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ELLIPTIC-PARABOLIC EQUATIONS WITH
HYSTERESIS BOUNDARY CONDITIONS*

ULRICH HORNUNG AND R. E. SHOWALTER$

Abstract. A general porous-medium equation is uniquely solved subject to a pair of boundary
conditions for the trace of the solution and a second function on the boundary. The use of maximal
monotone graphs for the three nonlinearities permits not only the inclusion of the usual boundary
conditions of Dirichlet, Neumann, or Robin type, including variational inequality constraints of Sig-
norini type, but also dynamic boundary conditions and those that model hysteresis phenomena. It is
shown that the dynamic is determined by a contraction semigroup in a product of L1 spaces. Several
examples and numerical results are described.
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1. Introduction. We shall consider a degenerate-parabolic initial boundary
value problem in the form

0
a(u) Au , x e(’) a

0 Ou
(1.1.b) O--b(v) + - g, and

(..c)
Ou
O- e c(v- u), s e r

for each t > 0 with initial values specified at t 0 for a(u) and b(v). At each t > 0,
u is a function on the bounded domain fl in Rn with smooth boundary F, and v is
a function on F. Each a(.), b(.), c(.) is a maximal monotone graph in R ] [7]. Our
interest in (1.1) arises primarily from the fact that (1.1.b) together with (1.1.c) can
represent hysteresis phenomena on the boundary. Specifically, consider the maximal
monotone graph given by sgn(y) (-1} for y < 0, sgn(0) [-1, 1], and sgn(y)
for y > 0. If we choose c sgn-1, the inverse graph obtained by reflection of the
coordinates, then (1.1.b) is an ordinary differential equation for b(v) subject to the
constraint (1.1.c),

u-l<v<u/l.

If g 0, then the selection w E b(v), which realizes the equation (1.1.b), is constant
except at the constraint; there the control ou forces the corresponding equality. Thus
the relationship between, u and w b(v) is an example of a generalized play [14].
Furthermore, if we let b sgn+ 1/2(1 + sgn), then (1.1.b) models a perfect relay
[14]. Thus the system (1.1) consists of a generalized porous-media equation in the
interior of 12 subject to a nonlinear dynamic Neumann constraint, which can contain
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776 ULRICH HORNUNG AND R. E. SHOWALTER

hysteresis phenomena on the boundary. Here, w is the internal state of the hysteron,
v- u is the order parameter, and u is the external input. See [19] and [17] for further
discussion of these terms and general perspectives on hysteresis.

Although the hysteresis effects obtained from the pair of graphs b(.), c(.) were
our primary motivation, we were able to include the third graph a(.) with no essen-
tial additional difficulty. This is merely a reflection of the power of the method that
was developed in [22]; this method permits the addition of gradient nonlinearities of
p-Laplacian type in (1.1.a) as well as corresponding elliptic Laplace-Beltrami oper-
ators in (1.1.b) for the manifold F. See [18] for a treatment of the degenerate case
a(.) 0 corresponding to a Stefan problem on the boundary F. Adsorption in porous
media may be governed by conditions or the surfaces of the solid material that are
of hysteresis type. In that case, u is the concentration of a chemical species that is
dissolved in the fluid occupying the pores, and w is its concentration on the surfaces
once it has been adsorbed. If one assumes that the process is governed by certain
thresholds, the adsorption rate shows a hysteresis phenomenon of the kind discussed
in this paper. In [11] this idea is applied to homogenization of reactive transport
through porous media. Additional papers that deal with problems closely related to
those of the present paper are [2], [13], [24], [25], [26], [15], and [16], where parabolic
problems with a hysteresis source term are studied.

A rather remarkable variety of boundary conditions is obtained in (1.1). For
example, if b 0 we have an explicit Neumann boundary condition, and if c =_ 0 it
is homogeneous. (Clearly, any general solvability results cannot simultaneously allow
c b 0, because this forces g 0.) If b(0) (i.e., b-1 0), then v =_ 0 and we
have a nonlinear Neumann constraint, and if c(0) R, we get v u on F and this
satisfies a nonlinear dynamic boundary condition of Neumann type. If b(0) c(0) ,
we have the homogeneous Dirichlet boundary condition. For previous work on some
of these various classes, we refer to [3], [4], [5], [6], [8], [20], and [23].

Our objective is to .show that the dynamic of problem (1.1) is determined by a
nonlinear semigroup of contractions on the Banach space L (t) L (F). The (negative
of the) generator of this contraction semigroup is (the closure of) an operator C for
which the resolvent equation (I + C)([a, b]) If, g] with s > 0 takes the form

x e
Ou

(1.2.5) b(v) + s- D g, and

Ou
e e r

in the state space L(gt) LI(F). n order to motivate the essential estimates that
are needed, consider the (much simpler)case of functions a(.), b(.), c(.). Multiply the
respective equations by appropriate functions on gt and on F, and integrate to
obtain

This leads to the variational formulation of (1.2) and a priori estimates. For example,
if we choose sgn(u), sgn(v) and can simultaneously obtain sgn(a(u)),

sgn(b(v)), then we (formally) obtain the stability estimate

(1.4) Ila(u)llL(fl) + IIb(v)llL(r) <_ IlfllL(a) + IlgllL(r)
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For the special case a(u) u, b(v) v, we could choose u, v and obtain
corresponding L2-estimates. For this special case we shall show that the corresponding
evolution is parabolic in L2(gt) L2(F); the same holds for its additive perturbation
(see (5.1)). For the general case, estimate (1.4) suggests that the resolvent If, g] -[u, v] --. [a(u), b(v)] is a contraction. Of course we must obtain such estimates on

differences of solutions.
Our plan is the following: In 2 we formulate the boundary value problem (1.2)

as a variational problem in Sobolev space and give sufficient conditions for which it
is well posed. In 3 we show that (1.1) is governed by a contraction semigroup on
L(gt) L (F) by constructing the operator C, as suggested by our formal calculation
above. Section 4 consists of some numerical examples which illustrate the hysteresis
phenomena. Additional examples appear in [12]. Finally, we note in 5 that a corre-

sponding additive perturbation of independent interest corresponds to a subgradient
in Hilbert space from which one obtains parabolic regularizing effects.

2. The resolvent problem. Our objective is to make the boundary value
problem (1.2) precise and give sufficient conditions for it to be well posed. Let be
a bounded domain in ]Rn with smooth boundary F 0t. Denote by LP() the usual
space of Lebesgue pth-power integrable (equivalence classes of) functions on t when
1 <_ p < c, and denote by L(t) the essentially bounded measurable functions.
Let C(t) be the infinitely differe’ntiable functions with compact support in t, let
Hm() be the Hilbert space of functions in L2(gt) for which each partial derivative up
to order m belongs to L2(gt), and denote by Hn(gt) the closure in Hm(t) of
See [1] for information on these Sobolev spaces. Specifically, the trace map , which
assigns boundary values is well defined, continuous, and linear from H (t) into Le(F)
with dense range B H1/2(F).

We consider the Laplacian as an elliptic differential operator in divergence form
from H(gt) to its dual H-1 (t). Thus, assume we are given aj E L(t), 1 <_ i, j _< n,
which are uniformly positive definite; there is a co > 0 for which

n

(2.1) E aij(x)ij >_ c01l 2 e ]n,
i,j-’l

where ]l2 Eyn=l [j]2. Then A Hl(t) Hl(gt) is defined by

Au() fa aOO
i,

dx u, p e H ()

The formal part of A is its restriction to C(t), the distribution

n

(2.2) Au =_ Aulc(a)
i,j=l

The monotone graphs in system (1.1) will be given as subgradients of convex
functions [10]. Thus assume each Ca, Cb, c is a convex lower-semicontinuous function
from R into the nonnegative extended reals ]R+ [0, +c], Ca(0) Cb(0) c(0) 0.
Throughout most of the following we shall assume that is quadratically bounded:

(2.3.c) c(s) <_ C(Isl2 + 1) s e IR;
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hence c is continuous on all of I. By defining

(2.4.a) Za (u) .fo (u(x) dx

(2.4.b) Zb(V) =-- [ b(V(S)) ds
JF

u e L2(gt)

v e L(r),

we obtain a pair of proper, convex, lower-semicontinuous functions, Z L2() ---,

and Zb L2(F) --, +. (By "proper" we mean that a function has a finite value
somewhere.) Also, we define such a function Zc on the product space HI() L2(F)
by

(2.4.c) Zc([u, v]) ]r c(v(s)- "u(s)) ds u e HI() v E L2(F),

and Zc is convex and continuous on H (gt) L2(F). The subgradients of these functions
are easily computed by standard results [10]. Thus, we have a OZa(u) in L2(t) if
and only if

(2.5.a) a(x) e Oa(U(X)) a.e. x ,
and similarly we have b OZb(v) in L2(F) exactly when

(2.5.b) b(s) e Ob(V(S)) a.e. s e F.

Since imbedding Hl(gt) into L2(a) is continuous and dense and we identify L2(a)
with its dual, wo have L2(Ft) C Hl(t)’. Thus, a OZ,(u) in L2(f) implies that the
same holds in Hl(t)’, but a OZa(u) in HI() does not necessarily imply (2.5.a).
We shall call a subgradient in Hl(t) a weak subgradient and one in L2(gt) a strong
subgradient. Finally, since Z HI(Ft) L2(F) I is a composition of continuous
functions, we have from the chain rule [10] that its weak subgradient is characterized
by C e OZc[u, v] in HI(t) L(r) if and only if C [-’c, c] with

(e..c) c(s) e o(,(s)- ())
The dual map r of L2(F) into Hl(gt) is given by

a.e. sF.

’g() fr g" ds, .g e L(F), e H(gt)

The boundary value problem (1.2) can now be realized as a subgradient equation.
To this end, set

(.) z[, v] =_ zo() + z() + () + Z[u, ] u e Hl(t) v e L(F).

Clearly, there is no loss of generality in taking 1, so we shall do so for the remainder
of this section. Then, Z is the sum of convex and lower-semicontinuous functions, Z
is proper, the first two terms are independent, and the remaining two are continuous
and defined everywhere. Thus, we can compute the weak subgradient term by term.
From this it follows that

(2.7) OZ([u,v]) [f,g] in Hl(gt)’ x L(r),
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whenever we have u E Hl(fl), v E L2(F), and there exists a L2(12), b, and c- L2(F)
satisfying (2.5) and

(2.8.a) a

(2.8.5) b-bc-g in L(r).

That is, the weak subgradient (2.7) follows from (2.5) and (2.8). Moreover, (2.7) is
equivalent to (2.5) and (2.8) if the first two terms are both strong subgradients.. This
will always be the case (by the chain rule) when we assume bounds of the form

(2.3.a) Ca(s) _< C(]s]2 -b 1),
(2.3.b) b(S) <_ C(Isl 2 / 1) s e I.

In order to show that (2.8.a) is equivalent to a partial differential equation in
and a boundary condition on F, we develop an appropriate Green formula for the

operator fl, [21]. Use the formal part (2.2) to define the domain

D =_ {u e HI() Au e n2()}
Note that if F and the coefficients in A are smooth, then D H2(). Recall that we
denote the range of the trace by B and that B is dense and continuously imbedded
in L(F). Thus we obtain the identification L(F) c B’.

LEMMA 1. There is a unique linear operator OA D -- B’ such that 4u
Au q- /’OAU for u D. That is, we have for each u D,

(2.9) Au() (Au, )L2() :" OAU() e g(D)

Proof. Since 7 is a strict homomorphism of Hi(D) onto B, its dual ’ is an
isomorphism of B’ onto the annihilator H()
Thus, for each u D, the difference Au-Au belongs to H(),. so it equals ’(OAU)
for a unique

The identit (2.9) is a generalization of the clsical Green theorem. If F is
sufficiently smooth and u denotes the unit outward normal on F, and if u H2()
and aij CI(), 1 i, j n, then

ajOiuOy dx Audx + Vds, (),
i,j=l

where Au is given by (2.2) and the normal derivative is given by

O aOu eLf(r).
j=l

We can thus regard OA an extension of 0 toa (possibly) wider cls of functions
in D.

Consider (2.8.a) and sume f e n2(). Applying it to C() shows that

(2.10.a) a + Au f in n2(D)
Since from (2.10.a) it follows that u e D, we may use (2.8.a). and (2.9) to get

(2.10.c) OAU= c in L(r).
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Then (2.8.b) is equivalent to

(2.10.5) b+OAu=g in L2(F)
This shows that (2.8) is equivalent to (2.10), and we have shown that the strong
subgradient identity (2.7) is satisfied by a solution of the resolvent problem (1.2),
namely, (2.5) and (2.10).

The following result gives sufficient conditions for the resolvent problem to be
solvable and equivalent to (2.7) in L2() L2(F).

THEOREM 1. Let the domain with boundary F , the coeJcients {aij}
satisfying (2.1), and the convex lower-semicontinuous functions a, b, c from ] into

with (0) (0) (0) 0 Oe given. Assume (2.3.a)-(2.3.c) and that for some
c > 0, any two of the following hold:

(2.11.a) (s) cs" -C with 1< 2

(2.11.b) (b(S) c]s] 2 -C, s C

(2.11.c) (s) [s[2 -C, s ., fo o, o, o-ioio Z" () L(r)
given by (2.4) and (2.6), it follows that the subgradient OZ is surjective onto H()
n(r). Thus, for each triple f L2(), g,h n(r), there exists a solution pair
u e H(), v e n:(r) and corresponding selections a e L2(), b, c e n(r) satisfying
(2.5) and

(2.12.a) a + Au f in L2(),
(2.12.5) b + c g in L:(r),
(2.12.c) OAU c h in L(r).

Proof. om Green’s identity it follows that (2.12) is equivalent to

a+Au-c=f+h in HI(),
b + c g in L2 (F),

and this, in turn, is equivalent to

OZ([u,v]) If +7’h,g] in. H()’ z L(F).
These equivalences follow by the same calculations relating (2.7), (2.8), and (2.10).
Thus it suffices to show that Z is coercive on HI() x L2(F), i.e.,

(2.13) }]U}]HX() + Ilvll/’<)
We shall verify (2.13). If the fraction in (2.13) is bounded, then we obtain for

some constant K,

(2.14) (() + IV) dz + (b(v) + (v )) ds

LEMMA 2. There is a constant K1 such $hat

(2.15) Ilull/:<) K (llVullz:<) + Iluilz:<)), u Hi(a)
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Proof. Otherwise there is a sequence {Un } in H (t) for which IlUn IlL2 1, and the
right side of (2.15) converges to zero. Then, {un} is bounded in Hi(D), so (by passing
to a subsequence) we have un u in Hi(D) and un -- u in L2(Ft) by compactness.
But then un u in the weaker norm on the right of (2.15), so by uniqueness of weak
limits, we have u 0. Thus Un 0 in L2(), contradiction.

Suppose we have the ce of (2.11.a) and (2.11.b). Using Lemma 2, we replace
]UL2( by U]L( in (2.14), and then we have

a c0

om here it follows that IIUIIH,<a) + IIvllz<) is bounded, so we have (2.13).
Suppose we have the case of (2.11.a) and (2.11.c). As before, we obtain

c IlUllz,() + IIVuil<> + c111v

Since is continuous from H(fl) into L(F), the term 117UllL(r) can be absorbed in
the first two terms by adjusting K, and then we are done.

Now consider the remaining ce of (2.11.b) and (2.11.c); then, from (2.14) we
have

c0

(.1)

in which we have used either a Poinca% inequality or the argument of Lemma 2 to
replace IIIIL() by Ill’liLt(r). Using the inequality 2
[vlIL(r), fl 1[TulIL(r), and 1 < < 2, we obtain

(r)

hus, w en rpe I1- 11( with I111( in (2.16) by adjusting c, so we

obtain the coerclvigy condition (2.1a) as before.

g. he evolution problem. The goal in this section is to construct the gener-
ator of the nonlinear semigroup which corresponds to system (1.1). We shall assume
the domain in R wih boundary r 0, the coemcients {a} in L(), and the
function " N N are given as in 2.

Define a single-valued operator e on the Hilbert space L () x g(r) as follows:
C([, v]) If, 9] if and only if If, 9] e (a) x (r), and

(a.l.a) e H (a), f + 7’9 in g (a)’ and

his is just (2.g) and (2.12) with b 0 and h 0, and it can be written

c C Oc(v /u) in L(r).
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According to Lemma 1, its value is given explicitly by C2([u, v]) [An, OAU]. We
shall first show that C2 is m-accretive and also a subgradient in L2(f) x L2(F); this
implies that the special case of the system (1.1) with a b identity is well posed
and parabolic (see 5). Then we shall show that the closure of the operator C which
corresponds to system (1.2) with nonlinear a(.), b(.) is m-accretive in Ll(gt) x L(F).

PROPOSITION 1. The function Z2" L2(gt) x L(F) -, + 9iven by (2.4.c) and

_= +

is proper convex and lower-semicontinuous. The (srong) subgradient is given by OZ2

Proof. The function Z2 is clearly proper and convex. To see that it is lower-
semicontinuous, note that if Inn, v] --* In, v] in L2(gt) x L(F) and {Z2([un, Vn])} is
bounded, then {[Un, Vn]} is bounded in Hi(gt) x L(F), so for some subsequence,
"),u -),u (strongly) in L2(F) and Fatou’s lemma yields the desired result. To
compute the subgradient, use the termwise weak subdifferentiability to see that if
If, g] e OZ2([u, v]), then there exists a c e L(F) with (2.5.c) and

c(-v-’y(-u)) ds e H (f), e L(r)

this is easily seen to be equivalent to (3.1).
We develop additional estimates on C2 and begin with the following lemma.
LEMMA 3. If a I ] is monotone and Lipschitz, and a(O) O, then for each

pair

we have

j- 1,2,

(fl f2, a(ul u2))L() + (gl g2, a(vl V2))L.(r) >_ O.

Proof. We use (3.1.a) to compute the above two terms. The composite a(Ul -u2)
belongs to H (f) and by the chain rule we obtain

n

4(ul u2)(a(ul u2)) =/ E aijOi(u
i,j=l

u2)Oj(ul u2)a’(ul u2) dx,

and this is nonnegative in view of (2.1) and the monotonicity of a. Also, we have to
check the remaining term

C1 C2) (O’(Vl V2) O’(’)’tl "/U2)) ds,

but this is nonnegative because of (3.1.b) since 0c is a monotone graph and a is a
monotone function.

The special, case of a(s) s. is just the observation that C2 is monotone in
the Hilbert space L2(fl) L(F). Since C2 is single valued, we can permit a to be
multivalued.

PROPOSITION 2. Let the domain with boundary F, the coejficients {aj} in

L() satisfying (2.1), and the convex continuous function l -- with (0)
0 and (2.3.c) be given. Let j IR -- IR+ be convex and lower-semicontinuous, and let
j(O) O. Then we have

(3.2) (C2[ltl, vii C2[’/z2, v2], [0"1,0"2])L2(fl)xL.(l-,)
_

0
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for any selections ale Oj(ul u2) in L2() and a2 e Oj(vl v2) in L:(r).
Proof. Congider the lower-semicontinuous convex function J on L2(t) L2(F)

given by

The subgradient of J is given by

ff [al,a2] OJ([u, v]) in L2(n) x L2(F)
if and only if

with q(x) Oj(u(x)) a.e. x O, a(s) Oj(v(s)) a.e. s F. The Yoshida ap-
proximation J of J is given by the same formula but with j replaced by j. The
derivative j is Lipschitz and monotone so Lemma 3 yields (3.2) in this special case.
Thus, C2 is 0J-monotone by Proposition 4.7 of [7] and the general case follows since
the single-valued C2 is equal to its minimal section.

Remark. As a consequence of Proposition 2.17 of [7], we also obtain the following
corollary.

COROLLAaY 1. Let j be given as above. Then O(J T Z2) OJ + OZ2.
It follows that the special case of the boundary value problem (1.2) with a

b Oj is well posed in L2() x L2(F) when j satisfies an estimate of the form (2.11),
because g + Z2 then coercive ov L2(O) x L2(F).

Next we construct the generator of the general system (1.1). This operator will
be obtained by closing up the composition of C2 with the inverse of [Oa, Ob] in
LI(O) L(F). As before, we shall always sume that (2.1) holds, (a, (, (,"
are convex and lower-semicontinuous, and (2.3.c) holds.

DEFINITION. The operator C in L2(O) x L2(F) is defined as follows: C([a, b])
[f,g] g there is a pair In, v] as in (3.1) and a pair a L2(O), b L2(F) for which

c([u,v]) [Lg] and a Oa(U) in L2(O), b 05(v) in L2(F).
Note that Rg(I+eC) L2(O) xL2(F) for e > 0 in both the situation of Theorem 1

(i.e., (2.3.a) and (2.3.b)) and in the ce of Corollary 1 with (2.11) and a b.
LEMMA 4. The operator C is accretive on LI(O) x L(F).
Prog Let > 0 and (I + C)([a/, b/I) 9 [fj,gj] for j 1,2. Thus we have

above. We choose j(s) s so that Oj sgn; then we use (3.3) with

a sgn0(u u2 T a a2) sgn(ul u2) sgn(a a2),
a2 sgn0(v v2 T b b2) sgn(v v2) sgn(bl

to obtain

(3.4) ]a ae]i(O) + ][b b]/(r) S ]f 5]i’(n) + ]]g 92115 ( )
of course the same procedure with the function j(s) s+ and its subgradient

Oj sgn+ yields the compason estimate

(3.5) ll(al- a2)+llL(a)+ II(bl- b2)+llL,(p) I[(fl- A)+ll/’(a)+ II(g- g2)+ll/’(r)
This leads to the following L estimates.
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COROLLARY 2. If (I+eC)([a,b]) If, g] and llf+llL(n)+llg+llL(r) e Rg(Oa--
Ob), then

(3.6) Ila+llL(n) <--I}f+llL(a), ]b+L(r) g+n(r).

Proof. Set 62 ]]f+[i(), b2 g+]/(r), and choose k such that Oa(k) a2
and Ob(k) b2. With u(x) k, v(s) k in the definition of
C)([a2, b2]) [62, b2], so we can apply (3.5) to get ](a--a2)+]]i(n)+l[(b--b2)+i(r)
0.

The same result holds for the "negative parts," and by adding the corresponding
estimates, we obtain estimate (3.5) with the "positive part" deleted throughout.

LEMMA 5. Assume that any two pas of (2.11) hold. Then for any > 0 and
If, g] i() x/(F) with ][f]i() + g]]/(r) Rg(Oa + Ob), there exists a
unique [a, b] such that (I + eC)([a, b]) If, g] and

(3.7) aL(a) fL(a), bL(r) gL(r).

Pro@ Modify to replace 0 by its truncation

{min{r,m}:r 0(s)} if s 0,
0y()

{mx{,-m}: 0,()} i < 0,

where m max{fL(fl), gL(r)}. Thus 0g has bounded range, so F satisfies
(2.3.a). Likewise, modify to obtain satisfying (2.3.b). By Theorem 1, there is
a unique solution [a,b] Lu() LU(F) of (I + C)([a,b]) If, g] with the modi-
fied functions g, CF" This solution satisfies (3.7), so (2.5) holds since the modified
functions agree with the original ones for these values of a and b.

We summarize the above construction in the following.
THEOREM 2. Assume we are given the domain with boundary F as above,

t oeit (a} i L() tifia (.), d t th convex, o-i-
continuous functions ,, from into satisfying (0) (0) (0) 0
and any two of (2.11).

() ith (2..)-(2..c)hod o ad (2..c) od, th na( +)=
L() L(r).

(b) fn(0 + 0) , t n( + C) L() L(r).
In both of these cases, the closure of C in L(fl) L(F) is m-accretive.

Pro@ Part (a) is implicit in Theorem 1 and Corollary 1. For part (b), we apply
2Lemma 5 and note that we have that ]]OAUL(r) 7gL(r) from (3.7). Thus

or2m/e r2m/ewe may replace 0 by its truncation c and the corresponding convex
satisfies (2.3.c).

Since C is m-accretive, it follows from the Crandall-Liggett theorem [9] that the
abstract Catchy problem

’(t) + ((t)) ](t) 0 t T,

a(0) a0

has an integral solution h(t)= [a(t), b(t)] in C([O,T],L() L(F)) which is unique;
see also [3]. This solution can be obtained the uniform limit of step functions
obtained from the implicit difference scheme

[a, b] [a-, b-] + h ([a, b]) h[f, g], n N,
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with step h TIN and [a, b] 0 E dom( ). This provides a generalized solution
of the degenerate parabolic system

a
0- / Au- f aeOns(u) in LI(),
Ob Ou Ou
c9- + - g b C b V - e ) c V "U in L(F),

with initial data

a(x,O)=a(x) a.e. xe
b(s,O)=b(s) a.e. seF

as desired.

4. Examples. For the following numerical examples we have modified the initial
boundary value problem (1) in that we assume the boundary F of the domain t is
the union of two parts, namely, F FD (.J FH. We prescribe Dirichlet data u UD
h(t) on FD and use the hysteresis boundary conditions (1.1.b), (1.1.c) on FH. The
modification of the theorems, such that this case is also covered, is obvious.

We consider a multiple of the signum function

( 0) or a smooth approximation thereof, namely,

1 z
be(z)

and the inverse of the signum function

C(Z) sgn-l(z).

For the following examples we simplify by using a(u) u and f, g 0. We are going
to use the function

h(t) a2-tl sin(2rwt)

(with a,/,w > 0). The initial values are all zero in the examples. As a numerical
method, we have used the standard time-explicit difference scheme with constant step-
sizes in x and t. Additional details and examples can be found in [12].

Example 1. As a one-dimensional example, let Ft (0, 1), FH {0}, FD {1}.
We assume UD(t) h(t) with a 4, 10, w 1/5, and 0. Figure 1 shows
u and the selection w b(u) at x 1 as a function of time; the dotted line is the
function h and w is the solid line bounded by 1/2. Figure 2 shows w versus, u; the
oblique lines that cut the corners are a result of the discretization of time. This has
the typical form of a perfect relay.

Example 2. The following is an example in two dimensions. We take 12
{(xl,x2) 0 < x,x2 < 1} and assume FD {(x,x2) x 0}, FH 0t \ FD.
Again, we use up(t) h(t) for x FD with parameters a 4, 2, w 1, and
e 0.1. Figure 3 shows the profile of the solution u at time t 1.25 with 0.1.
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0.0 10.0 20.0

FIG. 1. u and w as functions of at x for Example 1 with e O.

5. A parabolic problem. We close with some remarks on a parabolic system
obtained as an additive perturbation of [0Ca, Ob] instead of the composition C that
was used in 3 to recover (1.1). The first is a corollary of Proposition 1.

COROLLARY 3. Assume that a and b are given in Proposition 1 and (2.3.a)-
(2.3.c) hold. For every uo E 52(12), v0 E 52(F) and f L2(O,T;L2()), g
L(0,T;/(r)), th i nq otion C([0,T]; i()), v C([0,T]; L(r))
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FIG. 2. Relay" w versus u at x for Example 1 with O.

(5.1.b)

(5.1.d)

u
+a + Au f, a E Oa(u) in Loc(O,T;L2(f)),0--

Ov
0-- + b + OAu g b E Ob(V) and

OAU e Oc(v 7u) in L2 (0, T; L(r)),
u(O) uo in L2(f) v(O) vo in L2(F)

Proof. Estimates (2.3.a)-(2.3.c) imply that OZa and OZb are defined everywhere,
hence, by Corollary 2.7 of [7] we have OZ OZa +OZb +OZ2 in L2(f) L(r). Then,
(3.2) is the evolution generated by OZ. ,
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FIG. 3. Profile at 1.25 for Example 2 with 0.1.

Such a subgradient induces a parabolic regularizing effect in the dynamics. Specif-
ically, the solution of (3.2) is strongly differentiable and satisfies

u(t) e D a.e. te(0,T).

Also, we note from Theorem 1 that the stationary problem associated with (3.2) is
well posed when two of the three parts of (2.11) hold.

The fact that 2 is 0J-monotone for any J of the form (3.3) has many con-
sequences for the special case of system (5.1) with Ca b 0. In particular, if



HYSTERESIS BOUNDARY CONDITIONS 789

(I+C2)([uj, vii) [fj,gy] for j 1,2 and > 0, then we have the resolvent estimate

(5.2) J([u u., v v]) _< J([l f, gl g2])

for any such J. Similar estimates hold for the evolution system, and any such J is a
Lyapunov function for this special case of system (5.1). These lead to LP-estimates
and comparison theorems for solutions by taking appropriate choices of j. Finally, we
note that O(J + Z2) OJ + C2, and this leads to another parabolic case of (5.1).

COROLLARY 4. Let j be given, as in Proposition 2 of 3 and set a b j.
Assume (2.3.c) ftoldso Then the result of Corollary 3 is valid.
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