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Abstract assumptions about number, scale, and layout of objects in
the scene.

Our goal is to detect boundaries of objects or surfaces  We make a distinction between boundaries and edges.
occurring in an arbitrary image. We present a new ap- An edge is defined as a sequence of contiguous pixels pass-
proach that discovers boundaries by sequential labeling of ing through a ramp of relatively abrupt changes of low-
a given set of image edges. A visited edge is labeled agevel image properties, such as brightness, or variatiéns o
on or off a boundary, based on the edge’s photometric andprightness. A boundary, instead, represents the change in
geometric properties, and evidence of its perceptual group subimage ownership between two distinct objects or sur-
ing with already identified boundaries. We use both local faces present in the image. Since visible boundaries co-
Gestalt cues (e.g., proximity and good continuation), and incide with a subset of edges in the image, we parse the
the global Helmholtz principle of non-accidental grouping problem of boundary detection into two subproblems: (a)
A new formulation of the Helmholtz principle is specified detecting edges, and (b) identifying which of these detkcte
as the entropy of a layout of image edges. For boundary edges represent object boundaries. Thus, two criticakidea
discovery, we formulate a new, policy iteration algorithm, |ie at the foundation of our approach, as explained below.
called SLEDGE. Training of SLEDGE is iterative. In each First, we use edges as mid-level image features, since

training image, SLEDGE labels a sequence of edges, whichiyey offer a number of advantages over other feature types,
induces loss with respect to the_ ground truth. These Se-such as patches] or regions [.9], often used in previous
quences are then used as training examples for learningyork. Edges are dimensionally matched with object bound-
SLEDGE in the next iteration, such that the total 10SS is gries, and thus naturally facilitate boundary detectioie®
minimized. For extracting image edges that are input t0 yynes of features typically require additional processorg
SLEDGE, we use our new, low-level detector. It finds salient gy mapping to boundaries. A set of extracted edges pro-
pixel sequences that separate distinct textures withiimthe  iges rich information about the spatial extent, and local a
age. On the benchmark Berkeley Segmentation Datasety|opa| spatial interactions among objects occurring in the

300 and 500, our approach proves robust and effective. Wejmage. \We formalize this information by using the Gestalt
outperform the state of the art both in recall and precision principles of grouping3, 34.

for different input sets of image edges. Second, we build on previous work that shows that it

is possible to learn to detect boundaries in arbitrary im-
. ages (e.g.,q1, 57]). Given manually annotated training
1. Introduction images, our goal is to learn how to optimally combine

This paper addresses a basic vision problem, that of defperceptual-grouping cues with intrinsic properties ofeéke
tecting boundaries of objects or surfaces occurring in an ar tracted edges for boundary detection. This is challenging
bitrary image. Shape is widely recognized as one of the because the relative significance of global vs. local image
most categorical object featured.[ Thus, boundary detec- ~ properties, as well as the priority ordering of Gestalt laws
tion is often used as input to a wide range of higher-level vi- significantly varies across different scenes.
sion tasks, including object recognition B, 22], scene re- Our approach consists of the following major steps.
construction from stere®p, 70], and tracking P7]. Aimed Given a set of training images, we first extract edges from
as an initial step of diverse vision systems, boundary de-each image. To this end, we use our new salient edge detec-
tection in this paper is not informed about specific objects tor that finds contiguous pixel sequences that separate dis-
present in the scene, i.e., about their photometric, geomettinct textures within the image. A classifier is then learned
ric, and structural properties. Also, it is not based on any to sequentially label the edges as on or off a boundary. All



decisions made before visiting an edge are used to providemage features to their spatial neighbors may overpower
perceptual-grouping evidence for classifying that edge. F  correct evidence provided by other far away features. For
example, an edge will more likely be classified as bound- example, an edge is very likely classified as background
ary if it is close to, and continues well previously identi- when itis connected in a MRF (or CRF) only to background
fied boundaries. The classifier is learned so as to minimizeedges. The issues related to hand-picking MRF/CRF struc-
detection error with respect to manually annotated groundture have already been studied in the object recognition
truth. When a new image is encountered, its edges are exeommunity (e.g., $3, 1]). Second, tractable inference of
tracted, and then sequentially labeled. Empirical results MRFs/CRFs typically requires approximations, e.g., Loopy
presented in this paper demonstrate that our approach outBelief Propagation, or relatively slow Markov Chain Monte
performs the state of the art on benchmark datasets, includCarlo (MCMC) sampling.

ing the Berkeley segmentation datasets (BSD) 300 and 500 We here depart from the above line of thinking. Our the-

[50, 4], Weizmann Horses/], and LabelMe §9]. sis is that sequential perceptual grouping is a valid frame-
work for boundary detection. Our motivation comes from
1.1. Motivation the well-recognized processes of human perception, where

attention is directed to certain salient locations, segquen

Psychophyglgal studies have Jong _demonstrated thartiaIIy, rather than uniformly to all locations at onc&]. We
early human vision strongly favors certain shapes and Con'classify one edge at a time based on its properties and the

figurations over others without high-level recognitiarij previous sequence of decisions. The ordering in which the
d- .

Among many theories of perceptual organization that a . . . . .
: . edges are visited is data-driven, where edges with higher
dress this phenomenon, Gestalt theoty]] Helmholtz's confidence in decision have proportionally higher prior-

likelihood principle 9], and Minimum description length . - . .

(MDL) [3(5]) havF()a hgd] major impact on corrF:puter viiion ity, and thus help make decisions in subsequent ambigu-
. S . ous cases. Thus, we use a greedy, policy iteration algo-

[46]. Gestalt theory provides a number of descriptive prin- rithm, and still achieve better results than the state of the

ciples for grouping parts into whole, but does not specify a art, MRF/CRF-based approaches
computational process for achieving this percept. The more ™ '

formal Helmholtz’s likelihood principle specifies the prob
ability of grouping of a set of elements that is low if the
placement of the elements is likely to be accidental. MDL  The main steps of our approach are illustrated in Eig.
provides another related formalism that the grouping shoul Step 1: Given an image, we use an edge detector (e.g.,
achieve the shortest coding length. Canny) to extract image edges. Step 1 may use any avail-
Based on the above theories of perceptual organizationable edge detector, as long as it yields high recall of true
prior work has argued that the key to detecting boundariesboundaries. Our subsequent steps are expected to improve
in the image is to model the underlying probability distri- precision of boundary detection. In addition to off-theskh
bution governing the ensemble of boundaries and their con-edge detectors, we also use our new salient edge detector.
figurations (e.g., {3, 57]). Such a model would be able It detects contiguous pixel sequences that separatedistin
to provide quantifiable definitions of perceptual-grouping image textures. The extracted edges are then organized in a
laws, and their relative significance for boundary detectio graph whose nodes correspond to the edges, and arcs cap-
To this end, prior work typically resorts to graphical mod- ture their spatial relations. The main purpose of this graph
els, such as, Markov Random Fields (MRF}], or Condi- is to facilitate computation of Gestalt cues in the subsatjue
tional Random Fields (CRF}[]. These graphical models steps, since the graph stores all relevant spatial rekation
are characterized by: (i) the number of random variablesamong the edges. When the edge detector produces a hier-
(nodes) and their statistical dependencies (graph connecarchy of edges, then our graph is accordingly hierarchical,
tivity), jointly referred to as the model structure, and (i where ascendant-descendant arcs capture the recursive em-
parameters of probability density functions (pdfs) associ bedding of smaller edges within larger ones, and lateral arc
ated with the random variables in the model. While this represent neighbor relations of sibling edges (Ejg.The
framework is principled, in practice, various simplifiaati root of this hierarchical graph is a virtual node, convetijen
and approximation steps are implemented in inference andntroduced to indicate that the longest edges in the image ar
learning to handle their computational complexity. Fitisg siblings. Nodes and arcs in the graph are characterized by
model structure is typically manually specified (e.g., pair descriptors of edge properties (e.g., saliency, repdayabi
wise connectivity among neighboring image features). This in the image, collinearity with neighbors, symmetry, etc.)
simplifies the learning problem to estimating only model  Step 2: Nodes in the graph (i.e., edges) are sequen-
parameters. However, since the parameters depend on thgally labeled as boundary or non-boundary, based on their
model structure, such learning may be suboptimal. Also, descriptors and perceptual-grouping cues. At each edge,
in inference, it might happen that wrong connectivity of both pairwise and global Gestalt cues (e.g., collinearity a

1.2. Overview of Our Approach



Figure 1. Overview: (a) The input image. (b) Low-level edgeedtors, typically output a probability map of occurremfesdges.
Analyzing this map at an exhaustive range of values yieldstaoEdistinct edges, at different scales, where some edgssaover
the same pixels. (c) The resulting edges are organized imghghat captures their hierarchical (part-of) and neighbtationships.
SLEDGE sequentially labels each node (i.e., edge) as beir{green) or off (red) an object boundary. (d) The identifiedraries are
characterized by SLEDGE's confidence in labeling (darkeamsenhigher confidence).

Helmholtz principle) are re-estimated relative to the prev Methods based on low-level features typically classify
ously identified boundaries. This is made efficient by wiliz small patches, centered at each pixel location, as on or off
ing the hierarchical graph structure. Bequentialabeling an object boundary. They use a bank of filters to identify
of edges we use our new algorithm, called SLEDGE. Train- abrupt changes in image textured[ 52, 11, 54, 67], and

ing of SLEDGE is iterative. In each iteration, SLEDGE la- seek the right scale at which these changes octyr[).

bels a sequence of edges, extracted from each training imRecent work focuses on learning how to classify descrip-
age as in Step 1. This induces loss with respect to the manutors of image patches from manually segmented, training
ally provided ground truth. The training sequences are thenimages {11, 42, 51, 18, 39). However, unlike image edges
used as training examples for learning SLEDGE in the nextthat we use as basic features, patches are not dimensionally

iteration, such that the total loss is minimized. matched to boundaries. As a result, image patches provide
Step 3: When a new image is encountered, its edges areonly limited, local information about boundary presence.
sequentially labeled by SLEDGE. The key difference from our approach is that they clas-

sify fixed, precomputed descriptors associated with patche

Paper organization: Sec.2 explains our relationships independently of one another. Instead, we sequentially
to prior work, and points out our main contributions. Sec.  classify dynamically changing descriptors associateth wit
describes intrinsic, pairwise, and global layout proerti edges, where both the descriptor values and classificattion a
of image edges that we use for identifying the evidence €ach step are based on the previous decisions.
of Gestalt laws of grouping. Seé. specifies SLEDGE. Motivated by the Gestalt theories of grouping in human
Sec.5 describes our new edge detector that provides inputperception §3, 3¢, another family of methods use mid-

to SLEDGE. Finally, Secs, and Sec? present our experi-  level image features, such as edges and regions, for bound-
mental evaluation, and concluding remarks. ary detection. Edge-based approaches, first, extracttarclut

ofimage edges, and then use the Gestalt principles of group-
. N ing to select and link a subset of the edges into boundaries
2. Prior Work and Our Contributions [68,73,60,47,72,56,57,40]. Region-based methods, first,

This section reviews prior work and outlines our contri- identify image regions using, e.g., Normalized-cut, Mean-
butions. Our review is organized with respect to the three Shift, or Maximally stable extremal regions, then, conduct
major contributions of this paper—namely, we first point Gestalt grouping of these regions, and finally take contours
out the novelty of our approach to boundary detection, then,°f the mergers as boundaries[ 71, 3, 19). Due to ac-
explain our relationships to previous work on sequential la counting for more global information in the image carried
beling, and, finally, describe our contributions in forreali By mid-level features, these methods typically outperform

ing the Helmholtz principle of perceptual organization. the patch-based approaches. _
Our approach differs in two key aspects. First, some of

these methods (e.g4(]) detect boundaries by iterating two

separate steps — namely, classifying each image edge inde-
Prior work has addressed the problem of boundary detecpendently based on fixed edge descriptors, and grouping de-

tion using low-, mid-, and high-level visual cues. Sincesthi tected boundaries for the next iteration. By contrast, grou

paper considers boundary detection with no prior knowl- ing and classifying image edges are not two separate steps

edge about objects in the scene, we focus our literature rein our approach.

view only on methods that use low- and mid-level features.  Second, the other methods in this family make the as-

2.1. Boundary Detection



sumption that edges (or regions) and their interactiongmin ity, curvilinear continuity, and closure’p, 61, 68, 69]. In
mize the total energy of a MRF or CRF (e.i8[ 73, 60, 47, general, these methods resort to different heuristicasd)
77]), and thus unify edge classification and grouping under sumptions about the total number of boundaries; (ii) pro-
the MRF/CRF inference. One can also view our approach astocols for tracking (e.g., how to start); and (iii) definiti®

a simple form of MAP inference on an MRF (or CRF) over of edge affinities (e.g., using a few Gestalt principles with
image edges, using relaxation labeling. The labels of someequally weighted relevance for tracking). Once estimated,
nodes in such a hypothetical MRF/CRF are fixed to sequen-these affinities are kept fixed while tracking the edges. For
tially classify another node, until all nodes are labelege W example, in21], the boundary finding algorithm starts from
may iteratively continue relaxation re-labeling of the gea  short edge fragments, and iteratively expands “promising”
edges until certain convergence criterion is met (simylaol boundaries, such that their total number is small, and that
Loopy Belief Propagation). The main difference from the a total cost of assigning the edges to the boundaries versus
aforementioned MRF/CRF-based methods is that they typi-background is minimum. Our work differs in several as-
cally conduct the MAP inference of only node labels, given pects. We use training examples to learn how to estimate
a fixed MRF/CRF graph and fixed unary and pairwise po- affinities between pairs of edges by optimally combining a
tential functions. By contrast, labeling of each edge, in ou number of Gestalt cues with intrinsic edge properties. Dur-
approach, dynamically modifies both the connectivity and ing the course of our sequential edge labeling, the Gestalt
potential functions of the (hypothetical) MRF/CRF. Thus, cues are adaptively re-estimated with respect to the previ-
in our inference, we estimate both the MAP graph structure ously identified boundaries, and thus our edge affinities are
and node labels. continually changing. Also, we use training examples to

More sophisticated MRF/CRF models with adaptive l€arn how to optimally track edges under their dynamically
graph structures?}] have recently been used for bound- changing affinities.
ary detection. For example, i ], CRF inference accom-
modates dynamic changes of the CRF connectivity during
loopy belief propagation. They define pairwise potentials ~ Sequential edge labeling can be viewed as an instance
only for neighboring boundaries, i.e., edges that are tlirne of the structured prediction problem, where the goal is to
“on” in the previous iteration. However, they account only predict a (large) collection of related output variables fo
for pairwise Gestalt cues. They ignore important global per a given input. A number of structured-prediction formula-
ceptual grouping cues, which would amount to incorporat- tions are popular in computer vision, including, e.g., CRF
ing higher-order cliques in their CRF, [43), SVM-struct [54], and MPN [67]. Recently a new com-

As our key novelty, using the terminology of the putational framework, called SEARN, has been presented
MRF/CRF community, we sequentially re-estimate a in[31]. SEARN is aimed at integrating search and learning
higher-order clique of boundaries and their associated po-for solving complex structured prediction problems. This
tential function. We define this higher-order potentiallest ~ general framework is particularly well-suited for our ob-
Helmholtz likelihood of perceptual organization. Another jectives, because it transforms a structured predictiob-pr
important difference is that[/] uses a weighted sum of the lem into a sequential classification problem, and provides a
CRF'’s cligue potentials, i.e., a linear function of potatj strong theoretical guarantee that good performance on the
to label edges. By contrast, our decision function for label derived sequential classification implies good perforneanc
ing edges is non-linear, learned by the decision-treeielass of the original structured prediction. As a major advantage
fier. The advantages of using non-linear decision functionsover the above formulations, SEARN makes no assump-
vs. log-linear ones for boundary detection are largely unex tions about the underlying structure and statistical depen
plored, and deserve a more thorough investigation, beyonddencies of the output variables (e.g., no need for factuizi
the scope of this paper. Our results demonstrate that everthe joint probability distribution of the output variab)ess
without accounting for global cues of perceptual grouping, in CRF). In our case, this means that SEARN will allow
we achieve very similar performance (marginally above) to relaxing the assumptions (i)—(iii), frequently made by-pre
that of [57]. vious work, reviewed in Se@.1, about the total number

Our work is also related to research on tracking edgesand layout of boundaries in the image. For these reasons,
for boundary detection. This tracking extracts either one We Use the general framework of SEARN to develop a new
boundary given its starting poin§, 17, or multiple algorithm for sequentiallabeling of imageedges, called

boundaries without knowing their starting pointsl] 28, SLEDGE.
69, 34, 47, 21]. The edge tracking is typically based on

the likelihood that a boundary passes through a particular
location in the image, using different edge saliency mea- Most methods in computer vision focus on Gestalt laws
sures and affinities between them as a function of proxim- of grouping, whereas other theories of perceptual organiza

2.2. Sequential Labeling

2.3. Helmholtz Principle of Grouping



tion have received scant attention. This is, in part, dubeo t

e
well-known difficulties associated with formalizing quan- f b
tifiable models of these theories. For example, only a few W <'}’\
i b

_—

approaches to object boundary detection use the Helmholtz
likelihood principle [L5, 14, 16]. It states that a grouping as
a whole is perceptually “meaningful” if it rarely occurs in a (a) (b) (©)
random situation. To define “meaningfulness” of a spatial Figure 2. The graph of edges: (a) Large edges detected at a cer
configuration of edges, existing work typically defines an a tain scale. (b) Smaller edge fragments detected at anothés s
priori distribution of edge layouts (e.g., binomial distii ~ that coincide with larger ones in (a). (c) Ascendant-desaan
tion [15]), under the assumption that the edges are statistj-arcs in the graph represent the embedding of_smaller gdghmw
cally independent. They declare a specific configuration aslarger. ones. '.‘atera! arcs connect al edg? pairs that a@aed

. . . . . o as neighbors in the image via Delaunay triangulation (#igThe
s—meanlngful if the expectation O,f this configuration is Ie;s figure shows lateral arcs only between sibling nodes, faebets-
thane. In this paper, we relax the independence assumption,iyjjity The root node is a virtual node that defines that thgést
and use the entropy of the spatial configuration of edgeseqges in the image are siblings.
to globally characterize their layout as a whole. As shown
in this paper, relatively low values of this entropy indeat
“meaningful” layouts of edges, whereas higher entropy val- we give more details on particular edge detectors that we
ues are obtained for spatial configurations of edges belonguse. In this section, we assume that the edges are already
ing to background clutter. This allows efficient and robust given, and focus on describing their intrinsic dodal lay-
classification of edge layouts as “meaningful” or clutter by out properties (Se@.2). Sec.3.3 then continues with the
our SLEDGE. Thus, instead of committing to the relatively description of theigloballayout properties.
harder task of estimating the prior of edge layouts, as in  Given a set ofimage edges, they are represented as nodes
[15, 14], we formalize the Helmholtz principle within the in a graph whose connectivity is image- and edge-detector-

Lc~

discriminative framework of our SLEDGE. dependent. The main purpose of this graph is to organize
o spatial information about the edges in a manner that will
2.4. Our Contributions make efficient the iterative re-estimation of Gestalt cues

1. We formulate a new policy iteration algorithm, called dl?“”g the sequential edge labeling, in_Steps _2 and 3. To
SLEDGE, and use it for labeling edges. SLEDGE in- this end, arcs of the graph capture hierarchical (part-of)
troduces a number of modifications to the original and neighbor relationships between the edges, as further ex
SEARN framework, presented i8], including the plained in subsectiors 1and3.2. As one of our key contri-
use of: (i) iteratively changing classifier confidence for Putions for boundary detection, we also use a global char-
ordering image edges for their sequential labeling, in- acterization of the spatial conflguraulon_of edges. Specif-
stead of a deterministic ordering used by SEARN: and ically, _we_formahze the_ Helmholtz pr|nC|pI¢ of pe_rceptual
(ii) voting classifier decisions, instead of probabilisti- °rganization, and use it as a global grouping evidence for
cally sampling a classifier from the ensemble of itera- POUNdary detection. This is discussed in subsedién

tively learned classifiers by SEARN. .
3.1. Building the Graph of Image Edges

2. We account for both pairwise local cues and global .
evidence of perceptual organization. We exploit the = When the edge detector outputs a hierarchy of edges

Helmholtz likelihood principle. It states that whenever (e.g., gPb {4]), ascendant-descendgnt arcs are established
some large deviation from randomness occurs, a struc-between the grgph nodes representing larger (parent) edges
ture is perceived. We formalize the Helmholtz prin- and the_|r co_nsutuent,.smalle_r edge fragments (chﬂdm),
ciple as the entropy of the edge layout. The smaller SNOWN in Fig.2. An illustrative example of this embed-

the entropy of a spatial configuration of the edges, the ding is shown in Fig3. The root node is a virtual node

more likely they jointly represent object boundaries. that defines that the largest edges in the image are siblings.
Otherwise, the graph is not hierarchical, but captures only

pairwise spatial adjacency of the edges.

Lateral arcs in the graph are established between neigh-
Our approach discovers boundaries by sequential label-boring edges. We first define the neighbor relations for
ing of a given set of image edges. In Step 1, we use a low-sibling nodes (i.e., edges) under the same parent, and then

level detector to identify the image edges, and then extractneighbor relations for all other non-sibling nodes. Two sib
their intrinsic and layout properties. In Step 2, SLEDGE se- ling edges are called neighbors if there is no other edge that
guentially labels edges as boundary or non-boundary, basedhtersects the shortest line connecting their endpoimig, a
on their descriptors and perceptual grouping cues. In5ec. if their endpoints are near each other and sufficiently far

3. The Graph of Image Edges



(b)
Figure 3.Multiple layers of the graph of edges. (a) Original image. (b,c,d) Edges present in the first, secmd third layers of the
hierarchical graph. We see that long edges break up intapleuidges - see the shadow of the starfish ((c) and (d) in tepaothe right
edge of the foreground house ((c) and (d) in bottom row).alsal edges do not generate children nodes - see the manyesiged in the
green texture (top row) or the edges on the jeans of the matotboow).

from endpoints of the other edges. This is formalized using
the standard Delaunay triangulation (DT), as illustrated i
Fig. 4. DT is the unique triangulation of a set of vertices
in the plane, such that no vertex is inside the circumcircle
of any triangle. DT (and its dual Voronoi diagram) conve-
niently accounts for both local and global spatial interac-
tions among vertices, and thus has been extensively used
in the literature to define layout properties of image fea-

tures p7]. To find the neighbors, we .tra_lverse the graph, Figure 4. Delaunay triangulation (thin lines) of the endp®iof an
node by node, and, for each group of sibling edges, we con-gyample set of edges (bold curves). Delaunay trianguldBan is
struct the DT of their endpoints. If a pair of endpoints gets aimed at capturing the evidence of Gestalt grouping amomagém
connected in the DT, this means that they satisfy the aboveedges. Two edges are called neighbors if at least one paieif t
stated requirements of simultaneous nearness and isolatiorespective endpoints are connected in the DT, and this ctione
from the others. If these endpoints are also directly “visi- is notintersected by any edge. For example, the DT corréntlg
ble” to each other in the image, then their edges are declaredhat only the pair (c,d) are neighbors, reducing the conifylet
as neighbors. Regarding any other pair of edges, we Saysstimating Gestalt cues for all possible pairs of edges.

that non-sibling edges recursively inherit neighbor rets
from their respective parents, i.e., two non-sibling edges
neighbors if their corresponding parents are neighbors. Th
recursion ends with the virtual root node in the graph. Note
that we do not specify a heuristic minimum distance be- )
tween edges to define neighbors. This allows us to estimate>-2-1  Node Attributes

proximity a_nd gopd continuation l_)etwe_en even fairly dis- The descriptor of intrinsic edge properties,=[1;1, ¥;],
tant edges in the image, as sometimes is indeed necessaryggsociated with every nodec V, includes: (a) measure

3.2 Attributes of Nodes and Arcs of edge saliency, and (b) measure of edge repeatability in
o the image. Since object boundaries are usually salient, the

In the previous subsection, we have explained how to information about edge saliency is recordedyas. Typ-
build the graph(G = (V, E, ¢, ¢), from a given set of im- ically, this information can be directly obtained from the
age edges. Nodesc V, and arcqi,j) € E in the graph low-level edge detector, used in Step 1. For example (see
are characterized by descriptor vectags, V — R?, and Fig. 1), the detector gPb4[F]) outputs a probability map
¢ : E — R’.. The node and arc descriptors are defined in of boundary occurrence in the imag€h, whose mean
terms of intrinsic and spatial layout properties of the eerr  value along an edge we use as the saliency of that edge,

sponding image edges. In the sequel, we first specify the
node attributeg);, and then define the arc attribuigs.



;1 = mean(Pb). In the case that the low-level detector aq
does not output saliency (e.g., Canny), for each image edge q,| /o
we estimate its saliency as the mean of magnitude of inten-
sity gradient along the edge;; = mean(gradienj.

We also want to identify repeating edges in the image,
because they are likely to arise from image texture, rather r
than representing object boundaries. To this end, we matck \_/ . y_/

2

all edge pairs in the image. Then, we estimate the degree
of repetition of an edge as a function of its total similarity 2

to and number of best matches. This is formalized using

the standard link analysis algorithm Page Rank, used by (a) (b)

the Google Internet search engine), All image edges  Figure 5. (a) The line between symmetric poigtsandgs lying
are first linked, and the associated similarity,, between ~ On two distinct edges subtends the same angle with the riaspec
the corresponding pair of image eddés;) is computed as edge nqrmals. (b) C(_)ns_tant dlstancbe_tween symmetric points
sij = exp(—[|SC; — SC;|»), whereSC denotes the stan- of two distinct edges indicates parallelism of the edges.

dard shape descriptor Shape Contékt Log-polar bins of

the.Shape Cont_ext descriptor are scal.ed so as to cover the 4 Symmetry asp;;5 = meanc; ‘dfir(;l) ‘ As illustrated
entire edge, which makes; scale invariant. Note that; in Fia. 5(a). two point , dq ) t
is purposefully not rotation invariant, because our go#bis n 9. (2), two pointsy € i an g2 € J are symme
identify edges within image textures. Since image texture riciff anglesa, = az, wherea is subtended by line
is usually characterized by texture elements (a.k.a. tesjto (41, ¢2) and normal to.l’ anda; is subtended by line
which have similar orientation, it is likely that the tex®n (41, ¢2) and normal tgy.

will give rise to edges with similar orientations, and thus 5. parallelism as the mean of distance variatics$ be-

s;; should not be rotati(_)n invarian_t. _Aft_e_r linking all im- _ tween pointg along edge and their symmetric points

age edges ar_wd computlng their similarities, Pg_ge Rank is on edgej, ¢;;u = meanc; dz(q) ‘ Fig. 5(b) shows

used to iteratively estimate the degree of repetition oheac | .

edge ashis — (1 — p) +p 3 Y2 \wherep is the resid- two parallel edges. The distance between symmetric
9 2 PITP Ly s s P - points remains constant.

ual probability, set in our experiments po= 0.85. Simi-

lar Page-Rank based approaches to estimating the degree of Below, we explain in greater detail how to find corre-

repetition of image features have been usedin §4]. sponding symmetric pointg;, ¢2) between two edges, and
then estimate the above defined symmetry and parallelism.
3.2.2 Arc Attributes For each edge, we extract salient, high curvature points, us

ing the standard, scale-invariant algorithm 6f]f To find

Pairwise layout properties between image edges are used t¢he symmetric points on two contours, we consider all pairs
specify the descriptowp;; = [@ij1. ..., ¢Pij5]. By defini-  of salient pointgqy, ¢2), whereg; belongs to the first edge,
tion, we setg;; = 0 for all edge pairg(i, j) that are not  andg, belongs to the second edge, and compute their sym-
neighbors. For neighborg,; includes the standard formu-  metry cost matrix. The symmetry cost is defined as the ab-
lations of Gestalt principles of groupingf, 73, 57]. solute difference between the angtes and ., depicted

Let @; and@; denote the 2D coordinates of two end- in Fig. 5(a). If ¢; andg, are symmetrica; = a5 and the
points of neighboring edgesand;j. If i andj are siblings  cost is equal to 0. After building a symmetry cost matrix
then@; andQ; are those points based on whicandj are  for all possible pairgq; , ¢2), we then use the standard Dy-
found to be neighbors in the Delaunay triangulation, as ex- namic Time Warping algorithm to obtain the best symmetric
plained in Sec3.1 Otherwise(; andQ; are the closest  points of the two edges.

pair of endpoints. We estimate: This concludes our description of intrinsic and local lay-

- 71Qi—0 |2 out properties of edges.
1. Proximity as¢;;1 = %, where ler-)
measures the length of an edge. 3.3. A Global Grouping Cue
2. Collinearity as¢;jo = |%§i)—%|. 0(Q) € The Helmholtz principle of grouping describes a phe-
i J

[0, 27] measures the angle between the x-axis and thenomenon that “we immediately perceive whatever could not
tangent of the edge at endpoiidt where the tangent happen by chance”[]. We formalize this principle as the

direction is oriented towards the curve. entropy of alayout of edges in the image. When this entropy
P20 200 is low, the edges are less likely to belong to background
3. Co-Circularity agp;j; = |20.Q) 2995 | clutter.

aQ? Q2



To characterize the layout of a given set of image edges,
we use the generalization of the Voronoi diagram for point
patterns to edges, presented i [This generalization has
been shown to accurately capture the global spatial interac
tion among all edges in the image, as illustrated in Big.
and, consequently, lead to performance improvements in
object recognition. The intuition underlying this general
ization is that edges are exposed to each other via every
point that lies on them, and thus the edge-based Voronoi
tessellation can be derived from the classical point-based
Voronoi diagram. The Voronoi diagram of a point pattern
Q in 2D associates with each poift Q a convex polygon
74 Which is the region closer tg than to any other point  Figure 6. The Voronoi diagram is computed for each pixeldkja
€9, v, =1{¢": ¢"eR* NV €Q,|lq—¢"|*<|l¢ — ¢"|I*}- of each edge (colored bold curves with black points). Vorono
Thus, for any nondegenerate distribution of points in 2D, polygons generated by pixels of an edge are marked with the sa
the Voronoi diagram tessellates the 2D space into a set ofcolor as that edge. A Voronoi cell; is the union of all Voronoi
convex polygons, each containing exactly one of the pointsPolygons generated by pixels on edge
in the patternQ. The Voronoi diagram can be computed
very efficiently (forn points, complexity isD(n logn)). aor —rpr—

Given a set of edges, we first compute the point-based .|
Voronoi tessellation for all pixels along the edges (Fp.
Then, for each edge we find the union of the Voronoi poly- 301
gons of the edge’s pixels, resulting in a generalized Vorono
cell, Uy = Ugeivg. The Voronoi cell of edge defines
the relative area of its influence in the image, denoted as
P, = areqU,)/aredimage. Forn image edges, we define

25

# of images
N
o

the entropy of their layoutt/, as 150
H=-%7,PlogP, (1)
Note thatP; depends on the length of and its spatial po- il
sition and orientation relative to the other edges in the im- 0 - .
age. Since background clutter consists of edges of differen i Entropy of edge layout H

sizes, which are placed in different orientations, and &t va Figure 7. We formalize the Helmholtz principle of grouping a

ous distances from the other edgBsof the clutterislikely  the entropyH of a layout of image edges. Three histograms
to take larger values thaH of object boundaries. Thisis of H values are obtained for three different sets of edges from
demonstrated in the following experiment on 300 natural all images in the Berkeley segmentation datasé}:[(a) manu-
images of the Berkeley segmentation dataset (BSD).[  ally annotated object boundaries, (b) background edges(an
We have computeff for three distinct sets of edgesin each all edges. TheH values of boundary layouts are in general
image. The first set of edges consists of only manually an-Smaller than the entropies of spatial configurations of dfjes
notated object boundaries. The second set consists of edgel@piects+background). This allows a robust separatioroahk-
that are detected in the image (e.g., Canny), but do not co-2" V- background-clutter layouts.

incide with true object boundaries, i.e., background edges
Finally, the third set consists of all edges detected in the grties described in Se8.and Sec3.3, are used in the se-

image. Fig.7 shows the three histograms &f values ob-  gyential labeling of edges toward boundary detection, as ex
tained for these three sets across the entire BSD. As can b%lained in the next section.

seen, the histograms of object boundaries, and background
edges form_two distinct peaks. The entropies of boundary4_ Sequential Labeling of Edges
layouts are in general lower than those of background clut-
ter. This suggests that the entropy, definedl)) &llows This section presents Step 2 of our approach. We formu-
efficient learning of a classifier which can robustly sepa- late boundary detection as a sequential assignment ofjbinar
rate the spatial configurations of boundaries versus thiose olabels “on” or “off” an object boundary to every edge in the
background edges. image. LetX = (X;,X5,...,X,) denote a sequence
Image edges and their intrinsic and spatial layout prop- of descriptor vectorsX; associated with the image edges



1 € V that are sequentially labeled in steps- 1,...,n. denoted asY’. This induces a loss (e.g., Hamming dis-

The set of all sequences of descriptors extracted from allim tance)](Y ("), Y), which is then used to learn a new classi-

ages is denoted a& > X. Also, letY = (y1,v2,...,¥n) fier L7t In the next iteration, SEARN applig8™+!) to

denote their corresponding labels, € {0,1}. The setof X, wheref("t1) is defined as an interpolation of the new

all structured predictions is denoted 3is> Y. Thus, we  classifierh("+1) with the old policyf(") as

specify boundary detection as mappifig X — Y. We

below explain how to learr. FO = Rt 4 (1 - B) £, (2)
Reinforcement Learning (RL) seems a suitable frame- ) ) . o

work to learnf. RL finds an optimal policy that mapsates ~ Where 5 € (0,1] is an interpolation constant. This in-

of an environment to thactionsthat anagentought to take  terpolation amounts to a probabilistic sampling of individ

in those states, so as to minimize a long-term IGs& [In ual classifierdy(), h(?) | .. ._,_h(T> learned in each iteration

our case, the agent is classifigthat takes an action of se- 7 = 1,2,...,T. The classifier sampling is governed by the

lecting and labeling one of the unlabeled edges, given theMultinomial distribution, where, front}, the probability of

state defined in terms of previously identified boundaries, Selecting classifiek(" in iteration" is

and, then, receives a loss (e.g., 0 if the labeling is coreect - .

1, otherwise). The goal of RL is to learn the optimal policy ap =pA-=p)""", 7=12,....T. 3)

f that will minimize the expected total loss over all loss-

sequences, observed during the sequential labeling o‘sedgeSinCEOé(TT) decreases over time, SEARN iteratively moves

in all training images. The optimal policy, in our case, isth away from the initial policy,2(!), toward a fully learned

human annotation of object boundaries in training images. policy. After 7 reaches the maximum allowed number

Existing RL algorithms, however, are only tractable for en- of iterations, T', the output of learning is the last pol-

vironments with a few states and actioi§][ Therefore,  icy f” from which h(!) is eliminated, i.e., the output is
they cannot be used for our purposes, since we have an ex{h?,h®, ..., h1)} and their associated sampling prob-
ponentially increasing number of statgé, as edges may abilities {na(TQ), mg’), . .,ma(TT)}. Here, the constant
have three possible labels: “on”, “off”, or unlabeled. re-scales the’s, such thaty " _, mﬁfﬂ -1,

There is a large body of research aimed at developing  Suppose that(!) is an optimal policy. A theorem pre-
feasible RL algorithms. A review of this work is beyond our  sented in §1] states thaif(?) is “not much worse” than the
scope. We here study one of the latest frameworks, calledinitial, optimal policy. SEARN is summarized in Alg.
SEARN [31]. Itis aimed at integrating search and learning
for solving complex structured prediction problems, such
as RL. It transforms RL int.o a classification pro_blem, and npul - Data sequenceX € ¥ and ground-ruth label¥” € 3
shows that good cIaSS|f|cqt|on perfqrmance entails good RL " Loss.sensitive classifir, and initial7(1): ’
performance. In SEARN, in every time step, a current state Loss function; Interpolation constans = 0.1;
of the environment is represented by a vector of observ- Maximum number of iterationg’;
able features, which is then input to a classifier to predict O(L{t)p“_t h(:l)'-_eamed policyf (1)
the right action. Thus, learning the optimal policy within ; ;oo=hts
SEARN amounts to learning a classifier over state feature| 3 for all X € x do
vectors so as to minimize a suitably defined loss function. |4 Compute predictiond” (") = £(7) (X);

Within the SEARN framework, we formulate a new al- |5 Estimate los$(Y (™), Y);
6
7
8
9

Algorithm 1: SEARN Framework

forr=1...Tdo

gorithm for sequential labeling of edges, called SLEDGE. end N
Below, we briefly review SEARN and problems associated Learn a new :’T'isls)'f'd’ e h(X;1); o
with this framework, and thus set the stage for the later for- Interpolate: f = BRI+ (1= B)f

mulation of SLEDGE, and description of our contributions. end

0 Returnf(T) without h(1).

=

4.1. A Review of the SEARN Framework

_SEARN appl!es a classifier (e.g. Support. Vector Ma- 4.2. SLEDGE
chines or Decision Treesy, to a sequence of interdepen-
dent data samplesX = (X, X5,...) € X, and thus in- To address 2D images and our particular problem of
fers their labelsY” = (y1,y2,...) € Y. This framework boundary detection, in this section, we explore a num-
requires that the ordering of data Xi is well-defined. To ber of modifications of the SEARN framework, origi-
learn f, SEARN uses an iterative batch-learning approach. nally formulated for 1D data (e.g., text). We formulate
Specifically, in each iteration, the results of classification, SLEDGE within the SEARN framework by specifying the
fM: XY (") are compared with the ground-truth labels, following: (1) the generation of data sampl&s from the



intrinsic and spatial layout properties of image edges (ex-

plained in Sec4.2.]) (2) two distinct ranking functions,
each providing an ordering oX for the sequential label-
ing (described in Seel.2.2); (3) two loss functions for the
iterative learning of policyf (specified in Sec4.2.3; and

alternative ranking functions, aimed at selecting an edge
to be labeled at every step= 1,...,n, such that its la-

beling reduces uncertainty about the occurrence of object
boundaries in the image. Since edge descriptors are com-
puted with respect to the previously detected boundaries,

(4) a new interpolation strategy for fusing the classifiers the edges selected early on facilitate the subsequent label

{h(M},_s 5. into policy f (presented in Sed.2.4).

4.2.1 Input Datato SLEDGE

SLEDGE sequentially labels descriptor vectors,
X=(Xy,...,X,), associated with image edges
i=1,...,n. The descriptors are computed online, as

ing of more ambiguous ones.

The first ranking functionR;, is based on the heuristic
assumption that longer and more salient contours are more
informative about objects and their layout in the scene than
smaller edges. Therefor®; uses grapld: and its structure
to order the edges breadth-first, i.e., by their length.isipl
edges are ordered by their degree of salieggy, defined

the sequential labeling visits one edge at a time, since they:, gac 321 At labeling stept, the descriptors’(,(t) of

depend on the layout of previously detected boundaries

In each labeling step = 1,...,n, we first use a ranking
function (see Sec4.2.2 to select the next edge to be
labeled, and then compute its descriptor(s), as follows.
The entire set of edgds can be divided, at stef into
edges labeled as “on” or “off”, and unlabeled edgés~=
0(,? U Vo(ff) U Vurf). To compute the descriptors of unlabeled
edgesi € Vu(,f), we retrieve from grapld’ = (V, E, ¢, 1)
the following edge properties: (a) intrinsic propertigs
(b) pairwise spatial relationg;;; and (c) global layout en-
tropy H (defined in Sec3.2.1-3.2.2and Sec3.3). This
retrieval is efficient, sincé, i.e.,v; and¢;; have already

been computed in Step 1. Specifically, for eaehl\, se-

lected by the ranking function, we generate the descriptors

Xi(t) = {mﬁ), ce f'%(*;)a ...}, indexed by object boundaries

J € Vi that are detected by SLEDGE in the previous
(t—1) labeling steps. We define

2 = (i, ¢, 1Y), @
whereHi(t) is estimated for the spatial configuration iof
and all detected boundaries, i.e., all edges{Tr@(,f) Ui}

In this way, eachrf? captures the Gestalt cues (proxim-
ity, collinearity, co-circularity, parallelism, and synatny)
and Helmholtz grouping between the unlabeleshd the
detected boundaries. For example,ig close and collinear

with any of the boundaries e %(rf) theni is more likely to
lie on an object boundary. The same hoIdstf) reduces
by adding: to Vo(rf). The goal of SLEDGE is to learn the
relative significance of these cues to boundary detection.

Each descriptot;; in Xft) is fed separately to the clas-

sifiers and assigned a label, as specifietl iBdgei receives

the highest-confidence label acraes” .

4.2.2 Two Ranking Functions

The SEARN framework requires a well-defined ordering of
the input sequence of dafé. To this end, we specify two
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'the largest and most salient edge among the unlabeled ones,

1€ Vu(rf), are computed, as explained in Sé2.1 Edge

1 is then classified with the highest-confidence label across
(t)

The second ranking functio®,, is based on the classi-
fier confidence in labeling the edgel; avoids the heuris-
tic assumptions of?;. The main difference is thak, does
not select an edge first and then computes its descriptors.
Rather, at each, it first computes and classifies the de-
scriptorin(t) of all unlabeled edges, and then selenjg
whose labeling is characterized by the highest confidence.
This, in turn, simultaneously selects and labels the corre-
sponding edge in stept. Note thatR, is computationally
more expensive thaR,, since for all nodes € Vu(rf), we
need to re-compute aXft) in every step. We reduce the
complexity of computingXi(t) by precomputing graply
and edge propertiag; and¢;; in Step 1.

4.2.3 Two Loss Functions

The SEARN framework requires that the loss function be
specified to learn the optimal poligy which will minimize
the expected total loss over all loss-sequences of sealienti
edge labeling in all training images. The optimal policy,
in our case, should produce a sequence of edge labels that
is equivalent to the manually annotated sequence. In this
subsection, we define two alternative loss functions.

The first loss function that we use is the standard Ham-
ming loss that counts the total number of individual dif-
ferences between the predicted output and ground-truth la-

bels in the two sequence¥, = (y1,...,yn) andY =
(yAla see agn)y as
La(Y,Y) =Y 1y # i, (5)

i=1

wherel is the indicator function.
The Hamming loss favors correct labeling of all edges,
since an error made at any edge carries the same relative



weight. This may direct the learning algorithm to try to cor-
rectly label numerous small, non-salient edges, while ig-

Sec.4.2.2 will defer the labeling of edgg and give advan-
tage to the other edges to be labeled beforkhis, in turn,

noring some long and salient ones. To address this prob-will allow capturing new evidence for perceptual grouping

lem, we specify another loss functiobg, that uses thé-

measure of recall and precision associated with a specific

edge. F-measure is one of the most common performance
measures for boundary detecticil]. It is defined as the
harmonic mean of recall and precision of all image pixels
that are detected as lying along an object boundary. A large
value of F(Y,Y") indicates good precision and recall, and
corresponds to a low loss. Thus, we specify

Lp(Y,Y)=1-F(Y,Y). 6)
Note that ; coarsely counts errors at the edge level, while
Ly is estimated finely at the pixel level.

4.2.4 Majority Voting of Classifier Decisions

SEARN iteratively learns the optimal policy, as in
(2), which represents a probabilistic mixture of classifiers
{7} 7 =2,3,...,T. AnewX is sequentially labeled
by probabilistically sampling one classifier frofih(™)},
according to the multinomial distribution, parameterized
by {o!7'}, defined in 8). We modify this classification
scheme. We run all classifiers and weight their decisions
by the corresponding{agﬁ)}. The heaviest vote is our
outcome. Voting decisions of several classifiers has been
shown to improve performance and reduces overfitting of
each individual classifierd[7, 17, 23].

After T learning iterations, SLEDGE estimates the con-
fidenceP(f(X;)=y;) that edge descriptaX; receives la-
bely; € {0,1} as

T
P(f(Xi)=y:) = _ s P(h(X))=y), (7)
T=2

where the constants re-scales thea’s, such that
kT, alT = 1. Also, P(h(™)(X,)=y') is the confidence
of classifierh("™) when predicting the label of edgeFor ex-
ample, when using the classical decision trees as the basi
classifier family forh, this confidence can be defined as the
percentage of elements with labgl in the leaf nodes of
the decision tree, where all descriptaX§ = {x;,;} have
fallen. When using an SVM classifier, one can define the
confidence of a particular instance to be proportional to its
margin, i.e. its distance to the decision boundary. Note tha
P(f(X:)=0) + P(f(X;)=1) = 1.

Finally, SLEDGE classifies each edge descriptgras

yi = argmax P(f (Xi)=y'). (8)

Note that when the confidencB(f(X;)=y;) is rel-

atively low, then the ranking functiork,, described in

11

that may eventually remove the uncertainty about
Remark: We run into the problem of highly unbalanced
data, because the number of negative examples (i.e., back-
ground edges) exceeds positives ones (i.e., object bound-
aries). For training SLEDGE, we rebalance the data by
using the standard procedure of under-sampling. We sam-
ple the majority class examples so that there are as many
negatives as positives. In the data mining literature, ithis
considered the best technique for handling unbalanced data
compared to other alternatives].

SLEDGE with rankingRs is summarized in Alg2.

Algorithm 2 : SLEDGE with RankingR,

Input  : Set of training imageg = {/1,1>...};
Extracted edge§V (11),V (I2),... };
Ground-truth label Y (I1), Y (I2),. .. };
Loss-sensitive classifigr, and initial h(1);
Loss function/; Interpolation constant = 0.1;
Maximum number of iteration%’

Output : Learned policyf(?)

Initialize: Vu(nl) =V,

forr=1,...,7Tdo

Initialize the set of descriptor sequenc¥s= ();

for all I € 7 do

V=vV(I)in=|VU;Y =Y();

fort=1,...,ndo

for i € Vlfnt) do

ComputeXZ.(t):{ac,E? :jevo(ﬁ)} asin @);
Computey; = f(7)(X;) asin @), (8);
end

© 0 N oOg A WNPR,

=
o

Select; from Vu(nt )
Addy; to Y(7);

Vi — Vi Lk

-
[N

with max confidence imy;;

=
N

-
w

end
Estimate losd.(Y (), Y);
Add the estimated descriptor sequenXeo X';

e
[S2 N

=
[}

end
Learn a new classifigs("t1) — h(X; L);
Interpolate: f(7+1) = gr(7+1) 4 (1 — g) f(7)

=
~

18
19
120 end

21 Returnf(T) without A (1),

5. Detecting Salient Edges

This section presents Step 1 of our approach, aimed at
extracting salient edges in a given image. Step 1 may use
any available edge detector, as long as it yields high recall
of true boundaries. Our subsequent steps are expected to
improve precision by labeling a subset of the detected edges
as boundaries.

While we are aware of the many powerful edge detectors
that exist in the literature, our goal in this paper is notrie a
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Figure 8.Texture variations at different scales.Original image with pairs of windows at different scales apped in yellow. For each
pair of windows around pixe}, we examine their texture properties to evaluate the piitityabf ¢ to lie on a salient edge. Left to right

are examples of windows of sidé x 11, 21 x 21 and41 x 41.

alyze all of them. Instead, we aim to show that any detectorthat pixelq belongs to a salient edge is estimated as

that produces edges with high recall is good enough for our
labeling algorithm to outperform the state of the art on the

object boundary detection task.

K
Plgeedgg= =3 AGEE) (10

k=1

For this reason, we choose to test SLEDGE on edges

obtained with: (a) the Canny edge detectot][ (b) our

These probabilities are computed for each pixel and assem-

texture-based edge detector that we will describe in the sub PIed into a probability map of edge saliences, tPb. The
sequent paragraph, and (c) the state-of-the-art gPb detect saliency of a particular edge;; (Sec.3.2.1), is defined as
[49. Our intention is to cover a reasonable range of edge the mean value of tPb along the edge:; = mean(tPb).

detectors, from the simplest intensity-based Canny datect

Since a salient edge may occur at any image location,

via an intermediate texture-based detector, to the most comand it may separate textures occupying arbitrarily large im

plex gPb detector. In the following, we present our texture-

age areas, the window locations and sizes are sampled from

based edge detector, tPh. We then compare its performanci'® uniform distribution. The computation &f(¢ < edge

with the state-of-the-art boundary detectors on the BSD.

Building the edge probability map tPb. A salient edge
separates distinct image textures. Since real-world sesfa

are typically characterized by unique texture, salientesdg
are more likely to represent boundaries than other edges iq.n
the image. Our goal is thus to robustly estimate for each

pixel its probability of lying on a salient edge. This prob-
ability is large if image textures differ in the vicinity of a
particular pixel, or small, otherwise.

is efficient sinces?(r) can be computed i®(1) using inte-
gral images.

Fig. 9(b) shows two examples of the probability map of
edge saliences tPb. This map is thresholded at all prob-
ability levels and edges extracted using a standard non-
aximum suppression technique. Fifc,d) shows edges
extracted at two different probability levels. These multi
scale edges are then assembled in the graph of ¢ tfest
captures the recursive embedding of smaller edges within
larger ones, as well as their neighbor relationships(pre-

We analyze texture variations in a pixel's neighborhood sented in Se).

at different scales, as illustrated in Fig Given pixelq, we

Evaluating tPb. For each pixely, we placeK = 20

randomly place a large number of pairs of windows in the pairs of windowgr;, 2) and we pick at random a window

image,{(r¥,75)}, k = 1,2,..., K, so that one side of ev-
ery window containg. Each pair of windows defines two

size (fromb x 5to 41 x 41) and an orientation (fror° to
360°). We can then compute the probability thalies on

image areas whose texture properties are compared to esan edge with 10).

timate the texture variation gt We use the unnormalized
variance g% (r), of pixel values within each window,, to
characterize its texture?(r) = > _.(p —7)? wherep
denotes pixels im, andr denotes their mean value. Texture
difference between a pair of windows\(r,72), is esti-
mated, as ing5, 13], as the compression error

A(ry, o) = |€2(r Ura) — 2(r1) —e%(r2)] . (9)

After randomly placingX pairs of windows, the probability
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To evaluate the performance of tPb on the object bound-
ary detection task, we adopt the methodology developed by
Martin et. al p1]. This framework considers two aspects
of detection performance. Precisidhmeasures the frac-
tion of true positives in the edges produced by a detector.
Recall R measures the fraction of ground-truth boundaries
detected. For detectors like tPb, that have real-valued out
puts, one obtains a curve parameterized by detection thresh
old. The globalF’-measure, defined as the harmonic mean
of precision and recall’ = (123’11;) , provides a useful sum-
mary score for the algorithm.




a b c d
Figure 9.From(e<)1|ge probability maps to individ(ugtl edges.(a) Original image. (bg F)’robability map of edge salienc(:E)b, We threshold
this map for all gray levels and use non-maximum suppression to extract individual dgere, we illustrate two such levets,= 25
(c), andr = 75 (d). The multiscale edges are then organized in a géphat captures the recursive embedding of smaller edgeswith
larger ones, as well as their neighbor relationships.

In Fig.10, we compare the performance of tPb to that of 1
Canny [L1], Felz06 1], Zhu07 [77], Ren08 (€], Mairal08
[4€] and gPb {9 on the BSD. We see that in the low pre-
cision, high recall regime, our texture-based edge detecto
using only simple image features and no learning, compare
favorably to other approaches, that use a battery of sophis:

0.9

0.8

0.7+

ticated features and learning. In particular, note tharaft é S
point A, our algorithm has better precision than all other g °5 :
techniques. * 04 -:-tl-F'::)TgrliéFD:gg?l]::o 74]
Although tPb produces edges with lower precision than ——tPb [F=0.67] '
most techniques, note that there is no need to produce edg I :%Zﬁégigfc?‘ea]
maps with high precision, for our purposes. We only need 0.2/ — pajralos [F=0.66]
the extraction of salient edges to be fast, and have highre- .|| ;f‘{fgf[[;:ggf]]
call of true boundaries. We will then delegate the respon- —— Canny [F=0.58]
sibility of correcting errors, i.e. improving precisiom t % 041 o0z 03 04 05 06 07 08 09 1
Recall

SLEDGE. Fig.10shows that with tPb, we are able to obtain
very large recall for a relatively large range of thresholds Figure 10.Evaluating edge detection on the Berkeley dataset
(from 0 to 0.3), i.e. most of the ground-truth boundaries are [50]. Leading approaches to edge detection are ranked accord-

present in the set of edges which are input to SLEDGE. ing to their F-measure (harmonic mean of precision and ljecal
with respect to human ground truth. The green lines are level

sets of the F-measure, ranging from 0.1 (lower left) to 08 (u
per right). Our method performs similarly to the state of e
approaches (gPbt§], Ren08 [6], Mairal08 [48], Felz06 P1],
Zhu07 [72]), and achieves a maximum F-measure of 0.67 on this

6. Results

This section presents qualitative and quantitative eval-
uation of our approach on images from the BSI, [4], dataset. Note that for high recall values, and particulaftgr
Weizmann Horses’], and LabelMe {9] datasets. BSD300  point A, our texture-based edge detector has the highesisjpe.
(resp. BSD500) consists of 300 (resp. 500) natural im- The dashed curve presents our tPh+SLEDGE results for boginda
ages, manually segmented by a number of different sub-detection, not edge detection.
jects. The Weizmann Horses dataset consists of 328 side-
view images of horses that are also manually segmented.
For the LabelMe dataset, we select the 218 annotated im-
ages of the Boston houses 2005 subset. The challenges of
these datasets have been extensively discussed in the pasiraining. We train SLEDGE on the 200 training images

Below, we present our default training and testing setups.

and include, but are not limited to, clutter, illuminatioari
ations, occlusion.
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of BSD300. For each image, we compute the edge prob-
ability map tPb and extract multiscale edges, as described



in Sec.5. We build the graph of image edgésand com- dent). SLEDGE finds prominent boundaries th&i] [fails

pute the attributes of all nodes and arcs. We also convertto detect, e.g., see the back of the kangaroo. On the other
the manually annotated object boundaries to ground truthhand, SLEDGE labels the edges in the rock texture on the
labels for all edges in the training images. Our initial elas left of the animal as boundaries, whereés][does not. A
sifier b1 is a fully grown C4.5 decision tree, that chooses likely reason we fail on these texture edges is that they con-
the split attribute based on the normalized informatiomgai tinue each other well, and thus reinforce each other to be
criterion. The attributes considered o) are only the in-  jointly labeled as boundaries.

trinsic parameters; introduced in Sec3.2.1 In further Fig. 18illustrates cases when SLEDGE labels edges in-
iterations of SLEDGE, the classifiers are pruned C4.5 de-correctly. For example, in Fig.8(top row), the shadow on
cision trees, which are learned on all attributes¢;; and  the horse’s neck is classified as boundary, because its edge

H;, as discussed in Se¢.2.1 C4.5 pruning uses the stan-  saliencys;; is high, and also because it would be a valid
dard confidence factor of 0.25. The interpolation constant continuation of the front leg. Similarly, in Fig.8(bottom

#, mentioned in Seet.1, is set tos = 0.1. Also, we usef, row), the shadow on the paved area generates a set of
as the ranking functior,  as the loss function, and voting  collinear edges. In both cases, gPb][also characterizes
to combine the output of the decision tree classifiers. these edges by a high probability of being on a boundary.

Testing. Given a new test image, we compute tPb and Note that SLEDGE accurately assigns high confidence to
extract multiscale edges. We build the graph of edges ~the boundaries of the electric pole, unlike gRB][

and let SLEDGE sequentially label all edgein Perfor-  gyantitative evaluation: SLEDGE computes for each
mance is measured as the average precision _and r_ecall of th@dgez’ the confidence that it lies on a boundary. This pro-
boundary map produced by SLEDGE, as definedii.| duces a boundary probability map that we use to evaluate

In the following two subsections, we first test oyr performance. To this end, we again use the boundary
SLEDGE on the three datasets, and show that we compar@yaluation methodology presented in].

favorably to the state of the art. Then, we evaluate spe- First, we examine the boundary map output by

cific aspects of our approach by introducing variations¢o th SLEDGE, and compare it to the initial edge probability
aforementioned default setup. These variations concern usmap. We use edges detected with the same algorithm for
ing different: initial conditions, edge labeling strateghas- training and for testing. Figl3 compares the edges ob-

sifier_type, interpolation scheme, ranking function, argslo tained with (a) Canny detectot.f], (b) our tPb detector
function. and (c) gPb detector![], before and after they have been
labeled by SLEDGE. Sequential labeling significantly im-
proves performance for all edge detectors, especiallyan th
. _ . _ high-recall-low-precision regime. This demonstrated tha
Qualitative evaluation: Figuresl1l, and12 illustrate the SLEDGE does not require a very good initial set of edges

order in which SLEDGE selects edges to label in two ex- ¢, 4604 performance. We note however that the higher
ample images of BSD. We refer the reader to the respectivey, o precision of original input edges, the higher the pre-

captions for comments on the underlying Gestalt principles cision of output boundaries. For example, Fig shows

that _SLEDGE uses for Iapeling. that the precision of gPb+SLEDGE is higher than the preci-

Fig. 15 demonstrates high accuracy of our boundary de- gjon, of Canny+SLEDGE. Interestingly, our tPb edge detec-
tection on the BSD_. Detection is good evenin the foIIowmg_ tor combined with SLEDGE is as good as the gPb detector
cases: (i) when objects have complex textures, e.g., aral i compined with SLEDGE. This demonstrates that our ap-
Fig. 15(c) and ground in Fig1(b); (ii) when the bound- 040 can successfully work with noisy input edges, most

aries are blurred or jagged, e.g., in Fig (d); and (iii)  of which are not object boundaries, as long as the input set
when boundaries form complex layouts, e.g., in Big(c). contains a high recall of boundaries.

Filter-based methods, or approaches based on image dec- Fig. 14 compares the average precision and recall of

i ol YAl (A5 208 1+ SLEDGE wih g2 (] on BSD, Weizmamn Horses
pologically P P and LabelMe. SLEDGE is trained on 200 training im-

ture boundaries meet. We are also able to detect boundaries

. . : . ages from BSD. Results in Fig4 are reported as the av-
where there is no strong gradient, which g typically erage performance of SLEDGE on 100 test images from
fails to extract, e.g., see the edge that separates the tw co

I BSD, and on all images from the Weizmann and LabelMe
in Fig. 16(a). )
. . datasets. As can be seen, our technique outperforms gPb on
We compare our algorithm with a related method, pre-
. : . i all three datasets.
sented in {0], and mentioned in Se@. Fig.17 shows two

illustrative examples, where the 50 most confident bound- Running-time:  Training SLEDGE on 200 BSD train-
aries are color-coded in HSV space (red means more confiing images takes about 24 hours, on a 2.66GHz, 3.4GB

6.1. Object Boundary Detection by SLEDGE
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tg
Figure llsequentlal labeling of edges by SLEDGEWe illustrate a few iterations of SLEDGE, and the order |n(vbfmbject boundaries

are selected attimes < to < t3 < ... < tp. For visibility, we do not show the intermediate edges thatcdassified as non-boundaries.
Attime¢;, SLEDGE selects a long, prominent edge. Then at timé# picks a smaller edge that is close and collinear to thelimandary.
Thus, SLEDGE uses the principle of good continuation of edué,. At ts, t4 andtz, it labels other long edges. At timeés andtg, we
note that the selected edges are not the longest, nor thesal@sit ones. They are edges that connect other boundagether (), or
that again continue well an existing boundaty)(

Original image

Original image

LS LY EYEY

2} s L6 7
Figure 12.Sequential labeling of edges by SLEDGESee the caption of Fig.1l. Attime¢;, SLEDGE selects a long, prominent edge.

Then at timeg,, t3 andtr, it selects edges that are parallel to the first boundary.gfbeping principles used for edge labeling at times
t4, t5 andtg are not obvious.

RAM PC. Computing the boundary probability map by variant of SLEDGE. We create 100 different initial configu-
SLEDGE for a new image takes 20-40sec, depending onrations by randomly picking true boundaries as the initial

the number of edges in the image. set of correctly labeled edges. The randomization serves to
_ _ eliminate any bias in picking certain boundaries (e.g.glon
6.2. Evaluating Particular Aspects of SLEDGE ones). Then, we let SLEDGE continue labeling the remain-

This section presents quantitative evaluation of how dif- N9 €dges. The pairwise and global features are computed
based on the initial set of randomly selected true bound-

ferent design choices modify performance of SLEDGE. . X -
aries. Finally, we compute recall and precision averaged

Initial conditions. The early errors of SLEDGE in the se-  gver these 100 distinct initializations. These tests stve
quence might be critical, because they could sequentiallyeyaluate SLEDGE performance when there is no error at

propagate to the entire sequence. To test this aspect of oUghe beginning of the labeling sequence. Tabkhows the
algorithm, we compare our default setup with the following
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Figure 13.Improvement in boundary detection. We compare boundary detection performance on BSD in twescasgputs of existing
edge detectors are input to SLEDGE (solid line), and outpiésisting edge detectors are simply declared as boundaegtion without
using SLEDGE (dashed line). The detectors include: (a) €&ni, (b) tPb, and (c) gPb4P]. Training and testing are performed with
the same type of edges, i.e. if we test SLEDGE on Canny edgegans it has been trained with Canny edges. We see that SEEDG
able to improve the precision of any initial set of edges.rEwsing Canny edges as input to SLEDGE gives higher preciggirer than
gPb of 19, for a large range of threshold levels in the high-recaliHprecision regime.

to the performance of SLEDGE witho¥it.

Classifiers.

b=2 b=4 b==6
Increase inrecall [%] | 21 £2.3 | 33+24 | 61+£1.84
Increase in precision [%] 23 +3.5 | 25+1.9 | 49+2.1
Table 1.Initial conditions. Increase in recall and precision in %,

at equal error rate, relative to those of our default setupreayed
over 100 random initializations consisting bfe {2, 4,6} true

From our experiments, a non-linear clas-
sifier is more suitable than a linear one for separating
boundaries from background edges. Classification accu-

racy of SLEDGE with decision trees compared to that of
SLEDGE with a linear SVM-type classifier is 91% vs. 72%.
For training SVMs (as in the case of decision trees), we use

average increase in recall and precision, at equal errey rat @ balanced number of positive and negative examples — the
relative to those of our default setup, for= 2,4,6. As under-sampling procedure mentioned in 8ez.4Remark

can be seen, when errors at the beginning of the labeling— With the complexity parameter = 1.0. When more so-
sequence are manually eliminated, our performance gain igPhisticated classifiers are used, e.g. SVM with RBF and

relatively small. This suggests that our default setuplis re random forests, we observe only a relatively small gain in
atively insensitive to initial labeling errors. accuracy over the decision tree, which does not justify the

) _ increase in complexity. Indeed, the total computation time
Edge labeling strategy. We test how performance varies primarily depends on the complexity of the chosen classifier
when we allow SLEDGE to continue relabeling edges after 55 5| classifiers have to be run at each iteration of SLEDGE.
all the edges have already been labeled once. Specifically,

after all edges have been visited, we remove them from the
labeled set and send them to the unlabeled set. The pairRanking functions. Fig. 19 compares the performance of
wise and global features are still computed based on theSLEDGE on BSD, for ranking functioR; or R, described
current labeling of boundaries. We iterate SLEDGE un- in Sec.4.2.2 While R, selects the next edge in a breadth-
til it reaches convergence, i.e., no edge changes the labelfirst manner [, ranks first the edge that the classifier is the
On the 100 test images of the BSD300, at equal error rate,most confident about. From Fid9, R, outperformsR;.
SLEDGE with relabeling improves by 0.2% in precision, The edges that have already been labeled provide important
and by 0.5% in recall, relative to the performance of the perceptual-grouping cues for labeling of subsequent edges
default SLEDGE with just one labeling pass. Thus, allow- and thus it is critical to initially label those edges which
ing edges to be relabeled, in our approach, only marginallywould be least harmful for later decisions, i.e., edges with
improves precision and recall, but increases complexity. the highest confidence in classification.

Therefore, it seems that the iterative relabeling of edges i
not justified in our approach.

boundaries as the initial set of correctly labeled edges.

Loss functions. Fig. 20 shows the performance of
SLEDGE when using the loss functidny or L, speci-
Layout entropy. We measure the influence of the layout fied in Sec.4.2.3 Ly coarsely counts errors at the edge
entropyH on the performance of SLEDGE. We obtain that level, while L is a loss estimated finely at the pixel level.
at equal error rate, the performance of SLEDGE witim- As expected, SLEDGE witli, » produces boundaries with
proves by 3.2% in precision and by 4.1% in recall compared slightly better precision than SLEDGE withy. Lpg is
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Figure 14.Boundary detection. Comparison of tPb+SLEDGE and gP&] for (a) BSD 300 p(], (b) BSD 500 {1, (c) Weizmann Horses
[7] and (d) LabelMe §9]. For the BSD 300, we also compare SLEDGE to the metho@@f We outperform gPb on all four datasets, and
obtain a better F-measure thar¥] on the BSD 300.

a more appropriate loss function for the boundary detec-6.3. Relative Significance of Gestalt Laws

tion problem because unlikey, it favors the selection of , . . :
long, salient edges. Since all descendants of an edge la-. Ve &re interested in how SLEDGE schedules (i.e., prior-

beled as boundary are automatically labeled as boundary',tizes) distinct Gestalt principles for edge labeling. st

the number of edges in the unlabeled set decreases mucﬁnd' we perform the following analysis: qu each nade
faster if long boundaries get labeled early on. We verify tha in a decision tree that corresponds to a split on the Gestalt

SLEDGEwithL ;- runs about 3 times faster than SLEDGE- "Ul€ gi € {¢i2, dir, ..., ¢is}, we count the number of its
with L. ancestorsk, that are also splits on the Gestalt rulést 1

corresponds to the ranking of the splitting criterigni.e.
Interpolation scheme. We stop learning new classifiers the position of this rule in the schedule of all Gestalt rules
when the average performance on the training data does nolNote that some splits might not correspond to a Gestalt rule,
change. For BSD, this happens after about 10 iterations.e.g. splits ony;, the saliency of edgé For each Gestalt
Fig. 21 compares the performance of SLEDGE with these rule g;, we build a histogram of rankings of the nodes that
10 classifiers, as the interpolation scheme changes fromsplit on g; in all the decision trees that form the final clas-
sampling to weighted majority voting of the classifiers. As sifier f. We report in Table the relative rankings of each

can be seen, voting significantly outperforms sampling. Gestalt principle.
In the following subsection, we evaluate the relevance of ~ This result could be used for estimating a prior distribu-
distinct Gestalt principles for boundary detection. tion of scheduling the Gestalt principles for edge labeling
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Figure 15.Boundary detection on BSD.From top to bottom: Original image, Edge probability map,tEdges corresponding to the
leaves of the edge graph (the finest-scale), Edges corrisygoio the roots of the edge graph (the coarsest scale),d@oumap output by
SLEDGE, Boundaries detected by SLEDGE for best F-measuandary map output by gPB{], Boundaries detected by gPb for best
F-measure. A zoom-in of the windows highlighted in the ar&images is available in Fi@6. SLEDGE outperforms gPb on challenging
object boundaries amidst texture or low-contrast rampwfamplé.&he cow's head in (a); the tip of the alligator’sutioin (b); the green
coral in (c); and the details in the dress of the woman in (d).



Figure 16.Zoomed-in parts. Top row: Zoom-in of the windows that are marked in Fid. Bottom row: Boundaries detected by
SLEDGE for best F-measure are overlaid onto the originafjgsa

Figure 17 Strength of boundaries.From left to right: Original image, Edge probability map BB most confident boundaries output by
SLEDGE, 50 most confident boundaries output by the approBfhth The confidence is color-coded in HSV space, where red means
very confident, and purple and magenta mean less confidesit viéeved in color.

(not used in this paper). Note that the results in Table tains a high recall of true boundaries. We have observed
depend on our particular formulations of the Gestalt rules, that SLEDGE tends to favor good continuation of strong
which are common in the literature. edges, which works well in most cases, but fails when there
is an accidental alignment of object and background edges
(e.g., shadows). Our results demonstrate that proximity
and collinearity of edges are typically scheduled befoee th

We have presented an approach to boundary detectiorPther Gestalt principles of grouping for boundary detectio
in arbitrary images. The approach takes as input salient WO key novel aspects of our approach lead to good
edges, and classifies these edges using a new sequential IR€rformance—namely, reasoning about boundaries: (1) in-
beling algorithm, called SLEDGE. SLEDGE learns how to Vestigates a data-driven sequence of distinct image loca-
optimally combine Gestalt grouping cues and intrinsic edget'onsv rather than scans uniformly all image locations, and
properties for boundary detection. In addition to the com- (2) takes into account both local and global perceptuatorga
mon pairwise grouping cues, we have also formalized the Nization of salient edges, rather than small image patches.

Helmholtz global principle of grouping, as the entropy of

7. Conclusion

the edge layout. References
Our empirical evaluation demonstrates that the approach [1] N. Ahujaand S. Todorovic. Learning the taxonomy and mod-
outperforms the state-of-the-art boundary detectorsdega els of categories present in arbitrary imagesldgV, 2007.

less of the input set of salient edges, as long as the set con- 2
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Figure 18 Boundary detection on the Weizmann and LabelMe datasetdrom left to right: Original image, Edge probability map tPb
Object boundary map output by SLEDGE, Object boundary mapubby gPb {19].

Rank | Proximity | Collinearity | Co-Circularity | Parallelism| Symmetry| Repetition
1 0.44 0.29 0.09 0.13 0.02 0.03
2 0.28 0.35 0.11 0.14 0.01 0.11
3 0.09 0.13 0.14 0.22 0.19 0.23
4 0.12 0.11 0.20 0.27 0.10 0.20
5 0.07 0.12 0.14 0.31 0.16 0.20

Table 2.Scheduling of Gestalt rules.We record how many times each Gestalt rule was used firstndeetc., in the scheduling of the
Gestalt rules in the decision trees which form the final dizssf/ in SLEDGE. The rule that is used the most as the first splittirig
is the Proximity criterion, then it is the Collinearity @iion, and later on there is a shift toward more global ridesh as Parallelism,
Symmetry and Repetition. There is no clear distinction asttich rule among Parallelism, Symmetry and Repetition sagdelier.
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