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TRIANGULAR BILLIARDS SURFACES AND TRANSLATION
COVERS

1 INTRODUCTION

1.1 Some History

A billiards problem involves an enclosed planar region (“billiard table”) and a point
mass (“billiard ball”) moving within the region at unit speed. Collisions with the boundary
of the region result in the billiard ball changing direction, with the angle of reflection
equal to the angle of incidence. In this thesis we shall discuss surfaces which arise from
the particular case of billiards in a polygon whose interior angles are all rational multiples
of m. Treatments of such a dynamical system go back at least to G.D. Birkhoff in 1927
[2]. Fox and Kershner [5] describe a method of studying such a dynamical system by
constructing a flat surface tiled by a finite number of copies of the billiard table. We
describe this method in Section 2.1. Katok and Zemlyakov [12] furthered the discussion
by proving that most billiard paths are dense in most polygonal billiards systems. The
current interest in the field from the algebraic side stems largely from a paper of William
Veech in 1989 [15], which proved a relationship between uniform distribution of billiard
paths and affine symmetries of billiard surfaces (see Theorem 6.1). Since this discovery,
there has been a great deal of attention directed at the affine symmetry groups (often
called Veech groups) of flat surfaces. Vorobets [16], and independently Gutkin and Judge
[6], showed that if two surfaces are related by a certain cover called a balanced cover, then
the intersection of their Veech groups has finite index in each group. In a series of papers

including [8] and [9], Hubert and Schmidt have taken advantage of this work to construct
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surfaces with certain interesting Veech groups. The covers they use, called translation

covers, are a generalization of balanced covers.

1.2 Statement of the Main Problem

Results such as those listed at the end of Section 1.1 linking affine symmetry groups
with translation covers provide motivation for the classification of all possible translation
covers between elements of various sets of translation surfaces. In this thesis we determine
all translation covers among triangular billiards surfaces. It is well known (see Section
4.1) that a flat torus admits translation covers of arbitrarily high degree by choosing as
covering surfaces appropriate scalar multiples of itself, and that there are three rational
triangles which correspond to triangular billiards surfaces of genus 1. However, other
translation covers are rare; in fact, our main result is encapsulated in the following lemma

and theorem (relevant notation is reviewed in Section 2.1.1).

Lemma 4.1: Let a; and as be relatively prime positive integers, not both equal to one.
The right triangular billiards surface Y := X (a1 + ag,ay,a9) is related to two isosceles

triangular billiards surfaces

X (2a3,a1,a1) a; odd

X =
a, a
X(ag,?l,%) a, even
and
X (2a1,a9,as) as odd
Xy =
X (aq, 2 %) ay even



via balanced covers 1 : X1 =Y and fo: X9 =Y . The maps have degrees

2 a; odd
deg(f;) = . Furthermore, at least one of the f; has degree 2.

1 a; even

In fact these are all possible translation covers amongst triangular billiards surfaces,

as we assert in the following main theorem.

Theorem 4.1: Suppose f: X — Y is a translation cover of triangular billiards surfaces
of degree greater than 1. Then f is of degree 2, and is a composition of one or two of the

covers f; described in Lemma 4.1.

To prove Theorem 4.1, we use two main tools: the J-invariant of Kenyon and Smillie
[13], and what we call the fingerprint of a point P on a translation surface. The fingerprint
of P depends on the configuration of the shortest geodesics connecting P to singularities.
We show that every point on a triangular billiards surface which corresponds to a vertex
of the triangular billiard table has a fingerprint of one of two distinct types, which we call
Type I and Type IT (see Chapter 3 for definitions). We establish the following invariance

results:

Proposition 3.1:  Suppose the billiards triangulation of a triangular billiards surface
X contains a point with a Type II fingerprint. Then X is uniquely determined by that
fingerprint, up to an action of O(2,R) .

Lemma 3.2: Suppose that f : X — Y is a balanced translation cover, that P' € X

and P €Y are vertices of billiards triangulations on their respective surfaces, and that

f(P") = P. Then either:

1. P' and P have the same fingerprint, or
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2. their fingerprints differ only in the cone angle, P has half the cone angle of P', X
arises from billiards in an isosceles triangle, and P’ corresponds to the apex of that

triangle.

1.3 Organization of this Thesis

In Chapter 2 we review the rational billiards construction. We give some combina-
torial formulas for the construction as recorded in [1]. We define translation surfaces and

translation covers, and we discuss the J-invariant of Kenyon and Smillie.

In Chapter 3 we introduce the concept of the fingerprint of a point on a translation
surface. We give examples, and prove results about the fingerprints of certain points on

triangular billiards surfaces.

In Chapter 4, we identify all translation covers among triangular billiards surfaces.
In Section 4.1 we give the complete list of possible covers as Lemma 4.1; the remainder
of the chapter is devoted to proving that no other covers exist. We first prove the result
for balanced covers in Section 4.2, using the fingerprint as the primary tool. Then, using
the J-invariant and holonomy field of Kenyon and Smillie, we prove Theorem 4.1 for all

translation covers in Section 4.5.

Chapter 5 is devoted to an alternate proof of a result of Calta and Smillie concern-
ing the J-invariant of a triangular billiards surface. In Chapter 6, we demonstrate an
application of translation covers to the problem of identifying infinitely generated Veech
groups. Finally, in Chapter 7, we give a conclusion and discuss future extensions of this

thesis.



2 MATHEMATICAL BACKGROUND

2.1 The Rational Billiards Construction

Let R be a polygonal region whose interior angles are rational multiples of 7. Let
Dy be the dihedral group of order 2¢) generated by Euclidean reflections in the sides
of R. Suppose a particle moves within this region at constant speed and with initial
direction vector v, changing directions only when it reflects off the sides of R, with the
angle of incidence equaling the angle of reflection. Every subsequent direction vector for
the particle is of the form d - v, where - indicates the left action of an element of Dyg on

an element of R? .

The rational billiards construction consists of a compact surface corresponding to
this physical system. Consider the set Dy - R of 2Q) copies of R transformed by the
elements of Dy . For each edge e of R, we consider the corresponding element p, € Dag
which represents reflection across e. For each 0 € Dy, we glue p.d - R and 0 - R together
along their copies of e. The result is a closed Riemann surface with flat structure induced
by the tiling by 2@Q copies of R. See Figures 2.1-2.4. This construction is described in
detail in [12] and [16].

In this thesis we focus on billiards in a rational-angled triangle. We shall term
the surface X resulting from the construction above a triangular billiards surface. 1f the
billiard table is a right or isosceles triangle, we call X a right triangular billiards surface

or isosceles triangular billiards surface, respectively.

The reflection rule for the billiards dynamical system is not well defined if the point
of incidence does not admit a unique tangent line. Occasionally such a difficulty can be
resolved by a continuous extension of the dynamical system. In particular, in the case of

polygonal billiards, tangents are undefined precisely at vertices of the enclosing polygon,
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and collisions at such vertices can be resolved if and only if the internal angle is of the

e
form — for some integer ¢. As detailed in Remark 2.1.2, if a vertex does not have internal
q

angle of the form z, then it corresponds to points on the billiards surface which are conical
singularities, whic% in this setting are points about which the total angle is 2mmn for some
integer m > 1. In this thesis we refer to conical singularities of billiards surfaces simply as
singular points or singularities, and any point which is not a conical singularity is called

a nonsingular point.

2.1.1 Elementary Combinatorics

For a given rational-angled triangle T', we can write the angles of T' as %, %,
and %, where a1,a9,a3,Q € N and ged(aq,a2,a3) = 1. With this notation, we also
write T' = T'(ay,as,a3). We refer to the billiards surface X corresponding to billiards
in T(ay,a92,a3) as X = X(ay,a9,a3). Note that the area and direction of X (ay, a9, as3)

depend on the area and direction of T'(ay, a9, a3); hence this notation is only well-defined

up to an action of O(2, R) .

Since a triangular billiards surface X is constructed from copies of T, the surface
X admits a natural triangulation by these copies. Given a triangular billiards surface
X = X(a1,a9,a3), there is a natural projection map 7x : X — T induced by the billiards

triangulation of X by 7". This motivates the following definition.

a;T
Q 2

call the three sets 71';(1(’[)1‘) the vertex classes of X . Note that all elements of a given vertex

Definition 2.1 Labeling the vertices of T'(ay,as,a3) as vi,ve,v3, where Lv; = we

class have the same cone angle. Hence we call a vertezx class singular if all elements are

singular and nonsingular otherwise.

Remark 2.1 As detailed in [1], we have the following formulae concerning X (ay,as,as) .

1. The set 7y (v;) has cardinality ged(ai, Q) .



a;

ng(ai,Q)> o

1 1
3. The genus of X (a1,as,a3) is §Q+ 1- §chd(ai,Q).

2. Each element of w;(l (v;) has cone angle <

Two immediate consequences of these formulae are that a vertex class ﬁ;(l(vi) 18 singular
if and only if a; t Q, and that the sum of the cone angles of the elements of 71';(] (v;) is

2a;T .
2.1.2 Examples

As a first example, consider the surface X (1,1,2) generated by an isosceles right
triangle. Here Q = 4, and the 2Q) = 8 copies of T'(1,1,2) glue together to form a square

torus (see Figure 2.1).

3 4

FIGURE 2.1: X(1,1,2) is a square torus.

Next consider the surface X (1,1,1). Here the equilateral triangle 7'(1, 1, 1) unfolds
to the hexagonal torus. In fact T'(1, 2, 3) also unfolds to the hexagonal torus; this is related

to the fact that T'(1,2,3) tiles T'(1,1,1) via a single flip. See Figure 2.2. We discuss this
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phenomenon in more detail in Section 4.1. It is a consequence of the third part of Remark

2.1 that these are the only genus 1 triangular billiards surfaces.

2

FIGURE 2.2: X(1,1,1) and X(1,2,3) (see dotted lines) are hexagonal tori.

The surface X (1,1, 3) has genus two. See Figure 2.3.

Unfolding Process

N

FIGURE 2.3: T(1,1,3) “unfolding” to X(1,1,3).

Another interesting example is the genus 3 surface X (1,2,4), which is a flat repre-

sentation of Klein’s famous quartic curve; see [11] for a detailed exposition of this fact.

The previous examples can all be constructed by taking a single star-shaped poly-
gon whose center corresponds to a vertex of the triangular billiard table and identifying

appropriate edges; however in general a triangular billiards surface may have too many
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singularities for this. For example, X (8,25,27) has three singular vertex classes, and each
vertex class has cardinality greater than one. See Figure 2.4 for a diagram of X (4,7,9),

which can be realized as a union of four stars with appropriate edges identified.

2.1.3 The Dihedral Group and the Flat Geometry

In this section we show that the flat structure of X (a1, a9, a3) is strongly related to
D> by using the dihedral group to place an upper bound on the distance between any

two points of X (ay,as9,as).

Let T be a rational-angled triangle, and let r; be the reflection in the edge e; of
T for 1 = 1,2,3. Together the r; generate the dihedral group Dyq. Define a generalized
star polygon to be the translation surface (with boundary) obtained from (rq,ry) - T by

identifying 7;0 - e; with 0 - e; for each § € (ry,r9) and each i € {1,2}.

Proposition 2.1 Let T = T'(a1,a9,a3), and let X = X(a1,a9,a3). Let v be a vertex of
T, and write 71';(1(’[)) = {Py, Pr,....,P,_1}. The surface X admits a decomposition into
generalized star polygons Sy, S, ..., Sn—1 such that each S; has center P;. Furthermore, it
is possible to color each of the 2Q) triangles in Dog - T in such a way that the following

properties hold:

1. Each triangle is colored either black or white.
2. FEach black triangle shares an edge with three white triangles, and vice versa.

3. Each black triangle of S; shares an edge with a white triangle of S;11, where indices

are calculated modulo n.

Proof. Let ry, ro, and r3 be the reflections across the sides of 7', and let Dyg be the
dihedral group (ry,r9,7r3). By construction, X can be viewed as the quotient of the set

Dygy - T by the relation R of identifying appropriate edges.
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Let v be an endpoint of 1" such that the reflections across the edges incident on

v are r1 and ro. Let n be the cardinality of the vertex class m !(v), with elements
Py, P,..,P, 1. Let Id-T have Py as a vertex. Developing around P, gives the set
So := ({(r1,7m2) - T)/R, which is a generalized star polygon; in fact, if Py is nonsingular,
then Sy is a star-shaped polygon with center Py (see Figure 2.4). We have that Sy is the
union of the two sets ((rirg) - 7')/R (which we color black) and ((rire)r - T)/R (which
we color white). If n > 1, then Sy is not all of X and the action of r3 takes elements of

Sp outside of Sy. Let S; := ({ry,r2)(r17r3)" - T)/R; again, in Figure 2.4, we have colored

So S,

RAY ‘

T

FIGURE 2.4: X(4,7,9) as a union of stars. Note, for example, that in Dy, we have
ro = r3(r173)? , accounting for identification 4.

—

7|

S, Y

%

4

A
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((ri72)(r173)" - T)/R black and ({r1r)(r17r3)'ry - T)/R white. We choose a labeling for
Py, Py, ..., P,_1 so that each S; is realized by development about F;. The result is that
each black triangle of S; shares an edge with a white triangle of S;;1, where 7 + 1 is

calculated modulon. m

Proposition 2.1 has an interesting consequence for the shortest paths between points

in X.

Corollary 2.1 Let T be a rational triangle, with longest side length L and shortest side
length 1. Let X be the triangular billiards surface generated by T . For any two points
xz,y € X, define A(z,y) to be the length of the shortest path connecting x and y. Then
maxy yex{A(z,y)} <2L+1.

Proof. Using the notation of Proposition 2.1, let Cy and C3 be the two vertex classes of
X which do not project to v. Any element of Cy|JC3 must be on the boundary of one
of the S;; but Proposition 2.1 implies that in fact any element of C5 | J C3 must be on the

boundary of each S;.

Now choose the vertex v so that the shortest edge of T' is incident on v . Let Cy be
the vertex class corresponding to the other endpoint of the shortest edge of T'. Let z and
y be any two points on X . There exist integers ¢ and j so that z € S; and y € S;. The
shortest geodesic segment within S; connecting x to to some point A € C5 has length at
most L. Since A is on the boundary of all the S;, there is a geodesic segment of length
I connecting A to P;. Finally, the segment within S; connecting P; to y has length at
most L. The union of these three segments is a path connecting = and y; the length of

this path is at most 2L +1. m
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2.2 Translation Structure

2.2.1 Translation Surfaces

Billiards surfaces are instances of a more general class of surfaces known as transla-

tion surfaces.

Definition 2.2 Let S be a topological surface, and let Py, ..., P, be a finite subset of S .
Let S' be the submanifold of S obtained by deleting the points Py, ..., P, . If all transi-
tion functions of S' are restrictions of Euclidean translations of R%, then we call S a

translation surface.

Given a finite set of disjoint polygons P, P, ..., P, in the plane, with the property
that each edge e can be associated with a unique parallel edge €' # e of the same length,
we obtain a translation surface by gluing associated edges via translations as long as the
gluing gives a consistent orientation. See, for example, [7]. In fact, it is well known that,
up to addition or removal of removable singularities, any compact translation surface can

be constructed in such a way.

A second construction of a translation surface is as follows: let S be a Riemann
surface, and let w be a holomorphic 1-form defined on S'. For each point z € S, we define
coordinates on a neighborhood of x via the map y +— fé’w The maximal atlas of such

charts defines a translation surface which we denote by (S,w) .

As an example of the translation structure of a triangular billiards surface, consider
X (1,1,3) . Figure 2.5 demonstrates an application of transition functions which are local
translations. Translation structure is invariant under the operation of cutting, translating,
and pasting in local coordinates as long as identifications are preserved; thus we can
visualize X (1,1,3) as a five-pointed star, or as a union of pentagons, or as a union of two

vertical cylinders, each with appropriate side identifications.
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Local Transktions

—

Oylinder Decomposition } 4
SN s'
/

FIGURE 2.5: X(1,1,3) is a translation surface.

2.2.2 Translation Covers

The natural map between translation surfaces is one which respects this translation

structure. First we recall the definition of a ramified cover of Riemann surfaces.

Definition 2.3 Let f : X — Y be a holomorphic mapping between compact Riemann
surfaces X and Y. For each point x € X, there exist local coordinates on X and Y which
vanish at x and f(x) respectively, and such that in those coordinates, f has the form
z > 2™ for some integer my. If my > 1 then we say that f is ramified at z, that f
is ramified above f(x), and that the ramification number of f at = is m, — 1. For each
point y € Y, we define the ramification number of f above y to be Zzef,l(y) (mg —1).
We define the total ramification number of f to be the sum of the ramification numbers

of [ above each point y € Y.
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Any holomorphic mapping f : X — Y between compact Riemann surfaces ramifies

at and above at most finitely many points; hence total ramification number is well-defined.

Any ramified cover f: X — Y has the property that there exists an integer n such
that, if f does not ramify above y € Y, then f !(y) has cardinality n. We say that f
has degree m, or simply write deg f = n. If f does ramify above a point y € Y with

ramification number 7, then f~!(y) has cardinality n — 7.

An important result about ramified maps between Riemann surfaces is the Riemann-

Hurwitz formula:

Theorem 2.1 (Riemann-Hurwitz Formula) Let f : X — Y be a ramified map of degree
n between Riemann surfaces X and Y . Let gx and gy denote the genera of X and Y,

respectively. Let the total ramification number of f be R. Then

R
gx =nlgy = 1) +1+ 3. (2.1)

An excellent text for the theory of Riemann surfaces is [4].

Now we define a natural map between translation surfaces.

Definition 2.4 A translation cover is a holomorphic (possibly ramified) cover of trans-
lation surfaces f : X — Y such that, for each pair of coordinate maps ¢x and ¢y on X
and Y, respectively, the map ¢y o f o q’);(l 18 a translation when ¢x and ¢y are restricted
to open sets not containing singular points. We say that f is balanced if f does not map

singular points to nonsingular points.

If f: X — Y is a translation cover which ramifies at a point P’ € X above a point
P €Y, then for some integer m > 1 we have that f is locally of the form z — 2z'/™,
and hence the cone angle at P’ is m times the cone angle at P. Therefore the set of

f-preimages of singularities of Y are singularities of X . But it may be that f ramifies

above a nonsingular point; in this case f is not balanced.
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Definition 2.5 We say that X and Y are translation equivalent if there exists a degree

one translation cover f: X — Y .

The following lemma shows how we will use Remark 2.1 to analyze translation

covers.

Lemma 2.1 Suppose f : X(ay,a9,a3) — X(b1,bo,b3) is a translation cover of triangu-
lar billiards surfaces. Let mx : X(a1,a9,a3) — T(ay,a2,a3) and wy : X(by,bo,b3) —
T'(b1,bo,b3) be the canonical projections to triangles with vertices vq,ve,v3 and wy, wy, w3
respectively. Suppose that P € w;l(wi), P e W;(l (vj), and f(P') = P with a ramification
index of m at P'. Then

’I’I’Lbl aj

ged(bi, by + bo + b3) ged(aj, a1 +ag +ag)

Proof. The cone angle at P’ is m times the cone angle at P. Therefore the result follows

from the second part of Remark 2.1. m

As noted in Section 2.1.1, the translation structure of X (ay,a9,a3) depends on the
chosen area and direction of T'(a,a9,a3). Suppose that (S,w) is a triangular billiards
surface arising from billiards in some T'(aq, as, a3), and that « is a nonzero complex num-
ber. The notation X (ai,as,a3) does not distinguish the pairs (S,w) and (S, aw). The
following lemma shows that this ambiguity will not affect our classification of translation

covers.

Lemma 2.2 Suppose that (S,w) is a triangular billiards surface of genus greater than

one, and let o« € C\{0} . Then any translation cover f : (S,w) — (S, aw) is of degree 1.

Proof. This is a simple application of the Riemann-Hurwitz formula. Let (S,w) have

genus g, and let deg f = n. The 1-form w which gives (S,w) its translation structure
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has 2g — 2 zeros (counting multiplicities). Clearly aw has the same zeros as w. The
Riemann-Hurwitz formula then gives us that

R
g:n(g—l)—i-l—l—E, (2.2)

where R is the total ramification number of f. Since R > 0, Equation (2.2) is only

satisfiedif n =1. m

As a result of this lemma, we shall use the notation X (ai,a2,as3) to refer to any
element of the set {(S, aw) : @ € C\{0}}, where (S, @) is a triangular billiards surface aris-
ing from billiards in some T'(aq, as, a3) . Note that multiplying the 1-form of a translation
surface by a nonzero complex number is equivalent to post-composing each coordinate

chart of (S, ) by the standard linear action of an element of O(2,R) .

2.3 The J-invariant and Holonomy Fields

In [13], Kenyon and Smillie introduce an important property of translation surfaces,

called the J-invariant.

Definition 2.6 Let P be a polygon in the plane. Let wy,ws, ..., w, be the vertices of P .
The J-invariant of P is the element of R Ag R? given by J(P) := w1 A wy + wa A ws +

e w1 ANwy, +wy A wy .

We write R? Ag R? to indicate the exterior product of two copies of R? viewed as

Q-modules.

It is easily shown that the J-invariant of a polygon is invariant under translations of
the polygon, and that it is a “scissors invariant” in the sense that cut-and-paste operations

do not affect its J-invariant. Furthermore, it is well known that any compact translation
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surface can be constructed by identifying parallel edges of a finite set of polygons in the

plane. For these reasons the definition naturally extends to translation surfaces.

Definition 2.7 Let X be a compact translation surface. Let {Py, ..., P,} be a collection of

planar polygons such that appropriate identification of sides yields the surface X . Then
the J-invariant of X is J(X) := Y1 | J(P;).

Example 2.1 Suppose that X = X (1,1,2) is scaled so that the copies of T(1,1,2) in the
billiards triangulation of X have lengths 1,1, and /2. Then X can be realized as a square
of side length 2 with opposite sides identified. We can assume that the lower lefthand
corner of the square lies at the origin. Then the J-invariant of X is

(0,0) A (2,0)4+(2,0) A (2,2)+(2,2) A(0,2) +(0,2) A(0,0) = (2,0) A (2,2)+(2,2) A (0,2) =
41, -1) A (1,1).

Example 2.2 Suppose that X = X(1,1,3). Then

Jx) =5, <COS 2%km 2k7r> sin(37r/5)< 2kt D (2k—|—1)7r>'

5 "1 Tg sin(7/5) 5 0T 5

The following lemma, which is presumably well-known, demonstrates the relevance

of the J-invariant to the study of translation covers.

Lemma 2.3 Let f: X — Y be a degree n translation cover of translation surfaces. Then

J(X) = nJ(Y).

Proof. We can triangulate Y by Euclidean triangles in such a way that the branch points
of f are among the vertices of the triangulation. Let Y’ be the set of triangles obtained
by cutting open Y along all the edges of our triangulation. Lifting our triangulation to X

via f, we let X’ be the corresponding decomposition of X . Since J is a scissors invariant,
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we have J(Y) = J(Y') and J(X) = J(X'). Furthermore, since each triangle in Y lifts to
n identical copies in X', we have that J(X') = nJ(Y'). Thus J(X) = J(X') =nJ(Y') =
nJ(Y). m

Translation structure gives us a canonical way to associate an element of C to each
element of the first homology group H;(X). Because it will be advantageous to view the
image of H;(X) in C as a vector space over Q, we use coefficients in Q for H;(X) in the

following definition.

Definition 2.8 The rational absolute holonomy of a translation surface X is the image
of the map hol : Hy(X;Q) — C defined by hol : o — fa_ w, where w is the 1-form which

endows X with a flat structure, as described in Section 2.2.1.

Now we define a property of translation surfaces which will be useful in classifying

triangular billiards surfaces. This definition is due to Kenyon and Smillie [13].

Definition 2.9 The holonomy field of a translation surface X, denoted kx , is the smallest
field kx such that the absolute holonomy of X 1is contained in a two-dimensional vector

space over kx .

Example 2.3 Consider X = X(1,1,2), scaled so that it is a unit square with opposite
sides identified. The absolute holonomy of Hy(X), as a vector space over Q, is generated

by 1 and ©. Hence the holonomy field of X is Q.

Example 2.4 Consider X = X(1,1,3) The surface X can be scaled so that generators
for the absolute holonomy of X over Q are 1,(5,(?, (3, where (5 = em)/5 - Thus the
holonomy field of X properly contains Q. In fact these four elements generate a two-
dimensional vector space over Q(v/5) . Since Q(v/'5) is a degree 2 extension of Q there can
be no intermediate fields; therefore the holonomy field of X is Q(v/5) .
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Calta and Smillie [3] discuss the algebraically periodic directions of a translation
surface, which they define to be those directions in which a certain projection of the

J-invariant is zero.

Definition 2.10 Fiz coordinates for a compact translation surface S such that 0, 1, and
oo are all slopes of algebraically periodic directions. The periodic direction field of S is

the collection of slopes of algebraically periodic directions in this coordinate system.

It is shown in [3] that this definition is well-defined, and that the periodic direction
field is a number field whose degree is bounded by the genus of S. The following lemma

relies on the results of Kenyon and Smillie [13] and Calta and Smillie [3].

Lemma 2.4 Let f : X(a1,a9,a3) — Y be a degree n translation cover. Write QQ :=
ai+az+ag. Then X andY have the same holonomy field k, and k = Q((g +C§1), where

Co 18 a primitive Q™ root of unity.

Proof. By Lemma 2.3, J(X) = nJ(Y). Assume that Y has area 1; thus X has area
n. Let X' be the surface of area 1 obtained by uniformly scaling X . We have that
J(X') = %J(X) = J(Y). Since uniformly scaling a surface clearly does not affect its
periodic direction field, X and X' have the same periodic direction field. Calta and
Smillie note that their work in Section 6 of [3] implies that the periodic direction field of
a surface depends only on the J-invariant of that surface; hence X’ and Y have the same
periodic direction field. Thus X and Y have the same periodic direction field. Corollary
5.21 of [3] states that a translation surface is completely algebraically periodic if and only
if its holonomy field equals its periodic direction field. Furthermore, Theorem 1.4 of [3]
states that triangular billiards surfaces are algebraically periodic. Therefore X and Y
have the same holonomy field. Finally, Kenyon and Smillie [13] calculate this holonomy

field to be k = Q((g +¢,'). =
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The proof of the algebraic periodicity of triangular billiards surfaces in [3] contains
a small error which could be corrected by applying a normalization outlined in [13]. We

also offer a different proof of this result in Chapter 5, where it is listed as Theorem 5.3.
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3 THE FINGERPRINT

3.0.1 Definition and Properties

Consider a point P on a translation surface X, along with the set S of all shortest
geodesic segments on X which connect P to a singularity. Let s; and s9 be two of these
segments. We say that s; and sy are adjacent if s; can be rotated continuously about P

onto so without first coinciding with any other elements of S'.

Definition 3.1 A fingerprint of a point P € 7 is the data {{0;}, ¢, L}, where {0;} contains
the distinct angle measures separating adjacent shortest geodesic segments connecting P
to singularities, ¢ is the total cone angle at P, and L is the length of each of the shortest
geodesic segments. We say that P has a Type 1 fingerprint if {0;} has one element, and
that P has a Type II fingerprint if {6;} has two elements. We call {6;} the angle set of a

fingerprint.

FIGURE 3.1: Parts of a Type I fingerprint (left) and a Type II fingerprint (right).

Note that the angle set (and hence the fingerprint type) of the fingerprint of a point

P € X is invariant under the scaling of the flat structure of X by a nonzero complex
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N
5
A

FIGURE 3.2: Type I fingerprints arising from isosceles triangles .

number. Each triangular billiards surface has rotational symmetry about the vertices of
its billiards triangulation; this fact places a strong restriction on the angle sets of the

fingerprints of vertices. The following lemma illustrates this.

Lemma 3.1 Let X be a surface of genus greater than one, arising from billiards in a
rational triangle T . Fix a billiards triangulation T of X by T'x . Let P be a vertex of 7.
Let s be a shortest geodesic segment connecting P to a singularity of X . Then either s is

an edge of T, or else s is perpendicularly bisected by an edge of T .

Proof. Let X, T'x, s, P and 7 be as above. Let mx : X — T be the natural projection

induced by 7.

Since singularities in the translation structure of X can only occur at vertices of
7, we only examine geodesics connecting vertices of 7. This is equivalent to considering
billiard paths between corners of the triangular billiard table T'x in the original dynamical

system.

Let v = x (P); since P is a vertex of 7, v is a corner of T'x . The shortest billiard
path within Tx from v to a different corner w of T' cannot be as short as the table edge
connecting v and w. This proves the claim if s connects P to a singularity which is not

. —1
in the vertex class my (v).
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Now suppose that s connects P to a singularity in W;(l(v) . Then s corresponds to
a billiard path from v back to itself. If both of the other two corners of T’y are acute,
then the shortest billiard path from v to itself is accomplished via a single reflection by
choosing the initial direction to be perpendicular to the side opposite v; hence here an
edge of 7 bisects s. If one of the two other corners w is obtuse, then w;(l (w) must be
a singular vertex class. But the distance from v to an obtuse corner of T’y is less than
twice the distance from v to the opposite side of T’y . Thus if w is obtuse then there is a
geodesic segment s’ in X connecting an element of 7' (v) to a singular element of 7' (w)

such that s’ is shorter than s; this is a contradiction. m

Lemma 3.1 allows us to relate fingerprints of points on X to the angle measures of
vertices of T'x . We summarize these relations in the following Corollary; see Figures 3.1

and 3.2 for illustrations.

Corollary 3.1 Let 7 be a billiards triangulation of a triangular billiards surface X . For
a given point P € T, let v be the projection of P onto the triangle T generating X . Then

one of three situations exists:

1) P has a Type I fingerprint with angle set {6}, and § = Zv.
This occurs if and only if T is isosceles and v is the apex of T .
2) P has a Type I fingerprint with angle set {6}, and § = 2Zv.

This occurs if P has a Type I fingerprint and v is not the apex of an isosceles

triangle.

3) P has a Type II fingerprint with angle set {61,602}, and 6; + 6y = 2/v.

Proposition 3.1 Suppose X is a triangular billiards surface with a point P of Type I
fingerprint. Then X is uniquely determined by that fingerprint, up to an action of O(2,R) .
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Proof. The proof is evident from Figure 3.0.1, which illustrates the fingerprint of the
singularity on X (3,4,5) (since X (3,4,5) is not isosceles and has only one singularity P,

it follows that P has a Type II fingerprint. In the figure, the geodesics defining the

/o

FIGURE 3.3: Part of a Type II fingerprint on X(3,4,5)

fingerprint are the thicker lines, whereas the edges of the billiards triangulation are the

thinner lines.) Let the angle set be {61,605} . Each 6; is an interior angle of a quadrilateral

whose other three angles include two right angles and an angle which has twice the measure

of an angle of the triangular billiard table T' for X . Therefore two of the angles of 7" have
T m T —0; 0, + 0,

1
the form 5(277 ————— 0;) = 5 and the third angle is

geodesics defining the fingerprint of P determines the scaling of T'. Thus 7' (and hence

. The length of the

X) is uniquely identified, up to an action of O(2,R). m

Lemma 3.2 Suppose that f : X — Y is a balanced translation cover, that P' € X

and P € Y are vertices of billiards triangulations on their respective surfaces, and that

f(P") = P. Then either:

1. P' and P have the same fingerprint, or
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2. their fingerprints differ only in the cone angle, P has half the cone angle of P', X
arises from billiards in an isosceles triangle, and P’ corresponds to the apex of that

triangle.

Proof. Let d be the length of a shortest geodesic which connects P to a singularity. Let
B C Y be the set of points of distance less than d from P. Let B’ C X be the maximal
connected component of f~!(B) which contains P’. Since f is a balanced translation
cover, B’ consists of all points of distance less than d from P’, and B’ contains no singu-
larities other than possibly P’ (P’ is singular if and only if P is singular). We have that

f is locally an m-to-one cover at P for some integer m .

BI

P P

FIGURE 3.4: A balanced cover ramified above P. Here, m = 2.

Now consider a pair of adjacent geodesics e; and es, each of length d, connecting P
to singularities. Label the angle between them 6. The union of these two edges with a

portion of the boundary of B bounds a wedge-shaped region W which contains singularities
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only at the endpoints of e; and ey (see Figure 3.4). Since f is a translation cover, the
f-preimage of W is m copies of W, each of which is bounded by part of the boundary
of B" and two shortest geodesics €] and €}, of length d connecting P’ to singularities of
X . The interior angle measure between €} and ¢}, is #. Because f is balanced, we know
that €] and ¢!, are adjacent; otherwise, the wedge they bound would have a geodesic ¢’
in its interior such that f(€') lies in the interior of W and connects P to a singularity,
a contradiction to the adjacency of e; and ey. Therefore we have established that the

fingerprints of P and P’ have the same angle sets.

Because f is a translation cover, the cone angle at P’ is m times the cone angle at P .
We claim that m < 2. Let v and v’ be the vertices of the triangles T and T" corresponding
to P and P'. By Remark 2.1, the cone angle at P is completely determined by Zv. But
Corollary 3.1 tells us that Zv is determined, up to a factor of 2, by the angle set of the
fingerprint of P. Hence, since the fingerprints of P and P’ have the same angle set, we

see that m € {1,2}, and our claim is proven.

Furthermore, note that if m = 2, then since the cone angle at P’ is greater than the
cone angle at P and cone angle is completely determined by the corresponding vertex of
the triangular billiard table, Corollary 3.1 implies that T’y is isosceles and v’ is the apex

Ofo. ]

Corollary 3.2 Fingerprint type is invariant under balanced translation covers.

Corollary 3.3 Any rational triangular billiards surface with a Type II singularity cannot

be a part of any composition of nontrivial balanced covers.

Proof. This follows directly from Proposition 3.1. Suppose we have f : X — Y a balanced
cover with either X or Y possessing a singularity with a Type II fingerprint. By Corollary
3.2, X and Y must both have singularities with Type II fingerprints. Since a Type II
fingerprint identifies the triangular billiards table of a surface, X and Y must be the same

surface. ®m



27

3.0.2 Examples

Example 3.1 The surface X = X(1,1,3) has exactly one singularity P. Thus all geo-
desics connecting P to a singularity connect P to itself. By Lemma 3.1, the shortest such
geodesics must be those which correspond to a billiard path with a single reflection. The

3m
angle between any two such adjacent shortest geodesics is 5 Thus P has fingerprint

3
{{g}, 6w, L}, where the length L depends on the scaling of X . Let R be the only element
of one of the nonsingular vertex classes of X . The shortest geodesics connecting R to P
are edges of the billiards triangulation of X by T'(1,1,3) . Then the angle between any two

such geodesics which are adjacent is il
Next we give an example of a surface with both Type I and Type II fingerprints.

Example 3.2 Consider the surface X = X (1,2,12). Let T be the billiards triangulation

2
of X . Label the vertices of T = T(1,2,12) as vy,vy,vs such that Zvy = %, Ly = %,
12
and /vy = 1—; The wvertex class corresponding to vy is nonsingular and has a single

element Py . The vertex class corresponding to vy is singular and has a single element Py
of cone angle 4w . The vertex class corresponding to vg is singular and has three elements
P3, P}, P{; each of these points has cone angle 8w . The shortest geodesics connecting Py
to singularities are those which connect Py to Ps3, Pi, and Pj wvia edges of 7. So P
has a Type I fingerprint {{%},QW,L}. Similarly, the shortest geodesics connecting Py to

singularities are those which connect Py to P3, Pj§, and PY wvia edges of 7. So Py has
sin(m/15)
sin(2m/15)
Sines). Finally, the shortest geodesics connecting Ps to elements of its own vertex class

a Type I fingerprint {{g},47r, L} (the length can be calculated by the Law of

are via a single reflection and are shorter than the shortest geodesics connecting Py to Ps;

117 13
hence Ps has Type II fingerprint {{1—;, 1—;},87r,28in(7r/15)L}. The calculation of the

angle set of a Type Il fingerprint is given in Proposition 3.1 .

Definition 3.2 A saddle connection on a translation surface is a geodesic with singular
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FIGURE 3.5: Fingerprints on X(1,2,12).

endpoints and no singularities in its interior.

As we shall see, the preceding results allow us to quickly classify all balanced cov-
ers in the category of triangular billiards surfaces. However, to extend our results to

unbalanced covers, we shall refine our use of the fingerprint with the following lemma.

Lemma 3.3 Let X be a triangular billiards surface with more than one singular vertex

class. Let X be the surface obtained from X by puncturing either one entire singular vertex

class or two entire singular vertex classes such that neither deleted class corresponds to

an obtuse angle of the triangular billiard table and such that at least one singular vertex

class remains. Let my' (v;) be a singular vertex class not deleted. Let P € my'(v;). If P

has Type II fingerprint on X with angle set {61,605}, then X arises from billiards in the
T—07 m™— 0y 01 + 6,

and . If P has a Type I fingerprint on X with

triangle with l
riangle with angles 5 T g 5
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0
angle set {01}, then Zv; € {61, El} .

Proof. If none of the punctured points are endpoints of shortest geodesics connecting P

to singularities, then P has the same fingerprint on X as on X, and we are done.

Suppose a singular vertex class has been punctured which contained endpoints of
shortest separatrices through P. Then there is a new “closest” vertex class to P; call it
C. If C does not contain P then the shortest geodesics connecting P to C' are edges of the
billiards triangulation of X . If C does contain P then, since a vertex class corresponding
to an obtuse angle of the billiard table must be singular (by Remark 2.1) and we have
assumed that no such classes have been deleted, it follows that the shortest geodesics from
P to C correspond to a single reflection in the original dynamical system. Thus the same

reasoning holds as in Lemma 3.1.

The only potential difficulty would be if the new “closest” vertex class was the one
containing P, for in that case, since the shortest geodesics from P to elements of its own
class pass through more than one triangle, we must consider the possibility that our punc-
tures obstruct these geodesics. However, since the shortest geodesics are perpendicular to
the sides of the triangles opposite P, this is only a problem if the vertex class punctured

e
is my! (v;) with Zv; = 3 But such a class is nonsingular. m
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4 IDENTIFYING ALL TRANSLATION COVERS

4.1 The Possible Covers

Any isosceles triangle is naturally “tiled by flips” by a right triangle. The following
lemma demonstrates how to use this tiling to create nontrivial translation covers in the
category of triangular billiards surfaces. In fact, our main theorem is that the covers of

Lemma 4.1 are the only nontrivial translation covers among triangular billiards surfaces.

Lemma 4.1 Let ay and as be relatively prime positive integers, not both equal to one.
The right triangular billiards surface Y := X (a1 + a9, a1, a9) is related to two isosceles

triangular billiards surfaces

X (2a9,a1,a1) a1 odd

X =

X (a9, a;,%) a, even
and

X (2a1, a9, as) ay odd
X9 =

X (a1, a22’ %) ay even

via balanced covers fi : X1 =Y and fo: X9 — Y . The maps have degrees

2 a; odd
deg(f;) = . Furthermore, at least one of the f; has degree 2.

1 a; even
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Proof. It suffices to prove the result for X; and f;. Write Q := 2a1 + 2as. We reflect
the triangle T' = T'(a1 + a9, a1, a2) across the edge connecting the ay and a; + as vertices,
to obtain its mirror image 7" . By joining T and 7" along the edge of reflection we create
an isosceles triangle 7' which can be written as either T'(2ag,a1,a1) (if a; is odd) or
T (aq, %, %) (if aq is even). Note that since (a1 + a9, a1, a9) must be a reduced triple, a;
and ay cannot both be even. It also follows that ged(a;, Q) < ged(2a,,Q) = 2.

Suppose a; is even. Consider the translation surface S (with boundary) obtained
by developing T" around its ag vertex. Since as is odd we have ged(ag, Q) = 1, so S is tiled
(by reflection) by 2Q) copies of T', and hence after appropriate identifications along the
boundary we will have X (a1 + as,a1,as). Let S be the surface obtained by developing T
around the corresponding vertex; it is tiled via reflection by @ copies of T, S0 appropriate
boundary identifications will yield ¥; . Because T is tiled via reflection by two copies of

T, it follows that S and S are translation equivalent. Finally, note that the boundary

identifications are the same for S and S. Therefore Y and X are translation equivalent.

Now suppose that a; is odd and as is even. We then have T = T(2a9,a1,a1) .
Since ged(2ag, Q) = 2, we again have that S is tiled by Q copies of T'. Since as is even,
ged(ag, @) = 2, implying that S is tiled by @) copies of T'. Thus if ay is even then there
exists a degree two cover f : S — S, ramified over a single point. Furthermore, in this
case X1 and Y are obtained by identifying appropriate edges of two copies of S and S,
respectively. It follows that if ay is even then there exists a ramified degree two cover

f:X1—>Y.

Finally, suppose that a; and ay are both odd. We have that T = T(2a9,a1,a1),
ged(2az, Q) = 2, and ged(ag, Q) = 1. In this case we have that S and S are translation
equivalent surfaces; however, X is obtained from two copies of S whereas Y is obtained
from a single copy of S. Thus again we have a double cover f : X; — Y . this time

unramified. m
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Remark 4.1 Note that in addition to relating right and isosceles triangles, Lemma /.1
also gives a way to construct covers between isosceles triangular billiards surfaces. In the

language of Lemma 4.1, if ao is even, then f{l o f1 is a degree two translation cover of

X2 by Xl.

Remark 4.2 If we allow a1 = ao = 1 in the statement of Lemma 4.1, then we arrive at

Y =X, =X9=X(1,1,2). This is because T(1,1,2) is the unique right isosceles triangle.

Because the location of singularities is such a major tool in analyzing translation
surfaces, it is worth identifying the triangular billiards surfaces which have no singulari-
ties. As detailed in [1], there are only three of these surfaces: X (1,1,2), X(1,2,3), and
X(1,1,1). These are also the only three triangular billiards surfaces of genus 1; further-
more X (1,2,3) and X(1,1,1) are actually translation equivalent. Each of these surfaces
admits balanced translation covers of itself by itself of arbitrarily high degree; this fact is
related to the fact that T'(1,1,2), T'(1,2,3), and T'(1, 1, 1) are the only Euclidean triangles
which tile the Euclidean plane by flips. Note that any such cover must be unramified,
since flat ramified covers are locally of the form z — z'/" for some n > 1, implying that

the cone angle of the ramification point is greater than 27« .

4.2 Balanced Covers

Balanced translation covers f : X — Y of translation surfaces are of interest because
they imply an especially strong relationship between the affine symmetry groups of X
and Y'; in particular, these groups must have finite-index subgroups which are SL(2,R)-
conjugate. We shall prove Theorem 4.1 for balanced covers using only the machinery built

up thus far.

Lemma 4.2 Let X = X (a1, a9, a3) be part of a composition of nontrivial balanced covers.
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If X has exactly one singular vertex class, then either X is an isosceles triangular billiards

surface or X = X(1,n,n + 1) with n > 2 an odd integer.

Proof. Let v be the vertex of T'(aj,a9,a3) that unfolds to a singular vertex class. Let
P e W;(l (v). Since X is part of a composition of nontrivial balanced covers, Corollary
3.3 implies that P has a Type I fingerprint. All saddle connections on X have endpoints
in ﬂ;(l (v), so by Lemma 3.1 the geodesics defining the fingerprint of P are realized via
single reflections of P across the opposite sides of the copies of T'(a1, as, ag) of which P is
a vertex. Thus T'x is either a right triangle or an isosceles triangle. Suppose T'x is a right
triangle, and write T'x = T'(a1, a9, a1 +a) . Since X has only one singular vertex class we
can assume that a1|2(a; + a2) and ag { 2(a; + a2) . By Lemma 4.1, X is also (translation
equivalent to) an isosceles triangular billiards surface unless a; and ay are both odd. Thus

either X is an isosceles billiards surface or a; = 1. m

Lemma 4.3 Let X and Y be triangular billiards surfaces such that the genus of X 1is
greater than 1. Suppose that f : X — Y is a nontrivial balanced translation cover. Then

f is of the form described in Lemma 4.1.

Proof.

Let P’ be a singular point of X, and write f(P') = P. Since f is balanced, Lemma
3.2 guarantees that the fingerprints of P’ and P have the same angle sets. By Corollary
3.1, Zwx (P') = Zmy (P) unless wx (P') or my (P) is the apex of an isosceles triangle. With

this reasoning in mind, we split the proof into cases.
Case 1 Neither T'x nor Ty are isosceles triangles.
By Lemma 4.2, if X has only one singular vertex class then X = X (1,n,n+ 1) for n > 2

an odd integer. But ged(n,2n +2) = 1, so P’ is the only singularity on X, and hence P
is the only singularity on Y. Thus by Lemma 4.2, Y = X(1,m,m + 1), and since P and
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P’ have the same angle set, m = n. Thus Y = X . But this is impossible by Lemma 2.2.
Therefore we may assume that X has at least two singular vertex classes. Let R’ € X
be in a vertex class distinct from the vertex class of P, and write f(R') = R. If R and
P are in distinct vertex classes then since /7y (P') = Zmy(P) and Z7nx(R') = Z7ny(R),
in fact T'x = Ty and f must be trivial. If R and P share a vertex class then we have
Zrx(P') = Zry(P) = Zwx(R'); but then T is isosceles, contradicting the hypothesis of

this case.

Case 2 The triangle T'x is isosceles, with its apex unfolding to a singular vertez class.

Let P’ be in the singular vertex class which projects to the apex of T . Since
Tx # Ty, we must have that my(P) is not the apex of an isosceles triangle. Thus
Zrx(P') = 2Zmy(P). Furthermore, since the fingerprints of P and P’ have the same
angle set, Y must have a second singular vertex class. Let R € Y be a member of a
singular vertex class not containing P. Let R’ be a singularity of X with f(R') = R.
If R' is in the same vertex class as P’, then it follows that Zny (P) = Zmy(R), Ty is
isosceles, and f is a composition of covers from Lemma 4.1. If R' and P’ are in distinct
vertex classes, then either Zmy (R) = Znx(R'), in which case Ty is a right triangle as
described in Lemma 4.1; or else my (R) is the apex of an isosceles triangle, and again f is

a composition of covers from Lemma 4.1.

Case 3 The triangle Tx 1is isosceles, with its apex unfolding to a nonsingular vertex class.

Here, X must have exactly one other singularity R’ corresponding to the other
vertex of T'x which is not the apex. Write f(R') = R. If my(R) or my (P) is the apex of
an isosceles Ty, then f is a composition of covers from Lemma 4.1. Suppose not. Then
Lry(P) = Zry(R). If R # P then Tx = Ty, which is ruled out by Lemma 2.2. So we
are left with R = P as the only singularity on Y, and thus by Lemma 4.2 f must be a

composition of covers from Lemma 4.1.
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Case 4 The triangle Ty is isosceles, with its apex unfolding to a singular vertex class.

Let P be such that my (P) is the apex of Ty . Then Zmy (P) = 24nx(P'). Fur-
thermore, X must have a singular vertex class not containing P’'. Let R’ € X be in this

second singular vertex class, and write f(R') = R.
Subcase 4A. R and P share a vertex class.

1
Then either Znx(R') = ile(P) = Zrnx(P'), in which case T is isosceles (see

previous cases), or else Zmwx (R') = Zmy (P), in which case Tx = Ty, which is impossible.
Subcase 4B. R and P are in distinct vertez classes.

Since R does not project to the apex of Ty, Zmwx(P') # %Z?Ty(R). If Zwx(R') =
2/my (P) then T is isosceles and f is a composition of covers from Lemma 4.1. Finally,
if /7x (R') = /v (R) then we see that /7 x () + Zrx (P') = Z/my (R) + %ZWy(P) -7
so Ty is a right triangle which tiles Ty by a single flip. Thus by Lemma 4.1 there exists
a translation cover g : Y — X . If degg = 1 then Y and X are translation equivalent so
deg f =1. If degg > 1 then an easy application of the Riemann-Hurwitz formula shows

that f cannot exist.
Case 5 The triangle Ty is isosceles, with its apex unfolding to a nonsingular vertex class.

In this case Y has two singular vertex classes, each consisting of one point. Let the
singularities be P and R, and as before let f(P') = P, f(R') = R. By cases 2 and 3,
we can assume that Ty is not isosceles; thus Znx(R') = Zny (R) = Zny (P) = Znx (P').
Therefore (since T'x is not isosceles) X must have only one singular vertex class. Thus by
Lemma 4.2, X = X(1,n,n+ 1) with n > 2 odd. But this surface has only one singularity,

and X must have at least two singularities to form the f-preimage of P and R.

Cases 1-5 exhaust the possibilities; the proof is complete. m
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4.3 Some Elementary Number Theory

Note that the holonomy field kx := Q({o + Cél) is a degree two subfield of the
cyclotomic field Q((g ), since it is the maximal subfield fixed by complex conjugation. In
light of this, we list some classical results about these two fields as recorded in Washington’s

text[18].

Lemma 4.4 If Q is odd then Q(({g) = Q(¢2q) -

Lemma 4.5 (Prop 2.3 in [18]) Assume that Q # 2 mod 4. A prime p ramifies in Q((g)
if and only if p|Q .

Lemma 4.6 (Prop 2.15 in [18]) Let p be a prime, and assume that n Z 2 mod 4. If n =
p™ then Q(C)/Q(Cu + ¢, 1Y) is ramified only at the prime above p and at the archimedean
primes. If n is not a prime power, then Q((n)/Q(Cn + ¢, ") is unramified except at the

archimedean primes.

Remark 4.3 Washington’s proofs of Lemmas 4.5 and 4.6 make clear that the results carry

through to the case QQ = 2 mod 4 except that in that case, the prime 2 does not ramify in
Q¢q) -

For a triangular billiards surface X = X (a1, a9,a3), it is tempting to define a “Q-
value” for the surface by Qx := a; + as + a3. Unfortunately this notion is not quite
well-defined up to translation equivalence; as demonstrated in Lemma 4.1, the triangles
T(a,a,b) and T(2a,b,2a + b) unfold to translation equivalent translation surfaces if (and
only if) b is odd. However, the following lemma and its corollary show that this notion is

well-defined up to a factor of 2.

Lemma 4.7 If Q(¢w) # Q) then Q(Gm + Ca') # QGn + (1)
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Proof. This is an exercise in elementary algebraic number theory, and is presumably well
known. Let k£ be the maximal totally real subfield of the cyclotomic fields Q((,,) and

Q(¢p) for positive integers m,n > 2.

The degrees of Q((,,,) and Q((,,) as field extensions of Q are ¢(m) and ¢(n) respec-
tively, where ¢ is the Euler totient function. Since Q((,) and Q((,) are each degree 2

extensions of &k, we have that ¢(m) = ¢(n).

Let p be an odd prime dividing m. By Lemma 4.5, p ramifies in Q((,,). If m is a
power of p, then p is totally ramified in Q((,,). Since Q C k C Q((,,), if m is a power
of p then p must ramify in k. If m is not a power of p, then Lemma 4.6 tells us that
the extension Q((,,)/k is not ramified at the prime above p ; thus again p must ramify
in k. But also Q C £ C Q(¢,,), so p must ramify in Q(¢,,). By Lemma 4.5, this implies
that p divides n. Therefore m and n have the same odd prime divisors; furthermore, by
Remark 4.3, these arguments extend to show that either 4 divides both m and n or it

divides neither.

First suppose that m and n are congruent modulo 2. Let m = IIp{" and n = IIp;’

be the prime factorizations of m and n. Then we have

—1
1:2(@)) ZEE f” I oy

Therefore e; = f; for each i, and m = n. Hence in this case Q((n) = Q(() -

If m and n are not congruent modulo 2, then we may assume that m is odd and
n is congruent to 2 modulo 4. Since ¢(m) = ¢(2m) when m is odd, we can repeat the
calculation (4.1) with 2m and n, and get that 2m = n. But it is well known that for any
odd m, Q((:n) = Q(Com ) - Therefore in fact k is the maximal totally real subfield of only

one cyclotomic field. m

Corollary 4.1 Suppose that X (a1, a2,a3) and X (b1, bs, b3) have the same holonomy field,
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and that by +bo+bs < a1+as+asz. Then by+bo+bs is odd, and a1 +as+a3z = 2(by +bo+b3) .

Proof. Suppose X (a1, as,a3) and X (by, by, b3) have the same holonomy field k. Write
QRx = a1 +as +az and Qy = by + by + b3. Then by Lemma 2.4, we have that k is the
maximal totally real subfield of Q({g, ) and of Q({g, ). The result then follows directly

from Lemma 4.7. m

4.4 Combinatorial Lemmas

Lemma 4.8 Let f : X(ay,as,a3) — X(b1,be,b3) be a translation cover of triangular
billiards surfaces. Then

ait(a1+az+as) bit(b1+b2+b3)

Proof. The sum of the cone angles of the singular points of X (a1, as,a3) is at least n
times the sum of the cone angles of the singular points of X (b1, b, b3). By Remark 2.1,

the result follows. m

Lemma 4.9 Let f : X(ay,a2,a3) — X(b1,be,b3) be a translation cover of triangular
billiards surfaces such that the genus of X (ay,a2,as) is greater than 1. If ay +ag + a3z =

b1 4+ by + b3 and f is not a composition of covers from Lemma 4.1, then [ is of degree 1.

Proof. Write () := a1 + as + az = by + by + b3z . Let n be the degree of f, and suppose

that n > 2. Lemma 4.8 then gives Y b; < 9 . Hence, since n > 2, we have
bitQ n

O

Zbi >
bi|Q
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Writing ¢; = Q we have the equivalent expression

b;’

| —

(4.4)

1\3_|©

>
i

[

)
bi|@Q

Note that if b;|@Q then ¢; is an integer. Of course, Equation (4.3) is always satisfied if
T (b1, by, bs) is a right triangle. If T'(by, bo, b3) is not a right triangle, the equation is rarely

satisfied. Thus we will reduce the problem to three cases (up to permutation of vertices).
Case 1 The triangle T'(by, by, b3) is not a right triangle.

In this case, recalling that gcd(by, be, b3) = 1, we show that there are only three possibilities

for the b; which satisfy Equation (4.3).

If all three b; divide ) then Y is nonsingular. The only non-right triangle which
unfolds to a nonsingular surface is T'(1,1,1); but since this is also the only triangle with
Q=3,ifY = X(1,1,1) then X = X(1,1,1), contradicting our assumption that X has a

singularity.

Hence we can assume for this case that bs 1 Q. Therefore to satisfy Equation 4.4

we seek integers g1, g2 > 2 such that

(4.5)

Without loss of generality we assume ¢; < g9 . If ¢; > 4, Equation (4.5) is impossible. If
¢1 = 3 then Equation (4.5) is satisfied if go < 5. Thus the remaining candidates for Y are
X(3,4,5) and X(3,5,7). By Lemma 4.8, X(3,4,5) admits at most a degree two cover;
by Lemma 2.1 the degree two covers satisfying the hypotheses of the lemma could only be
f:X(2,5,5) = X(3,4,5) or X(1,1,10) — X (3,4,5). However, these maps would have

to be balanced covers, and X (3,4,5) has a singularity with a Type II fingerprint. Thus
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by Corollary 3.3 these maps do not exist. Similarly, the only feasible cover of X (3,5,7) of
degree greater than 1is f: X(1,7,7) — X (3,5,7); again, this would be a balanced cover,
and X (3,5,7) has a singularity with a Type II fingerprint.

Case 2 The triangle T(by,bo, bs) is a right triangle, with by = % and neither by nor by
dividing Q .

Here Lemma 4.8 implies that the degree of f is at most two. The sum of the cone angles
of the singularities of Y is by 4+ b3 . Thus if n = 2 then the sum of the cone angles of the
singularities of X is 2(bg + b3) = Q = a1 + ay + a3 . Therefore T'(ay, as, az) must be either
T (b, by, 2b3) or T'(2bg, b3, b3) . Both these possibilities are accounted for by the covers of

Lemma 4.1.

Case 3 The triangle T (b1, bo, b3) is a right triangle, with by = % and b |Q .

-2
Hence the triangle has angles E, E, and 4
2 q 2q

for some integer ¢ dividing (). We have

T(2,q—2,q) if qodd
T (by,ba,b3) = if
T(l,%—l Iy it g even

First suppose that q is odd. Then Y = X (2,9 — 2,q). If ¢ = 3 then Y = X (1,2,3)
and X is either X (1,2,3) (ruled out because it is genus 1) or X(1,1,4) (already listed
in Lemma 4.1). If ¢ = 5 then by Lemma 2.1 X is either X(3,3,4) (already listed in
Lemma 4.1) or X(1,3,6). A translation cover f : X(1,3,6) — X(2,3,5) would have
to be a balanced triple cover, and the fingerprints would not match. For ¢ > 7, only
double covers are possible, by Lemma 4.8. Since ged(q — 2,¢) = 1, there is only one
singularity on Y and it has cone angle 2(q¢ — 2)7. Thus by Lemma 2.1 possible double
covers are f: X(4,g —2,g—2) = Y and f: X(1,3,2¢ —4) — Y . The covering surfaces
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X (4,9 —2,q — 2) are accounted for by Lemma 4.1. The covering surfaces X (1,3,2q — 4)
have one singular vertex class when 3|g; in this case f must be balanced. But if 3 t ¢
then X would have a conical singularity with cone angle 67 mapping to a nonsingular
point of Y| which is impossible since the degree of the cover is at most 2. Now suppose
that ¢ is even. If ¢ = 4 then Y = X = X (1,1,2), but the lemma assumes that X has a
singularity. If ¢ = 6 then Y = X (1,2, 3), but we have already dealt with this surface. If
g > 8 then ged(q, g -1) < g —1, so Y has a singular vertex class and the total cone angle

of the singularities in that class is 2(¢ — 2)7 . Thus the only possible covering surfaces are

X(27 g - 1a g
2 2
Lemma 4.1. =

—1,) and X(1,1,q — 2); but both these possibilities are accounted for by

Lemma 4.10 Let f : X — Y be a translation cover of triangular billiards surfaces. Let
m be the smallest integer such that all singularities of Y have cone angle at least 2mm .
Suppose that deg f < m . Then for each vertex class C; on X, f(C;) consists entirely of

singular points or entirely of nonsingular points.

Proof. Let m be as above and assume that deg(f) < m. Suppose for contradiction that
for some j, f(C}) contains singular points and nonsingular points. Each member of C;
has the same cone angle, and this cone angle must be at least 2mm, since some of the
members are mapped by a translation cover to a singularity of cone angle 2mm . Thus, for
those elements of C; which are mapped to nonsingular points, the definition of a ramified
cover requires that f be locally of degree at least m, which contradicts our assumption

that deg(f) < m. This completes the proof. m

4.5 Proof of the Main Theorem

Now we can prove Theorem 4.1.
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Theorem 4.1 Suppose f: X — Y is a translation cover of triangular billiards surfaces
of degree greater than 1. Then f is of degree 2, and is a composition of one or two of the

covers f; described in Lemma 4.1.

Proof. Suppose X := X (aj,a9,a3), Y := X(b1,b9,b3), and f : X — Y is a translation
cover of degree deg f > 1. Assume that the genus of X is greater than 1. Write Qx :=
a1 + as + az and Qy := by + by + b3 . Let vy,v9,v3 and wy,ws, w3 be the corresponding
vertices of T'(a1,a9,a3) and T'(by, by, bg) respectively. By Corollary 1, X and Y have
the same holonomy field k. By Corollary 4.1, we have Qy € {QQX,QX,%QX}. If

Qy = 2Qx, then by Lemma 4.8, we must have > b; < Q2X = % But then we would
bitQy
3
have > b; > —Qy, which is only the case for the following surfaces with even Q-value:

bi|Qy
X(1,1,2), X(1,2,3), X(3,4,5). Of course, Qx >3,s0Y # X(1,1,2). If Y = X(1,2,3)

then X = X (1,1,1), which is of genus 1, a contradiction. If Y = X (3,4,5), then Y has a
singularity with cone angle 107 . But, no surface X with Q x = 6 could have a cone angle

of at least 107 .

If Qy = Qx, then we are done by Lemma 4.9. Thus, appealing to Corollary 4.1, we
shall assume for the remainder of the proof that Qx = 2Qy .

If Y has no singular vertex classes, then since @ is odd, we must have Y = X (1,1,1) .
There are only two surfaces with a @-value of 6: they are X(1,1,4) and X(1,2,3), and
each of these surfaces covers X(1,1,1) as described in Lemma 4.1. If Y has three singular
vertex classes, then Lemma 4.8 implies that f can only be a degree two balanced cover.

Thus we are done by Lemma 4.3.

There are two cases remaining: Y may have either one or two singular vertex classes.

Case 1 The surface Y has one singular vertex class.

In this case we have, without loss of generality, b1|Qy, b2|Qy, and b3 1 Qy . Since by

and by are divisors of the odd number (Qy := by 4+ by + b3, bs must also be odd. Therefore
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b
S E— > 3. The cone angle at each of the singularities of Y corresponding to bs is
gcd(gm Q)
3
7271' > 67T .
ng(b37 Q) N

Lemma 4.8 eliminates all possible Y for deg f > 4 except Y = X(3,5,7). But,
again by Lemma 4.8, the only possible degree four covering surface would be X (1,1,28),

and such a cover would have to be balanced, contradicting Lemma 4.3.

If deg f = 2: Lemma 4.10 tells us that if deg f = 2 then for each j = 1,2, 3, we have

that f(my'(vj)) N7y (w3) is either empty or all of f(my'(v;)).

Suppose that Y = X(3,5,7) . Lemma 4.10 restricts the possible degree two covers
to surfaces of the form f : X (14, a9,a3) — Y, where each of ay and a3 is either a divisor of
30 or twice a divisor of 30. The only possible covering surface this leaves is X (15,14,1) .
But any translation cover f : X(15,14,1) — X(3,5,7) would have to be balanced, so

Lemma 4.3 applies.

Now suppose that Y # X (3,5,7). Let C be the singular vertex class of Y. We must
b 1
have 63 > 2’ and so by Remark 2.1 C' must correspond to an obtuse angle 6 of the billiard

table. Let X be the surface obtained from X by puncturing all singular vertex classes of X
b3
Q

of the billiard table corresponding to the vertex classes in the f-preimage of C must be

which are not contained in f~'(C). Since = > % and f is degree 2, the sum of the angles
obtuse. Thus we can apply Lemma 3.3 to X . The restriction of f to X is balanced. Since
Y has only one singular vertex class, elements of C' must have Type II fingerprints unless
T'(b1,bo,bs) is isosceles. If the fingerprints are Type II, then Proposition 3.1 and Lemma
3.3 demonstrate that X and Y are translation equivalent. So the only possibility is that
the fingerprints are Type 1. In that case Y is an isosceles triangular billiards surface. Let

b
C' be a vertex class on X that is in f~1(C), and write § = %w . The billiard table angle

0
that C’ corresponds to is either 6 or R If the angle is 0, then X and Y are translation
0
equivalent. If the angle is o then there is another vertex class on X which is also mapped

0
to C'. But then that vertex class would also correspond to an angle of 2’ and we would
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have that X is an isosceles triangular billiards surface, implying that f : X — Y is of the

form described in Lemma 4.1.

If deg(f) = 3: Then Lemma 4.8 allows only the following possibilities for Y: the

surfaces

X(3,n,2n —3) 3in

X(1,2,2 1) 3ln

Note that ged(2n — 3,3n) € {1,3}. First suppose that ged(2n — 3,3n) = 1. Then
() = 3n (thus n is odd), 3 1 n, and we have Y,, = X (3,n,2n —3). We have that n > 5 and
hence that 2n —3 > 7. On Y}, there is only one singular vertex class and the cone angle
of each singular point is (2n — 3)27. Thus Lemma 4.10 applies here. Since Y, is never
isosceles, each singular point has a Type II fingerprint. Let X be the surface obtained
from X by deleting all singularities of X which f maps to nonsingular points, and let f
be the restriction of f to X . By Lemma 4.10, the elements of X — X are the union of
entire vertex classes. Thus a Type II fingerprint on X will uniquely identify the triangular
billiards table used to generate X, by Lemma 3.3. Because f is a balanced map, each
singular point of X must have the same Type II fingerprint (on X') as its f—image onY .
But, a Type II fingerprint uniquely identifies the triangle used to generate the surface
(this works for X as well); hence X and Y,, are the same billiards surface, and Lemma 2.2

says that a triple cover is impossible.

Now suppose that ged(2n — 3,3n) = 3. Then the cone angle of each singular point

2
on Y, is 2”:,:3 2m. If n > 6 then " > 3, so that again we can apply Lemma 4.10 and

Lemma 3.3, and the same fingerprint argument goes through. The remaining cases are

n=3,6. We have Y3 = X (1,1,1) and Y5 = X (1,2, 3), neither of which have singularities.

Case 2 The surface Y has two singular vertex classes.
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b 1
Assume b1|Q and by, b3 1 Q. Since () is odd, 1< —, so Lemma 4.8 implies that

Q
deg(f) < 3. But, if deg(f) = 3, Lemma 4.8 also implies that f is balanced, contradicting

w

the result of Lemma 4.3 that balanced covers are of degree at most 2. Thus deg(f) = 2.

Note that by and b3 must have the same parity.
Subcase 2A. Both by and bz are odd.

Then > 3, so by Lemma 4.10, each vertex class of X maps to all singular

b;
ng(b’ia Q)

points or all nonsingular points.

If one vertex class of X maps to nonsingular points: Say the vertex class C} corre-

sponding to a; maps to nonsingular points. Then a = 2b;, and 2b,]2@Q), so C; is nonsin-

gular, so f is balanced.

If two vertex classes of X map to nonsingular points: Let them be Cy and Cjy, cor-

responding to a; and as . If C is singular, then by Lemma 4.10 we have a; = 2d for some
d|@ . But since az = 2(by + b3), this would mean that all the a; are even, contradicting

the fact that ged(ay,a9,a3) = 1.

Subcase 2B. Both by and bz are even.

If one vertex class of X maps to nonsingular points: Let it be Cy. We have ay +

b;
az = 2(by + b3), so a; must be even. But also as and a3 must be even, since 2|————
. s
and . J for each 7,7 € {2,3}. Again, this is a contradiction.
5ed (- Q) ged(a;. Q) 2.3}

If two vertex classes of X map to nonsingular points: Let them be C and Cy. We

have that ag = 2(by + b3) is even. If C; is singular then again we have that a; (and
hence ay) is even, once more contradicting that gcd (a1, as,a3) = 1. Hence Cy and O are

nonsingular, and f is balanced. m
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5 ALGEBRAIC PERIODICITY

The purpose of this note is to provide an alternate proof of the claim, originally
stated in [3], that surfaces arising from billiards in a rational triangle are algebraically

periodic. The proof of the claim there contains two minor errors. First, letting (¢ denote

a1 G2 Az’

Q' R’ Q
its construction are contained in (((gp), when in fact they are only guaranteed to be

e?™/Q it assumes that the coordinates of the vertices of the ( ) triangles in
in Q(¢2¢). Second, on a related note, it assumes that the real and imaginary parts of
elements of the field Q((g) lie in the field Q((gp + Cél) . In general, the imaginary parts
may lie in a degree 2 extension of Q(Co + (g ). Examples of this already occur when
@ = 3,5. However, these issues can be resolved by a simple geometric argument, as we

show in the proof of Lemma 5.1.

Remark 5.1 We let U, denote the n'" Chebyshev polynomial of the second kind. We will

use the following properties of Chebyshev polynomials.

7, St D) Un(cos )

sin @

2. If n is even, then U, is an even polynomial of degree n . If n is odd, then U, is an

odd polynomzial of degree n .

Remark 5.2 Let ¢ be the Euler totient function. It is well known that, for any positive
integer @), the degree of the number field Q(cos(%)) is equal to %gb(Q) Note that if Q
is odd, then ¢(Q) = ¢(2Q). It follows that, when Q is odd, we will have Q(cos(2L)) =

Q
Q(cos(E))
The following is Theorem 2.5 of [3].

Theorem 5.1 (Calta-Smillie) If a translation surface X is obtained by identifying the

edges of polygons in the plane by maps which are restrictions of translations, and if all the
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vertices of these polygons lie in a subgroup A C R?, then the holonomy of S is contained

mn A .

Lemma 5.1 The holonomy field of X (a1, as,a3) is contained in Q(cos(%r)), where Q) =

ged(ar, as, az) .

Proof. Let a = % Let T := T(ay,a2,a3). Since ged(aq,az,a3) = 1, we can and do
assume that a; is odd. Label the vertices of T corresponding to the angles aja, asa,
and aza as Py, P», and P;. We scale and rotate 7' so that the P, P, side has edge
vector v = (1,0), and so that the P, Ps side has edge vector w = (tcos(ajc),tsin(a;a)),

sin(aga)

where by the Law of Sines we have ¢t = . The dihedral group D generated by

reflections in the sides of T" acts on the sestlr]l_ga-?);)of 2@) distinct oriented triangles arising
from billiards in T". We can construct X from this set by identifying the appropriate
edges of the elements of D - T". We may also view D as acting on the edge vectors of 1.
Let vp, = (cos(2na),sin(2na)) and w, = (tcos((2n + 1)), tsin((2n + 1)a)) . With this

notation, we see that D - v is the set {v = vy, v1,...,ug_1}. Recalling that a; is odd, we

also see that D - w is the set {wq, w1, ...,wg 1}. Note that w = w51 .

Let A be the subgroup of R? generated by the v,, and w,, . Theorem 5.1 implies that

the entire holonomy of S is contained in A.

Let L = Q(cos 2ar) . We will show that all the v,, and w,, are L-linear combinations

of vy and vy, and that furthermore L is the smallest such field.

Let [ and !’ be the real numbers such that lvg + 'v;y = wy. Since vy and vy are
reflections of each other across the line generated by wy, we see that vy + v; is a real

multiple of wy. Hence I' =1.

Projecting vy and vy onto wy, we see that
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llwol|  t  sin(aga)sina sin(aza) sina sina

= = = = . 5.1
llvo +v1]|  2cosa  sin(aga)sin(2a) sina  sin(aga) sin(2«) (5.1)

Applying Remark 5.1 to the last expression, we get
- Uq,—1(cos @) (5.2)

Ugs—1(cosa)Uq (cosa)”

If @ is even, we have that (as — 1) and (a3 — 1) have opposite parity, and thus by

Uay—1(cos a)
? Uag—1(cosa)U;(cos a)

Q(cos(2ar)) . If @ is odd, then already by Remark 5.2, Q(cos o) = L, and since

Uay—1(cos a)
Uaq—1(cos @)Uy (cos a)

is a rational function in cos? . Thus I € Q(cos? o) =

our Remark 5.1

is a rational function in cos «, we again have that [ € L.

Similarly, for some real number k, we have k(wo—+wq)=wv1; by projection we calculate

ool 11 sin(asa),  Usig, (5.3)

" Jlwo +wi]]  teos(2a) 2 sin2(aga) UL,

Since Ugrl and Ugrl are both polynomials in cos?

o, we get k€ L.

Let R be the element of D that acts on the plane as counterclockwise rotation by
2c. Note that R - v, = vpy1 and R - wy, = wy1q . Thus for all integers n,
lvg + v = R™ - (lvg +lvy) = R™ - wy = wy, (5.4)

and

kw, + kwyy1 = R™ - (kwg + kwy) = R" - v1 = vy (5.5)

Thus we have the relations w, = (% — Dy —lvp—1 and vy = %wn — v, . These two

relations demonstrate that w, and v,, are in span; {vg, v } for all n. Hence span; {vg, v1 }=A.
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Theorem 5.1 says that A contains the absolute holonomy of S. Hence L contains the

holonomy field of X. m

W2
V, Vv,
W
° W1 1
V7 Vio
V.
W3 2 A
W
Vs > Vs, W
1
V. W4
W6 1 v,
V,
Vg Wg 6
\V/ W1 0
W7 9

FIGURE 5.1: The sets {v,} and {wy} for X(3,4,5), with a; = 3.

The following is a slight strengthening of Theorem 9.1 in [Calta-Smillie], which

follows from the proof of Theorem 1.2 of [Calta-Smillie], which they in turn attribute to

McMullen.

Theorem 5.2 (Calta-Smillie) If there is an affine automorphism of S with trace 6 and the

holonomy field of S is contained in a field generated by 6, then S is completely algebraically

periodic.

The following theorem is stated as Theorem 1.4 in [Calta-Smillie].
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Theorem 5.3 (Calta-Smillie) If X is a triangular billiards surface then X is completely
algebraically periodic.

Proof. The surface X admits rotation by %T as an affine automorphism. This automor-
phism has trace 2COS(%T). In Lemma 5.1 we showed that the holonomy field of X is

contained in the field generated by cos(%y). Hence, by Theorem 5.2, X is algebraically

Sl

periodic. m



o1

6 INFINITELY GENERATED VEECH GROUPS VIA
TRANSLATION COVERS

In this chapter we discuss the use of translation covers in constructing translation
surfaces with infinitely generated affine symmetry groups (called Veech groups). We re-
view the relevant definitions, present results of Hubert and Schmidt, then demonstrate
that members of a special class of surfaces identified by Aurell and Itzykson in [1] have
infinitely generated Veech groups. Throughout this chapter, we shall use the notation
(S,w) to refer to a translation surface, where S is the underlying Riemann surface and w
is the holomorphic one-form which endows X with a translation structure, as described

in Section 2.2.1.

6.1 Veech Groups and Veech Surfaces

The matrix group SLsR acts on the set of all translation surfaces in the following
way: for each A € SLyR, A - X is the result of post-composing the coordinate charts of
X with the standard linear action of A on R?. See, for example, [10]. Note that, since A
acts linearly on the charts of (X,w), the change-of-coordinate functions of A - X will be

translations, so SLyR really does act on the set of translation surfaces.

Definition 6.1 Let SL(X) be the SLyR-stabilizer of X . The Veech group of X is the
image of SL(X) in PSLsR, denoted PSL(X) .

A diffeomorphism of X whose image is a translation surface is called an affine
diffeomorphism. Elements of SL(X) can also be viewed as the differentials of those affine

diffeomorphisms whose images are translation equivalent to X . It is a common abuse of
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a b
notation to let a matrix A := refer to both an element of SL(X) and its image
c d

in PSL(X).

The hyperbolic upper half plane H admits an action by PSLsR via Mobius trans-
formations. If the quotient of H by the action of PSL(X) has finite hyperbolic area, then
we say that X is a Veech surface. Veech [15] gave the following result, known as the Veech

Dichotomy:

Theorem 6.1 (Veech) If X is a Veech surface, then for each direction 0, either:

(1) X decomposes into a finite number of cylinders in the direction 6 with commen-

surable moduli; or

(2) Each geodesic path in the direction 6 is uniformly distributed in X .

Here, the modulus of a cylinder refers to the ratio of its width to its height.

6.2 Techniques of Hubert and Schmidt

In [9], Hubert and Schmidt use the fact that there exists a translation cover
fX(3,3,4) — X(1,1,3) to prove that the Veech group of X (3,3,4) is infinitely gener-
ated. In this section we review their tools, so that we can apply them to a different surface

in Section 6.4.

Definition 6.2 A point P on a translation surface X is a connection point if every

geodesic connecting P to a singularity of X extends to be a saddle connection on X .

A direction is said to be a periodic direction on X if every geodesic on X in that

direction is closed.
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A direction is called a parabolic direction of X if there exists an affine diffeomorphism

of X which preserves the set of geodesics in this direction and whose differential is parabolic
(has trace equal to 2). A consequence of the Veech Dichotomy is that, on a Veech surface,

the parabolic directions coincide with the periodic directions.

Definition 6.3 A translation surface X is of strong holonomy type if the following con-
ditions hold:

(1) Every holonomy vector and every saddle connection vector of X has its x-and

y-coordinates in the holonomy field of X .

(2) The periodic directions of X are exactly the vertical and those directions whose

slopes are in the holonomy field of X .

Definition 6.4 A point P on a translation surface X is a rational point if there exist two
distinct parabolic directions for X with corresponding parabolic elements of SL(X) that fix
P.

Lemma 6.1 (Hubert-Schmidt) For P a nonsingular point on a Veech surface X of strong
holonomy type, the following are equivalent:

1. P is a connection point;

2. P is a rational point;

3. after the development of a singular point has been fized as the origin, every developed

image of P is of coordinates in the holonomy field.

Hubert and Schmidt mark certain nonsingular points {P, ..., P,} on a translation
surface X, call the resulting marked surface (X; Py, ..., P,), and then define the Veech

group of the resulting surface to be those elements of PSL(X) which stabilize the set
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of marked points. On the marked surface, the points {P,..., P,} are considered to be

(removable) singularities. Note that (X; Py, ..., P,) is still a translation surface.

Proposition 6.1 (Hubert-Schmidt) Let P be a nonperiodic connection point on a Veech

surface X . Then PSL(X; P) is infinitely generated.

Sketch of Proof. Hubert and Schmidt show in [9] that it suffices to prove that the
parabolic directions of PSL(X; P) are dense in the unit circle S'. Tt is well known that
the set of directions of geodesics connecting any point on X to singularities on X is
dense in S'. Since P is a connection point, the set of directions of saddle connections
through P must be dense in S'. Because X is a Veech surface, each such direction is a
periodic direction on X and hence there exists a parabolic element 7 € SL(X) which is
the differential of an affine automorphism of X fixing P. Since 7 fixes P, 7 € SL(X; P).
Therefore the parabolic directions of PSL(X; P) are dense in S'. m

Proposition 6.1 has the following immediate corollary, which we will use in Section
6.4. Although Hubert and Schmidt do not explicitly state this corollary, they do implicitly

use it in [9].

Corollary 6.1 Let Py, ..., P, be nonperiodic connection points on a Veech surface X such
that the set of directions of saddle connections through P; is the same for each i. Then

PSL(X; Py, ..., P,) is infinitely generated.

Proof. Hubert and Schmidt’s proof of Proposition 6.1 goes through for this additionally
marked surface as long as we can show that the set of parabolic directions of (X, Py, ..., P,)
is dense in S . But since the set of directions of saddle connection through P; is the same
for each 7, each direction in this set corresponds to a parabolic element of PSL(X) which

is the differential of an automorphism fixing the set {Py,...,P,}. ®

We will use the following result of McMullen, which he proves in [14] and which

Hubert and Schmidt [9] restate in the following way.
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Lemma 6.2 (McMullen) If the holonomy field of a translation surface X is a real quadratic
extension of Q, then X is in the GLo(R)-orbit of a nonarithmetic surface of strong

holonomy type.

The following lemma, proven independently by Vorobets [16] and Gutkin and Judge

[6], demonstrates a connection between translation covers and Veech groups.

Lemma 6.3 (Vorobets, Gutkin-Judge) If f : X — Y is a balanced cover of translation
surfaces, then there exist subgroups H € PSL(X) and G € PSL(Y) such that H and G
are PSLy(R)-conjugate.

This lemma has the following corollary which will be important in the next section:

Corollary 6.2 Let Y be a Veech surface and let {Py, ..., P,} CY be a set of nonperiodic
connection points such that the set of directions of saddle connections through P; is the
same for each 1. Let f : X — Y be a translation cover which is ramified above each P;
and is not ramified above any other nonsingular points of Y . Then PSL(X) is infinitely

generated.

Proof. Because f ramifies only above the points { Py, ..., P, } as well as possibly above the
singular points of Y, f induces a balanced translation cover f': X — (Y; Py, ..., P,). By
Corollary 6.1, PSL(Y; Py, ..., P,,) is infinitely generated. By Lemma 6.3, there must exist
subgroups Hy € PSL(Y; Py, ..., P,) and Hy € PSL(X) which are PSLyR-conjugate. But
a finite-index subgroup of an infinitely generated group must itself be infinitely generated;
hence H is infinitely generated, and its conjugate H, is therefore also infinitely generated.
Likewise, a finite group extension of an infinitely generated group must also be infinitely

generated. Thus PSL(Y) is infinitely generated. m

Hubert and Schmidt [9] implicitly use the preceding corollary, along with the fact

that f: X(3,3,4) — X(1,1,3) is a translation cover ramified over nonperiodic connection
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points of the Veech surface X (1,1, 3), to prove that PSL(X(3,3,4)) is infinitely generated.

We shall prove something similar for a special collection of surfaces in the following section.

6.3 The Aurell-Itzykson Construction

In [1], Aurell and Itzykson show that for a given triangular billiards surface (S, w)
of genus g, there exists a basis {w = wi,ws, ...,w, } for H*(X;C) such that each (X, w;) is
either a triangular billiards surface or a covering surface of a triangular billiards surface
via a nontrivial translation cover. The various w; are called the associates of w, and by
analogy we call the surfaces (X,w;) associate surfaces of (S,w). Using translation cover
techniques of Hubert and Schmidt [9], as well as results of Ward [17] and McMullen [14],

we can show that certain of these surfaces have an infinitely generated Veech group.

For our purposes, the results of Aurell and Itzykson in [1] regarding associates can

be summarized as follows:

Proposition 6.2 (Aurell-Itzykson) Let (S,w) := X(a1,a2,a3) be a triangular billiards
surface of genus g, with Q) := a1+ags+asz . For any integer m, let m denote the nonnegative
remainder when dividing m by Q. Let n € {1,2,...,Q} such that nay + naz + naz = Q .
Let t = ged(nay,nag, nag) . Then there exists a 1-form v defined on X such that there
is a degree t translation cover f : (X,vy) — X(@, ?, @) Each such ~y is called an
associate of w. Furthermore, there are exactly g such values of n .

For each n € {1,2,...,Q} such that na; + naz + naz = @, we shall refer to the

associate surface (S,v) as X (nar, nag,nag) .
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6.4 Aurell-Itzykson Surfaces With Infinitely Generated Veech Group

In this section, we use techniques of Hubert and Schmidt to show that X (n,2n,7n)
is infinitely generated. Note that the surface X (1,2,7) can be realized as the union of two

pentagons and a decagon with appropriate sides identified, as illustrated in Figure 6.1.

n [17], Ward calculates that (the images in PSLy(R) of) the matrices

™ s T _ ain T
- 1 cot 15 T cot = - cos ¢ sin ¢

T = and p :=
: s s
0 1 sing  cos %

form a generating set for the Veech group of X (1,2,7). The presence of 7 in the Veech
group reflects the fact that X (1,2,7) admits a “Dehn twist” along each maximal vertical
cylinder which fixes the boundaries of the cylinders. In Figure 6.1, the maximal cylinder
containing one of the pentagon centers P is shaded. By an argument involving Dehn
twists, if the width of this cylinder is not rationally related to the distance from P to the
left edge of the enclosing cylinder, then P has infinite orbit under the action of 7, and
hence P is a nonperiodic point. Here, a quick application of trigonometry reveals that the

ratio of these two quantities is

cos%ﬂ—cos%ﬁ_ cos%ﬁ_1 %(\/5—1—1)_2 1\/5 6.1
cos 2& T cosZE +l(\/5—1)_ 3V (6.1)
5 5 1

Hence, the ratio is not rational and P is a nonperiodic point.

Next we show that P is a rational point of X . A consequence of the Veech Di-
chotomy is that the direction  of any saddle connection on a Veech surface is the direction
of a decomposition of the surface into cylinders with commensurable moduli. The saddle
connection must be on the boundary of one of the cylinders, and hence it will be fixed
by an element of the Veech group which corresponds to a Dehn twist in the direction 6.

Now consider the horizontal geodesics on X (1,2,7); there is clearly a horizontal saddle
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connection on X (1,2,7) which runs through P and the center of the other pentagon. Fur-
thermore, because of the 10-fold rotational symmetry of X (1,2,7), there must be at least
four other saddle connections running through the pentagon centers. Therefore there are

at least five unique parabolic elements of the Veech group which fix P; we conclude that

P is a rational point on X(1,2,7).

FIGURE 6.1: Horizontal (solid) and vertical (dotted) cylinders for X(1,2,7). A vertical
cylinder containing a pentagon center is shaded.

Finally, we show that P is a connection point. The holonomy field of X (1,2,7) is
Q(V5), so Lemma 6.2 implies that there exists an A € GLy(R) such that A - X(1,2,7)
is of strong holonomy type. Let 71,70 € SL(X(1,2,7)) be (derivatives of) Dehn twists in
distinct directions such that both twists fix P. Then Ary A~ ! and AA~! are elements
of SL(A - X(1,2,7)) which fix A- P. Hence A - P is a rational point on A - X (1,2,7).
Thus, by Lemma 6.1, A- P is a connection point on A- X (1,2,7). Since A acts linearly on
the charts of X (1,2,7), its action is a bijection between the set of saddle connections on
X (1,2,7) and the set of saddle connections on A- X(1,2,7). Thus, P must be connection
point on X (1,2,7).

We summarize this discussion in the following lemma:

Lemma 6.4 Viewing X(1,2,7) as the union of two pentagons and a decagon with appro-
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priate edges identified, as in Figure 6.1, the centers of the two pentagons are nonperiodic

connection points.

Proposition 6.3 For each integer n > 1, the surface X (1,2,10n — 3) has an associate
surface X (n,2n,Tn) which admits a ramified n-fold translation cover of f : X (n,2n,7n) —
X (1,2,7), and which has an infinitely generated Veech group. The genus of each X (n,2n,7n)
18

Sn—1 , 31n

9n =
5n—2 , 3|n

Proof. The triple (1,2,10n — 3) has, via multiplication by n modulo 10n, the associate
triple (n,2n,10n2 — 3n) = (n,2n,7n) . Therefore, by Proposition 6.2, the triangular bil-
liards surface X (1,2, 10n —3) has an associate surface X (n,2n,7n) which admits a degree
n translation cover of X (1,2,7). Since X(1,2,10n — 3) and X (n,2n,7n) are translation
surfaces with the same underlying topological space, they have the same genus. Therefore,

by Remark 2.1, the genus is
1 1
5n+1—§(gcd(1, 10n)+ged (2, 10n)+ged (10n—3, 10n) = 5n—§(1—gcd(10n—3, 10n)),

which is either 5n — 2 or 5n — 1 depending on whether or not 3 divides n. We write
X(1,2,7) = (Y,a) and X(n,2n,7n) = (S,w). Let f : X(n,2n,7n) — X(1,2,7) be the
translation cover given in [1]. Let p : X(1,2,7) — CU{occ} and p' : X (n,2n,7n) — CU{cc}
be the covers of the Riemann sphere guaranteed by the Aurell-Itzykson construction. We
have that p’ = po f. A consequence of the construction is that p can only ramify at
vertices of the triangular billiards triangulations of X (1,2,7), and that p’ can only ramify
at f-preimages of these vertices. But, if f ramifies above a point P € X (1,2,7), then
since p' = po f, p’ must ramify above p(P); hence P must be a vertex of the billiards

triangulation of X (1,2,7).

Suppose n = 2. Then applying the Riemann-Hurwitz formula to the translation

R
cover f: X(2,4,14) — X(1,2,7), we have that 9 = 2(3) + 1 + 7 where R is the total
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ramification number of f. Hence R = 4. Since the ramification number of f above a
single point of X (1,2,7) cannot exceed n — 1, we see that f must ramify above all four
elements of the vertex classes of X (1,2,7). Thus, in particular, f must ramify above the

centers of the pentagons in the flat diagram of X (1,2,7) in Figure 6.1.

Now suppose n > 2. The genus of X(n,2n,7n) is at least 5n — 2, so this time the
Riemann-Hurwitz formula tells us that f has a total ramification number at least 4n — 6.
For n > 2, we thus have 4n — 6 > 2(n — 1), so again f must ramify above at least one of

the pentagon centers.

Ward shows in [17] that X (1,2,7) is a Veech surface. Since X (1,2,7) is Veech, and
the pentagon centers are nonperiodic connection points, it now follows from Corollary 6.2

that PSL(X(n,2n,7n)) is infinitely generated. m
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7 CONCLUSION

The guiding problem for Chapters 2 through 5 in this thesis was the classification
of all translation covers between triangular billiards surfaces. We solved this problem by
identifying two types of data about such surfaces: the fingerprint of a point, which is
essentially local data; and the holonomy field of a surface, which is a more global piece
of information. The fingerprint was sufficient to complete the smaller classification of all
balanced covers; uniqueness and invariance results such as Lemma 3.2, Corollary 3.2 and
Proposition 3.1 were key there. We finished the complete classification by also considering

the holonomy fields of surfaces.

Hubert and Schmidt used the existence of a translation cover f : X(3,3,4) —
X (1,1,3) to prove that the Veech group of X (3,3,4) is infinitely generated; Theorem 4.1

shows that such covers are fairly rare.

An obvious extension of this work would be to apply the same two tools to the con-
sideration of translation covers among larger families of translation surfaces. For example,
any rational polygonal billiards surface possesses rotational symmetry with respect to any
vertex of its billiards triangulation; hence, the fingerprints of such vertex points will give
nontrivial data about the surfaces involved. Note that the cardinalities of the angle sets
may be larger than two, unlike the triangular case. Therefore combinatorial arguments

along the lines of this thesis would be more complicated.

Similarly, the calculation of the holonomy field of a billiards surface of a rational
polygon is more difficult, in general, than the triangular case, and yields more generic
results. Indeed, such a field need not even be a number field; this is connected to the fact

that such surfaces need not be completely algebraically periodic.

A slightly different extension of this thesis would be to classify all translation covers

of triangular billiards surfaces. As we demonstrated in Chapter 6, ramified translation
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covers f : X — Y in which Y is a triangular billiards surface but X is not can yield
examples of interesting Veech groups. It could be interesting to know if the Aurell-Itzykson

surfaces described in Chapter 6 give a special subset of these covers.
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