
AN ABSTRACT OF THE THESIS OF

Kenneth J. Janik for the degree of Doctor of Philosophy in Electrical and

Computer Engineering presented on February 27th, 1998. Title: A

Microarchitecture Study of the Counterflow Pipeline Principle.

Abstract approved:
Shih-Lien Lu

The counterflow pipeline concept was originated by Sproull et. al.[1] to

demonstrate the concept of asynchronous circuits. The basic premise is that a

simple architecture with only local communication and control and a simple

regular structure will result in increased performance. This thesis attempts to

analyze the performance of the basic counterflow pipeline architecture, find the

bottlenecks associated with this implementation, and attempt to illustrate the

improvements that we have made in overcoming these bottlenecks. From this

research, three distinct microarchitectures have been developed, ranging from a

synchronous version of the counterflow design suggested by Sproull to an all new

structure which supports aggressive speculation, no instruction stalling and

ultimately intrinsic multi-threading. To support high-level simulation of various

architectures a Java based simulation environment has been developed which

was used to explore the various design trade-offs and evaluate the resulting

performance of each of the architectures.

Redacted for Privacy

©Copyright by Kenneth J. Janik
February 27th, 1998
All Rights Reserved

A Microarchitecture Study of the Counterflow Pipeline Principle

by

Kenneth J. Janik

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented February 27th, 1998
Commencement June 1998

Doctor of Philosophy thesis of Kenneth J. Janik presented on February 27th. 1998

APPROVED:

Major rofessor, representing Electrical and Computer Engineering

Head of Department of Electrical and Computer Engineering

Dean of Gra ate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

-
Kenneth 4A Janik, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGEMENT

The research presented in this thesis would never have been possible
without the assistance and support of my major professor, Dr. Shih-Lien Lu. Over

the past years, numerous students have contributed to the Counterflow project.
My special thanks go to:

Jeff Battles Yuichi Kishida

Ryan Carlson Erik Landry

Che-Jen Chang Mike Miller

Troy Conklin Balaji Ramamoorthy

Rommel Dizon Kim Smith

Helen Fong Parag Shah

Dave Heckman Grace Teh

Wuucheng Huang Wendell Woo

Milo Jueneman Ramsin Ziazadeh

1

TABLE OF CONTENTS

Page

1. INTRODUCTION TO THE COUNTERFLOW PIPELINE PRINCIPLE

11.1 General Pipeline Structure

1.2 Pipeline Internals 3

1.3 Execution Unit Interactions 10

1.4 Overall Counterflow Pipeline Structure 12

1.5 Pipeline Flushing 15

1.6 Chapter Summary 15

2. THE COUNTERFLOW PIPELINE PROCESSOR (CFPP) 16

2.1 Architecture of a Counterflow Pipeline Processor 16

2.2 Simulation Results 19

2.3 Problems with Original CFPP Implementation 30

2.3.1 Register File Placement 30
2.3.2 Branch Resolution and Placement 31
2.3.3 Global Signals Limit the Clock Speed 31

2.4 Chapter Summary 32

3. THE VIRTUAL REGISTER PROCESSOR (VRP) 34

3.1 Rationale For Changing 35

3.2 Architectural Changes From CFPP 35

3.2.1 Register File and ROB 36
3.2.2 Result Pipeline Width 39
3.2.3 Instruction Removal 40

3.3 Simulation Results 40

3.4 Chapter Summary 49

TABLE OF CONTENTS (Continued)

Page

4. THE COUNTERDATAFLOW PROCESSOR (CDF) 51

4.1 Architectural Description 51

4.2 Architecture Changes From VRP 53

4.2.1 Multiple Instructions Per Clock Cycle 53
4.2.2 Out-Of-Order Execution 54
4.2.3 Fast Clock Cycle 55
4.2.4 Easy and Inexpensive Recovery from Incorrect Speculation 55
4.2.5 Tolerance of Long Latency Execution Units 56
4.2.6 Support for Multithreading 57

4.3 Simulation Results 57

4.4 Chapter Summary 70

5. THE ARCHITECTURE-BLOCKS (aBlocks) SIMULATION PACKAGE 73

5.1 Goals of the Simulator 73

5.2 Implications of Using Java 73

5.3 Simulator Methodology 75

5.3.1 The Superclass Object - aObject 75
5.3.2 The Information Object aToken 76
5.3.3 The Statistics Interface stats 80
5.3.4 Other Basic Objects 82

5.4 Using aBlocks to Simulate Microarchitectures 82

5.4.1 Counterflow Pipelined Processor CFPP 83
5.4.2 Virtual Register Processor VRP 90
5.4.3 CounterDataflow Processor - CDF 93

5.5 Chapter Summary 94

6. FUTURE EXTENSIONS OF CDF 95

6.1 Distributed Reorder Buffer 95

TABLE OF CONTENTS (Continued)

Page

6.2 Multithreading 110

6.3 Data Speculation 112

6.4 Chapter Summary 113

7. CONCLUSION 115

7.1 From CFPP to CDF 115

7.2 Execution Unit Usage 115

7.3 Effective Instruction Window 119

7.4 Instructions Per Clock Cycle 120

7.5 Summary 120

BIBLIOGRAPHY 123

LIST OF FIGURES

Figure 10
1.1 Counterflow Pipeline Structure 2

1.2 Counterflow Pipestage Internal Circuitry 9

1.3 Example Execution Unit Interactions 11

1.4 Overall Counterflow Pipeline Structure 13

2.1 Counterflow Pipeline Processor Architecture 17

2.2 Simulated CFPP Pipeline Configuration 22

2.3 CFPP Average Instructions Per Clock Cycle by Trace 24

2.4 CFPP Execution Unit Usage 25

2.5 CFPP Instruction Pipeline Average Usage 27

2.6 CFPP Result Pipeline Average Usage 28

2.7 CFPP Stalling Locations 29

3.1 Register File Placement Problem in CFPP 34

3.2 Virtual Register Pipeline Processor Architecture 37

3.3 ROB Interactions (a) before allocating entry (b) after allocation 38

3.4 VRP Configuration 41

3.5 VRP Average Instructions Per Clock Cycle by Trace 43

3.6 VRP Execution Unit Usage 44

3.7 VRP Result Pipeline Usage 45

3.8 VRP Instruction Pipeline Usage 46

3.9 VRP Stalling Locations 47

LIST OF FIGURES (Continued)

Figure Page

3.10 VRP ROB Available Entries 48

4.1 The Counterdataflow Architecture (CDF) 52

4.2 Multithreading with CDF 58

4.3 CDF Simulation Configuration 59

4.4 CDF Average Instructions Per Clock Cycle by Trace 62

4.5 CDF Execution Unit Usage 63

4.6 CDF Instruction Pipeline Usage 64

4.7 CDF Result Pipeline Usage 66

4.8 CDF Instruction Wrapping by Instruction Type 67

4.9 CDF Instruction Wrapping by Trace 70

4.10 Instructions Per Clock Cycle vs. Instruction Wrapping 69

4.11 CDF ROB Available Entries for Speclnt 71

4.12 CDF ROB Available Entries for SpecFP 72

5.1 Instruction and Data Token Formats 78

5.2 A Typical Phase Tree 79

5.3 Phase Representation 80

5.4 Basic Counterflow Pipeline Calling Tree 84

5.5 CFPP Microarchitecture Calling Tree 87

5.6 VRP Microarchitecture Calling Tree 91

6.1 Reorder Buffer Interactions with the CDF Pipelines 96

LIST OF FIGURES (Continued)

Figure Page

6.2 Register Alias Table and Modified Register File 98

6.3 ROB Example (Initial State) 100

6.4 ROB Example (Two Adds Enter Pipeline) 102

6.5 ROB Example (Add and Bad Branch Enter Pipeline) 104

6.6 ROB Example (A Speculated Add Enters Pipeline) 105

6.7 ROB Example (Incorrect Speculation Cleanup) 107

6.8 Multithreading with Counterdataflow 110

7.1 Execution Unit Usage for Integer Traces 116

7.2 Execution Unit Usage for Floating Point Traces 118

7.3 Effective Instruction Window 120

7.4 Average Instruction Per Clock Cycle by Architecture 121

LIST OF TABLES

Figure Page

1.1 Instruction Pipeline Fields 4

1.2 Result Pipeline Fields 4

1.3 Counterflow Example (time t=0) 5

1.4 Counterflow Example (time t=1) 6

1.5 Counterflow Example (time t=2) 7

1.6 Counterflow Example (time t=3) 8

5.1 aToken Fields and Values 77

5.2 Phase Descriptions 81

5.3 Descriptions of Basic aObjects 83

This thesis is dedicated to gosephine Yank,-

the strongest person I know.

A Microarchitecture Study of the Counterflow Pipeline
Principle

1. INTRODUCTION TO THE COUNTERFLOW PIPELINE PRINCIPLE

The counterflow principle was originated by Sproull et. al. [1] as an

architecture for asynchronous processor design. As such, it offers many useful

properties including local control, local message passing, and an overall simple

design methodology. These same ideas have been taken and used in the design

of a synchronous processor [2]. Since the speed of today's processors is being

limited more and more by the global signal routing [19], an architecture whose

main premise is local control may indeed result in a significant speed increase.

This thesis begins by attempting to explain the general counterflow pipeline

principle. Intending to show that the local interchange of information and simple

design can allow for longer pipelines and increased processor throughput.

1.1 General Pipeline Structure

The basic counterflow principle, illustrated in figure 1.1, has two pipelines

flowing in opposite direction from one another [1] [2]. One pipeline carries the

instructions up from the fetch or dispatch unit. This pipeline is referred to as the

instruction pipeline or simply as the IPipe. The other pipeline carries the operands

or results of previously executed instructions down toward the dispatch unit. This

pipeline is referred to as the result pipeline or as the RPipe. The main idea behind

2

Stagei_i LEFLULTISLI
INSTRUCTION(S)

Executio

Stagei LREailaiL1
UnitsLJEURUCTIQNWL1

Stagei+i LIIESILUSLI
S) I

L1115321LCLIQUI

Figure 1.1 Counterflow Pipeline Structure

this structure is that when an instruction and data pass, they "inspect" each other.

The instruction checks the operands to see if it needs any of the values. If it does,

it takes the operand and carries it with as it proceeds up the instruction pipeline

waiting to execute. The operands check the instruction's destination to see if the

instruction is going to update their value. If this occurs, the operands have an old

copy of the result and they invalidate themselves.

If an instruction reaches its corresponding execution unit launch stage and

has all of its operands, it is sent off to the execution sidepanels. Consequently, if

it has not received its operands by this stage, it must stall, possibly stalling the

3

instructions following it in the pipeline. Once the instruction has been sent off for

execution, it may proceed up the pipeline. The execution sidepanels are clocked

at the same rate as the instructions themselves. Therefore, an instruction's

values are always at the same stage as the launching instruction. Upon reaching

the associated recover stage, the result of the computation is loaded back into the

instruction. The exception to this is the case where the execution unit has a

variable latency, such as 'a memory execution unit. In this case, if the result has

not yet been computed, the instruction has to stall at the recovery stage until the

result is ready.

At any point after the instruction has retrieved it's result from the execution

unit, it will be monitoring the result pipeline for an open slot. A slot is considered

empty if it was invalidated by a previous instruction or it is simply empty because it

hasn't been filled with anything yet. When an open slot is found, the result will be

sent down the result pipeline. Having broadcast the result to the instructions in

the pipeline behind it, the instruction will not send the result again.

1.2 Pipeline Internals

The generic pipeline stage acts as an information exchange unit and

contains the associated storage and comparison logic for that stage of the

instruction and result pipelines. Each pipeline compares what the other has, and

takes one or more of three possible actions: [3]

1. The instruction pipeline can take any information it needs for its source oper-

ands that is coming down the result pipeline as long as the value in the result

pipeline is valid.

4

2. Information in the result pipeline can be marked invalid if the current instruction

is going to eventually write to that register.

3.	 If there is room in the result pipeline and the instruction pipeline has a newly

computed result, the result is sent down the result pipeline.

An example showing these interactions follows. The definitions for the

mnemonics used in the instruction and result pipelines are shown in tables 1.1

and 1.2 respectively. OP1 does double duty as both storage for the first operand

Table 1.1 Instruction Pipeline Fields

Mnemonic Description

OP1 First operand/execution result storage.

OP2 Second operand.

dest The destination register.

src 1 The register for OP1.

src2 The register for OP2.

opcode The opcode of the current instruction.

Table 1.2 Result Pipeline Fields

Mnemonic Description

RES Either an operand or a completed result.

rbind The register associated with the value in RES.

and for storage of the result of the execution of this instruction. This is possible

because once the result has been computed, the operands are no longer needed.

5

OP2 stores either the value of the second operand or an immediate value if the

instruction only requires one operand. The pointer to the register that will

eventually store the result of the execution is stored in dest. The srcl and src2

values hold the register numbers associated with the values in the OP1 and OP2

fields. Table 1.2 shows the fields held in the result pipeline. The RES field holds

the value associated with the result or operand in the result pipeline. The rbind

field holds the register number which the RES field is associated with. The rbind

value is used to match with the src1, src2, and dest fields as well as to determine

which register to write the value in RES to once the result reaches the register file.

Although not shown, each of the values, OP1, OP2, and RES have valid bits

associated with them. In general, the result and instruction pipelines can hold

more than one result or instruction, but since the interactions are essentially the

same, this example will be confined to the simplest case where both pipelines

carry only one value.

Now consider an example showing how the instruction R1 = R2 + R3 is

executed in a counterflow pipeline structure. Table 1.3 shows the instruction

Table 1.3 Counterflow Example (time t-0)

Pipe OPC dest srcl OP1 src2 OP2 rbind RES

n-4 R1 47

n-3 R12 4321

n-2 R2 3

n-1 R9 1234

n ADD R1 R2 R3 R3 2

6

entering from the bottom of the instruction pipeline and various values including

R1, R2, and R3 flowing down the result pipeline. At this point, the instruction

needs the values for srcl and src2 from registers R2 and R3 respectively. Since

the result pipeline is holding the values for register R3 which the instruction

needs, it will take the value, put it in it's OP2 field and mark the value as valid. In

reality, the source operands will take both the value and valid bit directly from the

result pipeline as long as the source operand itself is not already valid. This

simplifies the comparison logic somewhat as the operand doesn't care if it takes

invalid data. Since it is already invalid all that has happened is that the operand

now holds different invalid data. It is important to note that since both the

instruction and result pipelines are moving, the instruction at pipestage n will

"inspect" the result pipeline's values in pipestages n and n-1. This is necessary to

prevent instructions and results from synchronously passing each other on a clock

cycle. Table 1.4 shows the pipeline states at the next time step. Here, the

instruction has proceeded up to the pipestage n-1 and all of the results in the

result pipeline have moved down one pipestage. The instruction now has the

Table 1.4 Counted low Example (time t=1)

Pipe OPC dest srcl OP1 src2 OP2 rbind RES

n-4

n-3 R1 47

n-2 R12 4321

n-1 ADD R1 R2 R3 2 R2

n R9 1234

7

value of R3 from the result pipeline in it's OP2 field. Correspondingly, the result

pipe at this stage holds the value for register R2 which the instruction needs for

it's first operand. Once the instruction has this value, it has all of the source

operands that it needs to begin executing. Table 1.5 shows the pipeline states

Table 1.5 Counterflow Example (time t=2)

Pipe OPC dest srcl OP1 src2 OP2 rbind RES

n-4

n-3

n-2 ADD R1 R2 3 R3 2 R1 47

n-1 R12 4321

n R2 3

after the above actions have been performed. The instruction's OP1 field now

holds the value from the result pipeline. At this point, the result pipeline holds the

value of register R1. This instruction will create a new value for R1 once it

executes, so it is important to invalidate the value in the result pipeline. If this

action was not performed, any instructions coming up the pipeline behind the ADD

instruction would take the old value of register R1 and would execute with the

wrong values resulting in incorrect execution of the program. It is assumed at this

point that the Add instruction will execute and that in the next cycle the result will

be available. Table 1.6 shows the final state of the pipelines. At this time, three

things have occurred. First, from the last clock cycle, the instruction invalidated

the old copy of register R1 that was flowing down the result pipeline. This is

8

Table 1.6 Counterflow Example (time t=3)

Pipe OPC dest srcl OP1 src2 OP2 rbind RES

n-4

n-3 ADD R1 R2 5 R3 2 R1 5

n-2

n-1

n R12 4321

shown by actually removing the value from the result pipeline, but in reality would

only involve turning off the valid bit for that result. Second, the add instruction has

been executed, and the result (5) has been placed in the OP1 field which now

represents the value referred to by the dest field or register R1. Third, the result

has been placed in the empty slot in the result pipeline. It will now flow down the

result pipeline to give the result to any following instruction that might need the

result. Depending upon how the processor is implemented, this result may also

be written back to the register file or reorder buffer, but that will be covered more

in the following chapters.

The circuitry for accomplishing these tasks is shown in figure 1.2 [2]. This

diagram shows the internal circuitry between two stages. The instruction pipeline

flows down the pipeline from stage;-1 to stage; while the result pipeline flows up

the pipeline from stage; to stage;-1.

F6P1I OP2
IL

RES

Stagei_i

Stage;

Execution
V

Unit(s)

OP2 RES
A

Figure 1.2 Counterflow Pipestage Internal Circuitry

10

OP1 =	 RESm , if (srcl ; == rbind;_i) && (RES;_i is valid)

RES;, else if (srcl ; == rbind;) && (RES; is valid)

{Execution Unit), else if execution unit is done computing the results

OP1i, else [default]

OP2i_l = if (src2; == rbindki) && (RES;_i is valid)

RES;, else if (src2; == rbind;) && (RES; is valid)

OP2i, else [default]

RES; =	 OP1i, if (RESki is invalid) && (0P11 is a result)

RES;_i (invalid), else if (desti == rbindi_i)

RESki, else [default]

The new first operand,OP11_1, will either be inspecting the result pipeline

looking for results which it needs to execute, looking for the execution unit to

return a result for it's instruction, or looking for an empty spot in the result pipeline

to put it's completed result into. The new second operand, OP21_1, is only looking

for operands in the result pipeline that it needs to execute. The new result, RES;,

is either taking a completed result from the instruction pipeline, or invalidating

itself if it holds an old copy of a result that the current instruction will eventually

overwrite.

1.3 Execution Unit Interactions

An example of the execution units' interactions with the pipeline is shown in

figure 1.3 [13] [14]. In this example, there are two integer addition units, one

11

multiply unit, and one divide unit. At the bottom stage, the pipe can launch an

add, multiply, or divide depending upon the opcode of the instruction.

i I i
V V

Add/Div Recover

ADD
7t

Add Launch/Mult Recover DIV

t t MULT

Add Recover
ADD

Add/Mult/Div Launch OPCMP-W.
NIL /

halt

Figure 1.3 Example Execution Unit Interactions

The pipeline itself doesn't make the decision of whether or not to launch.

This is the job of the OPCMP (OPerand CoMPare) unit [14]. This specialized unit

12

knows what execution units are available at this stage, and whether or not there

are duplicate execution units at a later stage. The generic pipeline stage gives the

OPCMP unit the opcode of the instruction and a one bit signal which is the logical

AND of the two operand valid bits. The only signal returned from the OPCMP is a

halt signal which is asserted if the unit realizes that this is the last stage from

which the instruction can be launched and the instruction has not yet received

both of its necessary sources. For example, if an add instruction were to arrive at

the bottom stage and it didn't yet have both of its operands, the OPCMP would

realize that there is another addition unit later on and wouldn't halt the instruction

thus giving it more time to obtain its operands and not stalling the pipeline.

However, if a multiply or divide instruction were to arrive at this stage without its

operands, the OPCMP unit would be forced to stall the stage until the operands

had been received from the result pipe since these are the only multiply and divide

execution units in the processor.

1.4 Overall Counterflow Pipeline Structure

The structure show in figure 1.4 illustrates the general design of a

counterflow processor [1] [2]. Depending upon the targeted software market, the

ordering and number of execution units may vary, but the basic flow is still the

same. There are several items that need special attention in this architecture.

First, note that the memory stages launch and recover (for a first level

cache hit at least) before the branch execution unit [5]. Precautions need to be

taken to ensure that a store is never written to permanent memory based upon an

incorrectly predicted branch. This means either using a write-back cache and

13

Register File
T 4,

Memory Recover

Divide Recover

Multiply Recover
T 1

Add Recover V-0..T NI,

A
.-.

Add Launch
T 4,

Multiply Launch

(,r3Divide Launch
T(Branch Exec Unit)
Memory Recover

T

T.1,
4,)

T 4,

Memory Launch
T 4,

Decoder
T 4,

Instruction Fetch

Figure 1.4 Overall Counterflow Pipeline Structure

14

flushing the cache block whenever there was a store and a bad branch taken or

finding some other means of forcing the store operation to complete after the

branch is known to be good. In other, more advanced versions of counterflow, a

combination of reorder buffer [18] and memory order buffer are used to keep track

of which stores are allowed to be written to permanent memory.

Second is the actual location of the branch execution unit. This is a unit

which decides whether or not the branch direction chosen was indeed the correct

one. If it is placed too far up the pipeline many instructions are needlessly

executed when the prediction is incorrect, costing clock cycles to execute the

instructions as well as to remove the instructions from the pipeline. If it is placed

too soon in the pipeline, the results coming from the execution units higher up in

the pipeline will take a long time to get to the branch unit and the instructions will

have to stall, again harming performance. It is important to note that a branch

prediction algorithm with a high prediction rate is mandatory for a pipeline as deep

as counterflow [8].

Finally is the ability to use the pipeline to hide the latency associated with a

cache miss. Given a first level cache [4] miss, the counterflow pipeline allows the

instruction extra cycles to obtain the data from the level two cache. Even if the

instruction must stall waiting for the level two cache to respond, instructions earlier

in the pipeline can hopefully continue doing useful work. If the level two cache

misses and main memory cannot respond in time such as during a page fault, it

will become necessary to flush the pipeline and bring in a different process/thread

to execute in the time needed to get the data from the other levels in the memory

15

hierarchy. Fortunately, most of the time, the needed data will be in the level one

or level two caches [8].

1.5 Pipeline Flushing

In the case of a mispredicted branch instruction, all of the instructions that

have been executed since the branch must be flushed from the pipeline [16]. In a

counterfiow pipeline, the implementation of this entails having a global signal

coming from the pipestage with the branch execution unit and running down the

pipeline back to the prefetch and branch prediction unit. Those pipestages

contain the instructions in the shadow of the mispredicted branch. When the

branch execution unit detects a misprediction, it immediately signals these stages

who then invalidate the instructions that they are holding. The program counter,

upon receiving this signal begins to fetch instructions from the branch path that it

didn't take before, and the branch prediction unit updates its algorithm so that

hopefully the next time it encounters the branch it predicts correctly.

1.6 Chapter Summary

The implementation details for a counterfiow structure vary with each

version of the microarchitecture, but the basic principles remain the same. There

are two pipelines flowing opposite each other, one carrying the instructions up and

the other carrying the results down. The length and number of elements that each

of the pipelines can carry will change with each implementation. Since the

communication within a counterfiow pipeline is localized to only those stages

directly adjacent, the clock frequency of the processor can be very high.

16

2. THE COUNTERFLOW PIPELINE PROCESSOR (CFPP)

The counterflow pipeline processor (CFPP) was developed as an

architecture which lends itself to being implemented with asynchronous hardware

[7]. The architecture exhibits properties including local control, regular structure,

local communication, modularity, and overall design simplicity [1]. Although it was

designed to be implemented with asynchronous circuitry, these characteristics

also benefit a synchronous design. The decision to implement this version of the

counterflow pipeline processor as a standard synchronous pipeline was based on

several factors, not the least of which were familiarity with synchronous design

techniques and availability of synchronous design tools. Figure 2.1 shows the

basic architecture of a counterflow pipeline processor [2]. As the simulation

studies performed were done at a microarchitecture level, they apply equally to

both synchronous and asynchronous implementations, it is only the underlying

circuit implementation that would change.

2.1 Architecture of a Counterflow Pipeline Processor

This section builds upon the general information covered in the previous

introductory chapter, specializing in the implementation of the original counterflow

pipeline processor. Referring to figure 2.1, there are two pipelines, the instruction

pipeline and the result pipeline. The instruction pipeline carries instructions from

the fetch/decode unit up toward the register file. The result pipeline takes results

or source operands from the register file down the pipeline toward the fetch/

decode unit. Along the way, instructions and results interaction and inspect each

17

Register
File

111

4
+ +

c o
rim u)= 0
a) cx D w

1

0
CI0
FA
21

'di
1

1

co .c
TD
a_

Ef_

C0

,_
Co
C

a)L=
a)

1

1

Decode

t
Prefetch -01H10-

Branch
Prediction

t
Instruction

Cache

Figure 2.1 Counterflow Pipeline Processor Architecture

other. If an instruction needs an operand in order to execute, it watches the

results that flow past it in the result pipeline and grabs whatever data it needs.

Once the instruction has all of the data that it needs to execute, it sends the

instruction off to the execution units to calculate the result. As the result is being

18

executing, the instruction continues up the pipeline. When the instruction arrives

at the execution unit's recovery point, it takes the result from the execution unit if

the execution has completed. At this point, the instruction is not allowed to leave

the pipeline even though it has technically completed it's execution. As the

instruction continues up the instruction pipeline, it looks for empty spots in the

result pipeline in which to put it's result. This is necessary so that any instructions

following this instruction up the pipeline get the correct results [3]. While the

instruction is flowing up the instruction pipeline, it is observing the result pipeline

for a result which it is eventually going to overwrite. The value in this result is an

old value from some previous computation, and is not valid for the instructions

behind this instruction since they need the result of this instruction's execution.

The instruction itself is responsible for invalidating any results which it sees that

are old copies of the result it is generating. As a result of this interaction, the

instruction only needs to send the result down the result pipeline once.

The instruction now continues up the pipeline, writing it's result into the

register file once it reaches the top of the instruction pipeline. At this point, the

instruction has finally finished executing. It is important to note that during this

process the instruction pipeline can stall at three locations. The first location is at

the launch point to the execution unit. If the instruction gets to the launch point of

the last execution unit which can execute this type of instruction, but the

instruction does not yet have all of it's required operands, it must stall waiting for

the operands to show up from the result pipeline. The second time an instruction

must stall is at the recovery point for execution units which have an unknown

19

execution latency (such as memory units). The instruction must stall at this stage

and wait for the result to return. This causes bubbles, or empty slots, to be formed

in the instruction pipeline above this instruction. The instructions following the

stalled instruction must themselves stall unless there happens to be an empty

bubble which can be "squashed" to allow the instructions to continue making

forward progress and therefore doing useful work [1]. While the instruction

pipeline can stall in these cases, the result pipeline is never allowed to stall. If it

did, and the instruction pipeline also stalled, the stalled instruction could

conceivably never receive it's result, and the entire processor would deadlock.

The only other time an instruction can stall is at the top of the instruction pipeline.

If the instruction gets to the top of the pipeline and has not yet been able to put it's

result into the result pipeline, it must stall until it is able to do so. If the instruction

were to just go ahead and write into the register file without sending its result

down the result pipeline, there could be an instruction behind this instruction

which needs the result. This other instruction would not be guaranteed to get the

result it needs because the result will not come out of the register file again unless

another instruction needs that result. If no other following instructions need this

result, the result will sit in the register file, the instruction will stall waiting for the

result, and the processor will again deadlock.

2.2 Simulation Results

The choice of execution units in a counterflow processor has never been

addressed in published literature before. The number, placement, and latency of

execution units to give the best performance is as yet an open question.

20

Therefore, to attempt to come up with an "acceptable" configuration began is a

matter of trial and error and involved running many simulations with various

configurations. The traces used consisted of the first two million instructions of

ten Spec95 [20] traces which had been compiled using the Simple Scalar [10] [12]

toolset. There are five integer benchmarks and five floating point benchmarks.

The configuration which was eventually decided upon is simply the best solution

that could be found with a reasonable amount of processor cycles for these

particular benchmarks, it is in no way the absolute best solution. It may be

possible to formally find the best configuration for a given category of programs,

but that type of research is beyond the scope of this thesis.

During the course of experimenting with various configurations, some

heuristic methods were recognized as leading towards a good configuration.

Observing the locations of stalls is one very good way for finding where the

bottlenecks are. If, for example, the last fast integer execution had an

extraordinarily large number of launch stalls. There are several possible causes

for this observation. There may be a need for another unit of this type. This is

good up to a point where the area invested yields diminishing returns. Another

possibility is that the last unit of this type needs to be moved farther up the

pipeline. This is easy and cheap, but can cause other problems for instructions

which have a strong dependency on this unit, causing the stalls for that unit to

increase. The last possibility is that another unit which a lot of adds are

dependent on is recovering too late in the pipeline to give the results back. That

unit's recovery point can possibly be moved lower in the pipeline, but that can

21

cause more problems also. Generally, pipeline optimization is a gentle balancing

act with no hard set rules.

The pipeline configuration which was decided upon is shown in Figure 2.2.

This configuration consists of a one instruction wide instruction pipeline and a

four result wide result pipeline. The result pipeline, although four results wide,

should probably be considered only two results wide. The result pipeline width

had to be doubled in the simulator to account for the Simple Scalar instruction set

which for double wide floating point instructions can request four operands for one

instruction [12]. In a real implementation, the number of bits in the operands

themselves would probably be doubled instead of the result pipeline width.

Nevertheless, the simulation results show that on average there are less than two

results in any stage of the result pipeline.

There are three fast integer units (INTF01-INTF03). These units have a

one cycle latency and handle instructions such as ADD, SUB, Shift, etc. There

are two branch execution units (BEU01 and BEU02). The branch execution units

have a one cycle latency, and communicate the results of the branch back to the

branch prediction unit where the prediction algorithm is updated and if the

prediction was incorrect, the recovery process is initiated. There is one slow

integer unit (INTS01). It has a latency of four cycles, is fully pipelined, and

handles slow integer instructions such as multiply and divide. There is one fast

floating point unit (FPFAST). It has a latency of four cycles, is fully pipelined, and

handles fast floating point instructions such as floating point addition and

subtraction. There is one slow floating point unit (FPSLOW). It has a latency of

22

Register File

1

C
H

Decode

Figure 2.2 Simulated CFPP Pipeline Configuration

eight clock cycles, is fully pipelined, and handles slow floating point instructions

such as floating point multiplication and division. There is a Memory Execution

Unit (MEU) [4], which handles load and store operations. Since there is no

23

reorder buffer in a CFPP architecture, the MEU sees the instructions in order and

doesn't allow dependent instructions to pass each other. There is one level one

(L1) cache, not pictured, which is a 16KB, 4-way set associative data cache, with

one cycle access time, and SLRU replacement policy.

The following assumptions have been made to allow for a higher level

simulator. It is assumed that the L1 cache and main memory hold all necessary

data. The main memory has a constant 10 cycle access latency. The branch

prediction has a randomly predicted 94% correct branch prediction [8]. When

recovering from a mispredicted branch, there is a one cycle "no fetch" penalty

imposed on the prefetch of the next instruction after the misprediction.

There is a small trick which was used to increase the performance of this

architecture. The fast floating point unit has an execution latency of four clock

cycles, but in figure 2.2, the unit only spans two pipestages. This means that the

instruction pipeline has to stall for two clock cycles every time a fast floating point

operation is performed. Fortunately, the recovery point is beyond the launch point

for all the other execution units. In this way, all the integer and control code can

continue executing in the bottom half of the pipeline while the top half has stalled.

Similarly, the slow floating point unit has an execution latency of 8 clock cycles,

but spans four pipestages. This causes four stalls to occur, but they happen in the

last pipestage allowing even more room for other instructions to continue work at

the bottom.

Figure 2.3 shows the performance of the ten Spec95 traces on the CFPP

configuration shown in figure 2.2. The performance is expressed in average

24

0.9

0.8

0.7

0.6

0.5
(...)

0.4

0.3

0.2

0.1

0
N

a CO O)

: = C N

cl)
ur

Trace

Figure 2.3 CFPP Average Instructions Per Clock Cycle by Trace

instructions per clock cycle for the first 2 million instructions of each trace.

Average performance for the Speclnt95 traces at 0.82 was a reasonable amount

higher than the SpecFP95 trace at 0.75. The program with the highest

performance was the integer benchmark, ijpeg, with an IPC of 0.88. The lowest

performance was by the floating point benchmark, applu, with an IPC of 0.66.

It is interesting to observe the execution unit usage. This shows the

efficiency of the architecture as well as serving as a benchmark with which to

compare the other architectures with to see how the changes made to the

microarchitecture affect the efficiency with which the execution units are being

used. Figure 2.4 shows the percent of time the various execution units were busy

averaged across both the integer and floating point traces. The slow integer unit

25

25

20

15
is SpecInt

SpecFP
10

5

MIE.0
LL ET]u-

H 1 2
z z

Execution Unit

Figure 2.4 CFPP Execution Unit Usage

(INTS01) was almost never used since there were almost no slow integer

instructions present in any of the traces. The memory execution unit (MEU) and

the last fast integer unit (INTF03) were the busiest for both the integer and floating

point traces with an average of 23% and 22% respectively. The floating point

traces also spent a good deal of time in the fast and slow floating point units, 16%

and 8% respectively. The information gathered from the execution unit usage was

used to decide on the placement and number of execution units. For instance,

there are three fast integer execution units. By removing any one of the three, the

load gets shifted too much to the remaining two. Removing one of the units

causes instructions to stall unnecessarily early in the pipeline if one of the later

units is removed or to be evaluated later than necessary if one of the early units is

26

removed. As always, this is a balancing act, with the ultimate aim being the best

performance for the least hardware cost. In a similar manner, the branch

execution units were placed. The first branch execution unit (BEU01) is placed

very early in the pipeline. This unit executes all of the unconditional branches as

well as most of the branches which depend on fast integer results. Since this unit

is early in the pipeline, incorrectly predicted branches do not cost as much to

recover from. Conversely, the last branch execution unit (BEU02) is placed

relatively high in the instruction pipeline. By this point, most data dependencies

have been resolved. Unfortunately, incorrectly predicted branches cost more to

recover from, but since the branch prediction unit usually predicts correctly, it is

better to allow the pipeline to continue doing hopefully useful work rather than stall

and certainly do no useful work.

Figures 2.5 and 2.6 show the pipeline usage for the instruction and result

pipelines respectively. The instruction pipeline usage shows that the instruction

pipeline is heavily used over the entire length. Starting at pipestage nine next to

the fetch/decode stage where there is almost always one instruction and dropping

below 0.7 instruction on average only at the second to last pipestage. The

average instructions go up in the last pipestage because on occasion, instructions

may have to stall at the last pipestage if they haven't been able to deposit their

results into the result pipeline. The pipestage usage is expected to be high for

CFPP since instructions have to remain in the pipeline from start to finish to carry

the results to the register file at the top of the pipeline. This hinders performance

since there are very few empty locations to be "squashed" when an instruction

27

1

0.9

0.8

0.7

1 0.6
to 0 SpecFP=
s 0.5 SpecInt

a 0.4

0.3

0.2

0.1

8 7 6 5 4 3 2 1

Pipe Stage

Figure 2.5 CFPP Instruction Pipeline Average Usage

stalls [3]. When there are no empty locations, the entire pipeline must stall behind

any instruction which stalls.

The result pipeline's usage goes from a high of 1.8 results per stage at the

bottom of the result pipe for floating point traces to a low of 1.2 at the top of the

result pipe for integer traces. The result pipeline must carry the operands from the

register file the entire length of the pipeline as well as the results of instructions

from where ever they were computed to the bottom of the pipeline. Considering

the amount of data which the result pipeline is being required to carry, the amount

of usage is reasonable. Rising at the bottom where both the results and operands

are in the pipeline and falling at the top where only the operands are in the

pipeline. With all this traffic, it is sometimes difficult for an instruction to find an

empty location in which to put it's computed results. This again, causes an

28

0 SpecFP
0 SpecInt

1 2 4 5 6 7 8 9

Pipe Stage

Figure 2.6 CFPP Result Pipeline Average Usage

increase in the usage of the last instruction pipestage as well as lowering the

performance since the instruction pipeline must stall to wait for an empty result

pipe location.

Figure 2.7 shows the percentage of time the instruction pipeline's stages

are stalled for both integer and floating point traces. The first half of the pipeline is

stalled about 23% of the time for floating point traces and 15% of the time for

integer traces. The fifth pipestage is the last location in which to launch a fast

integer or memory instruction. Since all instructions are required to stay in the

pipeline in order to write their results to the register file, there is almost no chance

that there is an empty location behind this stalling instruction and therefore every

instruction stage lower than the fifth pipestage usually has to stall also. This is a

29

25

20

7
(7, 15 U1111111 SpecFP
E Specint

10

0_ 1110--
5

0

9 7 6 3 2

Pipe Stage

Figure 2.7 CFPP Stalling Locations

huge performance limitation and eliminates a major reason for using a

counterflow pipeline. Fortunately, the next two chapters describe enhancements

to the microarchitecture which overcome this problem. Once past this point, the

number of stalls drops off drastically. The top two pipestages actually illustrate

how a counterflow pipeline with empty locations should respond. The last

pipestage, stage number 1, stalls about 3% of the time to write it's results into the

result pipeline. Because of the large amount of stalling which occurs early in the

pipeline, there are empty locations in pipestage number 2. This allows the

instructions in stage 3 and below to continue to move and therefore do useful

work while the instruction in stage 1 is stalled.

30

2.3 Problems with Original CFPP Implementation

As might be expected this being the first implementation of a new

architecture, there are several problems. The first problem is that the register file

is placed at the top of the pipeline, at the opposite end from where the instructions

are first fetched [11]. The second problem is placement and use of global signals

for the branch execution unit and halting mechanism. The last problem is a lack

of tolerance of long latency operations such as memory instructions.

2.3.1 Register File Placement

In the original counterflow pipeline processor, the register file is at the far

end of the processor away from the where the instruction is fetched from. This

causes a long start-up delay since an instruction's operands have to come

halfway across the pipeline before there is even the possibility of an instruction

being able to execute. This leaves the first half of the pipeline empty whenever

the pipeline has to flush because of a branch misprediction or a new thread

starting up. As has been shown, this also contributes to congestion in the result

pipeline since the operands from the register file must flow down the entire result

pipeline, thus competing for space with newly computed results. To compensate,

the result pipeline needs to be unnecessarily wide. If it were possible to move the

register file from the top of the instruction pipeline to the bottom, the result pipeline

width could be reduced. The register file placement also affects the instruction

pipeline. Since instructions need to stay in the instruction pipeline just to carry

their results to the register file, they take up space in the pipeline. Because of this,

most of the time when an instruction stalls there are no empty slots available to be

31

"squashed" and all instructions behind the one which has stalled are also forced

to stall. This negates one of the main benefits of a counterflow pipeline, the

"squashing" of empty slots to allow computation to continue while an instruction is

stalled [1] [2].

2.3.2 Branch Resolution and Placement

The branch execution unit's placement can cause problems with the

processor's execution efficiency. Ideally it would be best if the branch execution

unit could be placed near the top of the pipeline since the branch instruction would

most likely have its operands and wouldn't have to stall the pipeline.

Unfortunately, whenever there is a misprediction, the entire pipeline from the

branch execution unit down to prefetch needs to be flushed. By spending the time

to execute all of these instructions which should never have been brought into the

pipeline a lot of work has been wasted which can get very expensive if the branch

prediction rate is not high enough. On the other hand, placing the branch

execution unit too near the bottom of the pipeline means that very often it won't

have it's operands and will stall the entire pipeline. This can cause unwarranted

stalling since a good branch prediction unit will guess correctly most of the time.

2.3.3 Global Signals Limit the Clock Speed

One of the main premises for using a counterflow pipeline as a high speed

processor microarchitecture is the removal of global control signals [1]. Indeed

local control and communications are some of the basic founding principles

behind counterflow. Unfortunately, the microarchitecture of CFPP as it stands

32

currently relies on a few critical global signals which run right down the middle of

the pipeline logic. The first signal, is the halt signal. This signal is in the

instruction pipeline. Whenever an instruction stalls, it must tell the pipestage

behind it that it is stalling. This pipestage in turns looks at it's contents and

decides if it too must stall. It then propagates this signal to the pipestage behind

it. This signal can potentially run the entire length of the pipeline if the instruction

at the top of the pipeline must stall and there are no empty slots in the pipeline.

Since this worst case can occur, this is delay path must be accounted for. This

would almost certainly be the most critical signal in the processor and would have

to be routed from one end of the pipeline to the other [2].

The other main global signal is the pipeline flush signal. Whenever there is

a mispredicted branch, the branch execution unit must flush the pipeline to clear

out all of the incorrectly speculated instructions. This signal is less critical than the

halt signal since it only has to go from the last branch execution unit back to the

start of the instruction pipeline. Also, since there is no associated logic at each

stage this signal doesn't need to propagate like the halt signal does. It is however

a global signal which must travel long distances over the die and negates some of

the benefits of having local control and communications everywhere else on the

processor.

2.4 Chapter Summary

In this chapter, the original counterflow pipeline processor (CFPP)

suggested by Sproull [1] has been simulated. By investigating the characteristics

of CFPP, some hidden problems in implementing such a microarchitecture have

33

been uncovered. While the performance is respectable, there are several global

signals which would defeat some of the reasons for developing the counterflow

architecture. With the register file at the top of the instruction pipeline, the result

pipeline has to be wider than otherwise necessary. Instructions also have to carry

th.the results the entire length of the instruction pipeline to write the results into the

register file. Since the instructions remain in the pipeline the entire length of the

instruction pipeline, CFPP does not deal well with long-latency instructions. If a

load or store misses the first level cache, most of the instructions behind it will

have to stall until the next level of memory can respond since there are very few

empty locations in the pipeline. These problems cause the performance to be

less than expected while causing the pipelines to be used relatively inefficiently.

Fortunately, many of these shortcomings have been overcome in the next

architectural implementation, the virtual register processor [3] [11].

34

3. THE VIRTUAL REGISTER PROCESSOR (VRP)

The virtual register processor (VRP) came about by attempting to

overcome the problems with the original CFPP design [3] [11]. The most notable

limitation being having to wait half the length of the pipeline to get operands from

the register file. Although the operand has already been computed and can be

used, it must travel at least half the length of the pipeline to meet its instruction. If,

as in figure 3.1, there is an instruction which has an available execution unit, but is

only waiting on its operands, the entire pipeline may stall needlessly. In this case,

Register
File

R2

-40- ADD R1, R2, #10

4
Decode/Fetch

Figure 3.1 Register File Placement Problem in CFPP

35

the instruction needs to add the value in register R2 to the immediate value 10

and place the result of the execution in register R1. Since the value of register R2

has been computed much earlier, there is no reason this instruction cannot

complete and give the result to a future instruction. Unfortunately, in CFPP, the

instruction and data must meet in the pipeline for the transfer of information to

occur. For the situation illustrated in figure 3.1, this can cause this instruction and

all following instructions to stall at or near the bottom of the pipeline waiting for this

already valid result to make it's way down the result pipeline.

3.1 Rationale For Changing

The problems associated with CFPP in the previous chapter severely limit

the performance achievable with this architecture. By moving the register file from

the top of the pipeline down to the bottom, many of the ill-effects were removed

[3]. With the register file at the bottom, values already computed are available at

the time of instruction launch. Additionally, the instruction pipeline no longer

needs to carry the completed instructions the entire length of the pipeline just to

be able to write the result into the register file. Unfortunately, there are some

changes that need to be made to overcome the problems created by moving the

register file.

3.2 Architectural Changes From CFPP

As was stated in the previous sections, the main architectural change

associated with the virtual register processor is the location of the register file.

While this appears to be a straightforward change on the surface, it has

36

ramifications which cause some problems and change the way that the processor

functions. Figure 3.2 shows the microarchitectural layout of a virtual register

pipeline processor. Note the addition of a re-order buffer and location of the

register file.

3.2.1 Register File and ROB

The register file has been moved from the top of the pipeline to the bottom.

Now, operands in the register file are available immediately. Unfortunately, the

register file now needs to function more as a register cache. To facilitate this

change, a reorder buffer (ROB) [18] has been added. The functioning of the ROB

will be described in detail later. The addition of a ROB adds hardware as well as

complexity, but a ROB is no longer considered extravagant hardware in today's

microprocessors [8]. The ROB is needed to force the instructions to retire in the

order in which they were issued into the processor. It also serves to keep

instructions which were incorrectly speculated from writing their results to the

register file. This can occur after a mispredicted branch instruction as well as after

a fault or interrupt has been triggered. While a ROB is not extraordinarily

complex, it is still worth noting that this design is beginning to edge away from the

inherent simplicity that the original counterflow pipelined processor started out

with.

The ROB has a complicated job to perform, handling instructions both

when they are entering the pipeline and retiring instructions which have

completed. Figure 3.3 shows an example. An instruction ADD R8, R1, R3 arrives

at the decode stage at time (t). This instruction needs to perform the action of

37

r

-11.-

.44.1 RegisterROB File
A

BranchPrefetch 41111-111
Prediction

Instruction
Cache

Figure 3.2 Virtual Register Processor Architecture

adding the contents of register 1 (R1) and register 3 (R3) and putting the results in

register 8 (R8). The ROB contains registers R1, R5, and R2 from work done

previously. R1 has been in the ROB the longest and has been allocated the ROB

entry number zero (TO). R2 was the most recent instruction to be put in the ROB

and has been allocated the ROB entry number two. Now that the ADD instruction

38

a) b)

oldest 0 R1 oldest 0 R1

1 R5 1 R5
youngest 2 R2 2 R2

3 youngest 3 R8

4 4

n n

Time (t) Time (t+1)

ADD R8, R1, R3 ADD T3, TO, Value(R3)
(R8 = R1 + R3)

Figure 3.3 ROB Interactions (a) before allocating entry (b) after allocation

has arrived at the decode stage, it asks the ROB to allocate an entry for it. If the

ROB is full, and cannot give the instruction an entry, the instruction must stall at

the prefetch unit and wait until another older instruction completes execution and

is retired from the machine. Figure 3.3b shows the ROB and instruction after the

instruction has been allocated an entry. The instruction will eventually create a

value for R8, so the ROB puts the tag for R8 into it's next available entry which in

this case happens to be tag number three. The instruction's result register has

been renamed and therefore it now indicates that it will write back to tag entry

three (T3). During this time, the ROB has also checked to see that this instruction

wants the values of R1 and R3. It finds that it has renamed R1 to tag zero and

39

replaces the R1 with TO in the instruction. The ROB also finds that it doesn't have

a tag for R3 and therefore the value must be in the register file. The ROB gets the

value for R3 from the register file and forwards this value to the instruction. At this

time, the instruction is now ready to enter the pipeline to be executed. Eventually,

the instruction will finish executing and a result tagged T3 will come down the

result pipeline. The ROB will take this tag, match it with the original register R8

and will write the result back to the correct register file entry.

3.2.2 Result Pipeline Width

Now that the register file has been moved to the bottom of the pipeline, the

operands no longer need to travel down the result pipeline. As a result of this,

there is less competition for available slots in the result pipeline [11]. The

instructions need these empty slots to send completed results to instructions

earlier in the instruction pipeline. The effect of this is to shorten the time between

a result being calculated and the result being used as an operand in a subsequent

instruction. One benefit of this new result pipeline is that the instruction pipeline

never needs to stall because of an instruction getting to the top of the instruction

pipeline and not being able to find an empty slot in the result pipeline to send it's

results down. Since there are no results coming in at the top of the result

pipeline, the last pipeline stage is guaranteed to be empty even in the worst case.

In CFPP, the result pipeline needed to be at least as wide as the maximum

number of operands that an instruction can have. Since the register file is at the

bottom of the instruction pipeline in VRP, the result pipeline doesn't need to be as

wide, thus reducing the amount of hardware necessary.

40

3.2.3 Instruction Removal

One of the biggest improvements in VRP is at what time the instructions

are removed from the pipeline. This is actually very subtle, but can lead to a

substantial increase in performance. In CFPP, the instructions must stay in the

instruction pipeline from start to finish. This is because once the instruction has

completed executing, it has to continue to the end of the pipeline to write its result

into the register file. In a VRP processor, since the register file is at the bottom of

the pipeline, once an instruction has finished executing and has placed its result

into the result pipeline, it can be removed from the instruction pipeline. This

creates more bubbles or empty locations in the instruction pipeline which can be

used to absorb some of the costs of a stall. If an instruction near the top of the

instruction pipeline stalls and there are bubbles below it, the instructions can

"squash" the bubbles and continue up the pipeline. This has the effect of hiding

some or all of the latency involved with the instruction stall allowing other

instructions to continue doing useful work while other instructions are stalled. If

the instructions at the bottom of the instruction pipeline do not need to stall, more

instructions can be issued into the pipeline.

3.3 Simulation Results

Various simulations were run using the Spec95 traces to get an estimate of

the performance of a VRP processor. Figure 3.4 shows the configuration that was

eventually decided upon after many simulations. This is not to say that this is the

best configuration possible, with more time and a lot more compute cycles a

better solution most certainly could be found. In the configuration shown, the

O
 =

A
M

IS
IN

O
r

rn
-

FP
SL

O
W

IN
TF

O
 1

IN
TF

O
 3

FP
FA

ST
IN

TF
02

r B
EU

O
 3

IN
T

SO
 1

B
EU

01

B
EU

O
 2

M
EU

11
7

42

instruction pipeline can hold one instruction per pipestage and the results pipeline

can hold two results per pipestage.

There are three fast integer units (INTF01-INTF03). These units have a

one cycle latency and handle instructions such as ADD, SUB, Shift, etc. There

are three branch execution units (BEU01-BEU03). These units have a one cycle

latency, and communicate the results of the branch back to the branch prediction

unit. There is one slow integer unit (INTS01). It has a latency of four cycles, is

fully pipelined, and handles slow integer instructions such as multiply and divide.

There is one fast floating point unit (FPFAST). It has a latency of four cycles, is

fully pipeline, and handles fast floating point instructions such as floating point

addition and subtraction. There is one slow floating point unit (FPSLOW). It has a

latency of eight clock cycles, is fully pipeline, and handles slow floating point

instructions such as floating point multiply and divide. There is a memory

execution unit (MEU), which handles load and store instructions and

communicates with the ROB to maintain proper ordering of loads and stores.

There is one level one (L1) data cache, not pictured, which is a 16KB, 4-way set

associative data cache, with one cycle access time, and SLRU replacement policy

[4].

The following assumptions have been made to allow for a higher level

simulator. It is assumed that the L1 cache and main memory hold all necessary

data. The main memory has a constant 10 cycle access latency. The branch

prediction has a randomly predicted 94% correct branch prediction. When

recovering from a mispredicted branch, there is a one cycle "no fetch" penalty [5].

43

To maintain precise interrupts, store instructions are not allowed to complete until

they are the oldest instruction in the ROB [18]. Also, the ROB is allowed to retire

as many instructions as it needs to in one clock cycle.

Figure 3.5 shows the performance of the ten Spec95 traces on the VRP

1

0.9

0.8

0.7

0.6

C. 0.5

0.4

0.3

0.2

0.1

0

Trace

Figure 3.5 VRP Average Instructions Per Clock Cycle by Trace

configuration shown in figure 3.4. The performance is expressed in average

instructions per clock cycle (IPC) for the first 2 million instructions of each trace.

Performance for the Spec Int traces was slightly higher at 0.91 versus the SpecFP

traces with an IPC of 0.84. The average IPC for VRP on all ten Spec95 traces is

0.88.

The execution unit usage data was collected to analyze how efficiently the

units were being used as well as to compare against the other counterflow

44

architectures to see how the additions which were made to the architecture

affected the efficiency. Figure 3.6 shows the percent of time each execution unit

m SpecInt

SpecFP

O O O 0
O
_1 2
a

Execution Unit

Figure 3.6 VRP Execution Unit Usage

was kept busy for both integer and floating point traces. The memory and first fast

integer units were kept busy approximately 25% of the time. Note that the first

fast integer unit's usage number would be higher if one of the other two fast

integer units were eliminated. While this is true, allowing these instructions to

continue up the pipeline to one of the other two units prevented instructions from

stalling and effectively halting the processor at the very beginning of the pipeline.

A similar effect was observed with the branch execution units. Most of the

branches are executed by the first BEU. This aids performance since it clears

these instructions out of the pipeline earlier and if the branch was incorrectly

predicted, limits how many instructions enter the pipeline from down the bad

branch path. If however the branch cannot execute until later in the pipeline due

45

to a data dependency, the second and third branch execution units allow the

branch to proceed up the pipeline without causing the pipeline to stall. There is a

higher penalty associated with this case since more incorrect instructions were

brought into the processor, but since the branch predictor usually guesses

correctly and the pipeline wouldn't have been doing useful work if a guess hadn't

been made, this is considered a good trade-off [11].

Figures 3.7 and 3.8 show the pipeline usage for the result and instruction

SpecFP

SpecInt

Qgiiki44/401,MaKia404:26i0tWASx.ex.....

2 3 4 5 B 7 B

Pipe Stage

Figure 3.7 VRP Result Pipeline Usage

pipelines respectively. The result pipeline usage shows that, as expected, a

majority of the result pipeline's usage occurs in the bottom half of the pipeline.

Since all of the results have to flow from their originating point and proceed down

to the bottom of the pipeline to the register file this is an expected result. What it

http:Qgiiki44/401,MaKia404:26i0tWASx.ex

46

7111111111111110.9

0.8

SpecFP

SpecInt
N1111111111111111111111111111

SA N111111111111111111MIN
8 7 6 5 4 3 2

Pipe Stage

Figure 3.8 VRP Instruction Pipeline Usage

does show is that when a result is generated, there is almost always an empty slot

in the result pipeline available. Since the instruction cannot leave the instruction

pipeline until it has managed to put it's results into the result pipeline this is

important for the overall throughput of the machine. In a similar manner, the

usage of the instruction pipeline shows that most instructions execute and place

the results in the result pipeline in the bottom half of the pipeline. It is important to

recognize that this is one of the major improvements of VRP over the original

CFPP implementation. In the original CFPP implementation, instructions were

required to remain in the instruction pipeline for the entire length of the pipeline

since they needed to carry their results to the register file. With VRP, once an

instruction's results have been placed in the result pipeline, the instruction has

47

completed and becomes a bubble [3]. If an instruction farther up in the pipeline

stalls, these bubbles can be squashed allowing instructions near the bottom of the

pipeline to continue doing useful work thus hiding some of the penalty associated

with stalling.

Figure 3.9 shows the percentage of time that the instruction pipeline's

25

20

SpecFP
E SpecInt

10

5

8 7 6 5 4 3 2

Pipe Stage

Figure 3.9 VRP Stalling Locations

stages are stalled. Unfortunately, the first two stages of the pipeline are stalled

over twenty percent of the time for the floating point traces and ten percent of the

time for the integer traces. This is not desirable behavior. If an instruction must

stall, it would preferable if it stalled in the later half of the pipeline. If the instruction

stalls later, some of the bubbles created by completed instructions can be used to

hide the latency of the stall. Most of the stalls in pipestages 7 and 8 are caused by

48

pipestage 7 being the memory execution unit's only launch point. The launch

point could be moved back to a later pipestage, but doing so causes other

arithmetic instructions, dependent on the memory instruction, to stall causing the

overall performance to drop. The increase in stalls at pipestage 4 in the floating

point traces is caused by the launch point of both the fast and slow floating point

execution units at that pipestage.

Figure 3.10 shows the average number of available ROB entries for both

35

11111111111111111111111111111130

V
SpecFP
SpecInt15 111111111111111111111111111111 II

1111111111111111111111111 I
r3- 10

1111111111111111111Pillin5

11111111111111111011111:.
41 N- CT) 1.0 N- cr,

(N (-7

Available Entries

Figure 3.10: VRP ROB Available Entries

floating point and integer traces. Since there are only 8 pipestages, it is surprising

at first to see that VRP is using more than eight entries in the ROB at all.

However, the ROB entry must stay allocated from the time the instruction enters

the pipeline until it's results return to the ROB. If no stalling occurred, the

maximum time that a ROB entry would be allocated would be 16 cycles. For the

integer traces, this is almost exactly what occurs. The ROB almost never uses

49

more than 16 entries. The floating point traces, while still rarely using more than

16 entries, uses far more entries than the integer traces. This is partly because

floating point instructions take longer to execute and thus the time for inter-

instruction dependencies to be resolved is longer. This causes more instructions

to stall waiting for their results from earlier instructions and thus stay in the

pipeline longer. Another reason the floating point traces use more ROB entries is

that the slow floating point execution unit has a longer latency than the number of

pipestages between it's launch and recover points. Therefore, whenever a slow

floating point instruction is executed, it guarantees that the instruction will stall at

the recover point. Fortunately the recovery point is at the last stage of the pipeline

where it rarely stalls any other instructions. For the pipeline configuration used,

there would be no reason to increase the size of the ROB since the pipeline never

used up all of the ROB entries. It may even be feasible to decrease the ROB size

so that it only has 16 entries. The number of times that more than 16 entries were

allocated is so small that the effect on performance would be minimal.

3.4 Chapter Summary

In this chapter, the microarchitecture of the virtual register processor has

been described. This microarchitecture offers the main improvement over the

original counterflow pipelined processor of moving the register file from the top of

the pipeline to the bottom so that the previously calculated results are available at

the start of the pipeline. As a consequence of moving the register file, a reorder

buffer has been added. This addition has the by-product of solving several other

problems which prevented the previous architecture from being attractive. Now,

50

with the ROB, recovering from a mispredicted branch becomes much easier.

There is no longer a global signal running from the branch execution unit to every

pipestage below to inform those stages to invalidate the instructions that they are

carrying. In VRP, the branch execution unit only communicates to the ROB and

branch prediction units. When a misprediction occurs, the branch execution unit

sends a signal to the ROB telling it that the branch and all instructions issued after

the branch need to be removed from the pipeline. Instead of actually removing

the instructions however, the ROB simply lets the instructions complete their

execution, but when the results come back to be retired, the ROB ignores them.

This is simpler, but does cause the pipeline and execution units to be used to

calculate results that will never be used. Effectively wasting time and resources

that could be better used doing useful work. The simulation results for VRP show

that the improvements made have resulted in work being computed more

efficiently, but there are still improvements which can be made to get rid of the

remaining bottlenecks.

51

4. THE COUNTERDATAFLOW PROCESSOR (CDF)

There are two main drawbacks to the virtual register processor. The most

serious limitation is that architecture is still limited to only launching one instruction

per clock cycle. Given the fact that current processors are already capable of

executing more than one instruction per clock cycle [8], this limitation rules VRP

out of being used as a general purpose processor. The other drawback is also

related to this limitation of launching only one instruction per cycle. Even if it were

possible for VRP to launch more than one instruction per clock, the pipeline still

stalls, and would quickly clog the instruction flow since instructions would not be

able to pass each other. The counterdataflow processor design overcomes both

of these difficulties and as will be shown may be a viable alternative to current

microprocessor designs [13] [14].

4.1 Architectural Description

The main improvement in counterdataflow over the virtual register

processor comes by allowing both the instruction and result pipelines to wrap

around thereby creating a circular structure. The two pipelines are now two

counter-rotating queues. Referring to figure 4.1, the instruction pipeline moves up

while the result pipeline moves down just as in the previous two architectures.

Only now, if an instruction gets to the end of the pipeline and hasn't executed, it

simply wraps around to the beginning of the pipeline and continues up the

pipeline. The result pipeline acts similarly, only for slightly different reasons. The

results, upon reaching the bottom of the pipeline do not necessarily need to wrap

52

r
r _L

I I

- J

BranchPrefetch Prediction

Instruction
Cache

Figure 4.1 The Counterdataflow Architecture (CDF)

around. They could just write their values into the ROB, and exit the pipeline. The

results are forced to wrap around for performance reasons. In most cases, the

results that an instruction generates are used by the instructions immediately

following. If this happens, the following instruction must go all the way around the

53

pipeline just to read the value from the ROB. This both increases the latency to

execute instructions as well as puts additional read ports on the ROB. By forcing

the results to make one extra trip around the pipeline, the worst case delay waiting

for a result will be half the length of the pipeline since the instruction and result

pipeline are moving in opposite directions [14]. Since neither of the pipelines are

required to stall, by having the results make the one extra trip around the pipeline,

it is guaranteed that all instructions will pass the result and will read it if they need

the value.

4.2 Architecture Changes From VRP

The main architectural change to CDF from VRP is the ability to wrap both

the instruction and result pipelines around. This deceivingly simple change brings

out various enhancements, resulting in both performance improvements as well

as simplifications in implementation. Since the instruction pipeline no longer

stalls, the remaining global signal, the pipeline halt signal, has successfully been

removed and one of the main premises of the counterflow architecture, local

control, has been achieved.

4.2.1 Multiple Instructions Per Clock Cycle

Now that the instructions can wrap around to the start of the pipeline once

they reach the end, multiple instructions per clock cycle can be issued. This can

be done by making each stage of the instruction pipeline wider. It doesn't make

any difference if instructions in the same stage are dependent on each other since

if the dependency isn't resolved by the end of the pipeline, the instruction or

54

instructions will simply wrap around and potentially execute in this next pass of

the pipeline. In VRP and CFPP, the dependent instruction would have to stall the

entire pipeline waiting for its operands. In theory, the width of the instruction

pipeline is unlimited, it is possible to launch unlimited instructions per clock cycle.

In all practicality, the number of instructions issued per clock cycle is bounded by

area available, and the amount of logic which can be executed during one clock

cycle. Currently, a width of four to eight instructions wide seems feasible, but with

future advances in processing technology, that number can be expected to

increase [18j [19]. In this thesis, the instruction pipeline width was limited to four

instruction per pipestage.

4.2.2 Out-Of-Order Execution

By it's vary nature, CDF executes instructions out of order. Any

instructions which are not able to execute in their first revolution of the pipeline will

wrap around and be surrounded by younger instructions just being issued. Even

for a processor where the instruction pipeline is one instruction wide, the

instructions are fetched in order, but the instructions will be executed regardless of

order, chosen only by which instructions are ready to be executed. With a wider

instruction pipeline, deep speculation occurs exposing more available parallelism

than would otherwise be possible. Since more instruction level parallelism is

exposed, the number of instructions executing at any given time increases thus

increasing performance. This will be illustrated later in the simulation results

section.

55

4.2.3 Fast Clock Cycle

The counterfiow pipeline principle was first developed for it's use of local

control. This allows a very fast clock cycle since there are no global signals which

take a relatively long to cross the chip. Unfortunately, there has always been one

signal which needs to propagate through the pipeline from start to finish. Up until

now, the instruction pipeline has always needed to stall. It is possible for an

instruction at the very end of the pipeline to stall thereby needing to stall every

instruction down the pipeline back to the fetch unit. This has been the bottleneck

in maximum clock speed for the CFPP and VRP processor.

Since CDF's instruction and result pipelines wrap around, there is no

longer any reason to stall. This lessens the logic complexity in the basic pipeline

cells as well as in the pipeline to execution unit logic. With this innovation, the

architecture has returned to counterflow's basic premise of obtaining high clock

speeds by having local control of information and a simple pipeline.

4.2.4 Easy and Inexpensive Recovery from Incorrect Speculation

Modern microprocessor have very high branch prediction rates, greater

than 90% [8]. However, 10% of the time, the prediction is still wrong. It is

important to be able to recover from these incorrect speculations quickly and

inexpensively. Since the speculation in CDF is even higher than other

processors, it is even more important for this recovery to be efficient. CDF

accomplishes this in much the same way that other modern processors (including

VRP) do, by using a ROB. When a mispredicted branch is detected, all

instructions after the branch are invalidated from the ROB. In most other

56

architectures, the instructions are either forced to complete execution using up

valuable resources, or are explicitly removed from the processor with extra

hardware [8] [18]. In CDF, a hybrid approach is taken. If an instruction can

execute, it is allowed to. When the results return to the ROB, they are ignored

and deleted from the pipeline. If the instruction has not managed to execute,

when it wraps around and passes the ROB, it sees that it has been invalidated in

the ROB, and deletes itself from the pipeline. This allows at least some

instructions to not have to execute. This is important for an architecture such as

CDF where aggressive speculation occurs. When an incorrectly speculated

branch has been identified, all of the incorrect instructions in the shadow of the

branch are not required to complete their execution and can leave the machine

without having taken up time and space in the execution units.

4.2.5 Tolerance of Long Latency Execution Units

In CFPP and VRP, instructions that have begun executing remain in the

pipeline until they have completed. For long latency instructions like loads, stores,

and floating point operations, these instructions can stall the entire pipeline

keeping unrelated instructions from executing even though resources are

available. In CDF, once an instruction has begun executing, it leaves the pipeline.

The results of the execution do not need to be matched with the corresponding

instruction until they arrive at the ROB. Therefore, the results are simply sent

down the result pipeline whenever they complete. By doing so, load and store

instructions are saved from having to wrap around the pipeline several times in

the case of a cache miss. This frees up space in the instruction pipeline for

57

another instruction to enter the pipeline, thus increasing the instruction window

and therefore the amount of available parallelism exposed in the pipeline.

4.2.6 Support for Multithreading

One of the benefits which was never anticipated was the ease with which

CDF supports multithreading. Multithreading or shared resource multiprocessing

(SRMP) [18] is implemented quite naturally with CDF, as is illustrated in figure 4.2.

With multithreading, the same execution units can be shared among instructions

from all of the threads. Therefore, one version of area expensive execution units

such as memory order buffers (MOBs) and floating point units can be used by all

of the different threads. The only hardware that absolutely has to be duplicated

are the ROBs and fetching logic. Since all matching is done based on tags, each

ROB would have it's own unique tag which would get appended to the normal

instruction tag. The matching which occurs in the pipeline is based entirely on the

tags. Since the instructions from different threads would have different tags and

therefore would not match, the pipeline's logic will continue to do the same job of

matching as before. The analysis and simulation of multithreading is beyond the

scope of this thesis and will not be covered.

4.3 Simulation Results

To analyze the CDF architecture, many different pipeline configurations

were simulated. The configuration in figure 4.3 had the best average performance

and was chosen for full analysis. This is not meant to indicate that this is the one

and only best configuration only that this was the best configuration that could be

58

ROBA +

ci
Instructions

ROBD ROBB

Results

a +
ROB

El

Figure 4.2 Multithreading with CDF

found with a given amount of time and computer cycles. In the configuration

shown, the instruction pipeline can hold four instructions in each pipestage and

the result pipeline can hold eight results in each pipestage. In figure 4.3, the top

four pipestages have been replicated at the bottom of the pipeline in order to

..-
Iji

<
4

44
: IN

TF
01

1

IN
TF

02

IN
TO

4

EU
01

6g

60

illustrate that the two floating point units launch on one cycle of the pipeline and

recover on the next cycle. Since these execution units have such long latencies, it

was observed to be better for overall performance to recover on the next

revolution at the location where the instructions that immediately followed the

launching instruction will be. These instructions are the mostly likely ones to be

waiting for the result of the execution and they therefore receive the result the

earliest [18]

There are four fast integer units (INTF01-INTF04). These units have a one

cycle latency and handle instructions such as addition, subtraction, logical

operations, etc. There are two branch execution units (BEU01-BEU02). These

units have a one cycle latency, and communicate the results of a branch back to

the branch prediction unit. There is one slow integer unit (INTS01). It has a

latency of four cycles, is fully pipelined, and handles slow integer instructions such

as multiply and divide. There is one fast floating point unit (FPFAST). It has a

latency of four cycles, is fully pipeline, and handles fast floating point instructions

such as floating point addition and subtraction. There is one slow floating point

unit (FPSLOW). It has a latency of eight clock cycles, is fully pipeline, and

handles slow floating point instructions such as floating point multiply and divide.

There is a memory execution unit (MEU), not pictured, which handles load and

store instructions and communicates with the ROB to maintain proper ordering of

load and stores. There is one level one (L1) data cache, not pictured, which is a

16KB, 4-way set associative data cache, with one cycle access time, and SLRU

replacement policy [4].

61

The following assumptions have been made to allow for a higher level

simulator. It is assumed that the L1 cache and main memory hold all necessary

data. The main memory has a constant 10 cycle access latency. The branch

prediction unit has a randomly predicted 94% correct branch prediction rate.

When recovering from a mispredicted branch, there is a one cycle "no fetch"

penalty. To maintain precise interrupts, store instructions are not allowed to

complete until they are the oldest instruction in the ROB. Also, the ROB is

allowed to retire as many instructions as it needs to per clock cycle.

A total of ten Spec95 traces were run. Since the number of cycles needed

to simulate a processor of this complexity is large, only the first 2 million

instructions of each trace were run. Five of the traces (m88ksim, gcc, compress,

li, and ijpeg) were integer traces, and the other five (tomcatv, swim, su2cor, applu,

and waves) were floating point (FP) traces [20]. Figure 4.4 shows the

performance in average instructions executed per clock cycle for each trace.

While the average integer performance is slightly higher than the average FP

performance, it is interesting to note that the floating point traces had widely

varying performances. Resulting in both the highest performance, swim with an

IPC of 2.5, and the lowest performance, su2cor with an IPC of 1.1. The average

performance is 2.0 instructions per clock cycle.

Current technology allows many execution units to be fabricated. The

problem is that up until now, processors haven't been able to utilize these

execution units. For much of the time, machines with five or six executions have

these units busy performing useful work only 20-30% of the time [8]. With CDF,

62

3

2.5

2

n. 1.5

0.5

0
U E 0 E

ai tN

E 0

Trace

Figure 4.4 CDF Average Instructions Per Clock Cycle by Trace

many instructions are brought into the machine to be potentially executed, thus

increasing the effective instruction window. Also, by allowing instructions to

launch to the execution units at multiple locations, it looks (from the viewpoint of

the instructions) as though there are more execution units. Figure 4.5 shows the

percent of time the execution units were kept busy for both integer and floating

point traces. Since the memory execution unit (MEU) was able to accept up to

five instructions, and these are capable of taking long periods of time, it is not

surprising that the MEU was busy most of the time, 85% for Speclnt and 68% for

SpecFP. The fast and slow floating point units (FPFAST and FPSLOW) are

similar with 57% and 38% respectively. Since Speclnt traces have negligible

numbers of floating point instructions, they essentially do not use the floating point

63

90

80

70

60 at

44 50 o Speclnt
SpecFP

40

a 30

20

10

Execution Unit

Figure 4.5 CDF Execution Unit Usage

execution units. The compiler used to generate the traces unfortunately had the

penalty for using slow integer operations set high and therefore generated few of

these instructions, causing the slow integer unit to be rarely used.

The utilization of the pipelines is of prime interest in attempting to optimize

a CDF processor's performance. The ultimate goal in CDF is to get the maximum

number of instructions into the machine as possible. This increases the exposed

available parallelism in the code and allows useful work to be done even when

older instructions may be waiting for their data. The number of instructions that

can be launched is the same as the number of instructions which do not wrap

64

around the pipeline. This shows that while it is advantageous for instructions to

be able wrap around if they cannot execute, performance suffers if instructions

wrap around too much. For example, if the instruction pipeline is four instructions

wide and when a set of instructions get to the top of the pipeline none of the

instructions have been able to launch, no new instructions are able to enter the

machine during that clock cycle. However, if two of those instructions did manage

to launch, two new instructions can enter the machine and have a chance to

execute. It is noteworthy that it is not very important how long the instructions

take to execute and return their results. It is far more important that the

instructions launch and leave the instruction pipeline allowing new instructions to

enter. Figure 4.6 shows the instruction pipeline utilization for the pipeline

13 SpecFP

iii SpecInt

9 8 7 6 5 3 2

Pipe Stage

Figure 4.6 CDF Instruction Pipeline Usage

65

configuration depicted in figure 4.3. Pipestage 9 is the bottom of the pipeline

where instructions enter, and pipestage is the top of the pipeline where1

instructions wrap back to stage 9. At stage 9, the average number of instruction

pipelines used is approximately 3.4 for both the Speclnt and SpecFP traces. It is

less than the ideal case of all four instruction pipelines being used because

prefetch is assessed a one cycle penalty every time a branch is taken. Therefore,

everytime a branch is taken, the other instructions prefetched after the branch are

discarded, to be fetched in the next clock cycle. The more important number is

the average number of instruction pipelines used at the top of the pipeline. The

SpecFP traces have just under two instruction pipelines used and the Speclnt

traces have around 1.5 instruction pipelines used. The SpecFP instructions stay

in the pipeline longer because of the longer latency of the floating point execution

units. Still, an average of 2 new instructions have an empty slot to enter the

pipeline at each clock cycle. Ideally, this results in an IPC of 2. From figure 4.4, it

is shown that the SpecFP traces had an actual IPC of approximately 1.9. For the

Speclnt traces, the IPC will ideally be 2.5 while the actual IPC observed was 2.2.

These differences can be attributed to incorrect branch prediction, and the fact

that instructions cannot always be fetched to fill the empty slots.

The result pipeline utilization is less important than the instruction pipeline

utilization. It only affects performance if reduced considerably. Still, the results in

figure 4.7 are useful to estimate how wide to make the result pipeline so that it

does not become the performance bottleneck. In the pipeline configuration

simulated, the result pipeline was made eight results wide. This, as it turns out, is

66

2.5

2

1.5
m Specint

iB SpecFP
C.

1

0.5

0

9 8 7 6 5 4 3 2

Pipe Stage

Figure 4.7 CDF Result Pipeline Usage

considerable overkill. Again, pipestage 9 is the bottom of the pipeline where the

results are written back to the ROB, and pipestage 1 is the top of the pipeline

where some results wrap around. At the bottom of the pipeline, an average of 2.3

results are in the pipeline. It is important to note that the usage of the result

pipeline is constant at the bottom of the result pipeline. This occurs because no

execution units recover at these pipestages. That, and since the result pipeline

does not stall, means that no results enter or leave at these stages. The majority

of the congestion occurs in the middle of the pipeline. If the result pipeline is not

wide enough, results will not be able to find empty locations in which to write their

results back in to, and they will not be able to leave the execution units, thus

causing the execution units to stall. Although the execution units stall, this still

67

does not cause either of the result or instruction pipelines to stall. Since the

instructions will just continue passing the execution units until they are no longer

stalled.

When attempting to optimize the pipeline configuration for maximum

performance, it was found useful to observe the average number of times various

types of instructions wrap around the pipeline. It was shown in figure 4.6 that the

average performance is strongly dependent on how many instructions are left in

the instruction pipeline at the top of the pipeline. To minimize this number, the

instructions must launch into the execution units. Figure 4.8 shows the

3.5

3

2.5

2 SpecInt

0 SpecFP
IC 1.5
E

0.5

0 0
co

u_ (-7)
0_

U- U_C

Instruction Type

Figure 4.8 CDF Instruction Wrapping by Instruction Type

breakdown of the average times an instruction wraps by the type of execution

unit. This graph can be misleading since it does not take into account the number

68

of instructions of each type. For example, the slow integer instructions

(INTSLOW) wrap an average of 1.7 times. While this is relatively high, there are

almost no slow integer instructions, so it's reasonable to ignore optimizing these in

favor of decreasing the number that wrap of a more common instruction type. The

floating point instructions wrap considerably more than integer instructions

because of the fact that their execution latencies are longer. The effects of the

very high amount of wrapping for slow floating point instructions (FPSLOW) is

somewhat offset by the fact that they are usually the end result of a long

computation and other instructions are generally not dependent on the result.

Minimizing the number of instructions wrapping has been used as the main

metric for optimizing the performance of a CDF processor. It is interesting to

analyze the data to see how well this data correlates to actual performance on a

trace by trace basis. Figure 4.9 shows the average number of times instructions

wrapped by trace. It does indeed show that those traces with the lowest

performance wrapped the most while those with the highest performance

wrapped the least. Not surprisingly, the two traces whose instructions wrapped

the most, applu and su2cor, are floating point benchmarks since the latencies

involved in floating point operations are higher. To aid in analysis, figure 4.10

shows a scatterplot of IPC versus average wrapping by trace. There is essentially

a linear relation between performance, expressed in instructions per clock cycle,

and the average number of instructions wrapping. It follows that a major aim of

improving performance is to try to have as few instructions as possible wrap

around the pipeline.

69

Trace

Figure 4.9 CDF Instruction Wrapping by Trace

Another useful metric is the average number of entries that are available in

the ROB. Figures 4.11 and 4.12 show the distribution of available entries for both

the Speclnt and SpecFP traces. These give an idea of the size of the instruction

window being exposed during execution. It is impressive to note that in the

pipeline configuration that was simulated there are only locations for 36

instructions (9 pipestages with a width of 4 instructions), but there averages over

60 instructions in the machine at a time for Speclnt traces and 80 instructions for

SpecFP traces. Both sets of traces reach the limits of the 128 entry ROB, but the

SpecFP traces actually appear to be limited by having only 128 entries. Indeed,

0.7% of the time the ROB size is limiting the number of instructions that can enter

the processor. More instructions can be in the machine at a time due to the fact

70

3

2.5

2

0.5

0 05 15 2 25

Ave Instructions Wrapping

Figure 4.10 Instructions Per Clock Cycle vs. Instruction Wrapping

that once an instruction has entered an execution unit, it no longer needs to be

kept in the instruction pipeline. When the results are eventually computed, the

instruction's results are sent down the result pipeline tagged with the ROB tag of

their originating instruction. These large instruction windows allow more of the

program's inherent parallelism to be exposed and thus improving performance.

4.4 Chapter Summary

In this chapter, the microarchitecture of the counterdataflow processor has

been described, shown a possible pipeline configuration, and given simulation

results for 10 Spec95 traces. It's been shown that the CDF microarchitecture is

an efficient means of exposing the available parallelism in a given program and

7l

4.5

I 111111111 111! 1114

as 111111

111111111111111111111111111T MIN MIa) 3

2.5 111111111111111111111111111/1 111111111111111111111
C 71MM MI2 1111111111111111111111111111r

1111111MIMMIMMIF 1111111111111 1111111
CI! 1.5 imommuumw Immo munom= r

E mum imm0.5

0
mmournrim ion mu

Available ROB Entries

Figure 4.11 CDF ROB Available Entries for Speclnt

dispatching instructions to multiple execution units. The problems of the earlier

CFPP architectures, pipeline stalling and single instruction issue, have effectively

been solved and are no longer a bottleneck to higher processor performance.

0
1 7 13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

10
3

10
9

11
5

12
1

12
7

P
er

ce
nt

 o
f T

im
e

C
T1

73

5. THE ARCHITECTURE-BLOCKS (aBlocks) SIMULATION PACKAGE

5.1 Goals of the Simulator

The aBlocks simulation package has been developed to give

microarchitecture researchers, a package of tools that allows rapid

microarchitecture prototyping and performance evaluation. This package

advocates heavy object reuse, and provides users the flexibility to try out various

subsystems without rewriting large sections of code. In most educational

environments there is usually a wide variety of computing resources available. If

it is possible to utilize all of the different types of computers, the amount of

computational horsepower available can be considerably large. While it is

theoretically possible to support multiple versions of software on different

platforms, it is not our goal as designers to be involved in software support. The

overall speed of the simulator is of course important, but is considered of

secondary importance to the flexibility and speed of prototyping. Having graphical

support in a language can be very useful for debugging as well as prototyping

various architectures. As the requirements are platform independence, an object-

oriented language, and graphical support, Sun Microsystems' object-oriented

language, Java, was chosen with which to write the simulator [15].

5.2 Implications of Using Java

Java is a simple, object-oriented, distributed, architecture neutral,

portable, high-performance, multithreaded, and dynamic language [15]. This

matches well with our requirements for a simulator. Since our goal is to be end

74

users of this product and not tool writers, the fact that the language is simple

allows us to write quality code without spending too much time fighting against the

language and tools. Java does not have pointers. This alone justifies using it in

many people's minds. There is also automatic garbage collection. This frees the

programmer from having to keep track of all of the memory used and making sure

it gets deallocated. The programmer simply allocates whatever structures are

needed. When they structures are no longer being used, the programmer simply

lets go of them and the garbage collection thread cleans up and deallocates the

memory that was being used.

Since Java is an object-oriented language, it encourages object reuse.

Many different types of architectures share common functional units. For

instance, many architectures have a ROB or reorder buffer unit. There is very

little difference in a ROB from one architecture to the next. So, once the time

writing and testing a ROB for one architecture has been invested, it would be

preferable to reuse this section of code for another architecture. Since Java is

object-oriented, it is straightforward to reuse the same or similar code in different

simulations.

As educational environments have many varying software and hardware

platforms, it would be desirable to use all of the available computational resources

possible. Since Java compiles and runs on all of the major hardware platforms

(Sun, Intel, HP, Apple) once a simulator is functioning it is possible to run it on all

the computers available. An added benefit is that Java is aware of the World

Wide Web. Since most of the currently available web browsers are capable of

75

running Java code, it is possible to use computing resources that are not even

physically at the researcher's institution. Essentially, anyone willing to go to a web

page can run simulations. It conceivable to think of the entire internet as one

large distributed computation engine. With a Java based simulator the idle

resources on the internet could be harnessed and used for many useful purposes.

Since the simulator will be used to debug and prototype new architectures,

it must be capable of graphically displaying the simulator's information. Since

Java comes with it's own built-in platform independent windowing and graphics

library [17], it is possible to display all the necessary information in a platform-

independent way without having to overly burden the programmer. This is

another added advantage of using Java.

5.3 Simulator Methodoloay

One of the main goals of the simulator is flexibility. To this end, a few basic

interface guidelines were decided upon to ensure that any object written for this

simulator will be able to be reused transparently with any other object.

5.3.1 The Superclass Object - aObject

Every object/class in the aBlocks simulation package is a descendent of

the aObject class. Any physical piece of hardware or information is represented

as an aObject. This object defines the basic functions that allow all objects written

to be used in an essentially plug-n-play manner. Replacing an object written for

one architecture directly into another with little or no rewriting allows rapid

prototyping and easy experimentation.

76

The toString() function is one function that all objects are required to

implement, either by inheriting the function from an object that it subclasses or by

it's own implementation. The toString() function takes no arguments and returns a

string containing the state or status of the object. Any object can call any other

object and request this string. This can be used when debugging to print out the

state of an object. For example, when debugging the ROB, it's state could be

output by calling aROB.toString(). In this manner, the intermediate state can be

displayed to see that if perhaps something is going wrong internal to a given

object.

The give() function is the fundamental interface between all objects. This is

the manner by which all objects communicate. The give function takes a list of

aTokens and returns a list of aTokens. An aToken is the basic unit of information

in the simulator and will be described in the next section. The give function is

easily misunderstood and is even more easily abused. The interface is

bidirectional in nature, meaning either "I give to you" or "you please give me"

depending upon the context of the communication and the object being called. It

is very strictly enforced that the list of aTokens returned is the same length as that

passed. While this may seem unorthodox, it has proven to be incredibly

convenient and more importantly generic enough that all objects can perform the

communication necessary to perform their duties.

5.3.2 The Information Object - aToken

As alluded to in the previous section, one of the basic aObjects in the

simulator is the aToken object. This object is literally the information object.

77

Anything that is not actually a piece of physical hardware is simulated as an

aToken. An aToken is used to represent either an instruction, such as ADD R1,

R2, R3, or a piece of data (i.e. Ox1234, 45, etc.). Throughout this document, an

aToken being used as an instruction will be referred to as an instruction token

(iToken) while an aToken being used as a data element will be referred to as a

data token (dToken).

Since the aToken has to play a variety of roles it is represented in a very

generic manner. Table 5.1 shows the fields available in aToken. Most field's

Table 5.1 aToken Fields and Values

Type Name Description

long value an actual numeric value or the opcode if is an instruc-
tion

long address an address in memory

int tag the identifier for this token

int phase the state or status of this token

aToken[] producers for instructions, the tokens that this token produces

aToken[] consumers for instructions, the tokens that this token consumes

meanings change based upon whether the token is an instruction or data. For an

instruction token (iToken), the value stores the opcode. If a functional simulation

is being run, the value of a data token (dToken) holds any calculated values. In

general, an iToken will use the producers array to hold the register(s) that it will

produce when it is done executing and will use the consumers array to hold the

78

register(s) that it needs in order to execute. At this point, an example might be

helpful. If the instruction ADD R1, R2, R3, meaning take the values held in

registers 2 and 3, add them together and put the result in register 1, is to be

represented with aTokens. Figure 5.1 shows how the aToken would be used to

iToken format

Value Opcode for Instruction (i.e. ADD)
Address Program Counter for this Instruction
Tag Unique Identifier for this Instruction
Phase {Identifies aToken as an iToken}

Producers]] List of dTokens that will be produced
List of dTokens that will be consumed Consumers]]

dToken Format

Value In Execution Based Simulator, the register's value
Address For memory operations, the memory address
Tag The register number (i.e. R1, R2, R3)
Phase {Identifies aToken as a dToken}

Figure 5.1 Instruction and Data Token Formats

hold all the necessary information. While the iToken and dToken are in reality the

same object, the Producers and Consumers fields are generally unused in a

dToken. This is not necessarily true however, and in certain dataflow type

architectures it may be advantageous to use dTokens that consume and produce

other dTokens (or for that matter iTokens). The many possible implementations of

this object are left up to the end user to decide what is the most efficient method to

represent the flow of information.

79

1

The phase field is the most complicated of all fields and truly holds most of

the information of the token. The phase is stored as an integer, and forms a sort

of tree of values, see figure 5.2. The diagram in figure 5.2 illustrates a typical

ATOKEN

DATA INSTRUCTION/ \ 72

COPIED MEM_FINISHED pREpipE INPIPE INROB

MEM_STARTED

WRAPPED FETCHED DECODED PRELAUNCH LAUNCHED RECOVERED

PREDICTED ROBED
1 1

/ RSTALL FORWARDED

I

STALL HOOPS STALL_MCYCLE

STALL HARD STALL_MOB

Figure 5.2 A Typical Phase Tree

phase tree. The aToken definition specifies that the most significant (MSB) is the

valid/invalid bit. When set to '0' it indicates an invalid token and when set to '1' it

indicates a valid token. Bits 30-27 store the data length. This value is used in a

memory transfer operation and indicates the number of bytes that are to be

80

transferred. The rest of the word, bits 26-0 form the user definable part of phase.

While this can indeed be defined as anything the programmer wants, the most

flexible use of these bits is to form a phase tree. The phase tree is represented in

31 30-27 26-0
Valid Data Length User Definable Range

Figure 5.3 Phase Representation

an integer assuming 4-bits per tree depth and proceeding from LSB to MSB. To

specify that a token is in the ROBED phase, one would specify that it is an

INSTRUCTION (2), that it is PREPIPE (1), and that it is ROBED (4). This would

be represented as 0x0412. Now, given this phase, suppose you want to ask if this

token has phase PREPIPE (0x0012). The aToken method isPhase would

proceed from the LSB, matching sets of 4 bits. If the phase in question reaches

zero and the two phases match, then the phase in question is of that type and true

is returned. This method of handling information has been found to be flexible,

expandable, and allows various questions to be asked without having to change

the representation of the tree.

5.3.3 The Statistics Interface - stats

The stats interface specifies the interface which an object must implement

if it is to collect and return simulation statistics. The object must implement a

setStatLevel function. This function takes an integer which specifies how much

81

Table 5.2 Phase Descriptions

Phase Description

ATOKEN The token is a token.

DATA The token is a data token.

COPIED The token has been copied to the result pipeline.

MEM_STARTED The token's memory access has begun.

MEM_FINISHED The token's memory access has completed.

INSTRUCTION The token is an instruction token.

PREPIPE The token hasn't entered the pipeline.

FETCHED The token has been fetched.

PREDICTED The token has been through branch prediction.

DECODED The token has been decoded.

ROBED The token has been through the ROB.

INPIPE The token has entered the pipeline.

PRELAUNCH The token has yet to launch.

LSTALL The token has stalled waiting to launch.

STALL_NOOPS The token has stalled on an operand hazard.

STALL_HARD The token has stalled on a hardware hazard.

LAUNCHED The token has launched to an execution unit.

RSTALL The token has stalled on recovery from execution.

STALL_MOB The token has stalled waiting on the MOB.

STALL_MCYCLE The token has stalled due to a multicycle sidepanel.

INROB The token has returned to the ROB.

RECOVERED The token has recovered into the pipeline.

FORWARDED The token has forwarded its results.

and what type of statistics to collect. The internal representation of what these

values mean is left up to the individual objects. There is a corresponding

82

getStatLevel function which returns this integer so that other objects can find out

what statistics are being collected and possibly use the statistics collected by

another object. The getStats function recursively calls getStats on any objects

that are below this object in the dependency tree of the simulator and returns it's

own statistical information as well as the other information in the form of a string

as output.

5.3.4 Other Basic Objects

In building this simulator, numerous objects have been built, all conforming

to the aBlocks specifications. Table 5.3 lists some of the main objects that are in

the package along with a brief description of their functionality. Not all of these

objects were used in the development of the counterflow architectures and most

were subclassed to account for small differences in their functioning in a

counterflow environment.

5.4 Using aBlocks to Simulate Microarchitectures

The aBlocks package was used to simulate the three CFPP

microarchitectures, the original counterflow pipelined processor (CFPP), the

virtual register processor (VRP), and the counterdataflow processor (CDF). To

create these architectures the basic aObjects were used and in some cases

subclassed to create more specific "counterflow" objects. As examples of how to

use aBlocks, the CFPP and VRP simulators will be explained. The CDF simulator

is largely identical to the VRP simulator and will not be shown.

83

Table 5.3 Descriptions of Basic aObjects

aObject	 Brief Description

aBranchExecUnit	 Communicates with a Branch Predict Unit to decide the correct-
ness of a branch instruction.

aBranchPredictUnit	 Basic branch prediction. Randomly decide a branch's correct-
ness.

aCache	 Any level cache unit, implements LRU, SLRU, FIFO, RAND
replacement algorithms.

aDecodeObject	 Communicates with the prefetch unit, ISA Decode unit and pro-
cessor to decode instructions.

aExecUnit	 Generic fixed latency execution unit.

aMOBExec	 Memory Order Buffer. Talks to ROB to decide on memory
ordering.

aMemory	 Generic main memory with a fixed latency.

aNBitBPU	 Branch prediction unit implementing an N-bit history algorithm.

aObject	 The Superclass object.

aPrefetch	 Prefetch unit. Talks to branch prediction and fetch units to
prefetch instructions.

aRFObject Generic register file.

aROB Re Order Buffer.

aToken The Information Object

5.4.1 Counterflow Pipe lined Processor - CFPP

As the first implementation of a counterflow processor, CFPP

encompasses most of the basic principles of the other architectures. Shown in

figure 5.4 is the pipeline calling tree of a counterflow processor [11]. The calling

tree is the order in which calls to the give function of objects is made. in most

cases, only one external call from the top level of the simulator is needed to create

84

rPipe
(rPipeAbove)

ExecUnit(s) 4 iPipe rPipe
(recoverSP, launchSP; 4 (this) (rPipeAcross)

V

iPipe
(iPipeBelow)

Figure 5.4 Basic Counterflow Pipeline Calling Tree

the calling tree and the resulting calls are then made by the objects themselves to

generate the actions required. In this example, the top level simulator makes one

call to the iPipe asking it to "give" some tokens. The iPipe then takes care of

calling the other four objects with actions 2 through 6. This basic tree remains

essentially unchanged for all three architectures. The calling tree is numbered in

order from 1 to 6, with the numbers circled in the figure.

1- Some object calls the instruction pipeline (iPipe) (this) with give with a

list of tokens requesting a number of aTokens. It is important to note that the

requested object must return the same number of tokens as has been requested.

If the number requested is zero, it means that the requesting object cannot accept

any new tokens at this time. This is the mechanism by which stalling occurs. If

85

the number requested is nonzero and the requested object cannot return that

many objects, these spaces must be filled with null tokens. It is the requesting

object's responsibility to check for nulls and process them accordingly.

2- The instruction pipeline (this) calls all of the execution units which

recover at this point and asks if they have any tokens which have finished being

executed. If they have, the instruction pipeline takes the tokens. This is one of

the two points where the instruction pipeline can be told to stall. If the execution

unit at this stage sees that the instruction pipeline has a token which it is

executing, but which has not completed executing, the instruction pipeline must

stall. The execution unit takes the token, changes the phase to RSTALL for

recover stall, and returns the token to the instruction pipeline. The instruction

pipeline seeing that it must stall does not request any new tokens in step number

six.

3- The instruction pipeline checks the result pipeline (rPipe) above it for

multiple items. It compares the tokens in the result pipeline for results that it might

need in it's consumers arrays. If it finds any that have the same tag match and

are valid, it takes the values from the result pipeline and marks it's consumer

token as valid. At the same time, if the iToken has completed executing and there

are empty locations in the result pipeline, it puts it's producer tokens in the empty

spots, and marks the producer as phase FORWARDED.

4- The same actions that occurred in step number 3 are repeated for the

result pipeline across from this instruction pipeline. Because both the instruction

pipeline and result pipeline are moving at the same time, the instruction pipeline

86

has to check with both the result pipeline above and across from it to make certain

that data doesn't pass without being inspected, resulting in incorrect execution.

5- At this step, the instruction pipeline calls all of the execution units which

can launch at this point and asks them if they can execute any of the tokens that

are being held. If the execution unit can execute the token and all of the token's

consumers are valid it takes the token, marks the phase as LAUNCHED, keeps a

copy of the token, and returns the original to the instruction pipeline. This is also

the other time which the instruction pipeline may be required to stall. If the

execution unit is the last execution unit which can process this type of instruction

and the instruction does not yet have all of it's consumer tokens, the instruction

pipeline will be required to stall. In this case, the execution unit will detect this

case, mark the token's phase as LSTALL for launch stall and return the token to

the instruction pipeline. There it will remain until it receives all of it's tokens when

it will be allowed to execute normally.

6- At this point, all of the necessary internal transferring of information has

taken place. If the instruction pipeline was not stalled, it will request a list of

tokens from the instruction pipeline below it to replace the tokens that it will give to

the object which called it in step number 1. The instruction pipeline below will go

through these same steps on it's own calling tree, eventually returning a list of

tokens. These will become this instruction pipeline's new tokens and it will return

it's old tokens to the object which called it in step number 1.

The calling tree described above shows only the interactions between the

two pipelines and the execution units. Figure 5.5 shows the full calling tree of a

87

Branch Prefetch
Prediction

Fetch

........

Figure 5.5 CFPP Microarchitecture Calling Tree

CFPP processor implementation. It needs to be mentioned that this is only one

possible implementation of this microarchitecture. As long as the full cycle of

actions is completed, this specific calling tree does not have to be followed. This

88

tree just happens to be the implementation that seemed to make the most sense

at the time. The following steps, labelled from 1 to 11 in figure 5.5 make up one

full clock cycle.

1- This is the start of one clock cycle for the processor. The top-level of the

simulator calls into the register file to begin the calling cycle.

2- The register file calls the top of the instruction pipeline requesting a list of

tokens the width of the instruction pipeline. The tokens eventually returned are

the instructions which have completed and are then written back into the register

file. In the case of CFPP, which can only execute a maximum of one instruction

per clock cycle, this is a list of one token. This call results in a cascade of calls

described in figure 5.4 that calls down the instruction pipeline, launching tokens,

recovering tokens, and communicating with the result pipeline. However, once

the pipeline calling tree has been debugged, it can be treated as one entity and

used transparently.

3- The bottom of the instruction pipeline calls to the decode object to get a

new list of iTokens that have been decoded and are ready to enter the pipeline.

4- The decode object calls the prefetch object for a list of iTokens that have

been fetched and are ready to be decoded.

5- The prefetch object calls the branch prediction for a list of dTokens to be

fetched. These dTokens contain the addresses from which to fetch instructions.

6- The prefetch object uses the dTokens from the branch prediction object

to request instructions from the fetch object. Depending on whether the simulator

is trace based or execution based, the fetch object either reads from a trace file or

89

calls a memory and requests the instructions at the addresses in the dTokens.

7- The prefetch object takes the list of iTokens from the fetch object and

presents them to the branch prediction object. The branch prediction object looks

through the iTokens for branches. If it finds a branch, it uses its prediction

algorithm and guesses the direction it believes the branch will take. If the branch

was not taken, the rest of the iTokens in the list are returned to the prefetch object.

If the prediction determines that the branch was taken, the rest of the iTokens are

invalidated and the predicted PC is calculated to be used during the next cycle.

8- At this time, the decode object has received a list of tokens to be

decoded. It now calls the ISA specific decode object to have the iTokens decoded

into the ISA being used. Currently the only ISA that has been written is for the

Simple Scalar ISA. This ISA specific decode object must be handwritten for each

ISA that needs to be run. At this point, the full iToken is formed, with the value

field filled in with the integer value of the opcode, lists of consumers and

producers formed, and any other ISA specific functions performed.

9- This step is another top-level simulator call. A call is made to the bottom

of the result pipeline. This call ripples up the result pipeline essentially causing all

data to move down one stage.

10- The top of the result pipeline makes a call to the register file to request

a list of dTokens to pass down the pipeline to waiting instructions in the instruction

pipeline.

11- The register file needs to know what dTokens to read in order to fill the

request from the result pipeline in step number 10. Therefore it calls the decode

90

object which by this time holds the iTokens which have just been fetched. The

consumers of these iTokens are returned to the register file which in turn gives the

values to the result pipeline.

5.4.2 Virtual Register Processor - VRP

The virtual register processor is built in largely the same manner as the

counterfiow pipelined processor. The basic pipeline calling tree is in principle the

same, however the calling order is vastly different. The main hardware addition is

the reorder buffer or ROB, however since the objects all use the standard aBlocks

interface most of the same objects as CFPP are used, they are only called in a

different manner. Figure 5.6 shows the full calling tree of a virtual register

processor. It must again be stated that this is only one method of arranging the

tree. Other organizations could be just as correct, it was simply felt that this was

the most straightforward tree at the time.

1- The top-level simulator makes a call to the top of the instruction pipeline

to begin the calculations for one clock cycle of the simulator. This cascades into

the same set of calls that the CFPP pipeline calling tree generates in the previous

section.

2- The bottom of the instruction pipeline makes a call to the decode object

to get a new set of decoded tokens to bring into the pipeline.

3- The decode object makes a call to the result pipeline object to get the

results for this clock cycle. This step is necessary to prevent data from passing at

this boundary between putting an iToken into the instruction pipeline and

removing a dToken from the result pipeline. If this step is omitted instructions

91

. 4`e.

ISA Decode
Decode ROB

Q

Branch
0 V

Prefetch
Prediction

Fetch

Figure 5.6 VRP Microarchitecture Calling Tree

entering the instruction pipeline can miss their required data that is leaving the

result pipeline, resulting in incorrect execution.

4- The decode object takes the results from the result pipeline in the form

of a list of dTokens and gives them to the ROB to be retired.

92

5- The ROB takes the list of completed dTokens and if they belong to the

oldest instructions in the machine retires them by writing their values to the

register file for permanent storage.

6- The ROB and register file have done their respective jobs by this point,

and the decode now returns to it's original job of getting new instructions to be

decoded. To this end, it requests a list of iTokens from the prefetch object to

decode.

7- The prefetch object calls the branch prediction for a list of dTokens to be

fetched. These dTokens contain the addresses from which to fetch instruction.

8- The prefetch object uses the dTokens from the branch prediction object

to request instructions from the fetch object. Depending on whether the simulator

is trace based or execution based, the fetch object either reads from a trace file or

calls a memory and requests the instructions at the addresses in the dTokens.

9- The prefetch object takes the list of iTokens from the fetch object and

presents them to the branch prediction object. The branch prediction object looks

through the iTokens for branches. If it finds a branch, it uses its prediction

algorithm and guesses the direction it believes the branch will take. If the branch

was not taken, the rest of the iTokens in the list are returned to the prefetch object.

If the prediction determines that the branch was taken, the rest of the iTokens are

invalidated and the predicted PC is calculated to be used during the next cycle.

10- At this time, the decode object has received a list of tokens to be

decoded. It now calls the ISA specific decode object to have the iTokens decoded

into the ISA being used. Currently the only ISA that has been written is for the

93

Simple Scalar ISA. This ISA specific decode object must be handwritten for each

ISA that needs to be run. At this point, the full iToken is formed, with the value

field filled in with the integer value of the opcode, lists of consumers and

producers formed, and any other ISA specific functions performed.

11- The now decoded iTokens are given to the ROB. The first thing the

ROB does is attempt to give the iToken an entry. If it fails because the ROB is full,

the unchanged iToken is given back to the decode unit who has to hold onto it and

the decode unit is forced to try again the next clock cycle. If there is an available

entry, the iToken gets renamed to the ROB entry's tag. The ROB also searches

the iToken's consumers to see if it is holding a renamed producer. If it is, the

consumer is renamed to the associated ROB entry that will eventually produce it's

value. If not, the value is read from the register file and given to the consumer. At

this point, the new iToken is returned to the instruction pipeline and one clock

cycle has been completed.

5.4.3 CounterDataflow Processor - CDF

The counterdataflow processor has also been implemented in the aBlocks

simulations package. It is, however, very similar to the VRP processor. The main

differences being that the instruction pipelines can be wider than one iToken and

that the instruction pipelines and result pipelines wrap around. The calling graphs

are almost identical except for the fact that at the end of the results and instruction

pipelines one more call is made to cause the values to wrap around the pipelines.

Since the calling trees are so similar, the CDF tree will not be covered here.

94

5.5 Chapter Summary

An architectural simulation suite, aBlocks, has been written by

microarchitects for microarchitects. A variety of common objects have been

written in Java. Since Java is an "architecture neutral" language, these objects

can be used on just about any modern processor without any porting. While Java

is slower than other compiled languages, the ability to run on multiple platforms

and "just in time" compiling make up some of the lost speed.

95

6. FUTURE EXTENSIONS OF CDF

Each time a new architecture was developed it was always in response to

a shortcoming in the previous architecture. At the moment, CDF appears to have

overcome all of the major shortcomings of a new architecture. It handles long

latency instructions without a problem by removing them from the pipeline until

they complete. This allows other instructions to continue executing without

getting backed up waiting for this operation to finish. It facilitates deep instruction

speculation by acting as a distributed reservation station where instruction

dependencies are resolved within the pipeline. There are some areas which still

need to be investigated, both from an implementation standpoint and to find

further performance increases.

6.1 Distributed Reorder Buffer

In the current implementation of CDF, the reorder buffer (ROB) is in great

demand. For a CDF pipeline, illustrated in figure 6.1, with four instruction

pipelines and four result pipelines, the requirements on the ROB are eight write

ports and eight read ports. This assumes an instruction format where there is a

maximum of two operands. This is the maximum number of ports that the ROB

may need to be able to handle. Unfortunately, in CDF the instruction and result

pipelines do not stall, so it is possible that all of the pipelines could be full and

need processing by the ROB. In this case, the ROB has to be able to handle all of

these requests simultaneously. It is possible that the pipelines could be altered to

allow instructions and data to flow past the ROB, but the ROB then becomes the

96

ROB

A A A

Figure 6.1 Reorder Buffer Interactions with the CDF Pipelines

bottleneck for new instructions to enter the processor. Having many read and

write ports on the ROB increases the ROB's complexity and increases the time

required to access the data. This limits the maximum clock speed at which the

processor can run.

CDF acts as essentially a distributed reservation station, where instructions

and data are matched as they both flow through the pipelines [18]. The natural

extension of this paradigm is to attempt to distribute the ROB around the pipeline.

In effect, segmenting the ROB and doing some matching at various locations

around the pipeline. The only extra hardware needed to implement this scheme is

97

a table to hold the register aliases and adding a field to the register file to hold the

ROB entry which will eventually write the data back.

The extra hardware needed is shown in figure 6.2. Shown are the register

alias table (RAT) and the modified register file. For this illustration, it is assumed

that there are two instruction pipelines and that the ROB can hold, in total, four

instructions at any given time. The RAT is organized as a circular buffer, with new

entries being added at the head pointer and old entries being retired from the tail

pointer. When the head and tail pointers point to the same location, the RAT is

full, and can hold no more instructions until the oldest instruction completes and

can be retired. The "pipe" field shows which instruction pipeline the instruction

was dispatched into. The "register' field shows which register, in the register file,

that this instruction will write its results into when it completes. The "last" field

points to the RAT entry which previously was going to write to the same register.

This is used in case of an incorrectly speculated branch. The instructions after the

branch must be removed from the pipeline and the RAT and RF must be returned

to the state they were in before the branch occurred. The "last" field is used in this

case so that the RAT does not need to be associatively searched. If this is the

only instruction which is going to write to this register, this entries own RAT

number is put in the last field. The register file performs the same functions as a

standard register file, with the exception of the addition of the "alias" field. This

holds the RAT entry which will eventually write into this register. This field is

provided to allow the "last" field of the RAT to be updated by reading it directly

from the register file.

98

Pipe Register Last Valid Alias

head --s 0 0 xx xx 0 1 xx

1 1 xx xx 1 0 03

2 0 xx xx 2 1 xx

tail 0-3 0 RI 03 3 1 xx

(RAT) (RF)

T10

RAT RF

T03

RI -RI +R0

Pipe Register Last Valid Alias

0 1 R1 03 0 1 xx

head 4- 1 1 xx xx 1 0 10

2 0 xx xx 2 I xx

tail 0-3 0 R1 03 3 1 xx

(RAT) (RF)

Figure 6.2 Register Alias Table and Modified Register File

Figure 6.2 shows an example of how the RAT and RF together are used to

process an instruction. At the top, the RAT and RF are shown initially. They have

99

only one outstanding instruction. Some instruction is in the pipeline and will

eventually write to register R1. This instruction has been put into the instruction

pipeline 0 and given the RAT tag of T03. The "0" in T03 indicates that the

instruction is in instruction pipeline 0 and the "3" indicates that it has been put into

the third RAT entry.

At this point, a new instruction needs to be issued to the pipeline.

Assuming that this instruction performs the function, R1 = R1 + RO and there is

room in instruction pipeline 1 for this instruction, the following actions occur. The

register file is read to see what the values of R1 and RO (the consumers) are.

Since RO is already valid, the actual numerical value is given out. R1 is to be

processed by the first instruction and so that instruction's alias, 103, is given in the

place of R1. This new instruction will eventually write it's result to register R1.

The head of the RAT is pointing to entry 0 and since this new instruction is going

into pipeline number 1, the instruction is given the tag T10. At the same time, the

old instruction's alias is read out of the RF and written into the "last" field of this

instruction's entry. After being processed by the RAT and RF, the translated

instruction looks like, T10 = T03 + #. This new instruction is launched into

instruction pipeline 1. This entire lookup process was accomplished without

making any associative memory accesses, therefore this step in the pipeline can

be fast and not limit the performance of the processor.

At this point, a short example may help to clarify just how this whole

process allow the ROB to be broken up and still maintain consistent data across

the individual ROBs. Figure 6.3, shows a small pipeline which will be used to step

100

H tail

head

tail 1. 7

head --0.- (ROB 1)

(ROBO) (IPipeO) (IPipel)

Pipe Register Last Valid Alias

head e- 0 X XX XX 0 1 xx

1 X XX XX 1 0 07

2 X XX XX 2 1 00

3 X XX XX 3 0 16

4 X XX XX 4 1 xx

5 X XX XX 5 1 xx

tail 0.- 6 1 R3 16 6 1 xx

7 0 R1 07 7 1 xx

(RAT) (RF)

Figure 6.3 ROB Example (Initial State)

through an example. This example has two instruction pipelines, IPipe0 and

IPipe1, each of them being three stages long. There are two ROBs which hold

four entries each as well as a RAT which holds eight entries. At this starting point,

two instructions are in the processor somewhere. One instruction has been

dispatched to IPipe0 and will eventually write back to register R1. This instruction

has RAT/ROB tag of T07. The other instruction has been dispatched to IPipe1

and will eventually write back to register R3. This instruction's RAT/ROB tag is

101

T16. Notice that ROBO has an entry for T07 and ROB1 has an entry for T16.

ROBO only holds entries for IPipeO. Similarly, ROB1 only holds entries for IPipel .

Since all instructions know which pipeline the instruction they are looking for were

dispatched into, they also know which ROB will hold that instruction. In this way,

the number of times an individual ROB needs to be accessed is reduced. If an

instruction is looking for a result tagged T13 for example, it knows by definition

that it doesn't have to bother checking any other ROB other than ROB1.

In the next clock cycle, two instructions go through the RAT/RF renaming

process. The first instruction, R2 = R1 + RO, will be dispatched to IPipeO. The

second instruction, R5 = R4 + R3, will be dispatched to IPipe1. Figure 6.4 shows

the actions which occur to begin the processing of these instructions. Starting

with the first instruction's operands, R1 and RO. These operands are read out of

the register file, since RO is already valid its value is given. The register R1 is

going to be generated by the instruction which has tag T07, so that tag is given in

place of R1. The head of the RAT points to entry number 0 and since the

instruction is being issued to IPipeO, this instruction gets tag TOO. This can be

observed at register R2's location in the register file where the alias gets set to 00

as well as in entry 0 of the RAT itself. The second instruction, R5 = R4 + R3,

occurs at the same time as the first instruction with the same actions occurring.

The operands R4 and R3 get their values from the RE The values for R4 and R3

are the value in R4 and the tag T16 respectively. Since the second instruction is

being issued to IPipe1 and the RAT's head pointer effectively points to entry 1, this

instruction gets tag T11. The register file records that the instruction with tag T11

102

tail

head

tail 0-
(ROB1)

head --0"

-0-1 TOO TO7 + # T11 #+T16

(ROBO) (IPipeO) (IPipel)

Pipe Register Last Valid Alias

0 0 R2 00 0 1 xx

1 1 R5 11 1 0 07

head 2 x XX XX 2 0 00

3 X XX XX 3 0 16

4 X XX XX 4 1 xx

5 X XX XX 5 0 11

tail 6 1 R3 16 6 1 xx

7 0 R1 07 7 1 xx

(RAT) (RF)

Figure 6.4 ROB Example (Two Adds Enter Pipeline)

will eventually write to register R5. In the pipeline itself, ROBO has seen the first

instruction. It puts the instruction tag 0 into it's smaller ROB and updates its head

pointer. The second instruction's ROB is located farther up in the pipeline, so

ROB1 has not yet seen the instruction tagged T11. This completes the first clock

cycle.

In the next clock cycle, two more instructions enter the processor, figure 6.5

shows the state after they have been processed. The first instruction is another

103

ADD operation performing the function, R6 = R2 + R5, which will be issued to

'Pipe°. The second instruction is a branch which will be mispredicted, labelled

Branch R5. At a later time, when this misprediction is realized, this branch and all

other instructions issued after it will need to be removed from the processor and

the state of all ROBs, the RAT, and the RF will need to be returned to their state

from before the branch.

The first instruction needs to read R2 and R5 from the RF getting the tags

of the instructions which will be generating these register's values as TOO and T11

respectively. This instruction is being issued to (Pipe° and the RAT's head pointer

points to entry 2, so the generated tag for this instruction is T02. Since this

instruction gets to its ROB in the first stage, ROBO takes the tag and updates its

head pointer. The second instruction, the branch, is assumed to not need to read

any values from the RF, but for some reason it writes a value back to register R5.

Even if the branch didn't have a result to write back, it still needs a RAT/ROB entry

number so in this example, R5 is used. Since the branch is being issued to IPipe1

and the RAT's head pointer essentially points to entry number 3, the generated

tag is T13. It is important to note that since the branch, with tag T13, and the

instruction with tag T11 are both writing to register R5, the "last" field is filled in

appropriately. The branch's "last" field points to tag T11 as the instruction which

was going to write to register R5 before. This is important because when the

branch is removed later, this value will have to be replaced in the register file so

that R5 will be updated by the instruction with tag T11. This will be explained in

more detail later. As the second ADD, the one that will write to tag T11, has

104

tailI..
1

-0 head
tail 0,- TOO - TO7 + # T11 -#+T16

(ROB 1)

1
head --4,- T02 - TOO + T11 Branch T13

(ROBO) (IPipeO) (LPipel)

Pipe Register Last Valid Alias

0 0 R2 00 0 1 xx

1 1 R5 11 1 0 07

2 0 R6 02 2 0 00

3 1 R5 11 3 0 16

head 0-4 x xx xx 4 1 xx

5 x xx xx 5 0 13

tail 0-6 1 R3 16 6 0 02

7 RI 07 7 I xx

(RAT) (RF)

Figure 6.5 ROB Example (Add and Bad Branch Enter Pipeline)

advanced a pipestage since the last clock cycle, it has now been written into

ROB1 .

Figure 6.6 shows the machines state after another ADD instruction, R7 =

R2 + R5, enters the processor before the wrong branch has been detected. This

instruction is in the shadow of the wrongly speculated branch and therefore

should never have been executed. It enters the processor because this is a

speculative architecture and most of the time the branch prediction guesses

105

TOO TO7 + # T11 #+T16 6 tail

1

3

head
tail T02 TOO + T11 Branch T13 .1 head

0 (ROB1)
2

4 T04 TOO + T13

(ROBO) (IPipeO) (IPipel)

Pipe Register Last Valid Alias

0 0 R2 00 0 1 xx

1 1 R5 11 1 0 07

2 0 R6 02 2 0 00

3 1 R5 11 3 0 16

4 0 R7 xx 4 1 xx

head P-5 x xx xx 5 0 13

tail --b-6 1 R3 16 6 0 02

7 0 RI 07 7 0 04

(RAT) (RF)

Figure 6.6 ROB Example (A Speculated Add Enters Pipeline)

correctly. In the case where the branch prediction guesses correctly, no work was

lost while the branch was being processed. Unfortunately, in the incorrect

prediction case, any actions caused by this instruction need to be undone. The

ROB itself makes certain that the result of this instruction is never written back to

permanent storage, but now the RAT and RF have to clean up their tables when

the branch gets resolved. For now, this instruction is treated as any other. It

106

reads its operands R2 and R5 from the RF and gets the tags TOO and T13

respectively. This instruction is being issued to I Pipe° and the RAT's head pointer

is at entry 4, so the generated tag is T04. ROBO writes this instruction's tag into

itself. At the same time all this has occurred, the branch instruction has moved up

a pipestage and ROB1 has written the branch's tag into itself.

At this point, it is assumed that the wrongly predicted branch has been

discovered. To make things simpler, it is also assumed that all of the other

instructions have not executed and are still in the pipeline as shown in figure 6.6.

The branch execution unit, which discovered the mistake, tells the RAT that the

instruction with tag T13 was a wrong branch. The RAT now knows that all the

instructions between entry 3 and its head should not have been in the pipeline

and must be cleared. In this case, this amounts to removing entries 3 and 4 from

the RAT. It sends a message to the individual segmented ROBs telling them to

invalidate the instructions in that range. All that is left to do is put the register file

back in order. To do this, it looks at the "last" field in the entries of the RAT that it

is clearing. Entry four's "last" field points to itself, so register R7 is marked valid

and the value contained in the RF is the correct value from before this instruction.

Entry three's "last" field points to tag T11. By checking the RAT's entry 1, it is

observed that this instruction has not yet written back. Since the instruction has

not yet completed, the RF entry for R5 has its "alias" field set to tag T11 since it's

value will now be coming from that instruction. Register R5's valid bit is not set in

this case. If the instruction with tag T11 had completed, the correct value would

have already been written back to the RF, and the valid bit would need to be set.

107

TOO - TO7 + # T11 -#+TI6 1-*-- 6 .1-- tail
1

tail T02 - TOO + T11 H
head

0 (ROB1)

head --I,

(ROB 0) (1Pipe0) (IPipel)

Pipe Register Last Valid Alias

0 0 R2 00 0 1 xx

1 1 R5 11 1 0 07

2 0 R6 02 2 0 00

head 0-3 x xx xx 3 0 16

4 x xx xx 4 1 xx

5 x XX XX 5 0 11

tail ___.6 1 R3 16 6 0 02

7 0 RI 07 7 I xx

(RAT) (RF)

Figure 6.7 ROB Example (Incorrect Speculation Cleanup)

The tables are now back to the state they were in before the wrong branch

and figure 6.7 shows the final state of the machine. As the remaining instructions

complete, they are written back to the register file and removed from the RAT.

The instructions must be retired in the order in which they were issued to guard

against interrupts or faults. In this manner, the machine state can be saved so

that it can be restarted if necessary after performing whatever operation is

108

required. This same mechanism is used to recover from incorrect branches, page

faults, interrupts, and any other type of asynchronous event.

By segmenting the ROBs, the size of the individual ROBs have been

reduced by an amount equal to the number of instruction pipelines. For example,

a machine which originally had one 128 entry ROB with four instruction pipelines

can now have four 32 entry ROBs. The segmented ROBs are still created with

associative memory, but they are considerably smaller. When instructions are

added to a ROB, they are added in order. At times when wrongly speculated

instructions need to be removed, a start range and end range can be specified

and since the entries are in order, they are easily found and removed.

The number of read and write ports can be reduced also. Since each

instruction pipeline has its own dedicated ROB, the individual ROBs only need to

have one write port for the IPipes regardless of how many 'Pipes there are. It is

possible that all of the instructions in all of the instruction pipes need to read from

one particular ROB. This is not likely however since in the case of there being

four instruction pipelines the odds of an operand being in a given ROB are 25%.

This probability decreases as the number of IPipes increases. Since it is known

ahead of time whether or not the operand could possibly be in the ROB, there is

no need to query any other ROBs. The worst case for when there are four

instruction pipelines is eight read ports from the instruction side. The worst case

for when there are four result pipelines is still four write ports, but again the

probability for each result is only 25% and it is known which ROB needs to be

written to. So, for the worst case, the ROB needs 5 write ports and 8 read ports

109

versus 8 write ports and 8 read ports for the non-segmented ROB. Assuming that

the values are equally distributed amongst the four ROBs, the average number of

reads per stage is 2. Since an instruction pipeline has an associated ROB, it

always makes an access if there is an instruction in that pipestage.

Correspondingly, the average number of writes is 1 +(4*.25) = 2. If it is taken into

account that not all of the stages are filled, that some of the operands have been

read from the register file, that some of the instructions have been processed on

previous times of having passed the ROB, and that not all instructions have two

operands, the number of ports could possibly be lowered. The appropriate

number of ports will depend on simulation runs for the type of benchmarks the

architecture is being marketed to run. On top of all this, if on some cycles, there

are not enough ports to perform all of the required actions the data can simply

recycle around the pipeline and perform the necessary actions on the next pass of

the ROB. This differs from the non-segmented case because in that case the

ROB processed all instructions which entered the pipeline. In the segmented

case, the RAT and RF can process the instructions as they enter the pipeline

since they are non-associative structures. Then, if the need arises, the ROB can

take extra time and force the instruction to make another revolution of the pipeline

before doing the processing since the issuing of instructions isn't being stalled.

For the generic case, there are i instruction pipelines and r result pipelines

where i and r are assumed to be binary multiples. The ROB can be segmented

into i pieces. Each segmented ROB has the worst case number of ports as r+1

write ports and 2*i read ports. Assuming that the operands are distributed equally

110

across the ROBs, the probability that a given operand is in a given ROB is 1/i.

Therefore, the number average number of reads for a given pipestage will be

(2*i)/i = 2. The average number of writes for a given pipestage will be 1 + (r/i).

Again, these numbers will be lower in practice since not all stages will be filled and

not all instructions will have two operands.

6.2 Multithreading

In the counterdataflow chapter it has already been alluded to that CDF

readily supports multithreading. Figure 6.8 shows a simplified version of a

BPUA

I
Instructions

.ROBA ROBB .c
cp ResultsResults

a)
P2

BPUB

FPSLOW

Figure 6.8 Multithreading with Counterdataflow

multithreaded CDF implementation which can handle two threads. The threads

need to each have their own prefetch, branch prediction and ROB units. In

addition, the branch execution units and memory units need to be thread aware or

111

have separate instances for each thread. They may have separate instruction

caches or a unified cache, but that is left up to the specific implementation.

The instructions from the individual threads act just as they do in the non-

multihreaded CDF pipeline. The difference occurring only in the matching logic.

When an instruction gets a ROB entry, an extra bit is added to the tag that the

instruction is given based on which thread it is from. For the case where there are

two threads, it can be assumed that thread A gets a 0 and thread B gets a 1.

Now, instructions from both threads can be in the pipeline at the same time and

the standard tag matching logic will take care of matching tags. Since the

instructions from different threads are defined as having different tags they will

never match.

There are several advantages to using multithreading. Some execution

units are area expensive and yet are not used very often [18]. With

multithreading, instructions from both threads can share these execution units.

This lowers the overall cost of having the unit while increasing the amount of time

the unit gets used because both threads will use the same execution unit.

Another advantage is that the same instruction and result matching logic can be

shared by both threads, giving an effectively larger reservation station without

doubling the number of stages. If one thread is not making forward progress for

some reason, the other thread can use more of the resources and keep the

overall throughput high [9]. This throttling effect can be used when one thread

needs to be replaced due to a page fault or other fault. While the one thread is

being flushed and replaced, the other thread can use all of the available resources

112

thereby somewhat offsetting the performance lost from the other thread.

Multithreading in CDF is inherently scalable. By adding log2 n bits, where n is the

number of threads, to the tag a large number of threads can be supported. Of

course, a linear number of ROBs, prefetch, and branch prediction units need to be

added, so the hardware needed does still increase substantially.

6.3 Data Speculation

The idea behind data speculation is that now that instructions are being

speculatively executed the next logic step is to speculatively execute instructions

based on guesses of what the data values will be. If some sort of an educated

guess can be made, the thinking goes, it is better to guess and hopefully perform

useful work than to do nothing and definitely not perform useful work.

Counterdataflow gracefully supports data speculation. Currently, each

result and instruction can be in one of two different states, either valid or invalid.

For data speculation, that will need to be changed to valid, invalid, and

speculated. With speculated data, an instruction can launch to an execution unit

and produce a speculated result. In the normal case, once an instruction has

been launched to an execution unit, it is removed from the pipeline. This will need

to be changed in the case where speculation is being performed. The instruction

will need to remain in the instruction pipeline. While the instruction is circulating, it

is inspecting the result pipeline just as it usually does. In this case, however, it is

watching for its operands to pass. If the operands pass and have the same value

as was speculated, the same result is dispatched down the result pipeline, only

this time not marked speculated but simply valid. The instruction is now free to be

113

removed from the pipeline. If on the other hand, the speculation was incorrect,

the instruction will take the correct value and when an execution unit is available

will launch eventually creating the real result. In this way, speculated results can

be created and used by subsequent instructions while maintaining correct

operation. The ROB will never allow a speculated result to be retired to

permanent storage [18]. Either a new valid result will be sent, or a confirmation

that the speculated result is indeed the correct result will be sent.

With all of these speculated results and instructions, some sort of control

must be implemented or the pipelines will be flooded with only speculated values

and no real work will be done. The first step is to implement a priority to decide

which instructions get access to an execution unit. Obviously, if two instructions

want to execute and one has real values while the other has speculated values,

the real valued instruction should get priority. Second, speculation will need to be

intelligently applied, only guessing when there is a reasonable probability of being

correct or when nothing else would be executing anyway. Again, it is better to do

something and hopefully accomplish some work than to do nothing and definitely

accomplish nothing.

6.4 Chapter Summary

Counterdataflow has all of the capabilities of a modern microarchitecture.

It is capable of high performance, scalable multithreading, and data speculation

all without exponentially increasing the amount of hardware necessary.

Additionally, the one potential bottleneck of CDF, the ROB, has had a solution

presented which not only reduces the number of ports needed, but increases the

114

possible size of the ROB while reducing the complexity and increasing the speed

of access. More simulations are needed to quantitatively show that CDF is indeed

this scalable.

115

7. CONCLUSION

7.1 From CFPP to CDF

The evolution of the counterflow architecture from the original counterflow

pipeline processor to the virtual register processor and finally ending with the

counterdataflow processor has now been covered. Each new architecture has

overcome some of the limitations of the previous one and in some cases

introduced some bottlenecks of its own. There are definitely limitations to our

simulations' accuracy, but the limitations have been consistently applied to all of

the architectures. Therefore, it is now possible for to make a direct comparison

between the three architectures to see just how much the changes made have

affected the performance.

7.2 Execution Unit Usage

How much of the time a processor's execution units are busy can be used

as a measure for how efficiently an architecture is using it's resources. Figure 7.1

shows how much of the time the various execution units were in use for the three

counterflow architectures for the Speclnt95 traces. The first item to note is that

this metric is just the percent of the time the traces took to execute that the

execution units were busy. Since CDF takes less time per trace than VRP, and

VRP takes less time per trace than CFPP, this metric doesn't take into account

that each trace actually takes less time to execute on CDF and VRP. Considering

that CDF takes less than half the time to execute the same number of instructions

and is busy more of the time illustrates just how far the counterflow architecture

116

90

80

70

2: 60

E CFPP
E VRP

oCIDF

50

.5 40

ir) 30

10

INTF BEU MEU

Execution Unit

Figure 7.1 Execution Unit Usage for Integer Traces

has improved. Since these are the results for integer benchmarks, the floating

point units were hardly ever used and have therefore been left off of figure 7.1 for

clarity. Similarly, the compiler used to generate the traces gave heavy penalties to

the use of slow integer instructions, therefore there are almost no slow integer

instructions present in any of the traces. Each of the architectures has one slow

integer unit, one fast floating point unit and one slow floating point unit. All of

these units were in use for less than 1% of the time for the integer traces.

The values represented in the graphs are the average amount of time the

execution units were in use during a simulation run. In the cases where there was

117

more than one execution unit of a given type, the usage values were averaged. In

this case, all architectures had multiple fast integer (INTF) and branch execution

units (BEU). CFPP and VRP had three fast integer units while CDF had four.

Even with an extra unit, CDF managed to have an average usage of 18%

compared to 13% and 10.6% for VRP and CFPP respectively. For the branch

execution unit, CFPP and CDF both had two units while VRP had three.

Considering that VRP's average was lowered by the extra unit, CFPP's usage of

7.2% and VRP's usage of 6% are fairly similar. CDF's average of 22% illustrates

the amount of speculation that the CDF architecture was performing. Each of the

architectures had only one memory execution unit. Considering that the latencies

involved with load and store operations can be considerably higher than other

instructions, it is not all that unexpected that the MEU was busy more often than

the other units. What was unexpected was just how often CDF managed to keep

this unit busy. CDF kept the MEU busy 85% of the time compared to 22% and

27% for CFPP and VRP. This can be attributed to the fact that in CDF,

instructions never have to stall. In CFPP and VRP, once a load or store

instruction stalls, it tends to backup the instruction pipeline preventing other

instructions from being launched. So, in CDF, many memory instructions could be

in the MEU at the same time, thereby increasing the amount of time the MEU was

kept busy.

Figure 7.2 shows the execution unit usage for the SpecFP95 traces. The

reasoning for the differing values of the fast integer and branch execution unit are

essentially the same as for the integer traces. The usage of the memory

118

70

60

50

E.I
40 O CFPP

t VRP

0 CDF
2 30
E
-).
a)
ci.

20

10

INTF BEU FPFAST FPSLOW MEU

Execution Unit

Figure 7.2 Execution Unit Usage for Floating Point Traces

execution unit is slightly lower for CDF on the floating point traces. This can most

likely be attributed to the fact that integer operations are slightly more memory

intensive than floating point operations. All architectures have only one fast

floating point unit and one slow floating point unit. CDF really shows it's ability

here, keeping the fast unit busy 57% of the time and the slow unit busy 38% of the

time. CFPP and VRP are considerably less efficient at keeping their units busy

being at best a third of the amount of CDF. This is directly related to the fact that

their instruction pipeline's stall. Any instructions that depend on the execution of a

long-latency operation like floating point will wind up stalling the instruction

119

pipeline waiting for the result. CDF gracefully handles longer, or unknown, latency

operations much better than its predecessors. Because CDF's instruction

pipeline does not stall, unrelated instructions can continue in the pipeline and do

useful work keeping the execution units busy.

7.3 Effective Instruction Window

The effective instruction window, as measured here, is the average number

of instructions which are in the machine at any given time. For CDF and VRP, this

is calculated from the reorder buffer (ROB). Since the ROB holds all instructions

from the time they enter the instruction pipeline until the time they finish executing

and are retired, the average number of instructions in the ROB is the average size

of the instruction window. This number also includes incorrectly speculated

instructions, which take up space in the ROB even though they have actually

accomplished no real work. Since CFPP has no ROB, the effective instruction

window is estimated as the distance from the instruction entering the instruction

pipeline to the last branch execution unit. This is actually the best case value, but

will suffice for a rough comparison. Figure 7.3 shows the effective instruction

window for the three architectures. The instruction window is important because it

has the opportunity to expose as much available parallelism in the code as

possible. CDF, with its deep speculation, and ability to remove instructions once

they have begun to execute has an effective instruction window almost ten times

the size of CFPP or VRP.

120

0 10 20 30 40 50 60 70

Instructions

Figure 7.3 Effective Instruction Window

7.4 Instructions Per Clock Cycle

The average instructions executed per clock cycle are summarized in

figure 7.4 for the three counterflow architectures. On average performance in

instructions per clock cycle, VRP shows a 12% improvement over CFPP. CDF

has a 133% improvement over CFPP and a 161% improvement over VRP. It may

be obvious to say but CDF has drastically improved the available performance

over its predecessors.

7.5 Summary

Several years ago, the counterflow pipeline process was developed by

researchers at Sun Microsystems to demonstrate the concept of asynchronous

121

Spec Int

SpecFP

CFPP VRP CDF

Architecture

Figure 7.4 Average Instructions Per Clock Cycle by Architecture

circuits [1]. This architecture uses local control and clocking to allow distributed

decision making. Unfortunately, this first design suffered from several severe

limitations. The register file was at the opposite end of the pipeline from the

issuing unit resulting in the pipeline being used inefficiently. While the basic

architectural premise was to use local control, there were several global signals

which ultimately limited the minimum clock cycle time. As a result, a new

architecture was developed, the virtual register processor, which overcame the

problem of the register file being far away from the issuing unit. This improved the

performance somewhat, but the global signals remained as did the fact that this

architecture still could not issue more than one instruction per clock cycle. Since

other commercially available processors were already capable of issuing more

than one instruction per clock cycle, the virtual register processor was not

122

scalable enough to be used as a general purpose processor. In order to get rid of

the global signals, the pipelines would have to not be required to stall. Eventually

the idea was struck upon that if the instruction and result pipelines were to wrap

around and become circular queues the instructions would never have to stall.

This became the counterdataflow processor or CDF. Now that instructions can

wrap around the pipeline, it is possible to issue more than one instruction per

clock cycle since instructions in the same pipestage can be dependent upon each

other. CDF appears to be scalable and efficiently lends itself to advanced

microarchitectural techniques such as multithreading and data speculation.

Further investigations are required to see just how much performance can be

extracted from the counterflow architecture, but currently the outlook is

promising.

123

BIBLIOGRAPHY

1.	 R.F. Sproul! and I.E. Sutherland and C.E. Molnar, "The Counterflow Pipeline
Processor Architecture" IEEE Design and Test of Computers, pp. 48-59,
Vol.11, No. 3, Fall 1994.

2.	 K.J. Janik and S. Lu, "Synchronous Implementation of a Counterflow Pipe-
line Processor" Proceeedings of the 1996 International Symposium on Cir-
cuits and Systems, May 1996.

3.	 K.J. Janik and S. Lu and M.F. Miller, "Advances to the Counterflow Pipeline
Microarchitecture" High-Performance Computer Architecture 3, February
1997.

4.	 J.P. Hayes. Computer Architecture and Organization. New York, NY:
McGraw-Hill, 1988.

5.	 J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufman, 1990.

6.	 M.D. Jones, "CFPP: A New Approach to Pipe lined Microprocessors", Dec.
1994. http://lal.cs.byu.edu/people/jones/latex/sproull.html/sproull.html.html.

7.	 M.B. Josephs and P.G. Lucassen and J.T. Udding and T. Verhoeff, "Formal
Design of an Asynchronous DSP Counterflow Pipeline: A Case Study in
Handshake Algebra", Proc. Intl Sym. on Advanced Research in Async. Cir-
cuits and Systems, pp. 206-215, November 1994.

8.	 D. Bhandarkar and J. Ding, "Performance Characterization of the Pen-
tium(R) Pro Processor," Proceedings of the 3rd International Symp. on High
Performance Computer Architecture, Feb. 1997, San Antonio, TX, pp. 288-
297.

9.	 J.L. Lo and S.J. Eggers and J.S. Emer and N.M. Levy and R.L. Stamm and
D.M. Tullsen, "Converting Thread-Level Parallelism into Instruction-Level
Parallelism via Simultaneous Multithreading," Transactions on Computer
Systems, August 1997.

10.	 D.C. Burger and T.M. Austin, "The Simple Scalar Tool Set, Version 2.0," Uni-
versity of Wisconsin Computer Science Technical Report #1342, June 1997.

11.	 R. Carlson and M.F. Miller, "VRP Simulator", April 1996. http://
www.ece.orst.edu/sllu/cfpp/vrpsim/docs/vrpsim.html.

www.ece.orst.edu/sllu/cfpp/vrpsim/docs/vrpsim.html
http://lal.cs.byu.edu/people/jones/latex/sproull.html/sproull.html.html

124

12.	 T.M. Austin, "Simplescalar Tools Hacker's Guide," talk given to the Electrical
and Computer Engineering Department, Oregon State University, 1996.

13.	 M.F. Miller, "CounterDataFlow Architecture: Design and Performance," M.S.
Dissertation, Oregon State University, August 1997.

14.	 M. Miller and K.J. Janik and S.L. Lu, "Non-Stalling Counterflow Architecture,"
to be presented at the 4th Annual Conference on High Performance Com-
puter Architecture, Las Vegas, Nevada, February 1998.

15.	 G. Cornell and C.S. Horstmann, Core Java, Mountain View, CA: Sun Soft
Press, 1996.

16.	 J.E. Smith and G.S. Sohi, "The Microarchitecture of Superscalar Proces-
sors," Proceedings of the IEEE, December 1995.

17.	 D.M. Geary and A.L. McClellan, Graphic Java Mastering the AWT, Mountain
View, CA: Sun Soft Press, 1997.

18.	 M.J. Flynn, Computer Architecture Pipe lined and Parallel Processor Design,
Boston, MA: Jones and Bartlett Publishers International, 1995.

19.	 J.M. Rabaey, Digital Integrated Circuits A Design Perspective, Upper Saddle
River, NJ: Prentice-Hall, Inc., 1996.

20.	 Standard Performance Evaluation Corporation, "SPEC Describes SPEC95
Products And Benchmarks," SPEC Newsletter, September, 1995.

