


AN ABSTRACT OF THE THESIS OFJason Peter Shmurr for the degree of Dotor of Philosophy in Mathematis presentedon Deember 2, 2008.Title: Triangular Billiards Surfaes and Translation Covers
Abstrat approved: Thomas A. Shmidt

We identify all translation overs among triangular billiards surfaes. Our main toolsare the J-invariant of Kenyon and Smillie and a property of triangular billiards surfaes,whih we all �ngerprint type, that is invariant under balaned translation overs.



Copyright by Jason Peter ShmurrDeember 2, 2008All Rights Reserved



Triangular Billiards Surfaes and Translation CoversbyJason Peter Shmurr
A THESISsubmitted toOregon State University

in partial ful�llment ofthe requirements for thedegree ofDotor of Philosophy
Presented Deember 2, 2008Commenement June 2009



Dotor of Philosophy thesis of Jason Peter Shmurr presented on Deember 2, 2008APPROVED:
Major Professor, representing Mathematis
Chair of the Department of Mathematis
Dean of the Graduate Shool
I understand that my thesis will beome part of the permanent olletion of Oregon StateUniversity libraries. My signature below authorizes release of my thesis to any readerupon request. Jason Peter Shmurr, Author



ACKNOWLEDGEMENTSAademiI am indebted to my thesis advisor Thomas A. Shmidt for years of insightful disus-sions and onsistent support. Thanks are ertainly due to the Mathematis Departmentof Oregon State University for generous �nanial support. I'd like to thank my ommit-tee members for useful suggestions and exible sheduling. Thanks to Tolga Aar, ChrisBryant, Jorge Ramirez, and Brian Dietel for TeX support.PersonalI wish to thank my parents, Peter and Elizabeth, for lovingly supporting me through-out my life and eduation; and my brother Eri, for giving me the omputer this thesiswas omposed on. Thanks to Jonathan, Dave, Kinga, and Corina for making me welome.Finally, I would like to thank my wife Catherine for her unonditional love, unwaveringoptimism, and enduring patiene throughout the entire proess.



TABLE OF CONTENTS Page1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Statement of the Main Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 MATHEMATICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1 The Rational Billiards Constrution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.1 Elementary Combinatoris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.3 The Dihedral Group and the Flat Geometry . . . . . . . . . . . . . . . . . . . . . 92.2 Translation Struture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.1 Translation Surfaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.2 Translation Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 The J-invariant and Holonomy Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 THE FINGERPRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.0.1 De�nition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.0.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



TABLE OF CONTENTS (Continued) Page4 IDENTIFYING ALL TRANSLATION COVERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.1 The Possible Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.2 Balaned Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 Some Elementary Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.4 Combinatorial Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.5 Proof of the Main Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 ALGEBRAIC PERIODICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 INFINITELY GENERATED VEECH GROUPS VIA TRANSLATION COV-ERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.1 Veeh Groups and Veeh Surfaes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.2 Tehniques of Hubert and Shmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526.3 The Aurell-Itzykson Constrution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566.4 Aurell-Itzykson Surfaes With In�nitely Generated Veeh Group . . . . . . . . 577 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURESFigure Page2.1 X(1,1,2) is a square torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 X(1,1,1) and X(1,2,3) (see dotted lines) are hexagonal tori. . . . . . . . . . . . . . . 82.3 T(1,1,3) \unfolding" to X(1,1,3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 X(4,7,9) as a union of stars. Note, for example, that in D40 we haver2 = r3(r1r3)3 , aounting for identi�ation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.5 X(1,1,3) is a translation surfae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.1 Parts of a Type I �ngerprint (left) and a Type II �ngerprint (right). . . . . . 213.2 Type I �ngerprints arising from isoseles triangles . . . . . . . . . . . . . . . . . . . . . . 223.3 Part of a Type II �ngerprint on X(3,4,5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.4 A balaned over rami�ed above P . Here, m = 2 . . . . . . . . . . . . . . . . . . . . . . . 253.5 Fingerprints on X(1,2,12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285.1 The sets fvng and fwng for X(3; 4; 5), with a1 = 3 . . . . . . . . . . . . . . . . . . . . . . 496.1 Horizontal (solid) and vertial (dotted) ylinders for X(1,2,7). A vertialylinder ontaining a pentagon enter is shaded. . . . . . . . . . . . . . . . . . . . . . . . . 58



TRIANGULAR BILLIARDS SURFACES AND TRANSLATIONCOVERS
1 INTRODUCTION1.1 Some HistoryA billiards problem involves an enlosed planar region (\billiard table") and a pointmass (\billiard ball") moving within the region at unit speed. Collisions with the boundaryof the region result in the billiard ball hanging diretion, with the angle of reetionequal to the angle of inidene. In this thesis we shall disuss surfaes whih arise fromthe partiular ase of billiards in a polygon whose interior angles are all rational multiplesof � . Treatments of suh a dynamial system go bak at least to G.D. Birkho� in 1927[2℄. Fox and Kershner [5℄ desribe a method of studying suh a dynamial system byonstruting a at surfae tiled by a �nite number of opies of the billiard table. Wedesribe this method in Setion 2.1. Katok and Zemlyakov [12℄ furthered the disussionby proving that most billiard paths are dense in most polygonal billiards systems. Theurrent interest in the �eld from the algebrai side stems largely from a paper of WilliamVeeh in 1989 [15℄, whih proved a relationship between uniform distribution of billiardpaths and aÆne symmetries of billiard surfaes (see Theorem 6.1). Sine this disovery,there has been a great deal of attention direted at the aÆne symmetry groups (oftenalled Veeh groups) of at surfaes. Vorobets [16℄, and independently Gutkin and Judge[6℄, showed that if two surfaes are related by a ertain over alled a balaned over, thenthe intersetion of their Veeh groups has �nite index in eah group. In a series of papersinluding [8℄ and [9℄, Hubert and Shmidt have taken advantage of this work to onstrut



2surfaes with ertain interesting Veeh groups. The overs they use, alled translationovers, are a generalization of balaned overs.1.2 Statement of the Main ProblemResults suh as those listed at the end of Setion 1.1 linking aÆne symmetry groupswith translation overs provide motivation for the lassi�ation of all possible translationovers between elements of various sets of translation surfaes. In this thesis we determineall translation overs among triangular billiards surfaes. It is well known (see Setion4.1) that a at torus admits translation overs of arbitrarily high degree by hoosing asovering surfaes appropriate salar multiples of itself, and that there are three rationaltriangles whih orrespond to triangular billiards surfaes of genus 1. However, othertranslation overs are rare; in fat, our main result is enapsulated in the following lemmaand theorem (relevant notation is reviewed in Setion 2.1.1).Lemma 4.1: Let a1 and a2 be relatively prime positive integers, not both equal to one.The right triangular billiards surfae Y := X(a1 + a2; a1; a2) is related to two isoselestriangular billiards surfaesX1 = 8>>><>>>: X(2a2; a1; a1) a1 oddX(a2; a12 ; a12 ) a1 evenandX2 = 8>>><>>>: X(2a1; a2; a2) a2 oddX(a1; a22 ; a22 ) a2 even



3via balaned overs f1 : X1 ! Y and f2 : X2 ! Y . The maps have degreesdeg(fi) = 8>>><>>>: 2 ai odd1 ai even . Furthermore, at least one of the fi has degree 2.In fat these are all possible translation overs amongst triangular billiards surfaes,as we assert in the following main theorem.Theorem 4.1: Suppose f : X ! Y is a translation over of triangular billiards surfaesof degree greater than 1. Then f is of degree 2, and is a omposition of one or two of theovers fi desribed in Lemma 4.1.To prove Theorem 4.1, we use two main tools: the J-invariant of Kenyon and Smillie[13℄, and what we all the �ngerprint of a point P on a translation surfae. The �ngerprintof P depends on the on�guration of the shortest geodesis onneting P to singularities.We show that every point on a triangular billiards surfae whih orresponds to a vertexof the triangular billiard table has a �ngerprint of one of two distint types, whih we allType I and Type II (see Chapter 3 for de�nitions). We establish the following invarianeresults:Proposition 3.1: Suppose the billiards triangulation of a triangular billiards surfaeX ontains a point with a Type II �ngerprint. Then X is uniquely determined by that�ngerprint, up to an ation of O(2;R) .Lemma 3.2: Suppose that f : X ! Y is a balaned translation over, that P 0 2 Xand P 2 Y are verties of billiards triangulations on their respetive surfaes, and thatf (P 0) = P . Then either:1. P 0 and P have the same �ngerprint, or



42. their �ngerprints di�er only in the one angle, P has half the one angle of P 0, Xarises from billiards in an isoseles triangle, and P 0 orresponds to the apex of thattriangle.1.3 Organization of this ThesisIn Chapter 2 we review the rational billiards onstrution. We give some ombina-torial formulas for the onstrution as reorded in [1℄. We de�ne translation surfaes andtranslation overs, and we disuss the J-invariant of Kenyon and Smillie.In Chapter 3 we introdue the onept of the �ngerprint of a point on a translationsurfae. We give examples, and prove results about the �ngerprints of ertain points ontriangular billiards surfaes.In Chapter 4, we identify all translation overs among triangular billiards surfaes.In Setion 4.1 we give the omplete list of possible overs as Lemma 4.1; the remainderof the hapter is devoted to proving that no other overs exist. We �rst prove the resultfor balaned overs in Setion 4.2, using the �ngerprint as the primary tool. Then, usingthe J-invariant and holonomy �eld of Kenyon and Smillie, we prove Theorem 4.1 for alltranslation overs in Setion 4.5.Chapter 5 is devoted to an alternate proof of a result of Calta and Smillie onern-ing the J-invariant of a triangular billiards surfae. In Chapter 6, we demonstrate anappliation of translation overs to the problem of identifying in�nitely generated Veehgroups. Finally, in Chapter 7, we give a onlusion and disuss future extensions of thisthesis.



52 MATHEMATICAL BACKGROUND2.1 The Rational Billiards ConstrutionLet R be a polygonal region whose interior angles are rational multiples of � . LetD2Q be the dihedral group of order 2Q generated by Eulidean reetions in the sidesof R . Suppose a partile moves within this region at onstant speed and with initialdiretion vetor v, hanging diretions only when it reets o� the sides of R, with theangle of inidene equaling the angle of reetion. Every subsequent diretion vetor forthe partile is of the form Æ � v, where � indiates the left ation of an element of D2Q onan element of R2 .The rational billiards onstrution onsists of a ompat surfae orresponding tothis physial system. Consider the set D2Q � R of 2Q opies of R transformed by theelements of D2Q . For eah edge e of R, we onsider the orresponding element �e 2 D2Qwhih represents reetion aross e . For eah Æ 2 D2Q, we glue �eÆ �R and Æ �R togetheralong their opies of e . The result is a losed Riemann surfae with at struture induedby the tiling by 2Q opies of R . See Figures 2.1-2.4. This onstrution is desribed indetail in [12℄ and [16℄ .In this thesis we fous on billiards in a rational-angled triangle. We shall termthe surfae X resulting from the onstrution above a triangular billiards surfae. If thebilliard table is a right or isoseles triangle, we all X a right triangular billiards surfaeor isoseles triangular billiards surfae, respetively.The reetion rule for the billiards dynamial system is not well de�ned if the pointof inidene does not admit a unique tangent line. Oasionally suh a diÆulty an beresolved by a ontinuous extension of the dynamial system. In partiular, in the ase ofpolygonal billiards, tangents are unde�ned preisely at verties of the enlosing polygon,



6and ollisions at suh verties an be resolved if and only if the internal angle is of theform �q for some integer q . As detailed in Remark 2.1.2, if a vertex does not have internalangle of the form �q , then it orresponds to points on the billiards surfae whih are onialsingularities, whih in this setting are points about whih the total angle is 2m� for someinteger m > 1 . In this thesis we refer to onial singularities of billiards surfaes simply assingular points or singularities, and any point whih is not a onial singularity is alleda nonsingular point.2.1.1 Elementary CombinatorisFor a given rational-angled triangle T , we an write the angles of T as a1�Q , a2�Q ,and a3�Q , where a1; a2; a3; Q 2 N and gd(a1; a2; a3) = 1 . With this notation, we alsowrite T = T (a1; a2; a3) . We refer to the billiards surfae X orresponding to billiardsin T (a1; a2; a3) as X = X(a1; a2; a3) . Note that the area and diretion of X(a1; a2; a3)depend on the area and diretion of T (a1; a2; a3); hene this notation is only well-de�nedup to an ation of O(2;R) .Sine a triangular billiards surfae X is onstruted from opies of T , the surfaeX admits a natural triangulation by these opies. Given a triangular billiards surfaeX = X(a1; a2; a3), there is a natural projetion map �X : X ! T indued by the billiardstriangulation of X by T . This motivates the following de�nition.De�nition 2.1 Labeling the verties of T (a1; a2; a3) as v1; v2; v3, where \vi = ai�Q , weall the three sets ��1X (vi) the vertex lasses of X . Note that all elements of a given vertexlass have the same one angle. Hene we all a vertex lass singular if all elements aresingular and nonsingular otherwise.Remark 2.1 As detailed in [1℄, we have the following formulae onerning X(a1; a2; a3) .1. The set ��1X (vi) has ardinality gd(ai; Q) .



72. Eah element of ��1X (vi) has one angle � aigd(ai; Q)� 2� .3. The genus of X(a1; a2; a3) is 12Q+ 1� 12P gd(ai; Q) .Two immediate onsequenes of these formulae are that a vertex lass ��1X (vi) is singularif and only if ai - Q, and that the sum of the one angles of the elements of ��1X (vi) is2ai� .2.1.2 ExamplesAs a �rst example, onsider the surfae X(1; 1; 2) generated by an isoseles righttriangle. Here Q = 4, and the 2Q = 8 opies of T (1; 1; 2) glue together to form a squaretorus (see Figure 2.1).

FIGURE 2.1: X(1,1,2) is a square torus.
Next onsider the surfae X(1; 1; 1) . Here the equilateral triangle T (1; 1; 1) unfoldsto the hexagonal torus. In fat T (1; 2; 3) also unfolds to the hexagonal torus; this is relatedto the fat that T (1; 2; 3) tiles T (1; 1; 1) via a single ip. See Figure 2.2. We disuss this



8phenomenon in more detail in Setion 4.1. It is a onsequene of the third part of Remark2.1 that these are the only genus 1 triangular billiards surfaes.

FIGURE 2.2: X(1,1,1) and X(1,2,3) (see dotted lines) are hexagonal tori.
The surfae X(1; 1; 3) has genus two. See Figure 2.3.

FIGURE 2.3: T(1,1,3) \unfolding" to X(1,1,3).
Another interesting example is the genus 3 surfae X(1; 2; 4), whih is a at repre-sentation of Klein's famous quarti urve; see [11℄ for a detailed exposition of this fat.The previous examples an all be onstruted by taking a single star-shaped poly-gon whose enter orresponds to a vertex of the triangular billiard table and identifyingappropriate edges; however in general a triangular billiards surfae may have too many



9singularities for this. For example, X(8; 25; 27) has three singular vertex lasses, and eahvertex lass has ardinality greater than one. See Figure 2.4 for a diagram of X(4; 7; 9),whih an be realized as a union of four stars with appropriate edges identi�ed.2.1.3 The Dihedral Group and the Flat GeometryIn this setion we show that the at struture of X(a1; a2; a3) is strongly related toD2Q by using the dihedral group to plae an upper bound on the distane between anytwo points of X(a1; a2; a3).Let T be a rational-angled triangle, and let ri be the reetion in the edge ei ofT for i = 1; 2; 3. Together the ri generate the dihedral group D2Q. De�ne a generalizedstar polygon to be the translation surfae (with boundary) obtained from hr1; r2i � T byidentifying riÆ � ei with Æ � ei for eah Æ 2 hr1; r2i and eah i 2 f1; 2g.Proposition 2.1 Let T = T (a1; a2; a3), and let X = X(a1; a2; a3). Let v be a vertex ofT , and write ��1X (v) = fP0; P1; :::; Pn�1g. The surfae X admits a deomposition intogeneralized star polygons S0; S1; :::; Sn�1 suh that eah Si has enter Pi. Furthermore, itis possible to olor eah of the 2Q triangles in D2Q � T in suh a way that the followingproperties hold:1. Eah triangle is olored either blak or white.2. Eah blak triangle shares an edge with three white triangles, and vie versa.3. Eah blak triangle of Si shares an edge with a white triangle of Si+1, where indiesare alulated modulo n.Proof. Let r1, r2, and r3 be the reetions aross the sides of T , and let D2Q be thedihedral group hr1; r2; r3i . By onstrution, X an be viewed as the quotient of the setD2Q � T by the relation R of identifying appropriate edges.



10Let v be an endpoint of T suh that the reetions aross the edges inident onv are r1 and r2 . Let n be the ardinality of the vertex lass ��1(v), with elementsP0; P1; :::; Pn�1 . Let Id � T have P0 as a vertex. Developing around P0 gives the setS0 := (hr1; r2i � T )=R, whih is a generalized star polygon; in fat, if P0 is nonsingular,then S0 is a star-shaped polygon with enter P0 (see Figure 2.4). We have that S0 is theunion of the two sets (hr1r2i � T )=R (whih we olor blak) and (hr1r2ir1 � T )=R (whihwe olor white). If n > 1, then S0 is not all of X and the ation of r3 takes elements ofS0 outside of S0 . Let Si := (hr1; r2i(r1r3)i � T )=R; again, in Figure 2.4, we have olored

FIGURE 2.4: X(4,7,9) as a union of stars. Note, for example, that in D40 we haver2 = r3(r1r3)3 , aounting for identi�ation 4 .



11(hr1r2i(r1r3)i � T )=R blak and (hr1r2i(r1r3)ir1 � T )=R white. We hoose a labeling forP0; P1; :::; Pn�1 so that eah Si is realized by development about Pi . The result is thateah blak triangle of Si shares an edge with a white triangle of Si+1, where i + 1 isalulated modulo n .Proposition 2.1 has an interesting onsequene for the shortest paths between pointsin X.Corollary 2.1 Let T be a rational triangle, with longest side length L and shortest sidelength l . Let X be the triangular billiards surfae generated by T . For any two pointsx; y 2 X, de�ne �(x; y) to be the length of the shortest path onneting x and y . Thenmaxx;y2Xf�(x; y)g � 2L+ l .Proof. Using the notation of Proposition 2.1, let C2 and C3 be the two vertex lasses ofX whih do not projet to v. Any element of C2SC3 must be on the boundary of oneof the Si; but Proposition 2.1 implies that in fat any element of C2SC3 must be on theboundary of eah Si .Now hoose the vertex v so that the shortest edge of T is inident on v . Let C2 bethe vertex lass orresponding to the other endpoint of the shortest edge of T . Let x andy be any two points on X . There exist integers i and j so that x 2 Si and y 2 Sj . Theshortest geodesi segment within Si onneting x to to some point A 2 C2 has length atmost L . Sine A is on the boundary of all the Si, there is a geodesi segment of lengthl onneting A to Pj . Finally, the segment within Sj onneting Pj to y has length atmost L . The union of these three segments is a path onneting x and y; the length ofthis path is at most 2L+ l .



122.2 Translation Struture2.2.1 Translation SurfaesBilliards surfaes are instanes of a more general lass of surfaes known as transla-tion surfaes.De�nition 2.2 Let S be a topologial surfae, and let P1; :::; Pn be a �nite subset of S .Let S0 be the submanifold of S obtained by deleting the points P1; :::; Pn . If all transi-tion funtions of S0 are restritions of Eulidean translations of R2 , then we all S atranslation surfae.Given a �nite set of disjoint polygons P1; P2; :::; Pn in the plane, with the propertythat eah edge e an be assoiated with a unique parallel edge e0 6= e of the same length,we obtain a translation surfae by gluing assoiated edges via translations as long as thegluing gives a onsistent orientation. See, for example, [7℄. In fat, it is well known that,up to addition or removal of removable singularities, any ompat translation surfae anbe onstruted in suh a way.A seond onstrution of a translation surfae is as follows: let S be a Riemannsurfae, and let ! be a holomorphi 1-form de�ned on S . For eah point x 2 S, we de�neoordinates on a neighborhood of x via the map y 7! R yx ! . The maximal atlas of suhharts de�nes a translation surfae whih we denote by (S; !) .As an example of the translation struture of a triangular billiards surfae, onsiderX(1; 1; 3) . Figure 2.5 demonstrates an appliation of transition funtions whih are loaltranslations. Translation struture is invariant under the operation of utting, translating,and pasting in loal oordinates as long as identi�ations are preserved; thus we anvisualize X(1; 1; 3) as a �ve-pointed star, or as a union of pentagons, or as a union of twovertial ylinders, eah with appropriate side identi�ations.



13

FIGURE 2.5: X(1,1,3) is a translation surfae.
2.2.2 Translation CoversThe natural map between translation surfaes is one whih respets this translationstruture. First we reall the de�nition of a rami�ed over of Riemann surfaes.De�nition 2.3 Let f : X ! Y be a holomorphi mapping between ompat Riemannsurfaes X and Y . For eah point x 2 X, there exist loal oordinates on X and Y whihvanish at x and f(x) respetively, and suh that in those oordinates, f has the formz 7! z1=mx for some integer mx. If mx > 1 then we say that f is rami�ed at x, that fis rami�ed above f(x), and that the rami�ation number of f at x is mx � 1. For eahpoint y 2 Y , we de�ne the rami�ation number of f above y to be Px2f�1(y)(mx � 1).We de�ne the total rami�ation number of f to be the sum of the rami�ation numbersof f above eah point y 2 Y .



14Any holomorphi mapping f : X ! Y between ompat Riemann surfaes rami�esat and above at most �nitely many points; hene total rami�ation number is well-de�ned.Any rami�ed over f : X ! Y has the property that there exists an integer n suhthat, if f does not ramify above y 2 Y , then f�1(y) has ardinality n. We say that fhas degree n, or simply write deg f = n . If f does ramify above a point y 2 Y withrami�ation number r, then f�1(y) has ardinality n� r.An important result about rami�ed maps between Riemann surfaes is the Riemann-Hurwitz formula:Theorem 2.1 (Riemann-Hurwitz Formula) Let f : X ! Y be a rami�ed map of degreen between Riemann surfaes X and Y . Let gX and gY denote the genera of X and Y ,respetively. Let the total rami�ation number of f be R . ThengX = n(gY � 1) + 1 + R2 : (2.1)An exellent text for the theory of Riemann surfaes is [4℄.Now we de�ne a natural map between translation surfaes.De�nition 2.4 A translation over is a holomorphi (possibly rami�ed) over of trans-lation surfaes f : X ! Y suh that, for eah pair of oordinate maps �X and �Y on Xand Y , respetively, the map �Y Æ f Æ ��1X is a translation when �X and �Y are restritedto open sets not ontaining singular points. We say that f is balaned if f does not mapsingular points to nonsingular points.If f : X ! Y is a translation over whih rami�es at a point P 0 2 X above a pointP 2 Y , then for some integer m > 1 we have that f is loally of the form z 7! z1=m,and hene the one angle at P 0 is m times the one angle at P . Therefore the set off -preimages of singularities of Y are singularities of X . But it may be that f rami�esabove a nonsingular point; in this ase f is not balaned.



15De�nition 2.5 We say that X and Y are translation equivalent if there exists a degreeone translation over f : X ! Y .The following lemma shows how we will use Remark 2.1 to analyze translationovers.Lemma 2.1 Suppose f : X(a1; a2; a3) ! X(b1; b2; b3) is a translation over of triangu-lar billiards surfaes. Let �X : X(a1; a2; a3) ! T (a1; a2; a3) and �Y : X(b1; b2; b3) !T (b1; b2; b3) be the anonial projetions to triangles with verties v1; v2; v3 and w1; w2; w3respetively. Suppose that P 2 ��1Y (wi), P 0 2 ��1X (vj), and f(P 0) = P with a rami�ationindex of m at P 0 . Thenmbigd(bi; b1 + b2 + b3) = ajgd(aj ; a1 + a2 + a3) .Proof. The one angle at P 0 is m times the one angle at P . Therefore the result followsfrom the seond part of Remark 2.1.As noted in Setion 2.1.1, the translation struture of X(a1; a2; a3) depends on thehosen area and diretion of T (a1; a2; a3) . Suppose that (S; !) is a triangular billiardssurfae arising from billiards in some T (a1; a2; a3), and that � is a nonzero omplex num-ber. The notation X(a1; a2; a3) does not distinguish the pairs (S; !) and (S; �!) . Thefollowing lemma shows that this ambiguity will not a�et our lassi�ation of translationovers.Lemma 2.2 Suppose that (S; !) is a triangular billiards surfae of genus greater thanone, and let � 2 C nf0g . Then any translation over f : (S; !)! (S; �!) is of degree 1.Proof. This is a simple appliation of the Riemann-Hurwitz formula. Let (S; !) havegenus g, and let deg f = n . The 1-form ! whih gives (S; !) its translation struture



16has 2g � 2 zeros (ounting multipliities). Clearly �! has the same zeros as ! . TheRiemann-Hurwitz formula then gives us thatg = n(g � 1) + 1 + R2 ; (2.2)where R is the total rami�ation number of f . Sine R � 0, Equation (2.2) is onlysatis�ed if n = 1 .As a result of this lemma, we shall use the notation X(a1; a2; a3) to refer to anyelement of the set f(S; �!) : � 2 C nf0gg, where (S; �) is a triangular billiards surfae aris-ing from billiards in some T (a1; a2; a3) . Note that multiplying the 1-form of a translationsurfae by a nonzero omplex number is equivalent to post-omposing eah oordinatehart of (S; �) by the standard linear ation of an element of O(2;R) .2.3 The J-invariant and Holonomy FieldsIn [13℄, Kenyon and Smillie introdue an important property of translation surfaes,alled the J-invariant.De�nition 2.6 Let P be a polygon in the plane. Let w1; w2; :::; wn be the verties of P .The J-invariant of P is the element of R2 ^Q R2 given by J(P ) := w1 ^ w2 + w2 ^ w3 +:::+ wn�1 ^ wn + wn ^ w1 .We write R2 ^Q R2 to indiate the exterior produt of two opies of R2 viewed asQ-modules.It is easily shown that the J-invariant of a polygon is invariant under translations ofthe polygon, and that it is a \sissors invariant" in the sense that ut-and-paste operationsdo not a�et its J-invariant. Furthermore, it is well known that any ompat translation



17surfae an be onstruted by identifying parallel edges of a �nite set of polygons in theplane. For these reasons the de�nition naturally extends to translation surfaes.De�nition 2.7 Let X be a ompat translation surfae. Let fP1; :::; Png be a olletion ofplanar polygons suh that appropriate identi�ation of sides yields the surfae X . Thenthe J-invariant of X is J(X) :=Pni=1 J(Pi) .Example 2.1 Suppose that X = X(1; 1; 2) is saled so that the opies of T (1; 1; 2) in thebilliards triangulation of X have lengths 1,1, and p2 . Then X an be realized as a squareof side length 2 with opposite sides identi�ed. We an assume that the lower lefthandorner of the square lies at the origin. Then the J-invariant of X is(0; 0)^ (2; 0)+(2; 0)^ (2; 2)+(2; 2)^ (0; 2)+(0; 2)^ (0; 0) = (2; 0)^ (2; 2)+(2; 2)^ (0; 2) =4(1;�1) ^ (1; 1) .Example 2.2 Suppose that X = X(1; 1; 3) . ThenJ(X) =P4k=0�os 2k�5 ; sin 2k�5 � ^ sin(3�=5)sin(�=5) �os (2k + 1)�5 ; sin (2k + 1)�5 � .The following lemma, whih is presumably well-known, demonstrates the relevaneof the J-invariant to the study of translation overs.Lemma 2.3 Let f : X ! Y be a degree n translation over of translation surfaes. ThenJ(X) = nJ(Y ) .Proof. We an triangulate Y by Eulidean triangles in suh a way that the branh pointsof f are among the verties of the triangulation. Let Y 0 be the set of triangles obtainedby utting open Y along all the edges of our triangulation. Lifting our triangulation to Xvia f , we let X 0 be the orresponding deomposition of X . Sine J is a sissors invariant,



18we have J(Y ) = J(Y 0) and J(X) = J(X 0) . Furthermore, sine eah triangle in Y 0 lifts ton idential opies in X 0, we have that J(X 0) = nJ(Y 0) . Thus J(X) = J(X 0) = nJ(Y 0) =nJ(Y ) .Translation struture gives us a anonial way to assoiate an element of C to eahelement of the �rst homology group H1(X) . Beause it will be advantageous to view theimage of H1(X) in C as a vetor spae over Q , we use oeÆients in Q for H1(X) in thefollowing de�nition.De�nition 2.8 The rational absolute holonomy of a translation surfae X is the imageof the map hol : H1(X;Q) ! C de�ned by hol : � 7! R� !, where ! is the 1-form whihendows X with a at struture, as desribed in Setion 2.2.1.Now we de�ne a property of translation surfaes whih will be useful in lassifyingtriangular billiards surfaes. This de�nition is due to Kenyon and Smillie [13℄.De�nition 2.9 The holonomy �eld of a translation surfae X, denoted kX , is the smallest�eld kX suh that the absolute holonomy of X is ontained in a two-dimensional vetorspae over kX .Example 2.3 Consider X = X(1; 1; 2), saled so that it is a unit square with oppositesides identi�ed. The absolute holonomy of H1(X), as a vetor spae over Q , is generatedby 1 and i . Hene the holonomy �eld of X is Q .Example 2.4 Consider X = X(1; 1; 3) _The surfae X an be saled so that generatorsfor the absolute holonomy of X over Q are 1; �5; �25 ; �35 , where �5 = e(2�i)=5 . Thus theholonomy �eld of X properly ontains Q . In fat these four elements generate a two-dimensional vetor spae over Q(p5) . Sine Q(p5) is a degree 2 extension of Q there anbe no intermediate �elds; therefore the holonomy �eld of X is Q(p5) .



19Calta and Smillie [3℄ disuss the algebraially periodi diretions of a translationsurfae, whih they de�ne to be those diretions in whih a ertain projetion of theJ -invariant is zero.De�nition 2.10 Fix oordinates for a ompat translation surfae S suh that 0, 1, and1 are all slopes of algebraially periodi diretions. The periodi diretion �eld of S isthe olletion of slopes of algebraially periodi diretions in this oordinate system.It is shown in [3℄ that this de�nition is well-de�ned, and that the periodi diretion�eld is a number �eld whose degree is bounded by the genus of S . The following lemmarelies on the results of Kenyon and Smillie [13℄ and Calta and Smillie [3℄.Lemma 2.4 Let f : X(a1; a2; a3) ! Y be a degree n translation over. Write Q :=a1+a2+a3 . Then X and Y have the same holonomy �eld k, and k = Q(�Q+��1Q ), where�Q is a primitive Qth root of unity.Proof. By Lemma 2.3, J(X) = nJ(Y ) . Assume that Y has area 1; thus X has arean. Let X 0 be the surfae of area 1 obtained by uniformly saling X . We have thatJ(X 0) = 1nJ(X) = J(Y ) . Sine uniformly saling a surfae learly does not a�et itsperiodi diretion �eld, X and X 0 have the same periodi diretion �eld. Calta andSmillie note that their work in Setion 6 of [3℄ implies that the periodi diretion �eld ofa surfae depends only on the J-invariant of that surfae; hene X 0 and Y have the sameperiodi diretion �eld. Thus X and Y have the same periodi diretion �eld. Corollary5.21 of [3℄ states that a translation surfae is ompletely algebraially periodi if and onlyif its holonomy �eld equals its periodi diretion �eld. Furthermore, Theorem 1.4 of [3℄states that triangular billiards surfaes are algebraially periodi. Therefore X and Yhave the same holonomy �eld. Finally, Kenyon and Smillie [13℄ alulate this holonomy�eld to be k = Q(�Q + ��1Q ) .



20The proof of the algebrai periodiity of triangular billiards surfaes in [3℄ ontainsa small error whih ould be orreted by applying a normalization outlined in [13℄. Wealso o�er a di�erent proof of this result in Chapter 5, where it is listed as Theorem 5.3.



213 THE FINGERPRINT3.0.1 De�nition and PropertiesConsider a point P on a translation surfae X, along with the set S of all shortestgeodesi segments on X whih onnet P to a singularity. Let s1 and s2 be two of thesesegments. We say that s1 and s2 are adjaent if s1 an be rotated ontinuously about Ponto s2 without �rst oiniding with any other elements of S .De�nition 3.1 A �ngerprint of a point P 2 � is the data ff�ig; �; Lg, where f�ig ontainsthe distint angle measures separating adjaent shortest geodesi segments onneting Pto singularities, � is the total one angle at P , and L is the length of eah of the shortestgeodesi segments. We say that P has a Type I �ngerprint if f�ig has one element, andthat P has a Type II �ngerprint if f�ig has two elements. We all f�ig the angle set of a�ngerprint.

FIGURE 3.1: Parts of a Type I �ngerprint (left) and a Type II �ngerprint (right).
Note that the angle set (and hene the �ngerprint type) of the �ngerprint of a pointP 2 X is invariant under the saling of the at struture of X by a nonzero omplex
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FIGURE 3.2: Type I �ngerprints arising from isoseles triangles .number. Eah triangular billiards surfae has rotational symmetry about the verties ofits billiards triangulation; this fat plaes a strong restrition on the angle sets of the�ngerprints of verties. The following lemma illustrates this.Lemma 3.1 Let X be a surfae of genus greater than one, arising from billiards in arational triangle T . Fix a billiards triangulation � of X by TX . Let P be a vertex of � .Let s be a shortest geodesi segment onneting P to a singularity of X . Then either s isan edge of � , or else s is perpendiularly biseted by an edge of � .Proof. Let X, TX , s, P and � be as above. Let �X : X ! T be the natural projetionindued by � .Sine singularities in the translation struture of X an only our at verties of� , we only examine geodesis onneting verties of � . This is equivalent to onsideringbilliard paths between orners of the triangular billiard table TX in the original dynamialsystem.Let v = �X(P ); sine P is a vertex of � , v is a orner of TX . The shortest billiardpath within TX from v to a di�erent orner w of T annot be as short as the table edgeonneting v and w . This proves the laim if s onnets P to a singularity whih is notin the vertex lass ��1X (v) .



23Now suppose that s onnets P to a singularity in ��1X (v) . Then s orresponds toa billiard path from v bak to itself. If both of the other two orners of TX are aute,then the shortest billiard path from v to itself is aomplished via a single reetion byhoosing the initial diretion to be perpendiular to the side opposite v; hene here anedge of � bisets s . If one of the two other orners w is obtuse, then ��1X (w) must bea singular vertex lass. But the distane from v to an obtuse orner of TX is less thantwie the distane from v to the opposite side of TX . Thus if w is obtuse then there is ageodesi segment s0 in X onneting an element of ��1X (v) to a singular element of ��1X (w)suh that s0 is shorter than s; this is a ontradition.Lemma 3.1 allows us to relate �ngerprints of points on X to the angle measures ofverties of TX . We summarize these relations in the following Corollary; see Figures 3.1and 3.2 for illustrations.Corollary 3.1 Let � be a billiards triangulation of a triangular billiards surfae X . Fora given point P 2 � , let v be the projetion of P onto the triangle T generating X . Thenone of three situations exists:1) P has a Type I �ngerprint with angle set f�g, and � = \v .This ours if and only if T is isoseles and v is the apex of T .2) P has a Type I �ngerprint with angle set f�g, and � = 2\v .This ours if P has a Type I �ngerprint and v is not the apex of an isoselestriangle.3) P has a Type II �ngerprint with angle set f�1; �2g, and �1 + �2 = 2\v .
Proposition 3.1 Suppose X is a triangular billiards surfae with a point P of Type II�ngerprint. Then X is uniquely determined by that �ngerprint, up to an ation of O(2;R) .



24Proof. The proof is evident from Figure 3.0.1, whih illustrates the �ngerprint of thesingularity on X(3; 4; 5) (sine X(3; 4; 5) is not isoseles and has only one singularity P ,it follows that P has a Type II �ngerprint. In the �gure, the geodesis de�ning the

FIGURE 3.3: Part of a Type II �ngerprint on X(3,4,5)
�ngerprint are the thiker lines, whereas the edges of the billiards triangulation are thethinner lines.) Let the angle set be f�1; �2g . Eah �i is an interior angle of a quadrilateralwhose other three angles inlude two right angles and an angle whih has twie the measureof an angle of the triangular billiard table T for X . Therefore two of the angles of T havethe form 12(2� � �2 � �2 � �i) = � � �i2 , and the third angle is �1 + �22 . The length of thegeodesis de�ning the �ngerprint of P determines the saling of T . Thus T (and heneX) is uniquely identi�ed, up to an ation of O(2;R) .Lemma 3.2 Suppose that f : X ! Y is a balaned translation over, that P 0 2 Xand P 2 Y are verties of billiards triangulations on their respetive surfaes, and thatf (P 0) = P . Then either:1. P 0 and P have the same �ngerprint, or



252. their �ngerprints di�er only in the one angle, P has half the one angle of P 0, Xarises from billiards in an isoseles triangle, and P 0 orresponds to the apex of thattriangle.Proof. Let d be the length of a shortest geodesi whih onnets P to a singularity. LetB � Y be the set of points of distane less than d from P . Let B0 � X be the maximalonneted omponent of f�1(B) whih ontains P 0 . Sine f is a balaned translationover, B0 onsists of all points of distane less than d from P 0, and B0 ontains no singu-larities other than possibly P 0 (P 0 is singular if and only if P is singular). We have thatf is loally an m-to-one over at P for some integer m .

FIGURE 3.4: A balaned over rami�ed above P . Here, m = 2 .
Now onsider a pair of adjaent geodesis e1 and e2, eah of length d, onneting Pto singularities. Label the angle between them � . The union of these two edges with aportion of the boundary of B bounds a wedge-shaped regionW whih ontains singularities



26only at the endpoints of e1 and e2 (see Figure 3.4). Sine f is a translation over, thef -preimage of W is m opies of W , eah of whih is bounded by part of the boundaryof B0 and two shortest geodesis e01 and e02 of length d onneting P 0 to singularities ofX . The interior angle measure between e01 and e02 is � . Beause f is balaned, we knowthat e01 and e02 are adjaent; otherwise, the wedge they bound would have a geodesi e0in its interior suh that f(e0) lies in the interior of W and onnets P to a singularity,a ontradition to the adjaeny of e1 and e2 . Therefore we have established that the�ngerprints of P and P 0 have the same angle sets.Beause f is a translation over, the one angle at P 0 ism times the one angle at P .We laim that m � 2 . Let v and v0 be the verties of the triangles T and T 0 orrespondingto P and P 0 . By Remark 2.1, the one angle at P is ompletely determined by \v . ButCorollary 3.1 tells us that \v is determined, up to a fator of 2, by the angle set of the�ngerprint of P . Hene, sine the �ngerprints of P and P 0 have the same angle set, wesee that m 2 f1; 2g, and our laim is proven.Furthermore, note that if m = 2, then sine the one angle at P 0 is greater than theone angle at P and one angle is ompletely determined by the orresponding vertex ofthe triangular billiard table, Corollary 3.1 implies that TX is isoseles and v0 is the apexof TX .Corollary 3.2 Fingerprint type is invariant under balaned translation overs.Corollary 3.3 Any rational triangular billiards surfae with a Type II singularity annotbe a part of any omposition of nontrivial balaned overs.Proof. This follows diretly from Proposition 3.1. Suppose we have f : X ! Y a balanedover with either X or Y possessing a singularity with a Type II �ngerprint. By Corollary3.2, X and Y must both have singularities with Type II �ngerprints. Sine a Type II�ngerprint identi�es the triangular billiards table of a surfae, X and Y must be the samesurfae.



273.0.2 ExamplesExample 3.1 The surfae X = X(1; 1; 3) has exatly one singularity P . Thus all geo-desis onneting P to a singularity onnet P to itself. By Lemma 3.1, the shortest suhgeodesis must be those whih orrespond to a billiard path with a single reetion. Theangle between any two suh adjaent shortest geodesis is 3�5 . Thus P has �ngerprintff3�5 g; 6�;Lg, where the length L depends on the saling of X . Let R be the only elementof one of the nonsingular vertex lasses of X . The shortest geodesis onneting R to Pare edges of the billiards triangulation of X by T (1; 1; 3) . Then the angle between any twosuh geodesis whih are adjaent is 2�5 .Next we give an example of a surfae with both Type I and Type II �ngerprints.Example 3.2 Consider the surfae X = X(1; 2; 12) . Let � be the billiards triangulationof X . Label the verties of T = T (1; 2; 12) as v1; v2; v3 suh that \v1 = �15 , \v2 = 2�15 ,and \v3 = 12�15 . The vertex lass orresponding to v1 is nonsingular and has a singleelement P1 . The vertex lass orresponding to v2 is singular and has a single element P2of one angle 4� . The vertex lass orresponding to v3 is singular and has three elementsP3; P 03; P 003 ; eah of these points has one angle 8� . The shortest geodesis onneting P1to singularities are those whih onnet P1 to P3, P 03, and P 003 via edges of � . So P1has a Type I �ngerprint ff�6 g; 2�;Lg . Similarly, the shortest geodesis onneting P2 tosingularities are those whih onnet P2 to P3, P 03, and P 003 via edges of � . So P2 hasa Type I �ngerprint ff�3 g; 4�; sin(�=15)sin(2�=15)Lg (the length an be alulated by the Law ofSines). Finally, the shortest geodesis onneting P3 to elements of its own vertex lassare via a single reetion and are shorter than the shortest geodesis onneting P3 to P2;hene P3 has Type II �ngerprint ff11�15 ; 13�15 g; 8�; 2 sin(�=15)Lg . The alulation of theangle set of a Type II �ngerprint is given in Proposition 3.1 .De�nition 3.2 A saddle onnetion on a translation surfae is a geodesi with singular
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FIGURE 3.5: Fingerprints on X(1,2,12).endpoints and no singularities in its interior.As we shall see, the preeding results allow us to quikly lassify all balaned ov-ers in the ategory of triangular billiards surfaes. However, to extend our results tounbalaned overs, we shall re�ne our use of the �ngerprint with the following lemma.Lemma 3.3 Let X be a triangular billiards surfae with more than one singular vertexlass. Let ~X be the surfae obtained from X by punturing either one entire singular vertexlass or two entire singular vertex lasses suh that neither deleted lass orresponds toan obtuse angle of the triangular billiard table and suh that at least one singular vertexlass remains. Let ��1X (vi) be a singular vertex lass not deleted. Let P 2 ��1X (vi) . If Phas Type II �ngerprint on ~X with angle set f�1; �2g, then X arises from billiards in thetriangle with angles � � �12 , � � �22 , and �1 + �22 . If P has a Type I �ngerprint on ~X with



29angle set f�1g, then \vi 2 f�1; �12 g .Proof. If none of the puntured points are endpoints of shortest geodesis onneting Pto singularities, then P has the same �ngerprint on ~X as on X, and we are done.Suppose a singular vertex lass has been puntured whih ontained endpoints ofshortest separatries through P . Then there is a new \losest" vertex lass to P ; all itC . If C does not ontain P then the shortest geodesis onneting P to C are edges of thebilliards triangulation of X . If C does ontain P then, sine a vertex lass orrespondingto an obtuse angle of the billiard table must be singular (by Remark 2.1) and we haveassumed that no suh lasses have been deleted, it follows that the shortest geodesis fromP to C orrespond to a single reetion in the original dynamial system. Thus the samereasoning holds as in Lemma 3.1.The only potential diÆulty would be if the new \losest" vertex lass was the oneontaining P , for in that ase, sine the shortest geodesis from P to elements of its ownlass pass through more than one triangle, we must onsider the possibility that our pun-tures obstrut these geodesis. However, sine the shortest geodesis are perpendiular tothe sides of the triangles opposite P , this is only a problem if the vertex lass punturedis ��1X (vj) with \vj = �2 . But suh a lass is nonsingular.



304 IDENTIFYING ALL TRANSLATION COVERS4.1 The Possible CoversAny isoseles triangle is naturally \tiled by ips" by a right triangle. The followinglemma demonstrates how to use this tiling to reate nontrivial translation overs in theategory of triangular billiards surfaes. In fat, our main theorem is that the overs ofLemma 4.1 are the only nontrivial translation overs among triangular billiards surfaes.Lemma 4.1 Let a1 and a2 be relatively prime positive integers, not both equal to one.The right triangular billiards surfae Y := X(a1 + a2; a1; a2) is related to two isoselestriangular billiards surfaesX1 = 8>>><>>>: X(2a2; a1; a1) a1 oddX(a2; a12 ; a12 ) a1 evenandX2 = 8>>><>>>: X(2a1; a2; a2) a2 oddX(a1; a22 ; a22 ) a2 evenvia balaned overs f1 : X1 ! Y and f2 : X2 ! Y . The maps have degreesdeg(fi) = 8>>><>>>: 2 ai odd1 ai even . Furthermore, at least one of the fi has degree 2.



31Proof. It suÆes to prove the result for X1 and f1 . Write Q := 2a1 + 2a2 . We reetthe triangle T = T (a1 + a2; a1; a2) aross the edge onneting the a2 and a1 + a2 verties,to obtain its mirror image T 0 . By joining T and T 0 along the edge of reetion we reatean isoseles triangle ~T whih an be written as either T (2a2; a1; a1) (if a1 is odd) orT (a2; a12 ; a12 ) (if a1 is even). Note that sine (a1 + a2; a1; a2) must be a redued triple, a1and a2 annot both be even. It also follows that gd(ai; Q) � gd(2ai; Q) = 2 .Suppose a1 is even. Consider the translation surfae S (with boundary) obtainedby developing T around its a2 vertex. Sine a2 is odd we have gd(a2; Q) = 1, so S is tiled(by reetion) by 2Q opies of T , and hene after appropriate identi�ations along theboundary we will have X(a1 + a2; a1; a2) . Let ~S be the surfae obtained by developing ~Taround the orresponding vertex; it is tiled via reetion by Q opies of ~T , so appropriateboundary identi�ations will yield Y1 . Beause ~T is tiled via reetion by two opies ofT , it follows that S and ~S are translation equivalent. Finally, note that the boundaryidenti�ations are the same for S and ~S . Therefore Y and X1 are translation equivalent.Now suppose that a1 is odd and a2 is even. We then have ~T = T (2a2; a1; a1) .Sine gd(2a2; Q) = 2, we again have that ~S is tiled by Q opies of ~T . Sine a2 is even,gd(a2; Q) = 2, implying that S is tiled by Q opies of T . Thus if a2 is even then thereexists a degree two over f : ~S ! S , rami�ed over a single point. Furthermore, in thisase X1 and Y are obtained by identifying appropriate edges of two opies of ~S and S,respetively. It follows that if a2 is even then there exists a rami�ed degree two overf : X1 ! Y .Finally, suppose that a1 and a2 are both odd. We have that ~T = T (2a2; a1; a1),gd(2a2; Q) = 2, and gd(a2; Q) = 1 . In this ase we have that S and ~S are translationequivalent surfaes; however, X1 is obtained from two opies of ~S whereas Y is obtainedfrom a single opy of S . Thus again we have a double over f : X1 ! Y , this timeunrami�ed.



32Remark 4.1 Note that in addition to relating right and isoseles triangles, Lemma 4.1also gives a way to onstrut overs between isoseles triangular billiards surfaes. In thelanguage of Lemma 4.1, if a2 is even, then f�12 Æ f1 is a degree two translation over ofX2 by X1 .Remark 4.2 If we allow a1 = a2 = 1 in the statement of Lemma 4.1, then we arrive atY = X1 = X2 = X(1; 1; 2) . This is beause T (1; 1; 2) is the unique right isoseles triangle.Beause the loation of singularities is suh a major tool in analyzing translationsurfaes, it is worth identifying the triangular billiards surfaes whih have no singulari-ties. As detailed in [1℄, there are only three of these surfaes: X(1; 1; 2), X(1; 2; 3), andX(1; 1; 1) . These are also the only three triangular billiards surfaes of genus 1; further-more X(1; 2; 3) and X(1; 1; 1) are atually translation equivalent. Eah of these surfaesadmits balaned translation overs of itself by itself of arbitrarily high degree; this fat isrelated to the fat that T (1; 1; 2), T (1; 2; 3), and T (1; 1; 1) are the only Eulidean triangleswhih tile the Eulidean plane by ips. Note that any suh over must be unrami�ed,sine at rami�ed overs are loally of the form z 7! z1=n for some n > 1, implying thatthe one angle of the rami�ation point is greater than 2� .4.2 Balaned CoversBalaned translation overs f : X ! Y of translation surfaes are of interest beausethey imply an espeially strong relationship between the aÆne symmetry groups of Xand Y ; in partiular, these groups must have �nite-index subgroups whih are SL(2;R)-onjugate. We shall prove Theorem 4.1 for balaned overs using only the mahinery builtup thus far.Lemma 4.2 Let X = X(a1; a2; a3) be part of a omposition of nontrivial balaned overs.



33If X has exatly one singular vertex lass, then either X is an isoseles triangular billiardssurfae or X = X(1; n; n+ 1) with n > 2 an odd integer.Proof. Let v be the vertex of T (a1; a2; a3) that unfolds to a singular vertex lass. LetP 2 ��1X (v) . Sine X is part of a omposition of nontrivial balaned overs, Corollary3.3 implies that P has a Type I �ngerprint. All saddle onnetions on X have endpointsin ��1X (v), so by Lemma 3.1 the geodesis de�ning the �ngerprint of P are realized viasingle reetions of P aross the opposite sides of the opies of T (a1; a2; a3) of whih P isa vertex. Thus TX is either a right triangle or an isoseles triangle. Suppose TX is a righttriangle, and write TX = T (a1; a2; a1+a2) . Sine X has only one singular vertex lass wean assume that a1j2(a1 + a2) and a2 - 2(a1 + a2) . By Lemma 4.1, X is also (translationequivalent to) an isoseles triangular billiards surfae unless a1 and a2 are both odd. Thuseither X is an isoseles billiards surfae or a1 = 1 .Lemma 4.3 Let X and Y be triangular billiards surfaes suh that the genus of X isgreater than 1. Suppose that f : X ! Y is a nontrivial balaned translation over. Thenf is of the form desribed in Lemma 4.1.Proof.Let P 0 be a singular point of X, and write f(P 0) = P . Sine f is balaned, Lemma3.2 guarantees that the �ngerprints of P 0 and P have the same angle sets. By Corollary3.1, \�X(P 0) = \�Y (P ) unless �X(P 0) or �Y (P ) is the apex of an isoseles triangle. Withthis reasoning in mind, we split the proof into ases.Case 1 Neither TX nor TY are isoseles triangles.By Lemma 4.2, if X has only one singular vertex lass then X = X(1; n; n+ 1) for n > 2an odd integer. But gd(n; 2n + 2) = 1, so P 0 is the only singularity on X, and hene Pis the only singularity on Y . Thus by Lemma 4.2, Y = X(1;m;m + 1), and sine P and



34P 0 have the same angle set, m = n . Thus Y = X . But this is impossible by Lemma 2.2.Therefore we may assume that X has at least two singular vertex lasses. Let R0 2 Xbe in a vertex lass distint from the vertex lass of P 0, and write f(R0) = R . If R andP are in distint vertex lasses then sine \�X(P 0) = \�Y (P ) and \�X(R0) = \�Y (R),in fat TX = TY and f must be trivial. If R and P share a vertex lass then we have\�X(P 0) = \�Y (P ) = \�X(R0); but then TX is isoseles, ontraditing the hypothesis ofthis ase.Case 2 The triangle TX is isoseles, with its apex unfolding to a singular vertex lass.Let P 0 be in the singular vertex lass whih projets to the apex of TX . SineTX 6= TY , we must have that �Y (P ) is not the apex of an isoseles triangle. Thus\�X(P 0) = 2\�Y (P ) . Furthermore, sine the �ngerprints of P and P 0 have the sameangle set, Y must have a seond singular vertex lass. Let R 2 Y be a member of asingular vertex lass not ontaining P . Let R0 be a singularity of X with f(R0) = R .If R0 is in the same vertex lass as P 0, then it follows that \�Y (P ) = \�Y (R), TY isisoseles, and f is a omposition of overs from Lemma 4.1. If R0 and P 0 are in distintvertex lasses, then either \�Y (R) = \�X(R0), in whih ase TY is a right triangle asdesribed in Lemma 4.1; or else �Y (R) is the apex of an isoseles triangle, and again f isa omposition of overs from Lemma 4.1.Case 3 The triangle TX is isoseles, with its apex unfolding to a nonsingular vertex lass.Here, X must have exatly one other singularity R0 orresponding to the othervertex of TX whih is not the apex. Write f(R0) = R . If �Y (R) or �Y (P ) is the apex ofan isoseles TY , then f is a omposition of overs from Lemma 4.1. Suppose not. Then\�Y (P ) = \�Y (R) . If R 6= P then TX = TY , whih is ruled out by Lemma 2.2. So weare left with R = P as the only singularity on Y , and thus by Lemma 4.2 f must be aomposition of overs from Lemma 4.1.



35Case 4 The triangle TY is isoseles, with its apex unfolding to a singular vertex lass.Let P be suh that �Y (P ) is the apex of TY . Then \�Y (P ) = 2\�X(P 0) . Fur-thermore, X must have a singular vertex lass not ontaining P 0 . Let R0 2 X be in thisseond singular vertex lass, and write f(R0) = R .Subase 4A. R and P share a vertex lass.Then either \�X(R0) = 12\�Y (P ) = \�X(P 0), in whih ase TX is isoseles (seeprevious ases), or else \�X(R0) = \�Y (P ), in whih ase TX = TY , whih is impossible.Subase 4B. R and P are in distint vertex lasses.Sine R does not projet to the apex of TY , \�X(P 0) 6= 12\�Y (R) . If \�X(R0) =2\�Y (P ) then TX is isoseles and f is a omposition of overs from Lemma 4.1. Finally,if \�X(R0) = \�Y (R) then we see that \�X(R0) +\�X(P 0) = \�Y (R) + 12\�Y (P ) = �2 ,so TX is a right triangle whih tiles TY by a single ip. Thus by Lemma 4.1 there existsa translation over g : Y ! X . If deg g = 1 then Y and X are translation equivalent sodeg f = 1 . If deg g > 1 then an easy appliation of the Riemann-Hurwitz formula showsthat f annot exist.Case 5 The triangle TY is isoseles, with its apex unfolding to a nonsingular vertex lass.In this ase Y has two singular vertex lasses, eah onsisting of one point. Let thesingularities be P and R, and as before let f(P 0) = P , f(R0) = R . By ases 2 and 3,we an assume that TX is not isoseles; thus \�X(R0) = \�Y (R) = \�Y (P ) = \�X(P 0) .Therefore (sine TX is not isoseles) X must have only one singular vertex lass. Thus byLemma 4.2, X = X(1; n; n+1) with n > 2 odd. But this surfae has only one singularity,and X must have at least two singularities to form the f -preimage of P and R .Cases 1-5 exhaust the possibilities; the proof is omplete.



364.3 Some Elementary Number TheoryNote that the holonomy �eld kX := Q(�Q + ��1Q ) is a degree two sub�eld of theylotomi �eld Q(�Q), sine it is the maximal sub�eld �xed by omplex onjugation. Inlight of this, we list some lassial results about these two �elds as reorded inWashington'stext[18℄.Lemma 4.4 If Q is odd then Q(�Q) = Q(�2Q) .Lemma 4.5 (Prop 2.3 in [18℄) Assume that Q 6� 2 mod 4 . A prime p rami�es in Q(�Q)if and only if pjQ .Lemma 4.6 (Prop 2.15 in [18℄) Let p be a prime, and assume that n 6� 2 mod 4 . If n =pm then Q(�n)=Q(�n + ��1n ) is rami�ed only at the prime above p and at the arhimedeanprimes. If n is not a prime power, then Q(�n)=Q(�n + ��1n ) is unrami�ed exept at thearhimedean primes.Remark 4.3 Washington's proofs of Lemmas 4.5 and 4.6 make lear that the results arrythrough to the ase Q � 2 mod 4 exept that in that ase, the prime 2 does not ramify inQ(�Q) .For a triangular billiards surfae X = X(a1; a2; a3), it is tempting to de�ne a \Q-value" for the surfae by QX := a1 + a2 + a3 . Unfortunately this notion is not quitewell-de�ned up to translation equivalene; as demonstrated in Lemma 4.1, the trianglesT (a; a; b) and T (2a; b; 2a + b) unfold to translation equivalent translation surfaes if (andonly if) b is odd. However, the following lemma and its orollary show that this notion iswell-de�ned up to a fator of 2 .Lemma 4.7 If Q(�m) 6= Q(�n) then Q(�m + ��1m ) 6= Q(�n + ��1n ).



37Proof. This is an exerise in elementary algebrai number theory, and is presumably wellknown. Let k be the maximal totally real sub�eld of the ylotomi �elds Q(�m) andQ(�n) for positive integers m;n > 2 .The degrees of Q(�m) and Q(�n) as �eld extensions of Q are �(m) and �(n) respe-tively, where � is the Euler totient funtion. Sine Q(�m) and Q(�n) are eah degree 2extensions of k, we have that �(m) = �(n) .Let p be an odd prime dividing m . By Lemma 4.5, p rami�es in Q(�m ) . If m is apower of p, then p is totally rami�ed in Q(�m) . Sine Q � k � Q(�m), if m is a powerof p then p must ramify in k . If m is not a power of p , then Lemma 4.6 tells us thatthe extension Q(�m )=k is not rami�ed at the prime above p ; thus again p must ramifyin k . But also Q � k � Q(�n), so p must ramify in Q(�n) . By Lemma 4.5, this impliesthat p divides n . Therefore m and n have the same odd prime divisors; furthermore, byRemark 4.3, these arguments extend to show that either 4 divides both m and n or itdivides neither.First suppose that m and n are ongruent modulo 2 . Let m = �peii and n = �pfiibe the prime fatorizations of m and n . Then we have1 = �(m)�(n) = Q(pi � 1)pei�1iQ(pi � 1)pfi�1i =Y pei�fii : (4.1)Therefore ei = fi for eah i, and m = n . Hene in this ase Q(�m ) = Q(�n) .If m and n are not ongruent modulo 2, then we may assume that m is odd andn is ongruent to 2 modulo 4 . Sine �(m) = �(2m) when m is odd, we an repeat thealulation (4.1) with 2m and n, and get that 2m = n . But it is well known that for anyodd m, Q(�m) = Q(�2m) . Therefore in fat k is the maximal totally real sub�eld of onlyone ylotomi �eld.Corollary 4.1 Suppose that X(a1; a2; a3) and X(b1; b2; b3) have the same holonomy �eld,



38and that b1+b2+b3 < a1+a2+a3 . Then b1+b2+b3 is odd, and a1+a2+a3 = 2(b1+b2+b3) .Proof. Suppose X(a1; a2; a3) and X(b1; b2; b3) have the same holonomy �eld k . WriteQX = a1 + a2 + a3 and QY = b1 + b2 + b3 . Then by Lemma 2.4, we have that k is themaximal totally real sub�eld of Q(�QX ) and of Q(�QY ) . The result then follows diretlyfrom Lemma 4.7.
4.4 Combinatorial Lemmas
Lemma 4.8 Let f : X(a1; a2; a3) ! X(b1; b2; b3) be a translation over of triangularbilliards surfaes. Then Xai-(a1+a2+a3) ai � n Xbi-(b1+b2+b3) bi : (4.2)Proof. The sum of the one angles of the singular points of X(a1; a2; a3) is at least ntimes the sum of the one angles of the singular points of X(b1; b2; b3) . By Remark 2.1,the result follows.Lemma 4.9 Let f : X(a1; a2; a3) ! X(b1; b2; b3) be a translation over of triangularbilliards surfaes suh that the genus of X(a1; a2; a3) is greater than 1. If a1 + a2 + a3 =b1 + b2 + b3 and f is not a omposition of overs from Lemma 4.1, then f is of degree 1.Proof. Write Q := a1 + a2 + a3 = b1 + b2 + b3 . Let n be the degree of f , and supposethat n � 2 . Lemma 4.8 then gives Pbi-Q bi � Qn . Hene, sine n � 2, we haveXbijQ bi � Q2 : (4.3)



39Writing qi = Qbi , we have the equivalent expressionXbijQ 1qi � Q2 : (4.4)Note that if bijQ then qi is an integer. Of ourse, Equation (4.3) is always satis�ed ifT (b1; b2; b3) is a right triangle. If T (b1; b2; b3) is not a right triangle, the equation is rarelysatis�ed. Thus we will redue the problem to three ases (up to permutation of verties).Case 1 The triangle T (b1; b2; b3) is not a right triangle.In this ase, realling that gd(b1; b2; b3) = 1, we show that there are only three possibilitiesfor the bi whih satisfy Equation (4.3).If all three bi divide Q then Y is nonsingular. The only non-right triangle whihunfolds to a nonsingular surfae is T (1; 1; 1); but sine this is also the only triangle withQ = 3, if Y = X(1; 1; 1) then X = X(1; 1; 1), ontraditing our assumption that X has asingularity.Hene we an assume for this ase that b3 - Q . Therefore to satisfy Equation 4.4we seek integers q1; q2 > 2 suh that 1q1 + 1q2 > 12 (4.5)Without loss of generality we assume q1 � q2 . If q1 � 4, Equation (4.5) is impossible. Ifq1 = 3 then Equation (4.5) is satis�ed if q2 � 5 . Thus the remaining andidates for Y areX(3; 4; 5) and X(3; 5; 7) . By Lemma 4.8, X(3; 4; 5) admits at most a degree two over;by Lemma 2.1 the degree two overs satisfying the hypotheses of the lemma ould only bef : X(2; 5; 5) ! X(3; 4; 5) or X(1; 1; 10) ! X(3; 4; 5) . However, these maps would haveto be balaned overs, and X(3; 4; 5) has a singularity with a Type II �ngerprint. Thus



40by Corollary 3.3 these maps do not exist. Similarly, the only feasible over of X(3; 5; 7) ofdegree greater than 1 is f : X(1; 7; 7) ! X(3; 5; 7); again, this would be a balaned over,and X(3; 5; 7) has a singularity with a Type II �ngerprint.Case 2 The triangle T (b1; b2; b3) is a right triangle, with b1 = Q2 and neither b2 nor b3dividing Q .Here Lemma 4.8 implies that the degree of f is at most two. The sum of the one anglesof the singularities of Y is b2 + b3 . Thus if n = 2 then the sum of the one angles of thesingularities of X is 2(b2+ b3) = Q = a1+ a2+ a3 . Therefore T (a1; a2; a3) must be eitherT (b2; b2; 2b3) or T (2b2; b3; b3) . Both these possibilities are aounted for by the overs ofLemma 4.1.Case 3 The triangle T (b1; b2; b3) is a right triangle, with b1 = Q2 and b2jQ .Hene the triangle has angles �2 , �q , and q � 22q for some integer q dividing Q . We have
T (b1; b2; b3) = 8>>><>>>: T (2; q � 2; q) if q oddifT (1; q2 � 1; q2) if q evenFirst suppose that q is odd. Then Y = X(2; q � 2; q) . If q = 3 then Y = X(1; 2; 3)and X is either X(1; 2; 3) (ruled out beause it is genus 1) or X(1; 1; 4) (already listedin Lemma 4.1). If q = 5 then by Lemma 2.1 X is either X(3; 3; 4) (already listed inLemma 4.1) or X(1; 3; 6) . A translation over f : X(1; 3; 6) ! X(2; 3; 5) would haveto be a balaned triple over, and the �ngerprints would not math. For q � 7, onlydouble overs are possible, by Lemma 4.8. Sine gd(q � 2; q) = 1, there is only onesingularity on Y and it has one angle 2(q � 2)� . Thus by Lemma 2.1 possible doubleovers are f : X(4; q � 2; q � 2) ! Y and f : X(1; 3; 2q � 4) ! Y . The overing surfaes



41X(4; q � 2; q � 2) are aounted for by Lemma 4.1. The overing surfaes X(1; 3; 2q � 4)have one singular vertex lass when 3jq; in this ase f must be balaned. But if 3 - qthen X would have a onial singularity with one angle 6� mapping to a nonsingularpoint of Y , whih is impossible sine the degree of the over is at most 2. Now supposethat q is even. If q = 4 then Y = X = X(1; 1; 2), but the lemma assumes that X has asingularity. If q = 6 then Y = X(1; 2; 3), but we have already dealt with this surfae. Ifq � 8 then gd(q; q2 �1) < q2 �1, so Y has a singular vertex lass and the total one angleof the singularities in that lass is 2(q� 2)� . Thus the only possible overing surfaes areX(2; q2 � 1; q2 � 1; ) and X(1; 1; q � 2); but both these possibilities are aounted for byLemma 4.1.Lemma 4.10 Let f : X ! Y be a translation over of triangular billiards surfaes. Letm be the smallest integer suh that all singularities of Y have one angle at least 2m� .Suppose that deg f < m . Then for eah vertex lass Ci on X, f(Ci) onsists entirely ofsingular points or entirely of nonsingular points.Proof. Let m be as above and assume that deg(f) < m . Suppose for ontradition thatfor some j, f(Cj) ontains singular points and nonsingular points. Eah member of Cjhas the same one angle, and this one angle must be at least 2m�, sine some of themembers are mapped by a translation over to a singularity of one angle 2m� . Thus, forthose elements of Cj whih are mapped to nonsingular points, the de�nition of a rami�edover requires that f be loally of degree at least m, whih ontradits our assumptionthat deg(f) < m . This ompletes the proof.
4.5 Proof of the Main TheoremNow we an prove Theorem 4.1.



42Theorem 4.1 Suppose f : X ! Y is a translation over of triangular billiards surfaesof degree greater than 1. Then f is of degree 2, and is a omposition of one or two of theovers fi desribed in Lemma 4.1.Proof. Suppose X := X(a1; a2; a3), Y := X(b1; b2; b3), and f : X ! Y is a translationover of degree deg f > 1 . Assume that the genus of X is greater than 1. Write QX :=a1 + a2 + a3 and QY := b1 + b2 + b3 . Let v1; v2; v3 and w1; w2; w3 be the orrespondingverties of T (a1; a2; a3) and T (b1; b2; b3) respetively. By Corollary 1, X and Y havethe same holonomy �eld k . By Corollary 4.1, we have QY 2 f2QX ; QX ; 12QXg . IfQY = 2QX , then by Lemma 4.8, we must have Pbi-QY bi � QX2 = QY4 . But then we wouldhave PbijQY bi � 34QY , whih is only the ase for the following surfaes with even Q-value:X(1; 1; 2), X(1; 2; 3), X(3; 4; 5) . Of ourse, QX � 3, so Y 6= X(1; 1; 2) . If Y = X(1; 2; 3)then X = X(1; 1; 1), whih is of genus 1, a ontradition. If Y = X(3; 4; 5), then Y has asingularity with one angle 10� . But, no surfae X with QX = 6 ould have a one angleof at least 10� .If QY = QX , then we are done by Lemma 4.9. Thus, appealing to Corollary 4.1, weshall assume for the remainder of the proof that QX = 2QY .If Y has no singular vertex lasses, then sineQ is odd, we must have Y = X(1; 1; 1) .There are only two surfaes with a Q-value of 6: they are X(1; 1; 4) and X(1; 2; 3), andeah of these surfaes overs X(1; 1; 1) as desribed in Lemma 4.1. If Y has three singularvertex lasses, then Lemma 4.8 implies that f an only be a degree two balaned over.Thus we are done by Lemma 4.3.There are two ases remaining: Y may have either one or two singular vertex lasses.Case 1 The surfae Y has one singular vertex lass.In this ase we have, without loss of generality, b1jQY , b2jQY , and b3 - QY . Sine b1and b2 are divisors of the odd number QY := b1+ b2 + b3, b3 must also be odd. Therefore



43b3gd(b3; Q) � 3 . The one angle at eah of the singularities of Y orresponding to b3 isb3gd(b3; Q)2� � 6� .Lemma 4.8 eliminates all possible Y for deg f � 4 exept Y = X(3; 5; 7) . But,again by Lemma 4.8, the only possible degree four overing surfae would be X(1; 1; 28),and suh a over would have to be balaned, ontraditing Lemma 4.3.If deg f = 2: Lemma 4.10 tells us that if deg f = 2 then for eah j = 1; 2; 3, we havethat f(��1X (vj)) \ ��1Y (w3) is either empty or all of f(��1X (vj)) .Suppose that Y = X(3; 5; 7) . Lemma 4.10 restrits the possible degree two oversto surfaes of the form f : X(14; a2; a3)! Y , where eah of a2 and a3 is either a divisor of30 or twie a divisor of 30 . The only possible overing surfae this leaves is X(15; 14; 1) .But any translation over f : X(15; 14; 1) ! X(3; 5; 7) would have to be balaned, soLemma 4.3 applies.Now suppose that Y 6= X(3; 5; 7) . Let C be the singular vertex lass of Y . We musthave b3Q > 12, and so by Remark 2.1 C must orrespond to an obtuse angle � of the billiardtable. Let ~X be the surfae obtained from X by punturing all singular vertex lasses of Xwhih are not ontained in f�1(C) . Sine b3Q > 12 and f is degree 2, the sum of the anglesof the billiard table orresponding to the vertex lasses in the f -preimage of C must beobtuse. Thus we an apply Lemma 3.3 to ~X . The restrition of f to ~X is balaned. SineY has only one singular vertex lass, elements of C must have Type II �ngerprints unlessT (b1; b2; b3) is isoseles. If the �ngerprints are Type II, then Proposition 3.1 and Lemma3.3 demonstrate that X and Y are translation equivalent. So the only possibility is thatthe �ngerprints are Type I. In that ase Y is an isoseles triangular billiards surfae. LetC 0 be a vertex lass on X that is in f�1(C), and write � = b3�Q . The billiard table anglethat C 0 orresponds to is either � or �2 . If the angle is �, then X and Y are translationequivalent. If the angle is �2, then there is another vertex lass on X whih is also mappedto C . But then that vertex lass would also orrespond to an angle of �2, and we would



44have that X is an isoseles triangular billiards surfae, implying that f : X ! Y is of theform desribed in Lemma 4.1.If deg(f) = 3: Then Lemma 4.8 allows only the following possibilities for Y : thesurfaesYn = 8>>><>>>: X(3; n; 2n � 3) 3 - nX(1; n3 ; 2n3 � 1) 3jn :Note that gd(2n � 3; 3n) 2 f1; 3g . First suppose that gd(2n � 3; 3n) = 1 . ThenQ = 3n (thus n is odd), 3 - n, and we have Yn = X(3; n; 2n� 3) . We have that n � 5 andhene that 2n� 3 � 7 . On Yn, there is only one singular vertex lass and the one angleof eah singular point is (2n � 3)2� . Thus Lemma 4.10 applies here. Sine Yn is neverisoseles, eah singular point has a Type II �ngerprint. Let ~X be the surfae obtainedfrom X by deleting all singularities of X whih f maps to nonsingular points, and let ~fbe the restrition of f to ~X . By Lemma 4.10, the elements of X � ~X are the union ofentire vertex lasses. Thus a Type II �ngerprint on ~X will uniquely identify the triangularbilliards table used to generate X, by Lemma 3.3. Beause ~f is a balaned map, eahsingular point of ~X must have the same Type II �ngerprint (on ~X) as its ~f-image on Y .But, a Type II �ngerprint uniquely identi�es the triangle used to generate the surfae(this works for ~X as well); hene X and Yn are the same billiards surfae, and Lemma 2.2says that a triple over is impossible.Now suppose that gd(2n� 3; 3n) = 3 . Then the one angle of eah singular pointon Yn is 2n�33 2� . If n > 6 then 2n� 33 > 3, so that again we an apply Lemma 4.10 andLemma 3.3, and the same �ngerprint argument goes through. The remaining ases aren = 3; 6 . We have Y3 = X(1; 1; 1) and Y6 = X(1; 2; 3), neither of whih have singularities.Case 2 The surfae Y has two singular vertex lasses.



45Assume b1jQ and b2; b3 - Q . Sine Q is odd, b1Q � 13, so Lemma 4.8 implies thatdeg(f) � 3 . But, if deg(f) = 3, Lemma 4.8 also implies that f is balaned, ontraditingthe result of Lemma 4.3 that balaned overs are of degree at most 2. Thus deg(f) = 2 .Note that b2 and b3 must have the same parity.Subase 2A. Both b2 and b3 are odd.Then bigd(bi; Q) � 3, so by Lemma 4.10, eah vertex lass of X maps to all singularpoints or all nonsingular points.If one vertex lass of X maps to nonsingular points: Say the vertex lass C1 orre-sponding to a1 maps to nonsingular points. Then a = 2b1, and 2b1j2Q, so C1 is nonsin-gular, so f is balaned.If two vertex lasses of X map to nonsingular points: Let them be C1 and C2, or-responding to a1 and a2 . If C1 is singular, then by Lemma 4.10 we have a1 = 2d for somedjQ . But sine a3 = 2(b2 + b3), this would mean that all the ai are even, ontraditingthe fat that gd(a1; a2; a3) = 1 .Subase 2B. Both b2 and b3 are even.If one vertex lass of X maps to nonsingular points: Let it be C1 . We have a2 +a3 = 2(b2 + b3), so a1 must be even. But also a2 and a3 must be even, sine 2j bigd(bi; Q)and bigd(bi; Q) j ajgd(aj ; Q) for eah i; j 2 f2; 3g . Again, this is a ontradition.If two vertex lasses of X map to nonsingular points: Let them be C1 and C2 . Wehave that a3 = 2(b2 + b3) is even. If C1 is singular then again we have that a1 (andhene a2) is even, one more ontraditing that gd(a1; a2; a3) = 1 . Hene C1 and C2 arenonsingular, and f is balaned.



465 ALGEBRAIC PERIODICITY
The purpose of this note is to provide an alternate proof of the laim, originallystated in [3℄, that surfaes arising from billiards in a rational triangle are algebraiallyperiodi. The proof of the laim there ontains two minor errors. First, letting �Q denotee2�i=Q, it assumes that the oordinates of the verties of the �a1�Q ; a2�Q ; a3�Q � triangles inits onstrution are ontained in Q(�Q), when in fat they are only guaranteed to bein Q(�2Q) . Seond, on a related note, it assumes that the real and imaginary parts ofelements of the �eld Q(�Q) lie in the �eld Q(�Q + ��1Q ) . In general, the imaginary partsmay lie in a degree 2 extension of Q(�Q + ��1Q ) . Examples of this already our whenQ = 3; 5 . However, these issues an be resolved by a simple geometri argument, as weshow in the proof of Lemma 5.1.Remark 5.1 We let Un denote the nth Chebyshev polynomial of the seond kind. We willuse the following properties of Chebyshev polynomials.1. sin((n+1)�)sin � = Un(os �)2. If n is even, then Un is an even polynomial of degree n . If n is odd, then Un is anodd polynomial of degree n .Remark 5.2 Let � be the Euler totient funtion. It is well known that, for any positiveinteger Q, the degree of the number �eld Q(os(2�Q )) is equal to 12�(Q) . Note that if Qis odd, then �(Q) = �(2Q) . It follows that, when Q is odd, we will have Q(os(2�Q )) =Q(os( �Q)) .The following is Theorem 2.5 of [3℄.Theorem 5.1 (Calta-Smillie) If a translation surfae X is obtained by identifying theedges of polygons in the plane by maps whih are restritions of translations, and if all the



47verties of these polygons lie in a subgroup � � R2 , then the holonomy of S is ontainedin � .Lemma 5.1 The holonomy �eld of X(a1; a2; a3) is ontained in Q(os(2�Q )), where Q =gd(a1; a2; a3) .Proof. Let � = �Q . Let T := T (a1; a2; a3) . Sine gd(a1; a2; a3) = 1, we an and doassume that a1 is odd. Label the verties of T orresponding to the angles a1�, a2�,and a3� as P1, P2, and P3 . We sale and rotate T so that the P1P2 side has edgevetor v = (1; 0), and so that the P1P3 side has edge vetor w = (t os(a1�); t sin(a1�)),where by the Law of Sines we have t = sin(a2�)sin(a3�) . The dihedral group D generated byreetions in the sides of T ats on the set D � T of 2Q distint oriented triangles arisingfrom billiards in T . We an onstrut X from this set by identifying the appropriateedges of the elements of D � T . We may also view D as ating on the edge vetors of T .Let vn = (os(2n�); sin(2n�)) and wn = (t os((2n + 1)�); t sin((2n + 1)�)) . With thisnotation, we see that D � v is the set fv = v0; v1; :::; vQ�1g . Realling that a1 is odd, wealso see that D � w is the set fw0; w1; :::; wQ�1g . Note that w = wa1=2�1 .Let � be the subgroup of R2 generated by the vn and wn . Theorem 5.1 implies thatthe entire holonomy of S is ontained in � .Let L = Q(os 2�) . We will show that all the vn and wn are L-linear ombinationsof v0 and v1, and that furthermore L is the smallest suh �eld.Let l and l0 be the real numbers suh that lv0 + l0v1 = w0 . Sine v0 and v1 arereetions of eah other aross the line generated by w0, we see that v0 + v1 is a realmultiple of w0 . Hene l0 = l .Projeting v0 and v1 onto w0, we see that



48l = jjw0jjjjv0 + v1jj = t2 os� = sin(a2�) sin�sin(a3�) sin(2�) = sin(a2�)sin� sin�sin(a3�) sin�sin(2�) : (5.1)Applying Remark 5.1 to the last expression, we getl = Ua2�1(os�)Ua3�1(os�)U1(os�) : (5.2)If Q is even, we have that (a2 � 1) and (a3 � 1) have opposite parity, and thus byour Remark 5.1, Ua2�1(os�)Ua3�1(os�)U1(os�) is a rational funtion in os2 � . Thus l 2 Q(os2 �) =Q(os(2�)) . If Q is odd, then already by Remark 5.2, Q(os �) = L, and sineUa2�1(os�)Ua3�1(os�)U1(os�) is a rational funtion in os�, we again have that l 2 L .Similarly, for some real number k, we have k(w0+w1)=v1; by projetion we alulatek = jjv1jjjjw0 + w1jj = 1t os(2�) = 1t2 l = sin2(a3�)sin2(a2�) l = U2a3�1U2a2�1 l: (5.3)Sine U2a3�1 and U2a2�1 are both polynomials in os2 �, we get k 2 L .Let R be the element of D that ats on the plane as ounterlokwise rotation by2� . Note that R � vn = vn+1 and R � wn = wn+1 . Thus for all integers n,lvn + lvn+1 = Rn � (lv0 + lv1) = Rn � w0 = wn (5.4)and kwn + kwn+1 = Rn � (kw0 + kw1) = Rn � v1 = vn+1: (5.5)Thus we have the relations wn = ( 1k � l)vn� lvn�1 and vn+1 = 1lwn�vn . These tworelations demonstrate that wn and vn are in spanLfv0; v1g for all n . Hene spanLfv0; v1g=� .



49Theorem 5.1 says that � ontains the absolute holonomy of S . Hene L ontains theholonomy �eld of X.

FIGURE 5.1: The sets fvng and fwng for X(3; 4; 5), with a1 = 3 .
The following is a slight strengthening of Theorem 9.1 in [Calta-Smillie℄, whihfollows from the proof of Theorem 1.2 of [Calta-Smillie℄, whih they in turn attribute toMMullen.Theorem 5.2 (Calta-Smillie) If there is an aÆne automorphism of S with trae � and theholonomy �eld of S is ontained in a �eld generated by �, then S is ompletely algebraiallyperiodi.The following theorem is stated as Theorem 1.4 in [Calta-Smillie℄.



50Theorem 5.3 (Calta-Smillie) If X is a triangular billiards surfae then X is ompletelyalgebraially periodi.Proof. The surfae X admits rotation by 2�Q as an aÆne automorphism. This automor-phism has trae 2 os(2�Q ) . In Lemma 5.1 we showed that the holonomy �eld of X isontained in the �eld generated by os(2�Q ) . Hene, by Theorem 5.2, X is algebraiallyperiodi.



516 INFINITELY GENERATED VEECH GROUPS VIATRANSLATION COVERS
In this hapter we disuss the use of translation overs in onstruting translationsurfaes with in�nitely generated aÆne symmetry groups (alled Veeh groups). We re-view the relevant de�nitions, present results of Hubert and Shmidt, then demonstratethat members of a speial lass of surfaes identi�ed by Aurell and Itzykson in [1℄ havein�nitely generated Veeh groups. Throughout this hapter, we shall use the notation(S; !) to refer to a translation surfae, where S is the underlying Riemann surfae and !is the holomorphi one-form whih endows X with a translation struture, as desribedin Setion 2.2.1.6.1 Veeh Groups and Veeh SurfaesThe matrix group SL2R ats on the set of all translation surfaes in the followingway: for eah A 2 SL2R, A �X is the result of post-omposing the oordinate harts ofX with the standard linear ation of A on R2 . See, for example, [10℄. Note that, sine Aats linearly on the harts of (X;!), the hange-of-oordinate funtions of A �X will betranslations, so SL2R really does at on the set of translation surfaes.De�nition 6.1 Let SL(X) be the SL2R-stabilizer of X . The Veeh group of X is theimage of SL(X) in PSL2R, denoted PSL(X) .A di�eomorphism of X whose image is a translation surfae is alled an aÆnedi�eomorphism. Elements of SL(X) an also be viewed as the di�erentials of those aÆnedi�eomorphisms whose images are translation equivalent to X . It is a ommon abuse of



52notation to let a matrix A := 0� a b d 1A refer to both an element of SL(X) and its imagein PSL(X) .The hyperboli upper half plane H admits an ation by PSL2R via M�obius trans-formations. If the quotient of H by the ation of PSL(X) has �nite hyperboli area, thenwe say that X is a Veeh surfae. Veeh [15℄ gave the following result, known as the VeehDihotomy:Theorem 6.1 (Veeh) If X is a Veeh surfae, then for eah diretion �, either:(1) X deomposes into a �nite number of ylinders in the diretion � with ommen-surable moduli; or(2) Eah geodesi path in the diretion � is uniformly distributed in X .Here, the modulus of a ylinder refers to the ratio of its width to its height.6.2 Tehniques of Hubert and ShmidtIn [9℄, Hubert and Shmidt use the fat that there exists a translation overf : X(3; 3; 4) ! X(1; 1; 3) to prove that the Veeh group of X(3; 3; 4) is in�nitely gener-ated. In this setion we review their tools, so that we an apply them to a di�erent surfaein Setion 6.4.De�nition 6.2 A point P on a translation surfae X is a onnetion point if everygeodesi onneting P to a singularity of X extends to be a saddle onnetion on X .A diretion is said to be a periodi diretion on X if every geodesi on X in thatdiretion is losed.



53A diretion is alled a paraboli diretion ofX if there exists an aÆne di�eomorphismofX whih preserves the set of geodesis in this diretion and whose di�erential is paraboli(has trae equal to 2). A onsequene of the Veeh Dihotomy is that, on a Veeh surfae,the paraboli diretions oinide with the periodi diretions.De�nition 6.3 A translation surfae X is of strong holonomy type if the following on-ditions hold:(1) Every holonomy vetor and every saddle onnetion vetor of X has its x-andy-oordinates in the holonomy �eld of X .(2) The periodi diretions of X are exatly the vertial and those diretions whoseslopes are in the holonomy �eld of X .De�nition 6.4 A point P on a translation surfae X is a rational point if there exist twodistint paraboli diretions for Xwith orresponding paraboli elements of SL(X) that �xP .Lemma 6.1 (Hubert-Shmidt) For P a nonsingular point on a Veeh surfae X of strongholonomy type, the following are equivalent:1. P is a onnetion point;2. P is a rational point;3. after the development of a singular point has been �xed as the origin, every developedimage of P is of oordinates in the holonomy �eld.Hubert and Shmidt mark ertain nonsingular points fP1; :::; Png on a translationsurfae X, all the resulting marked surfae (X;P1; :::; Pn), and then de�ne the Veehgroup of the resulting surfae to be those elements of PSL(X) whih stabilize the set



54of marked points. On the marked surfae, the points fP1; :::; Png are onsidered to be(removable) singularities. Note that (X;P1; :::; Pn) is still a translation surfae.Proposition 6.1 (Hubert-Shmidt) Let P be a nonperiodi onnetion point on a Veehsurfae X . Then PSL(X;P ) is in�nitely generated.Sketh of Proof. Hubert and Shmidt show in [9℄ that it suÆes to prove that theparaboli diretions of PSL(X;P ) are dense in the unit irle S1 . It is well known thatthe set of diretions of geodesis onneting any point on X to singularities on X isdense in S1 . Sine P is a onnetion point, the set of diretions of saddle onnetionsthrough P must be dense in S1 . Beause X is a Veeh surfae, eah suh diretion is aperiodi diretion on X and hene there exists a paraboli element � 2 SL(X) whih isthe di�erential of an aÆne automorphism of X �xing P . Sine � �xes P , � 2 SL(X;P ) .Therefore the paraboli diretions of PSL(X;P ) are dense in S1 .Proposition 6.1 has the following immediate orollary, whih we will use in Setion6.4. Although Hubert and Shmidt do not expliitly state this orollary, they do impliitlyuse it in [9℄.Corollary 6.1 Let P1; :::; Pn be nonperiodi onnetion points on a Veeh surfae X suhthat the set of diretions of saddle onnetions through Pi is the same for eah i . ThenPSL(X;P1; :::; Pn) is in�nitely generated.Proof. Hubert and Shmidt's proof of Proposition 6.1 goes through for this additionallymarked surfae as long as we an show that the set of paraboli diretions of (X;P1; :::; Pn)is dense in S1 . But sine the set of diretions of saddle onnetion through Pi is the samefor eah i, eah diretion in this set orresponds to a paraboli element of PSL(X) whihis the di�erential of an automorphism �xing the set fP1; :::; Png .We will use the following result of MMullen, whih he proves in [14℄ and whihHubert and Shmidt [9℄ restate in the following way.



55Lemma 6.2 (MMullen) If the holonomy �eld of a translation surfae X is a real quadratiextension of Q , then X is in the GL2(R)-orbit of a nonarithmeti surfae of strongholonomy type.The following lemma, proven independently by Vorobets [16℄ and Gutkin and Judge[6℄, demonstrates a onnetion between translation overs and Veeh groups.Lemma 6.3 (Vorobets, Gutkin-Judge) If f : X ! Y is a balaned over of translationsurfaes, then there exist subgroups H 2 PSL(X) and G 2 PSL(Y ) suh that H and Gare PSL2(R)-onjugate.This lemma has the following orollary whih will be important in the next setion:Corollary 6.2 Let Y be a Veeh surfae and let fP1; :::; Png � Y be a set of nonperiodionnetion points suh that the set of diretions of saddle onnetions through Pi is thesame for eah i . Let f : X ! Y be a translation over whih is rami�ed above eah Piand is not rami�ed above any other nonsingular points of Y . Then PSL(X) is in�nitelygenerated.Proof. Beause f rami�es only above the points fP1; :::; Png as well as possibly above thesingular points of Y , f indues a balaned translation over f 0 : X ! (Y ;P1; :::; Pn) . ByCorollary 6.1, PSL(Y ;P1; :::; Pn) is in�nitely generated. By Lemma 6.3, there must existsubgroups H1 2 PSL(Y ;P1; :::; Pn) and H2 2 PSL(X) whih are PSL2R-onjugate. Buta �nite-index subgroup of an in�nitely generated group must itself be in�nitely generated;hene H1 is in�nitely generated, and its onjugate H2 is therefore also in�nitely generated.Likewise, a �nite group extension of an in�nitely generated group must also be in�nitelygenerated. Thus PSL(Y ) is in�nitely generated.Hubert and Shmidt [9℄ impliitly use the preeding orollary, along with the fatthat f : X(3; 3; 4) ! X(1; 1; 3) is a translation over rami�ed over nonperiodi onnetion



56points of the Veeh surfae X(1; 1; 3), to prove that PSL(X(3; 3; 4)) is in�nitely generated.We shall prove something similar for a speial olletion of surfaes in the following setion.6.3 The Aurell-Itzykson ConstrutionIn [1℄, Aurell and Itzykson show that for a given triangular billiards surfae (S; !)of genus g, there exists a basis f! = !1; !2; :::; !gg for H1(X; C ) suh that eah (X;!i) iseither a triangular billiards surfae or a overing surfae of a triangular billiards surfaevia a nontrivial translation over. The various !i are alled the assoiates of !, and byanalogy we all the surfaes (X;!i) assoiate surfaes of (S; !) . Using translation overtehniques of Hubert and Shmidt [9℄, as well as results of Ward [17℄ and MMullen [14℄,we an show that ertain of these surfaes have an in�nitely generated Veeh group.For our purposes, the results of Aurell and Itzykson in [1℄ regarding assoiates anbe summarized as follows:Proposition 6.2 (Aurell-Itzykson) Let (S; !) := X(a1; a2; a3) be a triangular billiardssurfae of genus g, with Q := a1+a2+a3 . For any integer m, let m denote the nonnegativeremainder when dividing m by Q . Let n 2 f1; 2; :::; Qg suh that na1 + na2 + na3 = Q .Let t = gd(na1; na2; na3) . Then there exists a 1-form  de�ned on X suh that thereis a degree t translation over f : (X; ) ! X(na1t ; na2t ; na3t ) . Eah suh  is alled anassoiate of ! . Furthermore, there are exatly g suh values of n .For eah n 2 f1; 2; :::; Qg suh that na1 + na2 + na3 = Q, we shall refer to theassoiate surfae (S; ) as X(na1; na2; na3) .



576.4 Aurell-Itzykson Surfaes With In�nitely Generated Veeh GroupIn this setion, we use tehniques of Hubert and Shmidt to show that X(n; 2n; 7n)is in�nitely generated. Note that the surfae X(1; 2; 7) an be realized as the union of twopentagons and a deagon with appropriate sides identi�ed, as illustrated in Figure 6.1.In [17℄, Ward alulates that (the images in PSL2(R) of) the matries� := 0� 1 ot �10 + ot �50 1 1A and � := 0� os �5 � sin �5sin �5 os �5 1Aform a generating set for the Veeh group of X(1; 2; 7) . The presene of � in the Veehgroup reets the fat that X(1; 2; 7) admits a \Dehn twist" along eah maximal vertialylinder whih �xes the boundaries of the ylinders. In Figure 6.1, the maximal ylinderontaining one of the pentagon enters P is shaded. By an argument involving Dehntwists, if the width of this ylinder is not rationally related to the distane from P to theleft edge of the enlosing ylinder, then P has in�nite orbit under the ation of � , andhene P is a nonperiodi point. Here, a quik appliation of trigonometry reveals that theratio of these two quantities isos 2�5 � os 4�5os 2�5 = 1� os 4�5os 2�5 = 1 + 14(p5 + 1)14(p5� 1) = 2 + 13p5: (6.1)Hene, the ratio is not rational and P is a nonperiodi point.Next we show that P is a rational point of X . A onsequene of the Veeh Di-hotomy is that the diretion � of any saddle onnetion on a Veeh surfae is the diretionof a deomposition of the surfae into ylinders with ommensurable moduli. The saddleonnetion must be on the boundary of one of the ylinders, and hene it will be �xedby an element of the Veeh group whih orresponds to a Dehn twist in the diretion � .Now onsider the horizontal geodesis on X(1; 2; 7); there is learly a horizontal saddle



58onnetion on X(1; 2; 7) whih runs through P and the enter of the other pentagon. Fur-thermore, beause of the 10-fold rotational symmetry of X(1; 2; 7), there must be at leastfour other saddle onnetions running through the pentagon enters. Therefore there areat least �ve unique paraboli elements of the Veeh group whih �x P ; we onlude thatP is a rational point on X(1; 2; 7) .

FIGURE 6.1: Horizontal (solid) and vertial (dotted) ylinders for X(1,2,7). A vertialylinder ontaining a pentagon enter is shaded.
Finally, we show that P is a onnetion point. The holonomy �eld of X(1; 2; 7) isQ(p5), so Lemma 6.2 implies that there exists an A 2 GL2(R) suh that A � X(1; 2; 7)is of strong holonomy type. Let �1; �2 2 SL(X(1; 2; 7)) be (derivatives of) Dehn twists indistint diretions suh that both twists �x P . Then A�1A�1 and A�2A�1 are elementsof SL(A � X(1; 2; 7)) whih �x A � P . Hene A � P is a rational point on A � X(1; 2; 7) .Thus, by Lemma 6.1, A �P is a onnetion point on A �X(1; 2; 7) . Sine A ats linearly onthe harts of X(1; 2; 7), its ation is a bijetion between the set of saddle onnetions onX(1; 2; 7) and the set of saddle onnetions on A �X(1; 2; 7) . Thus, P must be onnetionpoint on X(1; 2; 7) .We summarize this disussion in the following lemma:Lemma 6.4 Viewing X(1; 2; 7) as the union of two pentagons and a deagon with appro-



59priate edges identi�ed, as in Figure 6.1, the enters of the two pentagons are nonperiodionnetion points.Proposition 6.3 For eah integer n > 1, the surfae X(1; 2; 10n � 3) has an assoiatesurfae X(n; 2n; 7n) whih admits a rami�ed n-fold translation over of f : X(n; 2n; 7n)!X(1; 2; 7), and whih has an in�nitely generated Veeh group. The genus of eah X(n; 2n; 7n)isgn = 8<: 5n� 1 ; 3 - n5n� 2 ; 3jnProof. The triple (1; 2; 10n � 3) has, via multipliation by n modulo 10n, the assoiatetriple (n; 2n; 10n2 � 3n) = (n; 2n; 7n) . Therefore, by Proposition 6.2, the triangular bil-liards surfae X(1; 2; 10n�3) has an assoiate surfae X(n; 2n; 7n) whih admits a degreen translation over of X(1; 2; 7) . Sine X(1; 2; 10n � 3) and X(n; 2n; 7n) are translationsurfaes with the same underlying topologial spae, they have the same genus. Therefore,by Remark 2.1, the genus is5n+1�12(gd(1; 10n)+gd(2; 10n)+gd(10n�3; 10n) = 5n�12(1�gd(10n�3; 10n)),whih is either 5n � 2 or 5n � 1 depending on whether or not 3 divides n . We writeX(1; 2; 7) = (Y; �) and X(n; 2n; 7n) = (S; !) . Let f : X(n; 2n; 7n) ! X(1; 2; 7) be thetranslation over given in [1℄. Let p : X(1; 2; 7) ! C [f1g and p0 : X(n; 2n; 7n)! C [f1gbe the overs of the Riemann sphere guaranteed by the Aurell-Itzykson onstrution. Wehave that p0 = p Æ f . A onsequene of the onstrution is that p an only ramify atverties of the triangular billiards triangulations of X(1; 2; 7), and that p0 an only ramifyat f -preimages of these verties. But, if f rami�es above a point P 2 X(1; 2; 7), thensine p0 = p Æ f , p0 must ramify above p(P ); hene P must be a vertex of the billiardstriangulation of X(1; 2; 7) .Suppose n = 2 . Then applying the Riemann-Hurwitz formula to the translationover f : X(2; 4; 14) ! X(1; 2; 7), we have that 9 = 2(3) + 1 + R2 , where R is the total



60rami�ation number of f . Hene R = 4 . Sine the rami�ation number of f above asingle point of X(1; 2; 7) annot exeed n � 1, we see that f must ramify above all fourelements of the vertex lasses of X(1; 2; 7) . Thus, in partiular, f must ramify above theenters of the pentagons in the at diagram of X(1; 2; 7) in Figure 6.1.Now suppose n > 2 . The genus of X(n; 2n; 7n) is at least 5n � 2, so this time theRiemann-Hurwitz formula tells us that f has a total rami�ation number at least 4n� 6 .For n > 2, we thus have 4n� 6 > 2(n� 1), so again f must ramify above at least one ofthe pentagon enters.Ward shows in [17℄ that X(1; 2; 7) is a Veeh surfae. Sine X(1; 2; 7) is Veeh, andthe pentagon enters are nonperiodi onnetion points, it now follows from Corollary 6.2that PSL(X(n; 2n; 7n)) is in�nitely generated.



617 CONCLUSION
The guiding problem for Chapters 2 through 5 in this thesis was the lassi�ationof all translation overs between triangular billiards surfaes. We solved this problem byidentifying two types of data about suh surfaes: the �ngerprint of a point, whih isessentially loal data; and the holonomy �eld of a surfae, whih is a more global pieeof information. The �ngerprint was suÆient to omplete the smaller lassi�ation of allbalaned overs; uniqueness and invariane results suh as Lemma 3.2, Corollary 3.2 andProposition 3.1 were key there. We �nished the omplete lassi�ation by also onsideringthe holonomy �elds of surfaes.Hubert and Shmidt used the existene of a translation over f : X(3; 3; 4) !X(1; 1; 3) to prove that the Veeh group of X(3; 3; 4) is in�nitely generated; Theorem 4.1shows that suh overs are fairly rare.An obvious extension of this work would be to apply the same two tools to the on-sideration of translation overs among larger families of translation surfaes. For example,any rational polygonal billiards surfae possesses rotational symmetry with respet to anyvertex of its billiards triangulation; hene, the �ngerprints of suh vertex points will givenontrivial data about the surfaes involved. Note that the ardinalities of the angle setsmay be larger than two, unlike the triangular ase. Therefore ombinatorial argumentsalong the lines of this thesis would be more ompliated.Similarly, the alulation of the holonomy �eld of a billiards surfae of a rationalpolygon is more diÆult, in general, than the triangular ase, and yields more generiresults. Indeed, suh a �eld need not even be a number �eld; this is onneted to the fatthat suh surfaes need not be ompletely algebraially periodi.A slightly di�erent extension of this thesis would be to lassify all translation oversof triangular billiards surfaes. As we demonstrated in Chapter 6, rami�ed translation



62overs f : X ! Y in whih Y is a triangular billiards surfae but X is not an yieldexamples of interesting Veeh groups. It ould be interesting to know if the Aurell-Itzyksonsurfaes desribed in Chapter 6 give a speial subset of these overs.
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