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TRIANGULAR BILLIARDS SURFACES AND TRANSLATIONCOVERS
1 INTRODUCTION1.1 Some HistoryA billiards problem involves an en
losed planar region (\billiard table") and a pointmass (\billiard ball") moving within the region at unit speed. Collisions with the boundaryof the region result in the billiard ball 
hanging dire
tion, with the angle of re
e
tionequal to the angle of in
iden
e. In this thesis we shall dis
uss surfa
es whi
h arise fromthe parti
ular 
ase of billiards in a polygon whose interior angles are all rational multiplesof � . Treatments of su
h a dynami
al system go ba
k at least to G.D. Birkho� in 1927[2℄. Fox and Kershner [5℄ des
ribe a method of studying su
h a dynami
al system by
onstru
ting a 
at surfa
e tiled by a �nite number of 
opies of the billiard table. Wedes
ribe this method in Se
tion 2.1. Katok and Zemlyakov [12℄ furthered the dis
ussionby proving that most billiard paths are dense in most polygonal billiards systems. The
urrent interest in the �eld from the algebrai
 side stems largely from a paper of WilliamVee
h in 1989 [15℄, whi
h proved a relationship between uniform distribution of billiardpaths and aÆne symmetries of billiard surfa
es (see Theorem 6.1). Sin
e this dis
overy,there has been a great deal of attention dire
ted at the aÆne symmetry groups (often
alled Vee
h groups) of 
at surfa
es. Vorobets [16℄, and independently Gutkin and Judge[6℄, showed that if two surfa
es are related by a 
ertain 
over 
alled a balan
ed 
over, thenthe interse
tion of their Vee
h groups has �nite index in ea
h group. In a series of papersin
luding [8℄ and [9℄, Hubert and S
hmidt have taken advantage of this work to 
onstru
t



2surfa
es with 
ertain interesting Vee
h groups. The 
overs they use, 
alled translation
overs, are a generalization of balan
ed 
overs.1.2 Statement of the Main ProblemResults su
h as those listed at the end of Se
tion 1.1 linking aÆne symmetry groupswith translation 
overs provide motivation for the 
lassi�
ation of all possible translation
overs between elements of various sets of translation surfa
es. In this thesis we determineall translation 
overs among triangular billiards surfa
es. It is well known (see Se
tion4.1) that a 
at torus admits translation 
overs of arbitrarily high degree by 
hoosing as
overing surfa
es appropriate s
alar multiples of itself, and that there are three rationaltriangles whi
h 
orrespond to triangular billiards surfa
es of genus 1. However, othertranslation 
overs are rare; in fa
t, our main result is en
apsulated in the following lemmaand theorem (relevant notation is reviewed in Se
tion 2.1.1).Lemma 4.1: Let a1 and a2 be relatively prime positive integers, not both equal to one.The right triangular billiards surfa
e Y := X(a1 + a2; a1; a2) is related to two isos
elestriangular billiards surfa
esX1 = 8>>><>>>: X(2a2; a1; a1) a1 oddX(a2; a12 ; a12 ) a1 evenandX2 = 8>>><>>>: X(2a1; a2; a2) a2 oddX(a1; a22 ; a22 ) a2 even



3via balan
ed 
overs f1 : X1 ! Y and f2 : X2 ! Y . The maps have degreesdeg(fi) = 8>>><>>>: 2 ai odd1 ai even . Furthermore, at least one of the fi has degree 2.In fa
t these are all possible translation 
overs amongst triangular billiards surfa
es,as we assert in the following main theorem.Theorem 4.1: Suppose f : X ! Y is a translation 
over of triangular billiards surfa
esof degree greater than 1. Then f is of degree 2, and is a 
omposition of one or two of the
overs fi des
ribed in Lemma 4.1.To prove Theorem 4.1, we use two main tools: the J-invariant of Kenyon and Smillie[13℄, and what we 
all the �ngerprint of a point P on a translation surfa
e. The �ngerprintof P depends on the 
on�guration of the shortest geodesi
s 
onne
ting P to singularities.We show that every point on a triangular billiards surfa
e whi
h 
orresponds to a vertexof the triangular billiard table has a �ngerprint of one of two distin
t types, whi
h we 
allType I and Type II (see Chapter 3 for de�nitions). We establish the following invarian
eresults:Proposition 3.1: Suppose the billiards triangulation of a triangular billiards surfa
eX 
ontains a point with a Type II �ngerprint. Then X is uniquely determined by that�ngerprint, up to an a
tion of O(2;R) .Lemma 3.2: Suppose that f : X ! Y is a balan
ed translation 
over, that P 0 2 Xand P 2 Y are verti
es of billiards triangulations on their respe
tive surfa
es, and thatf (P 0) = P . Then either:1. P 0 and P have the same �ngerprint, or



42. their �ngerprints di�er only in the 
one angle, P has half the 
one angle of P 0, Xarises from billiards in an isos
eles triangle, and P 0 
orresponds to the apex of thattriangle.1.3 Organization of this ThesisIn Chapter 2 we review the rational billiards 
onstru
tion. We give some 
ombina-torial formulas for the 
onstru
tion as re
orded in [1℄. We de�ne translation surfa
es andtranslation 
overs, and we dis
uss the J-invariant of Kenyon and Smillie.In Chapter 3 we introdu
e the 
on
ept of the �ngerprint of a point on a translationsurfa
e. We give examples, and prove results about the �ngerprints of 
ertain points ontriangular billiards surfa
es.In Chapter 4, we identify all translation 
overs among triangular billiards surfa
es.In Se
tion 4.1 we give the 
omplete list of possible 
overs as Lemma 4.1; the remainderof the 
hapter is devoted to proving that no other 
overs exist. We �rst prove the resultfor balan
ed 
overs in Se
tion 4.2, using the �ngerprint as the primary tool. Then, usingthe J-invariant and holonomy �eld of Kenyon and Smillie, we prove Theorem 4.1 for alltranslation 
overs in Se
tion 4.5.Chapter 5 is devoted to an alternate proof of a result of Calta and Smillie 
on
ern-ing the J-invariant of a triangular billiards surfa
e. In Chapter 6, we demonstrate anappli
ation of translation 
overs to the problem of identifying in�nitely generated Vee
hgroups. Finally, in Chapter 7, we give a 
on
lusion and dis
uss future extensions of thisthesis.



52 MATHEMATICAL BACKGROUND2.1 The Rational Billiards Constru
tionLet R be a polygonal region whose interior angles are rational multiples of � . LetD2Q be the dihedral group of order 2Q generated by Eu
lidean re
e
tions in the sidesof R . Suppose a parti
le moves within this region at 
onstant speed and with initialdire
tion ve
tor v, 
hanging dire
tions only when it re
e
ts o� the sides of R, with theangle of in
iden
e equaling the angle of re
e
tion. Every subsequent dire
tion ve
tor forthe parti
le is of the form Æ � v, where � indi
ates the left a
tion of an element of D2Q onan element of R2 .The rational billiards 
onstru
tion 
onsists of a 
ompa
t surfa
e 
orresponding tothis physi
al system. Consider the set D2Q � R of 2Q 
opies of R transformed by theelements of D2Q . For ea
h edge e of R, we 
onsider the 
orresponding element �e 2 D2Qwhi
h represents re
e
tion a
ross e . For ea
h Æ 2 D2Q, we glue �eÆ �R and Æ �R togetheralong their 
opies of e . The result is a 
losed Riemann surfa
e with 
at stru
ture indu
edby the tiling by 2Q 
opies of R . See Figures 2.1-2.4. This 
onstru
tion is des
ribed indetail in [12℄ and [16℄ .In this thesis we fo
us on billiards in a rational-angled triangle. We shall termthe surfa
e X resulting from the 
onstru
tion above a triangular billiards surfa
e. If thebilliard table is a right or isos
eles triangle, we 
all X a right triangular billiards surfa
eor isos
eles triangular billiards surfa
e, respe
tively.The re
e
tion rule for the billiards dynami
al system is not well de�ned if the pointof in
iden
e does not admit a unique tangent line. O

asionally su
h a diÆ
ulty 
an beresolved by a 
ontinuous extension of the dynami
al system. In parti
ular, in the 
ase ofpolygonal billiards, tangents are unde�ned pre
isely at verti
es of the en
losing polygon,



6and 
ollisions at su
h verti
es 
an be resolved if and only if the internal angle is of theform �q for some integer q . As detailed in Remark 2.1.2, if a vertex does not have internalangle of the form �q , then it 
orresponds to points on the billiards surfa
e whi
h are 
oni
alsingularities, whi
h in this setting are points about whi
h the total angle is 2m� for someinteger m > 1 . In this thesis we refer to 
oni
al singularities of billiards surfa
es simply assingular points or singularities, and any point whi
h is not a 
oni
al singularity is 
alleda nonsingular point.2.1.1 Elementary Combinatori
sFor a given rational-angled triangle T , we 
an write the angles of T as a1�Q , a2�Q ,and a3�Q , where a1; a2; a3; Q 2 N and g
d(a1; a2; a3) = 1 . With this notation, we alsowrite T = T (a1; a2; a3) . We refer to the billiards surfa
e X 
orresponding to billiardsin T (a1; a2; a3) as X = X(a1; a2; a3) . Note that the area and dire
tion of X(a1; a2; a3)depend on the area and dire
tion of T (a1; a2; a3); hen
e this notation is only well-de�nedup to an a
tion of O(2;R) .Sin
e a triangular billiards surfa
e X is 
onstru
ted from 
opies of T , the surfa
eX admits a natural triangulation by these 
opies. Given a triangular billiards surfa
eX = X(a1; a2; a3), there is a natural proje
tion map �X : X ! T indu
ed by the billiardstriangulation of X by T . This motivates the following de�nition.De�nition 2.1 Labeling the verti
es of T (a1; a2; a3) as v1; v2; v3, where \vi = ai�Q , we
all the three sets ��1X (vi) the vertex 
lasses of X . Note that all elements of a given vertex
lass have the same 
one angle. Hen
e we 
all a vertex 
lass singular if all elements aresingular and nonsingular otherwise.Remark 2.1 As detailed in [1℄, we have the following formulae 
on
erning X(a1; a2; a3) .1. The set ��1X (vi) has 
ardinality g
d(ai; Q) .



72. Ea
h element of ��1X (vi) has 
one angle � aig
d(ai; Q)� 2� .3. The genus of X(a1; a2; a3) is 12Q+ 1� 12P g
d(ai; Q) .Two immediate 
onsequen
es of these formulae are that a vertex 
lass ��1X (vi) is singularif and only if ai - Q, and that the sum of the 
one angles of the elements of ��1X (vi) is2ai� .2.1.2 ExamplesAs a �rst example, 
onsider the surfa
e X(1; 1; 2) generated by an isos
eles righttriangle. Here Q = 4, and the 2Q = 8 
opies of T (1; 1; 2) glue together to form a squaretorus (see Figure 2.1).

FIGURE 2.1: X(1,1,2) is a square torus.
Next 
onsider the surfa
e X(1; 1; 1) . Here the equilateral triangle T (1; 1; 1) unfoldsto the hexagonal torus. In fa
t T (1; 2; 3) also unfolds to the hexagonal torus; this is relatedto the fa
t that T (1; 2; 3) tiles T (1; 1; 1) via a single 
ip. See Figure 2.2. We dis
uss this



8phenomenon in more detail in Se
tion 4.1. It is a 
onsequen
e of the third part of Remark2.1 that these are the only genus 1 triangular billiards surfa
es.

FIGURE 2.2: X(1,1,1) and X(1,2,3) (see dotted lines) are hexagonal tori.
The surfa
e X(1; 1; 3) has genus two. See Figure 2.3.

FIGURE 2.3: T(1,1,3) \unfolding" to X(1,1,3).
Another interesting example is the genus 3 surfa
e X(1; 2; 4), whi
h is a 
at repre-sentation of Klein's famous quarti
 
urve; see [11℄ for a detailed exposition of this fa
t.The previous examples 
an all be 
onstru
ted by taking a single star-shaped poly-gon whose 
enter 
orresponds to a vertex of the triangular billiard table and identifyingappropriate edges; however in general a triangular billiards surfa
e may have too many



9singularities for this. For example, X(8; 25; 27) has three singular vertex 
lasses, and ea
hvertex 
lass has 
ardinality greater than one. See Figure 2.4 for a diagram of X(4; 7; 9),whi
h 
an be realized as a union of four stars with appropriate edges identi�ed.2.1.3 The Dihedral Group and the Flat GeometryIn this se
tion we show that the 
at stru
ture of X(a1; a2; a3) is strongly related toD2Q by using the dihedral group to pla
e an upper bound on the distan
e between anytwo points of X(a1; a2; a3).Let T be a rational-angled triangle, and let ri be the re
e
tion in the edge ei ofT for i = 1; 2; 3. Together the ri generate the dihedral group D2Q. De�ne a generalizedstar polygon to be the translation surfa
e (with boundary) obtained from hr1; r2i � T byidentifying riÆ � ei with Æ � ei for ea
h Æ 2 hr1; r2i and ea
h i 2 f1; 2g.Proposition 2.1 Let T = T (a1; a2; a3), and let X = X(a1; a2; a3). Let v be a vertex ofT , and write ��1X (v) = fP0; P1; :::; Pn�1g. The surfa
e X admits a de
omposition intogeneralized star polygons S0; S1; :::; Sn�1 su
h that ea
h Si has 
enter Pi. Furthermore, itis possible to 
olor ea
h of the 2Q triangles in D2Q � T in su
h a way that the followingproperties hold:1. Ea
h triangle is 
olored either bla
k or white.2. Ea
h bla
k triangle shares an edge with three white triangles, and vi
e versa.3. Ea
h bla
k triangle of Si shares an edge with a white triangle of Si+1, where indi
esare 
al
ulated modulo n.Proof. Let r1, r2, and r3 be the re
e
tions a
ross the sides of T , and let D2Q be thedihedral group hr1; r2; r3i . By 
onstru
tion, X 
an be viewed as the quotient of the setD2Q � T by the relation R of identifying appropriate edges.



10Let v be an endpoint of T su
h that the re
e
tions a
ross the edges in
ident onv are r1 and r2 . Let n be the 
ardinality of the vertex 
lass ��1(v), with elementsP0; P1; :::; Pn�1 . Let Id � T have P0 as a vertex. Developing around P0 gives the setS0 := (hr1; r2i � T )=R, whi
h is a generalized star polygon; in fa
t, if P0 is nonsingular,then S0 is a star-shaped polygon with 
enter P0 (see Figure 2.4). We have that S0 is theunion of the two sets (hr1r2i � T )=R (whi
h we 
olor bla
k) and (hr1r2ir1 � T )=R (whi
hwe 
olor white). If n > 1, then S0 is not all of X and the a
tion of r3 takes elements ofS0 outside of S0 . Let Si := (hr1; r2i(r1r3)i � T )=R; again, in Figure 2.4, we have 
olored

FIGURE 2.4: X(4,7,9) as a union of stars. Note, for example, that in D40 we haver2 = r3(r1r3)3 , a

ounting for identi�
ation 4 .



11(hr1r2i(r1r3)i � T )=R bla
k and (hr1r2i(r1r3)ir1 � T )=R white. We 
hoose a labeling forP0; P1; :::; Pn�1 so that ea
h Si is realized by development about Pi . The result is thatea
h bla
k triangle of Si shares an edge with a white triangle of Si+1, where i + 1 is
al
ulated modulo n .Proposition 2.1 has an interesting 
onsequen
e for the shortest paths between pointsin X.Corollary 2.1 Let T be a rational triangle, with longest side length L and shortest sidelength l . Let X be the triangular billiards surfa
e generated by T . For any two pointsx; y 2 X, de�ne �(x; y) to be the length of the shortest path 
onne
ting x and y . Thenmaxx;y2Xf�(x; y)g � 2L+ l .Proof. Using the notation of Proposition 2.1, let C2 and C3 be the two vertex 
lasses ofX whi
h do not proje
t to v. Any element of C2SC3 must be on the boundary of oneof the Si; but Proposition 2.1 implies that in fa
t any element of C2SC3 must be on theboundary of ea
h Si .Now 
hoose the vertex v so that the shortest edge of T is in
ident on v . Let C2 bethe vertex 
lass 
orresponding to the other endpoint of the shortest edge of T . Let x andy be any two points on X . There exist integers i and j so that x 2 Si and y 2 Sj . Theshortest geodesi
 segment within Si 
onne
ting x to to some point A 2 C2 has length atmost L . Sin
e A is on the boundary of all the Si, there is a geodesi
 segment of lengthl 
onne
ting A to Pj . Finally, the segment within Sj 
onne
ting Pj to y has length atmost L . The union of these three segments is a path 
onne
ting x and y; the length ofthis path is at most 2L+ l .



122.2 Translation Stru
ture2.2.1 Translation Surfa
esBilliards surfa
es are instan
es of a more general 
lass of surfa
es known as transla-tion surfa
es.De�nition 2.2 Let S be a topologi
al surfa
e, and let P1; :::; Pn be a �nite subset of S .Let S0 be the submanifold of S obtained by deleting the points P1; :::; Pn . If all transi-tion fun
tions of S0 are restri
tions of Eu
lidean translations of R2 , then we 
all S atranslation surfa
e.Given a �nite set of disjoint polygons P1; P2; :::; Pn in the plane, with the propertythat ea
h edge e 
an be asso
iated with a unique parallel edge e0 6= e of the same length,we obtain a translation surfa
e by gluing asso
iated edges via translations as long as thegluing gives a 
onsistent orientation. See, for example, [7℄. In fa
t, it is well known that,up to addition or removal of removable singularities, any 
ompa
t translation surfa
e 
anbe 
onstru
ted in su
h a way.A se
ond 
onstru
tion of a translation surfa
e is as follows: let S be a Riemannsurfa
e, and let ! be a holomorphi
 1-form de�ned on S . For ea
h point x 2 S, we de�ne
oordinates on a neighborhood of x via the map y 7! R yx ! . The maximal atlas of su
h
harts de�nes a translation surfa
e whi
h we denote by (S; !) .As an example of the translation stru
ture of a triangular billiards surfa
e, 
onsiderX(1; 1; 3) . Figure 2.5 demonstrates an appli
ation of transition fun
tions whi
h are lo
altranslations. Translation stru
ture is invariant under the operation of 
utting, translating,and pasting in lo
al 
oordinates as long as identi�
ations are preserved; thus we 
anvisualize X(1; 1; 3) as a �ve-pointed star, or as a union of pentagons, or as a union of twoverti
al 
ylinders, ea
h with appropriate side identi�
ations.
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FIGURE 2.5: X(1,1,3) is a translation surfa
e.
2.2.2 Translation CoversThe natural map between translation surfa
es is one whi
h respe
ts this translationstru
ture. First we re
all the de�nition of a rami�ed 
over of Riemann surfa
es.De�nition 2.3 Let f : X ! Y be a holomorphi
 mapping between 
ompa
t Riemannsurfa
es X and Y . For ea
h point x 2 X, there exist lo
al 
oordinates on X and Y whi
hvanish at x and f(x) respe
tively, and su
h that in those 
oordinates, f has the formz 7! z1=mx for some integer mx. If mx > 1 then we say that f is rami�ed at x, that fis rami�ed above f(x), and that the rami�
ation number of f at x is mx � 1. For ea
hpoint y 2 Y , we de�ne the rami�
ation number of f above y to be Px2f�1(y)(mx � 1).We de�ne the total rami�
ation number of f to be the sum of the rami�
ation numbersof f above ea
h point y 2 Y .



14Any holomorphi
 mapping f : X ! Y between 
ompa
t Riemann surfa
es rami�esat and above at most �nitely many points; hen
e total rami�
ation number is well-de�ned.Any rami�ed 
over f : X ! Y has the property that there exists an integer n su
hthat, if f does not ramify above y 2 Y , then f�1(y) has 
ardinality n. We say that fhas degree n, or simply write deg f = n . If f does ramify above a point y 2 Y withrami�
ation number r, then f�1(y) has 
ardinality n� r.An important result about rami�ed maps between Riemann surfa
es is the Riemann-Hurwitz formula:Theorem 2.1 (Riemann-Hurwitz Formula) Let f : X ! Y be a rami�ed map of degreen between Riemann surfa
es X and Y . Let gX and gY denote the genera of X and Y ,respe
tively. Let the total rami�
ation number of f be R . ThengX = n(gY � 1) + 1 + R2 : (2.1)An ex
ellent text for the theory of Riemann surfa
es is [4℄.Now we de�ne a natural map between translation surfa
es.De�nition 2.4 A translation 
over is a holomorphi
 (possibly rami�ed) 
over of trans-lation surfa
es f : X ! Y su
h that, for ea
h pair of 
oordinate maps �X and �Y on Xand Y , respe
tively, the map �Y Æ f Æ ��1X is a translation when �X and �Y are restri
tedto open sets not 
ontaining singular points. We say that f is balan
ed if f does not mapsingular points to nonsingular points.If f : X ! Y is a translation 
over whi
h rami�es at a point P 0 2 X above a pointP 2 Y , then for some integer m > 1 we have that f is lo
ally of the form z 7! z1=m,and hen
e the 
one angle at P 0 is m times the 
one angle at P . Therefore the set off -preimages of singularities of Y are singularities of X . But it may be that f rami�esabove a nonsingular point; in this 
ase f is not balan
ed.



15De�nition 2.5 We say that X and Y are translation equivalent if there exists a degreeone translation 
over f : X ! Y .The following lemma shows how we will use Remark 2.1 to analyze translation
overs.Lemma 2.1 Suppose f : X(a1; a2; a3) ! X(b1; b2; b3) is a translation 
over of triangu-lar billiards surfa
es. Let �X : X(a1; a2; a3) ! T (a1; a2; a3) and �Y : X(b1; b2; b3) !T (b1; b2; b3) be the 
anoni
al proje
tions to triangles with verti
es v1; v2; v3 and w1; w2; w3respe
tively. Suppose that P 2 ��1Y (wi), P 0 2 ��1X (vj), and f(P 0) = P with a rami�
ationindex of m at P 0 . Thenmbig
d(bi; b1 + b2 + b3) = ajg
d(aj ; a1 + a2 + a3) .Proof. The 
one angle at P 0 is m times the 
one angle at P . Therefore the result followsfrom the se
ond part of Remark 2.1.As noted in Se
tion 2.1.1, the translation stru
ture of X(a1; a2; a3) depends on the
hosen area and dire
tion of T (a1; a2; a3) . Suppose that (S; !) is a triangular billiardssurfa
e arising from billiards in some T (a1; a2; a3), and that � is a nonzero 
omplex num-ber. The notation X(a1; a2; a3) does not distinguish the pairs (S; !) and (S; �!) . Thefollowing lemma shows that this ambiguity will not a�e
t our 
lassi�
ation of translation
overs.Lemma 2.2 Suppose that (S; !) is a triangular billiards surfa
e of genus greater thanone, and let � 2 C nf0g . Then any translation 
over f : (S; !)! (S; �!) is of degree 1.Proof. This is a simple appli
ation of the Riemann-Hurwitz formula. Let (S; !) havegenus g, and let deg f = n . The 1-form ! whi
h gives (S; !) its translation stru
ture



16has 2g � 2 zeros (
ounting multipli
ities). Clearly �! has the same zeros as ! . TheRiemann-Hurwitz formula then gives us thatg = n(g � 1) + 1 + R2 ; (2.2)where R is the total rami�
ation number of f . Sin
e R � 0, Equation (2.2) is onlysatis�ed if n = 1 .As a result of this lemma, we shall use the notation X(a1; a2; a3) to refer to anyelement of the set f(S; �!) : � 2 C nf0gg, where (S; �) is a triangular billiards surfa
e aris-ing from billiards in some T (a1; a2; a3) . Note that multiplying the 1-form of a translationsurfa
e by a nonzero 
omplex number is equivalent to post-
omposing ea
h 
oordinate
hart of (S; �) by the standard linear a
tion of an element of O(2;R) .2.3 The J-invariant and Holonomy FieldsIn [13℄, Kenyon and Smillie introdu
e an important property of translation surfa
es,
alled the J-invariant.De�nition 2.6 Let P be a polygon in the plane. Let w1; w2; :::; wn be the verti
es of P .The J-invariant of P is the element of R2 ^Q R2 given by J(P ) := w1 ^ w2 + w2 ^ w3 +:::+ wn�1 ^ wn + wn ^ w1 .We write R2 ^Q R2 to indi
ate the exterior produ
t of two 
opies of R2 viewed asQ-modules.It is easily shown that the J-invariant of a polygon is invariant under translations ofthe polygon, and that it is a \s
issors invariant" in the sense that 
ut-and-paste operationsdo not a�e
t its J-invariant. Furthermore, it is well known that any 
ompa
t translation



17surfa
e 
an be 
onstru
ted by identifying parallel edges of a �nite set of polygons in theplane. For these reasons the de�nition naturally extends to translation surfa
es.De�nition 2.7 Let X be a 
ompa
t translation surfa
e. Let fP1; :::; Png be a 
olle
tion ofplanar polygons su
h that appropriate identi�
ation of sides yields the surfa
e X . Thenthe J-invariant of X is J(X) :=Pni=1 J(Pi) .Example 2.1 Suppose that X = X(1; 1; 2) is s
aled so that the 
opies of T (1; 1; 2) in thebilliards triangulation of X have lengths 1,1, and p2 . Then X 
an be realized as a squareof side length 2 with opposite sides identi�ed. We 
an assume that the lower lefthand
orner of the square lies at the origin. Then the J-invariant of X is(0; 0)^ (2; 0)+(2; 0)^ (2; 2)+(2; 2)^ (0; 2)+(0; 2)^ (0; 0) = (2; 0)^ (2; 2)+(2; 2)^ (0; 2) =4(1;�1) ^ (1; 1) .Example 2.2 Suppose that X = X(1; 1; 3) . ThenJ(X) =P4k=0�
os 2k�5 ; sin 2k�5 � ^ sin(3�=5)sin(�=5) �
os (2k + 1)�5 ; sin (2k + 1)�5 � .The following lemma, whi
h is presumably well-known, demonstrates the relevan
eof the J-invariant to the study of translation 
overs.Lemma 2.3 Let f : X ! Y be a degree n translation 
over of translation surfa
es. ThenJ(X) = nJ(Y ) .Proof. We 
an triangulate Y by Eu
lidean triangles in su
h a way that the bran
h pointsof f are among the verti
es of the triangulation. Let Y 0 be the set of triangles obtainedby 
utting open Y along all the edges of our triangulation. Lifting our triangulation to Xvia f , we let X 0 be the 
orresponding de
omposition of X . Sin
e J is a s
issors invariant,



18we have J(Y ) = J(Y 0) and J(X) = J(X 0) . Furthermore, sin
e ea
h triangle in Y 0 lifts ton identi
al 
opies in X 0, we have that J(X 0) = nJ(Y 0) . Thus J(X) = J(X 0) = nJ(Y 0) =nJ(Y ) .Translation stru
ture gives us a 
anoni
al way to asso
iate an element of C to ea
helement of the �rst homology group H1(X) . Be
ause it will be advantageous to view theimage of H1(X) in C as a ve
tor spa
e over Q , we use 
oeÆ
ients in Q for H1(X) in thefollowing de�nition.De�nition 2.8 The rational absolute holonomy of a translation surfa
e X is the imageof the map hol : H1(X;Q) ! C de�ned by hol : � 7! R� !, where ! is the 1-form whi
hendows X with a 
at stru
ture, as des
ribed in Se
tion 2.2.1.Now we de�ne a property of translation surfa
es whi
h will be useful in 
lassifyingtriangular billiards surfa
es. This de�nition is due to Kenyon and Smillie [13℄.De�nition 2.9 The holonomy �eld of a translation surfa
e X, denoted kX , is the smallest�eld kX su
h that the absolute holonomy of X is 
ontained in a two-dimensional ve
torspa
e over kX .Example 2.3 Consider X = X(1; 1; 2), s
aled so that it is a unit square with oppositesides identi�ed. The absolute holonomy of H1(X), as a ve
tor spa
e over Q , is generatedby 1 and i . Hen
e the holonomy �eld of X is Q .Example 2.4 Consider X = X(1; 1; 3) _The surfa
e X 
an be s
aled so that generatorsfor the absolute holonomy of X over Q are 1; �5; �25 ; �35 , where �5 = e(2�i)=5 . Thus theholonomy �eld of X properly 
ontains Q . In fa
t these four elements generate a two-dimensional ve
tor spa
e over Q(p5) . Sin
e Q(p5) is a degree 2 extension of Q there 
anbe no intermediate �elds; therefore the holonomy �eld of X is Q(p5) .



19Calta and Smillie [3℄ dis
uss the algebrai
ally periodi
 dire
tions of a translationsurfa
e, whi
h they de�ne to be those dire
tions in whi
h a 
ertain proje
tion of theJ -invariant is zero.De�nition 2.10 Fix 
oordinates for a 
ompa
t translation surfa
e S su
h that 0, 1, and1 are all slopes of algebrai
ally periodi
 dire
tions. The periodi
 dire
tion �eld of S isthe 
olle
tion of slopes of algebrai
ally periodi
 dire
tions in this 
oordinate system.It is shown in [3℄ that this de�nition is well-de�ned, and that the periodi
 dire
tion�eld is a number �eld whose degree is bounded by the genus of S . The following lemmarelies on the results of Kenyon and Smillie [13℄ and Calta and Smillie [3℄.Lemma 2.4 Let f : X(a1; a2; a3) ! Y be a degree n translation 
over. Write Q :=a1+a2+a3 . Then X and Y have the same holonomy �eld k, and k = Q(�Q+��1Q ), where�Q is a primitive Qth root of unity.Proof. By Lemma 2.3, J(X) = nJ(Y ) . Assume that Y has area 1; thus X has arean. Let X 0 be the surfa
e of area 1 obtained by uniformly s
aling X . We have thatJ(X 0) = 1nJ(X) = J(Y ) . Sin
e uniformly s
aling a surfa
e 
learly does not a�e
t itsperiodi
 dire
tion �eld, X and X 0 have the same periodi
 dire
tion �eld. Calta andSmillie note that their work in Se
tion 6 of [3℄ implies that the periodi
 dire
tion �eld ofa surfa
e depends only on the J-invariant of that surfa
e; hen
e X 0 and Y have the sameperiodi
 dire
tion �eld. Thus X and Y have the same periodi
 dire
tion �eld. Corollary5.21 of [3℄ states that a translation surfa
e is 
ompletely algebrai
ally periodi
 if and onlyif its holonomy �eld equals its periodi
 dire
tion �eld. Furthermore, Theorem 1.4 of [3℄states that triangular billiards surfa
es are algebrai
ally periodi
. Therefore X and Yhave the same holonomy �eld. Finally, Kenyon and Smillie [13℄ 
al
ulate this holonomy�eld to be k = Q(�Q + ��1Q ) .



20The proof of the algebrai
 periodi
ity of triangular billiards surfa
es in [3℄ 
ontainsa small error whi
h 
ould be 
orre
ted by applying a normalization outlined in [13℄. Wealso o�er a di�erent proof of this result in Chapter 5, where it is listed as Theorem 5.3.



213 THE FINGERPRINT3.0.1 De�nition and PropertiesConsider a point P on a translation surfa
e X, along with the set S of all shortestgeodesi
 segments on X whi
h 
onne
t P to a singularity. Let s1 and s2 be two of thesesegments. We say that s1 and s2 are adja
ent if s1 
an be rotated 
ontinuously about Ponto s2 without �rst 
oin
iding with any other elements of S .De�nition 3.1 A �ngerprint of a point P 2 � is the data ff�ig; �; Lg, where f�ig 
ontainsthe distin
t angle measures separating adja
ent shortest geodesi
 segments 
onne
ting Pto singularities, � is the total 
one angle at P , and L is the length of ea
h of the shortestgeodesi
 segments. We say that P has a Type I �ngerprint if f�ig has one element, andthat P has a Type II �ngerprint if f�ig has two elements. We 
all f�ig the angle set of a�ngerprint.

FIGURE 3.1: Parts of a Type I �ngerprint (left) and a Type II �ngerprint (right).
Note that the angle set (and hen
e the �ngerprint type) of the �ngerprint of a pointP 2 X is invariant under the s
aling of the 
at stru
ture of X by a nonzero 
omplex
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FIGURE 3.2: Type I �ngerprints arising from isos
eles triangles .number. Ea
h triangular billiards surfa
e has rotational symmetry about the verti
es ofits billiards triangulation; this fa
t pla
es a strong restri
tion on the angle sets of the�ngerprints of verti
es. The following lemma illustrates this.Lemma 3.1 Let X be a surfa
e of genus greater than one, arising from billiards in arational triangle T . Fix a billiards triangulation � of X by TX . Let P be a vertex of � .Let s be a shortest geodesi
 segment 
onne
ting P to a singularity of X . Then either s isan edge of � , or else s is perpendi
ularly bise
ted by an edge of � .Proof. Let X, TX , s, P and � be as above. Let �X : X ! T be the natural proje
tionindu
ed by � .Sin
e singularities in the translation stru
ture of X 
an only o

ur at verti
es of� , we only examine geodesi
s 
onne
ting verti
es of � . This is equivalent to 
onsideringbilliard paths between 
orners of the triangular billiard table TX in the original dynami
alsystem.Let v = �X(P ); sin
e P is a vertex of � , v is a 
orner of TX . The shortest billiardpath within TX from v to a di�erent 
orner w of T 
annot be as short as the table edge
onne
ting v and w . This proves the 
laim if s 
onne
ts P to a singularity whi
h is notin the vertex 
lass ��1X (v) .



23Now suppose that s 
onne
ts P to a singularity in ��1X (v) . Then s 
orresponds toa billiard path from v ba
k to itself. If both of the other two 
orners of TX are a
ute,then the shortest billiard path from v to itself is a

omplished via a single re
e
tion by
hoosing the initial dire
tion to be perpendi
ular to the side opposite v; hen
e here anedge of � bise
ts s . If one of the two other 
orners w is obtuse, then ��1X (w) must bea singular vertex 
lass. But the distan
e from v to an obtuse 
orner of TX is less thantwi
e the distan
e from v to the opposite side of TX . Thus if w is obtuse then there is ageodesi
 segment s0 in X 
onne
ting an element of ��1X (v) to a singular element of ��1X (w)su
h that s0 is shorter than s; this is a 
ontradi
tion.Lemma 3.1 allows us to relate �ngerprints of points on X to the angle measures ofverti
es of TX . We summarize these relations in the following Corollary; see Figures 3.1and 3.2 for illustrations.Corollary 3.1 Let � be a billiards triangulation of a triangular billiards surfa
e X . Fora given point P 2 � , let v be the proje
tion of P onto the triangle T generating X . Thenone of three situations exists:1) P has a Type I �ngerprint with angle set f�g, and � = \v .This o

urs if and only if T is isos
eles and v is the apex of T .2) P has a Type I �ngerprint with angle set f�g, and � = 2\v .This o

urs if P has a Type I �ngerprint and v is not the apex of an isos
elestriangle.3) P has a Type II �ngerprint with angle set f�1; �2g, and �1 + �2 = 2\v .
Proposition 3.1 Suppose X is a triangular billiards surfa
e with a point P of Type II�ngerprint. Then X is uniquely determined by that �ngerprint, up to an a
tion of O(2;R) .



24Proof. The proof is evident from Figure 3.0.1, whi
h illustrates the �ngerprint of thesingularity on X(3; 4; 5) (sin
e X(3; 4; 5) is not isos
eles and has only one singularity P ,it follows that P has a Type II �ngerprint. In the �gure, the geodesi
s de�ning the

FIGURE 3.3: Part of a Type II �ngerprint on X(3,4,5)
�ngerprint are the thi
ker lines, whereas the edges of the billiards triangulation are thethinner lines.) Let the angle set be f�1; �2g . Ea
h �i is an interior angle of a quadrilateralwhose other three angles in
lude two right angles and an angle whi
h has twi
e the measureof an angle of the triangular billiard table T for X . Therefore two of the angles of T havethe form 12(2� � �2 � �2 � �i) = � � �i2 , and the third angle is �1 + �22 . The length of thegeodesi
s de�ning the �ngerprint of P determines the s
aling of T . Thus T (and hen
eX) is uniquely identi�ed, up to an a
tion of O(2;R) .Lemma 3.2 Suppose that f : X ! Y is a balan
ed translation 
over, that P 0 2 Xand P 2 Y are verti
es of billiards triangulations on their respe
tive surfa
es, and thatf (P 0) = P . Then either:1. P 0 and P have the same �ngerprint, or



252. their �ngerprints di�er only in the 
one angle, P has half the 
one angle of P 0, Xarises from billiards in an isos
eles triangle, and P 0 
orresponds to the apex of thattriangle.Proof. Let d be the length of a shortest geodesi
 whi
h 
onne
ts P to a singularity. LetB � Y be the set of points of distan
e less than d from P . Let B0 � X be the maximal
onne
ted 
omponent of f�1(B) whi
h 
ontains P 0 . Sin
e f is a balan
ed translation
over, B0 
onsists of all points of distan
e less than d from P 0, and B0 
ontains no singu-larities other than possibly P 0 (P 0 is singular if and only if P is singular). We have thatf is lo
ally an m-to-one 
over at P for some integer m .

FIGURE 3.4: A balan
ed 
over rami�ed above P . Here, m = 2 .
Now 
onsider a pair of adja
ent geodesi
s e1 and e2, ea
h of length d, 
onne
ting Pto singularities. Label the angle between them � . The union of these two edges with aportion of the boundary of B bounds a wedge-shaped regionW whi
h 
ontains singularities



26only at the endpoints of e1 and e2 (see Figure 3.4). Sin
e f is a translation 
over, thef -preimage of W is m 
opies of W , ea
h of whi
h is bounded by part of the boundaryof B0 and two shortest geodesi
s e01 and e02 of length d 
onne
ting P 0 to singularities ofX . The interior angle measure between e01 and e02 is � . Be
ause f is balan
ed, we knowthat e01 and e02 are adja
ent; otherwise, the wedge they bound would have a geodesi
 e0in its interior su
h that f(e0) lies in the interior of W and 
onne
ts P to a singularity,a 
ontradi
tion to the adja
en
y of e1 and e2 . Therefore we have established that the�ngerprints of P and P 0 have the same angle sets.Be
ause f is a translation 
over, the 
one angle at P 0 ism times the 
one angle at P .We 
laim that m � 2 . Let v and v0 be the verti
es of the triangles T and T 0 
orrespondingto P and P 0 . By Remark 2.1, the 
one angle at P is 
ompletely determined by \v . ButCorollary 3.1 tells us that \v is determined, up to a fa
tor of 2, by the angle set of the�ngerprint of P . Hen
e, sin
e the �ngerprints of P and P 0 have the same angle set, wesee that m 2 f1; 2g, and our 
laim is proven.Furthermore, note that if m = 2, then sin
e the 
one angle at P 0 is greater than the
one angle at P and 
one angle is 
ompletely determined by the 
orresponding vertex ofthe triangular billiard table, Corollary 3.1 implies that TX is isos
eles and v0 is the apexof TX .Corollary 3.2 Fingerprint type is invariant under balan
ed translation 
overs.Corollary 3.3 Any rational triangular billiards surfa
e with a Type II singularity 
annotbe a part of any 
omposition of nontrivial balan
ed 
overs.Proof. This follows dire
tly from Proposition 3.1. Suppose we have f : X ! Y a balan
ed
over with either X or Y possessing a singularity with a Type II �ngerprint. By Corollary3.2, X and Y must both have singularities with Type II �ngerprints. Sin
e a Type II�ngerprint identi�es the triangular billiards table of a surfa
e, X and Y must be the samesurfa
e.



273.0.2 ExamplesExample 3.1 The surfa
e X = X(1; 1; 3) has exa
tly one singularity P . Thus all geo-desi
s 
onne
ting P to a singularity 
onne
t P to itself. By Lemma 3.1, the shortest su
hgeodesi
s must be those whi
h 
orrespond to a billiard path with a single re
e
tion. Theangle between any two su
h adja
ent shortest geodesi
s is 3�5 . Thus P has �ngerprintff3�5 g; 6�;Lg, where the length L depends on the s
aling of X . Let R be the only elementof one of the nonsingular vertex 
lasses of X . The shortest geodesi
s 
onne
ting R to Pare edges of the billiards triangulation of X by T (1; 1; 3) . Then the angle between any twosu
h geodesi
s whi
h are adja
ent is 2�5 .Next we give an example of a surfa
e with both Type I and Type II �ngerprints.Example 3.2 Consider the surfa
e X = X(1; 2; 12) . Let � be the billiards triangulationof X . Label the verti
es of T = T (1; 2; 12) as v1; v2; v3 su
h that \v1 = �15 , \v2 = 2�15 ,and \v3 = 12�15 . The vertex 
lass 
orresponding to v1 is nonsingular and has a singleelement P1 . The vertex 
lass 
orresponding to v2 is singular and has a single element P2of 
one angle 4� . The vertex 
lass 
orresponding to v3 is singular and has three elementsP3; P 03; P 003 ; ea
h of these points has 
one angle 8� . The shortest geodesi
s 
onne
ting P1to singularities are those whi
h 
onne
t P1 to P3, P 03, and P 003 via edges of � . So P1has a Type I �ngerprint ff�6 g; 2�;Lg . Similarly, the shortest geodesi
s 
onne
ting P2 tosingularities are those whi
h 
onne
t P2 to P3, P 03, and P 003 via edges of � . So P2 hasa Type I �ngerprint ff�3 g; 4�; sin(�=15)sin(2�=15)Lg (the length 
an be 
al
ulated by the Law ofSines). Finally, the shortest geodesi
s 
onne
ting P3 to elements of its own vertex 
lassare via a single re
e
tion and are shorter than the shortest geodesi
s 
onne
ting P3 to P2;hen
e P3 has Type II �ngerprint ff11�15 ; 13�15 g; 8�; 2 sin(�=15)Lg . The 
al
ulation of theangle set of a Type II �ngerprint is given in Proposition 3.1 .De�nition 3.2 A saddle 
onne
tion on a translation surfa
e is a geodesi
 with singular
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FIGURE 3.5: Fingerprints on X(1,2,12).endpoints and no singularities in its interior.As we shall see, the pre
eding results allow us to qui
kly 
lassify all balan
ed 
ov-ers in the 
ategory of triangular billiards surfa
es. However, to extend our results tounbalan
ed 
overs, we shall re�ne our use of the �ngerprint with the following lemma.Lemma 3.3 Let X be a triangular billiards surfa
e with more than one singular vertex
lass. Let ~X be the surfa
e obtained from X by pun
turing either one entire singular vertex
lass or two entire singular vertex 
lasses su
h that neither deleted 
lass 
orresponds toan obtuse angle of the triangular billiard table and su
h that at least one singular vertex
lass remains. Let ��1X (vi) be a singular vertex 
lass not deleted. Let P 2 ��1X (vi) . If Phas Type II �ngerprint on ~X with angle set f�1; �2g, then X arises from billiards in thetriangle with angles � � �12 , � � �22 , and �1 + �22 . If P has a Type I �ngerprint on ~X with



29angle set f�1g, then \vi 2 f�1; �12 g .Proof. If none of the pun
tured points are endpoints of shortest geodesi
s 
onne
ting Pto singularities, then P has the same �ngerprint on ~X as on X, and we are done.Suppose a singular vertex 
lass has been pun
tured whi
h 
ontained endpoints ofshortest separatri
es through P . Then there is a new \
losest" vertex 
lass to P ; 
all itC . If C does not 
ontain P then the shortest geodesi
s 
onne
ting P to C are edges of thebilliards triangulation of X . If C does 
ontain P then, sin
e a vertex 
lass 
orrespondingto an obtuse angle of the billiard table must be singular (by Remark 2.1) and we haveassumed that no su
h 
lasses have been deleted, it follows that the shortest geodesi
s fromP to C 
orrespond to a single re
e
tion in the original dynami
al system. Thus the samereasoning holds as in Lemma 3.1.The only potential diÆ
ulty would be if the new \
losest" vertex 
lass was the one
ontaining P , for in that 
ase, sin
e the shortest geodesi
s from P to elements of its own
lass pass through more than one triangle, we must 
onsider the possibility that our pun
-tures obstru
t these geodesi
s. However, sin
e the shortest geodesi
s are perpendi
ular tothe sides of the triangles opposite P , this is only a problem if the vertex 
lass pun
turedis ��1X (vj) with \vj = �2 . But su
h a 
lass is nonsingular.



304 IDENTIFYING ALL TRANSLATION COVERS4.1 The Possible CoversAny isos
eles triangle is naturally \tiled by 
ips" by a right triangle. The followinglemma demonstrates how to use this tiling to 
reate nontrivial translation 
overs in the
ategory of triangular billiards surfa
es. In fa
t, our main theorem is that the 
overs ofLemma 4.1 are the only nontrivial translation 
overs among triangular billiards surfa
es.Lemma 4.1 Let a1 and a2 be relatively prime positive integers, not both equal to one.The right triangular billiards surfa
e Y := X(a1 + a2; a1; a2) is related to two isos
elestriangular billiards surfa
esX1 = 8>>><>>>: X(2a2; a1; a1) a1 oddX(a2; a12 ; a12 ) a1 evenandX2 = 8>>><>>>: X(2a1; a2; a2) a2 oddX(a1; a22 ; a22 ) a2 evenvia balan
ed 
overs f1 : X1 ! Y and f2 : X2 ! Y . The maps have degreesdeg(fi) = 8>>><>>>: 2 ai odd1 ai even . Furthermore, at least one of the fi has degree 2.



31Proof. It suÆ
es to prove the result for X1 and f1 . Write Q := 2a1 + 2a2 . We re
e
tthe triangle T = T (a1 + a2; a1; a2) a
ross the edge 
onne
ting the a2 and a1 + a2 verti
es,to obtain its mirror image T 0 . By joining T and T 0 along the edge of re
e
tion we 
reatean isos
eles triangle ~T whi
h 
an be written as either T (2a2; a1; a1) (if a1 is odd) orT (a2; a12 ; a12 ) (if a1 is even). Note that sin
e (a1 + a2; a1; a2) must be a redu
ed triple, a1and a2 
annot both be even. It also follows that g
d(ai; Q) � g
d(2ai; Q) = 2 .Suppose a1 is even. Consider the translation surfa
e S (with boundary) obtainedby developing T around its a2 vertex. Sin
e a2 is odd we have g
d(a2; Q) = 1, so S is tiled(by re
e
tion) by 2Q 
opies of T , and hen
e after appropriate identi�
ations along theboundary we will have X(a1 + a2; a1; a2) . Let ~S be the surfa
e obtained by developing ~Taround the 
orresponding vertex; it is tiled via re
e
tion by Q 
opies of ~T , so appropriateboundary identi�
ations will yield Y1 . Be
ause ~T is tiled via re
e
tion by two 
opies ofT , it follows that S and ~S are translation equivalent. Finally, note that the boundaryidenti�
ations are the same for S and ~S . Therefore Y and X1 are translation equivalent.Now suppose that a1 is odd and a2 is even. We then have ~T = T (2a2; a1; a1) .Sin
e g
d(2a2; Q) = 2, we again have that ~S is tiled by Q 
opies of ~T . Sin
e a2 is even,g
d(a2; Q) = 2, implying that S is tiled by Q 
opies of T . Thus if a2 is even then thereexists a degree two 
over f : ~S ! S , rami�ed over a single point. Furthermore, in this
ase X1 and Y are obtained by identifying appropriate edges of two 
opies of ~S and S,respe
tively. It follows that if a2 is even then there exists a rami�ed degree two 
overf : X1 ! Y .Finally, suppose that a1 and a2 are both odd. We have that ~T = T (2a2; a1; a1),g
d(2a2; Q) = 2, and g
d(a2; Q) = 1 . In this 
ase we have that S and ~S are translationequivalent surfa
es; however, X1 is obtained from two 
opies of ~S whereas Y is obtainedfrom a single 
opy of S . Thus again we have a double 
over f : X1 ! Y , this timeunrami�ed.



32Remark 4.1 Note that in addition to relating right and isos
eles triangles, Lemma 4.1also gives a way to 
onstru
t 
overs between isos
eles triangular billiards surfa
es. In thelanguage of Lemma 4.1, if a2 is even, then f�12 Æ f1 is a degree two translation 
over ofX2 by X1 .Remark 4.2 If we allow a1 = a2 = 1 in the statement of Lemma 4.1, then we arrive atY = X1 = X2 = X(1; 1; 2) . This is be
ause T (1; 1; 2) is the unique right isos
eles triangle.Be
ause the lo
ation of singularities is su
h a major tool in analyzing translationsurfa
es, it is worth identifying the triangular billiards surfa
es whi
h have no singulari-ties. As detailed in [1℄, there are only three of these surfa
es: X(1; 1; 2), X(1; 2; 3), andX(1; 1; 1) . These are also the only three triangular billiards surfa
es of genus 1; further-more X(1; 2; 3) and X(1; 1; 1) are a
tually translation equivalent. Ea
h of these surfa
esadmits balan
ed translation 
overs of itself by itself of arbitrarily high degree; this fa
t isrelated to the fa
t that T (1; 1; 2), T (1; 2; 3), and T (1; 1; 1) are the only Eu
lidean triangleswhi
h tile the Eu
lidean plane by 
ips. Note that any su
h 
over must be unrami�ed,sin
e 
at rami�ed 
overs are lo
ally of the form z 7! z1=n for some n > 1, implying thatthe 
one angle of the rami�
ation point is greater than 2� .4.2 Balan
ed CoversBalan
ed translation 
overs f : X ! Y of translation surfa
es are of interest be
ausethey imply an espe
ially strong relationship between the aÆne symmetry groups of Xand Y ; in parti
ular, these groups must have �nite-index subgroups whi
h are SL(2;R)-
onjugate. We shall prove Theorem 4.1 for balan
ed 
overs using only the ma
hinery builtup thus far.Lemma 4.2 Let X = X(a1; a2; a3) be part of a 
omposition of nontrivial balan
ed 
overs.



33If X has exa
tly one singular vertex 
lass, then either X is an isos
eles triangular billiardssurfa
e or X = X(1; n; n+ 1) with n > 2 an odd integer.Proof. Let v be the vertex of T (a1; a2; a3) that unfolds to a singular vertex 
lass. LetP 2 ��1X (v) . Sin
e X is part of a 
omposition of nontrivial balan
ed 
overs, Corollary3.3 implies that P has a Type I �ngerprint. All saddle 
onne
tions on X have endpointsin ��1X (v), so by Lemma 3.1 the geodesi
s de�ning the �ngerprint of P are realized viasingle re
e
tions of P a
ross the opposite sides of the 
opies of T (a1; a2; a3) of whi
h P isa vertex. Thus TX is either a right triangle or an isos
eles triangle. Suppose TX is a righttriangle, and write TX = T (a1; a2; a1+a2) . Sin
e X has only one singular vertex 
lass we
an assume that a1j2(a1 + a2) and a2 - 2(a1 + a2) . By Lemma 4.1, X is also (translationequivalent to) an isos
eles triangular billiards surfa
e unless a1 and a2 are both odd. Thuseither X is an isos
eles billiards surfa
e or a1 = 1 .Lemma 4.3 Let X and Y be triangular billiards surfa
es su
h that the genus of X isgreater than 1. Suppose that f : X ! Y is a nontrivial balan
ed translation 
over. Thenf is of the form des
ribed in Lemma 4.1.Proof.Let P 0 be a singular point of X, and write f(P 0) = P . Sin
e f is balan
ed, Lemma3.2 guarantees that the �ngerprints of P 0 and P have the same angle sets. By Corollary3.1, \�X(P 0) = \�Y (P ) unless �X(P 0) or �Y (P ) is the apex of an isos
eles triangle. Withthis reasoning in mind, we split the proof into 
ases.Case 1 Neither TX nor TY are isos
eles triangles.By Lemma 4.2, if X has only one singular vertex 
lass then X = X(1; n; n+ 1) for n > 2an odd integer. But g
d(n; 2n + 2) = 1, so P 0 is the only singularity on X, and hen
e Pis the only singularity on Y . Thus by Lemma 4.2, Y = X(1;m;m + 1), and sin
e P and



34P 0 have the same angle set, m = n . Thus Y = X . But this is impossible by Lemma 2.2.Therefore we may assume that X has at least two singular vertex 
lasses. Let R0 2 Xbe in a vertex 
lass distin
t from the vertex 
lass of P 0, and write f(R0) = R . If R andP are in distin
t vertex 
lasses then sin
e \�X(P 0) = \�Y (P ) and \�X(R0) = \�Y (R),in fa
t TX = TY and f must be trivial. If R and P share a vertex 
lass then we have\�X(P 0) = \�Y (P ) = \�X(R0); but then TX is isos
eles, 
ontradi
ting the hypothesis ofthis 
ase.Case 2 The triangle TX is isos
eles, with its apex unfolding to a singular vertex 
lass.Let P 0 be in the singular vertex 
lass whi
h proje
ts to the apex of TX . Sin
eTX 6= TY , we must have that �Y (P ) is not the apex of an isos
eles triangle. Thus\�X(P 0) = 2\�Y (P ) . Furthermore, sin
e the �ngerprints of P and P 0 have the sameangle set, Y must have a se
ond singular vertex 
lass. Let R 2 Y be a member of asingular vertex 
lass not 
ontaining P . Let R0 be a singularity of X with f(R0) = R .If R0 is in the same vertex 
lass as P 0, then it follows that \�Y (P ) = \�Y (R), TY isisos
eles, and f is a 
omposition of 
overs from Lemma 4.1. If R0 and P 0 are in distin
tvertex 
lasses, then either \�Y (R) = \�X(R0), in whi
h 
ase TY is a right triangle asdes
ribed in Lemma 4.1; or else �Y (R) is the apex of an isos
eles triangle, and again f isa 
omposition of 
overs from Lemma 4.1.Case 3 The triangle TX is isos
eles, with its apex unfolding to a nonsingular vertex 
lass.Here, X must have exa
tly one other singularity R0 
orresponding to the othervertex of TX whi
h is not the apex. Write f(R0) = R . If �Y (R) or �Y (P ) is the apex ofan isos
eles TY , then f is a 
omposition of 
overs from Lemma 4.1. Suppose not. Then\�Y (P ) = \�Y (R) . If R 6= P then TX = TY , whi
h is ruled out by Lemma 2.2. So weare left with R = P as the only singularity on Y , and thus by Lemma 4.2 f must be a
omposition of 
overs from Lemma 4.1.



35Case 4 The triangle TY is isos
eles, with its apex unfolding to a singular vertex 
lass.Let P be su
h that �Y (P ) is the apex of TY . Then \�Y (P ) = 2\�X(P 0) . Fur-thermore, X must have a singular vertex 
lass not 
ontaining P 0 . Let R0 2 X be in thisse
ond singular vertex 
lass, and write f(R0) = R .Sub
ase 4A. R and P share a vertex 
lass.Then either \�X(R0) = 12\�Y (P ) = \�X(P 0), in whi
h 
ase TX is isos
eles (seeprevious 
ases), or else \�X(R0) = \�Y (P ), in whi
h 
ase TX = TY , whi
h is impossible.Sub
ase 4B. R and P are in distin
t vertex 
lasses.Sin
e R does not proje
t to the apex of TY , \�X(P 0) 6= 12\�Y (R) . If \�X(R0) =2\�Y (P ) then TX is isos
eles and f is a 
omposition of 
overs from Lemma 4.1. Finally,if \�X(R0) = \�Y (R) then we see that \�X(R0) +\�X(P 0) = \�Y (R) + 12\�Y (P ) = �2 ,so TX is a right triangle whi
h tiles TY by a single 
ip. Thus by Lemma 4.1 there existsa translation 
over g : Y ! X . If deg g = 1 then Y and X are translation equivalent sodeg f = 1 . If deg g > 1 then an easy appli
ation of the Riemann-Hurwitz formula showsthat f 
annot exist.Case 5 The triangle TY is isos
eles, with its apex unfolding to a nonsingular vertex 
lass.In this 
ase Y has two singular vertex 
lasses, ea
h 
onsisting of one point. Let thesingularities be P and R, and as before let f(P 0) = P , f(R0) = R . By 
ases 2 and 3,we 
an assume that TX is not isos
eles; thus \�X(R0) = \�Y (R) = \�Y (P ) = \�X(P 0) .Therefore (sin
e TX is not isos
eles) X must have only one singular vertex 
lass. Thus byLemma 4.2, X = X(1; n; n+1) with n > 2 odd. But this surfa
e has only one singularity,and X must have at least two singularities to form the f -preimage of P and R .Cases 1-5 exhaust the possibilities; the proof is 
omplete.



364.3 Some Elementary Number TheoryNote that the holonomy �eld kX := Q(�Q + ��1Q ) is a degree two sub�eld of the
y
lotomi
 �eld Q(�Q), sin
e it is the maximal sub�eld �xed by 
omplex 
onjugation. Inlight of this, we list some 
lassi
al results about these two �elds as re
orded inWashington'stext[18℄.Lemma 4.4 If Q is odd then Q(�Q) = Q(�2Q) .Lemma 4.5 (Prop 2.3 in [18℄) Assume that Q 6� 2 mod 4 . A prime p rami�es in Q(�Q)if and only if pjQ .Lemma 4.6 (Prop 2.15 in [18℄) Let p be a prime, and assume that n 6� 2 mod 4 . If n =pm then Q(�n)=Q(�n + ��1n ) is rami�ed only at the prime above p and at the ar
himedeanprimes. If n is not a prime power, then Q(�n)=Q(�n + ��1n ) is unrami�ed ex
ept at thear
himedean primes.Remark 4.3 Washington's proofs of Lemmas 4.5 and 4.6 make 
lear that the results 
arrythrough to the 
ase Q � 2 mod 4 ex
ept that in that 
ase, the prime 2 does not ramify inQ(�Q) .For a triangular billiards surfa
e X = X(a1; a2; a3), it is tempting to de�ne a \Q-value" for the surfa
e by QX := a1 + a2 + a3 . Unfortunately this notion is not quitewell-de�ned up to translation equivalen
e; as demonstrated in Lemma 4.1, the trianglesT (a; a; b) and T (2a; b; 2a + b) unfold to translation equivalent translation surfa
es if (andonly if) b is odd. However, the following lemma and its 
orollary show that this notion iswell-de�ned up to a fa
tor of 2 .Lemma 4.7 If Q(�m) 6= Q(�n) then Q(�m + ��1m ) 6= Q(�n + ��1n ).



37Proof. This is an exer
ise in elementary algebrai
 number theory, and is presumably wellknown. Let k be the maximal totally real sub�eld of the 
y
lotomi
 �elds Q(�m) andQ(�n) for positive integers m;n > 2 .The degrees of Q(�m) and Q(�n) as �eld extensions of Q are �(m) and �(n) respe
-tively, where � is the Euler totient fun
tion. Sin
e Q(�m) and Q(�n) are ea
h degree 2extensions of k, we have that �(m) = �(n) .Let p be an odd prime dividing m . By Lemma 4.5, p rami�es in Q(�m ) . If m is apower of p, then p is totally rami�ed in Q(�m) . Sin
e Q � k � Q(�m), if m is a powerof p then p must ramify in k . If m is not a power of p , then Lemma 4.6 tells us thatthe extension Q(�m )=k is not rami�ed at the prime above p ; thus again p must ramifyin k . But also Q � k � Q(�n), so p must ramify in Q(�n) . By Lemma 4.5, this impliesthat p divides n . Therefore m and n have the same odd prime divisors; furthermore, byRemark 4.3, these arguments extend to show that either 4 divides both m and n or itdivides neither.First suppose that m and n are 
ongruent modulo 2 . Let m = �peii and n = �pfiibe the prime fa
torizations of m and n . Then we have1 = �(m)�(n) = Q(pi � 1)pei�1iQ(pi � 1)pfi�1i =Y pei�fii : (4.1)Therefore ei = fi for ea
h i, and m = n . Hen
e in this 
ase Q(�m ) = Q(�n) .If m and n are not 
ongruent modulo 2, then we may assume that m is odd andn is 
ongruent to 2 modulo 4 . Sin
e �(m) = �(2m) when m is odd, we 
an repeat the
al
ulation (4.1) with 2m and n, and get that 2m = n . But it is well known that for anyodd m, Q(�m) = Q(�2m) . Therefore in fa
t k is the maximal totally real sub�eld of onlyone 
y
lotomi
 �eld.Corollary 4.1 Suppose that X(a1; a2; a3) and X(b1; b2; b3) have the same holonomy �eld,



38and that b1+b2+b3 < a1+a2+a3 . Then b1+b2+b3 is odd, and a1+a2+a3 = 2(b1+b2+b3) .Proof. Suppose X(a1; a2; a3) and X(b1; b2; b3) have the same holonomy �eld k . WriteQX = a1 + a2 + a3 and QY = b1 + b2 + b3 . Then by Lemma 2.4, we have that k is themaximal totally real sub�eld of Q(�QX ) and of Q(�QY ) . The result then follows dire
tlyfrom Lemma 4.7.
4.4 Combinatorial Lemmas
Lemma 4.8 Let f : X(a1; a2; a3) ! X(b1; b2; b3) be a translation 
over of triangularbilliards surfa
es. Then Xai-(a1+a2+a3) ai � n Xbi-(b1+b2+b3) bi : (4.2)Proof. The sum of the 
one angles of the singular points of X(a1; a2; a3) is at least ntimes the sum of the 
one angles of the singular points of X(b1; b2; b3) . By Remark 2.1,the result follows.Lemma 4.9 Let f : X(a1; a2; a3) ! X(b1; b2; b3) be a translation 
over of triangularbilliards surfa
es su
h that the genus of X(a1; a2; a3) is greater than 1. If a1 + a2 + a3 =b1 + b2 + b3 and f is not a 
omposition of 
overs from Lemma 4.1, then f is of degree 1.Proof. Write Q := a1 + a2 + a3 = b1 + b2 + b3 . Let n be the degree of f , and supposethat n � 2 . Lemma 4.8 then gives Pbi-Q bi � Qn . Hen
e, sin
e n � 2, we haveXbijQ bi � Q2 : (4.3)



39Writing qi = Qbi , we have the equivalent expressionXbijQ 1qi � Q2 : (4.4)Note that if bijQ then qi is an integer. Of 
ourse, Equation (4.3) is always satis�ed ifT (b1; b2; b3) is a right triangle. If T (b1; b2; b3) is not a right triangle, the equation is rarelysatis�ed. Thus we will redu
e the problem to three 
ases (up to permutation of verti
es).Case 1 The triangle T (b1; b2; b3) is not a right triangle.In this 
ase, re
alling that g
d(b1; b2; b3) = 1, we show that there are only three possibilitiesfor the bi whi
h satisfy Equation (4.3).If all three bi divide Q then Y is nonsingular. The only non-right triangle whi
hunfolds to a nonsingular surfa
e is T (1; 1; 1); but sin
e this is also the only triangle withQ = 3, if Y = X(1; 1; 1) then X = X(1; 1; 1), 
ontradi
ting our assumption that X has asingularity.Hen
e we 
an assume for this 
ase that b3 - Q . Therefore to satisfy Equation 4.4we seek integers q1; q2 > 2 su
h that 1q1 + 1q2 > 12 (4.5)Without loss of generality we assume q1 � q2 . If q1 � 4, Equation (4.5) is impossible. Ifq1 = 3 then Equation (4.5) is satis�ed if q2 � 5 . Thus the remaining 
andidates for Y areX(3; 4; 5) and X(3; 5; 7) . By Lemma 4.8, X(3; 4; 5) admits at most a degree two 
over;by Lemma 2.1 the degree two 
overs satisfying the hypotheses of the lemma 
ould only bef : X(2; 5; 5) ! X(3; 4; 5) or X(1; 1; 10) ! X(3; 4; 5) . However, these maps would haveto be balan
ed 
overs, and X(3; 4; 5) has a singularity with a Type II �ngerprint. Thus



40by Corollary 3.3 these maps do not exist. Similarly, the only feasible 
over of X(3; 5; 7) ofdegree greater than 1 is f : X(1; 7; 7) ! X(3; 5; 7); again, this would be a balan
ed 
over,and X(3; 5; 7) has a singularity with a Type II �ngerprint.Case 2 The triangle T (b1; b2; b3) is a right triangle, with b1 = Q2 and neither b2 nor b3dividing Q .Here Lemma 4.8 implies that the degree of f is at most two. The sum of the 
one anglesof the singularities of Y is b2 + b3 . Thus if n = 2 then the sum of the 
one angles of thesingularities of X is 2(b2+ b3) = Q = a1+ a2+ a3 . Therefore T (a1; a2; a3) must be eitherT (b2; b2; 2b3) or T (2b2; b3; b3) . Both these possibilities are a

ounted for by the 
overs ofLemma 4.1.Case 3 The triangle T (b1; b2; b3) is a right triangle, with b1 = Q2 and b2jQ .Hen
e the triangle has angles �2 , �q , and q � 22q for some integer q dividing Q . We have
T (b1; b2; b3) = 8>>><>>>: T (2; q � 2; q) if q oddifT (1; q2 � 1; q2) if q evenFirst suppose that q is odd. Then Y = X(2; q � 2; q) . If q = 3 then Y = X(1; 2; 3)and X is either X(1; 2; 3) (ruled out be
ause it is genus 1) or X(1; 1; 4) (already listedin Lemma 4.1). If q = 5 then by Lemma 2.1 X is either X(3; 3; 4) (already listed inLemma 4.1) or X(1; 3; 6) . A translation 
over f : X(1; 3; 6) ! X(2; 3; 5) would haveto be a balan
ed triple 
over, and the �ngerprints would not mat
h. For q � 7, onlydouble 
overs are possible, by Lemma 4.8. Sin
e g
d(q � 2; q) = 1, there is only onesingularity on Y and it has 
one angle 2(q � 2)� . Thus by Lemma 2.1 possible double
overs are f : X(4; q � 2; q � 2) ! Y and f : X(1; 3; 2q � 4) ! Y . The 
overing surfa
es



41X(4; q � 2; q � 2) are a

ounted for by Lemma 4.1. The 
overing surfa
es X(1; 3; 2q � 4)have one singular vertex 
lass when 3jq; in this 
ase f must be balan
ed. But if 3 - qthen X would have a 
oni
al singularity with 
one angle 6� mapping to a nonsingularpoint of Y , whi
h is impossible sin
e the degree of the 
over is at most 2. Now supposethat q is even. If q = 4 then Y = X = X(1; 1; 2), but the lemma assumes that X has asingularity. If q = 6 then Y = X(1; 2; 3), but we have already dealt with this surfa
e. Ifq � 8 then g
d(q; q2 �1) < q2 �1, so Y has a singular vertex 
lass and the total 
one angleof the singularities in that 
lass is 2(q� 2)� . Thus the only possible 
overing surfa
es areX(2; q2 � 1; q2 � 1; ) and X(1; 1; q � 2); but both these possibilities are a

ounted for byLemma 4.1.Lemma 4.10 Let f : X ! Y be a translation 
over of triangular billiards surfa
es. Letm be the smallest integer su
h that all singularities of Y have 
one angle at least 2m� .Suppose that deg f < m . Then for ea
h vertex 
lass Ci on X, f(Ci) 
onsists entirely ofsingular points or entirely of nonsingular points.Proof. Let m be as above and assume that deg(f) < m . Suppose for 
ontradi
tion thatfor some j, f(Cj) 
ontains singular points and nonsingular points. Ea
h member of Cjhas the same 
one angle, and this 
one angle must be at least 2m�, sin
e some of themembers are mapped by a translation 
over to a singularity of 
one angle 2m� . Thus, forthose elements of Cj whi
h are mapped to nonsingular points, the de�nition of a rami�ed
over requires that f be lo
ally of degree at least m, whi
h 
ontradi
ts our assumptionthat deg(f) < m . This 
ompletes the proof.
4.5 Proof of the Main TheoremNow we 
an prove Theorem 4.1.



42Theorem 4.1 Suppose f : X ! Y is a translation 
over of triangular billiards surfa
esof degree greater than 1. Then f is of degree 2, and is a 
omposition of one or two of the
overs fi des
ribed in Lemma 4.1.Proof. Suppose X := X(a1; a2; a3), Y := X(b1; b2; b3), and f : X ! Y is a translation
over of degree deg f > 1 . Assume that the genus of X is greater than 1. Write QX :=a1 + a2 + a3 and QY := b1 + b2 + b3 . Let v1; v2; v3 and w1; w2; w3 be the 
orrespondingverti
es of T (a1; a2; a3) and T (b1; b2; b3) respe
tively. By Corollary 1, X and Y havethe same holonomy �eld k . By Corollary 4.1, we have QY 2 f2QX ; QX ; 12QXg . IfQY = 2QX , then by Lemma 4.8, we must have Pbi-QY bi � QX2 = QY4 . But then we wouldhave PbijQY bi � 34QY , whi
h is only the 
ase for the following surfa
es with even Q-value:X(1; 1; 2), X(1; 2; 3), X(3; 4; 5) . Of 
ourse, QX � 3, so Y 6= X(1; 1; 2) . If Y = X(1; 2; 3)then X = X(1; 1; 1), whi
h is of genus 1, a 
ontradi
tion. If Y = X(3; 4; 5), then Y has asingularity with 
one angle 10� . But, no surfa
e X with QX = 6 
ould have a 
one angleof at least 10� .If QY = QX , then we are done by Lemma 4.9. Thus, appealing to Corollary 4.1, weshall assume for the remainder of the proof that QX = 2QY .If Y has no singular vertex 
lasses, then sin
eQ is odd, we must have Y = X(1; 1; 1) .There are only two surfa
es with a Q-value of 6: they are X(1; 1; 4) and X(1; 2; 3), andea
h of these surfa
es 
overs X(1; 1; 1) as des
ribed in Lemma 4.1. If Y has three singularvertex 
lasses, then Lemma 4.8 implies that f 
an only be a degree two balan
ed 
over.Thus we are done by Lemma 4.3.There are two 
ases remaining: Y may have either one or two singular vertex 
lasses.Case 1 The surfa
e Y has one singular vertex 
lass.In this 
ase we have, without loss of generality, b1jQY , b2jQY , and b3 - QY . Sin
e b1and b2 are divisors of the odd number QY := b1+ b2 + b3, b3 must also be odd. Therefore



43b3g
d(b3; Q) � 3 . The 
one angle at ea
h of the singularities of Y 
orresponding to b3 isb3g
d(b3; Q)2� � 6� .Lemma 4.8 eliminates all possible Y for deg f � 4 ex
ept Y = X(3; 5; 7) . But,again by Lemma 4.8, the only possible degree four 
overing surfa
e would be X(1; 1; 28),and su
h a 
over would have to be balan
ed, 
ontradi
ting Lemma 4.3.If deg f = 2: Lemma 4.10 tells us that if deg f = 2 then for ea
h j = 1; 2; 3, we havethat f(��1X (vj)) \ ��1Y (w3) is either empty or all of f(��1X (vj)) .Suppose that Y = X(3; 5; 7) . Lemma 4.10 restri
ts the possible degree two 
oversto surfa
es of the form f : X(14; a2; a3)! Y , where ea
h of a2 and a3 is either a divisor of30 or twi
e a divisor of 30 . The only possible 
overing surfa
e this leaves is X(15; 14; 1) .But any translation 
over f : X(15; 14; 1) ! X(3; 5; 7) would have to be balan
ed, soLemma 4.3 applies.Now suppose that Y 6= X(3; 5; 7) . Let C be the singular vertex 
lass of Y . We musthave b3Q > 12, and so by Remark 2.1 C must 
orrespond to an obtuse angle � of the billiardtable. Let ~X be the surfa
e obtained from X by pun
turing all singular vertex 
lasses of Xwhi
h are not 
ontained in f�1(C) . Sin
e b3Q > 12 and f is degree 2, the sum of the anglesof the billiard table 
orresponding to the vertex 
lasses in the f -preimage of C must beobtuse. Thus we 
an apply Lemma 3.3 to ~X . The restri
tion of f to ~X is balan
ed. Sin
eY has only one singular vertex 
lass, elements of C must have Type II �ngerprints unlessT (b1; b2; b3) is isos
eles. If the �ngerprints are Type II, then Proposition 3.1 and Lemma3.3 demonstrate that X and Y are translation equivalent. So the only possibility is thatthe �ngerprints are Type I. In that 
ase Y is an isos
eles triangular billiards surfa
e. LetC 0 be a vertex 
lass on X that is in f�1(C), and write � = b3�Q . The billiard table anglethat C 0 
orresponds to is either � or �2 . If the angle is �, then X and Y are translationequivalent. If the angle is �2, then there is another vertex 
lass on X whi
h is also mappedto C . But then that vertex 
lass would also 
orrespond to an angle of �2, and we would



44have that X is an isos
eles triangular billiards surfa
e, implying that f : X ! Y is of theform des
ribed in Lemma 4.1.If deg(f) = 3: Then Lemma 4.8 allows only the following possibilities for Y : thesurfa
esYn = 8>>><>>>: X(3; n; 2n � 3) 3 - nX(1; n3 ; 2n3 � 1) 3jn :Note that g
d(2n � 3; 3n) 2 f1; 3g . First suppose that g
d(2n � 3; 3n) = 1 . ThenQ = 3n (thus n is odd), 3 - n, and we have Yn = X(3; n; 2n� 3) . We have that n � 5 andhen
e that 2n� 3 � 7 . On Yn, there is only one singular vertex 
lass and the 
one angleof ea
h singular point is (2n � 3)2� . Thus Lemma 4.10 applies here. Sin
e Yn is neverisos
eles, ea
h singular point has a Type II �ngerprint. Let ~X be the surfa
e obtainedfrom X by deleting all singularities of X whi
h f maps to nonsingular points, and let ~fbe the restri
tion of f to ~X . By Lemma 4.10, the elements of X � ~X are the union ofentire vertex 
lasses. Thus a Type II �ngerprint on ~X will uniquely identify the triangularbilliards table used to generate X, by Lemma 3.3. Be
ause ~f is a balan
ed map, ea
hsingular point of ~X must have the same Type II �ngerprint (on ~X) as its ~f-image on Y .But, a Type II �ngerprint uniquely identi�es the triangle used to generate the surfa
e(this works for ~X as well); hen
e X and Yn are the same billiards surfa
e, and Lemma 2.2says that a triple 
over is impossible.Now suppose that g
d(2n� 3; 3n) = 3 . Then the 
one angle of ea
h singular pointon Yn is 2n�33 2� . If n > 6 then 2n� 33 > 3, so that again we 
an apply Lemma 4.10 andLemma 3.3, and the same �ngerprint argument goes through. The remaining 
ases aren = 3; 6 . We have Y3 = X(1; 1; 1) and Y6 = X(1; 2; 3), neither of whi
h have singularities.Case 2 The surfa
e Y has two singular vertex 
lasses.



45Assume b1jQ and b2; b3 - Q . Sin
e Q is odd, b1Q � 13, so Lemma 4.8 implies thatdeg(f) � 3 . But, if deg(f) = 3, Lemma 4.8 also implies that f is balan
ed, 
ontradi
tingthe result of Lemma 4.3 that balan
ed 
overs are of degree at most 2. Thus deg(f) = 2 .Note that b2 and b3 must have the same parity.Sub
ase 2A. Both b2 and b3 are odd.Then big
d(bi; Q) � 3, so by Lemma 4.10, ea
h vertex 
lass of X maps to all singularpoints or all nonsingular points.If one vertex 
lass of X maps to nonsingular points: Say the vertex 
lass C1 
orre-sponding to a1 maps to nonsingular points. Then a = 2b1, and 2b1j2Q, so C1 is nonsin-gular, so f is balan
ed.If two vertex 
lasses of X map to nonsingular points: Let them be C1 and C2, 
or-responding to a1 and a2 . If C1 is singular, then by Lemma 4.10 we have a1 = 2d for somedjQ . But sin
e a3 = 2(b2 + b3), this would mean that all the ai are even, 
ontradi
tingthe fa
t that g
d(a1; a2; a3) = 1 .Sub
ase 2B. Both b2 and b3 are even.If one vertex 
lass of X maps to nonsingular points: Let it be C1 . We have a2 +a3 = 2(b2 + b3), so a1 must be even. But also a2 and a3 must be even, sin
e 2j big
d(bi; Q)and big
d(bi; Q) j ajg
d(aj ; Q) for ea
h i; j 2 f2; 3g . Again, this is a 
ontradi
tion.If two vertex 
lasses of X map to nonsingular points: Let them be C1 and C2 . Wehave that a3 = 2(b2 + b3) is even. If C1 is singular then again we have that a1 (andhen
e a2) is even, on
e more 
ontradi
ting that g
d(a1; a2; a3) = 1 . Hen
e C1 and C2 arenonsingular, and f is balan
ed.



465 ALGEBRAIC PERIODICITY
The purpose of this note is to provide an alternate proof of the 
laim, originallystated in [3℄, that surfa
es arising from billiards in a rational triangle are algebrai
allyperiodi
. The proof of the 
laim there 
ontains two minor errors. First, letting �Q denotee2�i=Q, it assumes that the 
oordinates of the verti
es of the �a1�Q ; a2�Q ; a3�Q � triangles inits 
onstru
tion are 
ontained in Q(�Q), when in fa
t they are only guaranteed to bein Q(�2Q) . Se
ond, on a related note, it assumes that the real and imaginary parts ofelements of the �eld Q(�Q) lie in the �eld Q(�Q + ��1Q ) . In general, the imaginary partsmay lie in a degree 2 extension of Q(�Q + ��1Q ) . Examples of this already o

ur whenQ = 3; 5 . However, these issues 
an be resolved by a simple geometri
 argument, as weshow in the proof of Lemma 5.1.Remark 5.1 We let Un denote the nth Chebyshev polynomial of the se
ond kind. We willuse the following properties of Chebyshev polynomials.1. sin((n+1)�)sin � = Un(
os �)2. If n is even, then Un is an even polynomial of degree n . If n is odd, then Un is anodd polynomial of degree n .Remark 5.2 Let � be the Euler totient fun
tion. It is well known that, for any positiveinteger Q, the degree of the number �eld Q(
os(2�Q )) is equal to 12�(Q) . Note that if Qis odd, then �(Q) = �(2Q) . It follows that, when Q is odd, we will have Q(
os(2�Q )) =Q(
os( �Q)) .The following is Theorem 2.5 of [3℄.Theorem 5.1 (Calta-Smillie) If a translation surfa
e X is obtained by identifying theedges of polygons in the plane by maps whi
h are restri
tions of translations, and if all the



47verti
es of these polygons lie in a subgroup � � R2 , then the holonomy of S is 
ontainedin � .Lemma 5.1 The holonomy �eld of X(a1; a2; a3) is 
ontained in Q(
os(2�Q )), where Q =g
d(a1; a2; a3) .Proof. Let � = �Q . Let T := T (a1; a2; a3) . Sin
e g
d(a1; a2; a3) = 1, we 
an and doassume that a1 is odd. Label the verti
es of T 
orresponding to the angles a1�, a2�,and a3� as P1, P2, and P3 . We s
ale and rotate T so that the P1P2 side has edgeve
tor v = (1; 0), and so that the P1P3 side has edge ve
tor w = (t 
os(a1�); t sin(a1�)),where by the Law of Sines we have t = sin(a2�)sin(a3�) . The dihedral group D generated byre
e
tions in the sides of T a
ts on the set D � T of 2Q distin
t oriented triangles arisingfrom billiards in T . We 
an 
onstru
t X from this set by identifying the appropriateedges of the elements of D � T . We may also view D as a
ting on the edge ve
tors of T .Let vn = (
os(2n�); sin(2n�)) and wn = (t 
os((2n + 1)�); t sin((2n + 1)�)) . With thisnotation, we see that D � v is the set fv = v0; v1; :::; vQ�1g . Re
alling that a1 is odd, wealso see that D � w is the set fw0; w1; :::; wQ�1g . Note that w = wa1=2�1 .Let � be the subgroup of R2 generated by the vn and wn . Theorem 5.1 implies thatthe entire holonomy of S is 
ontained in � .Let L = Q(
os 2�) . We will show that all the vn and wn are L-linear 
ombinationsof v0 and v1, and that furthermore L is the smallest su
h �eld.Let l and l0 be the real numbers su
h that lv0 + l0v1 = w0 . Sin
e v0 and v1 arere
e
tions of ea
h other a
ross the line generated by w0, we see that v0 + v1 is a realmultiple of w0 . Hen
e l0 = l .Proje
ting v0 and v1 onto w0, we see that



48l = jjw0jjjjv0 + v1jj = t2 
os� = sin(a2�) sin�sin(a3�) sin(2�) = sin(a2�)sin� sin�sin(a3�) sin�sin(2�) : (5.1)Applying Remark 5.1 to the last expression, we getl = Ua2�1(
os�)Ua3�1(
os�)U1(
os�) : (5.2)If Q is even, we have that (a2 � 1) and (a3 � 1) have opposite parity, and thus byour Remark 5.1, Ua2�1(
os�)Ua3�1(
os�)U1(
os�) is a rational fun
tion in 
os2 � . Thus l 2 Q(
os2 �) =Q(
os(2�)) . If Q is odd, then already by Remark 5.2, Q(
os �) = L, and sin
eUa2�1(
os�)Ua3�1(
os�)U1(
os�) is a rational fun
tion in 
os�, we again have that l 2 L .Similarly, for some real number k, we have k(w0+w1)=v1; by proje
tion we 
al
ulatek = jjv1jjjjw0 + w1jj = 1t 
os(2�) = 1t2 l = sin2(a3�)sin2(a2�) l = U2a3�1U2a2�1 l: (5.3)Sin
e U2a3�1 and U2a2�1 are both polynomials in 
os2 �, we get k 2 L .Let R be the element of D that a
ts on the plane as 
ounter
lo
kwise rotation by2� . Note that R � vn = vn+1 and R � wn = wn+1 . Thus for all integers n,lvn + lvn+1 = Rn � (lv0 + lv1) = Rn � w0 = wn (5.4)and kwn + kwn+1 = Rn � (kw0 + kw1) = Rn � v1 = vn+1: (5.5)Thus we have the relations wn = ( 1k � l)vn� lvn�1 and vn+1 = 1lwn�vn . These tworelations demonstrate that wn and vn are in spanLfv0; v1g for all n . Hen
e spanLfv0; v1g=� .



49Theorem 5.1 says that � 
ontains the absolute holonomy of S . Hen
e L 
ontains theholonomy �eld of X.

FIGURE 5.1: The sets fvng and fwng for X(3; 4; 5), with a1 = 3 .
The following is a slight strengthening of Theorem 9.1 in [Calta-Smillie℄, whi
hfollows from the proof of Theorem 1.2 of [Calta-Smillie℄, whi
h they in turn attribute toM
Mullen.Theorem 5.2 (Calta-Smillie) If there is an aÆne automorphism of S with tra
e � and theholonomy �eld of S is 
ontained in a �eld generated by �, then S is 
ompletely algebrai
allyperiodi
.The following theorem is stated as Theorem 1.4 in [Calta-Smillie℄.



50Theorem 5.3 (Calta-Smillie) If X is a triangular billiards surfa
e then X is 
ompletelyalgebrai
ally periodi
.Proof. The surfa
e X admits rotation by 2�Q as an aÆne automorphism. This automor-phism has tra
e 2 
os(2�Q ) . In Lemma 5.1 we showed that the holonomy �eld of X is
ontained in the �eld generated by 
os(2�Q ) . Hen
e, by Theorem 5.2, X is algebrai
allyperiodi
.



516 INFINITELY GENERATED VEECH GROUPS VIATRANSLATION COVERS
In this 
hapter we dis
uss the use of translation 
overs in 
onstru
ting translationsurfa
es with in�nitely generated aÆne symmetry groups (
alled Vee
h groups). We re-view the relevant de�nitions, present results of Hubert and S
hmidt, then demonstratethat members of a spe
ial 
lass of surfa
es identi�ed by Aurell and Itzykson in [1℄ havein�nitely generated Vee
h groups. Throughout this 
hapter, we shall use the notation(S; !) to refer to a translation surfa
e, where S is the underlying Riemann surfa
e and !is the holomorphi
 one-form whi
h endows X with a translation stru
ture, as des
ribedin Se
tion 2.2.1.6.1 Vee
h Groups and Vee
h Surfa
esThe matrix group SL2R a
ts on the set of all translation surfa
es in the followingway: for ea
h A 2 SL2R, A �X is the result of post-
omposing the 
oordinate 
harts ofX with the standard linear a
tion of A on R2 . See, for example, [10℄. Note that, sin
e Aa
ts linearly on the 
harts of (X;!), the 
hange-of-
oordinate fun
tions of A �X will betranslations, so SL2R really does a
t on the set of translation surfa
es.De�nition 6.1 Let SL(X) be the SL2R-stabilizer of X . The Vee
h group of X is theimage of SL(X) in PSL2R, denoted PSL(X) .A di�eomorphism of X whose image is a translation surfa
e is 
alled an aÆnedi�eomorphism. Elements of SL(X) 
an also be viewed as the di�erentials of those aÆnedi�eomorphisms whose images are translation equivalent to X . It is a 
ommon abuse of



52notation to let a matrix A := 0� a b
 d 1A refer to both an element of SL(X) and its imagein PSL(X) .The hyperboli
 upper half plane H admits an a
tion by PSL2R via M�obius trans-formations. If the quotient of H by the a
tion of PSL(X) has �nite hyperboli
 area, thenwe say that X is a Vee
h surfa
e. Vee
h [15℄ gave the following result, known as the Vee
hDi
hotomy:Theorem 6.1 (Vee
h) If X is a Vee
h surfa
e, then for ea
h dire
tion �, either:(1) X de
omposes into a �nite number of 
ylinders in the dire
tion � with 
ommen-surable moduli; or(2) Ea
h geodesi
 path in the dire
tion � is uniformly distributed in X .Here, the modulus of a 
ylinder refers to the ratio of its width to its height.6.2 Te
hniques of Hubert and S
hmidtIn [9℄, Hubert and S
hmidt use the fa
t that there exists a translation 
overf : X(3; 3; 4) ! X(1; 1; 3) to prove that the Vee
h group of X(3; 3; 4) is in�nitely gener-ated. In this se
tion we review their tools, so that we 
an apply them to a di�erent surfa
ein Se
tion 6.4.De�nition 6.2 A point P on a translation surfa
e X is a 
onne
tion point if everygeodesi
 
onne
ting P to a singularity of X extends to be a saddle 
onne
tion on X .A dire
tion is said to be a periodi
 dire
tion on X if every geodesi
 on X in thatdire
tion is 
losed.



53A dire
tion is 
alled a paraboli
 dire
tion ofX if there exists an aÆne di�eomorphismofX whi
h preserves the set of geodesi
s in this dire
tion and whose di�erential is paraboli
(has tra
e equal to 2). A 
onsequen
e of the Vee
h Di
hotomy is that, on a Vee
h surfa
e,the paraboli
 dire
tions 
oin
ide with the periodi
 dire
tions.De�nition 6.3 A translation surfa
e X is of strong holonomy type if the following 
on-ditions hold:(1) Every holonomy ve
tor and every saddle 
onne
tion ve
tor of X has its x-andy-
oordinates in the holonomy �eld of X .(2) The periodi
 dire
tions of X are exa
tly the verti
al and those dire
tions whoseslopes are in the holonomy �eld of X .De�nition 6.4 A point P on a translation surfa
e X is a rational point if there exist twodistin
t paraboli
 dire
tions for Xwith 
orresponding paraboli
 elements of SL(X) that �xP .Lemma 6.1 (Hubert-S
hmidt) For P a nonsingular point on a Vee
h surfa
e X of strongholonomy type, the following are equivalent:1. P is a 
onne
tion point;2. P is a rational point;3. after the development of a singular point has been �xed as the origin, every developedimage of P is of 
oordinates in the holonomy �eld.Hubert and S
hmidt mark 
ertain nonsingular points fP1; :::; Png on a translationsurfa
e X, 
all the resulting marked surfa
e (X;P1; :::; Pn), and then de�ne the Vee
hgroup of the resulting surfa
e to be those elements of PSL(X) whi
h stabilize the set



54of marked points. On the marked surfa
e, the points fP1; :::; Png are 
onsidered to be(removable) singularities. Note that (X;P1; :::; Pn) is still a translation surfa
e.Proposition 6.1 (Hubert-S
hmidt) Let P be a nonperiodi
 
onne
tion point on a Vee
hsurfa
e X . Then PSL(X;P ) is in�nitely generated.Sket
h of Proof. Hubert and S
hmidt show in [9℄ that it suÆ
es to prove that theparaboli
 dire
tions of PSL(X;P ) are dense in the unit 
ir
le S1 . It is well known thatthe set of dire
tions of geodesi
s 
onne
ting any point on X to singularities on X isdense in S1 . Sin
e P is a 
onne
tion point, the set of dire
tions of saddle 
onne
tionsthrough P must be dense in S1 . Be
ause X is a Vee
h surfa
e, ea
h su
h dire
tion is aperiodi
 dire
tion on X and hen
e there exists a paraboli
 element � 2 SL(X) whi
h isthe di�erential of an aÆne automorphism of X �xing P . Sin
e � �xes P , � 2 SL(X;P ) .Therefore the paraboli
 dire
tions of PSL(X;P ) are dense in S1 .Proposition 6.1 has the following immediate 
orollary, whi
h we will use in Se
tion6.4. Although Hubert and S
hmidt do not expli
itly state this 
orollary, they do impli
itlyuse it in [9℄.Corollary 6.1 Let P1; :::; Pn be nonperiodi
 
onne
tion points on a Vee
h surfa
e X su
hthat the set of dire
tions of saddle 
onne
tions through Pi is the same for ea
h i . ThenPSL(X;P1; :::; Pn) is in�nitely generated.Proof. Hubert and S
hmidt's proof of Proposition 6.1 goes through for this additionallymarked surfa
e as long as we 
an show that the set of paraboli
 dire
tions of (X;P1; :::; Pn)is dense in S1 . But sin
e the set of dire
tions of saddle 
onne
tion through Pi is the samefor ea
h i, ea
h dire
tion in this set 
orresponds to a paraboli
 element of PSL(X) whi
his the di�erential of an automorphism �xing the set fP1; :::; Png .We will use the following result of M
Mullen, whi
h he proves in [14℄ and whi
hHubert and S
hmidt [9℄ restate in the following way.



55Lemma 6.2 (M
Mullen) If the holonomy �eld of a translation surfa
e X is a real quadrati
extension of Q , then X is in the GL2(R)-orbit of a nonarithmeti
 surfa
e of strongholonomy type.The following lemma, proven independently by Vorobets [16℄ and Gutkin and Judge[6℄, demonstrates a 
onne
tion between translation 
overs and Vee
h groups.Lemma 6.3 (Vorobets, Gutkin-Judge) If f : X ! Y is a balan
ed 
over of translationsurfa
es, then there exist subgroups H 2 PSL(X) and G 2 PSL(Y ) su
h that H and Gare PSL2(R)-
onjugate.This lemma has the following 
orollary whi
h will be important in the next se
tion:Corollary 6.2 Let Y be a Vee
h surfa
e and let fP1; :::; Png � Y be a set of nonperiodi

onne
tion points su
h that the set of dire
tions of saddle 
onne
tions through Pi is thesame for ea
h i . Let f : X ! Y be a translation 
over whi
h is rami�ed above ea
h Piand is not rami�ed above any other nonsingular points of Y . Then PSL(X) is in�nitelygenerated.Proof. Be
ause f rami�es only above the points fP1; :::; Png as well as possibly above thesingular points of Y , f indu
es a balan
ed translation 
over f 0 : X ! (Y ;P1; :::; Pn) . ByCorollary 6.1, PSL(Y ;P1; :::; Pn) is in�nitely generated. By Lemma 6.3, there must existsubgroups H1 2 PSL(Y ;P1; :::; Pn) and H2 2 PSL(X) whi
h are PSL2R-
onjugate. Buta �nite-index subgroup of an in�nitely generated group must itself be in�nitely generated;hen
e H1 is in�nitely generated, and its 
onjugate H2 is therefore also in�nitely generated.Likewise, a �nite group extension of an in�nitely generated group must also be in�nitelygenerated. Thus PSL(Y ) is in�nitely generated.Hubert and S
hmidt [9℄ impli
itly use the pre
eding 
orollary, along with the fa
tthat f : X(3; 3; 4) ! X(1; 1; 3) is a translation 
over rami�ed over nonperiodi
 
onne
tion



56points of the Vee
h surfa
e X(1; 1; 3), to prove that PSL(X(3; 3; 4)) is in�nitely generated.We shall prove something similar for a spe
ial 
olle
tion of surfa
es in the following se
tion.6.3 The Aurell-Itzykson Constru
tionIn [1℄, Aurell and Itzykson show that for a given triangular billiards surfa
e (S; !)of genus g, there exists a basis f! = !1; !2; :::; !gg for H1(X; C ) su
h that ea
h (X;!i) iseither a triangular billiards surfa
e or a 
overing surfa
e of a triangular billiards surfa
evia a nontrivial translation 
over. The various !i are 
alled the asso
iates of !, and byanalogy we 
all the surfa
es (X;!i) asso
iate surfa
es of (S; !) . Using translation 
overte
hniques of Hubert and S
hmidt [9℄, as well as results of Ward [17℄ and M
Mullen [14℄,we 
an show that 
ertain of these surfa
es have an in�nitely generated Vee
h group.For our purposes, the results of Aurell and Itzykson in [1℄ regarding asso
iates 
anbe summarized as follows:Proposition 6.2 (Aurell-Itzykson) Let (S; !) := X(a1; a2; a3) be a triangular billiardssurfa
e of genus g, with Q := a1+a2+a3 . For any integer m, let m denote the nonnegativeremainder when dividing m by Q . Let n 2 f1; 2; :::; Qg su
h that na1 + na2 + na3 = Q .Let t = g
d(na1; na2; na3) . Then there exists a 1-form 
 de�ned on X su
h that thereis a degree t translation 
over f : (X; 
) ! X(na1t ; na2t ; na3t ) . Ea
h su
h 
 is 
alled anasso
iate of ! . Furthermore, there are exa
tly g su
h values of n .For ea
h n 2 f1; 2; :::; Qg su
h that na1 + na2 + na3 = Q, we shall refer to theasso
iate surfa
e (S; 
) as X(na1; na2; na3) .



576.4 Aurell-Itzykson Surfa
es With In�nitely Generated Vee
h GroupIn this se
tion, we use te
hniques of Hubert and S
hmidt to show that X(n; 2n; 7n)is in�nitely generated. Note that the surfa
e X(1; 2; 7) 
an be realized as the union of twopentagons and a de
agon with appropriate sides identi�ed, as illustrated in Figure 6.1.In [17℄, Ward 
al
ulates that (the images in PSL2(R) of) the matri
es� := 0� 1 
ot �10 + 
ot �50 1 1A and � := 0� 
os �5 � sin �5sin �5 
os �5 1Aform a generating set for the Vee
h group of X(1; 2; 7) . The presen
e of � in the Vee
hgroup re
e
ts the fa
t that X(1; 2; 7) admits a \Dehn twist" along ea
h maximal verti
al
ylinder whi
h �xes the boundaries of the 
ylinders. In Figure 6.1, the maximal 
ylinder
ontaining one of the pentagon 
enters P is shaded. By an argument involving Dehntwists, if the width of this 
ylinder is not rationally related to the distan
e from P to theleft edge of the en
losing 
ylinder, then P has in�nite orbit under the a
tion of � , andhen
e P is a nonperiodi
 point. Here, a qui
k appli
ation of trigonometry reveals that theratio of these two quantities is
os 2�5 � 
os 4�5
os 2�5 = 1� 
os 4�5
os 2�5 = 1 + 14(p5 + 1)14(p5� 1) = 2 + 13p5: (6.1)Hen
e, the ratio is not rational and P is a nonperiodi
 point.Next we show that P is a rational point of X . A 
onsequen
e of the Vee
h Di-
hotomy is that the dire
tion � of any saddle 
onne
tion on a Vee
h surfa
e is the dire
tionof a de
omposition of the surfa
e into 
ylinders with 
ommensurable moduli. The saddle
onne
tion must be on the boundary of one of the 
ylinders, and hen
e it will be �xedby an element of the Vee
h group whi
h 
orresponds to a Dehn twist in the dire
tion � .Now 
onsider the horizontal geodesi
s on X(1; 2; 7); there is 
learly a horizontal saddle
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onne
tion on X(1; 2; 7) whi
h runs through P and the 
enter of the other pentagon. Fur-thermore, be
ause of the 10-fold rotational symmetry of X(1; 2; 7), there must be at leastfour other saddle 
onne
tions running through the pentagon 
enters. Therefore there areat least �ve unique paraboli
 elements of the Vee
h group whi
h �x P ; we 
on
lude thatP is a rational point on X(1; 2; 7) .

FIGURE 6.1: Horizontal (solid) and verti
al (dotted) 
ylinders for X(1,2,7). A verti
al
ylinder 
ontaining a pentagon 
enter is shaded.
Finally, we show that P is a 
onne
tion point. The holonomy �eld of X(1; 2; 7) isQ(p5), so Lemma 6.2 implies that there exists an A 2 GL2(R) su
h that A � X(1; 2; 7)is of strong holonomy type. Let �1; �2 2 SL(X(1; 2; 7)) be (derivatives of) Dehn twists indistin
t dire
tions su
h that both twists �x P . Then A�1A�1 and A�2A�1 are elementsof SL(A � X(1; 2; 7)) whi
h �x A � P . Hen
e A � P is a rational point on A � X(1; 2; 7) .Thus, by Lemma 6.1, A �P is a 
onne
tion point on A �X(1; 2; 7) . Sin
e A a
ts linearly onthe 
harts of X(1; 2; 7), its a
tion is a bije
tion between the set of saddle 
onne
tions onX(1; 2; 7) and the set of saddle 
onne
tions on A �X(1; 2; 7) . Thus, P must be 
onne
tionpoint on X(1; 2; 7) .We summarize this dis
ussion in the following lemma:Lemma 6.4 Viewing X(1; 2; 7) as the union of two pentagons and a de
agon with appro-



59priate edges identi�ed, as in Figure 6.1, the 
enters of the two pentagons are nonperiodi

onne
tion points.Proposition 6.3 For ea
h integer n > 1, the surfa
e X(1; 2; 10n � 3) has an asso
iatesurfa
e X(n; 2n; 7n) whi
h admits a rami�ed n-fold translation 
over of f : X(n; 2n; 7n)!X(1; 2; 7), and whi
h has an in�nitely generated Vee
h group. The genus of ea
h X(n; 2n; 7n)isgn = 8<: 5n� 1 ; 3 - n5n� 2 ; 3jnProof. The triple (1; 2; 10n � 3) has, via multipli
ation by n modulo 10n, the asso
iatetriple (n; 2n; 10n2 � 3n) = (n; 2n; 7n) . Therefore, by Proposition 6.2, the triangular bil-liards surfa
e X(1; 2; 10n�3) has an asso
iate surfa
e X(n; 2n; 7n) whi
h admits a degreen translation 
over of X(1; 2; 7) . Sin
e X(1; 2; 10n � 3) and X(n; 2n; 7n) are translationsurfa
es with the same underlying topologi
al spa
e, they have the same genus. Therefore,by Remark 2.1, the genus is5n+1�12(g
d(1; 10n)+g
d(2; 10n)+g
d(10n�3; 10n) = 5n�12(1�g
d(10n�3; 10n)),whi
h is either 5n � 2 or 5n � 1 depending on whether or not 3 divides n . We writeX(1; 2; 7) = (Y; �) and X(n; 2n; 7n) = (S; !) . Let f : X(n; 2n; 7n) ! X(1; 2; 7) be thetranslation 
over given in [1℄. Let p : X(1; 2; 7) ! C [f1g and p0 : X(n; 2n; 7n)! C [f1gbe the 
overs of the Riemann sphere guaranteed by the Aurell-Itzykson 
onstru
tion. Wehave that p0 = p Æ f . A 
onsequen
e of the 
onstru
tion is that p 
an only ramify atverti
es of the triangular billiards triangulations of X(1; 2; 7), and that p0 
an only ramifyat f -preimages of these verti
es. But, if f rami�es above a point P 2 X(1; 2; 7), thensin
e p0 = p Æ f , p0 must ramify above p(P ); hen
e P must be a vertex of the billiardstriangulation of X(1; 2; 7) .Suppose n = 2 . Then applying the Riemann-Hurwitz formula to the translation
over f : X(2; 4; 14) ! X(1; 2; 7), we have that 9 = 2(3) + 1 + R2 , where R is the total



60rami�
ation number of f . Hen
e R = 4 . Sin
e the rami�
ation number of f above asingle point of X(1; 2; 7) 
annot ex
eed n � 1, we see that f must ramify above all fourelements of the vertex 
lasses of X(1; 2; 7) . Thus, in parti
ular, f must ramify above the
enters of the pentagons in the 
at diagram of X(1; 2; 7) in Figure 6.1.Now suppose n > 2 . The genus of X(n; 2n; 7n) is at least 5n � 2, so this time theRiemann-Hurwitz formula tells us that f has a total rami�
ation number at least 4n� 6 .For n > 2, we thus have 4n� 6 > 2(n� 1), so again f must ramify above at least one ofthe pentagon 
enters.Ward shows in [17℄ that X(1; 2; 7) is a Vee
h surfa
e. Sin
e X(1; 2; 7) is Vee
h, andthe pentagon 
enters are nonperiodi
 
onne
tion points, it now follows from Corollary 6.2that PSL(X(n; 2n; 7n)) is in�nitely generated.



617 CONCLUSION
The guiding problem for Chapters 2 through 5 in this thesis was the 
lassi�
ationof all translation 
overs between triangular billiards surfa
es. We solved this problem byidentifying two types of data about su
h surfa
es: the �ngerprint of a point, whi
h isessentially lo
al data; and the holonomy �eld of a surfa
e, whi
h is a more global pie
eof information. The �ngerprint was suÆ
ient to 
omplete the smaller 
lassi�
ation of allbalan
ed 
overs; uniqueness and invarian
e results su
h as Lemma 3.2, Corollary 3.2 andProposition 3.1 were key there. We �nished the 
omplete 
lassi�
ation by also 
onsideringthe holonomy �elds of surfa
es.Hubert and S
hmidt used the existen
e of a translation 
over f : X(3; 3; 4) !X(1; 1; 3) to prove that the Vee
h group of X(3; 3; 4) is in�nitely generated; Theorem 4.1shows that su
h 
overs are fairly rare.An obvious extension of this work would be to apply the same two tools to the 
on-sideration of translation 
overs among larger families of translation surfa
es. For example,any rational polygonal billiards surfa
e possesses rotational symmetry with respe
t to anyvertex of its billiards triangulation; hen
e, the �ngerprints of su
h vertex points will givenontrivial data about the surfa
es involved. Note that the 
ardinalities of the angle setsmay be larger than two, unlike the triangular 
ase. Therefore 
ombinatorial argumentsalong the lines of this thesis would be more 
ompli
ated.Similarly, the 
al
ulation of the holonomy �eld of a billiards surfa
e of a rationalpolygon is more diÆ
ult, in general, than the triangular 
ase, and yields more generi
results. Indeed, su
h a �eld need not even be a number �eld; this is 
onne
ted to the fa
tthat su
h surfa
es need not be 
ompletely algebrai
ally periodi
.A slightly di�erent extension of this thesis would be to 
lassify all translation 
oversof triangular billiards surfa
es. As we demonstrated in Chapter 6, rami�ed translation
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overs f : X ! Y in whi
h Y is a triangular billiards surfa
e but X is not 
an yieldexamples of interesting Vee
h groups. It 
ould be interesting to know if the Aurell-Itzyksonsurfa
es des
ribed in Chapter 6 give a spe
ial subset of these 
overs.
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