n - 1 = (i n A.)(I ).i n
1 <i<k 1<i<k

Theorem 5.18. Let m > 1. If k >3 and n > 15 then

g(k, m, n) > h(3, n) > n. If k > 4 and n > 8(k-2) then

g(k, m, n) > h(k, m, n) >n + (k-4).

Proof. In the proof of Theorem F, for each integer n >15

1Lin constructs three sets A, B, and C in J for which

A(In)
>0, B(In)

>0, C(I ) >0, n A + B + C, {0,...,n-1} C A + B + C,

and A(In) + B(I ) + C(I ) > n. Therefore, h(3,1, n) >n when
n
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n > 15. Applying Theorems 5. 8, 5. 10(iii), and 5. 11 we have

g(k, m, n) > g(3, m, n) > h(3, m, n) > h(3, 1, n) >n

when m , k > 3, and n > 15.

Applications of Theorems 5. 8, 5. 10(iii), and 5.17 give

g(k, n) > h(k, m, n) > h(k, 1, n) >n + (k -4)

when m > 1 k > 4, and n > 8(k-2).

Theorem 5.19. Let m > 1. Then

s(2, m) is infinite,

s(3, m) = 14,

s(4, m) = 15,

s(5, m) > 16,
and

s(k, rn) < 8(k-2) for k > 5.

Proof. From Theorem 5.16 we have h(2, rn, n) = n - 1 when

n >2, h(3, m, n) = n - 1 when 3 <n <14, h(4, m, n) = n - 1 when

4 < n < 15, and h(5, m, n) = n 1 when 5 < n < 16, Thus,

s(2, m) is infinite, s(3, m) > 14, s(4, m) > 15, and s(5, m) > 16.

From Theorem 5.18 we have h(3, m, 15) > 15, h(4, m,16) > 16, and

h(k, m, 8(k-2)) > 8(k-2) for k >5. Therefore, s(3, m) < 14,

s(4, m) < 15, and s(k, m) < 8(k-2) for k > 5. This proves the

theorem.
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It would be of interest to determine if s(k,m) increases as k

increases for k > 3.

In a paper published in 1958, P. Erdiis and P. Scherk [2] gave

upper and lower bounds for g(k,m,n) when m = 1. We now state

their result.

Theorem 5.20. If k > 3 and n > 1 then

kn - akn < g(k, 1,n <
2

kn - n(k-1)/k
2 Yk

where ak = (k+1)221(-3 and

when k > 3 and n > 2k.

1

(k/2)+4
2 (k-1) !

1 (k-1)/kIn order to establish that kn - akn
2

0<i<k-1
1 (k-1)/k. However,A.(I ) >kn - ann 2

0<i<k-1 0<i<k-1

if n> 2k then A.(I ) >0 for i = 0, ,k-1 since 2 E A.;
n

1consequently, --2° kn - akn(k-1) /1( is also a lower bound for

h(k, 1,n). Since h(k, 1, n) < g(k, 1, n) it follows that

1 (k-1)/kkn - akn(k-1)/k < h(k, 1, n) < n - Nikn
2 2

is a lower bound

for g(k, 1,n) when k > 3 and n > 1, ErdOs and Scherk construct

sets Ao, Ai , . . . Ak_i for which {0, , n-1} C A.,

n (if A., and



1An extension of Theorem G to k sets in J can be obtained

from the theorem of Erdi3s and Scherk. Let t be a real number,

t >0, and let k be an integer, k > 3. In the above paragraph

we observed that

a n(k-1)/kh(k, 1,n
2

for n > 2k. The number

1<i<k

-1)n
2 akn

k-1) /k n( -1 /k

becomes infinite as n becomes infinite since

lim(- - akn-1 /k) = - 1.
2 2

n-l" co

Thus, there exists an integer n such that n > 2 and

- 1)n - a n > t. From the definition of h(k, 1,n) it fol-

lows that there exist k sets of nonnegative integers Ar A2, , Ak

for which A.(I ) >0 for i = 1,2, ... ,k, Ai D to,
n

1<i<k

n A., and A. (I ) h(k, 1, n). Therefore,
n

1 <i<k
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i = 1,2, , k, and

A.(I ) = h(k, 1, n)
Li in

1 <i<k (k-1)/k
n + (k - 1)n - a n

2

n + t

A.)(I ) + t.
n

1<i<k

This establishes the following extension of Theorem G:

Let k > 3. If t > 0 is given then a positive integer n and

k sets of nonnegative integers

satisfying A. , n-1}, n A., A.(I ) >0 for
n

1<i<k 1<i<k

A1' A2 ... A can be found
k

A.(I ) > ( A.)(I ) + t.i n L1 n
1<i<k 1<i<k_ _

In the paper in which Theorem 5.20 is proved, ErdOs and

Scherk indicate that when k >3 a constant p might exist for

which

1 n - (P+0(1))n(k-1)/kg(k, 1,n) =

as n becomes infinite. In 1964 H. B. Kemperman [4] established

this asymptotic formula with p = k2-(k-1) by proving the follow-

ing theorem:

Theorem 5.21. If k > 3 then
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of the set

Thus,

1<i<k

{0, pi-1,2pi-1,

k(n-1)/2 g(k, 1,n) < k(n-1)/2 - h(k, 1,n)

< k(n-1)/2

A.(I ) < k(n/2)( 1) k(1+(n/2) )in

Now if n > 2k+1 then p > 2 where p is defined to be the

smallest integer for which [3-] < pk - 1. But then A.(I ) >0 forn

,k since the set A. contains at least p -1 elements

i-1(p-1)p }. Therefore,

A.(I )in
1<i<k

< k(n/2)(k-1)/k(1+(n/2)-1/k)k-1.
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lirn (k(n-1) /2 g(k, J, ))/k /k = 2-(k-1) /k
00

An examination of Kemperman's proof of Theorem 5.21 shows

that a result analogous to Theorem 5.21 is valid for h(k, 1,n).

Kemperman determines an upper bound for k(n-1)/2 - g(k, 1,n)

where k > 3 and n > 2 by constructing sets Ai, Az, Ak

[4, pp. 46-48] for which I'n
C A., n A., and

1<i<k 1<i<k

h(k, 1, n) > A.(I ) when n > 2k+1 and it follows that

1 <i<k



(k(n-1) /2 - g(k, 1, n))n-(k-1)/k < (k(n-1) /2 - h(k, 1, n))

h(k, m1, n) > h(k, m2, n)

<k(1+(n/2))k-1
k+1for n> and k > 3. Using Theorem 5.21 to evaluate the left

side of this inequality as n becomes infinite and noting that

lim (1+(n/2)-1/k)k-1 1,

we obtain

urn (k(n-1) /2 - h(k, 1, n)) k-1)/k 2-(k-1)/k
n -4" co

From Theorem 5.10 we have g(k, m , ) > g(k, m2, n) and

103

when m1 >m2 > 1. Thus, lower bounds of

g(h, 1, n) and h(k, 1,n) are also lower bounds of g(k, m,n) and

h(k, m, n), respectively, for m >1. We have had no success in

obtaining upper bounds for these functions.

The problem of completely evaluating g(k, m, n), h(k,m,n),

and s(k, m) appears to be difficult, even for m 1.
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APPENDICES



APPENDIX I

We now prove Theorem 4.5 which was stated without proof in

Chapter IV.

Theorem. Let z = (1,3,1) E ,13 and let A, B, C, D C I.

If A+B+C+D= IZ and D(Iz) > 0, than at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(I ) > 5, B(I ) > 5, and C(Iz) > 5.
z

From Theorem 4.1(1), it follows that none of the sets

A + B + Di A + C + D, and B + C + D has more than nine nonzero

elements. Moreover, from Theorem 4. 1(11), it follows that none of

the sets A + B, A + C, A + D, B + C, B + D, and C + D has more

than eight nonzero elements.

Let el = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1). Now

either {e1' e3 is a subset of A + D, B + D, or C + D, or

otherwise {el, e3} (Th D is the empty set and each of the sets A, B,

and C has at most one element in common with {e e }.

Case 1. The set {e1' e3} is a subset of A + D, B + D, or

C + D.

To be definite, say {e1, e3} C A + D. Now e2 is an elernent

A + B + D or A + C + D. By relabeling sets B and C if

necessary, we may assume that e2 E A + C + D.
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If (1, 0, 1) d A + D then either {el, e3} C A and

{ei , e3} D = or {el, e3} D and {ei , e3} A = . When-

ever (1, 0, 1) 1 A + D, we will let G equal A if {e1, e3} C A

and G equal D if {e1, e3} C D.

Let R = {(0, x, 0)11 < x < 31, R2 = {(0, x, 1)10 < x < 3},
1 - - -

R3 = {(1, x, 0) I 0 < x < 3}, and R4 = {(1, x, 1)1 0 < x < 3}. For any

set S C Iz denote S R. by Si, 1 <i < 4.

We proceed to establish that Bl(Iz) < 1 and Bi Iz < 2 for

< i < 4. Note that

{(1, 3, 1), (1, 3, 0), (0, 3, 1), (1, 2, 1)} rTh B =

since {0,e1,e2,e3} CA+C+D and (1,3,1)I.A+B+C+D.

Clearly, B4 (I) < 2.z -
Assume B1 (I) > 1. Then there exist integers x and y

such that 1 < x < y < 3 and {(0, x, 0), (0, y, 0)} C B. Thus,

A+B+D (A+D) + B {0, el, e3} + B

(0 x 0) (0 y 0) (1 x 0) (1 y 0){0, e 1, e3, , , I (0x,1) (0,y,1)}.

Now (1, 0, 1) IA + D, for otherwise {(1,x, 1), (1,Y, 1)} C A+B+D

and (A+B+D)(Iz) >9. Therefore, with set G as previously

defined, we have B+G DB+ {0, e1, e3}. Also, (B+G)(Iz) < 8.

It follows that



Since {(1, x, 1)10 < x < C A+B+D and (1, 3, 1) A+ B+ C +D,

then {(0, x, 0)11 < x < 3} C is empty. Therefore,

{(0, x, 0)11 < x < 3} C A + B + D. But then (A+B+D)(Iz) > 9. We

conclude that B2 (I) < 2.z -
The argument presented in the preceding paragraph with B2

replaced by B3 shows that B3(I ) 2.

Choose E so that E is one of the sets A, C, or D and

so that e2 E E. We now show that (B+E)i(Iz) _> Bi(Iz) + 1 and that

(B+E).(I ) > B.(I ) + 1 when B.(I ) >0, 2 < i < 4. Assume1z- 1z 1z
B2(I) >0. Let b' = max{b((0,b, 1) E B}. Thus, (0,1)1+1, 1) B.

Since (0, 3, 1) q B then b' < 2, and so

(0, b'+1, 1) = (0, b', 1) + (0, 1,0) E (B+E)2.
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B + G = {0, el' e3' (0' x' 0), (0, y, 0), (1, x, 0), (1, y, 0), (0, x, 1), (0, y, 1)}.

Now {el, e3} B = for otherwise (1, 0, 1) E B + G. Since

B(I ) >5 and B C B + G, then either (1, x, 0) or (1, y, 0) isz -
an element of B. However, this implies that (1, x, 1) or (1,y, 1)

is an element of B + G. We conclude that B1
(I ) <1.z -

Assume B2(I) > 2. Then

since (0, 3, 1) V B. Hence,

B = {(0 0 1) (0 1 1) (0 ,2, 1)}

A+B+D {0, el} + (B2L){0})

= 10, el, e3, (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1), (1, 2, 1)}.



Therefore, (B+E) (I ) > B (I ) + 1. Since (1, 3, 0) tyi B32 z 2 z

(1, 3, 1) ti B4' the same kind of argument gives

(B+E).(I ) > B.(I ) + 1 when B.(I ) >0 and 3 < i <4. If
1 Z - 1Z 1z

(0, 1,0) 1 B1' then (B+E) (I ) > B (I ) + 1lz 1 z
since e E E. If

(0, 1,0) E
B1

then B1 = {(0, 1, 0)} since B1
(I ) < 1. Hence,z

(0, 2,0) E B + E, and so (B+E)/(Iz) > 2 = B1 (I) + 1.

One of the numbers Bz(Iz), B3(I ), or B4(I) is zero, for

otherwise

8 > (B+E)(iz) =

1<i<4
1
7_/-7

-t 3

(B+E).(I ) >
z

(131(Iz)+1) = (

1<1<4

(B.(I )+1)1z

B. (t )) + 3 = ;
1 z
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1<i<4 1<i<4

=( B.(I )) + 4 = B(Iz) + 4 > 9.Ii1Z
1<i<4

Let 13.(I ) = 0, j E {2, 3, 4}. Since B(I ) > 5, B1 (I < 1, and
3 z z

B.(I ) < 2 for 2 < i < 4, then B (I ) = 1, B.(I ) = 2 for1z - - - 1 Z 1z
2 < i < 4 and i j, and B(I) = 5. Now

8 > (B+E)(Iz) = (B+E)i.(Iz) > (B+E)i(Iz)

1<i<4 1<i<4
i



hence, (B+E).(I ) = B.(I ) + 1 for 1 < i < 4 and i j. It fol-
1 Z 1z - -

lows that B1 {(0, 2, 0)}, for otherwise (B+E)1 = R1 and

(B+E),(Iz) > Bi(1z) + 1. Thus Bi = {(0, 1, 0)} or
B1 '

= {(0 3 0)}.

Assume B1 = {(0, 3, 0)}. Then (1, 0, 1) A + D, for other-

wise=(1,3,1)EA+B+C+D.B (I ) 0 then

B = (0, (0, 3, 0), (1, b 0),(1,b2' 0), (0,b3' 1), 0,b4' 1)}

where 0 <b1 <b2 <2 and 0 <b3 <b4 <2 since (1, 3, 0) B- - - -
and (0, 3, 1) B. This in turn implies that

B+G B+ {0, ei, e3}

{0,e1,e3, (0,3,0), (1,3,0),(0,3,1),(1,b2,0),(0,b4,1), (1,b1,1),(1,b2A.

But (B+G)(Iz) < 8, and so we conclude that B4 (I ) >
0*

Thusz '

B4(I) = 2, and since (1, 2, 1) 1 B and (1, 3, 1) E B then

B4 = {(1, 0, 1), (1, 1, 1)}. Suppose B3 (I ) = 0. Thenz

B = {0, (0, 3, 0), (0, b , 1), (O, b2, 1), (1, 0, 1), (1, 1, 1)}

where 0 <
b1

< b2 < 2. Since B {(1, 3, 0), (0, 3, 1), el} B + G- -
and (B+G)(I ) <8, it follows that B+G=B {(1,3,0), (0,3,1), ell.z -
If b2 = 2 then e1

+ (0, b2' 1) = (1, 2, 1) E B + G, a contradiction.

Hence, b2 1, b1 = 0, and so
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B + G = {0, el, e3, (0, 3, 0), (1, 3, 0), (0, 3, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.



Thus,

(B+G)-- {0, e2, (1, 1, 1), (1, 2, 1), (0, 1, 1), (0, 2, 1), (1, 1, 0)}.

Note that (0, 2, 0) B + G + (B+G)-. Since G = A or G D and

A+B+C+D= I' , then B + G + (B+G)- = I' by Theorem 2.9(c).

Since (0, 2, 0) e Vz, we conclude that B3(I) > 0. By a symmetric

argument we obtain that B2(I) > 0. Thus, B.(I ) > 0 for
z

2 < i < 4, and we have a contradiction.

Finally, assume B1 = {(0, 1, 0)}. Since (B+E)1 (I ) = 2 and
z

e2 E E' then (B+E)i = {(0, 1, 0), (0, 2, 0)}. Assume B4(I) > 0;

consequently, B = {(1 0 1) (1 1 1)}. Since

(1, 3, 1) 1 B + E + (B+E)- and

B + E B4 + {0, e2} {(i3O, 1), (1, 1, 1), (1, 2, 1)},

then {(0, 1, 0), (0, 2, 0), (0, 3, 0)1 n (B+E)- = 0. It follows that

(0, 3, 0) 1 B + E + (B+E)-; however, this is contrary to

B + E + (B+E)- = I . We conclude that B4(Iz) = 0. Therefore,

B2(I) = 2 and B3(I) = 2. Either B2 = {(0, 0, 1), (0, 1, 1)1 or

B = {(0 1 1) (0 2 1)1 since (0, 3, 1) 1 B, B2(I) = 2, (B+E)2(I ) = 3,

and e2 E E exclude any other subsets of R2 as possibilities for

B2. Similarly, B = {(1 0 0) (1 1 0)1 or B = {(1 1 0) (1 ,2, 0)1.

Since A+B+D {0, e1, e3} + B and (A+B+D)(Iz) < 9, it follows
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that A+B+D=B+ {0, el, e3} whenever (B+{0, el, e3})(Iz) = 9.

Now with B2 = {(0, o, 1), (o, 1, 1)1 and B3 = {(1, 1, 0), (1, 2, 0)}, or

with B2 = {(0, 1, 1), (0, 2, 1)}, then (B+{0, el, e3})(Iz) = 9, and so

A+B+D=B+ {0, el, e3}. However, in each instance

A + B + D + {0, (1, 1, 1)} = A + B + D, which is contrary to Theorem

2. 10. With B2 = {(0, 0, 1), (0, 1, 1)1 and B3 = {(1, 0, 0), (1, 1, 0)1

then

B + {0, e2} = fo, el, e2, e3, (0,2,0), (0,1,1), (0,2,1), (1,1,0), (1,2, 0)).

Since B + E B + {0, e2} and (B+E)(Iz) < 8, then

B + E = B + {0, ed. If x E Iz, x 0, and x e2 then

(B+{0, e2, x})(Iz) >8. Thus, E = {0, e2}. Since A(I ) > 5 andz -
C(I ) > 5 then E = D, and this in turn implies that {e1, e3} Cz -
Therefore,

A+B+D {0, el} + (B+E)

{(3., (), 1), (1, 1, I)} j (B+E).

A contradiction follows since this set inclusion implies that

(A+B+D)(Iz) > 9.

Case 2. The set {e1, e3} D is empty and each of the sets

A, B, and C has at most one element in common with {e1, e3}.

By relabeling the sets A, B, and C if necessary, we may

assume that el E A and e3 E B.
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Let U = {(x1, x2, x3)10 E Xi < 1 for i = 1, 2,3) and let

U* = U{0}. We proceed to show that D n U* is the empty set.

We claim (0, 1, 0) D. Assume otherwise. Then

U C A+B+D since el E A, e3 B, and e2 e D. It follows

that C C U, for if (x/ ,x2' x3 )EC then

(1-x1, 3-x2, 1-x3) E U and this implies that

(1, 3, 1) E C+U C A+B+C+ D. In particular (0, 2,0) C and

(0, 3, 0) 1 C. Also, (0, 2, 0) 1 D and (0, 3, 0) 1 D, for if

(0, x, 0) E D where x E {2, 3} then

A+B+D DUv {(0, x, 0), (1, x, 0), (0, x, 1)}

and (A+B+D)(Iz) > 9. Now if (0, 1, 0) E A then

{(0, 2, 0), (0, 2, 1)1 C A + B + D, which in turn implies that

(1, 1, 1) 1 C and (1, 1,0) 1 C. But then C C (1,1,0))

and C({ei, e3}) < 1 imply that C(I) < 4. Since C(I) > 5, it

must be that (0, 1,0) 1 A. A symmetric argument establishes that

(0, 1, 0) 1 B. Also, (0, 2, 0) 1 A, for otherwise

A+B+D U {(0, 2, 0), (0, 3, 0), (0, 2, 1)1

and (A+B+D)(Iz) > 9. Similarly, (0, 2, 0) 1 B. If (0, 3, 0) E A

then A+B+D U j 1(0, 3, 0), (0, 3, 1)}, and since

(A+B+D)(Iz) < 9 we have



A+B+D=Uv 1(0, 3, 0), (0, 3, 1)).

Now (0, 3,0) 1 B and (0, 3, 1) 1 B, for otherwise (1, 3, 0) or

(1, 3, 1) is an element of A + B + D. Hence, B C. U. Also,

(x1, 1,x3) I B when 0 <x1 < 1 and 0 x < 1, for otherwise-
(x1, 2,x3) E A + B + D. But then B C {0, el, e3, e1+e3}, which is

contrary to B(I ) > 5. Thus, (0, 3, 0) V A, and in a symmetricalz -
way we obtain (0, 3, 0) 1 B. Since 1(0,2,0), (0,3,0)1 (AvBvCvD)

is empty and (0, 1,0) IA B, then (0, 3, 0) VA+B+C+ D.

Since A+B+C+D=I' we have a contradiction. Thus,z'
(0, 1,0) 1 D.

We next show that (1, 1,0) 1 D Assume otherwise. Then

(0, 2, 1) V A + B + C. Since (0, 2, 1) EA+B+C+D but

(0, 2, 1) IA + B + C, then there is an element w E D such that

0 < w < (0, 2, 1). If (0, 1,0) E C then (0, 2,0) 1 D and

(0, 2, 1) V D, for otherwise (1, 3, 1) EA+B+C+ D. If

(0, 1,0) E Av B then (0, 2, 0) 1 D or (0, 2, 1) 1 D, for otherwise

(A+B+D)(Iz) > 9 since

A+B+D {0, el, e2, e3, e1+e3} + {0, (1, 1, 0), (0, 2, 0)1

or

Now e2EAv Bv C since we have shown in the preceding
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paragraph that e2 V D. It follows that not only (0, 1,0) ci D but

also (0, 2,0) ci D and (0, 2, 1) V D. Consequently, w = (0, 1, 1),

and this in turn implies (1, 2, 0) V A + B + C. Since neither (0, 2, 1)

nor (1, 2, 0) is an element of A + B + C and since el E A and

e3 E B' then (0, 2,0) V A + C and (0, 2,0) 1 B + C. Thus,

(0, 1,0) V A rTh C, (0, 1,0) / B n C, and (0, 2, 0) IA B v C.

Furthermore, (0, 1, 0) / A rm B, for otherwise (A+B+D)(Iz) > 9

since

A + B + D {0, el, e2, e3, e1+e3, (0, 2, 0)} + {0, (1, 1, 0), (0, 1, 1)}.

It follows that (0, 2, 0) VA+B+C+ D. However, this is contrary

to A+B+C+D= I' . TI-ius, (1, 1, 0) / D.

An argument symmetric to the one given in the preceding para-

graph establishes that (0, 1, 1) V D.

Finally, we show that (1, 0, 1) V D and (1, 1, 1) ID.

Assume (1, 0, 1) E D or (1, 1, 1) E D. Recall that (0, 1,0) ci D.

Also, (0, 3, 0) ci D, for otherwise (1, 3, 1) E A+B+C+ D. If

(0, 2,0) 1 D then {(0, 1, 0), (0, 2, 0), (0, 3, 0)} C A + B + C. However,

(0, 3, 0) VA+B+C if (1, 0, 1) E D, and (0, 2,0) ci A+B+C

if (1, 1, 1) E D. It follows that (0, 2,0) E D. Since (0, 2,0) D

then (1, 1, 1) V A + B + C, and this in turn implies that e2 I C

since
e1 E A and e3 E B. Therefore, e2 E A B since

e2 VC v D. Then



A+B+D {0, el, e2, e3, e1+e3} + {0, x, (0, 2, 0)}

where x = (1, 0, 1) or x = (1, 1, 1) according as (1, 0, 1) E D or

(1, 1, I) E D. A contradiction follows since (A+B+D)(Iz) >9.

We have established that D and U* have no elements in

common. Thus, U C A+B+ C. Since D(I ) > 1 andz

iTh U* = 4, then there is an element (y1, y2, y3) E D such that

0 <y1 <1, 2 <y2 <3, and 0 <y3 <1. But then

(1-y1, 3-y2, 1-y)EU, and so (1,3,1)EU+DC A+B+C+D.

However, this is not possible since A+B+C+D=I'.

The proof of the theorem is complete.
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APPENDIX II

We now prove Theorem 4.6 which was stated without proof in

Chapter IV.

Theorem. Let z = (7,1) E J and let A, B, C, D I . If

A+B+C+D=I and D(Iz) > 0, then at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(I ) >5, B(I ) >5, and C(I ) >5.
z z

From Theorem 4.1(i), it follows that none of the sets

A + B + D, A + C + D, and B + C + D has more than nine nonzero

elements. Moreover, from Theorem 4. 1(11), it follows that none of

the sets A + B, A + C, A + D, B + C, B + D, and C + D has

more than eight nonzero elements.

Let Ro = {(x, 0)11 <x <7) and R1 = {(x, 1)10 <x < 7}. For

any set S C Iz denote S Rr by Sr, r E {1, 2}.

Each of the integers AO(Iz), BO(Iz), CO(Iz), and DO(Iz)
is

greater than zero. For instance, if A0(I) = 0 then

Ro B+C+D and, since A(I) > 0, there is an element

(x, 1) E A. But then (7,1) = (x, 1) + (7-x, 0) EA+B+C+ D.

We next show that A0(I) >1 whenever (1,0) E B + C + D.

Assume A0 = { (a, 0)} . Then
A1

(I ) >4. Let
z
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A {(a1, (a2, 1), (a3, 1), (a4, 1))



where al < a2 < a3 < a.4. Since (7,1)tiA+B+C+D then

(7-a., 0) iB+C+D for 1 < i < 4. Thus, (B+C+D)0(Iz) < 3.
1

However, since

R ((B+C+D)0 {0}) + {0, (a, 0)},
0

then it follows that (B+C+D)0(I ) = 3. Let

(B+C+D)o = 1(1, 0), (x, 0), (y, 0)1 where 1 < x < y. Then

Ro = {(1, 0), (x, 0), (y, (a, 0), (a+l, 0), (a+x, 0), (a+y, 0)},

and so either x = 2, y = 3, and a = 4, or x = 4, y = 5, and

a = 2. First assume x = 2, y = 3, and a = 4. Then Ao = 1(4, 0)/

and (B+C+D)0 = 1(1, 0), (2, 0), (3, 0)}. Since B (I ) > 0, C (I ) > 0,Oz Oz
and D0

(I ) >0, then B0 = C0 = D = {(l, 0)). But then
z 0

9 > (A+B+D)(Iz) = (A+B+D)0(Iz) + (A+B+D)(Iz)

> 5 + (A1+10, (1, 0)1)(Iz)

> 5+ (A1(1 )+l) >9.

Next assume a2 = 2, x = 4, and y = 5. Then Ao = {(2, 0)1 and

(B+C+D)0 = 1(1, 0), (4, 0), (5, 0)). It follows that one of the sets Bo,

CO'
or

D0
contains 1(1, 0)1 and each of the other two sets is

1(4, 0)1. Now either (1,0) E B + D or (1,0) E C + D. To be
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C + H C (B+G)- = {0, (1,0), (2,0), (3,0), (0,1), (1,1), (2,1)1.
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definite, say (1, 0) E B + D. Then (B+D)o = (B+C+D)0' and we

have

9 > (A+B+D)(Iz) = (A+B+D)o(I ) + (A+B+D) Iz)

z>R (I ) + Al(Iz) >9.

Symmetric arguments establish that Bo(Iz) >1 when

(1, 0) E A+ C +D and C0(Iz) > 1 when (1, 0) E A + B + D.

Now either {(1, 0), (0, I)} is a subset of A + D, B + D, or

C + D, or otherwise {(1, 0), (0, 1)1 r\ D is empty and each of the

sets A, B, and C has at most one element in common with

{(1, 0), (0, 1)}.

Case 1. The set {(1, 0), (0,1)1 is a subset of A + D, B + D,

or C + D.

To be definite, say {(1, 0), (0, 1)} C A + D. Note that if

(1, 1) V A + D then {(1, 0), (0, l)1 is a subset of or

Henceforth, when (1, 1) A + D we let G = A if

{(1, 0), (0, .1)} C and G = D if {(1, 0), (0, 1)} C

If (1, 1) íA + D then it is not possible for B + G to equal

10, (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1)). Assume other-

wise. Let H = A if G D and H = D if G = A. Thus,

(1,0) í H and (0, 1) I H; furthermore,



Since (0, 1) q H then (0, 1) E C; hence, (3, 0) H for

(3, 1) 1 C + H. Since H0 (1 ) > 0' it follows that H0 = 1(2, 0)1.
z

This in turn implies that (2, 0) C and (3, 0) 1 C. But then

C(Iz) < 5, which is a contradiction.

We claim BOz(I) = 2. Assume B (I ) > 3, and let0 z -
Bo {(,1, 0), (,2, 0), (,3, 0)} where b1 < b2 < b3. Since

(0, 1) E A + D then (7, 0) 1 B; hence b3 < 7. If (1, 1) 1 A + D

then

B + G (B0L.,{0}) + {0, (1, 0), (0, 0}

{(b., = 1, 2, 3 and j = 0, 1} {0, (0, 1), (b3+1, 0)}.

However, this last set is equal to B + G since (B+G)(Iz) < 8.

Since (b.+1, 0) E B + G for I 1 and i = 2 and since

(1,0) E B + G, it must be that b1 = 1, b2 = 2, and b = 3. But

then

B + G =10(1, 0), (2, 0), (3, 0), (4, 0), (0,1), (1, 1), (2,1), (3, 1)1,

which is not possible. If (1, 1) E A + D then

A+B+D (B0L){0}) + lo, (1, 0), (0, 1), (1, 1)}

{(b., = 0, 1,2 and j = 0, 1} v 10, (0,1), (b3+1,0),(b3+1,1)}.

Since (A+B+D)(Iz) < 9, this last set is equal to B + G. But then
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(A+B+D) + {(0, 0), (0, 1)} = A + B + D, which is contrary to Theorem

2.10. Thus, B0(I) < 3. Recall that B (Iz) >1 since

(1,0) e A + C + D. Hence, B0(I) = 2.

Let Bo = {(br 0), (b2, 0)1 and B1 {(D3, 1), (b4, 1), (D5, 1)}

where
b1 <b2 and b3 <b4 < b5 . Since (0, 1) E A + D then

(7,0) B, and so b2 < 7.

We first show that b1 = 1. Suppose (1,0) V B. If

(1, 1) V A + D then

B+G B+ {0, (1, 0), (0, 1)}

{o, (1,0), (3 ,o), (32,0), (32+1,0), (33,1), (34,1), (35, ), (b5+1'1)}.

However, this last set is equal to B + G since (B+G)(I ) < 8.z -
Since (b1+1, 0) E 13. + then b2 = b1+1. Since (0, 1) E B + G and

(b.+1, B + G for j E {3, 4}, then it follows that b3 0,

b4 = 1' and b5 = 2. Furthermore, {(31, 1), (b2, 1)1 B + G,

and so b1 = 2 and b2 = 3. But then

B + = {0, (1, 0), (2, 0), (3, 0), (4, 0), (0, 1),(1, 1), (2,1), (3, 1)},

which is not possible. If (1, 1) e A + D then

A+B+D (30{0}) + {o, (1, o), (o, 1), (1, 1)1

{0,(1,0), (b1, O), (b2' 0), (b2+1,0), (0,1), (1,1),(b 1),(b 1),(b+1,1)}.
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However, this last set is equal to A + B + D since

(A+B+D)(Iz) < 9. But then (A+B+D) +1(0, 0), (0, 1)} = A + B + D,

which is contrary to Theorem 2.10. Therefore, b1 = 1.

Next we show that b2 = 2. Assume b2 >2. If (1, 1) E A + D

then

A+B+D (130_,{o}) fo, (1, 0), (0, 1), (1, l)}

D10,(1,0), (2,0), (b2,0), (b2+1,0), (0,1), (1,1), (2,1), (b2,1), (b2+1,1)}.

Since (A+B+D)(Iz) < 9, this last set is equal to A + B + D. But

then (A+B+D) +1(0, 0), (0, 1)} = A + B + D. If (1, 1) A + D then

B+G B+ 10, (1, 0), (0, 1)}

{o, (1, 0), (2, 0), (b2' 0), (b2+1, 0), (b3' 1), (b4' 1), (b5' 1), (b5 +1)1.

However, this last set is equal to B + G since (B+G)(Iz) < 8.

Since 1(0, 1), (b3+1, 1), (b4+1, 1)} c B + G, then b3 = 0' b4 = 1'

and b = 2. Also, (b 1) e B + G, and so b2 = 3. But then

B + G = 10, (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1)},

which is not possible. Therefore, b2 = 2.

Now
C1

(I ) 0, for otherwise C0 (I ) > 5 and
z z -

(A+C+D)(I ) > (C0+{0, (0, 1)})(Iz) > 9. Recall that C0(I) > 0. Alsoz -
1(6, 0), (7, 0), (6, 1), (7, 1)} C = for 10,(l,0), (0,1), (1,1)} A+ B +D.

Since 1(1, 0), (2, 0)} C B, it follows that



(B+C)(Iz) (B+C)0(Iz) + (B+C)1(I2;)

> (C (I )+2) + (C (I(I)+2)- Oz

= C(Iz) + 4 > 8.

However, (B+C)(Iz) < 8, and we have a contradiction.

Case 2. The set D (Th {(1, 0), (0, 1)} is empty and each of the

sets A, B, and C has at most one element in common with

1(1, 0), (0, 1)}.

By relabeling the sets A, B, and C if necessary, we may

assume that (1, 0) e A and (0, 1) E B.

Since {0, (1, 0), (0, 1), (1, 1)} A + B and

(7, 1) fi A + B + C + D, then (C+D) {(6, 0), (7, 0), (6, ), (7, 1)} is

empty.

We claim (C+D)0(Iz) < 3. Assume (C+D)0(Iz) > 3. Since

B+C+D {0, (0, 1)} + (C+D)0, (B+C+D)(Iz) <9, and

({0, (0, 1)} + (C+D)0(Iz) > 9, then

B + C + D = {0, (0, 1)} + (C+D)0

But then

(B+C+D) + {0, (0, 1)} = (C+D)0 + {0, (0, 1)} + 0, (0, 1)}

= (C+D)0 + {0, (0, 1)}

= B + C + D.
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However, this is contrary to Theorem 2.10.

Recall that
CO

(I> 1 since (1,0) E A + B + D. Also,

D0 (I) > 1. Let
1

= min{ I (x, 0) E
Co}

andz -
c2

= minfxI (x, 0) E Co and x c1}.

We now show that c1 > 1. Assume c1 = 1. Let (d, 0) E D.

Since {(1, 0), (d, 0), (d+1, 0)) C (C+D)0, d > 1, and (C+D)0(Iz) < 3,

then (C+D)0 = 0), (d, 0), (d+1, 0)). Hence, d < c2 < d+1 < 5.- - -
Also, (c2, 0) + (d, 0) V (C+D)0 since c2

+d > 2+d. Thus, c2+d > 7.-
But then 9 > (d+1)+d c2+d 8, and so d = 4. Therefore,

Do = {(4, 0)}. It follows that (3, 1) 1 A + B + C, and this in turn

implies that (3, 0) 1 A + C. Since (3, 0) e A + B + C, (3, 0) 1 A + C,

and (1,0) 1 B, then (2,0) E B or (3,0) e B. Now (2,0) 1 B,

for otherwise B+C+D R0 v C+D)0+{(0, 1)}) and so

(B+C+D)(Iz) > 9, Thus, (3, 0) E B and

B+C+D {0, (1, 0), (3, 0), (4, 0), (5, 0), (7, 0), (0, 1), (1, 1), (4, 1), (5, 1)}.

However, this last set is equal to B + C + D since

(B+C+D)(Iz) < 9. But then (B+C+D) + {0, (4, 0)) = B + C + D, which

is contrary to Theorem 2.10. Thus,
c1

> 1.

Next we show c1 > 2. Assume c1 = 2. Then (4, 0) 1 D

and (5,0) 1 D, for otherwise (6, 0) or (7, 0) is in C + D.

If c2 = 3 then (2, 0) 1 D, for otherwise (C+D) (Iz) > 3. If

4 < c2 < 5 then (2,0) D, for otherwise (6,0) or (7,0) is- -
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in C + D. Since 3 c2 5, it follows that (2,0) D. Hence,

D = {(3,0)}. Thus, (3,0) 1 C and (4,0) 1 C, for otherwise

(6, 0) or (7,0) is in C + D. It follows that Co = {(2,0), (5,0)1.

Now C(I ) >5, and so C (I ) >3. Since (1,0) e A then
z

(A+C+D)(Iz) = (A+C+D)o + (A+C+D) (I )

>6 + (A+C)l(Iz)

>6 + (C (I )+1) >10.
1 z

However, (A+C+D)(Iz) <9. Thus, c1 >2.

Since (C+D)0 C {(x,0)12 < < 5}, c1 , C I > 2, and

D0 (I ) >1, then one of the following occurs:z

cl 3
and Do = {(5,0)},

c1
4 and DOL {(4' 0)' (5' 0)}.=

In either case A+B+C {(x, o)i o < x < 6}, and so (x, 1) D

for 1 < x < 7. Therefore, D = D0. Since D C {(4,0), (5,0)},

then either (2,1) IA+B+C or (3,1) íA + B + C. This in turn

implies either (2,1) 0/ A+B+C+D or (3,1) VA+B+C+ D.

Since A+B+C+D= I', we have a contradiction.

The proof of the theorem is now complete.
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APPENDIX III

We now prove Theorem 4.7 which was stated without proof in

Chapter IV.

Theorem. Let z = (3,3) e J2 and let A, B, C, D Iz. If

A+B+C+D= I' and D(Iz) > 0, then at least one of the sets

A, B, and C has less than five nonzero elements.

Proof. Assume A(1 ) >5, B(I ) >5, and ) >
z

From Theorem 4.1(i), it follows that none of the sets

A + B + D, A + C + D, and B + C + D has more than nine nonzero

elements. Moreover, from Theorem 4. 1(u), it follows that none of

the sets A + B, A + C, A + D, B + C, B + D, and C + D has

more than eight nonzero elements.

Let R = fix, 0)11 <x < 3} R1 = {(x, 1)10 <x < 3},
0

R2 = {(x, 2)10 <x < 3}, and R3 = {(x, 3)10 <x < 3}. For any set

S C I let S = S R , 0 < r < 3.
z r r
Now either {(1,0), (0,0} is a subset of A + D, B + D or

C + D, or otherwise {(1,0), (0, I)} D is the empty set and each

of the sets A, B, and C has at most one element in common with

{(1,0), (0,1)}.

Case 1. The set {(1,0), (0,1)} is a subset of A + D, B + D,

or C + D.
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To be definite, say 1(1, 0), (0, 1)} C A + D. Note for later use

that if (1, 1) q A + D then 1(1, 0), (0, 1)} is a subset of A.D or
Now (0, 2) is an element of A + B + D or A + C + D.

By relabeling the sets B and C if it is necessary, we may

assume that (0, 2) E A + C + D. Since

1(0, 0), (1, 0), (0, 1), (0, 2)} A+C+D and (3,3) A + B + C + D,

then B has an empty intersection with {(3, 1), (3, 2), (2, 3), (3, 3)}.

Thus, B1 C {(x, 1)10 < < 2}, B2 C {(x, 2)10 <x < 2}, and

B3 C 1(0, 3), (1, 3)}. We proceed to show that

max{Br(Iz)10 <r <3} < 2.

Assume B (I ) > 2. Then there exist distinct elementsOz
(x0, y0) and (x 1,y1) such that y1 >y0 >0 and

B {(i, 0), (2, 0), (3, 0), (x0, y0), (x1, y1)}.

Let W = A if (0,1) E A; otherwise, let W = D. Then

B + W R0 L., Ri {(xo, yo+so), (x1, y1+s1)}

where

0 if x0 i x and yi > 1,

1 ifx0 xl and Y. = 1,
3.

s. = 0 ifand
1 x0 = xl YO > l'

1 if xo = xl, yo = 1, and

if=x0 x1, y0 = 1, and

= 2,



and where otherwise t = 0 and

YO'

But then (A+B+D)(Iz) > 9, which is not possible. Thus, (1, 0) B,

and

A+B+D Iti (R2N{(3, 2)}) {(1, 0)} {(x0,yo+s ,(xi+t,yi+si)}

where t = so = 1 and = 0 if xo = xi, = 2, and

where

x , y ) if Y1 = 3,

(x2' y2 = 1, y1+ 1) if yl = 2'
(3, 0) if yi = O.
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for i = 1, 2. But then (B+W)(Iz) > which is a contradiction.

Hence, B0 (I ) <2.
z

Assume B (I ) > 2. Then there exist distinct nonzero ele-
1 z

ments (x0, y0) and (x1, y1) such that y

x >x0
1 0 if = YO' and

B {(o, 1), (1, 1), (2, 1), (x0, y0), (x1, y1)}.

If (x , y ) = (1,0) then
0 0

A+B+D Ri (R2N,{(3, 2)}) v {(1, 0), (2, 0)} {(x2, y2)}



Again a contradiction follows since (A+B+D)(Iz) > 9. Hence,

B1
(I ) < 2.z -

Assume B2(I) > 2. Then B2 = 1(0, 2), (1, 2), (2, 2)} Since

(2,2) E B then (1, 1) V' A + D. Let W = A if

1(1, 0), (0, 1)} C A D; otherwise, let W = D. Then

B +W {0., co, (0, 1)) i R2 3)})

and (B+W)(Iz) > 8, which is not possible. Hence B2(I) < 2.

Clearly, B3(I) < 2 since B3
C 1(0, 3), (1, 3)}. This

establishes that max{3r(Iz)10 <r < 3} < 2.

Continue to let W = A if {1, 0) E A, and W = D other-

wise. We next establish that (B+W)0(Iz) > Bo(Iz) + 1 and

(B+W) (I ) > B (I ) + 1 whenever B (I ) > 0 and 1 < r < 3. Ifrz-- rz r z
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(1,0) 01 Bo then (1, 0) E and (B+W)O (I ) >
BO

(I ) + 1. Ifz- z

(1,0) E Bo then Bo is equal to {(1, 0)}, 1(1, 0), (2, 0)}, or

1(1, 0), (3, 0)}. In any case, (B+W)o(Iz) > B0(I) + 1. If Br(Iz) >0

where 1 < r < 3, then let b = max{xl (x, r) E B}. Since b < 2r -
then (b+1, 1) E B + W However, (br+1, 1) B, and so
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(B+W)r(Iz) >B r(Iz) + 1.

We now show that B0(I) > 0 and exactly one of the numbers

Bla ), B2az ), and B3az ) is zero. First, assume B (I ) > 0r z

for r = 1, 2, 3. Then

3

8 > (B+W)az (B+W) (I )r z
r=0

3

(Br (Iz)+1)
r=0

= B(I ) + 4 > 8,

a contradiction. Therefore, for some integer t E {1, 2, 3} we have

Btaz) = 0. Since Ba ) >5 and B (I ) < 2 for 0 < r < 3, it
z r z

follows that B (I ) > 0 for 0 < r < 3 and r t.r z
Since Bt-1 4 then there is an integer b, 0 <b < 2, such

that (b, t-1) E B. Now (1, 1) V A + D, for otherwise

{(13, t), (b+1, t)} C (A+B+D)t and

(A+B+D)(Iz) = (A+B+D) (I )r z
0<r<3

(B+W) (I ))+ (A+B+D)t(Iz)r z
0<r<3;ft



>( (Br (Iz)
+ 1)) + 2

0<r<3

B(I) + 5 >9.

Since (1, 1) V A + D then W {(1,0), (0, 1)}. Hence,

(b, e B + W, and so (B+147") (I ) >1 = B(I) + 1. Therefore,
t z tz

8 > (B+W)az (B+W)r(Iz)

0<r<3

(B (I )+1)r z
0<r<3

= B(Iz) + 4 > 8,

which is a contradiction.

=

Case 2. The set {(1, 0), (0, 1)} rTh D is empty and each of the

sets A, B, and C has at most one element in common with

{(1, 0), (0, 1)}.

With no loss in generality, we may assume that (1, 0) E A and

(0, 1) e B. Since (3,3) VA+B+C+D it follows that

C cm {(2, 2), (2, 3), (3, 2), (3, 3)} is empty; therefore,

C2
1(0, 2), (1, 2)} and C3

C {(0, 3), (1, 3)}. Set i0 = C0(I )
z '

= Cl(Iz), i2 = C2(I) and i = C3(Iz). Thus, i2 < 2 and i
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We now show that
i0

< 2 and
i1

<3. Assume
i0

> 2.

Then C Ro {(xo, yo), (xi, yi)} where (x0, y0) Yi) and

y >y >0. Therefore,
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But then (B+C)(Iz) >8, which is a contradiction. Thus io < 2.

Assume i1 > 3. Then C {(x, y)} where y I. But then

B + C R2 v {(x, y+8)}

where s = 1 if y = 2 and s = 0 if y 2. Again,

(B+C)(Iz) >8. Hence
i1

<3.

We claim that (A+C) (I ) > C (I ) + 1 andOz Oz
(A+C) (I ) > C (I ) + 1 when C (I ) >0 for 2 < r < 3. Ifrz rz r z

(1, 0) 6/ C then (A+C)0(Iz) > Co(Iz) + 1 since (1,0) E A. If

(1,0) E C then C0 is equal to {(1, 0)}, {(1, 0), (2, 0)}, or

{(1, 0), (3, 0)}. In any case, (A+C) (I ) > C (I ) 1. Assume

B + C

where

R0j R1 Yo+S ), Yi+sig

0

1

0

1

1-t

if

if

if

if

if

x V
x1 and yt > 1,

0

x0 xl and yt = 1,

xO = xl' Y.I = 3' and

=
= 2, andx0 xl' y1

x0 =.. xl, yl = 3' and

YO
= 2,

= 1,
YO

Y0
= 1.



C (I ) >0 where 2 < r < 3. Let x = rnax{xj (x, r) c}. Thenr z r
x r <1, and (x+1, r) E (A+C)".-....C. Hence,

(A+C) (I ) > C (I) + 1.rz- rz
We next show that if (3, 1) C and (0, 1) 1 C, then

C1 = 1(1, 1), (3, 1)). Since (3, 1) e C then (0,2) IA + B + D, and

this in turn implies that (0, 1) E C or (0,2) E C. Thus (0,2) E C,

and so {x E JZIx < (1, 3)} C A + B + C. Then D has no elements

in common with {(x, y) I 2 < x < 3, 0 < y < 3}, for otherwise

(3, 3) E A+B+C+ D. Assume (1, 1) 1 D. Then (R0.../R1) (Th D 9f

and Ro R1 C A+B+ C. Since D(I) >0, there is an ele-

ment (x, y) E D with 0 <x < 1 and 2 <y < 3. But then

(3-x, 3-y) E R0 L.) Ri, and so (3-x, 3-y) e A + B + C. Since

(3, 3) IA+B+C+ D, we conclude that (1, 1) e D. Now (2,1) 1 C

since (1, 2) = (0, 1) + (1, 1) E B + D. Assume C1 = {(3, 1)}. Then

(A+C+D)i {(1, 1), (2, 1), (3, 1)) and so (A+C+D)i(Iz) > i1+2.

Since (0,2) E C then (A+C)2(I ) > +1. Since

(1,3) = (0, 2) + (I, 1) E C D, then

(A+C+D)3 (I ) > max{(C+D)3(Iz), (A+C)3 (I )) > i3+1z - z -
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whether 13 = 0 or 13 > 0. But then



3

(A+C+D)(Iz) - (A+C+D)r(Iz)

r=0

> (A+C)0(Iz) + (i1+2) + (A+C)2(Iz) + (i3+1)

> (i0+1) + (i1+2) + (i2+1) + (i3+1)

= C(Iz) + 5 > 9.

Thus, it is not possible that
C1

{(3,1)}. Since (3,1) E C,

(0, 1) si C, and (2, 1) 1 C, then C1 = {(1, 1), (3, 1)}.

We claim (A+C) (I ) > i +1
1 z 1

whenever il > O. If i1 > 0

and (3,1) 1 C then (x1+1, 1) E (A+C)----.....0 where

x1
= max{xl (x, 1) E a If (3, 1) E C and (0, 1) C then

C1 = 1(1, 1), (3, 1)}; hence, (2, 1) E (A+C)*---..C. If (3, 1) E C and

(0, 1) e C, then either (1, 1) q C or (1, 1) E C and (2,1) 1 C

since i1 < 3. But then either (1,1) or (2, 1) is an element of

(A+C)\.,C.

One of the numbers i1, i2, or i3 is zero, for otherwise

(A+C)(Iz) (A+C)r(Iz) > (C r (Iz)+1)
> 8.

0<r<3 0<r<3

If i1= 0 then C(I) > 5, io < 2, i2 < 2, and i3 <_ 2 imply

io > 0, i2 > 0, and i3 > 0. If 0 we proceed to show that not

both i2 = 0 and i3 = 0. Assume i2 = 0 and i3 = 0. Then from
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C(I )> 5, i0
< 2, and < 3 we have i0 = 2 and = 3.

z

Since (A+C)0(Iz) > i0+1 = 3 and (A+C)i(Iz) > il+1 = 4, then

Ro R1 A + C. Hence, (0, 1) E C. Now A(I) > 5 implies

there exist distinct elements (x0, y0) and (x1, y1) E A such that

y > y > 0, and so

A + C Ro {(x0,y0+s0), (xi, yi+s )}

where

if x0 x1 and
Yt

> 1,

if x0 x1 and yt = 1,

st = 0 if x0 = x1 and
Yo 1'

if x0 = x1, y1 = 2, and yo = 1,

1-t if xo = xl, y1 = 3, and yo = 1.

But then (A+C)(Iz) >

or3> 0.

The preceding paragraph establishes that exactly one of the

numbers il' 12'

which is a contradiction. Thus, i > 0z

and i3 is zero.

We show that the element (2, 0) V D. Assume (2, 0) E D.

Then (1,3) V A + B + C, and this implies that

{(x, y) I 0 < < 1, 2 <y <3} (- C is empty. But then i2 = 0 and

i3 = 0.

Next we show that (3, 0) V D. Assume (3, 0) E D. Then
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(0, 3) V A + B + C, and so (0,2) E D or (0,3) E D. This in turn

implies that (2,0) C and (3,0) C. Thus, Co C {(1, 0)}

and i < 1. Furthermore, since (3, 0) E D then (0, 2) V C and0 -
(0,3) 1 C. Hence i2 < 1 and i3

< 1. Recall that i1 < 3,- - -
C(I) > 5, and exactly one of the numbers i1, i2, and i3 = 0.z -
It follows that io = 1 and i1= 3. Since i1 = 3, then

(A+C)1 (I ) = 4. Thus, (A+C)1 = R1' and so (0, 1) E A j C. Since
z

io = 1 then Co = {(1, 0)). But then 1(1, 0), (0, 1)} is a subset of

A or C.

We now claim that (2, 1) 1 D. Assume (2, 1) E D. Then

(1, 2) IA + B + C, and this implies that

{(0, 1), (1, 1), (0, 2), (1, 2)} C is empty. Thus, i2 = 0 and

C1
C 1(2, 1), (3, 1)}. Since (0, 1) 1 C then (3, 1) 1 C, for other -

wise C1 = 1(1, 1), (3, 1)). Since (1, 2) íA + B + C, then

1(1, 1), (0, 2), (1, 2)} has a nonempty intersection with D. It follows

that (2, 1) C, for otherwise (3, 3) EA+B+C+ D. But then

= 0 and i2 = 0.

Next, (3, 1) 1 D. Assume (3, 1) E D. Then (0,2) 1 A + B + C,

and this implies that (0, 2) E D, (0, 2) 1 C, and (0, 1) 1 C. Since

(0, 2) E D then {(x, y) I 2 x < 3, 0 < y < 1} C is empty, for

otherwise (3, 3) E A+B+C+ D. Thus, 10 1, 11 <1, and

i2
<1. However, this is not possible since C(I ) >5,

i3
< 2 and- z - -

either i1, 12,
or i3 is zero.



(A+C+D)(I (A+C+D)r(Iz)

0<r<3

(A+C+D)r(Iz)) + (A+C+D)t(Iz)

0<r<3
r it

( (A+C)r (Iz)) + 2

0<r<3

( (Cr(Iz)+1))+ 2

0<r<3
r it

Ca ) + 5 > 9,
z

which is a contradiction.
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Finally (1, 1) 1 D. Assume (1, 1) E D. Then

1(1, 1), (2, 1), (1, 2)} C is empty. Thus, C/ c {(o, 1), (3, 1)}

and C2
{(0, 2)}. We have previously established that

C1
=1(1, 1), (3, 1)} if (3, 1) E C and (0, 1) 1 C. It follows that

(0, 1) c C if i1 >0. If i3 = 0 then i2 i 0' and so C2 = {(0,2)}

and (A+C+D)3 1(1, 3), (2, 3)}. If i2 = 0 then i1 0' and so

(0, 1) E C and (A+C+D)2 {(1, 2), (2, 2)}. Also,

(A-Fc+D)1
{.(1, 1), (2, 1)1. Now let t E {1, 2, 3} be such that

C (I )= 0. Then (A+C+D) (I ) > 2 andt z t z
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We have established that D r (R0v R1) is the empty set.

>Thus,A + B CDRovR1 Now, D(I ) 0 and so there is an

element (x, y) E D such that 0 < x < 3 and 2 < y < 3. But_

then (3-x, 3-y) E Ro L./ R1, and it follows that

(3, 3) EA+B÷C+ D. However, this is contrary to

A+B+C+Drzr.

The proof of the theorem is now complete.



APPENDIX IV

We now prove Theorem 4.8 which was stated without proof in

Chapter IV.

Theorem. Let z = (4, 2) E J2 and let A, B, C C I. If

A + B + C = I' then at least one of the sets A, B, and C has less

than five nonzero elements.

Proof. Assume A(I ) >5, B(I ) >5, and C(I ) >5.
z z z

{(1, 0), (0,1)1 C AvBv C. Relabel sets A, B, and C

if necessary so that (1,0) E A and (0, 1) E A v B.

Since A + B + C = I', it follows from Theorem 4. 1(i) that

(A+B)(Iz) < 13 - C(I) < 8.

Define Ro = {(x, 0)11 < x < 4}, R1 = {(x, 1)10 < x < 4}, and

R2 = {(x, 0)10 < x < 41. Let St = S Rt for any set S C

and t E {0, 1, 21. Set io = Bo(Iz), i1= Bi(Iz), and i2 = B2(Iz).

Now B2 {(0, 2), (1, 2), (2, 2)1, for otherwise (4,2) E A + B.

It follows that
i2 < 3.

We claim io IS 3. Assume

A2 is empty, for otherwise if (t, 2) E A with 0 < t < 4 then

(4, 2) = (t, 2) + (4-t, 0) E A + B. Also (0, 1) V A, for otherwise
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Now

0
> 3; hence R0 = B0. Now

A + B Bo v (B0+{(0, 1)}) {(0, 1)} = Ro R1



and (A+B)(Iz) > 8. Thus, (0, 1) e B. Since A(I ) > 5, A (I ) < 4z - 0 z

and A2z(I) = 0, then A (I ) > 1. Choose (a, 1) E A. Now a < 4,
1 z -

for otherwise (4, 2) = (4, 1) + (0, 1) is in A + B. Also, a > 1

since (0, 1) V A. Then

A + B {o, (1, 0), (a,1)1 + (R01/4...){0, (0, 1)})

R0 ( 0 1), (a, 1), (a+1, 1), (a, 2), (x, 1)1

where x = 1 if a > 1 and x = 3 if a = 1. But then

(A+B)(Iz) > 8. Hence, i0 < 3.
We now show

i1
< 3. Assume i1 > 3. Then (0, 1) e B, for-

otherwise (0, 1) e A and B1 = {(x, 1)11 <x < 4}, which imply

(4,2) E A + B. Since (1,0) e A, (0, 1) E B, and
i1

> 3, then

(A+B)1 = RI. If (x, 1) E B and 0 <x <4 then (4-x, 1) V A.

Thus, A (I ) <R (I ) -B (I ) < 1. Since A(I ) > 5 and1z - 1z 1 - z -
Ai(Iz) < 1, then AO(Iz) + A2(Iz) 4. But then (A+B)(Iz) > 8

since A + B A0 R1 A2. Therefore, i < 3.

We claim (A+B) (I ) >1 +1. This is immediate if (1,0) V B.
0 z 0

If (1,0) E B then there is an integer b' such that 1 < b' < 3,

(b', 0) e B, and (b'+1, 0) 1 B, for otherwise i0
>3. But A + B

contains (b1+1, 0), and so (A+B)0 > i0+1.

We next claim (A+B)i(Iz) i1+1, and (A+B) > j1+2
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if (0, 1) V B. Let i1 = 0. Then (0, 1) E A. Also i0 > 2 since



B(I ) > 5 and i2 < 3. With {(b1' 0), (b2' 0)}
B0

where
z

< b
1 2' then {(b, 1), (b2' 1)) C A + B. Thus (A+B)1 (I ) >

i1
+2.

Let
i1

> 1. If (0, 1) E B then there is an integer b" for which

< b" < 2, (b", 1) E B, and (b"+1, 1) 1 B, for otherwise 11 >3.

Thus, (A+B)1(I ) >11+1 since (b"+1, 1) E A + B. If (0, 1) 1 B

then (0, 1) E A, and so (4, 1) 1 B. Let b1 max{b1(b, 1) E 13).

Then 0 <
b1

f< 4 and L(131+1, 1), (0, 1)) C (A+B)\.B. Therefore,

(A+B)i(Iz) >11+2.

We claim (A+B)2(Iz) >12+1. Let i2 > 0. Let

b2 = max{b1(b, 2) E 131. Since b < 2 then (b2
+1 2) E A + B.

2

Thus, (A+B)2(Iz) >12+1. Let i2 = 0. If A2 is not empty then

(A+B)2 (I ) > A2 a ) >1
12

+1. If A2 is empty then A1 (I) > 1;
z

also
B1

(I ) > 1. Let (a, 1) E A and (b, 1) E B. Sincez

(0, 1) e A v B, then either (a, 2) E A + B or (b, 2) e A + B, and

so (A+B)2(Iz) > 1 = i2+1.

We conclude that B(I) = 5, (A+B)0(Iz) = 10+1,

(A+B)1(Iz) = 11+1, and (A+B)2(Iz) = 12+1 since

8 > (A+B)(Iz) (A+B).(I )
J z

0<j<2

> (10+1) + (i1+1) + (12+1)

B(I ) + 3 > 8.
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In addition, (0,1) E B, for if not then (A+B)1(Iz) > i1+1.

We claim i2 > 0. To establish this we show that the assump-

tion i2 = 0 implies A + B +10, (4, 0)1 = A + B, which is contrary

to Theorem 2.10. Assume i2 = 0. Then (A+B)2(Iz) = i2+1 = 1,

and so A2
(I ) < I. Also,

A1
(I ) < 1, for if {(a, 1), (a', 1)/ C A

z z -
with a < a' then {(a, 2), (a', 2)1 c A + B and (A+B) (Iz)

> 1.

Now A (I ) < 3' for otherwise A = R But thenOz- 0 0

A + B Ro R1 and (A+B)(Iz) > 8. Since A(I) > 5, it follows

that Ao(Iz) 3 and Al (I) = 1 = A2(Iz). Let A1 = {(a1, 1)} and

A2 = {(a2' 2)). We have a < 4 and a2 < 4. Now (1, 0) B, for

otherwise A + B {(a2, 2), (a2+1, 2)1 and (A+B)2(Iz) > 1. Also

(1, 1) 1 B, for otherwise A + B {(a1, 2), (a1+1, 2)/ and

(A+B)2(Iz) > 1. Recall io+ii = 5, io 5_ 3, and i1 5_ 3. Now

(1,0) E A, (1,0) B, (A+B)o(Iz) = i0+1, and 2 <i0 <3 imply- -
either B0 = 1(2, 0), (3, 0), (4, 0)/ or Bo = 1(3, 0), (4, 0)}. In any

case, (4, 0) E A + B. Furthermore, (0, 1) E B, (1, 1) E A + B,

(1, 1) 1 B, (A+B)i(Iz) = i1+1, and 2 < i1 < 3 imply either

B1 = 1(0, 1), (4, 1)/ or Bo = 1(0, 1), (3, 1), (4, 1)). In any case,

(4, 1) E A + B. Since A2(I) = 1 = (A+B)2(Iz) then A2 = (A+B)2.

Thus, (0, 2) 1 (A+B)2 since (4, 0) E B. It follows that

A + B +{0, (4, 0)} = A + B since 1(4, 0), (4, 1)1 C A + B

(0,2) IA + B.

We proceed to obtain a contradiction in each of the cases i = 0,



there is an
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10 = 1' 10 = 2' and

Case 1. BO(Iz) = 0.

Since io = 0 then Ro C A + C. Since

integer b such that (b, 2) E B. Thus,

(4, 2) = (4-b, 0) + (b, 2) E (A+C) + B. However, A + B + C = I'

and (4, 2) V I; .

Case 2. Boa 1.Oz =

Since (A+B)0(Iz) = 10+1 = 2 and (1, 0) E A, then either

Bo = {(1, 0)} and (A+B)o = {(1, 0), (2, 0)} or B0 = {(4, 0)} and

(A+B)0 = {(1, 0), (4, 0)}.

First consider B0= {(1, 0)} and (A+B)0 = {(1, 0), (2, 0)}.

Then A0(I) = {(1, 0)) and Ao(1z) = 1. Assume i2 = 1 and let

B2 = {(), 2)1. It follows that (A+B)2 = {(b, 2), (b+1, 2)) since

(A+B)2(Iz) = 12+1 = 2 and (b+1, 0) = (1,0) + (b, 2) E A + B. Now

(1)+1, 2) V A, for otherwise (b+2, 2) = (b+1, 0) + (1, 0) E A + B since

b < 2. Thus, A (I ) < 1. Since A(I ) > 5, A (I ) = 1, and2 z - Oz
A2(I ) < 1, then A1 (I) 3. Let {(a1, 1), (a2, 1), (a3, 1)} C A

with al <a2 < a3. Then {(a1, 2), (a2, 2), (a3, 2)1 C A + B since

(0, 1) E B. But this is contrary to (A+B)2(Iz) = 12+1 = 2. Next

assume i2 = 2, and let B2 = {(b1, 2), (b2, 2)} where b1 < b2.

Since 0 <b1 < b2 <2, (1,0) E A, and (A+B)2(Iz) = 12+1 = 3,

it follows that b2 = b1 +1 and (A+B) = {(b1' 2), (b1 +1,2), (b1+2,2)}.
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But then A + B + {0, (b1, 2)1 = A + B, which contradicts Theorem

2. 10. Finally, assume i2 = 3. Then B2 = {(0, 2), (1, 2), (2, 2)1

and A + B + {0, (0, 2)1 = A + B. Again, we have a contradiction.

Consider Bo = {(4, 0)/ and (A+B) = {(1, 0), (4, 0)). Then

{(1, 0), (2, 0), (3, 0)/ C A + C, and so Bz C {(0, 2)}. Since i2 > 0

then Bz = {(0, 2)}. Thus, (A+B)2 = {(0, 2), (1, 2)1. From (0, 1) E B

and (A+B)2 = {(0,2), (1, 2)), we have
A1

C {(0
1)"

(1 1)). Also,

(0, 2) V A and (4, 0) V A since {(4, 0), (0, 2)/ C B. Thus,

A C {0, (1, 0), (0, 1), (1, 1), (1, 2)), but this contradicts A(I) >5.

Case 3. Bo(Iz) = 2.

Since (1, 0) E A and (A+B)0(Iz) = i0+1 = 3, then either

Bo = {(1, 0), (2, 0)/ and (A+B)0 = {(1, 0), (2, 0), (3, 0)1, Bo = {(1,0),(4,0)/

and (A+B)0 = {(1, 0), (2, 0), (4, 0)), or Bo = {(3, 0), (4, 0)/ and

(A+B)0 {(1, 0), (3, 0), (4, 0)). Also i0+i1+i2 = 5, io = 2, i1 > 1, and

i2 > 1 imply that i = 1 and i2= 2 or i1 = 2 and i2 = 1.

Assume i1 = 1 and i2 = 2. Then B1 = {(0, 1)1 and

(A+B)1 {(0, 1), (1, 1)). This in turn implies Ao = {(1, 0)), for

otherwise (x, 1) = (x, 0) + (0, 1) E A + B if (x, 0) E A and

2 < x < 4. Since (A+B)1 = {(0, 1), (1, 1)1 and (2,0) or (4,0) is

in
B0, then (0, 1) V A. Since (A+B)1 = {(0, 1), (1, 1)/ and (1,0)

or (3,0) is in Bo, then (1, 1) i A. Thus, A1 is empty.

However, Ao(Iz) 1, Alaz = 0, and A2(I) < (A+B)2(Iz) = i2+1 = 3
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are contrary to A(I) > 5.

Next assume i = 2 and i2 = 1. Since (1,0) E A, (0, 1) E B,
1

B1
(I ) = 2, and (A+B)1az) = i1+1 = 3, then either

B1 = {(0, 1), (1, 1)} and (A+B)1 = {(0, 1), (1, 1), (2, 1)} or

BI = {(0, 1), (4, 1)1 and (A+B)1 = {(0, 1), (1, 1), (4, 1)}. Now (2,0) 1 A,

for otherwise in the first case (3, 1) E A + B and in the second case

(2, 1) E A + B. Also (3,0) IA, for otherwise (3, 1) E A + B in

either case. Thus, A0 {(1, 0), (4, 0)). Since i2 = 1 then

B2 = {(b, 2)} where 0 < b < 2 and (A+B)2 = {(b, 2), (b+1, 2)}. We

proceed to show that
A0

(I ) + ) + A2(I ) < 5, which contradicts

A(Iz) > 5.

Consider B2 = {(0, 2)}; hence, (A+B)2 = {(0, 2), (1, 2)}. It

follows that (0,2) V A since either (2,0) E B or (4,0) is in B;

also, (1,2) IA since either (1,0) or (3,0) is in B. Thus,

A2(I) = 0. Moreover, (4, 0) 1 A since (0, 2) E B. Thus,

A0 = {(1, 0)} and A0 (I ) = 1. Since A1
(A+B)1 thenz

A (I ) < i +1 = 3. Therefore,
1 z 1

A.(I ) <4.z -
0<j<2

Consider B2 = {(1' '2)}. hence, (A+B)2 = {(1, 2), (2, 2)1. If

(1,0) e B then (2,2) 1 A, and if (1,0) 1 B then (3,0) E B and

so (1,2) IA. Therefore, A2(I) 5_ 1. Since (0,2) IA + B and

(0, 1) E B, then (0, 2) 1 A and (0, 1) 1 A. This in turn implies

that (0,2) E B + C. Since A1
C (A+B)1 and (0,1) IA, then



Since
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A (I ) < 2. Since (0, 2) E B + C then (4,0) A, and soz

z A.(I ) < 4.A (I ) < 1. Therefore, j Z

0<j<2
Finally consider B2 {(2, 2)}; thus, (A+B)2 = {(2, 2), (3, 2)).

Since (0, 1) E B it follows that (0, 1) V A and (1, 1) V A.

Therefore
A1

(I ) <1. Since (0,1) IA and (0,2) IA, thenz

(0, 2) E B + C. This in turn implies (4, 0) 1 A. Thus, Ao = {(1, 0)}

and Ao(Iz) = 1. Furthermore, A2(Iz) <12+1 = 2. Therefore,

Ajaz) 5_4.
0< j<2

Case 4. BO(Iz) = 3.

i0+11-1-i2 = 5, io = 3, > 1, and i2 > 1, then

= i2 = 1. Thus, B1 = {(0, 1)} and (A+B)1 = {(O, 1), (1, 1)). Now

(1, 1) V A, for otherwise (2, 1) E A + B or (3, 1) E A + B since

(1,0) s B or (2,0) E B. Hence, A1(Iz) < 1. Also, (x, 0) IA

for 2 <x < 4, for otherwise (x, 1) = (x, 0) + (0, 1) E A + B. Thus,

A (I ) < 1. Moreover,Oz A2(Iz) < (A+B)2(Iz) < 12+1 = 2, and so

A.(I ) < 4. However, this is contrary to A(I) > 5.z
0<j<2

The proof of the theorem is now complete.



APPENDIX V

We now prove Theorem 4.9 which was stated without proof in

Chapter IV.

Theorem. Let z = (6,1) E J and let A, B, C C Iz If

A + B + C I then at least one of the sets A, B, and C has less

than five nonzero elements.

Proof. Assume A(Iz) >5, B(I ) >5, and C(Iz) >5.

Now 1(1,0), (0,1)} C A B 1/4..) C. Relabel sets A, B, and

if necessary so that (1,0) E A and (0,1) E A j B.

Since A + B + C = I' then from Theorem 4.1(i) we have

(A+B)(Iz) < 12 - C(Iz) < 7.

Define Ro = {(x, 0)11 < x < R1 = {(x, 1)10 < x < , and

S S n Rt for any set S C Iz and t E {0, 1}.

Now B1
C {(x, 1)10 <x <4} since (1,0) E A and

(6,1) 1 A + B.

We proceed to show that 1 < Bi(Iz) <4 for i = 0 and i = 1.

Assume B0 (I ) >4. Then (A+B)0 = Ro, and
z

A + B R0 {(0,1)} T where T = {(0,1)} + Bo if (0,1) E A

and T = {(1,1)} if (0,1) E 13"----A. But then (A+B)(Iz) > 8;

hence,
B0

(I ) <4. Assume B1(I) >4. Thus, B1 = {(x,1)10 <x < 4}.z

Since (A+B)(Iz) <7 and (1,0) E A, then

A + B = {0, (1,0)} {(x, 1)10 <x < 5}.
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But then A + B + {0, (0,1)} = A + B, which is contrary to

Theorem 2.10. Hence, B (I ) < 4. Since
1 z

Boa ) + B1a z) = Ba ) >5 and B.a ) < 4 for i = 0 and i = 1,z 1 Z

then 1 < B.(I ) < 4.
1 Z

=Nextwe show that B(I ) , (0,1) E B, and

(A+B).(I ) = B.(I ) + 1 for i = 0,1. If (1,0) V B then1z 1 z

(A+B)O
(I ) >

BO
(I ) + 1 since (1,0) E A. If (1,0) E B then there

z

exists an integer b' such that 1 < b' < 4, (b', 0) E B, and

(b'+1,0) B, for otherwise
BO

(I >4. However, (31+1,0) E A + B,

and so again (A+B)0(Iz) Bo(Iz) + 1. Let b" = max{b I (b, 1) E 13}.

Since (b"+1,1) E (A+B)"...13, then (A+B)1 (I ) > B1
(I ) + 1. Further-

more, (A+B)i(Iz) >B1 (I) + 2 if (0,1) B. Since

7 > (A+B)(Iz) = (A+B)0(Iz) + (A+B)i(Iz)

B (I ) + 1 + (A+B)1a
z z)

B (I ) + 1 + B(I) + 1Oz 1z
B(Iz) + 2 > 7,

then B(I) = 5 and (A+B).(I ) = 13.(I ) + 1 for i = 0,1. Also,
z 1 Z 1 Z

(0,1) E B, for otherwise (A+B)l(Iz) > Bi(Iz) + 1.

Since (0,1) E B, (1,0) E A, and (A+B)i(Iz) B1(I) + 1,

then B {(x, 1)1 0 <x < j -1} and (A+B)1 = {(x,1) I 0 <x < j}
1

where j = Bi(Iz). Recall that j < 4. Now Ao 1(1,0)1, for
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(x, 0) + (j+1-x, 1) = (3+1,1) is in A + B if 2 <x <3, or

(x, 0) + (0, 1) = (x, 1) is in A + B if j+1 < x < 6. Since A(I ) > 5
z

and A0(I) = 1, then Aiaz) 4. Thus, j > 3 since

j+1 = (A+B)i(Iz)>A1(I) 4. Assume j = 3. Then

A1 = (A+B)1 = {(x, 1)10 <x < 3). Since B0(I) >0 there is an

integer b such that (b, 0) E B. But then (b, 1) = (0, 1) + (b, 0)

is in A + B if 4 < b < 6 and (4, 1) = (4-b, 1) + (b, 0) is in

A + B if 1 <b < 3. Thus, j = 4, and so B0(I) = 1. Since

A0 = {(1, 0)), B0(I) = 1, and (A+B)0
(I ) = B0

(I ) + 1, then
z z

0
= {(1, 0)) or Bo = {(6, 0)). In either case

A + B + {0, (1, 1)) = A + B, which is contrary to Theorem 2.10.

It follows that A(I) < 5, B(I) < 5, or C(I ) < 5.z
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otherwise (x, 0) E A for xome x where 2 < x< . But then




