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 The purpose of this article is to explore student reasoning with regard to problems in 

logic, particularly those related to the Principle of Mathematical Induction (PMI). The five case 

studies presented build off of work done by other researchers, most notably Dubinsky and Harel, 

who both looked at how students’ schemes for logic, proof, and pattern generalization may be 

applied to PMI. This study examines the schemes students use for tasks involving logical 

implication both with and without quantifiers, modus ponens, and pattern generalization using 

data collected from hour-long interviews and then examines the same students’ schemes when 

presented with tasks directly related to PMI in a second hour-long interview. We found that in 

addition to misrepresentations of logical statements, students also have difficulty representing 

ideas as mathematical statements and that this is a significant barrier to proof. Additionally, in 

some cases students had developed schemes which were valuable for tasks on the first interview 

but did not apply these schemes within the context of induction. Furthermore, it was found that 

students had formed false beliefs for which they had the tools to determine were false, but for 

which they had never been challenged or forced into a state of disequilibrium. 
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A Study on Student Perceptions of Principles of Logic and Their Application to the Principle of 

Mathematical Induction 

 

Chapter 1: Introduction 

Mathematical induction is a mainstay of proof based courses in mathematics, being 

taught both in undergraduate courses like discrete math and number theory that introduce proof 

techniques, and in some honors classes at the high school level. Despite the frequency with 

which induction is used, it is considered a very difficult concept for many students. Dubinsky 

(Dubinsky, 1986a) summed this up with his statement:  

“Indeed, if you question students- even those who have had several mathematics courses- 

although almost all of them will have heard of induction, not many of them will be able 

to say anything intelligent about what it is, much less actually use it in a problem” 

(p.305).  

 

 A number of studies have been done to examine how students understand and apply 

induction. Of particular interest were the studies of Dubinsky and Harel, each of which directly 

contributed to the framing of this study, specifically Dubinsky’s genetic decomposition of the 

Principle of Mathematical Induction (PMI) and Harel’s proof schemes and DNR-based model.  

Although there were several studies detailing how students worked with induction, there was a 

gap in the literature in connecting students’ performance with PMI and their schemes used to 

work with other areas of logic and reasoning which were related to PMI. The following case 

studies were an attempt to examine the following questions: 

- What schemes do students use for determining the truth of an if-then statement? Are 

these schemes different when quantifiers are involved?  

- How do students understand and apply modus ponens in a general setting? 

- What schemes do students use for discovering and asserting the validity of patterns? 
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- How do all these schemes relate to how students understand and apply induction? 

Does a lack of understanding PMI stem from an incomplete understanding of prior 

topics or is there another gap that had not yet been identified? 

This was a qualitative study in which four Discrete Math students participated in two 

one-hour interviews (and a fifth student participated in the first of these interviews), the first of 

these interviews focused on tasks that involved pre-induction topics, while the second, 

administered three to four weeks later, focused tasks directly related to PMI. The details of what 

questions were asked and their rationales for being included are in Chapter 3: Methods. 

In Chapter 4: Analysis, the results of the study are presented on a question by question 

basis, summarizing each student’s response to each question. Since a major focus of the study is 

on what schemes are being employed by students, the order of which students are described 

varies from question to question as students employing similar schemes may be grouped 

together.  

Finally, in Chapter 5 we present the conclusions. As we discuss the results in light of our 

questions of interest, we also identify limitations of the study, implications for practitioners and 

questions for future research.  
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Chapter 2: Literature Review 

 

A Mathematical analysis of the Principle of Mathematical Induction 

 Harel and Brown (Harel & Brown, 2008) noted that there are two common ways to state 

the Principle of Mathematical Induction: The first is to let 𝑆 ⊆ 𝑁. Then if 1 ∈ 𝑆 𝑎𝑛𝑑 𝑛 ∈ 𝑆 →

𝑛 + 1 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ∈ 𝑁 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑆 = 𝑁. Alternatively, you could let 𝑃(1), 𝑃(2), … be 

a sequence of statements involving 1,2,… respectively. Then if 𝑃(1) is true and ∀𝑛 ∈ 𝑁 𝑃(𝑛) →

𝑃(𝑛 + 1) is also true, then we can conclude ∀𝑛 ∈ 𝑁 𝑃(𝑛). The second approach may also be 

written in the form of propositional functions. In this case 𝑃 would be a propositional function on 

the domain of natural numbers, that is for any natural number n, P outputs a proposition P(n). In 

any case, showing P(1) or 1 ∈ 𝑆 is called the base case and showing that for all natural numbers 

n that 𝑛 ∈ 𝑆 → 𝑛 + 1 ∈ 𝑆 𝑜𝑟 𝑃(𝑛) → 𝑃(𝑛 + 1) is called the induction step. The conceptual idea 

of starting with P(1) and concluding P(2), which lets us conclude P(3), and so on is an 

application of modus ponens- the logical conclusion of the statement B given statements of the 

form 𝐴 𝑎𝑛𝑑 𝐴 → 𝐵- as an infinite process.  

PMI is strongly tied to recursive processes, as when given a statement that works for 

some natural number n, to show that it also works for n+1, one often writes this (𝑛 + 1)𝑡ℎ case 

in terms of the 𝑛𝑡ℎ case. One must use a process that transforms a statement involving n to one 

involving n+1 or vice versa. 

 For example, one could use PMI to prove that the formula ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
 holds for all 

natural numbers n in the following way: 

Let P(n) be the statement “∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
.” 
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Then, P(1) is the statement “∑ 𝑖1
𝑖=1 =

1(1+1)

2
,” that is “1 =

1∗2

2
” which we know to be true. 

Now fix 𝑛 ∈ 𝑁 such that 𝑃(𝑛) is true. 

Then, ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
 so ∑ 𝑖𝑛

𝑖=1 + 𝑛 + 1 =
𝑛(𝑛+1)

2
+ 𝑛 + 1, and after a few lines of algebra 

becomes ∑ 𝑖𝑛+1
𝑖=1 =

(𝑛+1)(𝑛+2)

2
 verifying that 𝑃(𝑛 + 1) is true. And so we have that ∀ 𝑛 ∈

𝑁 𝑃(𝑛) → 𝑃(𝑛 + 1). Finally, by the Principle of Mathematical Induction, the statement P(n) 

must be true for all natural numbers n. QED 

 The big take away in the induction step of this proof was the demonstration that the 

formula using n+1 was a transformation of the one using n, notably that ∑ 𝑖 =  ∑ 𝑖𝑛
𝑖=1 + 𝑛 +𝑛+1

𝑖=1

1. And one could either think of the sum as being built up by adding a new term for each natural 

number or as a process in which each sum, besides the initial sum of only one term, is 

recursively defined in terms of its predecessor. Either way suggests a method for the student to 

transform a statement involving ∑ 𝑖𝑛
𝑖=1  into one involving ∑ 𝑖𝑛+1

𝑖=1 . Modifying the rest of the 

statement, then, is simply an application of the idea that in order to preserve equality, one must 

apply the same algebraic procedure to both sides of the equality. This process of transforming 

one statement into another will be discussed further in the theories of Harel. 

 Some writers  (e.g. Stylianides, Stylianides, & Philippou, 2007) instead begin with a 

slightly abstracted version in which the base case is to show 𝑃(𝑛0) for some integer 𝑛0, then 

after proving the induction step, one can conclude that P is true on the set {𝑛 ∈ ℤ|𝑛 ≥ 𝑛0}. This 

may be because in Stylianides’ study, one topic of concern was how students would attempt to 

evaluate the truth of a propositional function on values that were less than the value of the base 

case, and so the modified base case was a necessity of the study. Harel (2002) in his studies gave 

problems that require the modified base case, but did not include this in his definition of PMI.  
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Beyond adjusting the base case, even further abstractions can be made within PMI. 

However, aside from Stylianides there does not appear to be anything in the literature about how 

well students are able to determine truth sets of propositional functions with an abstracted 

version of PMI, and nothing beyond the modification of the base case. This was a motivation for 

examining how students respond to looking at more abstract problems which modify PMI but 

preserve the basic features of using a base case and repeated modus ponens to generate a truth 

set. 

Student Thinking and Learning About PMI 

There are two significant perspectives that have been applied to how students learn 

Principle of Mathematical Induction. Dubinsky applied the idea genetic decompositions to PMI 

in the late 1980s. Harel followed this with his ideas of proof schemes in the late 1990s and early 

21st century, which he applied to PMI among other topics. In this section, I’m going to describe 

these perspectives followed by a synthesis of the findings of the studies done on PMI. 

Dubinsky (1986), in his work, organized the knowledge needed to understand and 

perform PMI into what he calls a “genetic decomposition.” A genetic decomposition is 

essentially a map of concepts, showing how understanding of one concept develops into another, 

or in many cases how two or more concepts are required to develop a new one. In Dubinsky’s 

model, there are three basic ideas that students must have first established in order to understand 

and write proofs using PMI: method of proof, the concept of a function, and logical necessity. 

The latter two are needed to explain induction and all three are needed in order to apply 

induction and then solve problems that involve it. In Dubinsky’s model, the idea of function is 

needed in order to convert natural numbers into statements that involve them. For example if 

𝑃(𝑛) = "1 + 3 + ⋯ + (2𝑛 − 1) = 𝑛2" to understand that this defines a relationship that includes 
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such pairs as 𝑃(1) = 1=12," P(2)="1 + 3 = 22, "   , etc. This is called generalization. 

Coordinating the notion of function with the encapsulation of logical necessity is necessary to 

create propositional functions that involve implications. For example, if we let 𝑄(𝑛) = (𝑃(𝑛) →

𝑃(𝑛 + 1)) using the P from above, we can get statements like 𝑄(1) = "𝐼𝑓 1 = 12 𝑡ℎ𝑒𝑛 1 + 3 =

22. " On another branch, logical necessity derives modus ponens. Modus Ponens brings the 

concept that 𝑃(1) → 𝑃(2) does not require 𝑃(1)  nor 𝑃(2) to be true, just that when both 𝑃(1) 

and 𝑃(1) → 𝑃(2) are true that 𝑃(2) must be true as well. Coordinating this with the 

development of functions that can involve implications allows students to understand PMI. 

Combining this understanding with method of proof allows for the application of induction and 

written proof.  

Harel (Harel & Sowder, 1998) also brought his theories on proof schemes to the table. 

According to Harel “A person’s proof scheme consists of what constitutes ascertaining and 

persuading for that person” (p. 241). Although this could include writing a formal mathematical 

proof, there are other forms of proof scheme as well. A common proof scheme is the empirical 

proof scheme where one becomes convinced of a statement’s truth by seeing a number of 

examples in which it is true. Another one is the appeal to authority, in which a student believes 

the truth of a statement, simply because an instructor told them it was true. This proof scheme is 

particularly dangerous in the context of mathematical induction, because such an acceptance 

allows students to see PMI as merely a formulaic approach in which they write a proof that is 

validated simply because it follows a certain template. 

The proof scheme that is critical to develop for the understanding of PMI is the 

transformational proof scheme, particularly one that utilizes process pattern generalization. A 

transformational proof scheme is one in which objects are transformed from one to another with 
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a goal in mind. Process Pattern Generalization is the ability to recognize a pattern and a method 

that can be applied to the problem repeatedly.  Putting these two together, in a problem that 

motivates proof by induction, a process can be used repeatedly to transform P(1) into P(2) into 

P(3) … into P(n) into P(n+1), etc.  

Although there have been relatively few studies on how students think about 

mathematical induction, some clear trends have been found, often supporting the theories of 

Dubinsky and Harel. One of the more universally found misconceptions is the idea that PMI 

constitutes circular reasoning (Palla, Potari, & Spyrou, 2012; David, Grassl, Hauk, Mendoza-

Spencer, & Yestness, 2009; Harel, 2002;Harel & Brown, 2008; Movshovitz-Hadar, 1993; Ernest, 

1984). One clear example of this was from Moshovitz-Hadar’s observation of a course in which 

students were looking at an invalid proof by induction and one student said “That’s the point. In 

mathematical induction, we assume what we want to prove and then prove it.” (Molshovitz-

Hadar 1993 p. 262) Similar observations have been made by Dubinsky, Harel, Ernst, Davis, and 

Palla. An issue that may cause a belief about circular reasoning is that every proof by 

mathematical induction will include the line with a statement similar to: 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛 ∈ 𝑁, 𝑡ℎ𝑎𝑡 𝑃(𝑛)𝑖𝑠 𝑡𝑟𝑢𝑒. 

This line looks very similar to the conclusion that for any n, P(n) is true. Often textbook 

writers try to differentiate use the variable k in the inductive step, although this is a solely a style 

difference. The purpose of using a different variable is to show that k is one particular fixed 

natural number at this stage of the proof. There has not been, as far as I can tell, any studies done 

on whether the use of k instead of n in the inductive step helps students, though I would 

hypothesize that such a difference has minimal effect.  



8 

A Study on Student Perceptions of Principles of Logic and Their Application to the Principle of 

Mathematical Induction 

Ernst (1984) suggests that the problem students have with circular reasoning as it pertains 

to PMI, is an issue with understanding the logical nature of implication and as well as the nature 

of quantifiers, concepts that Dubinsky listed as necessary for PMI in his genetic decomposition. 

Students often do not realize that the hypothesis of the induction step is that P(n) is true for only 

one particular value and that they go on to show that this means that P is also true for the next 

value as well. A number of studies (e.g.Palla et al., 2012; Stylianides et al., 2007) have shown 

that many students believe that the inductive step is proving the statement P(n+1) or even just 

n+1, but when asked what they mean by this are rarely able to give a coherent answer.  

 What students often fail to understand, then is that the inductive step is proving that 

∀𝑛 𝑃(𝑛) → 𝑃(𝑛 + 1), a quantified implication statement, rather than simply P(n+1). David 

(David et al., 2009) observed in his study of pre-service teachers that students mentioned 

difficulties trying to connect relationships like P(k) and P(k+1), which could suggest a lack of 

understanding in either the concepts of functions or of implications. In Stylianides’ (2007) study 

of pre-service teachers, students were given a statement that was always false, specifically “1 +

3 + ⋯ + (2𝑛 − 1) = 𝑛2 + 3. "  Going through the algebra of the inductive step makes it easy to 

show that for any value of n that 𝑃(𝑛) → 𝑃(𝑛 + 1)is true [where P(n) is the above statement]. 

One student was asked if the statement holds for k, does that mean it also holds for k+1. The 

student responded that it did not because the statement is false when k=1. This, however, 

suggests that the student lacks an understanding of what it means for a statement to be vacuously 

true. With sufficiently strong conceptual understanding, students would ideally be able to see 

that the proposition that follows from induction step would be true when P is always false- and 

thus see the necessity for the base case. This is a concept, though, that is taught prior to PMI, as 

it is prerequisite to PMI. 
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 Also in Stylianides , students were given a proof that 𝑛! > 2𝑛 𝑓𝑜𝑟 𝑛 ≥ 5. They were then 

asked whether “𝑛! > 2𝑛” was true for n=3, n=4, n=6, and n=10. In the study, 44% of the 

education majors and 36% of the math majors said that this was false for n=4, without checking. 

In subsequent interviews, some of these students realized that the proof said nothing about the 

truth values for 𝑛 < 5, and so it needed to be checked. This could suggest a lack of 

understanding logic (the proof did not show that it was true, so it must be false) or an 

authoritative proof scheme (“if it was true for n=4, it would have been proven that way as proofs 

get written to be as encompassing as possible”) or possibly something else. 

Instructional Interventions in PMI 

 Based on his theories, of genetic decomposition, Dubinsky created an alternative 

instructional technique, utilizing the programming languages SETL and ISETL, first working 

with method of proof (Dubinsky, 1986b). In this study, once students began work with 

propositional functions, they would use the computer to verify truth values of a proposition at 

various values, with the goal of  developing generalization of the function. After basic functions, 

they developed functions that were based on implications. After defining a function P, they could 

define a function Q by (𝑛) = 𝑃(𝑛) → 𝑃(𝑛 + 1) .  In doing so, students could see the application 

in the program. That is, whenever 𝑃(𝑛0) and Q(n) had constant value ‘true’ for 𝑛 ≥ 𝑛0 it could 

be seen through the process that P(n) had to be true whenever 𝑛 ≥ 𝑛0. Getting this concept 

down, made the application to writing proofs simpler. Dubinsky got very positive results with 

students able to correctly apply induction in 75% of given problems of notable difficulty, with 

full proofs 53% of the time. However, according to Brown (2008), Dubinsky’s results were 

irreproducible.  
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After Dubinsky’s work in the late 1980’s, there was a period of about ten years, before 

more work was done on modifying the instruction of proof by mathematical induction. Harel 

(2002) brought a new theoretical approach to the problem, using the model for DNR-Based 

instruction. DNR stands for Duality, Necessity, and Repeated Reasoning. Harel’s assertion of 

duality is that both how students think affects their understanding of concepts and their 

understanding of concepts affects how they think (Brown, 2008). In the context of PMI, how 

students understand certain content, such as recursion problems changes how they think about 

what constitutes proof (Harel, 2002). The necessity portion of the DNR model states that 

students are more likely to learn if they see a need for what they are being taught. And finally, 

students need to practice reasoning in what they are doing. In Harel’s approach, he gave students 

induction type problems well before explicitly teaching PMI.  

 Since the use of PMI is strongly tied to recursive processes, Harel gave students problems 

to solve that would involve creating some sort of recursive process. He called these “quasi-

induction” problems. Examples of this were finding the number of steps to the Tower of Hanoi 

problem or the number of weighings required to find the false coin given 3𝑛 coins. Quasi-

induction could either be used by the method of ascent, building up from k=1 to k=2 and 

continuing the process until k=n, a method that shows the very core of PMI.  Alternatively, 

quasi-induction may be implemented by descent, where one starts with the value of n and then 

uses a process that goes backwards until you get back to 1, showing equivalence of a formula 

working for arbitrary value n to it working for 1, essentially PMI in reverse. One fascinating 

example was in the Tower of Hanoi problem, one student derived a process showing that 𝑆𝑛+1 =

2 ∗ 𝑆𝑛 + 1. Another student, going through a few examples noticed that there was a pattern that 

𝑆𝑛 = 2𝑛 − 1. When prompted by the instructor, they derived that both of these being true 
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implied that 𝑆𝑛+1 = 2(2𝑛 − 1) + 1 = 2𝑛+1 − 1, the exact derivation that would be used in an 

induction proof.  

 The purpose of these problems was to have students develop what Harel calls “process 

pattern generalization,” in this case finding a process that can be applied repeatedly to generate 

the desired result, either by building up (ascending) or breaking down (descending). Seeing that a 

formula holds for a certain set of values is what is called results pattern generalization. Simply 

doing a brute force of the Tower of Hanoi and recognizing that it can be done in 2𝑛 − 1 steps 

each time is an example of results pattern generalization, while finding the recursion is a process 

pattern, which is stronger as it allows for the opportunity to write a general proof. In another 

study, Harel and Brown (2008) gave students a false pattern with dividing a circle into regions 

by drawing lines between n points. Up until n=5, the circle gets divided into 2𝑛−1 regions but 

this breaks for larger values of n. The purpose of this was to make students realize that simply 

generating results for a finite set without finding a process behind them, does not guarantee that 

the pattern will hold. 

After this initial stage then the second stage was focused on making quasi-induction an 

interiorized process pattern generalization. That is, making students consciously aware of their 

internalized scheme. This is the point in time where problems like the sum of finite sums appear. 

Unfortunately, students did not realize the connection between the problems right away, but were 

able to see the connection when the formula was rewritten as a sequence of statements.  

Harel (2002) also showed that, unfortunately, when PMI was introduced formally, the students 

did not see it as an abstraction of quasi-induction right away, and intervention was required 

including individual meetings with the instructors. Students were then given problem sets with 

problems to be solved by PMI. About 75% of problems were, with most of the rest proved by 



12 

A Study on Student Perceptions of Principles of Logic and Their Application to the Principle of 

Mathematical Induction 

other means. Students tended to avoid induction on problems such as “prove 2𝑛 < 𝑛! 𝑓𝑜𝑟 𝑛 ≥

4,” that they said could be proven more efficiently.  

Another study by David (2009), looked at two classes at a university for pre-service 

teachers, one of which used a traditional approach for induction and another that used a 

necessity-based approach based on Harel’s work. Unfortunately, they did not give any sort of 

comparison in the results of the performances of the two classes.  

Concluding Statements and Future Research Potential 

The literature shows that there are many student difficulties in learning PMI and that 

many students who learn PMI under the traditional approach have false concepts about PMI. 

Many students feel like a proof by PMI is just following a prescribed formula. Students are often 

able to state a definition of PMI word for word from their textbook, but have no knowledge of 

what it actually means(Palla et al., 2012), the only basis for their belief that PMI works being 

that their instructor or book told them that it works. Although it would be unrealistic to expect 

students to come up with PMI on their own, it’s important to make them think about the 

fundamental concepts behind PMI on their own so that they will believe and understand it when 

it is presented to them. This is what Moshovitz-Hadar (1993) calls the didactical paradox: “if 

both the problem and the information about its solution are communicated by the teacher, this 

deprives the pupil of the conditions necessary for learning and understanding.” 

To synthesize some of the above studies that have focused on instruction, it seems that the 

research has definitely been suggestive that students who learn PMI often lack the perquisite 

skills cited by Dubinsky- a notion of functions, of logical necessity, and of method of proof. 

However, the studies done have mostly observed student’s skills with regard to PMI in isolation. 

It has not been studied whether students who understand all the prerequisite concepts also 
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struggle with PMI.  Are there students who have strong understandings of quantifiers, 

implication and structure of proof, but still struggle with PMI? Are some of these concepts more 

important than others with respect to understanding PMI? How critical is it for students to 

develop process pattern generalization in order to construct proofs by PMI? These were the 

questions that motivated the research of this study. 
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Chapter 3: Methods 

 

This study primarily utilizes and examines two theories in its framework: Dubinsky’s 

Genetic Decomposition of the Principle of Mathematical Induction and Harel’s Proof Schemes, 

with emphasis on transformational proof schemes. This study was specifically designed to 

examine student understanding of if-then statements, both with and without quantifiers and 

generalized propositional functions, as well as students’ ability to generalize patterns through 

recursive processes and to then compare this to their ability to later understand and use induction. 

This covers the understandings listed by Dubinsky as prerequisite for explaining induction, as 

well as the transformational schemes that Harel considers important for solving specific 

induction problems. By examining the relationship between the schemes students develop for 

analyzing logical statements, utilizing functions and generalizing patterns with their ability to 

explain and apply induction could give insight into where instruction should be focused. If 

students are able to perform well in the former set of tasks, yet still struggle with induction, it 

could suggest that there is another area of knowledge linked with PMI that has not been 

identified. Alternatively, it is possible that there are multiple schemes that allow for students to 

successfully answer the more basic questions, but only some of these schemes are able to 

assimilate the concept of induction. Through the use of interviews, this study not only attempts 

to examine student competency in the areas of logic and pattern generalization but also looks at 

what specific schemes students use and their ability to consistently and effectively employ these 

schemes. 

This study involved asking students to answer a sequence of questions in two separate 

interviews. The first interviews were in either the 4th or 5th week of the term and focused on if-
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then logic and pattern generalization. The second interviews were given in the 8th week of the 

term and asked students to explain what induction is as well as write proofs by induction for 

certain tasks. Additionally, students were asked to answer questions about abstracted versions of 

induction in which the base case and inductive steps have been altered but in such a way that 

preserves the nature of the process, in particular generating a truth set through an infinite process 

of applying modus ponens. The purpose of these later tasks was to examine whether students 

could apply the ideas of PMI beyond the statements given by their instructor or textbook.  

Participants  

 The students selected for this study were students who were taking one of two versions 

Discrete Math. One version, MTH 355, is primarily for students majoring in Mathematics The 

other version, MTH 231, is primarily for students majoring in either Computer Science or 

Electrical Engineering. Both classes were introductory proof courses and included among their 

topics: logic, set theory, quantifiers, method of proof and PMI. The students who participated 

responded to prompts in two one-hour long interviews. The students were selected on a volunteer 

basis and were paid $20 per interview for their participation in the project. The first interview 

focused on the preliminary concepts required for understanding PMI: 

1) An understanding of the logical if-then both with quantifiers and without 

2) modus ponens for both finite and infinite sequences of statements, and  

3) process pattern generalization, specifically looking at problems that invoke recursion. 

 Five students participated in the first interview and four of these students returned for a 

second interview. The following are the questions asked in the interviews as well as a rationale 

for why they were included. 
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Interview 1 Questions 

Understanding the logical if-then: 

1. Are the following statements true or false? Explain why 

a. If pigs can fly then 2*3=6 

b. If 3+4=7 then 7-4=3 

c. If 2+5=8 then 8-5=7 

d. If -3 < 0 then 3 < 0 

e. If Obama was elected president in 2012 then Obama is the current president. 

f. If Al Gore was elected president in 2000 then Obama was elected president in 2008 

g. If red is a color then a pentagon has five sides. 

h. If Portland is the capital of Oregon then Seattle is the capital of Washington. 

2. Can a statement of the form “If p then not p” ever be true? Explain your answer. 

 

Part of the definition of PMI includes the truth of an if-then statement. The purpose of the 

question was to see if students interpreted if-then statements using the logical definition or 

whether they applied other schemes for doing so. The list of statements includes all four 

combinations of potential truth values for the antecedent and the consequent. Additionally, some 

statements included a cause and effect relationship between the antecedent and the consequent, 

while other statements did not. This allows us to examine the question “do students evaluate the 

truth of an if-then statement solely by the truth values of its components or does the context of 

the statement affect their interpretation?”  

Problem 2 then is a follow up on problem 1 to see how consistently a scheme may be 

applied. A statement in the form above is designed to be intuitively false, but a strict application 

of the logical definition would show that it could be true (and in fact, the ability for a statement 

to imply its own negation allows for proof by contradiction).  
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Understanding Quantifiers: 

3. Are the following true or false? Explain why 

a. ∀𝑥 ∈ 𝑅 𝑖𝑓 𝑥 ∈ 𝑄 𝑡ℎ𝑒𝑛 𝑥2𝜖𝑄. 

b. 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑡ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒. 

c. 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒, 𝑡ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒. 

 

4. On which of the following domains of discourse is the following statement true: 

 ∀𝑥 𝑖𝑓 𝑥 > 2 𝑡ℎ𝑒𝑛 𝑥 ≥ 3? 

N, Z, Q, R, (-∞,0] 

 

Problem 3 allows for an examination of how the introduction of quantifiers affected how 

students interpret if-then statements. This is important as the definition of induction includes a 

quantified if-then statement. Examples of potential misunderstanding of the logical if-then 

appeared in studies such as that by Stylianides, in which a student was given a particular 

statement and asked if the statement holds for k, does it hold for k+1, and answered “no” with 

the reason that the statement was false when k=1. Asking these more basic questions first may 

give a better indication as to whether such a response comes from a more general 

misunderstanding of the logical if-then or whether it appears only in the context of more 

complicated problems. 

Problem 4 forces students to consider the properties of different domains upon which 

they could be doing mathematics. In Palla’s study, 60% of the students said that induction could 

not be used to prove a statement on the real numbers, but few of them made an appeal to the 

properties of the natural numbers. This task is given to examine how well students are able to 

recognize how the properties of the sets they are working with affect the results they obtain. 

Additionally, the set    (-∞,0] is included to once again look at whether students recognize a 

statement as vacuously true in the additional context of quantified statements. 
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Modus ponens for finite and infinite sequences of statements: 

5. Given a domain of discourse D, what is a propositional function on D? 

 

6. Consider a propositional function P on the set {1,2,3,4}. What truth values of P(1), P(2), 

P(3) and P(4) would result in 𝑃(1) → 𝑃(2), 𝑃(2) → 𝑃(3), 𝑎𝑛𝑑 𝑃(3) → 𝑃(4) all being 

true? If we extended the domain of P to N, then what would need to be true to have the 

statement ∀𝑛 𝑃(𝑛) → 𝑃(𝑛 + 1) be true? 

 

Since the use of propositional functions is not universal in teaching induction and discrete 

math in general, this question is mainly here to make sure that students are prepared to examine 

problem 6. Students who are unfamiliar with the term “propositional function” may have it 

explained to them at this point before looking at problem 6. This problem was not designed for 

analysis in and of itself. 

Problem 6 combines many of the previous ideas together. A student who is able to 

correctly answer problem 6 should, in theory, have all the skills necessary to understand the 

nature of why PMI works. The first part of this problem examines whether students are able to 

both allow a statement to be vacuously true and also to apply modus ponens repeatedly. The 

second part of the problem examines how students are able to generalize from a finite set to an 

infinite set. While the solution to the first part of problem 6 may be approached by brute force, 

the second part requires and therefore examines the students’ abilities to apply modus ponens ad 

infinitum.  

Process pattern generalization (involving recursion) 
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7. Is there a formula for the sum of the first n odd numbers? How would you show that this 

formula would continue to hold? 

 

11. In a version of takeaway, you and your opponent take turns and may choose to take either 

1, 2, or 3 pennies each turn. The player who takes the last penny wins. If the game starts 

with 6 pennies is there a winning strategy if you pick first? What is it? For an arbitrary 

number of starting pennies, how can you tell which player has a winning strategy?  

 

Problem 7 was designed to look at two things: first of all, whether students find a pattern 

in the first place and secondly whether they can justify whether it works. This is similar to a 

problem given by Palla in which students were asked to find the area of a triangle in which the 

size grows in a similar pattern. Though 70% of students in Palls’s study were able to find a 

pattern, only 17 of 213 were able to prove that it holds. Similarly, it is hypothesized that most 

students will be able to identify the sequence of square numbers, but not be able to prove it using 

a transformational scheme. This problem may also show how comfortable students are with 

empirical proof schemes. 

 Problem 11 was intended to examine students’ abilities to build recursively off of 

previously found solutions within the problem. Relatively few steps of logic are required to 

determine that leaving four pennies is a winning strategy. However, for larger numbers of 

pennies the number of cases to examine becomes quite large. It is only through using a repeated 

process, the ability to always leave 4 fewer pennies each time, that one is able to generate a 

general solution. This problem, then is used to examine how well students are able to use 

recursive patterns, a valuable skill for figuring out how to generate a proof by induction. 

Since the interviews were a fixed length of time, rather than however long it took to 

answer all problems, there were extra problems for students who worked quickly, some of which 

were more difficult. Only one student answered any of these questions. Analysis for these 
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problems, then, was not included, except in the cases in which a response assisted in the analysis 

of a scheme used in another problem. Here are a list of those problems: 

8. Suppose you started stacking pennies. The first stack has one penny, the second stack has 

two, the third stack has four and so on. Each stack has twice as many pennies as the 

previous stack. After making n stacks, how many total pennies are there in all stacks? 

Why will this pattern continue to hold? 

9. Construct the following sets: 

a. 𝐴 = {1,3,5}, 𝐵 = {𝑥 ∈ 𝑅|∀𝑦 ∈ 𝐴 𝑥 ≥ 𝑦} what is another way to write B? 

b. {𝑥 ∈ 𝑅|∃𝑦 ≥ 3 𝑠. 𝑡. 𝑥𝑦 = 6} 

c. {𝑥 ∈ 𝑁|𝑥 + 1 ≤ 𝑥} 
10. Given a statement of the form “If p then q” what is the converse of this statement? What 

is the contrapositive? Is either equivalent to the original statement? 

12. Consider a 2𝑛𝑥2𝑛grid with the upper right corner removed. How could you cover this 

with L shaped blocks of three? 

Interview 2 Questions 

The purpose of the second interview was to then examine how the same students were 

understanding and implementing the Principle of Mathematical Induction. They were also given 

statements similar to induction, but with modifications made to the base case and inductive steps 

but which preserved the nature of induction, that is the infinite application of modus ponens to 

determine a truth set. This interview took place 3-4 weeks after the first interview, after students 

had completed the section on PMI in their class. The questions on this interview and their 

rationale were as follows: 

Explaining the Principle of Mathematical Induction 

1. Define the Principle of Mathematical Induction. 

2. Why are both the base case and the inductive step necessary? [Or ask them to explain 

their definition if they do not have these steps] 

 

These questions were used to establish what the students think induction is and what it’s 

used for. The literature suggests some students may give a definition similar to one written in a 

textbook, while others may describe the process of steps that one goes through in performing a 

proof by induction. Either way, asking the student to then justify the necessity for the base case 
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and the inductive step is possible. Depending on the response, this may be a place to ask follow 

up questions, such as “what kind of sets can induction be used on?” or “when you say ‘suppose 

P(n)’ is that for all values of n or one particular value of n?”  

Problem Solving Using PMI 

3. Use PMI to prove the following: 

a. In a version of takeaway, you and your opponent take turns and may choose to 

take either 1, 2, or 3 pennies each turn. Prove that if you can leave a multiple of 

four pennies, then you have a winning strategy? 

b. Prove that the sum of the first n odd natural numbers is 𝑛2.  

c. Prove that log(𝑎1 ∗ … ∗ 𝑎𝑛) =  log(𝑎1) + ⋯ + log(𝑎𝑛) for any positive real 

numbers 𝑎1, … , 𝑎𝑛. [You may use the fact that log(𝑎𝑏) = log(𝑎) + log (𝑏) for any 

positive real numbers a and b] 

d. Consider a 2𝑛𝑥2𝑛grid with the upper right corner removed. Prove that you can 

cover this with L-shaped blocks of three for any value of n. 

e. Prove that for 𝑛 ≥ 4 that 2𝑛 ≤ 𝑛! 
4. For problem (e) why is the base case not showing that P(1) is true? How does 

changing the base case change what is being proven by induction? 

 

The students should be familiar with problems 3a and 3b from the previous interview and 

may or may not have found the solutions on their own at that time. By having these problems in 

this interview one can see the relationship between how well students are at generating solutions 

to problems versus justifying why the answer is what it is. In Ernst’s study, he found that 

students often associate induction with proving finite sum identities, which is what 3b is asking 

for, while part a is an entirely different type of induction problem. The difference in students’ 

abilities to work with parts a and b may be indicative of the context in which students feel that 

PMI is appropriate. Due to time concerns, only 3a and 3b were given to all students. 

Extension of Inductive Process 

5. Suppose P is a propositional function on Z and that; 

𝑖) 𝑃(0) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑖𝑖) ∀𝑛 𝑃(𝑛) → 𝑃(𝑛 + 3) 
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Then, on what set, if any, can we determine that P is true? On what set, if any, can we 

determine that P is false? 

 

6. Suppose P is a propositional function on Z and that; 

𝑖) 𝑃(4) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑖𝑖) ∀𝑛 𝑃(𝑛) → 𝑃(𝑛 − 1)𝑎𝑛𝑑 𝑖𝑖𝑖)∀𝑛 𝑃(𝑛) → 𝑃(𝑛 + 1) 

Then, on what set, if any, can we determine that P is true? On what set, if any, can we 

determine that P is false? 

 

Problem 5 examines how well students are able to generalize the Principle of 

Mathematical Induction. Since this particular statement is not one they will have seen in a 

textbook or been given to them by an instructor, it is up to the student to understand the role that 

quantifiers play and their ability to apply modus ponens as a repeated process. Additionally, this 

problem looks at whether students will declare a statement to be false simply because they 

cannot prove it to be true, as was looked at in Stylianides study. Problem 6 is similar to problem 

5. This problem looks at the generalizability of induction. It was expected that students able to 

answer problem 5 correctly would also be able to answer problem 6 correctly as well. 
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Chapter 4: Analysis 

The participants of the study: 

 

This was a qualitative study in which five students from Discrete Math courses at Oregon 

State University participated in two hour long interviews. The first interview, held in week 4 or 5 

of the term, asked students to answer questions relating to logic, in particular if-then statements, 

quantifiers, and pattern generalization. Two students, given the pseudonyms Bob and Eugene, 

were taking MTH 355, a course primarily for math majors. Bob did not have prior experience in 

proof based courses, while Eugene had previous experience in such courses and was in his last 

term before graduation. Art, Cal and Dave were all in MTH 231 and had no previous experience 

in proof based math courses. Cal only attended the first interview; the other four participants 

took part in both interviews. 

 

Analysis of Student Responses to Problem 1: 

 

       Are the following statements true or false? Explain why 

a.__If pigs can fly then 2*3=6 

b. If 3+4=7 then 7-4=3 

c. If 2+5=8 then 8-5=7 

d. If -3 < 0 then 3 < 0 

e. If Obama was elected president in 2012 then Obama is the current president. 

f. If Al Gore was elected president in 2000 then Obama was elected president in 2008 

g. If red is a color then a pentagon has five sides. 

h. If Portland is the capital of Oregon then Seattle is the capital of Washington. 

On problem 1, students were given eight if-then statements and asked to evaluate whether 

they were true or false and to explain why. No hints or additional instructions were given for this 

statement. It was not specified that they should use “if-then” in the same way in which it is used 

in their MTH 231 or 355 course, but the students were aware that they were asked to participate 

in these interview because they were in these classes. 
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Two of the five students, Art and Eugene, used the definition for the truth of an if-then 

statement as presented in their discrete math class. Art first wrote down the truth table with the 

columns for 𝑝, 𝑞, 𝑝 → 𝑞. For each statement, he evaluated both the truth of the antecedent and the 

consequent and wrote down a T or F for each with and arrow in between them. Then he used the 

truth table to determine whether the statement as a whole was true. Eugene gave identical 

answers to Art, but instead both statements, he would read the antecedent first. Whenever the 

antecedent was false, he answered true and went to the next statement. When the antecedent was 

true, then he’d read the consequent to determine the truth of the statement as a whole.  

This suggests that Art and Eugene both interpret the meaning of an “if-then” statement in 

the same way, and also in the same way it was defined in their classes. However, while Art 

simply evaluated all truth values and compares to his chart, Eugene had developed a more 

efficient scheme that allowed him to determine the truth values of if-then statements as soon as 

he had sufficient information to do so. Bob, Cal, and Dave, on the other hand, used different 

methods.  

Dave appeared to have an internally consistent method for determining the truth of an if-

then statement: he simply declared a statement to be true whenever both the antecedent and the 

consequent were true. He said explicitly “something that’s false could not possibly imply 

something that’s true, in my opinion.” However, he responded in a less certain manner when 

both the antecedent and the consequent were false. For part c, he said “if something that’s false 

implies something that’s false then that would be true, but it’s all false so I’m going to write 

false.” Dave went on to say that he didn’t want to say that something was true when parts of it 

are false. On part h, he has the same dilemma again “If false implies a false in a truth table it 

would be true, but I don’t know, something inside tells me that when they’re false I don’t want to 
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dictate that it’s true so I’m going to write false for h.” Dave consistently answered true if and 

only if both the antecedent and the consequent were true. He acknowledged that when both were 

false that the implication would also hold from a logical standpoint, but said that he was 

uncomfortable declaring a statement true when parts of it are false. The use of the phrase “in my 

opinion” suggests that Dave believed that the meaning of an if-then statement is up to 

interpretation and that there isn’t necessarily one correct way to interpret it. 

Bob was similar to Dave in that he only answered true if both the antecedent and the 

consequent were true. However, on part g, he answered false to “If red is a color then a pentagon 

has five sides.” His reason for this was that “colors and pentagons are mutually disjoint.” After 

all of the statements, when asked if both parts of the statement had to be true, he said that they 

did. He said that the antecedent needed to be true in order to imply the second part whose name 

he said he couldn’t remember. When asked if the two statements had to be related, he said that 

was an interesting question and he wasn’t sure, but stated that he answered them as if they had to 

be related. Bob appears to have constructed a scheme for evaluating the truth of if-then 

statements that involves first verifying that the antecedent is true and then checking that there is 

some sort of cause and effect relationship that results in the consequent being true. Based on his 

answers to the follow up questions, he was fully aware of the first step of his scheme and became 

aware of the second part of the scheme when asked “do the two terms have to be related to each 

other or do they both just have to be true?” This is consistent with his reasoning throughout the 

problems, in which he discards all statements with a false antecedent. His response to part e was 

interesting in that he said that since Obama was elected in 2012, that this was still his term and 

that nothing happened that would cause him not to be president anymore. So, he did implicitly 
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acknowledge that simply having been elected in 2012 doesn’t necessarily mean that he must still 

be president, but the causal link was still strong enough in his mind to respond true.  

While Bob and Dave appeared to apply a scheme consistently, albeit one that does not 

correspond to the logical definition of if-then, Cal appeared to interpret the meaning of if-then 

differently depending on the type of statement. The statements “If pigs can fly then 2*3=6” and 

“If Al Gore was elected president in 2000, then Obama was elected president in 2008” both have 

a false antecedent and a true consequent. As a result, Art and Eugene both declared both of these 

statements true using the logical definition. Bob and Dave both had schemes that declared all 

statements with false antecedents false and so answered false to both of these questions. Cal, 

however, answered false to part a and true to part f. He reasoned that if Gore had been elected in 

2000 that we wouldn’t have had Bush, but there would be no reason that this would prevent 

Obama from being elected in 2008. However, on part a, he responded that the statement was 

false since pigs cannot fly. It appeared, then, that Cal’s interpretation of the truth of an if-then 

statement depended on the context of the statement beyond the truth of the antecedent, 

consequent and the existence of a cause and effect relationship. 

In common language, if-then statements typically imply a causal relationship between the 

antecedent and the consequent. This use in natural language may have been a source of 

interference for both Bob and Cal. For Bob, his scheme required a causal relationship between 

the two terms in order to establish truth. Cal, on the other hand, appeared to interpret statements 

differently depending on their content, allowing an if-then statement to either show a causal 

relationship or to apply to hypothetical situation. Dave appeared to debate whether an if-then 

statement is true whenever the antecedent and consequent had the same truth value or whether 

both had to be true at the same time.  
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One might expect to see four different interpretations of what it means for an if-then 

statement of the form “if p then q” to be true:  

The “logical” definition, which is going by the definition that 𝑝 → 𝑞 is equivalent to 

¬𝑝 𝑜𝑟 𝑞. 

The “causal” definition, which requires p to be true and a causal link between p and q. 

The “conjunctive,” definition which simply requires both p and q to be true. 

Finally, the “equivalence” definition, which requires p and q to have the same truth value.  

The following chart shows how students in each of these categories would respond: 

Question Logical  Causal Conjunctive Equivalence inconsistent 

A True False False False  

B True True True True  

C True False False True  

D False False False False  

E True Either True True  

F True False False False  

G True False True True  

H True False False True  

Students Art and 

Eugene 

Bob Dave none Cal 

 

Analysis of Student Responses to Problem 2: 

 

2. Can a statement of the form “If p then not p” ever be true? Explain your answer. 

 

Problem 2 asked students whether a statement of the form “If p then not p” could ever be 

true. This problem was chosen because such statements would be considered absurd in natural 

language and yet could be true using the logical definition. Predictably, students who used 

schemes other than directly applying the logical definition answered that such statements would 

have to be false, using terms such as “contradiction” and “paradox” to describe them. 

Art, however, (the same student who wrote a truth table before answering problem 1) wrote out 

the following truth table to describe the situation: 
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P ¬𝑝 𝑝 → ¬𝑝 

T F F 

T F F 

F T T 

F T T 

 

Using the table, he determined that it can be true and even described it as being true “half 

the time.” When asked if four rows were necessary or if two would have been sufficient, he 

answered that two would have been sufficient but he’s used to writing four rows. Art is again 

showing the use of a scheme for determining the truth of an implication by first drawing a truth 

table and then filling it in and using it. 

Eugene, on the other hand, thought about this problem for a significant amount of time. 

His initial reaction was that the answer was no because a statement cannot be simultaneously 

true and false. He gave the example “if it’s Tuesday then it’s not Tuesday.” Then he considered 

“but what if it’s Friday?” Ultimately, Eugene decided to write false and decided that a statement 

in such a form would be a contradiction since it would assume the truth of p and then imply the 

falsity of p. Art and Eugene both answered problem 1 identically, but used different schemes to 

get there. Art was able to transfer his scheme to problem 2, as the answer could be found through 

utilizing a truth table. However, Eugene’s scheme, while working very efficiently for analyzing 

specific statements, was not able to accommodate a more general statement as well. 

Analysis of Student Responses to Problem 3: 

 

3. Are the following true or false? Explain why 

      a.  ∀𝑥 ∈ 𝑅 𝑖𝑓 𝑥 ∈ 𝑄 𝑡ℎ𝑒𝑛 𝑥2𝜖𝑄. 

      𝑏.  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑡ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 

𝑐.  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑠, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒, 𝑡ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 

𝑑.  ∀𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑅 𝑠. 𝑡. 𝑥𝑦 = 1. 

𝑒.  ∃𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 𝑠. 𝑡. 𝑥𝑦 = 1. 
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When quantifiers were involved, students appeared to determine the truth of if-then 

statements in a much more consistent manner with each other. With one exception, all students 

answered that 3a and 3b were true and that 3c was false. The exception was that Cal answered 

false to 3b, but even this was consistent with what he believed to be the definition of a rectangle, 

as he specifically stated that rectangles have two pairs of equal length sides which are different 

lengths from each other.  

No student verbally expressed any concern for the ambient set. For 3a, no student 

mentioned what would happen if they were working with an irrational number; they simply 

stated or showed that the square of a rational number is a rational number. Likewise, for 3b and 

3c, no student mentioned what would happen if they looked at a quadrilateral that wasn’t a 

square or a rectangle. Multiple students stated for parts 3b and 3c that all squares are rectangles 

but not all rectangles are squares. 

One possibility is that students have developed a scheme that implicitly converts a 

statement of the form ∀𝑥 ∈ 𝐴 𝑖𝑓 𝑥 ∈ 𝐵 𝑡ℎ𝑒𝑛 𝑃(𝑥) to the statement ∀𝑥 ∈ 𝐵, 𝑃(𝑥) or ∀𝑥 ∈ 𝐴 ∩

𝐵, 𝑃(𝑥). Given the particular problems asked, these two forms actually result in the same 

responses, so additional questions which do not use strict subset containment could be used to 

explore that possibility. This is a case in which natural language helps rather than hinders the 

meaning of the if-then. In a quantified if-then statement, there becomes an assumption that the 

antecedent is true for the variable and so the possibility of the antecedent being false is no longer 

a worry. Although this allows students to determine the truth of quantified if-then statements in 

most situations it may cause trouble when the antecedent is always false. 

 

Analysis of Student Responses to Problem 4:  
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4. On which of the following domains of discourse is the following statement true: 

 ∀𝑥 𝑖𝑓 𝑥 > 2 𝑡ℎ𝑒𝑛 𝑥 ≥ 3? 

N, Z, Q, R, (-∞,0] 

 

Student answers to problem 4 appeared to be consistent with their answers to problems 1 

and 3 and helped support the evidence of the described schemes used in the previous tasks. Art 

and Eugene both answered 𝑵, 𝒁 𝑎𝑛𝑑 (−∞, 0]. Art at first wanted to say that all of them were 

false because he could pick a number that was greater than 2 but less than 3. When asked what 

natural number is greater than 2 but less than 3, he immediately realized that it’s true on the 

natural numbers and likewise the integers but says it’s not true on R or Q because they could be 

decimals. For the last one, he first said false and explained that he couldn’t even pick something 

above 2; after stating this, he noted that false implies false is true and so it’s true. Eugene 

accepted N and Z quickly and just as quickly rejected Q and R, noting 5/2 as an example that 

breaks it. Eugene called the last one tricky, but then noted that for the given set “x>2” is always 

false and so the statement as a whole is vacuously true. 

Bob, like Eugene, also used the example of 2.5 to declare that the statement is false on 

both Q and R, but affirmed that the statement was true on N and Z since the first number greater 

than 2 is 3. He says it will not hold on the last set because the base is always false. This shows a 

consistency with his answer to problem 3 in that he does not worry about the cases in which the 

antecedent is false in a quantified statement, while being consistent with problem 1 in that he 

requires an antecedent to be true. 

Dave at first started writing false for his answers, using x=1 as a case where x is not 

greater than 2 (consistent with his conjunctive scheme applied in problem 1). Then he reread the 

statement and decided that he would have to start with using numbers greater than 2 (consistent 
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with his scheme in problem 3, which first reduces the set to where the antecedent is true). He 

declared that the statement was false on (−∞, 0] because that set contained no number greater 

than 2 or greater than or equal to 3 and discarded R using the example 2 ½ as a real number 

greater than 2 but not greater than or equal to 3. His final answer was N, Z and Q, though in the 

case of Q it was unclear whether he actually understood what the set of rational numbers was. 

So, his scheme was similar to Bob’s which should not be surprising given their similarities in 

answering problems 1 and 3. 

Cal showed inconsistent reasoning. Like other students, he used 2 ½ as an example as to 

why the statement was false on Q. However, he did not apply this same reasoning on R and said 

that it was true on R. He said that it was false on the integers because the integers contain 

negative numbers, while declaring the statement true on the natural numbers.  

All students determined that the statement was false on some set by using a 

counterexample. Four of five students used the same counterexample, whether expressed as 

5

2
, 2.5 𝑜𝑟 2

1

2
, while the other student said that it’s false on Q and R because they contain 

decimals. This suggests that these students did have a scheme that tells them a statement of the 

form ∀𝑥 𝑃(𝑥) → 𝑄(𝑥) can be negated by ∃𝑥 𝑠. 𝑡. 𝑃(𝑥)𝑎𝑛𝑑 ¬𝑄(𝑥), whether or not this had been 

internalized. However, while all students determined that finding such a counterexample was a 

sufficient condition for negating the statement, it was not a necessary condition for the students 

who declared the statement false on (−∞, 0]. Since these students’ stated justification for 

answering that the proposition was false on (−∞, 0] was because the condition of “𝑥 > 2” could 

never be met, this could be seen as a consistent pattern with how they answered question 1. 

Under the scheme used by Bob, Dave and sometimes Cal, a simple if-then statement was negated 

by determining that the antecedent was false or by determining that the causal relationship did 
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not hold. A quantified if-then statement could then be negated either by determining that the 

antecedent is always false or that there is a case in which the implication fails. In logical terms, 

this would mean that “∀𝑥 𝑃(𝑥) → 𝑄(𝑥)” was interpreted as ∃𝑥 𝑠. 𝑡. 𝑃(𝑥) and ∀𝑥 𝑃(𝑥) → 𝑄(𝑥) 

which could rightfully be negated by ∀𝑥, ¬𝑃(𝑥) or ∃𝑥 𝑠. 𝑡. 𝑃(𝑥)𝑎𝑛𝑑 ¬𝑄(𝑥), that is by finding a 

counter-example or by determining that the antecedent is always false. 

The existence of such an interpretation would also explain a finding by Stylianides. In his 

study, Stylianides found that some students believed that: [∀𝑘 ∈ 𝑁, 𝑃(𝑘) → 𝑃(𝑘 + 1)] → ∀𝑛 ∈

𝑆, 𝑃(𝑛) where S is a proper subset of N of the form {𝑛|𝑛 ≥ 𝑚 > 1, 𝑚, 𝑛 ∈ 𝑁}. Such a statement 

would be implied by the use of the scheme attributed to Bob and Dave for evaluation quantified 

if-then statements. 

 

Analysis of Student Responses to Problem 6:  

 

5. Given a domain of discourse D, what is a propositional function on D? 

 

6. Consider a propositional function P on the set {1,2,3,4}. What truth values of P(1), 

P(2), P(3) and P(4) would result in 𝑃(1) → 𝑃(2), 𝑃(2) → 𝑃(3), 𝑎𝑛𝑑 𝑃(3) → 𝑃(4) all 

being true? If we extended the domain of P to N, then what would need to be true to 

have the statement ∀𝑛 𝑃(𝑛) → 𝑃(𝑛 + 1) be true? 

 

On problem 6, students who understood the meaning of implication appeared to be able 

to determine whether the sequence of implications must be true and were able to find examples 

that satisfied the condition but were not able to generate all the different possibilities in either the 

finite or the infinite case. Problem 5 was included primarily because the term “propositional 

function” is not always used. In fact, none of the students responded that they were familiar with 

the term and had it explained to them.  
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Art first noted the possibility that all statements were true. When asked if that was the 

only way, he said that all false would work because the implication gets evaluated before the 

“and.” Under further analysis, he determined that making P(1) be false would not restrict the 

truth values of any of the other statements, but that assigning false values elsewhere could create 

the problem of having a false implies true. After determining that P(1) could be false and the 

others true, he made no visible effort to extend this to having both P(1) and P(2) being false. For 

both the finite and infinite cases of problem 6, he gave the same answer: they could all be true, 

all false or P(1) false with all the remaining ones being true. 

Eugene appeared to use similar reasoning to Art. His first expressed thought, like Art was 

that P had to be true at all values. Then he considered if statements were false, noting that if P(1) 

is false then 𝑃(1) → 𝑃(2) must be true. He then chained together falses and until he got to the 

last place and decided that it could be anything. After he was satisfied that TTTT, FFFF and 

FFFT (he had first grouped these as FFFX) worked I asked if he could come up with any others. 

He said “we have four things so there are usually four things.” He then came up with FTTT as 

his last case. This could be a case in which Eugene’s mathematical experience led him astray, 

deciding that this problem likely fit a pattern in which the size of the domain was equal to the 

size of the solution set and so once he found four solutions with the given property he assumed 

he was done. 

In generalizing to N, Eugene’s first two answers were that they could either all be false or 

all be true, then that the first one could be false but the rest all be true. He then said if they’re all 

false but “the last one.” As he struggles with what this could mean, I asked if he could have a 

case in which P(1000000) is false and P(1000001) is true and what that would mean for 

P(1000002). He said it would have to be true but that he couldn’t know what the next value was. 
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He then said that he realized what is problem was: there is no last natural number, so the case in 

which the last one is false and the rest are true does not carry over when the domain is N but the 

other three cases do. Eugene showed an ability to transfer his solutions to a small problem to a 

larger version of the problem, noting that three solutions carried over directly and that the fourth 

could not since it relied on the fact that {1,2,3,4} contains a last number. Unfortunately, he 

missed one case in the smaller version, FFTT, possibly due to an empirical proof scheme in 

which he decided the size of his solution set was equal to the size of the domain of P, and the 

case that showed the full generality, that one could have any number of false statements followed 

only by true statements. 

Interestingly, the student who employed the most effective scheme was Cal, who was 

able to generate all possible truth values in the finite case. Although Cal had employed 

inconsistent methods for evaluating the truth of if-then statements in previous problems, here he 

noted that 𝑃(1) → 𝑃(2) is false only when P(1) is true and P(2) is false. It was clear from this 

problem that Cal was aware of the logical definition of implication even though he had not used 

it in previous problems. He noted that if P(1) were true then P(2) would have to be true as well, 

but if P(1) was false that P(2) could be true or false. He then noted that P(3) could be true or 

false as well, but would have to be true if P(2) was true. I asked if he could draw a tree diagram 

that shows all the possibilities since the truth values had a dependence relation. He drew the 

following diagram which showed quite nicely the possible truth values and noted that any set of 

truth values would work as long as a false value never succeeded a true value. 
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I then asked if P(1) could be true since that case was not listed and he decided that it 

could, but only if P(2), P(3) and P(4) were all true as well. When generalizing to N he states that 

he could have them all be false or he could branch off to true but if he did they would all have to 

be true after that. When asked what possible truth sets he could have though, he appeared to get 

confused. The more time that was spent on this problem, the less coherent his responses seemed 

to get. Like Eugene, he doubted what he can say about specific truth values because subsequent 

truth values were unknown. As Harel notes, students often have trouble when working with 

infinite processes and so setting the truth values of infinitely many things at once may be 

difficult.  

Dave said that he likes to use examples and does not like to think generally. He thought 

about how he would try to plug in variables and writes statements like 𝑃(𝑛) < 𝑃(𝑛 + 1). When 

asked if two propositions can be compared with a less than sign he responds “not logically, no.” 

In the end he decides that we want P to be true everywhere. This is consistent with his 

established pattern of evaluating 𝑝 → 𝑞 and p and q. However, the functional notation seems to 

be a barrier for him. 

Bob mentioned induction on this problem and said that we are showing something is an 

inductive set. When asked what he means by an inductive set he responds “I think in abstract 

algebra terms it would have to be one to one.” When asked about the truth values of P, he notes 

that if P(n+1) is true then P(n+2) is true and so on, showing that he may have an idea that once a 

statement is true, all subsequent statements must be true as well, but it’s difficult to make any 

conclusions about Bob’s response to this question. He appeared to be dealing with interference, 

referencing multiple mathematical terms, some of which were not related to the task at hand. 

Analysis of Student Responses on Problem 7: 
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7. Is there a formula for the sum of the first n odd numbers? How would you show that 

this formula would continue to hold? 

 

On this problem, the two MTH 355 students were able to determine that the outputs were 

square numbers and were able to show this using an induction like process. Eugene focused on 

the differences of subsequent terms and wrote 𝑛2 − (𝑛 − 1)2 = 2𝑛 − 1, then noted that 2𝑛 − 1 

gave us the odd number that would be added to get to the 𝑛𝑡ℎ term. Bob, on the other hand, when 

asked how he would show that the sum of the first n odd numbers is 𝑛2wrote (𝑥 + 1)2 = 𝑥2 +

2𝑥 + 1 then noted that this is equal to the previous square added to the next odd number. Bob 

mentioned the word induction when he did this, suggesting along with his response to problem 6 

that he does have a sense that induction is used when there is some sort of sequential process 

involved. 

Art first identified the pattern, stating that “each number is the previous number plus the 

next odd number.” It’s not until he computed up the fifth sum that he noted that these are square 

numbers. Although he was able to construct both a recursive process for calculating sums and 

found an explicit formula for what they would be, when he is asked how he would show that this 

formula would continue to hold, he says that he would pick a number down the line and check it. 

Art was also able to do problem 8 and again was able to find both a recursive process and an 

explicit formula and again when asked how he could know this would continue to hold, he said 

to pick a large value of n and see if it works. Art expressed a clear empirical proof scheme when 

analyzing this problem. Although he does not appear to be completely satisfied with that answer, 

it seems he felt that’s the best that could be done. 
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Cal and Dave were unable to determine that the sum of the first n odd numbers were 

square numbers. Both of these students needed a further explanation of what the question was 

asking. Dave, after quite a bit of work, was able to express it as a sum ∑ (2𝑖 − 1)𝑛
𝑖=1  but kept 

trying to work with this sum, rather than look at specific numbers. This is despite him saying that 

he doesn’t work well with general statements. Cal did, with help in explaining what the question 

was asking, compute the values up through 36, but did not identify these numbers as square 

numbers, only noting that they alternate between odd and even. Dave, as well, when asked to 

compute values, computed up to 9 and noted that it was an odd number. Perhaps the problem 

statement asking to have them add odd numbers played a role in their thinking that a critical 

component of the answer would be based on the numbers being odd or even. 

The range of results for this question aligns with expectations from the literature. Two 

students used a transformational scheme to get from one square number to the next, one focusing 

on addition and the other on subtraction. A third student was convinced by an empirical scheme 

that the sums would result in square numbers, while two students were unable to find solutions at 

all.  

Analysis of Student Responses to Problem 11: 

 

11. In a version of takeaway, you and your opponent take turns and may choose to take either 

1, 2, or 3 pennies each turn. The player who takes the last penny wins. If the game starts 

with 6 pennies is there a winning strategy if you pick first? What is it? For an arbitrary 

number of starting pennies, how can you tell which player has a winning strategy?  

 

Four of five students had enough time to discuss the “Takeaway” problem (Dave ran out 

of time before this). Problems 8, 9 and 10 were skipped for all students, except for Art.  All four 

students were able to determine that leaving four pennies was a winning strategy. However, only 

Art was able to generalize this and determine that leaving a multiple of four pennies is also a 



38 

A Study on Student Perceptions of Principles of Logic and Their Application to the Principle of 

Mathematical Induction 

winning strategy for larger versions of the game. Art’s key insight was stated as “I don’t want 

my opponent to be able to leave four.” He determined that the first number for which this was 

possible was 8, noting these were multiples of 4, he then considered if he left 12 and decided that 

he’d be able to leave 8, deciding when he left a multiple of 4, he could keep leaving smaller 

multiples of 4, he was satisfied. 

The other students, however, kept trying to look at various cases of starting values and 

consider all the scenarios that could play out from there and did not use the fact that they could 

stop once they’d reached a point that was previously solved for. Because of this, the cases 

became too complicated for them to go through even for small values of n, though Eugene noted 

that if he started with 8 pennies he would lose and may have had solutions up to n=12.  

With Bob, I suggested working backwards and he got the “solution” to leave 3n+1 

pennies. His justification was that he knew leaving 4 pennies was a winning strategy and also 

that no matter how many pennies were left on his turn that leaving 3n+1 pennies would always 

be possible. The fact that the possibilities of numbers of pennies left to him by his opponent 

could also be of the form 3n+1 was not verbally acknowledged. This was an interesting response 

in that inductive ideas were present but were misapplied in answering the specific question.  

Students in the first interview showed a diverse range of knowledge and ability with 

respect to concepts which Dubinsky, Harel and others have written are important for students to 

be able to understand induction. Students Art and Eugene showed that they understood the 

meaning of the logical implication which is required for the definition of induction. Cal also 

displayed an understanding of logical implication, though highly contextualized, and was able to 

apply it to an induction-like process on a finite set, but not an infinite one.  
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Art also showed the process pattern generalization skills required for a proof by 

mathematical induction problem, while students Bob and Eugene, perhaps due to their richer 

mathematical background, were able to do pseudo-induction to show the sum of the first n odd 

numbers is 𝑛2. 

Based on the data collected in the first interview, I hypothesized that Art and Eugene 

would have the knowledge base necessary to understand the Principle of Mathematical Induction 

and develop schemes for implementing it. I was less optimistic about Bob and Dave as they did 

not display an understanding of the logical basis of induction. Cal was difficult to make any 

predictions about. The inconsistencies shown throughout his work, as well as his struggles to 

understand certain problem statements was disconcerting, but on problem 6, which was the 

problem most closely related to the definition of induction, he showed an understanding of the 

nature of the problem, perhaps more strongly than any other student. Unfortunately, Cal did not 

participate in a second interview and so we have no further data on him. The following chart 

summarizes student responses to problems 1, 2, 4, 6, 7 and 11. The responses to problem 3 were 

all similar enough to not be distinguished from one another.  

 

Analysis of Student Responses on Problems 1 and 2 of Interview 2: 

 

1. Define the Principle of Mathematical Induction. 

2. Why are both the base case and the inductive step necessary? 

There were some patterns that emerged in the second interview. In the first problem, 

three of the four students said that PMI was used to show that a formula or equation holds, a 

limited view of induction noted by Ernst, Harel and others. Only Eugene answered that PMI was 

used to show that a proposition holds for any value from a set.  
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Art and Bob both showed that they have an understanding of induction being associated 

with finding relationships between certain terms. Bob had a notion of an “inductive set,” a term 

he used in the previous interview but had difficulty explaining, saying that an inductive set is one 

in which each term follows another. Art used a metaphor of fire escapes saying that a base floor 

must exist and that a relationship must exist between floors. He notes that in a proof by induction 

that the base case shows a formula holds for the first one and that the induction step shows “how 

you get from one thing to the next.” When asked if there was a logical term for the relationship 

he said it was implication. Dave showed that he has some idea that induction involves a 

relationship between consecutive terms, as he talked about replacing a variable with its 

predecessor, though he admitted to being unsure what he meant by this. 

Analysis of Student Responses on Problem 3a: 

 

3a. In a version of takeaway, you and your opponent take turns and may choose to take        

either 1, 2, or 3 pennies each turn. Prove that if you can leave a multiple of four pennies, 

then you have a winning strategy? 

 

Given that students had developed a notion that PMI was used to prove that a formula, 

and usually a summation or product formula, would hold, it was not surprising that students 

struggled applying PMI to a problem such as proving that leaving a multiple of four pennies was 

a winning strategy in Takeaway. Art said that he doesn’t even know how he’d set it up, noting 

there was no right or left side of an equation to look at. Bob was able to note that given a 

multiple of 4, that he can leave the previous multiple of 4. He noted that after leaving 4n pennies 

that on his next turn, he’d be able to 4(n-1) pennies and gave an explanation why, but said he felt 

like he wasn’t using induction. Interestingly, this student was able to reason why a solution 

works, in this case why leaving multiples of 4 is a winning strategy, using a process that is the 
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core principle of induction and yet feel like he isn’t using induction. He was eventually able to 

write a full proof, but not without significant scaffolding.  

Eugene was able to write a proof for this problem, but struggled with what the induction 

means. For the base case, he noted that it would be the situation in which it’s his opponents turn 

to pick and there are four pennies left. For the inductive step, he noted an issue that if n=4q then 

the next multiple of 4 would be 4q+4, though noted this is also 4(q+1). In doing induction he 

decides that he can simply add 4 instead of 1 to the value of pennies that he knows is a winning 

strategy and is able to write a proof for this. It should be noted that he had some difficulty with 

this and first proved that if a value n is a multiple of 4 that n+4 is also multiple of 4 as well and 

had to be reminded that he was trying to prove that he had a winning strategy by leaving n+4 

pennies.  

Dave was able to understand, though needed an explanation, as to why somebody leaving 

a multiple of four would then be able to leave a smaller multiple of four the next time. However 

when asked if this related to induction, he was unsure in his response. When asked to state what 

the base case would be, he said that it is tough to think generally when the base case is one 

statement and there are so many cases for what people could choose. 

Analysis of Student Responses on Problem 3b:  

 

3b. Prove that the sum of the first n odd natural numbers is 𝑛2.  

 

Problem 3b represented a more classical induction problem in which one has to prove 

that a summation formula holds for any natural number. Bob and Eugene were able to write 

mostly complete proofs for this one, just as they had been able to justify this statement with 

pseudo-induction on the previous interview. Both Bob and Eugene struggled with getting indices 

correct on their summations at first (they both used sigma notation for the sum) but were able to 
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write the solution correctly. Bob never wrote an inductive hypothesis even though he used one in 

the proof. 

Art and Dave both struggled with this problem and there were similarities. Both students 

used general subscripts for writing the first n odd numbers e.g. 2𝑥1 − 1 + 2𝑥2 − 1 + ⋯ 2𝑥𝑛 − 1 

even though when asked, they stated that they had specific values and that 𝑥1 = 1, 𝑥2 = 2, 𝑒𝑡𝑐. 

Also, both students truncated their sum in their attempted proofs, reducing to the last one or two 

terms on the left hand side of the equation, writing statements such as 2𝑛 − 1 + 2𝑛 + 1 =

(𝑛 + 1)2. As far as I know, none of the literature notes students doing this. Given that Art and 

Dave were in the same Discrete Math class, it could be a unique experience in this class led to 

this. 

Analysis of Student Responses on Problem 5: 

 

                  5._Suppose P is a propositional function on Z and that: 

𝑖) 𝑃(0)𝑖𝑠 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑖𝑖) ∀𝑛𝑃(𝑛) → 𝑃(𝑛 + 3) 

Then, on what set, if any, can we determine that P is true? On what set, if any, can we 

determine that P is false? 

 

Art began by being unsure what the statement is asking by “what set,” and notes that P(0) 

would be the base case and 𝑃(𝑛) → 𝑃(𝑛 + 3) would be the inductive step but with an n+3 

instead of an n+1. He said he didn’t know what to do because he didn’t know what P was, other 

than he thought it was a function. I had him compare the statement of the problem to problem 6 

in the previous interview but he did not see a connection. I asked him to construct a truth table 

since that is what he did during the previous interview whenever implication came up. He was 

able to write a truth table with (0), 𝑃(3)𝑎𝑛𝑑 𝑃(0) → 𝑃(3) . After this, he was able to determine 

that P(3) had to be true and was able to generalize this for all multiples of 3. He said that the 

truth value could not be determined elsewhere and noted that even if we knew a value for which 
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it was false, it could still be true for a value 3 greater. He was then able to answer problem 6 

without trouble, noting that since the implications let him go both up and down by 1 that he can 

cover all integers.  

Being reminded of the truth table appeared to be a significant scaffold suggestion for Art 

during the second interview. After this, he was able to give an explanation for why a suppose 

statement is necessary in an induction proof, as an implication is being proven. He also explained 

that the base case is necessary since establishing an implication is true does not require any of 

the statements to be true and so the first statement would have to be proven on its own. Although 

Art had been successfully using a scheme that linked implication to a truth table during the time 

of interview 1, at some point in time before interview 2 he stopped using such schemes. He still 

was a bit shaky on what P would actually represent as seen by his response to problem 3e 

afterward when he asked if P(n) would be 2𝑛𝑜𝑟 𝑛!. I asked him if 2𝑛 could be a true statement 

and at this point he noted that P(n) would have to be the entire statement “2𝑛 < 𝑛!.” This 

suggests that difficulties for Art may have stemmed from his notion of a function.  

Bob was exposed to problem 5 earlier in the interview, after problem 1, and was asked if the 

statements were related to induction at all. He said that the only difference was an n+3 instead of 

an n+1 and it was at this time that Bob talked about inductive sets being those in which one 

element comes after another. He said the base case gives a starting place and the inductive step 

gives a relationship for how elements come one after another. Due to time constraints, Bob did 

not give an answer to this problem. 

Dave noted that the second statement would mean that he’d have the statements 𝑃(1) →

𝑃(4), 𝑃(2) → 𝑃(5), 𝑒𝑡𝑐. And so P would have to be true everywhere. This is again consistent 

with his view in the first interview that an implication is true when both its antecedent and 
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consequent are true. However, he doubts this. Next, he also notes that he knows both 

𝑃(0) 𝑎𝑛𝑑 𝑃(0) → 𝑃(3) are true. I asked him if this implies anything about P(3). He responds no 

and claims that it is so general that he doesn’t know what it means. At this point, Dave appears to 

be overwhelmed by mathematical notation. He has conflicting ideas for what things could mean 

and is struggles to make sense of it.  

Finally, Eugene noted that he had 𝑃(0)𝑎𝑛𝑑 𝑃(0) → 𝑃(3) and concluded that P(3) had to 

be true. His final answer was that P(0) and P(3) had to be true and that at other values P could 

potentially be true or false. Eugene did not spend much time on this problem, being satisfied with 

his answer. As he was only given P(0), only one implication was not able to be immediately 

rejected as vacuously true. Eugene showed in previous problems that he has the schemes 

necessary to continue to build off of statements that must be sequentially set to true as he showed 

on problem 6 of the previous interview and may have simply been satisfied with the first answer 

he came up with. 

For future studies, I would expect for there to be three somewhat common responses to 

this question: the correct response of non-negative multiples of 3, the response of all integers for 

those who either interpret implication as an ‘and’ statement or focus on the symbols ∀𝑛 𝑃(𝑛), 

and finally the set {0,3} for those who notice the first implication, but do not realize that an 

infinite sequence of truth values builds off of it. 
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Chapter 5: Conclusions 

Comparisons to Other Studies 

 

 A number of observations found in this study support previously made observations. 

Previous studies have suggested that students think about the structure of a proof by PMI as 

being a circular argument in nature. When asked whether the inductive hypothesis assumes that a 

statement is true for all values of n or for one specific value of n, Art and Bob both responded 

that the assumption was made for all values of n. When asked if this constituted circular 

reasoning, Art first responded in the affirmative but then answered that he wasn’t sure what 

circular reasoning meant. Bob responded that he hadn’t thought about it before but reasoned that 

it would have to constitute circular reasoning. He expressed dissatisfaction with such a 

conclusion, but maintained “that is the definition of induction, though.”  

 Bob’s response suggests that he had sufficiently developed logical schemes to determine 

that supposing a propositional function was true for all input values would constitute circular 

reasoning and that this was problematic. However, he had formed a belief that such a hypothesis 

was used in a proof by PMI and never had this belief challenged. This is not the only instance of 

such a phenomenon taking place. Eugene was asked upon which sets could PMI be used. His 

initial response was that PMI could be used on any set for which adding 1 made sense including 

the integers, the reals and the complex numbers. When justifying why it could work on the real 

numbers he said “if you have that it’s true for pi, then you have that it’s true for pi plus one … 

but you don’t have that it’s true for pi plus the square root of two, so I’m going to say the 

integers.” 

 

The Difficulty of Functions 
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 One observation throughout the interviews was that students had difficulties writing 

down statements in a mathematical form and using propositional functions. While Bob and 

Eugene were both able to write a proof for problem 3b, Art and Dave were unable to convert this 

into a mathematical statement which they could prove and so didn’t even have the opportunity to 

apply induction. Problem 3a for Art was particularly telling, because Art was able to find the 

solution and a transformational process to generate the given solution but responded that he 

could not think of how this problem could relate to induction. It would appear that the schemes 

that Art, Bob and Dave had developed for identifying when induction can be used, limits them to 

identifying problems which involve verifying a formula, rather than any problem which involves 

applying a repeated process. Because of this, their schemes for induction did not appear to 

include the translation of a statement into a mathematical form upon which induction could be 

applied. Even when Bob was able to do this under heavy scaffolding, he said it didn’t feel like he 

was using induction, suggesting that the instruction has not sufficiently shown the broadness of 

the application of PMI. 

 Another observed phenomenon was that students may possess knowledge and schemes 

sufficient to inform their understanding of PMI, but not apply such knowledge. This was 

especially apparent with Art on Problem 5. On this problem, he was able to derive the truth set of 

P only after being reminded of his use of the truth tables. After this, Art was able to explain what 

the inductive step proves and the necessity of the base case in a much more succinct manner than 

at the beginning of the interview. Interpreting functions was still a difficulty for Art even after 

this as evidenced by his question on a subsequent problem “Would P(n) be 2𝑛 or 𝑛! ?” to which I 

asked if either of those could be a true statement and he then determined that the entire statement 

“2𝑛 < 𝑛!” would have to be the statement supposed in the hypothesis. Unfortunately, there was 
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insufficient time in the interview to examine whether the scaffolding process resulted in an 

improved ability of Art for writing proofs by PMI, though he appeared to show greater 

understanding once he was reminded of his previously used schemes. 

 This was particularly interesting because Art had previously used truth tables very 

effectively and had written down truth tables whenever implication appeared during the first 

interview. From his responses, it was clear that Art never forgot how to use truth tables, but 

rather had either stopped using them or had not learned to use them in new contexts.   

Limitations 

 The participants in this study were volunteers and so the results might not be as 

generalizable as they would be with randomly selected students. All four case studies were done 

at the same university and students were in one of two sections, so some experiences may also 

have been unique to the school or instructor. Additionally, this study only examined how 

students responded to the given tasks. No data was collected with respect to how the course was 

taught. 

Consequences for Future Studies 

 The least examined branch of Dubinsky’s Genetic Decomposition for PMI was the notion 

of a function. In the first interview, students were simply told what propositional functions were 

for the sake of examining whether they could generate truth set via modus ponens in problem 6. 

Students were not asked to interpret propositional functions or to write statements in common 

language in a mathematical form. Although a simple description of propositional functions 

seemed to be sufficient for students to work with problem 6, and three of five students were able 

to obtain partial solutions, this problem did not give much insight into students’ notion of a 

function, nor was it designed to do so. 
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 The case study of Art, in particular, suggests that this is a topic that deserves more 

attention. My hypothesis after the first interview was that Art would be able to effectively apply 

the Principle of Mathematical Induction, given his use of the logical if-then, his ability to apply 

modus ponens and to generalize patterns. However, there was little data collected on Art’s ability 

to interpret or translate mathematical statements.  

 These case studies suggest that the notion of a function and the ability to interpret 

mathematical statements or translate an idea into a mathematical statement is a barrier for 

students working in higher mathematics. Additionally, some students develop a scheme that 

interprets a statement of the form ∀𝑥 𝑃(𝑥) → 𝑄(𝑥) as one of the form ∃𝑥, 𝑃(𝑥) 𝑎𝑛𝑑 ∀𝑥 𝑃(𝑥) −

𝑄(𝑥). In many cases, this interpretation does not cause problems, as in mathematics we rarely 

prove vacuous statements, but it may cause problems with interpreting induction, particularly 

with regards to the necessity of the base case. There were also other cases in which students were 

found to have false beliefs, such as the belief that one supposes the induction hypothesis for all 

natural numbers or that PMI can be used to prove that a statement is true for all real numbers, 

and showed the ability to determine that these beliefs were false but had never had these beliefs 

challenged and thus never went through a stage of disequilibrium to change these beliefs. 

 Finally, it was found that students often do not relate induction to recursive processes, but 

rather associate induction with equations which typically involve a finite sum or product. This 

suggests that Harel’s instructional method of introducing recursive problems as a precursor to 

induction may be more effective in portraying to students when and why PMI is used. At least 

one of these case studies also suggests that it may be helpful for students to see PMI as a single 

case of using modus ponens repeatedly to generate a truth. Thus, PMI rather than being its own 



49 

A Study on Student Perceptions of Principles of Logic and Their Application to the Principle of 

Mathematical Induction 

technique may be assimilated into the schemes of applying modus ponens, but further research 

on this is still required. 

Implications for Instruction 

 These case studies showed that students, even in higher level courses, have difficulty 

interpreting and using mathematical notation. Although direct use of propositional functions may 

not be necessary, and these students had not used such terminology, understanding how to write 

and interpret statements using variables is crucial to proof writing in general and PMI 

specifically. As Harel noted in his work, there is often a conceptual gap between seeing a 

statement such as ∑ 2𝑗 − 1 = 𝑛2𝑛
𝑗=1 and perceiving a sequence of statements 1 = 1, 1+3 = 4, 

1+3+5 = 9, etc. Seeing our results in light of Harel’s work suggests that a greater emphasis needs 

to be placed on understanding variables, what they represent, and how to write and interpret 

statements that use them. An example task to motivate this understanding might be something 

like “write an example of a particular statement proven by the induction step in the proof that 

∑ 2𝑗 − 1 = 𝑛2𝑛
𝑗=1 .” One such example would be “1 + 3 = 4 → 1 + 3 + 5 = 9,” which shows 

what the variable n represents, as well as motivates the procedure used within the induction step 

to get from one statement to the next. Similarly, in the “takeaway” problem such an example 

may be “if leaving 16 pennies is a winning strategy then leaving 20 pennies is a winning 

strategy,” again motivating a procedure for such a strategy. Additionally, in the proofs, it should 

be expressed as clearly as possible what the variable represent. The statement “Suppose 

∑ 2𝑗 − 1 = 𝑛2𝑛
𝑗=1 ” does not show that n represents a fixed number, while “Fix 𝑛 ∈ 𝑁 with the 

property that ∑ 2𝑗 − 1 = 𝑛2𝑛
𝑗=1 ” expresses this more directly. 

 Additionally, to help students assimilate PMI into their schemes for modus ponens, it 

may be useful to give students tasks, such as task 5 from interview 2, followed by the inverse of 
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such problems like “How can you modify PMI to prove that a statement is true for all even 

natural numbers? All integers? All even numbers that are not multiples of four?” Such tasks 

necessitate students to consider the variable with which they are working and the relationships 

which they need to have hold. Following the DNR model, how students think about logic and 

how to express their ideas mathematically affects how they approach tasks such as induction, 

such tasks bring the necessity of interpreting and expressing mathematical statements and they 

must follow consistent patterns of reasoning between tasks. 

 Finally, this study identified a number of different schemes that students employ for 

interpreting “if-then” statements. The results of employing such schemes are identifiable as long 

as they are used consistently. This may be used to help identify when students are misusing logic 

and what is causing them to do so, making such mistakes easier to address.  
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