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This investigation examined the possible role of musculoskeletal forces in the 

human walk-run transition. In order to measure these forces a treadmill was constructed 

which allowed the measurement of vertical ground reaction forces while subjects walked 

and ran at prescribed speeds. Validation proved the device to be accurate and reliable in 

measuring the midstance vertical ground reaction forces which were analyzed in this study. 

Ten untrained runners were recruited from the University population and paid for 

their participation in this study. To differentiate the roles of speed of locomotion and 

musculoskeletal force, both speed and subject weight were manipulated. Speed was 

controlled by the treadmill operator and weight was added to the subjects in the form of a 

weight vest of approximately 15% body weight. Each subject's preferred transition speed 

was determined for the weighted and unweighted conditions. Following this 

determination, each subject's midstance vertical ground reaction forces were measured 

while walking and running over a range of speeds for both weight conditions. 

The force at transition was consistent for the two conditions for the subjects 

measured, indicating that musculoskeletal force may have a role in the transition. 

However, speed of transition was also consistent, not allowing differentiation of the two 

variables. Mapping the midstance forces of each gait versus speed of locomotion illustrated 

running to have a significant increase in force at the preferred transition speed. A trend of 
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increasing variability of force at and above the preferred transition speed was evident for 

walking. This instability may facilitate or prompt the change from walking to running. As 

a result of this investigation, musculoskeletal forces may be considered to have some 

influence on the human walk-run transition. 



©Copyright by Jonathan B. Fewster  
November 30, 1995  
All Rights Reserved  



The Role of Musculoskeletal Forces  
in the Human Walk-Run Transition  

by  

Jonathan B. Fewster  

A THESIS  

submitted to  

Oregon State University  

in partial fulfillment of 
the requirements for the 

degree of 

Master of Science  

Completed November 30, 1995  
Commencement June 1996  



Master of Science thesis of Jonathan B. Fewster presented on November 30.1995 

APPROVED:  

Major Prof sor, representing Human Performance 

Chair of Department ofd.. ercise and Sport Science 

Dea

I understand that my thesis will become part of the permanent collection of Oregon State 
University libraries. My signature below authorizes release of my thesis to any reader 
upon request. 

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENTS  

I would like to thank my advisor, Dr. Gerald Smith, for his help and support 

during this project. He spent a great amount of time with me discussing this research and 

helping trouble-shoot some of the difficulties I had along the way. His frequent ideas, 

insights and continual support helped immensely in this project. Thank you for your help. 

I would like to thank each member of my committee for their contributions to this 

work. Dr. Terry Wood spent many hours helping me with issues of measurement, 

treadmill validation, statistical analysis and final format. Dr. Debra Rose helped me 

understand the basics of Dynamic Systems theory, allowing me to take a research question 

from theory to experimental design to conclusions. Dr. Michael Schuyler, my minor 

advisor, was the person I went to with most of my computer issues. He helped me with 

the complex interfacing and programming which was necessary to make the treadmill 

work. Dr. Rebecca Callison, my graduate representative, also helped with some computer 

issues, particularly what may be possible for the treadmill device in the future. Thank all of 

you for your help in this project. 

My parents, Lowell and Julie Fewster, have been a great support to me throughout 

my life. Their unconditional support and quiet encouragement have allowed me to make 

my dreams reality. I was extremely happy that my father was able to attend my oral 

defense of this thesis. Thank you. I love both of you very much. 

I wish to thank my grandfather and grandmother, J.D. and Alma Fewster, for their 

support. Their assistance help make my education possible. Thank you. 

Many friends have helped me throughout the course of this project. I would like to 

thank Jennifer Beck for her help with many of the pilot tests, as well as being a good friend 

in the lab. Sean Clark, a friend in the Motor Behavior Lab across the hall, helped me with 

Dynamic Systems, and provided great assistance with the programming of SPSS. Lissa 

Zyromski produced the line drawing of the treadmill which appears in this thesis. There 

are many other people who have helped me with moving the treadmill, conducting the pilot 



studies, by listening to me practice presentations and lending an ear when I needed one. 

This group includes Morris Levy, Ki Kwang Li, Darren Dutto, Suwat Sidthilaw, and Jane 

LaRiviere. Thank you. Two other friends helped beyond these roles: Chris Lowry, my 

roommate for a significant portion of the time I was working on this thesis, was a sounding 

board for many of my thoughts and his high standards for research encouraged me to strive 

for the ideal. Louise Yount was very patient with me when my extreme focus on this 

project threatened to turn me into a machine. Thank you for your friendship. 

Outside of the laboratory, many friends have helped me temporarily escape from 

this otherwise ever-present project. Some of these friends have been training partners for 

cross-country skiing, biking or running. Without those workouts, the mental break, and 

the associated endorphins I wouldn't be sane now. Thank you. 

This research was supported by a Reebok Graduate Student Research Grant on 

Human Performance and Injury Prevention from the American College of Sports Medicine 

Foundation. 

This research was further supported by equipment donations from PCB 

Piezotronics, Inc. At PCB, I would like to thank Lou Zagst for his assistance in this 

project. 



TABLE OF CONTENTS  

Page 

1. INTRODUCTION 1  

1.1 Statement of the Problem 2  
1.2 Research Hypotheses 3  
1.3 Statistical Hypotheses 4  
1.4 Operational Definitions 6  
1.5 Assumptions 6  
1.6 Limitations 7  
1.7 Delimitations 8  
1.8 Definitions 8  

2. REVIEW OF LITERATURE 12  

2.1 Locomotion: Kinematic and Physiological Factors 12  
2.2 Locomotion: Kinetics 17  
2.3 Dynamic Systems Theory 18  
2.4 Measurement Techniques 19  
2.5 Overground vs. Treadmill Locomotion 21  
2.6 Midstance Forces 22  
2.7 Summary 23  

3. METHODS AND PROCEDURES 25  

3.1 Subjects 25  
3.1.1 Questionnaire 25  
3.1.2 Subject Characteristics 25  

3.2 Procedures 26  
3.3 Apparatus 29  

3.3.1 Hardware 29  
3.3.2 Computer Programs 36  

3.4 Data Analysis 39  
3.4.1 Force Analysis Software 39  
3.4.2 Force Analysis 42  

3.5 Pilot Studies 44  
3.5.1 Treadmill 44  
3.5.2 Speedometer 45  
3.5.3 Estimation of Sample Size 46  

4. RESULTS AND DISCUSSION 47  

4.1 Testing 47  
4.2 Preferred Transition Speed 48  
4.3 Force Curves 53  
4.4 Variation in Midstance Force 102  
4.5 Cluster Graphs 107  
4.6 APTS vs. AVGRFM Graphs 111  
4.7 Order Effect 115  
4.8 Limitations and Assumptions 115  
4.9 Final Discussion 116  



TABLE OF CONTENTS (Continued) 

Page 

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 119  

5.1 Summary 119  
5.2 Recommendations for Future Work 120  

5.2.1 Walk-Run Transition 120  
5.2.2 Other Research 121  

5.3 Conclusions 122  

REFERENCES 123  

APPENDICES 126  



LIST OF FIGURES  

Figure Page 

2.1 Metabolic Cost vs. Velocity: Margaria, Cerretelli, Aghemo, and Sassi 13  

2.2 Metabolic Cost vs. Velocity: Menier & Pugh and Falls & Humphrey 13  

3.1 Test 1 Procedure: Velocity vs. Time 28  

3.2 Treadmill Apparatus 30  

3.3 Support Pillar 33  

3.4 Support Frame 34  

3.5 Summed and Single Channel VGRF Signals from Running 37  

3.6 Signal Paths 38  

3.7 Data Flow 39  

4.1 VGRFM vs. Speed: Subject 1, Left Leg 54  

4.2 VGRFM vs. Speed: Subject 1, Right Leg 55  

4.3 VGRFM vs. Speed: Subject 2, Left Leg 56  

4.4 VGRFM vs. Speed: Subject 2, Right Leg 57  

4.5 VGRFM vs. Speed: Subject 3, Left Leg 58  

4.6 VGRFM vs. Speed: Subject 3, Right Leg 59  

4.7 VGRFM vs. Speed: Subject 4, Left Leg 60  

4.8 VGRFM vs. Speed: Subject 4, Right Leg 61  

4.9 VGRFM vs. Speed: Subject 5, Left Leg 62  

4.10 VGRFM vs. Speed: Subject 5, Right Leg 63  

4.11 VGRFM vs. Speed: Subject 6, Left Leg 64  

4.12 VGRFM vs. Speed: Subject 6, Right Leg 65  

4.13 VGRFM vs. Speed: Subject 7, Left Leg 66  

4.14 VGRFM vs. Speed: Subject 7, Right Leg 67  

4.15 VGRFM vs. Speed: Subject 8, Left Leg 68  

4.16 VGRFM vs. Speed: Subject 8, Right Leg 69  



LIST OF FIGURES (Continued) 

Figure Page 

4.17 VGRFM vs. Speed: Subject 10, Left Leg 70  

4.18 VGRFM vs. Speed: Subject 10, Right Leg 71  

4.19 Overlaid Curves: Unweighted Walking, Left Leg 80  

4.20 Overlaid Curves: Unweighted Walking, Right Leg 81  

4.21 Overlaid Curves: Weighted Walking, Left Leg 82  

4.22 Overlaid Curves: Weighted Walking, Right Leg 83  

4.23 Overlaid Curves: Unweighted Running, Left Leg 84  

4.24 Overlaid Curves: Unweighted Running, Right Leg 85  

4.25 Overlaid Curves: Weighted Running, Left Leg 86  

4.26 Overlaid Curves: Weighted Running, Right Leg 87  

4.27 Average VGRFM vs. Speed, Left Leg 88  

4.28 Average VGRFM vs. Speed, Right Leg 89  

4.29 Variability of Force: Left Leg 104  

4.30 Variability of Force: Right Leg 105  

4.31 Cluster Graphs: Left Leg 109  

4.32 Cluster Graphs: Right Leg 110  

4.33 Delta PTS vs. Delta VGRFM, Left Leg 112  

4.34 Delta PTS vs. Delta VGRFM, Right Leg 113  



LIST OF TABLES  

Table Page 

3.1 Subject Heights and Weights 26  

3.2 Transducer Specifications 31  

3.3 Signal Conditioner Specifications and Settings 35  

3.4 Treadmill Pilot Studies 45  

4.1 Number of Strides Analyzed: Unweighted Walking, Left Leg 49  

4.2 Number of Strides Analyzed: Unweighted Walking, Right Leg 49  

4.3 Number of Strides Analyzed: Weighted Walking, Left Leg 50  

4.4 Number of Strides Analyzed: Weighted Walking, Right Leg 50  

4.5 Number of Strides Analyzed: Unweighted Running, Left Leg 51  

4.6 Number of Strides Analyzed: Unweighted Running, Right Leg 51  

4.7 Number of Strides Analyzed: Weighted Running, Left Leg 52  

4.8 Number of Strides Analyzed: Weighted Running, Right Leg 52  

4.9 Determination of Preferred Transition Speed 53  

4.10 Force vs. Speed: Unweighted Walking, Left Leg 72  

4.11 Force vs. Speed: Unweighted Walking, Right Leg 73  

4.12 Force vs. Speed: Weighted Walking, Left Leg 74  

4.13 Force vs. Speed: Weighted Walking, Right Leg 75  

4.14 Force vs. Speed: Unweighted Running, Left Leg 76  

4.15 Force vs. Speed: Unweighted Running, Right Leg 77  

4.16 Force vs. Speed: Weighted Running, Left Leg 78  

4.17 Force vs. Speed: Weighted Running, Right Leg 79  

4.18 Force Aligned at PTS: Unweighted Walking, Left Leg 91  

4.19 Force Aligned at PTS: Unweighted Walking, Right Leg 92  

4.20 Force Aligned at PTS: Weighted Walking, Left Leg 93  

4.20 Force Aligned at PTS: Weighted Walking, Right Leg 94  



LIST OF TABLES (Continued) 

Table Page 

4.22 Force Aligned at PTS: Unweighted Running, Left Leg 95  

4.23 Force Aligned at PTS: Unweighted Running, Right Leg 96  

4.24 Force Aligned at PTS: Weighted Running, Left Leg 97  

4.25 Force Aligned at PTS: Weighted Running, Right Leg 98  

4.26 Significant Differences of Forces, Left Leg 99  

4.27 Significant Differences of Forces, Right Leg 99  

4.28 Variance Pooled Across Subjects, Left Leg 103  

4.29 Variance Pooled Across Subjects, Right Leg 103  

4.30 Significant Differences of Variances, Left Leg 106  

4.31 Significant Differences of Variances, Right Leg 106  

4.32 VGRFM at the Preferred Transition Speed, Left Leg 108  

4.33 VGRFM at the Preferred Transition Speed, Right Leg 108  



LIST OF APPENDICES  

Page 

APPENDIX A 

Medical Questionnaire 127  

APPENDIX B 

Human Subjects Review 128  
Informed Consent Form 130  
Institutional Review Board Approval, 1994 132  
Institutional Review Board Approval, 1995 133  

APPENDIX C:  
TREADMILL VALIDATION 134  

C.1 Static Validation 134  
C.2 Treadmill vs. Force Plate 134  
C.3 Reliability 145  
C.4 Center of Pressure 147  
C.5 Constant Moving Force: Body Weight 150  
C.6 Body Weight Calculated From Gait 153  
C.8 Repeat of Body Weight Measurements 154  

C.8.1 Body Weight Moving Rearward 156  
C.8.2 Calculation of Body Weight from Static  

and Locomotion Trials 156  
C.9 Validation with Dynamic Loads 157  
C.10 Repeatability 164  
C.11 Discussion 169  

C.11.1 Apparatus 169  
C.11.2 Treadmill Versus Force Plate 170  
C.11.3 Possible Improvements to the Treadmill Apparatus 171  
C.11.4 Summary 172  



LIST OF APPENDIX FIGURES  

Figure Page, 

C.1 Static Loading: Comparison of Trials 136  

C.2 Vertical Ground Reaction Force Characteristics 138  

C.3 Treadmill vs. Force Plate: Peak Impact Force Correlation 140  

C.4 Treadmill vs. Force Plate: Active Peak Force Correlation 141  

C.5 Treadmill vs. Force Plate: Rise Rate Correlation 142  

C.6 Treadmill vs. Force Plate: Contact Time Correlation 143  

C.7 Treadmill vs. Force Plate: Total Impulse Correlation 144  

C.8 Center of Pressure Validation: Treadmill Off 148  

C.9 Center of Pressure Validation: Treadmill On 149  

C.10 Center of Pressure Validation: Combined Measurements 151  

C.11 Force vs. Time: Treadmill and Hammer 160  

C.12 Force vs. Time: Treadmill and Hammer 161  

C.13 Treadmill vs. Hammer: Force Correlation 162  

C.14 Treadmill vs. Hammer: Force Correlation 163  



LIST OF APPENDIX TABLES  

Table Page  

CA Static Load Errors 135  

C.2 Total Static Load Errors 135  

C.3 Subject Reliability Data 146  

C.4 Total Body Weight Errors 152  

C.5 Body Weight Along the Bed 152  

C.6 Static Body Weight Measures, Set 1 153  

C.7 Static Body Weight Measures, Set 2 153  

C.8 Body Weight Calculation from Walking at 4 kph 155  

C.9 Body Weight Calculation from Walking at 6 kph 155  

C.10 Body Weight Calculation from Walking at 8 kph 155  

C.11 Total Body Weight Errors, Trial 1 156  

C.12 Body Weight Along the Bed, Trial 1 157  

C.13 Total Body Weight Errors, Trial 2 157  

C.14 Calculation of Body Weight 158  

C.15 Repeatability Measures: Left Foot, Walking 165  

C.16 Repeatability Measures: Right Foot, Walking 166  

C.17 Repeatability Measures: Left Foot, Running 167  

C.18 Repeatability Measures: Right Foot, Running 168  



THE ROLE OF MUSCULOSKELETAL FORCES  
IN THE HUMAN WALK-RUN TRANSITION  

CHAPTER 1  
INTRODUCTION  

Human locomotion has been studied and modeled for many years. Despite this 

scrutiny many questions as to cause and function still remain unanswered. One such aspect 

of gait not sufficiently defined or understood is the mechanism controlling transitions 

between walking and running. Because of its nature, any findings on the control 

mechanism of gait will supplement the current understanding of the human control system. 

Therefore, a study of gait transitions will also provide insight into the underlying theories 

of control. 

Human methods of locomotion have evolved from quadrupedal to bipedal 

locomotion. Once adapted to bipedal locomotion, humans have used primarily two gaits: 

walking and running, with walking generally performed at lower speeds. These gaits may 

be compared to the wider range of options available in quadrupedal locomotion such as 

walking, trotting, cantering, and galloping (in the general order of increasing speed). 

When speed is not essential, metabolic cost may be expected to be minimized. 

Therefore, it follows that walking, the gait of choice at low speeds, generally produces a 

lower metabolic cost per unit of time than would running at these low speeds. The 

opposite is true, however, when one chooses to walk at high speeds, as is the case in race 

walking. By forcing the body to walk at speeds which normally would be reserved for 

running, the metabolic cost exceeds that of running at the same speed (Menier & Pugh, 

1968). 

As velocity is increased, a speed is reached at which running has a lower metabolic 

cost than walking. The switch in relative cost has been thought to be responsible for the 

change in gait between walking and running; the human body opting for the gait yielding 

the lower toll on the metabolic system. However, some researchers have not been 



2 

convinced by these dynamics, believing the differentiation in cost to be too minute to cause 

the acute switch in gait (Hreljac 1993b; Thorstensson & Roberthson, 1987). Hreljac's 

study of the gait-metabolic cost relationship determined that gait transitions are probably not 

for the objective of minimizing metabolic cost. 

Other factors examined have included stride frequency and amplitude of leg 

movements (Nilsson, Thorstensson, & Halbertsma, 1985). Thorstensson and Roberthson 

(1987) compared the duration of the stance phase and leg length with the speed of 

transition. While they observed a tendency for subjects with longer legs to have higher 

speeds of transition, they concluded that the reasons for gait transitions at speeds not 

extreme for either walking or running were "unclear." 

These investigations have suggested that kinetic factors should be investigated for 

their role in the transition between walking and running. Evidence for a kinetic factor being 

a control parameter comes from research on horses. By analyzing the kinetics of the trot-

gallop transition in horses, Farley and Taylor (1991) identified a critical musculoskeletal 

force level at which the transition takes place. Once the critical force level was achieved, 

the horses would switch from trot to gallop despite an increase in metabolic cost. By 

adding weight to the horses, Farley and Taylor were able to produce the critical force and 

the resulting transition at lower velocities. From this evidence and the suggestions of other 

research, kinetic factors need to be properly investigated for their role in the human walk-

run gait transition. 

1.1 Statement of the Problem 

The purpose of this study was to investigate a possible kinetic control parameter 

governing human locomotion and the transition between walking and running in physically 

active, college-aged males and females. More specifically, the midstance vertical ground 

reaction force (VGRFM), assumed to be proportional to the force on the Achilles tendon, 

was measured with the goal of identifying a threshold level of force which may prompt the 
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subject to switch from walking to running. If VGRFM level is indeed a control parameter 

for an individual, then achieving that force level would cause the transition to occur 

independent of other factors. Some of these factors, notably speed, were manipulated in an 

attempt to isolate a determining force level. 

This study took the form of three tests repeated for two conditions of weight. The 

first test was to determine the subject's preferred transition speed: Speed was increased in 

discrete intervals and the subject was free to switch between walking and running. The 

speed at which the subject switched to running and maintained the running gait for 30 s 

was labeled the preferred transition speed (PTS). The second test was to measure forces 

while the subject walked over a range of speeds: The subject was asked to maintain a 

walking gait while speed was increased and vertical ground reaction forces were measured. 

In the third test, forces were measured over the range of speeds while the subject 

maintained a running gait. The three tests described here were repeated with the subject 

unweighted and with the subject wearing a weight vest of approximately 15% of his or her 

body weight. In subsequent data analysis, the midstance forces were picked from the 

vertical ground reaction force curves. To test the possible control parameter, the VGRFM 

and FTS values were compared between the two conditions. 

1.2 Research Hypotheses 

It was hypothesized that switching from walking to running is due to the subject 

reaching a critical musculoskeletal force and not a critical velocity. If this is true, an 

addition of weight to the subjects would elicit a change in the preferred transition speed, but 

would not alter the midstance vertical ground reaction force at the preferred transition 

speed. Such an identification would point to musculoskeletal force as a control parameter 

affecting the collective variable of human gait. 
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In addition, if musculoskeletal force is a control parameter, midstance vertical 

ground reaction force would significantly change at walking speeds at and above the 

preferred transition speed. 

After the data were initially examined, further support for musculoskeletal force as a 

control parameter was tested by quantifying the changes in variability of force with 

increasing speed, particularly about the preferred transition speed. The variability in 

midstance vertical ground reaction force was hypothesized to increase at walking speeds 

just below the preferred transition speed and to remain high at speeds above the preferred 

transition speed. For running, the variability in VGRFM was hypothesized to be high at 

speeds below the preferred transition speed and to decrease at the preferred transition 

speed. 

1.3 Statistical Hypotheses 

To test the primary research hypothesis, the following statistical hypothesis was 

tested: 

Ho: PTSweighted PTSunweighted = 0 

VGRFM weighted VGRFM unweighted * 0 

Hi: 1. PTSweighted PTSunweighted * 0 

VGRFM weighted VGRFM unweighted = 0 

2. PTSweighted	 PTSunweighted * 0  

VGRFM weighted VGRFM unweighted * 0  

3. PTSweighted	 PTSunweighted = 0  

VGRFM weighted VGRFM unweighted = 0  

The null hypothesis is a starting point for this experiment based on the understanding that 

speed may have an influence on the human walk-run transition, while vertical ground 

reaction force has yet to be proven to have a controlling influence. The alternate 
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hypotheses are options from the two-variable state specified in the null hypothesis. The 

first alternate is the most conclusive, requiring subjects to switch from walking to running 

at a consistent force, but at different speeds. If accepted, this hypothesis would indicate 

VGRFM to be a control parameter independent of speed. The second alternate hypothesis 

discounts the roles of both variables, with the preferred transition occurring at different 

speeds and force levels for the two conditions. If found to be true, this hypothesis would 

indicate that neither variable is a control parameter; perhaps another variable should be 

investigated. The third alternate hypothesis allows for both variables to be control 

parameters for the walk-run transition, but their roles and levels of influence may not be 

distinguished. 

Using the force data to further test the hypothesis that musculoskeletal force, and 

not speed, is a control parameter in the human walk-run transition, the following statistical 

hypothesis was tested: 

Ho: IP = 0  

H1: V * 0  

where V is the pair-wise comparison among the mean midstance vertical ground reaction 

forces while walking at the increments of speed directly above, below and at the preferred 

transition speed. 

The ad hoc hypothesis of variability of VGRFM will be tested by the following 

statistical hypothesis: 

Ho: W = 0  

H1: V *0  

where i is the pair-wise comparison among the pooled variances of midstance vertical 

ground reaction force at the increments of speed directly above, below and at the preferred 

transition speed. This hypothesis was tested for both walking and running. 
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1.4 Operational Definitions 

Preferred Transition Speed (PTS): The velocity in a given weighted or unweighted 

condition at which a subject switched from walking to running. 

The Difference in Preferred Transition Speeds (APTS): The difference in transition 

velocities between the weighted and unweighted conditions. 

Vertical Ground Reaction Force (VGRF): The vertical force exerted on the body by the 

ground. By isolating midstance when anterior-posterior ground reaction force is 

approximately zero and the lever arms of the foot are at a constant proportion, the VGRF is 

assumed to be proportional to the moment about the ankle joint. At midstance, there is very 

little angular acceleration of the foot and all active muscles are loading the Achilles tendon 

(Basmajian & De Luca, 1985). The combination of all of these factors yield proportional 

vertical ground reaction forces and Achilles tendon forces. For this experiment the vertical 

ground reaction forces at midstance were measured and compared. These will be denoted 

by the abbreviation: VGRFM. 

The Difference in Vertical Ground Reaction Force at Midstance (/VGRFM): The change in 

midstance forces between the preferred transition speeds of the weighted and unweighted 

conditions. 

1.5 Assumptions 

This research assumes that the controlled environment of laboratory treadmill 

walking and running will not adversely affect the gait of each subject, either by changing 

gait patterns or by causing gait transitions to occur at speeds which would not be 

characteristic of overground travel. 
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During a normal overground gait transition, the speed may change significantly 

when the gait changes. If a person is walking and begins to run, he or she will 

simultaneously make a substantial increase in velocity. This experiment isolated gait 

transitions and limited changes in speed to only 0.2 m/s every 30 s interval. It was 

assumed that this small change in velocity would provide a precise point of transition, the 

same point that would occur if the individual was able to accelerate or decelerate at his or 

her own preferred rate. 

While the construction and evolution of a coordinative structure may be due to the 

environment, the individual, and/or the goal of the task, it was assumed that the 

experimental conditions were for a short enough duration to be insignificant in altering any 

coordinative structure which is assumed to be under study. Similarly, the amount of 

running and walking that each individual was to perform was assumed to have little or no 

affect on either the ground reaction forces or the force cutoff levels which may govern the 

transitions. Any other determining factors in gait selection were assumed to be unaffected 

by the experimental environment. 

1.6 Limitations 

The force-measurement system which was used in this experiment underwent 

extensive validation. These results, presented in Appendix C, indicate the vertical ground 

reaction forces measured by this system to be valid. In order to isolate midstance forces, 

each heelstrike and toe-off was identified from the force data. Midstance was then 

calculated as a percentage of stance time. The accuracy of the VGRFM values were affected 

by the characteristics of the force measurement system, the analysis algorithms, and the 

ability to accurately identify each heelstrike and toe-off. 

The typical force measurements that were performed in this experiment are usually 

collected on a laboratory force plate, such as the Kistler 9281B11. Such plates are very 

rigid, resulting in a natural frequency of approximately 850 Hz and a high signal-to-noise 
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ratio. Such a rigid structure will not alter the kinetics or kinematics of gait during 

measurement. The corresponding high natural frequency assures that resonance will have 

minimal effect on the measured ground reaction forces. As a result of these features, the 

force plate is able to produce very good measurements of ground reaction forces without 

affecting the gait of the subject. 

In contrast, the measurement system created by mounting a treadmill on a set of 

transducers had a higher mass and less rigidity than a force plate. These two factors 

produced a lower natural frequency of 275 Hz. Even with steps taken to stiffen the 

treadmill bed, the system was not as rigid as a force plate and may have caused variations 

in the expected VGRF signals. One example of such a difference may be a slightly 

elongated stance time. However, the human subject tests performed on the system indicate 

peak forces, rise rates, and contact times to be of reasonable accuracy. 

1.7 Delimitations 

While all people have a walk-run transition which may be studied, this investigation 

focused on physically-active university students between the ages of 18 and 25 years. The 

subjects were men and women who had not been diagnosed with diseases or injuries likely 

to affect walking or running movement patterns. The selected subjects had a level of 

fitness characterized by 1-4 h of exercise per week, of which running was a part. To 

maintain similar patterns of musculoskeletal loading, these subjects were required to be 

rearfoot-strikers when running. 

1.8 Definitions 

Some of the theoretical terminology associated with the present project follows: 
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Coordinative Structure: A system of muscles and joints which is constrained in its degrees 

of freedom by the nervous system for the completion of a certain function or task. An 

action performed by such a structure seems to be governed by fewer degrees of freedom 

than are mechanically involved (Magill, 1993). 

All of the muscles and joints involved in walking may be considered to be a part of 

the coordinative structure governing locomotion. When changing speed, the individual 

does not independently increase the angular velocity of each joint, but instead all joints and 

muscles change their actions according to the desired change in speed. This illustrates how 

the system seems to behave more simply than the complexity of joints and muscles the 

coordinate structure constrains. 

Collective Variable: The state of the system. In the case of a person moving from point A 

to point B, the collective variable is gait or locomotion with the attractor states of walking 

and running. This variable has also been called an order parameter (Clark, 1992, Thelen & 

Smith, 1994). 

Attractor: A region of relative stability within a geometric model of all possible states of a 

system. The system tends toward these regions of stability. When someone is moving 

from point A to point B, they tend to choose walking or running as their method of 

locomotion. These are the attractor states or regions of stability for human gait (Clark, 

1992, The len & Smith, 1994). 

Bifurcation: A switch in the collective variable from one attractor state to another. Such a 

switch may occur when an instability occurs. The shift may behave differently depending 

on the direction in which the transition is occurring (Clark, 1992, Thelen & Smith, 1994). 

For gait, the walk-run and run-walk transitions together have been identified as a 

bifurcation (Beuter & Lefebvre, 1988). 
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Control Parameter: A parameter which is independent from the collective variable, but 

when scaled past a critical value will cause a bifurcation or shift in the collective variable 

(Clark, 1992, Thelen & Smith, 1994). For gait, possible control parameters include speed, 

metabolic cost, and musculoskeletal force. 

In the case of a person moving from point A to point B, once the control parameter 

reaches a critical level, the person would shift from the attractor state of walking to that of 

running. Thus the collective variable would act through the coordinative structure to make 

the necessary changes to all involved muscles and joints. 

Kinetic trigger: An hypothesized control parameter and its critical level of force at which the 

mode of locomotion becomes unstable, switching the gait between walking and running. 

Ground Reaction Force: The force of the ground or treadmill pushing against the subject's 

foot as he or she steps on the device. This force is measured in three directions (vertical, 

anterior-posterior, and medial-lateral) by a force plate. The instrumented treadmill used in 

this study measured the vertical component. 

Vertical ground reaction force (VGRF): The vertical component of the ground reaction 

force. Equal to the subject's weight plus any inertial forces due to accelerations of the 

subject's mass. 

Impact Peak: On a typical walking or running vertical ground reaction force curve the first 

peak is due to the foot striking the ground. This high point, labeled the impact peak, may 

not be evident on all running trials, particularly if the subject landed on his or her mid- or 

forefoot. 
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Active Peak: For a vertical ground reaction force curve for walking or running, the second 

peak is due to the subject's body weight being over the foot and applying a force to 

accelerate the body vertically for the next step. This peak is called the active peak. 

Center of Pressure (COP): If the vertical ground reaction force is calculated to be a load at a 

single point rather than over a foot-shaped loading area, the single point is called the center 

of pressure. 

Inverse Dynamics: A method of using ground reaction forces, the center of pressure, and 

limb lengths to calculate the moments and forces higher in the body, such as at the ankle, 

knee, or hip. Limb lengths and lever arms are measured by video synchronized with the 

force measurements. 

Stance phase: The period of time during walking or running in which the foot is touching 

the ground. 

Midstance: The midpoint in the stance phase, as determined by percent of the stance phase. 

For this study, midstance was selected as the point of zero anterior-posterior ground 

reaction force. 

Swing phase: The period of time during walking or running in which the foot is off the 

ground, swinging from a toe-off to the next heelstrike. 
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CHAPTER 2  
REVIEW OF LITERATURE  

The first purpose of this chapter is to introduce concepts and previous research 

concerning gait transitions, specifically the human walk-run transition. Therefore the first 

part of this chapter introduces research on gait transitions in humans, initially from the 

kinematic and physiological points of view, and then discussing the kinetics of gait. The 

latter section focuses on the transitions of animals and humans. 

The secondary purpose of this chapter is to introduce previous tools and methods 

which will be used or built upon for use in this experiment. The evolution of the force-

measuring treadmill is the primary focus of this section. Some attention is given to 

differences which exist between overground and treadmill running. 

2.1 Locomotion: Kinematic and Physiological Factors 

One of the first non-kinetic control parameters investigated for its relation to human 

locomotion was oxygen uptake. Margaria, Cerretelli, Aghemo, and Sassi (1963) reported 

a graph of metabolic cost vs. velocity for walking and running (see Figure 2.1). With 

increasing velocity the walking curve exhibited increasingly positive slope and at 8.5 kph 

(2.36 m/s) intersected the running curve which was a line with constant positive slope. 

From their experiment they interpreted that below the speed of 8.5 kph "walking is more 

economical than running; above it, running becomes more economical" (p. 367). 

Menier and Pugh (1968) and Falls and Humphrey (1976) also compared oxygen 

uptake across velocities of walking and running (see Figure 2.2). Menier and Pugh's 

measurements of oxygen uptake of male Olympic walkers while walking and running over 

a range of speeds found an "upward concave curve" (p. 717) for oxygen uptake while 

walking at speeds up to 8 kph (2.2 m/s). When walking faster than 8 kph, oxygen uptake 

increased linearly with velocity. When the same athletes were measured while running 
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Metabolic Cost vs. Velocity:  

Margaria, Cerretelli, Aghemo, and Sassi (1963), used with permission.  
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Metabolic Cost vs. Velocity: 

L: Menier & Pugh (1968): Relation of oxygen intake and velocity 
in walking and running on a treadmill. Used with permission. 

R: Falls & Humphrey (1976): Relationship between energy expenditure 
and speed of progression in walking and running. Used with permission. 
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between 8 and 21 kph, their oxygen uptake again increased linearly with velocity, but at 

half the rate of increase of walking. Above 8 kph, running was determined to have a lower 

metabolic cost for a given velocity. Similar to the results of Margaria, et al., Menier and 

Pugh's graph of these relations implies that walking has a lower metabolic cost up to 8 

kph, above which running has the lower cost. 

Falls and Humphrey reproduced these results with untrained female subjects. 

Walking followed a similar curvilinear metabolic cost-velocity relationship until 

approximately 8 kph. Above 8 kph the metabolic cost of running increased linearly. These 

results provide support for those of Margaria et al. and Menier and Pugh, although 

demonstrating a slightly lower speed of intersection of the two curves. It was hypothesized 

that the Olympic race-walkers had trained themselves to walk with a lower metabolic cost, 

thereby raising the speed at which their curves intersected. From these investigations it has 

been hypothesized that subjects choose the gait with the least metabolic cost. If true, 

persons will switch between walking and running at approximately 8 kph. 

Thorstensson and Roberthson (1987) questioned the ability of subjects to sense the 

small variation in energetic demands which occur during slow changes in speed. The 

investigations described above (except for Margaria et al. for which the increments are not 

known) used increments of 0.8 kph (0.22 m/s) and the subjects were instructed which gait 

pattern to maintain. It remained unanswered if the metabolic cost-velocity relationship 

would result in the same intersection point if subjects were free to choose their own gait 

and velocity was changed in smaller increments or was changed continuously. 

Hreljac (1993b) attempted to fill some of this void by determining the "energetically 

optimal transition speed" in addition to the preferred transition speed. By varying the 

treadmill speed by 0.1 to 0.2 m/s increments while subjects were free to choose their gait, 

the preferred walk-to-run transition (with increasing speed) and preferred run-to-walk 

transition (with decreasing speed) were measured. The average of these speeds was the 

preferred transition speed (PTS). Oxygen consumption was measured while walking at 
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70%, 80%, 90%, 100% and 110% of the PTS and while running at 90%, 100%, 110%, 

120%, and 130% of the PTS. A curve was fit to the series of metabolic costs for each gait. 

The intersection of the two curves was labeled the "energetically optimal transition speed" 

or EOTS. The two speeds were significantly different (PTS = 2.244 ± 0.125 m/s vs. 

EOTS = 2.067 ± 0.102 m/s), calling into question the hypothesis that one switches gait 

patterns to maintain minimal metabolic cost. 

Most research regarding the walk-run phase transition has used kinematic data. 

Nilsson, Thorstensson, and Halbertsma (1985) modeled how people adapt to increasing 

speed of locomotion. By recording lower body kinematics and EMG over a range of 

velocities for walking (0.4-3.0 m/s) and running (1.0-9.0 m/s), changes were observed as 

the subjects adapted to increased speeds. While maintaining a single gait and increasing 

speed, subjects would increase the frequency and amplitude of their leg movements. 

Another method of adaptation was to transition from walking to running, observed at 

approximately 2.0 m/s. Nilsson, Thorstensson, and Halbertsma used their findings to gain 

perspective on the control system of human gait. They did not identify any control 

parameters governing the gait transition, but they did summarize methods of adaptation 

which they related to those of other animals. Finding many similarities, they concluded 

that "the same basic structure of the stride cycle as in other animals suggests similarities in 

the underlying neural control" (p.457). With this point of view, knowledge of animal 

control systems should be related to and tested on human control systems, particularly 

those of gait. 

Thorstensson and Roberthson (1987) measured plantar pressure and duration of the 

stance phase in 18 men while changing locomotion velocity at one of several constant 

accelerations (0.05, 0.08, and 0.11 m/s2). Gait and leg length were analyzed with respect 

to the speed of the transition between walking and running. The mean transition speed for 

these subjects was observed to be 1.88 m/s with the range from 1.30 to 2.55 m/s. While 

they observed a tendency for subjects with longer legs to have higher speeds of transition, 
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they believed this to be partly explained by natural frequency. From their observations they 

found it "unclear" why gait transitions occurred at speeds which may be easily maintained 

by either walking or running (p. 211). This discrepancy remains one of the leading 

reasons why research continues to pursue the identification of possible control parameters 

believed responsible for this otherwise unexplained transition speed. 

Using stringent criteria, Hreljac (1995) attempted to identify kinematic factors 

which may determine the preferred transition speed. Three criteria tested by searching the 

literature were: (a) the value of the variable must change abruptly with a change in gait, (b) 

the value of the variable while running at the PT'S must be equal to the value while walking 

at a lower speed, and (c) the variable must be able to affect proprioceptive receptors which 

may in turn transmit affective signals to the central nervous system. The fourth criterion 

was tested experimentally: the variable must be at the same level while walking at the PI'S 

at three different inclinations. Of the velocities and accelerations studied, only maximum 

ankle angular velocity satisfied these criteria for being a possible control parameter. 

Maximum ankle angular acceleration did not completely satisfy these criteria. Hreljac 

hypothesized that "gait transitions are effected to prevent overexertion of the dorsiflexor 

muscles that perform at or near maximum capacity during fast walking" (p. 669) such as at 

the preferred transition speed. Unfortunately, he did not list the variables which did not 

meet all four of these criteria. 

In modeling the walk-run and run-walk transitions, Beuter and Lefebvre (1988) 

suggested that the "mechanisms controlling these transitions can be described by a 

hysteresis cycle and a small number of parameters" (p.247). In testing trained runners, 

they observed that when speed is increased, then decreased, the walk-run transition occurs 

at a higher speed than the run-walk transition. With the addition of weight (14% of body 

weight), the run-walk transition speed increased substantially while the walk-run transition 

speed decreased slightly. The additional weight significantly decreased (p < 0.025) the 

difference between the two transition speeds from 0.235 m/s to 0.041 m/s. While two 
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transitions were identified, this does not necessarily imply that the same control parameters 

govern both transitions. The few or single control parameters which Beuter and Lefebvre 

suggest to be influencing these transitions have not yet been properly identified using 

kinematic, kinetic, or oxygen uptake analysis. 

2.2 Locomotion: Kinetics 

To isolate a human control parameter, Nilsson and his colleagues probably would 

have suggested testing control parameters already identified in animals. By analyzing the 

kinetics and metabolic costs of the trot-gallop transition in horses, Farley and Taylor (1991) 

identified a critical musculoskeletal force level at which the transition took place, despite a 

corresponding jump in metabolic cost. By having the horses trot and gallop on a treadmill 

with a force plate mounted underneath the belt, ground reaction forces were measured for 

each hoof-fall. It was found that peak vertical ground reaction forces dropped by an 

average of 14% when the horses switched to a gallop. At the preferred transition speed, 

lever arm lengths and mechanical advantage were the same for the two gaits; thus during 

the transition, peak muscle and tendon forces dropped proportionately. At the same time 

that the horses switched gaits, they raised their metabolic cost by 13%. By adding weights 

(24% of body weight) to the horses, the transitions were reproduced at lower velocities 

(3.3 vs. 4.1 m/s). During trot, prior to the new transitions, the peak vertical ground 

reaction forces and corresponding musculoskeletal forces reached the same levels as in the 

unweighted transitions. While a higher speed would be metabolically optimal for the trot-

gallop transition, musculoskeletal forces or peak vertical ground reaction forces were 

associated with the actual preferred transition speed. Therefore, musculoskeletal force 

levels may be the critical, and possibly controlling, factor in the transition and should be 

studied in humans. 

Attempting to test whether a kinetic factor may be the control parameter for humans, 

Hreljac (1993a) measured five different kinetic variables: maximum loading rate, braking 
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and propulsive impulse, and braking and propulsive force peaks. The preferred transition 

speed was measured for twenty subjects (10 male, 10 female) while unweighted and in two 

weighted conditions (+10% BW and + 20% BW). These speeds were measured on a 

motorized treadmill using the same procedure described above (1993b). On a subsequent 

day, the subjects walked and ran over a force plate to measure the ground reaction forces. 

Walking was performed at 70%, 80%, 90% and 100% of the PTS while running forces 

were measured only at the PTS. Of the variables tested, only maximum braking and 

propulsive ground reaction forces increased their levels up to the PTS, then dropped when 

running at the PTS. However, these levels increased with the weighted conditions; thus a 

critical level was not found, indicating that these variables are not control parameters in the 

walk-run transition. This study did not include any measurement of musculoskeletal 

forces, prompting further work in kinetics. 

2.3 Dynamic Systems Theory 

In their chapter "Dynamic Systems: Exploring Paradigms for Change," The len and 

Smith (1994) explain the fundamentals of dynamic systems theory as it relates to the 

physical sciences. The complexity observed in chemical reactions is discussed and related 

to the complexity of human movement. For dynamic systems, the behavior may be 

complex, but it is not random. While a control parameter is scaled, or increased, it may be 

hypothesized that the relative stability of the associated system will change. With enough 

perturbation, the collective variable may change from one attractor state to another, often 

more stable, attractor state. If human locomotion is considered under this theory, gait 

would be the collective variable with two stable regions, or attractors: running and walking. 

As possible control parameters (e.g. metabolic cost, speed or musculoskeletal force) are 

scaled up, the collective variable of gait becomes unstable or uncomfortable; perhaps 

enough to cause the subject to switch from walking to running. The len and Smith explain 

the method for change in the following passage: 
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Systems shift into new forms only as the old forms get shaken up by 
internal perturbations; these are engendered by changes in the values of 
parameters to which the system is sensitive. As stable dynamic systems 
approach such transitions, their growing instability should be detectable by 
increased measures of variability; as they shift into new stable patterns, 
variability should again be reduced. (p. 64) 

Based on this understanding, a perturbation of a system could be observed by increased 

variability. If an identifiable parameter is scaled and variability increases before a shift to a 

new attractor state, then decreases following the shift, it may be interpreted that the system 

is sensitive to the possible control parameter. Therefore, to assist the process of identifying 

a control parameter, variability should be measured. 

2.4 Measurement Techniques 

In humans it is difficult, although possible, to measure Achilles tendon forces 

directly. Komi (1990) described one in vivo method utilizing tendon buckles. Invasive 

techniques remain as the only direct measures of Achilles tendon force. Such techniques 

may not be feasible for all experiments measuring musculoskeletal forces. Farley and 

Taylor (1991) measured the lever arm lengths and vertical ground reaction forces of horses 

during trot and gallop while unweighted and during weighted trotting. The lever arms were 

the same length at the points of peak vertical ground reaction force; thus the muscle and 

tendon forces were also at peak levels. By simultaneously measuring the lever arm lengths 

and vertical ground reaction forces, Farley and Taylor were able to estimate muscle and 

tendon forces without invasive techniques. 

The implied method of inverse dynamics estimation of tendon force has been highly 

correlated with tendon buckle measurements in the kangaroo rat (Biewener, Blickhan, 

Perry, Heglund, & Taylor, 1988). For steady-speed hopping and stationary jumping, 

inverse dynamics estimations were significantly correlated to directly measured tendon 

forces with r = 0.95 and r = 0.93, respectively. 
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Fukashiro, Komi, Jarvinen and Miyashita (1993) compared these techniques in a 

human subject performing vertical jumps. Achilles tendon force was measured with a 

surgically implanted buckle transducer and estimated from ground reaction forces measured 

by a floor-mounted force plate and from joint locations determined from film. For a 

squatting jump, a counter-movement jump, and hopping, the estimated and measured 

forces correlated with coefficients of 0.95, 0.96 and 0.99, respectively. However, directly 

prior to and during early plantarflexion of the two jumps, inverse dynamics overestimated 

the Achilles tendon force by as much as 40%. For hopping, the estimated values exceeded 

the measured values by only 8% during the same phase. Overall, human Achilles tendon 

forces may be estimated with reasonable accuracy using indirect methods. 

Previous work has used floor-mounted force plates to measure the ground reaction 

forces for inverse dynamics (e.g. Bresler & Frankel, 1950; Fukashiro et al., 1993; Wells, 

1981; Winter, 1990, p. 90) while a limited number of studies have performed similar 

measures with a treadmill-mounted force plate (Farley & Taylor, 1991). To allow multiple 

trials and precise experimental control of locomotion speed, force plate methods are 

difficult. Therefore, a treadmill-based device should improve such experiments. Such a 

device would probably decrease the experimental time for each subject, thus decreasing any 

fatigue effect. 

Previous treadmill-based force measurement systems have been built with various 

degrees of success and cost. Kram and Powell (1989) mounted a force-plate in a treadmill, 

requiring a whole new treadmill apparatus to be built from conveyor belt parts. A similar 

treadmill, also of Kram's design, was used by Farley and Taylor (1991). 

Others have tried using existing treadmills and placing them on force measurement 

devices. E. Hennig placed a Kistler force plate under each corner of a Woodway treadmill 

(personal communication, July 8, 1994). Apparently the treadmill itself, designed to 

absorb shock while running, was flexing with each heel-strike. This resonance resulted in 



21 

forces approximately one body-weight higher than expected, even when the sinusoidal 

flexing of the treadmill was subtracted. 

Johnson (1992) tried a similar approach by mounting a treadmill on four strain-

gage-based force measurement devices. He observed a substantial amount of noise in the 

signals, primarily due to mounting one transducer directly below the motor. He attempted 

to minimize this noise by integrating a 50 Hz low pass filter into his analog signal 

conditioning. 

Kram and Powell (1989) attempted to minimize vibrations of the treadmill motor 

from degrading the force signals by placing the motor on a separate surface from the 

treadmill bed and connecting the two with a flexible coupling. Their treadmill had a signal-

to-noise ratio of 100:1 and a natural frequency of 160 Hz. While their signal-to-noise 

ratio is usable for most research, it is much worse than force plate noise which may be 

better than 750:1. Research treadmills must be powered; these drive mechanisms will 

generate vibrations which may easily introduce noise into the force signals. Thus steps 

must be taken to eliminate such vibration and the resulting noise. 

While the present project has been in progress, a commercial treadmill has become 

available from Kistler Instrument Corporation (Fuglewicz & Klavoon, 1994). In making 

this system, Kistler stiffened an existing treadmill and mounted two force plates under the 

belt, allowing vertical ground reaction forces to be measured and enabling individual foot 

loadings to be separated. Even with these steps, the Kistler device measures VGRF's 

approximately 10% higher than expected--probably due to treadmill flex (R. Redd, 

personal communication, September 24, 1994). The device also is able to calculate the 

center of pressure accurate to 0.5 cm (R. Redd, personal communication, May 16, 1995). 

2.5 Overground vs. Treadmill Locomotion 

Because this experiment was conducted on a treadmill instead of overground, 

differences between the two must be discussed. Treadmill walking and running are known 
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to be somewhat different from overground locomotion. To minimize kinematic differences 

when conducting an experiment on a treadmill, the usual procedure is to allow each subject 

an adjustment period of 15-30 minutes (Charteris, 1978; Schieb, 1986; Wall & Charteris, 

1980; Wall & Charteris, 1981). 

Nelson, Dillman, Lagasse, and Bickett (1972) compared overground and treadmill 

running at three speeds and three slopes for 16 experienced runners. Even after multiple 

practice sessions of treadmill locomotion, the researchers observed treadmill running to 

have longer foot contact time, lower vertical velocity, and less variability in both horizontal 

and vertical velocity. 

Nigg, De Boer, and Fisher (1995) compared running on three treadmills of 

different sizes to running overground. Twenty-two subjects, evenly divided between 

runners and non-runners, ran on each treadmill "until they felt comfortable and did not 

require assistance of the railings" (p. 99). Kinematics were measured on each subject as he 

or she ran on each device at 3.0, 4.5, 5.0, and 6.0 m/s. They found that there were 

kinematic differences, such as landing with the foot in a flatter position while on a 

treadmill. There was a substantial amount of unexplained variability between treadmills 

and overground. It should be expected that each treadmill will be different from 

overground running, in part related to the stiffness and natural frequency of the treadmill. 

Possible kinetic differences have not been explored--in part due to the inability to do so 

reliably. 

2.6 Midstance Forces 

To quantify running characteristics across speeds, Munro, Miller, and Fuglevand 

(1987) measured ground reaction forces from 20 subjects as they ran across a force plate 

over a range of speeds. Speeds were between 2.5 and 5.5 m/s. Each subject performed 30 

to 40 trials. From these data, normative information was calculated for each running 

speed. Variables quantified were impact peak, loading rate, maximum thrust, decay rate, 
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average vertical ground reaction force, change in vertical velocity, braking impulse, 

propulsive impulse and stance time (p. 147). For the present study, midstance was defined 

as the moment of zero anterior-posterior shear or ground reaction force. At 3.0 m/s, the 

slowest speed they quantified, Munro, Miller, and Fuglevand measured zero fore-aft shear 

to be at 47.1 ± 3.1% of stance time (p. 149). 

Similar variables were measured by Kinoshita and Bates (1983) in their study of 

walking with various loads on the body. Five subjects walked over a force plate 10 times 

for each of the conditions tested. For the weighted conditions, the subjects wore either a 

backpack system or a front-back system. The latter device had equal amounts of weight on 

the front and rear of the system. Three loadings were tested: zero load, plus 20% of body 

weight, and plus 40% of body weight. For the latter two conditions, both systems were 

tested. Means and standard deviations were calculated for many variables from the vertical, 

anterior-posterior, and medial-lateral ground reaction forces. These variables included 

forces of given landmarks, percent stance of these landmarks, and impulses. Zero anterior-

posterior force was calculated as percent stance time. For normal unweighted walking, this 

point was at 49.97% of stance, with one standard deviation equal to 2.90%. With 20% of 

body weight carried in the front-back system zero anterior-posterior force was measured at 

50.76 ± 2.07% of stance (p. 579). These points were later in the stance phase than the 

points of relative minimum vertical ground reaction force (44.70 ± 2.00% and 46.14 ± 

2.36% respectively for the two conditions). These forces were measured in Newtons per 

kilogram of body weight. For the unweighted condition, the minimum force was measured 

to be 7.22 ± 0.26 N/kg. With an additional twenty percent of body weight in the front-

back system, the minimum force was quantified as 8.30 ± 0.21 N/kg (p. 578). 

2.7 Summary 

Despite significant amounts of research on the human walk-run gait transition, 

control parameters have not been satisfactorily identified. To date, the majority of 
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investigations have focused on kinematic analysis. Data from horses indicated a control 

parameter in musculoskeletal forces; once at a certain force level the horses switched from a 

trot to a gallop. Some recent work has focused on the kinetics of the walk-run transition in 

the hopes of identifying a control parameter. Hreljac (1993a) analyzed five aspects of 

ground reaction forces near the transition speeds, but did not identify a control parameter. 

Direct or indirect measurement of human musculoskeletal forces remains to be 

accomplished relative to the walk-run transition. With the understanding provided by 

dynamic systems theory, to identify a possible control parameter, variability should be 

measured in the collective variable and the control parameter while the parameter is scaled. 

If variability increases before a transition only to decrease following the transition, the 

manipulated parameter is indicated as a control parameter. 

A treadmill-based vertical ground reaction force measurement system was required 

for this experiment. Previous efforts indicated that the new treadmill needed to be rigid to 

minimize bed flex during running and suggested that motor vibration be isolated to provide 

clean and accurate measurements. 
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CHAPTER 3  
METHODS AND PROCEDURES  

This chapter discusses the subjects, apparatus, experimental design and data 

analysis procedures for the study. Pilot studies conducted to investigate the validity of the 

apparatus and procedures are also outlined. 

3.1 Subjects 

Ten male and female subjects were recruited for this study. Subjects were from the 

general university population and were required to be between 18 and 25 years of age. 

Subjects were also required to have a fitness level capable of completing the moderate 

exercise involved in the study. More specifically, recreational runners involved in 

moderate frequency and duration of training (total 1-4 hours per week) were recruited. The 

subjects were free of any diseases or injuries which could have affected their walking or 

running gaits. In addition, to maintain similar patterns of musculoskeletal loading, these 

subjects were required to have a rearfoot-striking running gait. 

3.1.1 Questionnaire 

A questionnaire was used as a screening device to insure that subjects participated 

in 1-4 hours of physical activity per week and did not have any disabilities which could 

have affected gait or coordination. This questionnaire is in Appendix A. 

3.1.2 Subject Characteristics 

The heights and weights of the 10 subjects used in this study appear below. 
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Table 3.1  
Subject Heights and Weights  

Subject Number Weight (kg) Height (cm) 
1 57.6 170 
2 52.8 155 
3 77.1 183 
4 61.0 165 
5 64.6 174 
6 61.7 165 
7 80.1 184 
8 57.2 163 
9 59.0 167 
10 68.9 180 

Average I 64.0 I 171 

3.2 Procedures 

The procedures, risks, benefits, and the ability to withdraw without prejudice were 

explained to each subject prior to testing. Subjects were required to sign an informed 

consent form prior to beginning the experimental protocol. The Oregon State University 

Human Subjects Review, Consent Form, and Institutional Review Board approval are 

included in Appendix B. 

On a day prior to testing, each subject signed the consent form and was given 30 

min to adjust to walking and running on a treadmill under both the weighted and 

unweighted conditions. Thirty minutes was judged to be sufficient time to adjust to 

treadmill locomotion and to minimize kinematic variations compared to overground 

locomotion (Charteris & Taves, 1978; Schieb, 1986; Wall & Charteris, 1980, 1981). In 

addition, on test day, but prior to testing, each subject was allowed any needed practice 

time. The length of this practice time was determined by the subject, but was a minimum 

of 5 min. 

On the testing day, before actual testing began, the subject's height and weight were 

measured in the Anthropometry Laboratory. Three tests were performed on each subject, 
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with and without additional weight. The tests were (a) to determine the preferred transition 

speed (PTS), (b) to measure forces while walking over the experimental range of speeds, 

and (c) to measure forces while running over the range of speeds. 

The first test was to determine the PTS for the subject. The speed of the treadmill 

was accelerated in increments of 0.2 m/s from 1 m/s to a maximum speed of 3 m/s. Each 

speed was held constant for 30 s before the speed was changed. See Figure 3.1 for a 

graphical representation of this test. During this test each subject was allowed to transition 

freely between walking and running. Subjects were instructed: "If it feels more 

comfortable to run, then run. If it feels more comfortable to walk, then walk." 

Two trials of acceleration were performed for each subject. The PTS was defined 

as the speed at which the subject switched to a new gait and maintained the gait for the 

entire 30 s (Hreljac, 1993a). After the transition was complete according to the above 

requirement, three increments of increased velocity were performed. When the highest 

speed was recorded, the treadmill was stopped and the subject given the opportunity to 

rest. Once the subject was prepared to perform the next trial, the treadmill was started at 

the speed three increments below the PTS. From this level, the speed was increased 

through the PTS to the speed three increments faster. The preferred transition speeds were 

recorded for each acceleration (walk-run) trial with the average labeled the PTS for that 

condition. Before the next test each subject was given the opportunity to rest. 

For the second test each subject was asked to maintain a walking gait through a 

single acceleration cycle (PTS 0.6 m/s to PTS + 0.6 m/s). Force measurements were 

taken during this test to determine musculoskeletal forces while walking. 

Test 3 was the same as Test 2, except in this case each subject was asked to 

maintain a running gait. Musculoskeletal forces were measured. 

This set of three tests (total of four acceleration cycles) were repeated with each 

subject wearing a weight vest of approximately 15% of his or her body weight. This 

weight was chosen to be substantial enough to cause a change in the preferred transition 



1 

3  

2.5 

2  

1  

0.5  
0 2 4 6 8 10  

Time (minutes) 
Figure 3.1 Test 1 Procedure: Velocity vs. Time 



29 

speed as observed by Beuter and Lefebvre (1988). The weight and its distribution on the 

body was intended to minimize changes to walking and running kinematics. 

Administration of the two testing conditions (weighted and unweighted) was 

counterbalanced to eliminate effects of order. 

3.3 Apparatus 

To measure an hypothesized control variable governing gait transitions, the 

subjects' vertical ground reaction forces were recorded while treadmill speed was 

systematically varied. This required an apparatus and several computer programs to 

perform the calculations. 

3.3.1 Hardware 

As discussed earlier, ground-reaction-force-measuring treadmills have been built 

for individual research projects and recently one has become available commercially. 

Problems encountered have included excessive noise, believed to be due to the drive motor, 

and higher-than-expected vertical ground reaction forces, possibly from the treadmill bed 

flexing with each foot-strike. Some projects have involved building a dedicated treadmill 

or using expensive hardware. The equipment needs of this project required building a 

VGRF-measuring treadmill using an existing treadmill and low-cost, non-dedicated 

hardware. The resulting natural frequency was to remain relatively high, the bed was 

required to not flex with each foot-strike and noise from the treadmill itself was to not 

degrade the signals. 

To meet the stated goals, an existing treadmill (Quinton Q55) was modified. See 

Figure 3.2. The motor unit was disconnected from the treadmill bed except for a single 

drive belt. While the treadmill bed rested on the floor, the motor unit sat on a Kistler force 

plate, vibrationally isolated from the floor and the force-measuring bed. The motor was 
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Figure 3.2 
Treadmill Apparatus 
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aligned by pins to prevent motion in the horizontal plane, but by resting on a bed of foam 

on the force plate the motor unit was free to move within a limited vertical range. 

The bed was supported by six rigid supports with a piezoelectric transducer (PCB 

Piezotronics 208A03 or 208A02) at each point of loading. The specifications for each of 

these transducers are in Table 3.2. To maximize rigidity and force transmission, the 

loading points were at the front, middle, and rear of the treadmill bed. The points of 

contact were at frame junctions in the treadmill bed, so as to minimize the distance along the 

frame that forces were transmitted. Each transducer was topped by a rounded impact head, 

assuring point loading. Lower-ranged, more sensitive sensors, were on the rear two 

supports because of the lower relative loads at these points. 

Table 3.2 
Transducer Specifications 

Position Left Right Left Right Left Right 
Front Front Middle Middle Rear Rear 

Channel A B C D E F 

Model 208A03 208A03 208A03 208A03 208B02 208A02 

S/N 11541 11551 11552 11553 12456 8766 

Range 0-500 0-500 0-500 0-500 0-100 0-100 
(lbs) 

Sensitivity 10.41 10.19 10.33 10.22 50.89 53.3 
(mV /lb) 

Input TC >2000 >2000 >2000 >2000 >500 500 
(sec) 

Rise Time 10 10 10 10 10 10 
(1..tsec) 

Natural 70 70 70 70 70 70 
Frequency 

(kHz) 
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Each support pillar was topped by a triangular plate to which a transducer was 

mounted. See Figure 3.3. The height of the plate above the pillar was adjustable using 

three bolts on the corners of each plate and a large, lockable center pin which supported the 

plate directly below the transducer. An alignment pin was welded on the upper corner of 

each of the four front pillars. These pins extended 2 in. (5.08 cm) above the transducers 

and were fitted with Delrin housings. The pins were aligned with corners of the treadmill 

frame so as to prevent movement of the bed in the horizontal plane. The Delrin housings 

were the contact points between the pins and the frame. The use of Delrin was to minimize 

any friction in the vertical direction, allowing all vertical loading to be measured by the 

transducers. 

The pillars were attached to a steel frame in such a way as to allow adjustment in the 

horizontal plane. With the alignment pins in their appropriate corners and the transducers at 

the frame junctions, bolts were tightened to prevent any horizontal movement. See Figure 

3.4 for an illustration of the frame. 

Each transducer was powered by its own signal conditioning unit (a PCB 

Piezotronics 484B or 484B02). The specifications and settings for these units may be seen 

in Table 3.3. Each 484B was DC-coupled to utilize the 2000-s time constant of the 

208A03 transducers. Zero-output voltage was clamped at approximately 0.5 V. The 

484B02's, used with the lower range 208A02's, were AC-coupled, providing a 1000-s 

time constant which was longer than the constant of these transducers. The zero-output 

was held positive by a voltage-clamping circuit. The resulting unity gain signals were then 

sent to a 12-bit analog-to-digital conversion board (Keithley-Metrabyte DAS-16) and 

microcomputer for data collection. 

The design of the treadmill modifications addressed concerns of bed flex and signal 

noise reported in the literature. The modifications prevented bed flexing and motor noise 

from degrading the force signals, demonstrated by a signal-to-noise ratio as good as 225:1. 

To calculate this ratio, signal was measured from the peak forces during running 
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Figure 3.3  
Support Pillar  
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Table 3.3  
Signal Conditioner Specifications and Settings  

Position Left Right Left Right Left Right 
Front Front Middle Middle Rear Rear 

Channel A B C D E F 

Signal 484B 484B 484B 484B 484B02 484B02 
Conditioner 

Coupling DC DC DC DC AC AC 

Bias (V) 11 11 11 11 11 11 

Time >2000 >2000 >2000 >2000 1000 1000 
Constant 

(sec) 

Clamping On On On On Active Active 

(1800 N), and noise was measured during the flight phase (±8 N). In addition, a "drift" 

was noted in the flight phase of running during a pilot study. Drift was quantified as the 

drop in total force during flight (-35 N), resulting in a 50:1 signal-to-drift ratio. Initially 

this drift was thought to be due to the characteristics of the transducers and signal 

conditioning chosen. If true, longer time constants should lower any drift. An alternate 

hypothesis was that this drift was actually the result of alternating tension in the drive belt. 

In some graphs the "drift" appeared to be low frequency noise, perhaps from improper 

drive belt tension. In follow-up tests, particular care was taken to achieve the proper 

alignment of the drive belt. The result was clean flight phases, free of drift. While some 

improvements may have been made to the time constants of the transducers, to eliminate or 

minimize this "drift" it was more important to achieve proper tension in the drive belt. The 

six-support structure further stiffened a relatively rigid bed. When the bed was hit with a 

mallet, the ringing of the system was measured, resulting in a relatively high natural 

frequency of 275 Hz. Results of pilot studies demonstrated great similarity to expected 
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VGRF curves. For these data see the individual channels and summed signals in Figure 

3.5. The total VGRF curves exhibit the quickly increasing force of the impact peak, the 

subsequent dip in force, and then the rounded active peak. Between strides the flight 

phases may be observed with approximately zero force. 

A speedometer developed by Sports Medicine Industries (St. Cloud, MN) 

monitored the treadmill speed. A small photo-electric diode mounted under the rear roller 

detected each of 9 retro-reflective markers evenly spaced on the 56.1 cm of roller as they 

passed by. By knowing the bed length, the number of markers, and by counting the 

number of markers passed in front of the sensor during a five-second period, speed was 

calculated with a resolution of 0.02 kph (0.0056 m/s). See Figure 3.6 for the diagram of 

the signal paths. 

3.3.2 Computer Programs 

Separate programs collected, converted, and filtered the data from the 6 force 

channels. The sum of the 6 force channels was the total vertical ground reaction force 

(VGRF). A separate program to be discussed in Section 3.4.2 was used to analyze the 

resulting force curves. The general flow of data through the computer programs is 

diagrammed below in Figure 3.7. 

Collection was completed using a program written in Microsoft Visual Basic for 

DOS Version 1.00. The program "VBDTMDMA.EXE" collected data from the treadmill 

at 600 Hz per scan across all 6 transducers (effective frequency of 3600 Hz). Ten seconds 

of data were recorded in digital form to a data file for subsequent analysis. 

After collection, the conversion program "CNVTVBD.MAK," written in Microsoft 

Visual Basic 3.0, batch processed the files by subject. The program converted digital units 

to force units (Newtons) using each transducer's calibration factor, applied the appropriate 

second-order Butterworth filter, and wrote the resulting data to a text file. For the data 

collected in this experiment, the cutoff frequency was set at 60 Hz. Over a set of trials, the 
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Figure 3.7  
Data Flow  

force output from the piezoelectric transducers would drift, or decline slightly in 

magnitude. In order to calculate a correction factor for each trial, the conversion program 

also created a file of the times at which the original data were collected. These times were 

then multiplied by the drift rate to determine the amount of force to be added to each file to 

correct for any drift. 

3.4 Data Analysis 

3.4.1 Force Analysis Software 

The analysis and associated software had to perform the tasks of providing an 

accurate zero-force level, selecting the midstance force for each stride, and compensating 

for any signal drift due to the piezoelectric crystals. To achieve an accurate zero level, a 

"pre-zero" file was calculated and subtracted from each file. In addition, the flight phases 

of running were forced to zero. Midstance was selected as a percent of stance (50.37% and 

47.10% for walking and running, respectively), after having marked the heelstrike and toe-

off points for each stride. Drift compensation provided a correction factor which 

counteracted any loss of signal output from the piezoelectric transducers. After zero-levels 

were achieved and any drift compensated for, the forces at the selected midstances were 

considered accurate. 

Once a subject's warm-up was complete, the treadmill was vacated, the belt 

stopped, and a file sampled with no load on the bed of the treadmill. This "pre-zero" file 
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was later averaged over the 10 s to determine the initial offset for each of the six channels. 

Once the pre-zero was taken, testing for that condition began. A new pre-zero file was 

recorded immediately preceding the start of each condition or series of tests. 

The initial offset values were recorded and input into the analysis program prior to 

analyzing one of the text files. Proper removal of signal offset was necessary to provide an 

accurate measure of medial-lateral center of pressure as well as to yield accurate vertical 

ground reaction forces. 

Each running trial was checked for its force during flight. Knowing that flight 

phases should be measured as zero force, two flight phases were averaged for each of the 

highest speeds for a set of trials. These trials were chosen due to the distinct flight phase 

recorded at high speeds. For the running trials this calculation corrected the flight phases to 

within 5 N of baseline. If the flight-phase calculation proved to be different from the pre-

zero value, the flight-phase calculation was used to obtain zero force during flight. 

The analysis program, "MIDSTNS5.BAS," was written in Microsoft QuickBASIC 

v.4.5 to graphically display the converted data, allowing events to be selected. The screen 

had two graphical displays: one for total vertical ground reaction force and one for medial-

lateral center of pressure. A cursor could be moved simultaneously on the two displays. 

At the base of the screen were displayed the name of the file being analyzed, the sample 

which was selected by the cursor, and the force and medial-lateral center of pressure of that 

sample. From the two screens and the numerical displays, each heelstrike and toe-off was 

marked. The program displayed the label for the most recently picked point. 

For running, the right and left stance forces could be seen separately with a flight 

phase in between. In walking, however, the double support phase made picking events, 

especially toe-off, more difficult. To confirm that the stances were properly marked, 

several files were analyzed using a spreadsheet. Allowing greater flexibility than the 

analysis program, this environment allowed the forces for right and left feet to be 

separated, verifying the endpoints of stance (Davis & Cavanagh, 1993). 
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To correlate vertical ground reaction force with musculoskeletal force, the vast 

majority of force exerted on the body by the ground was required to be in the vertical 

direction. To meet this requirement, anterior-posterior force was to be at zero. While the 

treadmill could measure the vertical component of ground reaction force, the anterior-

posterior component could not be measured. Thus zero anterior-posterior force was 

estimated as a percent of stance time, based on previous studies. 

The analysis program used the endpoints of stance to calculate stance time and then 

select midstance. Kinoshita and Bates's (1983) points of zero AP force in walking were 

averaged for the weighted and unweighted conditions to pick midstance at 50.37% of 

stance time. For running, Munro, Miller, and Fuglevand (1987) found zero AP force at 

47.1% of stance. Using these values, midstance was calculated, and the corresponding 

force labeled midstance vertical ground reaction force (VGRFM). The program wrote these 

data to a results file. For each trial the end results contained the file name, number of 

cycles, sample numbers for each right and left heelstrike, midstance, and toe-off, as well as 

the vertical ground reaction force at each midstance. 

When a series of files was recorded over several minutes, it was expected that the 

transducers would register some drift. The amount of drift was quantified by calculating 

any erroneous change in subject body-weight from the first to the last trials of a series. 

With initial transducer offsets removed, an integral number of body weights were marked 

in the first file. Picking obvious landmarks such as maximum VGRF in running or 

heelstrike in walking, the maximum possible number of cycles was selected. The same 

procedure was completed for the last file of the series. Knowing that an average of an 

integral number of cycles should be equal to body weight, and that body weight should not 

change within a single session, the program calculated amount of drift, or signal loss, 

between the first and last files. A drift rate, or slope, was calculated as the signal change 

divided by the number of seconds elapsed between the creation of the first and last files. 

The time of collection of each file was known from the file created by the conversion 
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program. Using the drift rate and the time of collection of each file, a compensation factor 

was calculated and subtracted from each of the midstance forces for that file. 

To confirm that the analysis program had correctly picked off the midstance forces, 

the output files were checked by hand. For a given trial, the forces were expected to be 

similar across cycles, while sample numbers were required to increase with heelstrike, 

midstance, and toe-off of each consecutive stride. Some erroneous points were found, 

marked, and checked using the analysis program. If these points were indeed in error, they 

were eliminated from the analysis. These program errors did not substantially affect the 

number of midstance forces used in the statistical analyses. While most files had more than 

nine strides for each side per file, a few had less than seven. These small numbers were 

due to the subject switching between walking and running at the highest walking speeds. 

3.4.2 Force Analysis 

It was assumed that the anterior-posterior ground reaction forces would be close to 

zero at midstance. Knowing that at midstance all force is vertical and that muscles are only 

active in pulling on the Achilles tendon (Basmajian & De Luca, 1985, p. 350), a direct 

relationship may be made between the vertical ground reaction force and the Achilles 

tendon force. Because the invasive techniques required to directly measure Achilles tendon 

force were not possible for this study, the midstance vertical ground reaction forces were 

measured and subsequently analyzed. 

The data from Tests 2 and 3 were used to plot VGRFM versus speed of locomotion. 

By having data for both walking and running over the whole range of speeds, the dynamics 

of force could be observed for gaits which were otherwise not preferred. The resulting 

graph for each subject illustrated the VGRFM curves for walking and running for each 

condition and over the whole range of speeds. 

To compare these curves between subjects, the force and velocity axes were 

normalized. For both the weighted and unweighted conditions, force was normalized to 
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body weight, and velocity was translated to the preferred transition speed. The two PTS's 

were placed at the same point on the x-axis and the other speeds plotted at increments of 

speed above and below the PTS (i.e. PTS, PTS ± 0.2 m/s, PTS ± 0.4 m/s, and PTS ± 0.6 

m/s). In the case of a subject whose PTS was calculated to be between two of the 

measured speeds, the lower of the two adjacent speeds was used for this normalized graph 

and the associated statistical analyses. Data points for all subjects were averaged for each 

gait, condition, and speed, resulting in a generalized description of the force dynamics 

before and after the preferred transition speed in both weighted and unweighted conditions. 

Individual variability in the force measures was quantified using the same 

normalization procedure. In this case, the standard deviations of the VGRFM for each 

subject, condition, and speed were calculated and aligned at the preferred transition speed. 

When averaged across subjects, the mean variabilities were plotted and statistically 

analyzed. 

To test if there were significant differences in force or variability at speeds below, 

above, or at the preferred transition speed, paired t-tests were performed on the forces and 

standard deviations for each side. The values at PTS 0.2 m/s, PTS, and PTS + 0.2 m/s 

were compared in three pair-wise comparisons. The level of significance was adjusted 

using a Bonferroni t-Procedure. 

For each individual, the preferred transition speeds (Test 1) and the corresponding 

midstance vertical ground reaction forces (Tests 2 and 3) were used to calculate the 

differences between the weighted and unweighted conditions (APTS and AVGRFm). 

Hreljac (1993a) found it appropriate to pool results for both genders. After an initial check 

of the means, pooled results were used in this study as well. The APTS and AVGRFM 

values were plotted on a force-versus-velocity graph. After overlaying all subjects' data the 

general spread was analyzed. If the data were scattered randomly about the AVGRFm= 0 

line, but at various levels of OPTS, then the hypothesis would be correct: midstance vertical 

ground reaction force is probably a control variable in the walk-run transition. The spread 
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of the data about the AVGRFM = 0 line compared to the OPTS = 0 line demonstrated the 

relative influence on the transition by midstance vertical ground reaction force and velocity. 

Independent t-tests compared the velocity and force differences for the subjects 

tested. One-at-a-time confidence intervals were calculated to quantify the spread of the 

data. If the walk-run transition occurred at a critical level of VGRFM, but not at a critical 

speed, the zero value would lie within the confidence interval for VGRFM, but not within 

that for OPTS. The levels of influence were also determined by transforming the values for 

both variables to z-scores and calculating a confidence ellipse around the data (Johnson & 

Wichern, 1992). This method of integrating the two variables into a simultaneous 

calculation of a confidence area resulted in a more specific space than the intersection of the 

two independently calculated confidence intervals. 

3.5 Pilot Studies 

The pilot studies which were performed have been divided into the categories of 

treadmill, speedometer, and estimation of sample size. 

3.5.1 Treadmill 

To establish the validity of the treadmill apparatus, many individual pilot studies 

were performed and are summarized in Table 3.4. The results from these studies appear in 

Appendix C: Treadmill Validation. These pilot studies utilized the collection and 

conversion programs designed for the research study. The analysis program written to 

pick midstance forces was used in the last pilot test which quantified repeatability between 

trials. Thus the treadmill pilot studies validated both the hardware and software. 
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Table 3.4  
Treadmill Pilot Studies  

Pilot Study Quantity(ies) Measured Belt: Repeated 
On or Off after moving 

treadmill? 

Static loads Force Off Yes 

Comparison to force plate Peak impact force, active peak On No 
force, rise rate, contact time, 

total impulse 

Subject reliability Peak impact force, active peak On Repeat 
force, rise rate, contact time, without 

total impulse moving TM 

Point loads COP Off and Yes 
On 

Dynamic point loads Force Off and No 
(force hammer) On 

Constant moving force Force and COP On No 
(1 BW) 

Experimental variability Midstance force, difference On No 
and repeatability with between trials 

subjects 

3.5.2 Speedometer 

The computerized speedometer was validated by videotaping a marker on the 

treadmill belt while at constant speed. By counting frames and knowing the length of the 

treadmill belt, the velocity was calculated. The video-calculated velocity was then 

compared to the value obtained by the speedometer sensor. Systematic deviation was 

accounted for in the speedometer program by changing the value for the circumference of 

the roller. After changes were made, the validation was repeated. With a subject walking 

on the treadmill, the speedometer displayed speeds of 6.42, 3.68-70, and 8.80-8.82 kph. 

http:8.80-8.82
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The corresponding velocities calculated from video were 644, 3.70, and 8.81 kph. This 

test confirmed the speedometer to be valid when a subject was walking on the treadmill. 

3.5.3 Estimation of Sample Size 

Using data from Kinoshita and Bates (1983), estimates were made of the number of 

subjects necessary to achieve statistical power. Two methods were used: Barcikowski and 

Robey (1985) and the program Stat-Power v. 2.2 (Scientific Software, Inc., Chicago, IL, 

1993). Kinoshita and Bates listed vertical ground reaction forces at midstance to be 7.22 

N/kg of body weight for the unweighted condition, and 8.30 N/kg of BW for the weighted 

condition. The standard deviations for these two conditions were 0.264 and 0.210 N/kg, 

respectively. 

Using these values in the program Stat-Power, power was calculated with the 

following levels: significance = 0.025, correlation between unweighted and weighted 

conditions = 0.3, power = 0.8 yielding a sample size of 5. This calculation was performed 

for a paired 2-tailed t-test. 

A second estimation was made based on the writings of Barcikowski and Robey. 

With a comparison alpha-level of 0.05, large effect size, correlation between unweighted 

and weighted conditions estimated to be 0.5, and power set at 0.8, sample size was 

estimated at 14. Due to the limitations of the tables used in this calculation, the outcome 

was expected to be a conservative measure or to overestimate of the sample size. Based on 

these two tests, ten subjects were recruited. 
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CHAPTER 4  
RESULTS AND DISCUSSION 

This chapter reports the results of the study. The data and the analyses are 

presented and discussed in relation to the goals of the study. 

4.1 Testing 

Each of the 10 subjects reported to the Oregon State University Sports Medicine 

and Disabilities Research Lab on a day prior to testing for familiarization to treadmill 

walking and running. On a second day they reported and testing was performed. During 

these testing sessions, the subjects exhibited some unexpected behavior: In the 

determination of preferred transition speed, some subjects transitioned at different speeds 

for the two trials for a given condition. 

Tests two and three were supposed to measure forces while walking and running 

at speeds from 0.6 m/s below the PTS to 0.6 m/s above the PTS. Because of the 

unexpected results from test one, the same range of speeds was not tested for all subjects. 

For subjects 3 and 7 the range of speeds tested started at 0.6 m/s below the upper value of 

PTS. Subject 6 was tested over the range calculated about the lower value of PTS. 

Subject 8 was tested at three speeds below the lower PTS and three speeds above the 

upper PTS. These data are discussed further in section 4.3. 

During the walking trials, none of the subjects were able to walk at all of the 

speeds prescribed above their preferred transition speed. For the unweighted condition, 

all subjects were able to walk at PTS + 0.2 m/s, but the not all subjects were able to 

continue above this speed, with only two subjects able to complete the speed 0.6 m/s 

above their PTS. This problem was more acute for weighted walking, during which two 

subjects were unable to walk at any speed greater than their PTS. None of the subjects 

were able to complete the weighted walking condition at 0.6 m/s above PTS. At the 
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highest walking speeds some of the subjects broke into a run. When this occurred during 

a force measurement, only the walking strides were analyzed. For a complete record of 

the number of strides analyzed for each trial, see Tables 4.1 through 4.8. 

During testing, one subject was observed to run with a midfoot or forefoot 

striking gait. Because this subject did not run with the required rearfoot striking pattern, 

the subject was removed from analysis of midstance vertical ground reaction forces 

across the range of speeds. This subject was included in the analysis of change in 

preferred transition speed and change in VGRFM between the weighted and unweighted 

conditions. 

4.2 Preferred Transition Speed 

When preferred transition speed was measured for the unweighted condition 

(UW), five subjects transitioned at different speeds for the two trials. For the weighted 

condition (Wt), one subject transitioned differently between the trials. See Table 4.9. 

These inconsistencies were unforeseen. In such cases it was hypothesized that the true 

preferred transition speed was between the two observed values. Thus, for the specific 

tests and graphs which used OPTS, the two speeds were averaged and the force values 

pooled. For the analyses of the force curves and the variabilities, a single analysis group 

with the maximum number of subjects was desired. For these analyses, the lower of the 

two values was used for alignment at the PTS. 

The subjects tested did not show a consistent change in preferred transition speed 

with the addition of weight. Beuter & Lefebvre (1988) did not observe any significant 

change in the walk-run PTS with 14% of body weight added to each of the trained 

runners they tested. By adding 24% of body weight to horses, Farley and Taylor (1991) 

observed a significant decrease in the preferred trot-gallop transition speed. For the 

subjects tested in this study, the preferred transition speeds increased, decreased, or 

remained the same with the addition of 15% of body weight. A 90% confidence interval 
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Table 4.1  
Number of Strides Analyzed  

Unweighted Walking, Left Leg  

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 8 8.0 
1.4 9 9 9 8 8.8 
1.6 9 10 8 9 9 10 8 10 8 9.0 
1.8 10 11 9 10 10 10 9 11 9 9.9 
2.0 9 12 10 12 10 11 9 8 10 10.1 
2.2 12 12 6 13 11 12 10 11 7 10.4 
2.4 12 7 13 10 12 11 12 11.0 
2.6 12 3 12 8.3 

Table 4.2 
Number of Strides Analyzed 

Unweighted Walking, Right Leg 

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 7 7.0 
1.4 8 9 8 7 8.0 
1.6 9 10 9 8 9 10 8 9 8 8.9 
1.8 10 11 9 10 9 10 9 10 9 9.7 
2.0 11 12 7 12 10 10 9 10 10 10.0 
2.2 12 12 6 13 10 11 10 11 7 10.2 
2.4 12 8 13 13 12 10 12 11.4 
2.6 14 5 12 10.3 
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Table 4.3  
Number of Strides Analyzed  
Weighted Walking, Left Leg  

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 8 8.0 
1.4 9 10 9 9 9 8 9.0 
1.6 10 10 9 10 9 10 9 9.6 
1.8 10 11 10 10 9 10 10 10 9 9.9 
2.0 11 11 11 11 10 10 10 11 10 10.6 
2.2 12 7 12 11 12 11 12 11.0 
2.4 13 12 12 10 2 13 10.3 
2.6 13 13.0 

Table 4.4 
Number of Strides Analyzed 

Weighted Walking, Right Leg 

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 7 7.0 
1.4 8 9 8 8 10 8 8.5 
1.6 9 10 8 7 8 10 8 8.6 
1.8 10 11 9 10 9 9 9 10 9 9.6 
2.0 11 11 10 11 9 10 9 11 10 10.2 
2.2 12 7 11 9 12 11 12 10.6 
2.4 12 13 12 13 3 13 11.0 
2.6 13 13.0 
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Table 4.5  
Number of Strides Analyzed  

Unweighted Running, Left Leg  

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 11 11.0 
1.4 11 11 11 11 11.0 
1.6 12 12 10 12 12 11 11 11 11 11.3 
1.8 12 12 11 12 12 11 12 11 12 11.7 
2.0 12 13 11 12 12 12 12 12 12 12.0 
2.2 13 13 11 13 12 11 12 12 12 12.1 
2.4 12 13 12 13 12 12 12 13 12 12.3 
2.6 13 13 11 13 12 12 13 12 12.4 
2.8 13 12 13 12 13 12.6 
3.0 14 14.0 

Table 4.6 
Number of Strides Analyzed 

Unweighted Running, Right Leg 

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 12 12.0 
1.4 12 11 12 11 11.5 
1.6 12 13 11 12 12 11 12 11 12 11.8 
1.8 13 13 11 12 11 12 11 12 12 11.9 
2.0 13 12 11 13 12 12 12 12 13 12.2 
2.2 13 13 11 12 12 12 12 13 12 12.2 
2.4 12 13 11 12 12 12 12 13 12 12.1 
2.6 13 13 12 13 12 11 13 13 12.5 
2.8 13 13 11 12 13 12.4 
3.0 13 13.0 
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Table 4.7  
Number of Strides Analyzed  
Weighted Running, Left Leg  

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 9 9.0 
1.4 11 12 10 12 11 11 11.0 
1.6 12 12 10 1 t. 11 11 11 11.1 
1.8 12 12 10 1/ 12 10 12 12 11 11.4 
2.0 12 12 11 1 12 11 12 12 13 11.9 
2.2 13 12 12 13 12 12 12 12 12 12.2 
2.4 13 13 12 13 13 12 12 13 13 12.7 
2.6 13 13 11 13 13 12 12 13 12.5 
2.8 13 12 11 12.0 
3.0 13 13.0 

Table 4.8 
Number of Strides Analyzed 

Weighted Running, Right Leg 

Speed Subject Number Mean 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 9 9.0 
1.4 11 11 10 12 10 10 10.7 
1.6 11 12 11 11 11 11 10 11.0 
1.8 11 12 11 12 12 11 11 12 11 11.4 
2.0 12 12 11 12 12 11 11 12 13 11.8 
2.2 12 13 11 13 12 11 12 12 12 12.0 
2.4 13 13 11 12 12 12 11 12 12 12.0 
2.6 13 13 12 13 13 12 12 13 12.6 
2.8 12 13 12 12.3 
3.0 13 13.0 
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Table 4.9  
Determination of Preferred Transition Speed  

Speed in meters per second  

Unweighted Weighted Difference 
Subject Trial 1 Trial 2 Average Trial 1 Trial 2 Average (Wt UW) 

1 2.00 2.00 2.00 2.00 2.00 2.00 0.00 
2 2.20 2.20 2.20 2.00 2.00 2.00 -0.20 
3 2.00 1.80 1.90 2.00 2.00 2.00 0.10 
4 1.80 1.80 1.80 2.00 2.00 2.00 0.20 
5 2.20 2.20 2.20 2.40 2.40 2.40 0.20 
6 2.60 2.40 2.50 2.20 2.40 2.30 -0.20 
7 2.00 2.20 2.10 2.20 2.20 2.20 0.10 
8 2.40 2.20 2.30 2.00 2.00 2.00 -0.30 
9 2.00 2.20 2.10 2.00 2.00 2.00 -0.10 
10 2.00 2.00 2.00 1.80 1.80 1.80 -0.20 

Average 2.11 2.07 -0.04 
SD 0.19 0.17 0.17 

for the change in preferred transition speed with the addition of weight was between 

0.061 to -0.141 m/s. 

For the following tables and graphs, the labels for the four conditions will be 

abbreviated: Unweighted and weighted walking are UW W and Wt W, while the 

respective running conditions are UW R and Wt R. 

43 Force Curves 

The second and third tests measured vertical ground reaction force for a range of 

speeds. When midstance forces were picked off and averaged for a given speed and 

condition, the relationship between midstance force and speed could be mapped. For 

each individual the forces were plotted against speed. See Figures 4.1 through 4.18. The 

data for these figures are in Tables 4.10 though 4.17. The curves for a given condition 

were graphed with all of the subjects overlaid (Figures 4.19 through 4.26). For greater 

generalization, the preferred transition speeds were aligned and the forces averaged 

across subjects. See Figures 4.27 and 4.28. In these two figures, the error bars represent 
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Table 4.10 
Force vs. Speed: Unweighted Walking, Left Leg 
VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 0.800 0.800 
(0.027) 

1.4 0.679 0.704 0.715 0.682 0.695 
(0.028) (0.027) (0.030) (0.024) (0.017) 

1.6 0.624 0.595 0.611 0.617 0.623 0.628 0.639 0.603 0.577 0.613 
(0.035) (0.029) (0.018) (0.050) (0.016) (0.027) (0.030) (0.020) (0.023) (0.019) 

1.8 0.575 0.456 0.557 0.603 0.556 0.592 0.563 0.542 0.493 0.549 
(0.024) (0.023) (0.032) (0.068) (0.017) (0.020) (0.037) (0.017) (0.026) (0.047) 

2.0 0.564 0.348 0.506 0.619 0.460 0.575 0.469 0.481 0.489 0.501 
(0.031) (0.021) (0.032) (0.035) (0.025) (0.025) (0.032) (0.017) (0.049) (0.079) 

2.2 0.627 0.267 0.420 0.739 0.392 0.620 0.367 0.515 0.516 0.496 
(0.043) (0.038) (0.036) (0.059) (0.036) (0.060) (0.037) (0.042) (0.035) (0.149) 

2.4 0.759 0.410 0.792 0.552 0.951 0.445 0.548 0.637 
(0.042) (0.076) (0.062) (0.088) (0.026) (0.052) (0.033) (0.200) 

2.6 1.029 0.993 0.682 0.901 
(0.055) (0.037) (0.063) (0.191) 



Table 4.11 
Force vs. Speed: Unweighted Walking, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

1.2 0.814 0.814 
(0.013) 

1.4 0.682 0.710 0.695 0.690 0.694 

1.6 
(0.026) 
0.613 0.588 

(0.032) 
0.636 

(0.021) 
0.617 0.639 0.648 0.635 0.601 

(0.013) 
0.588 

(0.012) 
0.618 

1.8 
(0.010) 
0.576 

(0.020) 
0.492 

(0.011) 
0.564 

(0.027) 
0.578 

(0.019) 
0.549 

(0.021) 
0.618 

(0.030) 
0.567 

(0.021) 
0.559 

(0.021) 
0.483 

(0.023) 
0.554 

2.0 
(0.033) 
0.568 

(0.011) 
0.387 

(0.023) 
0.486 

(0.028) 
0.587 

(0.025) 
0.445 

(0.029) 
0.579 

(0.037) 
0.464 

(0.022) 
0.497 

(0.019) 
0.476 

(0.042) 
0.499 

2.2 
(0.036) 
0.628 

(0.013) 
0.360 

(0.024) 
0.404 

(0.043) 
0.697 

(0.043) 
0.371 

(0.027) 
0.634 

(0.021) 
0.468 

(0.026) 
0.513 

(0.045) 
0.520 

(0.067) 
0.510 

2.4 
(0.054) 
0.803 

(0.028) 
0.446 

(0.021) (0.049) 
0.783 

(0.024) 
0.579 

(0.043) 
0.846 

(0.044) 
0.495 

(0.023) 
0.567 

(0.029) (0.122) 
0.646 

2.6 
(0.072) (0.039) (0.072) (0.101) (0.042) 

1.029 
(0.089) 
0.940 

(0.034) 
0.735 

(0.162) 
0.901 

(0.084) (0.147) (0.084) (0.151) 



Table 4.12 
Force vs. Speed: Weighted Walking, Left Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

1.2 0.888 0.888 

1.4 0.779 0.745 0.804 0.801 0.758 
(0.027) 
0.776 0.777 

1.6 
(0.018) 
0.682 

(0.028) 
0.616 

(0.025) 
0.668 

(0.022) 
0.673 0.686 

(0.023) 
0.614 

(0.033) 
0.636 

(0.023) 
0.654 

1.8 
(0.027) 
0.641 

(0.028) 
0.473 

(0.034) 
0.612 

(0.037) 
0.618 0.601 0.589 

(0.017) 
0.591 

(0.023) 
0.543 

(0.021) 
0.524 

(0.031) 
0.577 

2.0 
(0.027) 
0.628 

(0.017) 
0.290 

(0.032) 
0.569 

(0.032) 
0.581 

(0.033) 
0.521 

(0.019) 
0.493 

(0.029) 
0.471 

(0.029) 
0.448 

(0.019) 
0.586 

(0.053) 
0.510 

2.2 
(0.048) 
0.678 

(0.029) 
0.376 

(0.036) (0.050) 
0.782 

(0.030) 
0.494 

(0.028) 
0.674 

(0.039) 
0.410 

(0.029) 
0.483 

(0.058) (0.101) 
0.557 

2.4 
(0.102) 
0.911 

(0.038) (0.047) 
0.875 

(0.033) 
0.765 

(0.105) 
1.175 

(0.033) 
0.695 

(0.028) 
0.570 

(0.154) 
0.832 

2.6 
(0.162) (0.064) (0.159) (0.094) 

1.169 
(0.004) (0.052) (0.209) 

1.169 
(0.077) _ 



Table 4.13 
Force vs. Speed: Weighted Walking, Right Leg 
VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 0.898 0.898 
(0.035) 

1.4 0.777 0.730 0.834 0.834 0.763 0.787 0.787 
(0.033) (0.037) (0.030) (0.027) (0.025) (0.013) (0.041) 

1.6 0.728 0.635 0.702 0.710 0.699 0.610 0.674 0.680 
(0.025) (0.017) (0.027) (0.034) (0.030) (0.037) (0.010) (0.043) 

1.8 0.649 0.481 0.634 0.637 0.605 0.605 0.599 0.524 0.564 0.589 
(0.029) (0.032) (0.026) (0.036) (0.031) (0.032) (0.048) (0.032) (0.019) (0.056) 

2.0 0.646 0.332 0.595 0.581 0.524 0.502 0.496 0.460 0.581 0.524 
(0.035) (0.015) (0.026) (0.035) (0.036) (0.023) (0.036) (0.021) (0.031) (0.093) 

2.2 0.685 0.377 0.705 0.520 0.721 0.478 0.466 0.565 
(0.051) (0.048) (0.056) (0.034) (0.103) (0.039) (0.039) (0.137) 

2.4 0.854 0.814 0.783 1.221 0.566 0.609 0.808 
(0.090) (0.068) (0.069) (0.083) (0.030) (0.048) (0.233) 

2.6 1.289 1.289 
(0.040) 



Table 4.14 
Force vs. Speed: Unweighted Running, Left Leg 
VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 1.517 1.517 
(0.045) 

1.4 1.540 1.678 1.578 1.475 1.568 
(0.055) (0.090) (0.049) (0.085) (0.085) 

1.6 1.771 1.736 1.727 1.664 1.997 1.951 1.534 1.732 1.568 1.742 

1.8 
(0.058) 
2.004 

(0.037) 
1.750 

(0.052) 
1.828 

(0.058) 
1.825 

(0.032) 
2.074 

(0.127) 
1.861 

(0.074) 
1.624 

(0.059) 
1.989 

(0.059) 
1.681 

(0.154) 
1.848 

2.0 
(0.079) 
1.989 

(0.055) 
1.846 

(0.048) 
1.936 

(0.060) 
1.864 

(0.044) 
2.122 

(0.107) 
1.841 

(0.042) 
1.742 

(0.039) 
2.036 

(0.107) 
1.825 

(0.152) 
1.911 

2.2 
(0.038) 
2.132 

(0.042) 
2.004 

(0.051) 
2.003 

(0.066) 
1.966 

(0.025) 
2.222 

(0.067) 
1.983 

(0.095) 
1.941 

(0.036) 
2.086 

(0.070) 
2.172 

(0.119) 
2.057 

2.4 
(0.047) 
2.155 

(0.036) 
2.087 

(0.067) 
2.035 

(0.038) 
2.038 

(0.048) 
2.244 

(0.095) 
2.052 

(0.085) 
2.055 

(0.039) 
2.040 

(0.077) 
2.178 

(0.100) 
2.098 

2.6 
(0.046) 
2.194 

(0.058) 
2.205 

(0.079) 
2.195 

(0.029) (0.052) 
2.280 

(0.073) 
2.070 

(0.101) 
2.218 

(0.022) 
2.065 

(0.059) 
2.274 

(0.076) 
2.188 

2.8 
(0.049) (0.055) 

2.252 
(0.084) (0.049) 

2.347 
(0.056) 
2.033 

(0.076) 
2.263 

(0.082) 
2.100 

(0.083) (0.081) 
2.199 

3.0 
(0.055) (0.043) (0.088) (0.096) (0.039) 

2.080 
(0.129) 
2.080 

(0.052) 



Table 4.15 
Force vs. Speed: Unweighted Running, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 1.564 1.564 
(0.064) 

1.4 1.554 1.537 1.633 1.486 1.553 

1.6 
(0.050) 
1.736 1.707 

(0.061) 
1.605 

(0.021) 
1.713 1.842 1.866 1.516 1.735 

(0.072) 
1.548 

(0.061) 
1.697 

(0.059) (0.051) (0.082) (0.058) (0.090) (0.087) (0.087) (0.057) (0.071) (0.121) 
1.8 1.978 1.756 1.669 1.844 1.895 1.822 1.557 1.923 1.660 1.789 

2.0 
(0.087) 
1.936 

(0.048) 
1.924 

(0.075) 
1.795 

(0.067) 
1.912 

(0.112) 
1.999 

(0.073) 
1.775 

(0.072) 
1.761 

(0.048) 
1.964 

(0.085) 
1.794 

(0.139) 
1.873 

(0.059) (0.039) (0.090) (0.058) (0.093) (0.113) (0.104) (0.029) (0.097) (0.091) 
2.2 2.049 2.059 1.946 1.989 2.128 1.884 1.857 1.983 2.049 1.994 

2.4 
(0.045) 
2.078 

(0.039) 
2.158 

(0.079) 
1.990 

(0.032) 
2.063 

(0.068) 
2.166 

(0.109) 
1.964 

(0.120) 
2.003 

(0.042) 
1.973 

(0.107) 
2.109 

(0.088) 
2.056 

2.6 
(0.040) 
2.122 

(0.043) 
2.291 

(0.116) 
2.106 

(0.031) (0.057) 
2.205 

(0.095) 
1.999 

(0.140) 
2.178 

(0.053) 
2.062 

(0.086) 
2.237 

(0.078) 
2.150 

(0.097) (0.052) (0.078) (0.066) (0.080) (0.085) (0.043) (0.074) (0.096) 
2.8 2.353 2.303 2.006 2.201 2.067 2.186 

(0.044) (0.050) (0.111) (0.075) (0.029) (0.149) 
3.0 2.080 2.080 

(0.037) .. 



Table 4.16 
Force vs. Speed: Weighted Running, Left Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 1.744 1.744 
(0.054) 

1.4 1.926 1.881 1.828 1.798 1.854 1.701 1.831 
(0.060) (0.045) (0.043) (0.043) (0.072) (0.083) (0.077) 

1.6 1.980 1.908 1.922 1.873 1.992 1.969 1.799 1.920 
(0.057) (0.056) (0.062) (0.039) (0.097) (0.071) (0.048) (0.068) 

1.8 2.030 2.014 2.028 1.955 2.175 2.384 2.187 2.121 1.862 2.084 

2.0 
(0.109) 
2.118 

(0.035) 
2.070 

(0.049) 
2.090 

(0.060) 
2.044 

(0.062) 
2.359 

(0.064) 
2.326 

(0.152) 
2.376 

(0.077) 
2.215 

(0.055) 
1.855 

(0.153) 
2.161 

2.2 
(0.072) 
2.278 

(0.036) 
2.109 

(0.076) 
2.231 

(0.070) 
2.119 

(0.080) 
2.386 

(0.096) 
2.296 

(0.160) 
2.368 

(0.063) 
2.212 

(0.145) 
2.011 

(0.173) 
2.223 

2.4 
(0.060) 
2.404 

(0.042) 
2.211 

(0.063) 
2.353 

(0.036) 
2.150 

(0.089) 
2.441 

(0.099) 
2.289 

(0.115) 
2.450 

(0.034) 
2.322 

(0.097) 
2.092 

(0.125) 
2.301 

2.6 
(0.050) 
2.394 

(0.042) 
2.317 

(0.084) 
2.367 

(0.033) 
2.197 

(0.044) 
2.516 

(0.058) 
2.468 

(0.125) 
2.472 

(0.025) 
2.279 

(0.101) (0.127) 
2.376 

(0.050) (0.049) (0.088) (0.036) (0.055) (0.083) (0.133) (0.033) (0.109) 
2.8 2.543 2.336 2.698 2.526 

(0.048) (0.065) (0.079) (0.181) 
3.0 2.591 2.591 

(0.073) 



Table 4.17 
Force vs. Speed: Weighted Running, Right Leg 
VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

1.2 1.723 1.723 
(0.078) 

1.4 1.881 1.900 1.725 1.823 1.831 1.702 1.810 
(0.066) (0.026) (0.055) (0.054) (0.077) (0.048) (0.081) 

1.6 1.931 1.958 1.759 1.944 2.000 1.898 1.802 1.899 
(0.083) (0.038) (0.063) (0.055) (0.073) (0.047) (0.060) (0.087) 

1.8 2.011 2.086 1.858 2.002 1.968 2.341 2.303 2.094 1.891 2.062 
(0.087) (0.060) (0.040) (0.038) (0.073) (0.055) (0.129) (0.045) (0.048) (0.167) 

2.0 2.078 2.171 1.952 2.091 2.200 2.200 2.378 2.150 1.921 2.127 
(0.056) (0.081) (0.070) (0.080) (0.096) (0.075) (0.085) (0.083) (0.123) (0.138) 

2.2 2.239 2.201 2.050 2.129 2.253 2.215 2.413 2.142 1.982 2.180 
(0.059) (0.048) (0.037) (0.031) (0.100) (0.094) (0.099) (0.044) (0.104) (0.125) 

2.4 2.367 2.318 2.161 2.194 2.377 2.117 2.532 2.265 2.106 2.271 
(0.049) (0.065) (0.108) (0.048) (0.104) (0.060) (0.118) (0.032) (0.113) (0.141) 

2.6 2.321 2.410 2.268 2.211 2.443 2.319 2.567 2.252 2.349 
(0.073) (0.054) (0.124) (0.038) (0.079) (0.076) (0.133) (0.033) (0.117) 

2.8 2.513 2.253 2.573 2.446 
(0.065) (0.070) (0.131) (0.170) 

3.0 2.552 2.552 
(0.053) 
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Overlaid Curves: Unweighted Walking, Left Leg  
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Overlaid Curves: Weighted Running, Right Leg  



88 

2.5 
_ 

. 
_... _..... 9 

e UW R_ 

7 Wt R 

m UW W 
A Wt W 

. 2 . 
_ 

a _ 

. 

_ 

0 

H H 4 4 4 
bo 

V) 

0+ 
N 

VD 
+0 
IP 

Speed (PTS ± m/s) 

Figure 4.27 
Average VGRFM vs. Speed, Left Leg 

Translated to PTS, Averaged Across Subjects 
Numbers next to points indicate number of subjects 
represented in the value. Maximum possible = 9. 



89 

2.5 

___...ligi 
_ 

_ 
--* 
'--) 
U 
ik 

UW R 

Wt R 

UW W 

Wt W 

... 

0 

,:::, 
0 , 

cb, 
4. 

,L, 
i.J 

VD 
+ 
C:D 

N 
Speed (PTS ± m/s) 

CA 
+
C, 

ci) 

c=1, 

bo 

Figure 4.28 
Average VGRFM vs. Speed, Right Leg 

Translated to PTS, Averaged Across Subjects 
Numbers next to points indicate number of subjects 
represented in the value. Maximum possible = 9. 



90 

the standard deviation among the force values of the subjects averaged. These aligned 

data may be seen in Tables 4.18 though 4.25. These tables also indicate the trials which 

were completed. 

As mentioned earlier, some subjects transitioned at two different speeds during 

the determination of preferred transition speed. In order to average across speeds and to 

retain all subjects in one analysis, the lower value of preferred transition speed was 

selected for alignment. For example, in the unweighted condition, subject 3 transitioned 

at 1.80 and 2.00 m/s. For this analysis and the associated statistical analyses, 1.80 m/s 

was used as the PTS. For the cluster graphs and OPTS vs. AVGRFM graphs, the 

preferred transition speed was the average of the two trials. Similarly, for the statistical 

analyses completed on the differences in PTS and VGRFM, the transition speeds were the 

average of the two trials, and the forces at transition were the result of pooling the forces 

of the two adjacent speeds. 

Once the forces were aligned and averaged (Figures 4.27 and 4.28), the kinetics 

could be analyzed qualitatively . The forces for both the weighted and unweighted 

walking conditions seemed to reach a minimum value at or slightly before the preferred 

transition speed. As speed increased to the PTS, the midstance vertical ground reaction 

forces declined slightly. At the PTS and higher speeds, the forces increased, most 

notably in the weighted condition. This general pattern may be seen, but the Bonferroni-

adjusted t-tests failed to indicate any significant difference between the force levels at 

PTS 0.2 m/s, PTS, and PTS + 0.2 m/s. See Tables 4.26 and 4.27 for these comparisons. 

The described pattern was visible in most of the individual subject data. 

For the paired t-tests the critical value of Bonferroni's t was interpolated for an 

alpha-level of 0.10, eight degrees of freedom and twelve comparisons, yielding t(B) = 

3.4658 (Myers & Well, 1991, p. 629). To have statistical significance, the following 

relationship was required to be true: 



Table 4.18  
Force Aligned at PTS: Unweighted Walking, Left Leg  

VGRFM in Body Weights (Standard Deviation)  

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.8 0.628 0.628 

PTS 0.6 0.679 0.595 0.800 0.623 
(0.027) 
0.592 0.603 0.682 0.653 

PTS 0.4 
(0.028) 
0.624 

(0.029) 
0.456 0.704 

(0.027) 
0.715 

(0.016) 
0.556 

(0.020) 
0.575 0.639 

(0.020) 
0.542 

(0.024) 
0.577 

(0.075) 
0.599 

PTS 0.2 
(0.035) 
0.575 

(0.023) 
0.348 

(0.027) 
0.611 

(0.030) 
0.617 

(0.017) 
0.460 

(0.025) 
0.620 

(0.030) 
0.563 

(0.017) 
0.481 

(0.023) 
0.493 

(0.082) 
0.530 

PTS 
(0.024) 
0.564 

(0.021) 
0.267 

(0.018) 
0.557 

(0.050) 
0.603 

(0.025) 
0.392 

(0.060) 
0.951 

(0.037) 
0.469 

(0.017) 
0.515 

(0.026) 
0.489 

(0.092) 
0.534 

PTS + 0.2 
(0.031) 
0.627 

(0.038) 
0.410 

(0.032) 
0.506 

(0.068) 
0.619 

(0.036) 
0.552 

(0.026) 
1.029 

(0.032) 
0.367 

(0.042) 
0.548 

(0.049) 
0.516 

(0.186) 
0.575 

PTS + 0.4 
(0.043) 
0.759 

(0.076) (0.032) 
0.420 

(0.035) 
0.739 

(0.088) (0.055) (0.037) 
0.445 

(0.033) 
0.682 

(0.035) (0.190) 
0.609 

PTS + 0.6 
(0.042) (0.036) (0.059) 

0.792 
(0.052) 
0.993 

(0.063) (0.164) 
0.892 

(0.062) (0.037) (0.142) 

.c, 



Table 4.19 
Force Aligned at PTS: Unweighted Walking, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.8 0.648 0.648 
(0.021) 

PTS 0.6 0.682 0.588 0.814 0.639 0.618 0.601 0.690 0.662 

PTS 0.4 
(0.026) 
0.613 

(0.020) 
0.492 0.710 

(0.013) 
0.695 

(0.019) 
0.549 

(0.029) 
0.579 0.635 

(0.021) 
0.559 

(0.013) 
0.588 

(0.078) 
0.602 

PTS 0.2 
(0.010) 
0.576 

(0.011) 
0.387 

(0.032) 
0.636 

(0.021) 
0.617 

(0.025) 
0.445 

(0.027) 
0.634 

(0.030) 
0.567 

(0.022) 
0.497 

(0.021) 
0.483 

(0.070) 
0.538 

PTS 
(0.033) 
0.568 

(0.013) 
0.360 

(0.011) 
0.564 

(0.027) 
0.578 

(0.043) 
0.371 

(0.043) 
0.846 

(0.037) 
0.464 

(0.026) 
0.513 

(0.019) 
0.476 

(0.089) 
0.527 

PTS + 0.2 
(0.036) 
0.628 

(0.028) 
0.446 

(0.023) 
0.486 

(0.028) 
0.587 

(0.024) 
0.579 

(0.042) 
1.029 

(0.021) 
0.468 

(0.023) 
0.567 

(0.045) 
0.520 

(0.144) 
0.590 

PTS + 0.4 
(0.054) 
0.803 

(0.039) (0.024) 
0.404 

(0.043) 
0.697 

(0.101) (0.084) (0.044) 
0.495 

(0.034) 
0.735 

(0.029) (0.176) 
0.627 

PTS + 0.6 
(0.072) (0.021) (0.049) 

0.783 
(0.089) 
0.940 

(0.084) (0.169) 
0.862 

(0.072) (0.147) (0.111) 



Table 4.20 
Force Aligned at PTS: Weighted Walking, Left Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.6 0.779 0.745 0.804 0.801 0.601 0.686 0.758 0.888 0.758 

PTS 0.4 
(0.018) 
0.682 

(0.028) 
0.616 

(0.025) 
0.668 

(0.022) 
0.673 

(0.033) 
0.521 0.589 

(0.017) 
0.591 

(0.023) 
0.614 

(0.027) 
0.776 

(0.085) 
0.637 

PTS 0.2 
(0.027) 
0.641 

(0.028) 
0.473 

(0.034) 
0.612 

(0.037) 
0.618 

(0.030) 
0.494 

(0.019) 
0.493 

(0.029) 
0.471 

(0.023) 
0.543 

(0.033) 
0.636 

(0.073) 
0.553 

PTS 
(0.027) 
0.628 

(0.017) 
0.290 

(0.032) 
0.569 

(0.032) 
0.581 

(0.033) 
0.765 

(0.028) 
0.674 

(0.039) 
0.410 

(0.029) 
0.448 

(0.021) 
0.524 

(0.073) 
0.543 

PTS + 0.2 
(0.048) 
0.678 

(0.029) 
0.376 

(0.036) (0.050) 
0.782 

(0.159) (0.105) 
1.175 

(0.033) 
0.695 

(0.029) 
0.483 

(0.019) 
0.586 

(0.144) 
0.682 

PTS + 0.4 
(0.102) 
0.911 

(0.038) (0.047) 
0.875 

(0.094) 
1.169 

(0.004) (0.028) 
0.570 

(0.058) (0.257) 
0.881 

(0.162) (0.064) (0.077) (0.052) (0.246) 



Table 4.21 
Force Aligned at PTS: Weighted Walking, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.6 0.777 0.730 0.834 0.834 0.605 0.699 0.763 0.898 0.768 

PTS 0.4 
(0.033) 
0.728 

(0.037) 
0.635 

(0.030) 
0.702 

(0.027) 
0.710 

(0.031) 
0.524 0.605 

(0.030) 
0.599 

(0.025) 
0.610 

(0.035) 
0.787 

(0.091) 
0.656 

PTS 0.2 
(0.025) 
0.649 

(0.017) 
0.481 

(0.027) 
0.634 

(0.034) 
0.637 

(0.036) 
0.520 

(0.032) 
0.502 

(0.048) 
0.496 

(0.037) 
0.524 

(0.013) 
0.674 

(0.082) 
0.569 

PTS 
(0.029) 
0.646 

(0.032) 
0.332 

(0.026) 
0.595 

(0.036) 
0.581 

(0.034) 
0.783 

(0.023) 
0.721 

(0.036) 
0.478 

(0.032) 
0.460 

(0.010) 
0.564 

(0.078) 
0.573 

PTS + 0.2 
(0.035) 
0.685 

(0.015) 
0.377 

(0.026) (0.035) 
0.705 

(0.069) (0.103) 
1.221 

(0.039) 
0.566 

(0.021) 
0.466 

(0.019) 
0.581 

(0.138) 
0.657 

PTS + 0.4 
(0.051) 
0.854 

(0.048) (0.056) 
0.814 

(0.083) 
1.289 

(0.030) (0.039) 
0.609 

(0.031) (0.274) 
0.891 

(0.090) (0.068) (0.040) (0.048) (0.286) 



Table 4.22 
Force Aligned at PTS: Unweighted Running, Left Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.8 1.951 1.951 
(0.127) 

PTS 0.6 1.540 1.736 1.517 1.997 1.861 1.732 1.475 1.694 
(0.055) (0.037) (0.045) (0.032) (0.107) (0.059) (0.085) (0.194) 

PTS 0.4 1.771 1.750 1.678 1.578 2.074 1.841 1.534 1.989 1.568 1.754 
(0.058) (0.055) (0.090) (0.049) (0.044) (0.067) (0.074) (0.039) (0.059) (0.189) 

PTS 0.2 2.004 1.846 1.727 1.664 2.122 1.983 1.624 2.036 1.681 1.854 
(0.079) (0.042) (0.052) (0.058) (0.025) (0.095) (0.042) (0.036) (0.107) (0.187) 

PTS 1.989 2.004 1.828 1.825 2.222 2.052 1.742 2.086 1.825 1.953 

PTS + 0.2 
(0.038) 
2.132 

(0.036) 
2.087 

(0.048) 
1.936 

(0.060) 
1.864 

(0.048) 
2.244 

(0.073) 
2.070 

(0.095) 
1.941 

(0.039) 
2.040 

(0.070) 
2.172 

(0.157) 
2.054 

PT'S + 0.4 
(0.047) 
2.155 

(0.058) 
2.205 

(0.051) 
2.003 

(0.066) 
1.966 

(0.052) 
2.280 

(0.056) 
2.033 

(0.085) 
2.055 

(0.022) 
2.065 

(0.077) 
2.178 

(0.123) 
2.104 

PTS + 0.6 
(0.046) 
2.194 

(0.055) 
2.252 

(0.067) 
2.035 

(0.038) 
2.038 

(0.049) 
2.347 

(0.088) (0.101) 
2.218 

(0.082) 
2.100 

(0.059) 
2.274 

(0.104) 
2.182 

(0.049) (0.055) (0.079) (0.029) (0.043) (0.076) (0.039) (0.083) (0.114) 
PTS + 0.8 2.195 2.263 2.080 2.179 

(0.084) (0.096) (0.052) (0.092) 



Table 4.23 
Force Aligned at PTS: Unweighted Running, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.8 1.866 1.866 
(0.087) 

PTS 0.6 1.554 1.707 1.564 1.842 1.822 1.735 1.486 1.673 

PTS 0.4 
(0.050) 
1.736 

(0.051) 
1.756 1.537 

(0.064) 
1.633 

(0.090) 
1.895 

(0.073) 
1.775 1.516 

(0.057) 
1.923 

(0.072) 
1.548 

(0.140) 
1.702 

PTS 0.2 
(0.059) 
1.978 

(0.048) 
1.924 

(0.061) 
1.605 

(0.021) 
1.713 

(0.112) 
1.999 

(0.113) 
1.884 

(0.087) 
1.557 

(0.048) 
1.964 

(0.071) 
1.660 

(0.152) 
1.809 

PTS 
(0.087) 
1.936 

(0.039) 
2.059 

(0.082) 
1.669 

(0.058) 
1.844 

(0.093) 
2.128 

(0.109) 
1.964 

(0.072) 
1.761 

(0.029) 
1.983 

(0.085) 
1.794 

(0.175) 
1.904 

PTS + 0.2 
(0.059) 
2.049 

(0.039) 
2.158 

(0.075) 
1.795 

(0.067) 
1.912 

(0.068) 
2.166 

(0.095) 
1.999 

(0.104) 
1.857 

(0.042) 
1.973 

(0.097) 
2.049 

(0.149) 
1.995 

PTS + 0.4 
(0.045) 
2.078 

(0.043) 
2.291 

(0.090) 
1.946 

(0.058) 
1.989 

(0.057) 
2.205 

(0.080) 
2.006 

(0.120) 
2.003 

(0.053) 
2.062 

(0.107) 
2.109 

(0.126) 
2.076 

PTS + 0.6 
(0.040) 
2.122 

(0.052) 
2.353 

(0.079) 
1.990 

(0.032) 
2.063 

(0.066) 
2.303 

(0.111) (0.140) 
2.178 

(0.043) 
2.067 

(0.086) 
2.237 

(0.111) 
2.164 

PTS + 0.8 
(0.097) (0.044) (0.116) 

2.106 
(0.031) (0.050) (0.085) 

2.201 
(0.029) 
2.080 

(0.074) (0.127) 
2.129 

(0.078) (0.075) (0.037) (0.063) 



Table 4.24 
Force Aligned at PTS: Weighted Running, Left Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed 
(m/s) 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subject 
6 

Subject 
7 

Subject 
8 

Subject 
10 

Average 

PTS 0.6 1.926 1.881 1.828 1.798 2.175 1.992 1.854 1.744 1.900 

PTS 0.4 
(0.060) 
1.980 

(0.045) 
1.908 

(0.043) 
1.922 

(0.043) 
1.873 

(0.062) 
2.359 2.384 

(0.097) 
2.187 

(0.072) 
1.969 

(0.054) 
1.701 

(0.135) 
2.031 

PTS 0.2 
(0.057) 
2.030 

(0.056) 
2.014 

(0.062) 
2.028 

(0.039) 
1.955 

(0.080) 
2.386 

(0.064) 
2.326 

(0.152) 
2.376 

(0.071) 
2.121 

(0.083) 
1.799 

(0.230) 
2.115 

PTS 
(0.109) 
2.118 

(0.035) 
2.070 

(0.049) 
2.090 

(0.060) 
2.044 

(0.089) 
2.441 

(0.096) 
2.296 

(0.160) 
2.368 

(0.077) 
2.215 

(0.048) 
1.862 

(0.205) 
2.167 

PTS + 0.2 
(0.072) 
2.278 

(0.036) 
2.109 

(0.076) 
2.231 

(0.070) 
2.119 

(0.044) 
2.516 

(0.099) 
2.289 

(0.115) 
2.450 

(0.063) 
2.212 

(0.055) 
1.855 

(0.180) 
2.229 

PTS + 0.4 
(0.060) 
2.404 

(0.042) 
2.211 

(0.063) 
2.353 

(0.036) 
2.150 

(0.055) 
2.543 

(0.058) 
2.468 

(0.125) 
2.472 

(0.034) 
2.322 

(0.145) 
2.011 

(0.195) 
2.326 

PTS + 0.6 
(0.050) 
2.394 

(0.042) 
2.317 

(0.084) 
2.367 

(0.033) 
2.197 

(0.048) 
2.591 

(0.083) 
2.336 

(0.133) 
2.698 

(0.025) 
2.279 

(0.097) 
2.092 

(0.173) 
2.364 

(0.050) (0.049) (0.088) (0.036) (0.073) (0.065) (0.079) (0.033) (0.101) (0.186) 



Table 4.25 
Force Aligned at PTS: Weighted Running, Right Leg 

VGRFM in Body Weights (Standard Deviation) 

Speed Subject Subject Subject Subject Subject Subject Subject Subject Subject Average 
(m/s) 1 2 3 4 5 6 7 8 10 

PTS 0.6 1.881 1.900 1.725 1.823 1.968 2.000 1.831 1.723 1.856 
(0.066) (0.026) (0.055) (0.054) (0.073) (0.073) (0.077) (0.078) (0.102) 

PTS 0.4 1.931 1.958 1.759 1.944 2.200 2.341 2.303 1.898 1.702 2.004 
(0.083) (0.038) (0.063) (0.055) (0.096) (0.055) (0.129) (0.047) (0.048) (0.228) 

PTS 0.2 2.011 2.086 1.858 2.002 2.253 2.200 2.378 2.094 1.802 2.076 
(0.087) (0.060) (0.040) (0.038) (0.100) (0.075) (0.085) (0.045) (0.060) (0.184) 

PTS 2.078 2.171 1.952 2.091 2.377 2.215 2.413 2.150 1.891 2.149 
(0.056) (0.081) (0.070) (0.080) (0.104) (0.094) (0.099) (0.083) (0.048) (0.173) 

PTS + 0.2 2.239 2.201 2.050 2.129 2.443 2.117 2.532 2.142 1.921 2.197 
(0.059) (0.048) (0.037) (0.031) (0.079) (0.060) (0.118) (0.044) (0.123) (0.189) 

PTS + 0.4 2.367 2.318 2.161 2.194 2.513 2.319 2.567 2.265 1.982 2.299 
(0.049) (0.065) (0.108) (0.048) (0.065) (0.076) (0.133) (0.032) (0.104) (0.178) 

PTS + 0.6 2.321 2.410 2.268 2.211 2.552 2.253 2.573 2.252 2.106 2.328 
(0.073) (0.054) (0.124) (0.038) (0.053) (0.070) (0.131) (0.033) (0.113) (0.156) 



99 

Table 4.26  
Significant Differences of Forces, Left Leg  

Means of Forces in Body Weights 

Condition Pair ,-Ti y; 
Mean 

Squared 1 y K1 t(B) 2MS Significance 
Tested Error 1-1 n 

UW R 1 to 2 1.854 1.953 0.00163 0.098 0.066 Yes 
UW R 1 to 3 1.854 2.054 0.01016 0.200 0.165 Yes 
UW R 2 to 3 1.953 2.054 0.00693 0.101 0.136 No 
Wt R 1 to 2 2.115 2.167 0.00094 0.052 0.050 Yes 
Wt R 1 to 3 2.115 2.229 0.00358 0.114 0.098 Yes 
Wt R 2 to 3 2.167 2.229 0.00193 0.062 0.072 No 

UW W 1 to 2 0.530 0.534 0.00836 0.004 0.149 No 
UW W 1 to 3 0.530 0.575 0.01370 0.045 0.191 No 
UW W 2 to 3 0.534 0.575 0.00352 0.041 0.097 No 
Wt W 1 to 2 0.533 0.543 0.01046 0.010 0.167 No 
Wt W 1 to 3 0.533 0.531 0.07331 0.003 0.442 No 
Wt W 2 to 3 0.543 0.531 0.08095 0.013 0.465 No 

Table 4.27 
Significant Differences of Forces, Right Leg 

Means of Forces in Body Weights 

Condition Pair K K 
Mean 

Squared iyi K.1 t(B) 2MS Significance 
Tested Error I 

n 
UW R 1 to 2 1.809 1.904 0.00270 0.095 0.085 Yes 
UW R 1 to 3 1.809 1.995 0.00667 0.186 0.133 Yes 
UW R 2 to 3 1.904 1.995 0.00284 0.091 0.087 Yes 
Wt R 1 to 2 2.076 2.149 0.00055 0.073 0.038 Yes 
Wt R 1 to 3 2.076 2.197 0.00434 0.121 0.108 Yes 
Wt R 2 to 3 2.149 2.197 0.00287 0.048 0.087 No 

UW W 1 to 2 0.538 0.527 0.00423 0.011 0.106 No 
UW W 1 to 3 0.538 0.590 0.01221 0.052 0.181 No 
UW W 2 to 3 0.527 0.590 0.00392 0.063 0.102 No 
Wt W 1 to 2 0.569 0.573 0.01002 0.005 0.164 No 
Wt W 1 to 3 0.569 0.511 0.07459 0.057 0.446 No 
Wt W 2 to 3 0.573 0.511 0.07559 0.062 0.449 No 
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IX X21t(B) 2MSe 
n 

In this equation, X1 and X2 were the means being compared, MSe was the mean squared 

error for the comparison, and n was 9 (Portney & Watkins, 1993, p. 407). 

The dynamics of the VGRFM vs. speed relationship for walking were indicative 

of the changes which were observed to occur to the vertical ground reaction force curve 

for each stride as speed was increased. The normal walking curve, formed by two peaks 

flanking a trough at approximately midstance, changed with speed. As speed was 

increased, the peaks increased in height and the trough deepened, actually getting closer 

to zero-force. Once the preferred transition speed was passed, the curve changed. The 

first peak increased in height and became broader while the second peak shrank and the 

trough was absorbed between these two peaks. The force level at the bottom of the 

trough increased, and the trough moved later in the stance. At high walking speeds, the 

trough was only visible as a slight dip on the decline from the initial peak to zero. After 

PTS there was a change, not only in the midstance force, but also in the general shape of 

the vertical ground reaction force curve. 

With increasing speed, midstance vertical ground reaction forces for running 

increased, as indicated by Figures 4.27 and 4.28. For the left side, the forces at PTS and 

PTS + 0.2 m/s were significantly different from those at PTS 0.2 m/s for both weighted 

and unweighted conditions. On the right side, the forces during unweighted running also 

significantly increased between PTS and PTS + 0.2 m/s. These Bonferroni-adjusted 

comparisons are listed in Tables 4.26 and 4.27. 

In the walking trials conducted for this study, a trend was observed for the 

VGRFM levels to increase at and above the PTS. When subjects walked at speeds higher 

than the PTS, the forces stopped declining and began to increase. When tested 

statistically, the conservative statistical procedures performed were unable to confirm this 

trend with significant differences between the forces above and below the PTS. While 
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the results failed to reject the null hypothesis, this trend supports the hypothesis that 

musculoskeletal forces are a control parameter in the walk-run transition. Significant 

increases were observed in VGRFM with increased running speed; however these 

differences do not influence the hypothesis under study. 

The dynamics of kinetic control parameters have been observed by Farley and 

Taylor (1991) and hypothesized by Hreljac (1993a). For a musculoskeletal force to be a 

control parameter, the force would show a consistent increase or decrease with walking 

speed (or trotting speed, in the case of horses) up to the PTS. At the PTS the gait would 

switch to running (or galloping) and the force level should change substantially. Ideally 

this level would decrease with the change in gaits, then increase past the critical level 

with increased running speed. Alternately it would be possible for the force level of a 

control parameter to increase substantially with the change in gait and continue to 

increase at higher speeds. Farley and Taylor found the musculoskeletal forces of horses 

to increase with trotting speed, then after reaching a critical level at the PTS, to decrease 

with the switch to galloping. At higher speeds of galloping, the forces increased past the 

critical level. 

The data from the present study demonstrated a similar pattern in the force curves, 

except with the opposite direction of change. With increased walking speed, the 

midstance vertical ground reaction forces declined to a minimum level near the PTS. 

After the switch to running, the force levels made a substantial jump. With higher speeds 

of running, the forces increased. In comparison to the findings of Farley and Taylor 

(1991), these dynamics indicate a critical minimum level of force rather than a critical 

maximum value. The opposite direction of change of force still agrees with the 

hypothesized dynamics of a control parameter. 
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4.4 Variation in Midstance Force 

The curves of average walking force across subjects seemed to indicate an 

increase in variability at and above the preferred transition speed. This was obvious at 

the highest walking speeds when the subjects were spontaneously switching to running. 

While the variability in choice of gait could not be quantified, the variability in VGRFM 

could be summarized. To properly quantify this variability, the variances for each subject 

were pooled for each speed. See Tables 4.28 and 4.29. When plotted versus speed, a 

clear increase in variability occurs at the PTS for both walking curves. The variability in 

the running curves does not follow a clear pattern of increase or decrease after the 

preferred transition speed. See Figures 4.29 and 4.30. Using an alpha-level of 0.10, n = 

9, and correlations calculated from the average force values, the t-statistics for the paired 

comparisons were calculated using the following equation: 

2 2 
SI S2t 

4S22I S2 ri22 

n 2 

When compared to the critical Bonferroni-adjusted t-value for twelve comparisons, only 

one significant difference was found. See Tables 4.30 and 4.31 for these comparisons. 

On the right side, the variability in unweighted walking was significantly different 

between PTS and PTS + 0.2 m/s. Even this single significant comparison supports the 

pattern evident for walking. The lack of statistical significance for more tests and the 

failure to reject the null hypothesis does not mean that differences do not exist. By 

having a small sample size (n=9) and 12 comparisons (3 speeds * 2 conditions * 2 sides) 

the adjusted level of significance became very difficult to satisfy. If more subjects were 

tested or fewer comparisons had been made, it may have been possible to find statistical 

significance in addition to the pattern of change. 
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Table 4.28  
Variance Pooled Across Subjects, Left Leg  

Aligned at Preferred Transition Speed  
(Body Weight2) 

Speed Unweighted Weighted Unweighted Weighted 
Walking Walking Running Running 

PTS 0.6 0.000584 0.000620 0.004248 0.003874 
PTS 0.4 0.000645 0.000857 0.003723 0.006538 
PTS 0.2 0.001218 0.000856 0.004201 0.007950 

PTS 0.001683 0.005444 0.003513 0.005429 
PTS + 0.2 0.002552 0.004747 0.003520 0.006149 
PTS + 0.4 0.003077 0.011006 0.004595 0.005302 
PTS + 0.6 0.006989 0.003552 0.004471 
PTS + 0.8 0.007373 

Table 4.29 
Variance Pooled Across Subjects, Right Leg 

Aligned at Preferred Transition Speed 
(Body Weight2) 

Speed Unweighted Weighted Unweighted Weighted 
Walking Walking Running Running 

PTS 0.6 0.000481 0.000987 0.004544 0.004214 
PTS 0.4 0.000527 0.001004 0.005482 0.005418 
PTS 0.2 0.000923 0.000898 0.005899 0.004727 

PTS 0.000993 0.002535 0.005575 0.006680 
PTS + 0.2 0.003666 0.003106 0.005791 0.005439 
PT'S + 0.4 0.005398 0.004523 0.006180 0.006571 
PTS + 0.6 0.016482 0.005134 0.006851 
PTS + 0.8 0.005178 
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Figure 4.29  
Variability of Force: Left Leg  

Pooled variances of midstance vertical ground reaction force vs. speed.  
Numbers next to points indicate number of subjects  
represented in the value. Maximum possible = 9.  
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Table 4.30 
Significant Differences of Variances, Left Leg 

Pooled Variances in Body Weights2 

Condition Pair 
Tested 

,.. 2 
6 pooledl 

n 2 

C 7 pooled2 
t t(B) Significance 

UW R 1 to 2 0.004201 0.003513 0.8482 3.6218 No 
UW R 1 to 3 0.004201 0.003520 0.3071 3.6218 No 
UW R 2 to 3 0.003513 0.003520 0.0032 3.6218 No 
Wt R 1 to 2 0.007950 0.005429 2.7546 3.6218 No 
Wt R 1 to 3 0.007950 0.006149 0.8272 3.6218 No 
Wt R 2 to 3 0.005429 0.006149 0.5185 3.6218 No 

UW W 1 to 2 0.001218 0.001683 0.6765 3.6218 No 
UW W 1 to 3 0.001218 0.002552 1.1542 3.6218 No 
UW W 2 to 3 0.001683 0.002552 1.2837 3.6218 No 
Wt W 1 to 2 0.000856 0.005444 2.9043 3.6218 No 
Wt W 1 to 3 0.000856 0.004583 2.4935 3.6218 No 
Wt W 2 to 3 0.005444 0.004583 0.3756 3.6218 No 

Table 4.31 
Significant Differences of Variances, Right Leg 

Pooled Variances in Body Weights2 

Condition Pair 
Tested 

,1/4 2 

a Pooled' 
n 2 

a pooled2 
t t(B) Significance 

UW R 1 to 2 0.005899 0.005575 0.1783 3.6218 No 
UW R 1 to 3 0.005899 0.005791 0.0369 3.6218 No 
UW R 2 to 3 0.005575 0.005791 0.0993 3.6218 No 
Wt R 1 to 2 0.004727 0.006680 2.6052 3.6218 No 
Wt R 1 to 3 0.004727 0.005439 0.3851 3.6218 No 
Wt R 2 to 3 0.006680 0.005439 0.6830 3.6218 No 

UW W 1 to 2 0.000923 0.000993 0.1578 3.6218 No 
UW W 1 to 3 0.000923 0.003666 2.2184 3.6218 No 
UW W 2 to 3 0.000993 0.003666 3.6817 3.6218 Yes 
Wt W 1 to 2 0.000898 0.002535 1.4767 3.6218 No 
Wt W 1 to 3 0.000898 0.003004 1.6964 3.6218 No 
Wt W 2 to 3 0.002535 0.003004 0.4548 3.6218 No 
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The len and Smith (1994) argue that an instability or perturbation will result from 

a control parameter being scaled to a critical level. The instability, indicated by increased 

variability, will then cause a switch in the collective variable from one attractor state to 

another. After the switch has occurred, variability should decrease. In the case under 

study, a perturbation would cause a switch from walking to running. The possible control 

parameter being investigated, VGRFM, was measured for variability near PTS. The 

resulting pattern of variability increasing at and above the PTS for walking may be 

indicative of a perturbation to the collective variable of gait. This suggests a relationship 

between midstance vertical ground reaction force and the walk-run transition. If the 

variation in the running forces decreased at and above the preferred transition speed, this 

relationship would be further strengthened. The observed variability changes suggest that 

musculoskeletal or vertical ground reaction force may be a variable for further study. 

4.5 Cluster Graphs 

This experiment was designed to differentiate between the influences of speed and 

vertical ground reaction force on the walk-run transition. If force had a greater role in the 

transition than speed, then the subjects would transition at different speeds, but at 

approximately the same force for the two conditions. The first test quantified the 

preferred transition speeds for each condition. The corresponding force was then picked 

from the walking values measured in test two. For this analysis, if a PTS was between 

two of the measurement speeds, the average speed was used. Likewise, the vertical 

ground reaction force at midstance was interpolated from the forces at the adjacent speeds 

and the standard deviation was pooled. These data appear in Tables 4.32 and 4.33. 

These values of midstance force and preferred transition speed were plotted for 

each subject and condition (see Figures 4.31 & 4.32). The average values for the 

weighted and unweighted conditions were overlaid. On these graphs the two conditions 

are mixed together; no clear clusters were formed for the two conditions. Thus the 
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Table 4.32  
VGRFM at the Preferred Transition Speed, Left Leg  

Forces in Body Weights 

Unweighted Weighted Difference Standard 
Subject Force SD n Force SD n (Wt UW) Error 

1 0.564 0.031 9 0.628 0.048 11 0.064 0.019 
2 0.267 0.038 12 0.290 0.029 11 0.023 0.014 
3 0.531 0.032 19 0.569 0.036 11 0.038 0.013 
4 0.603 0.068 10 0.581 0.050 12 -0.022 0.025 
5 0.392 0.036 11 0.765 0.159 12 0.373 0.049 
6 0.990 0.043 24 0.924 0.100 22 -0.065 0.022 
7 0.418 0.035 19 0.410 0.033 11 -0.008 0.013 
8 0.533 0.037 23 0.448 0.029 11 -0.085 0.013 
9 0.393 0.040 15 0.426 0.042 12 0.033 0.016 
10 0.489 0.049 10 0.524 0.019 9 0.036 0.018 

Average	 0.518 0.558 0.039 0.020 
SD 0.194 0.191 0.127 0.011 

Table 4.33  
VGRFM at the Preferred Transition Speed, Right Leg  

Forces in Body Weights  

Unweighted Weighted Difference Standard 
Subject Force SD n Force SD n (Wt UW) Error 

1 0.568 0.036 11 0.646 0.035 11 0.078 0.015 
2 0.360 0.028 12 0.332 0.015 11 -0.027 0.009 
3 0.525 0.023 16 0.595 0.026 10 0.070 0.010 
4 0.578 0.028 10 0.581 0.035 12 0.003 0.014 
5 0.371 0.024 10 0.783 0.069 12 0.413 0.023 
6 0.938 0.065 26 0.971 0.082 25 0.033 0.021 
7 0.466 0.035 19 0.478 0.039 11 0.012 0.014 
8 0.542 0.029 23 0.460 0.021 11 -0.082 0.010 
9 0.455 0.029 15 0.475 0.042 11 0.019 0.014 
10 0.476 0.045 10 0.564 0.019 9 0.088 0.016 

Average	 0.527 0.591 0.061 0.015 
SD 0.166 0.192 0.133 0.005 
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influences of speed and midstance vertical ground reaction force could not be 

differentiated. If force was a control parameter and speed was not, two clusters would 

have formed at approximately the same force level, but separated along the speed axis. 

4.6 APTS vs. AVGRFA4 Graphs 

The next step was to calculate the differences between conditions. The change in 

speed between the weighted and unweighted preferred transition speeds was labeled 

APTS and was equal to PTS (weighted) PTS (unweighted). The difference in force, 

AVGRFm, was quantified by the relationship: VGRFM(weighted) VGRFM(unweighted) 

and the standard error calculated from the two conditions. These differences were plotted 

against each other in Figures 4.33 and 4.34. Confidence intervals were calculated for 

each variable. For the subjects tested, the 90% confidence interval for the difference 

between the two preferred transition speeds (APTS) was 0.061 to -0.141 m/s. The 90% 

confidence interval for change in midstance vertical ground reaction force (AVGRFM) 

was from 0.112 to -0.035 BW for the left leg and from 0.138 to -0.017 BW for the right 

leg. Because the VGRFM confidence interval includes zero, the null hypothesis may be 

rejected and alternative hypothesis number 3 (PTS weighted PTS unweighted = 0; 

VGRFM weighted VGRFM unweighted = 0) adopted. However, hypothesis number 1 

(PIS weighted PTS unweighted # 0; VGRFM weighted VGRFM unweighted = 0), with the 

most definitive interpretation for a control parameter, could not be adopted. As a result 

of both of these confidence intervals including zero, both speed and VGRFM potentially 

could be control parameters, but they cannot be distinguished using these data. 

An alternative method of assessing the APTS-AVGRFm relationship was to 

determine a confidence ellipse. This isobar-type design determined an area of 

probability, taking into account the two variables (Johnson & Wichern, 1992, pp. 188-

91). For this calculation, both variables had to be on the same scale. Thus, the APTS and 
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AVGRFM data were converted to z-scores and the resulting variance and covariance 

values were entered into the equation for the 90% confidence ellipse: 

ix pi ,x--1 1121 S1-1 __x 111 s 13(n 1) F (a)
1 i x' 112 (n p) P'" 

In this equation 1.ti and 112 were the values to be tested, the z-scores of APTS and 

LVGRFM, [S]-1 was the inverse of the 2-by-2 variance/covariance matrix, and p was the 

number of dimensions, or variables compared in ellipse. This reduced to the equation: 

10(1.4008)(0 [1,1)2 + 10(1.4008)(0 ti2)2 20(0.7998)(0 IA DO ILL 2) 5 6.9975 

The coordinates for the point to be tested, APTS = 0 m/s and AVGRFM = 0 BW, were 

converted to z-scores and entered into [ti and iii,2, respectively. For vertical ground 

reaction force at midstance to be a possible control parameter, the AVGRFM value of zero 

must have been contained within the ellipse. For speed to be discounted as a possible 

control parameter, APTS = 0 must not be contained within the ellipse. When these two 

values were tested, they were both found to lie within the ellipse. Therefore, the two 

possible control parameters could not be differentiated. 

Farley and Taylor (1991) identified a control parameter in the trot-gallop 

transition of horses by differentiating between the roles of speed and musculoskeletal 

force. This was accomplished by adding weight to the horses and determining the 

preferred transition speed and force for each condition. Finding that with added weight 

the horses transitioned at lower speeds (APTS < 0) but at the same force level (AVGRFM 

= 0), musculoskeletal force was isolated as the control parameter for the trot-gallop 

transition. The current experiment followed a similar design, but did not produce the 

same results for the human subjects tested. For these subjects the added weight did not 

significantly change the preferred transition speed (APTS = 0) but the midstance force 

also remained at the same level at the PTS for each condition (AVGRFM = 0). Thus, 
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from the data from these subjects, VGRFM or musculoskeletal force and speed cannot be 

differentiated. This analysis of musculoskeletal force level and the differences between 

conditions does not discount musculoskeletal force as a possible control parameter; 

however, neither can these results promote its role in the human walk-run transition. 

4.7 Order Effect 

Independent t-tests were performed to evaluate whether or not the order of the 

weighted conditions significantly affected the measures of change in midstance vertical 

ground reaction force (AVGRFM) or change in preferred transition speed (OPTS). When 

AVGRFM was compared between the groups (5 subjects in each), there was no 

significant order effect for the left or right leg (one-sided p-values: p > 0.15 and p > 0.1, 

respectively). The change in preferred transition speed also did not exhibit a significant 

order effect (one-sided p-value: p > 0.15). If subject 5, having a much larger than normal 

change in VGRFM, was removed from the analysis, the probability of a significant order 

effect was decreased (p > 0.4, p > 0.2 and p > 0.2 for the left and right force 

measurements and the change in preferred transition speed, respectively). The relatively 

low p-values were largely an effect of the low sample size. With 10 subjects in this 

analysis, a single subject may substantially affect the group means. For the number of 

subjects used, the counterbalancing of order seems to have minimized order effects. 

4.8 Limitations and Assumptions 

In order to best correlate vertical ground reaction force with possible 

musculoskeletal forces, the vertical force at midstance was isolated temporally. The 

calculation of midstance, or zero anterior-posterior ground reaction force, was based on 

previous research conducted at speeds close to the subjects' preferred speed of running or 

walking. It was assumed that zero AP force would remain close to this percentage of 
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stance at the extreme speeds of locomotion which were tested in this study. If, however, 

zero AP force changed relative location in the stance time at the very high or low speeds 

tested, midstance forces would be inappropriately selected. 

At high speeds of walking, such an error would probably result in an overestimate 

of the midstance forces. This is due to midstance erroneously being selected out of the 

well or trough of minimum vertical ground reaction force near midstance. For running, 

an error could either over- or underestimate the forces, depending on the direction of the 

temporal error. Midstance is usually at a point at which the vertical ground reaction 

forces are declining from the active peak. If midstance is selected later than the actual 

zero AP force, the recorded force will be an underestimate. The opposite is true in the 

case of a premature selection of midstance. 

The accuracy of this assumption was not tested in this experiment. Any errors 

from this assumption may have influenced the changes in force or variability with 

increasing speed. The change in force between the weighted and unweighted preferred 

transition speeds probably would have been affected less, due to the similar transition 

speeds for most subjects. 

4.9 Final Discussion 

Many variables have been proposed as possible control parameters governing the 

human walk-run transition. These include speed of locomotion, metabolic cost, and 

several kinetic and kinematic variables. A limited number of kinetic variables were 

tested by Hreljac (1993a). None of the variables tested were found to explain the human 

gait transition. In contrast, Farley and Taylor (1991) found the trot-gallop transition in 

horses to be controlled by musculoskeletal forces proportional to the peak vertical ground 

reaction force. Such musculoskeletal variables had not been subsequently tested in 

humans. 
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This experiment was designed to test if musculoskeletal forces act as control 

parameters in the transition between walking and running. To evaluate this hypothesis, a 

treadmill was constructed and validated which was able to measure the vertical ground 

reaction forces of subjects while they walked and ran. With valid and reliable results, the 

treadmill allowed for speed to be controlled by the experimenter while the forces of 

multiple footstrikes were measured by a computer. Midstance vertical ground reaction 

force was picked off from these measurements because at this point anterior-posterior 

ground reaction forces are approximately zero and the midstance forces may be 

proportional to musculoskeletal loads, such as in the Achilles tendon. Using this 

treadmill, speed was manipulated to test the kinetic influence on the walk-run transition. 

If such an influence could have been discerned by the experiment, it would have appeared 

as weighted and unweighted transitions occurring at the same midstance VGRF level, but 

at different speeds. The summarizing tests, such as the cluster graphs, the OPTS vs. 

AVGRFM graphs, and their associated statistical analyses, failed to distinguish between 

speed and midstance vertical ground reaction force. From the results presented, both 

remain as possible control parameters. 

Farley and Taylor (1991) added 23% of body weight to horses and observed the 

trot-gallop transition to occur at a lower speed, but at the same level of musculoskeletal 

force. They concluded from these findings that a critical level of musculoskeletal force 

was the control parameter governing the trot-gallop transition. In a study on humans, 

Beuter and Lefebvre (1988) added weights to trained runners and found the preferred 

walk-run transition speed to decrease only slightly. The present study hypothesized that 

with added weight untrained runners would exhibit a change in the preferred walk-run 

transition speed. To test this hypothesis, 15% of body weight was added to untrained 

runners and the effects on the walk-run transition observed. In accordance with the 

findings of Farley and Taylor, the transitions for the two conditions occurred at the same 

force level; however, no significant changes were found in transition speed. While the 
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addition of weight to horses substantially lowered their trot-gallop transition speed, the 

addition of 15% of body weight to the untrained human runners of this study failed to 

produce significant changes. With no significant change in force or speed of transition, 

the two factors could not be differentiated. 

However, the mapping of forces across speeds and conditions indicated a possible 

influence of force on the transition. With increased speed, significant increases were 

found in the midstance VGRF's for running, but no significant changes were found for the 

midstance forces in walking. While the variation in the choice of gait could not be 

quantified, the variation in midstance VGRF for walking demonstrated a substantial, 

although statistically significant in only one case, increase at and above the preferred 

transition speed. As described by The len and Smith (1994), such a change in variability 

may be indicative of a perturbation capable of producing a bifurcation, or switch in the 

collective variable of gait from walking to running. This understanding suggests that 

vertical ground reaction force may have some influence on the human walk-run 

transition. 

Many variables have been hypothesized to control the human walk-run transition. 

This experiment focused on the kinetic variable of midstance vertical ground reaction 

force, indicative of musculoskeletal forces in the lower leg. While the results 

demonstrate that VGRFM may be a control parameter in the transition, the findings are 

insufficient to factor out the effects of speed of locomotion. Further experiments with 

greater experimental control and more subjects may be able to discern such differences, if 

they exist. 
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CHAPTER 5  
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

5.1 Summary 

With increasing speed, a person's choice of a walking gait will eventually become 

uncomfortable, prompting a switch to running. The speed at which this switch occurs is 

called the preferred transition speed. While it is associated with increasing speed, earlier 

work shows that the transition is not related just to the speed. This study was designed to 

test the influence of forces on the human body at midstance on the walk-run transition. 

Ten college-aged males and females walked and ran on a treadmill with and 

without a weight vest approximating 15% of body weight. These subjects performed 

three tests: to determine the speed at which they preferred to transition from walking to 

running, and to measure the vertical loads experienced by the body while walking and 

running over a range of speeds (1.0 to 3.0 m/s). It was hypothesized that vertical force 

would have an influence or control over the transition between walking and running 

while speed, commonly thought to influence the transition, would not. If true, the 

subjects would transition at different speeds, but at approximately the same force for the 

weighted and unweighted conditions. When measured, these subjects tended to transition 

at the same force levels for both conditions. However, on average, these subjects also 

switched gaits at approximately the same speed for the two conditions. Thus for the 

population tested, this experiment was not able to distinguish between the roles of speed 

and musculoskeletal force on the walk-run transition. 

When each subject walked or ran under each condition and speed, many strides 

were analyzed. No two strides were exactly the same, even within a single condition and 

speed. For each speed and condition, the average force and the variability of these 

measures were determined. The results demonstrated that both the force and its 

variability increased when the subjects attempted to walk at speeds greater than their 
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preferred transition speed. These changes may be influencing the control system of 

human gait. When an individual experiences such increases, he or she may reach a force 

level which is not preferred, or the increased variability in force may cause a perturbation, 

both of which may result in the subject switching from walking to running. Thus the 

results of this study indicate that the musculoskeletal forces associated with midstance 

vertical ground reaction force may have an influence on the human walk-run transition. 

5.2 Recommendations for Future Work 

5.2.1 Walk-Run Transition 

To better distinguish the preferred transition speed, smaller increments of speed 

could be used (0.1 m/s). This still would not get around the fact that with added weight 

some subjects transitioned at slower speeds, some at higher speeds and some the same. 

By using smaller increments of speed, the resolution for this variable would be increased. 

For even greater resolution the forces could be measured while speed was 

changing at a slow rate. It is still desired to be able to average force for multiple strides at 

a given speed. Without this ability it would not be possible to quantify the variability of 

force for a given speed. Such continuous data collection would require improvements to 

the hardware and software of the treadmill system. The rate of change of speed could be 

analyzed and taken into account during the analysis. Perhaps the protocol could be 

administered with computer control of treadmill speed. At the least, a continuous 

measurement of treadmill speed should be input along with the force data. It should be 

noted that the stride-to-stride variability of treadmill speed would be noticed in such a 

measurement. 

Following the indications that a perturbation in midstance vertical ground reaction 

force has a role in the walk-run transition, future work could attempt to create or increase 

this perturbation. If force could be spontaneously increased, by adding weight to a 
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subject while he or she walks, or by some other method, it may be possible to create 

enough variability in the midstance VGRF's to trigger a transition from walking to 

running. This would strengthen the argument of midstance VGRF being a control 

parameter in the walk-run transition. 

The variability of the collective variable of gait should be measured or monitored 

at the same time as possible control parameters are both measured and manipulated. It is 

desired to manipulate a single possible control parameter and observe subsequent 

variability in the collective variable prior to a bifurcation or transition. Following the 

bifurcation the variability of the collective variable should decrease. 

This experiment did not measure force while the subjects were free to transition 

between walking and running. For greater description and to gain further insight into the 

force changes during the transition itself, the forces could be collected when the subject is 

free to transition. Such a protocol would require continuous, or nearly continuous, data 

collection. 

During this study it was observed that the rate of change of speed may have an 

influence on the preferred transition speed. If a subject is walking on a treadmill near, but 

below their preferred transition speed and speed is increased a given increment, a fast rate 

of increase may be expected to cause a transition to running to occur at a lower speed 

than if a slow rate of increase was used. Perhaps the subject would feel "thrown" into the 

next attractor state or he or she would anticipate the quickly changing speed and 

transition at a speed lower than that otherwise chosen. Further investigations should 

study the influence of rate of change of speed on the walk-run transition. 

5.2.2 Other Research 

The instrumented treadmill developed for this study may be utilized for 

experiments which would be impossible with a force plate. Providing a great amount of 

experimenter control and simultaneous measurement of left and right vertical ground 
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reactions forces, the treadmill makes more involved experiments possible. A simple 

experiment would be to compare left and right sides with any subject population. This 

may be of particular interest with injuries, such as runners who are having pain in one leg. 

It would be interesting to correlate changes to ground reaction forces with such injuries. 

During pilot tests, two runners who were having chronic leg pain recorded increased 

vertical ground reaction forces for the effected side. Such an evaluation tool could be 

used clinically or to biomechanically analyze the causes or results of injuries. Perhaps a 

biofeedback technique could be used to minimize injuries. 

A biofeedback mechanism would open more research opportunities, such as 

balance training. Such abilities could be utilized in the line of balance research presently 

conducted by the Motor Behavior Laboratory of Oregon State University, under the 

guidance of Debra Rose, Ph.D. Variables such as contact time, maximum vertical ground 

reaction force, and perhaps other variables of interest could be displayed for the subject to 

see. If the treadmill or the possible biofeedback device proved beneficial, they could be a 

part of a dynamic, or walking, balance training program. 

53 Conclusions 

For this study a treadmill was developed to measure vertical ground reaction 

forces while subjects walked and ran. Once validated, this tool was used to measure 

changes in midstance vertical ground reaction force with increased speed and load. By 

manipulating these two variables it was hoped to differentiate between their roles in the 

walk-run transition. From the results, however, it was impossible to distinguish between 

the influences on the transition; both speed and musculoskeletal force remain as possible 

control parameters. After mapping the forces and the variability of force for each speed 

and condition, there were indications that midstance vertical ground reaction force may 

have had a contribution to perturbing the system from a walking to running gait. 



123 

REFERENCES  

Barcikowski, R. S., & Robey, R. R. (1985, April). Sample size selection in single group 
repeated measures analysis. Paper presented at the annual meeting of the American 
Educational Research Association, Chicago, IL. 

Basmajian, J. V., & De Luca, C. J. (1985). Muscles alive, their functions revealed by 
electromyography (5th ed.). Baltimore: Williams & Wilkins. 

Beuter, A., & Lefebvre, R. (1988). Un modele theorique de transition de phase dans la 
locomotion humaine. Canadian Journal of Sport Science, 13, 247-253. 

Biewener, A. A., Blickhan, R., Perry, A. K., Heglund, N. C. & Taylor, C. R. (1988). 
Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle 
measurements compared. Journal of Experimental Biology, 137, 191-205. 

Bresler, B., & Frankel, J. P. (1950). The forces and moments in the leg during level 
walking. Transactions of the ASME. 72, 27-36. 

Charteris, J., & Taves, C. (1978). The process of habituation to treadmill walking: a 
kinematic analysis. Perceptual and Motor Skills, 47. 659-666. 

Clark, J. E. (1992). An introduction to dynamical systems theory. Paper presented at the 
national meeting of the American Assosiation of Health, Phyical Education, 
Recreation, & Dance, Indianapolis, IN. 

Davis, B. L. & Cavanagh, P. R. (1993). Decomposition of superimposed ground reaction 
forces into left and right force profiles. Journal of Biomechanics, 26. 593-597. 

Falls, H. B., & Humphrey, L. D. (1976). Energy cost of running and walking in young 
women. Medicine and Science in Sports and Exercise. 8, 9-13. 

Farley, C. T., & Taylor, C. R. (1991). A mechanical trigger for the trot-gallop transition 
in horses. Science, 253, 306-308. 

Fuglewicz, D., & Klavoon, W. (1994). A ground-reaction-force measuring treadmill. In 
R. J. Gregor & A. S. Litsky (Eds.), Conference Proceedings of the American Society 
of Biomechanics, 18th Annual Meeting (pp. 229-230). Columbus, OH: Ohio State 
University Press. 

Fukashiro, S., Komi, P. V., Jarvinen, M., & Miyashita, M. (1993). Comparison between 
the directly measured achilles tendon force and the tendon force calculated from the 
ankle joint moment during vertical jump. Clinical Biomechanics, 8, 25-30. 

Hreljac, A. (1993a). Determinants of the gait transition speed during human locomotion: 
Kinetic factors. Gait & Posture. 1. 217-223. 

Hreljac, A. (1993b). Preferred and energetically optimal gait transition speeds in human 
locomotion. Medicine and Science in Sports and Exercise, 25, 1158-1162. 

Hreljac, A. (1995). Determinants of the gait transition speed during human locomotion: 
Kinematic factors. Journal of Biomechanics, 28, 669-677. 



124 

Johnson, L.W., Calder, C. A., & Smith, G. A. (1993). Instrumenting an exercise 
treadmill for evaluation of vertical ground reaction forces. Proceedings. 1993 SEM 
Spring Conference on Experimental Mechanics, pp. 988-998. 

Johnson, L.W. (1992). Instrumenting an exercise treadmill for evaluation of vertical 
ground reaction forces. Unpublished master's thesis, Oregon State University, 
Corvallis. 

Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis. 
Englewood Cliffs, NJ: Prentice Hall. 

Kinoshita, H., & Bates, B. T. (1983). Effects of two different load carrying systems on 
ground reaction forces during walking. In H. Matsui, & K. Kobayashi (Eds.), 
Biomechanics VIII-A. Champaign, Illinois: Human Kinetics. 

Komi, P.V. (1990). Relevance of in vivo force measurements to human biomechanics. 
Journal of Biomechanics, 23. 23-34. 

Kram, R. & Powell, A. J. (1989). A treadmill-mounted force platform. Journal of 
Applied Physiology, 67, 1692-1698. 

Magill, R. A. (1993). Motor Learning: Concepts and Applications (4th ed.). Madison, 
Wisconsin: Brown & Benchmark. 

Margaria, R., Cerretelli, P., Aghemo, P., & Sassi, G. (1963). Energy cost of running. 
Journal of Applied Physiology. 18. 367-370. 

Menier, D. R., & Pugh, L. G. C. E. (1968). The relation of oxygen intake and velocity of 
walking and running, in competition walkers. Journal of Physiology. 197, 717-721. 

Myers, J. L., & Well, A. D. (1991). Research design and statistical analysis. New York: 
HarperCollins. 

Nelson, R. C., Dillman, CJ., Lagasse, P., & Bickett, P. (1972). Biomechanics of 
overground versus treadmill running. Medicine and Science in Sports and Exercise, 4. 
233-240. 

Nigg, B. M., De Boer, R. W., & Fisher, V. (1995). A kinematic comparison of 
overground and treadmill running. Medicine and Science in Sports and Exercise, 27. 
98-105. 

Nilsson, J., Thorstensson, A., & Halbertsma, J. (1985). Changes in leg movements and 
muscle activity with speed of locomotion and mode of progression in humans. Acta 
Physiologica Scandinavica, 123. 457-475. 

Portney, L. G., & Watkins, M. P. (1993). Foundations of clinical research: Applications 
to practice. East Norwalk, CT: Appleton & Lange. 

Schieb, D.A. (1986). Kinematic accommodation of novice treadmill runners. RQES. 57. 
1-7. 

Thelen, E., & Smith, L. B. (1994). A Dynamic Systems Approach to the Development of 
Cognition and Action. Cambridge, Massachusetts: MIT Press. 



125 

Thorstensson, A., & Roberthson, H. (1987). Adaptations to changing speed in human 
locomotion: Speed of transition between walking and running. Acta Physiologica 
Scandinavica, 131. 211-214. 

Wall, J. C. & Charteris, J. (1980). The process of habituation to treadmill walking at 
different velocities. Ergonomics, 23, 425-435. 

Wall, J. C. & Charteris, J. (1981). A kinematic study of long-term habituation to 
treadmill walking. Ergonomics, 27, 531-542. 

Wells, R. P. (1981). The projection of ground reaction force as a predictor of internal 
joint moments. Bulletin of Prosthetics Research, 18, 15-19. 

Winter, D. A. (1990). Biomechanics and motor control of human movement. New York: 
John Wiley & Sons. 



126 

APPENDICES  



127 

APPENDIX A 

Musculoskeletal Forces in Human Locomotion  
Jonathan B. Fewster and Gerald A. Smith  

Potential Subject: Medical Questionnaire  

Please fill in the following information as completely as possible. 

Name: 

Age: 

Sex: M F 

Present exercise program: Please list activities, relative intensity and weekly hours of 
participation. Be sure to mention any amount of running in terms of weekly 
mileage. 

Activity Time Mileage (Walking or Running) 

Injuries or medical conditions: Please list any injuries occurring within the last year 
which may affect walking or running. Be sure to include any achilles tendon 
injuries incurred at any time. List any heart or other health conditions which may 
be cause to avoid light to moderate exercise. 

Chronic Diseases or Disabilities: Please list any neuromuscular conditions which may 
affect your movement or locomotion. These may include, but are not limited to, 
spinal injuries, MS and CP. 
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APPENDIX B 

Oregon State University  
Human Subjects Review:  

Musculoskeletal Forces in Human Locomotion  
Jonathan B. Fewster and Gerald A. Smith  

Significance: 
The understanding of human movement control is presently changing. The differences 
between the old and new schools of thought may be manifest and thus tested at transition 
points in human movement. In the study of gait transitions in human locomotion many 
influencing factors have been identified. However, a new school of thought in motor 
behavior, called Dynamical Systems, would hold that a single factor "pushes" the 
transition over the edge from one gait to another. 

For the walk-run transition it is our hypothesis that tendon forces are the deciding 
variable for determining which gait is used at a given velocity. If this hypothesis is 
supported, it will provide strong support for a new understanding of motor control. 

Methods: 
Each subject will be asked to perform several trials either walking or running while 
treadmill speed is systematically varied. With force measurement devices measuring the 
vertical ground reaction forces and a video camera recording body position, the treadmill 
will be accelerated from 1 m/s to 3 m/s in 0.2 m/s increments. The subject will have 30 
seconds at each speed before the velocity is changed. Two acceleration cycles will be 
performed with the subject choosing to walk or run at each speed. In separate trials the 
subject will be asked to walk through the whole range of speeds, and then run through the 
whole range. These four trials will be repeated with each subject wearing a pre-
determined amount of weight (approximating 15% of body weight) in a vest on his or her 
upper body. The total activity time for this procedure will be between 90 minutes and 
two hours. In subsequent analysis, motion characteristics (position, length of lever arms) 
of the lower limbs will be determined from video analysis at each speed. The 
combination of video and force data will be used to calculate tendon forces at mid-stance, 
impact forces and loading rate. 

On a day prior to the experiment each subject will be required to walk and run on the 
treadmill at experimental speeds under the both the weighted and unweighted conditions. 
The total time for this adjustment period will be thirty minutes, unless more time is 
desired by the subject. 

Subjects: 
Ten subjects (male and female) will be recruited for this project. Subjects will be from 
the general university population and will range between the ages of 18 and 25. Subject 
requirements will include a fitness level capable of completing the moderate exercise 
involved in the study. More specifically, subjects will be recreational runners who run at 
least one hour but no more than four hours per week, and do not have a physical 
disability or have a chronic illness (i.e. MS, CP, or spinal injuries). 

Risks and Benefits: 
Participation in this study carries minimal risk. Each subject will be asked to walk or run 
at slow to moderate paces on a treadmill for trials of short duration. They will be given 
opportunity to familiarize themselves to walking and running on the treadmill before the 
data collection. The subjects will be given the opportunity to rest following any of the 
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trials. The relatively low intensity of the exercise involved makes the probability of a 
serious, health affecting event very low. 

Each subject will be paid $10 for his or her participation and completion of the study. 

Informed Consent: 
The subjects in this study will be recruited from the large population of healthy 
individuals at the Oregon State University. Prior to testing, each subject will be orally 
informed of the purposes of the research, the protocol to be followed during the testing 
and the approximate time involved. In addition, each subject will be asked to read and 
sign the Informed Consent Form (attached) which will reinforce the nature of the 
research, describe the minimal risks associated with the study and emphasize the subject's 
freedom to end participation in the study at any time. 

Confidentiality: 
Any information obtained from me will be kept confidential. A code number will be 
used to identify any test results or other information that I provide. The only persons who 
will have access to this information will be the investigators and no names will be used in 
any data summaries or publications. 
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Informed Consent Form 

Oregon State University 
Corvallis, Oregon 

Title of Investigation: Musculoskeletal Forces in Human Locomotion 

Investigators: Jonathan B. Fewster, M.S. Candidate and Gerald A. Smith, 
Ph.D. 

Purpose: To determine the type of musculoskeletal forces that influence 
walking and running at different speeds. 

I have received an oral explanation of the study procedures and understand that they 
entail the following: 

All testing will be conducted in the Sports Medicine and Anthropometry Laboratories in 
the Women's Building at Oregon State University. As a subject, I will report to the 
laboratories one time for the following procedures: 

1. Body measurements. My height and weight will be measured in the Anthropometry 
Laboratory. 

2. Biomechanical data collection. My lower legs will be videotaped from the side view 
and the impact forces on my feet will be measured while I am walking and jogging on 
a flat motorized treadmill at a speed between 1 m/s and 3 m/s (2.2 mph 6.7 mph). 
During each trial the treadmill will be slowly accelerated, requiring five minutes to 
increase from 1 to 3 m/s. For two trials I will choose to either walk or run at each 
speed. In two subsequent trials I will walk and then run over the whole range of 
speeds. These four trials will be performed normally and four more trials will be 
performed while carrying additional weight approximately equal to 15% of my body 
weight. 

In addition to these experimental procedures I will report to the laboratories on one 
previous day to practice walking and running on the treadmill as outlined above. For 
thirty minutes I will walk and run at the experimental speeds while under both the 
weighted and unweighted conditions. 

I understand that my risks associated with participation are minimal. Running may be 
associated with muscle soreness; however, at the moderate speed of walking and running 
used in this study, such effects should be mild. Coronary complications such as chest 
pain, irregular heart beats or even death have occasionally been associated with vigorous 
exercise. However, based on my relatively good fitness and the relatively low exercise 
intensity, it is unlikely that such problems will be encountered. 

I understand the University does not provide a research subject with compensation or 
medical treatment in the event that the subject is injured as a result of participation in the 
research project. 

Any information obtained from me will be kept confidential. A code number will be 
used to identify any test results or other information that I provide. The only persons who 
will have access to this information will be the investigators and no names will be used in 
any data summaries or publications. 
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The benefits of my participation in this study include contributing to the scientific study 
of exercise science and human locomotion. I will also receive a $10 award in return for 
my completion of this experiment. 

I understand that my participation in the project will entail one practice session and one 
laboratory session requiring a total of approximately 2 hours. 

I have been completely informed about and understand the nature and purpose of this 
research. The researchers have offered to answer any further questions that I may have. I 
understand that my participation in this study is completely voluntary and that I may 
withdraw from the study at any time without prejudice or loss of benefits to which my 
participation entitles me. 

If any questions arise during my participation in this research project, I am to call Jon 
Fewster at (503) 737-5933 or Gerald Smith at (503) 737-5928. 

Any other questions that I have should be directed to Mary Nunn, Sponsored Programs 
Officer, OSU Research Office, (503) 737-0670. 

My signature below indicates that I have read and that I understand the procedures 
described above and give my informed and voluntary consent to participate in this study. 
I understand that I will receive a signed copy of this consent form. 

Subject's Signature Date 

Subject's Name (Printed) Date 

Subject's Address 

Investigator's Signature Date 
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OREGON STATE UNIVERSITY  

Committee for the Protection of Human Subjects  

Chair's Summary of Review  

Title: Musculoskeletal forces in the walk-run transition of human locomotion 

Program Director: Gerald Smith 

Recommendation: 

Approval* Provisional Approval Disapproval No Action 

*The informed consent forms obtained from each subject need to be retained for the long term. Archives 
Division of the OSU Department of Budgets and Personnel Service is willing to receive and archive these on 
Microfilm. At present at least, this can be done without charge to the research project. Please have the forms 
retained in archives as well as in your files. 

Remarks: 

All concerns of the IRB have been suitably addressed and necessary changes made. 

Date: /7Y Signature: 

If the recommendation of the committee is for provisional approval or disapproval, the program director should 
resubmit the application with the necessary corrections within one month. 

Redacted for privacy
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INSTITUTIONAL REVIEW BOARD FOR THE PROTECTION OF HUMAN SUBJECTS 

OREGON STATE UNIVERSITY 

Report of Review 

TITLE: Musculoskeletal forces in human locomotion 

PRINCIPAL INVESTIGATOR: Gerald A. Smith, ExSS 

STUDENT: Jonathan B. Fewster 

COMMITTEE DECISION: Approved 

COMMENTS: 

1.	 The informed consent form obtained from each subject should be retained in 
program/project's files for three years beyond the end date of the project. 

2.	 Any proposed change to the protocol or informed consent form that is not 
included in the approved application must be submitted to the IRB for review and 
must be approved by the committee before it can be implemented. 

Date: August 3, 1995 
Warren N. Suzuki, Chair 
Committee for the Protection of Human Subjects 
(Education, 7-6393, suzukiw@ccmail.orst.edu) 

Redacted for privacy
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APPENDIX C  
TREADMILL VALIDATION 

C.1 Static Validation 

The first stage of validation for the treadmill used static loads. Known weights 

were stacked at various locations on the treadmill belt. For a given position one 

measurement was taken while stacking the weights, another while removing them. After 

the treadmill was moved and set up again, the whole procedure was repeated. In the 

second trial the exact positions were not repeated, although the same range of locations 

were used. 

After the data were converted and filtered at 60 Hz, the summed VGRF's were 

compared against the actual weight applied. The values for each weight are reported in 

Table C.1. The total force values appear in Table C.2. The total forces were plotted for 

the two trials and appear in Figure C.1. A least-squares-fit was performed for each of the 

two trials. For trial one, TM = 0.9609 * Wt + 1.4412 N, R2 = 0.9961, R = 0.9980, and the 

Average Error was 40.32 N. For trial two, TM = 0.9715 * Wt + 8.7461 N, R2 = 0.9966, 

R = 0.9983, and the Average Error was 26.56 N (TM = Treadmill measured force value, 

Wt = Known force applied, both in Newtons). This test satisfactorily evaluated the 

treadmill system's ability to accurately and precisely measure applied forces. 

C.2 Treadmill vs. Force Plate 

The second pilot test validated the treadmill's ability to measure VGRF's against 

the criterion measure of a floor-mounted force plate. Five subjects ran over a Kistler 

force plate at three self-selected speeds (slow, medium, and fast). For each trial the speed 

was measured by head-height infrared timing lights centered about the force plate. Each 

self-selected speed was repeated until three trials were performed within ± 0.02 kph 
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Table C.1 
Static Load Errors 

Trial 1 Trial 2 
Known n Mean SD Average n Mean SD Average 
Force Force (±N) Error Force (±N) Error 
(N) (N) (N) (N) (N) 

219.96 21 211.55 18.03 19.98 23 221.47 21.32 21.37 

219.04 19 213.37 6.12 8.44 24 215.44 6.30 7.29 

201.83 19 195.72 6.02 8.69 24 195.20 5.41 8.67 

199.24 19 191.03 8.52 11.99 23 192.44 8.90 11.29 

135.29 5 129.48 8.50 10.70 6 134.50 6.00 6.06 

136.40 5 134.66 5.86 6.17 6 132.26 6.72 8.11 

136.67 4 129.14 3.91 9.54 6 134.22 3.96 4.79 

133.77 3 127.09 7.07 10.81 6 126.16 6.57 10.62 

Table C.2 
Total Static Load Errors 

Trial 1 Trial 2 
Known n Mean SD Average n Mean SD Average 
Force Force (±N) Error Force (±N) Error 
(N) (N) (N) (N) (N) 

219.96 21 211.55 18.03 19.98 23 221.47 21.32 21.37 

439.00 19 213.37 6.12 8.44 24 436.65 20.69 20.37 

640.83 19 195.72 6.02 8.69 24 631.39 20.93 22.54 

840.07 19 191.03 8.52 11.99 23 823.87 21.98 26.90 

975.36 5 129.48 8.50 10.70 6 957.01 11.41 23.12 

1111.76 4 134.66 5.86 6.17 6 1089.27 13.77 28.23 

1248.43 3 129.14 3.91 9.54 6 1223.49 14.02 30.71 

1382.20 2 127.09 7.07 10.81 6 1349.64 16.28 39.21 
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(± 0.0056 m/s). Within a given speed, each subject was consistent with the choice of foot 

to land on the force plate. The actual velocities were different between subjects. 

With force plate data collection complete, the treadmill recorded VGRF data at 

the chosen speeds for each subject. The treadmill speed was adjusted to each individual's 

slow, medium, and fast speed. The collection program recorded ten seconds of data at 

each speed. 

The right or left footstrikes (chosen during the force plate trials) from the 

treadmill were analyzed along with the corresponding force plate data. These data were 

analyzed for the characteristics of peak impact force, active peak force, loading rate, 

contact time, and total impulse. See Figure C.2. The same number of footstrikes were 

analyzed for each device. In the case of the treadmill, the footstrikes were chosen at 

random from those recorded. From a given subject's trials at a given speed using a single 

device, the mean value and standard deviation were calculated for each characteristic. 

These treadmill vs. force plate values were plotted to generate a correlation factor, a 

slope, and an average error. 

One of the five subjects exhibited a change in footstrike pattern between the force 

plate and the treadmill conditions. She seemed to be a midfoot striker on the force plate, 

but was a rearfoot striker on the treadmill. This changed the impact peak and rise rate. 

For these two correlations the subject was removed. The observed difference in striking 

demonstrated the possibility for difference between force plate and treadmill running or 

as described in the literature "overground vs. treadmill running." While a subject may 

attain constant speed over the force plate, he or she may not get into a pace during the 

short run-up. In contrast, while on the treadmill, the subject must maintain the measured 

speed for a minimum of thirty seconds. This may influence the subject getting into a 

pace or a gait which may be different from the striding which was observed over the force 

plate. This should influence force plate procedures and in the future may be developed 

into a exploration of kinetic differences between force plate and treadmill running. 
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The correlation graphs may be seen in Figures C.3 C.7 (TM = treadmill, FP = 

force plate). Impact force yielded a fit of TM = 1.1915 * FP 301.4 N with R2 = 0.8319, 

R = 0.9121 and Average Error = 58.8 N. The active peak forces are expected to be less 

affected by changes in striking patterns. The active peaks were fit with the line: TM = 

0.7993 * FP + 235.9 N, R2 = 0.6932, R = 0.8326 and Average Error = 95.3 N. Rise rates 

calculated from the points of 20% and 80% of peak impact force were correlated with the 

equation TM = 0.9092 * FP 4110.1 N/sec, R2 = 0.5267, R = 0.7257 and Average Error = 

13409.6 N/sec. This correlation demonstrated the responsiveness of the treadmill, but 

was limited by any differences in gait caused by the two devices. Contact time was 

measured to check for time of contact differences. These proved to be very similar: TM 

= 1.0673 * FP 0.0045 sec, R2 = 0.8158, R = 0.9032 and Average Error = 0.0092 

seconds. The last measure was total impulse. This proved to be a very good correlation 

with TM = 0.9479 * FP + 7.7597, R2 = 0.9678 N*sec, R = 0.9838 and Average Error = 

2.07 N*sec. 

These results demonstrated some deviation from the criterion measure of the force 

plate. This deviation may have been due to the accuracy of the treadmill, subject trial-to-

trial variability, and differences in running between the force plate and the treadmill. The 

results presented above demonstrate errors much more reasonable than the large errors in 

peak forces experienced by E. Hennig, with these results being in the correct range. 

Some of the remaining differences in measurements should be attributed to the 

differences between laboratory running and true overground running. There are known 

kinematic differences between treadmill and force plate running (e.g. Nigg, De Boer, & 

Fisher, 1995). A trial of a subject running over a force plate in a laboratory is not a true 

measure of overground running when compared to that normally performed outside for 

long distances and times. Therefore, it was hypothesized that running on this treadmill, 

and the measurements taken with it, were actually more similar to true overground 
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running than was the force plate running. Thus some of the quantified differences should 

be discounted as deviations from the true activity which was simulated. 

C.3 Reliability 

Once the treadmill was validated against the force plate, an attempt was made to 

test the reliability of human measures. Following the experiment the numbers which 

follow were found to contain a systematic error due to an improperly grounded 

transducer. Transducer number five (left rear) was not offset from zero, thus ground 

appeared to be off-scale. Thus the signal loss consisted of the small amount of signal 

required to achieve a mearureable force level. The loss was at most 50 N, and was 

probably much less due to the small fraction of the range which was lost and the low 

range (100 lb or 444 N) of the transducer. Reliability may evaluated from these data with 

the understanding that this was a systematic error. Further discussion of this error 

follows the reporting of the reliability data. 

Using the standard warm-up procedure for the treadmill, the apparatus was 

prepared for testing. A single subject ran on the treadmill at three self-selected speeds 

(7.35, 11.90, and 15.33 kph or 2.04, 3.31, and 4.25 m/s). Following one trial at the three 

speeds, the subject got off the treadmill, and the motor was turned off. Several minutes 

of break occurred before the subject performed another series of the three speeds. During 

this time, the 484B02 conditioners were grounded and the treadmill warm-up procedure 

repeated. For each speed, the unfiltered VGRF curves were analyzed for the 

characteristics described earlier. For each ten-second trial, all right footstrikes, 

numbering 13 or 14, were analyzed. See Table C.3. Comparisons were made between 

trials to determine test-retest reliability. Within trial analysis summarized the intra-

subject variability. 

For peak impact force, the slow trials were not significantly different from each 

other (p > 0.09), while the trials at each of the medium and fast speeds were significantly 
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Table C.3  
Subject Reliability Data  
(Standard Deviations)  

Speed Trial Peak Active Contact Rise Rate Impulse 
Impact Peak Time (sec) (N/sec) (N*sec) 

Force (N) Force (N) 
Slow 1 747.74 1187.48 0.3524 44203 232.02 

(2.04 m/s) (102.03) (55.05) (0.0116) (8493) (8.86) 
2 671.94 1275.52 0.3335 40814 236.72 

(90.86) (49.89) (0.0117) (9326) (5.46) 
3 690.84 1334.13 0.3236 53586 237.23 

(72.31) (42.60) (0.0110) (12407) (3.40) 
Medium 1 1032.88 1593.67 0.2555 88794 241.11 

(3.31 m/s) (126.52) (34.42) (0.0093) (24054) (2.64) 
2 1045.07 1614.31 0.2538 109601 239.64 

(106.34) (22.57) (0.0103) (19658) (2.87) 
3 1230.17 1587.48 0.2541 141303 236.75 

(113.29) (35.30) (0.0067) (32236) (3.98) 
Fast 1 1441.74 1839.70 0.2070 141826 235.57 

(4.26 m/s) (77.57) (26.24) (0.0122) (14724) (2.72) 
2 1442.63 1832.83 0.2012 140805 235.64 

(123.41) (48.35) (0.0056) (17607) (2.24) 
3 1574.66 1779.87 0.2100 171596 230.62 

(80.91) (41.14) (0.0120) (19131) (3.80) 

different (p < 0.0001 and p < 0.0008, respectively). Active Peak forces were significantly 

different for slow (p < 0.0001) and fast (p < 0.0005) trials while only medium speed trials 

were not significantly different (p > 0.075). Contact time was significantly different for 

slow trials (p < 0.0001) while medium and fast speeds were repeatable (p > 0.87 and 

p > 0.086, respectively). Rise rate was variable between trials at all three speeds 

(p < 0.009 for slow and p < 0.0001 for medium and fast). Total impulse proved to be 

significantly different between repeated trials of both medium (p < 0.005) and fast 

(p < 0.0001) speeds but slow speed trials were not significantly different (p > 0.08). 

For these characteristics, the variability of both the subject and the device were 

small enough that a change in velocity caused a significant difference in many of the 

measured characteristics. Significance was expected to vary with the subject, the speeds 

chosen, and the difference between speeds. 
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Due to the improper grounding of a transducer, these reliability trials were flawed. 

With the understanding that the error was small and systematic, these results may be 

analyzed. They compare the landmarks of the vertical ground reaction force curve of 

running. For studies of impact, or those requiring absolute zero-values, this experiment 

should be repeated with proper grounding and more subjects. Furthermore, filtering 

should be performed on the data to minimize high frequency noise in the signals, such as 

was visible on channels 5 and 6. An additional repeatability pilot experiment specific to 

the walk-run transition study was conducted and is discussed in section C.10. 

C.4 Center of Pressure 

The next pilot study was to test and validate the treadmill's ability to determine 

center of pressure, both statically and dynamically. For static testing, the center of 

pressure was calculated while a stationary point load was placed on the treadmill bed. A 

ski pole tip was placed at ten locations on the bed similar to the loading positions which 

occur during walking and running. Loads were varied during a trial by the experimenter 

applying more weight to the ski pole. Before center of pressure calculations were made, 

the data were filtered at 60 Hz, and zero-values were calculated for each transducer. 

Correlations and errors were calculated from the known positions (KP). The resulting fit 

may be seen in Figure C.8, Center-of-Pressure Validation. The least-squares-fit followed 

the relationship: TM = 0.9722 * KP + 0.0239 m with R2 = 0.9955, R = 0.9977, and the 

Average Error equal to 0.0277 m. 

These measures were repeated with the treadmill running. Six point loads were 

placed on the bed of the treadmill, to the side of the moving belt. The resulting linear fit 

followed the equation: TM = 0.9429 * KP + 0.0245 m with R2 = 0.9988, R = 0.9994, and 

the Average Error = 0.0199 m. See Figure C.9. Despite filtering at 60 Hz, low frequency 

vibration from the motor and belt resulted in some variation in each of the center of 

pressure readings. The standard deviations of position ranged from 0.0095 to 0.0183 m. 



148 

TM = 0.9722 * Known + 0.0239 m 
R2 = 0.9955 
R . 0.9977 
Average Error = 0.0277 m 

-0.2 0 0.2 0.4 0.6 0.8 1 

Known COP Position (m) 

Figure C.8  
Center of Pressure Validation: Treadmill Off  

Calculated values vs. Known Positions  
(±SD, ±Error)  



149 

TM = 0.9429 * Known + 0.0245 m 
R2 = 0.9988 
Average Error = 0.0199 m 

0.1	 0.2 0.3 0.4 0.5 0.6 0.7 08 
Known Position (m) 

Figure C.9  
Center of Pressure Validation: Treadmill On  

Treadmill Measured Values vs. Known Positions  



150 

For both tests initial loading and unloading caused gross variation in the COP. Besides 

these conditions, variation in applied force did not change the calculated center of 

pressure location. 

The data points for these two tests were combined to yield the equation: TM = 

0.9657 * KP + 0.0227 m with R2 = 0.9957, R = 0.9978 and the Average Error was equal 

to 0.0307 m (See Figure C.10). This fit did not support a higher degree equation for the 

trend line, as had been indicated by a fit performed on the data with the treadmill off. 

The calculated values for center of pressure were reasonably good, but were not 

sufficiently accurate to allow inverse dynamics calculations to be performed. The 

variation from known values and the variation introduced with the belt on would have 

caused significant errors in calculated joint moments. 

C.5 Constant Moving Force: Body Weight 

To test the ability of the treadmill to measure force along the length of the belt, a 

constant force was applied to the moving treadmill belt. A subject lowered himself onto 

the front of the treadmill belt with a minimum of vibration. Once on the moving belt, the 

subject stood still, allowing the belt to move him rearward at a constant velocity. At the 

rear of the treadmill, the subject dropped off the belt and the treadmill. 

Four trials were performed. The force values were analyzed for average force and 

relative difference along the length of the bed. While the weight was being applied there 

was a period of adjustment before the force measurements became stable. At the end of 

the measurements, when the subject was over the rearmost transducers, the signals from 

transducers E and F reached maximum. Data were evaluated from the end of the loading 

period to the point of signal overload for the rear transducers. For overall measures see 

Table C.4. 

For differentiation between the regions of the bed, front, middle, and rear values 

are presented in Table C.S. These were roughly divided into regions by time. Because 
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Table C.4: Total Body Weight Errors 

Actual BW=792.90 N 

Trial Average BW (N) Absolute Error (N) % Error 

805.59 12.70 1.60 

2 

1 

813.76 20.87 2.63 

3 4.66 

4 820.66 27.73 3.50 

Average I 817.46 I 24.56 3.10 

829.82 36.93 

Table C.5: Body Weight Along the Bed 

Trial Average Front % Middle % Rear % 
Force Deviation Deviation Deviation 

1 805.59 805.60 0.00 804.24 -0.17 800.31 -0.66 

2 813.76 807.74 -0.74 815.72 0.24 813.19 -0.07 

3 829.82 828.40 -0.17 825.41 -0.53 833.06 0.39 

4 820.66 816.61 -0.49 820.23 -0.05 823.25 0.32 

Average I 817.46 I 814.59 -0.35 I 816.40 -0.13 817.45 0.00 

the divisions were neither exact nor consistent in position or time, the percent deviations 

do not sum to 0%. 

From this experiment, it was indicated that the treadmill was precise in its 

measurements although accuracy could have been improved. At the same time, however, 

the absolute errors for force were within the average errors calculated for the static 

measurements. For the study which was undertaken, this level of validity was sufficient. 

It should be noted that the rear two transducers could have been maximized if subjects 

walked or stood on the rearmost portion of the belt. The remaining usable area of the belt 

was sufficient for all experiments. 

http:BW=792.90
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C.6 Body Weight Calculated From Gait 

The treadmill was tested for its ability to calculate body weight with a subject 

either standing or walking on the treadmill. Two sets of four static trials were performed, 

each with a "pre-zero" file taken immediately preceding the data collection. See Tables 

C.6 and C.7. 

From these static body weight measures, the treadmill proved to be more precise 

than accurate. The errors between treadmill measurements were smaller than those 

Table C.6: Static Body Weight Measures, Set 1 
Actual Body weight = 782.88 N 

Trial Measured BW Absolute Error Percent Error 

1 737.04 -45.84 -5.86 

2 727.60 -55.28 -7.06 

3 729.47 -53.41 -6.82 

4 735.92 -46.97 -6.00 

Average 732.51 -50.38 -6.43 

Standard Deviation 4.67 4.67 0.60 

Table C.7: Static Body Weight Measures, Set 2 
Actual Body Weight = 775.10 

Trial Measured BW Absolute Error Percent Error 

-7.73 

2 710.17 -64.93 -8.38 

715.15 -59.951 

-7.70 

4 

715.41 -59.693 

699.51 -75.59 -9.75 

Average 710.06 -65.04 -8.39 

Standard Deviation 7.43 7.43 0.96 
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between treadmill and criterion measures; note the low standard deviations, but high 

absolute errors. 

Three tests were performed to calculate body weight from an integral number of 

walking strides. During a ten-second measurement session, the subject either got on or 

off the treadmill, providing both a zero-value and walking strides within the same file. 

Body weight was calculated as the difference between the average force over an integral 

number of cycles and the zero-value from the file. Walking was performed at 4 kph, 6 

kph and 8 kph, with the results reported in Tables C.8, C.9, and C.10, respectively. 

When the average force calculated from each of these walking trials was 

compared to the average static measures for the same body weight, the differences were 

found to be -14.36 N (-1.96%), -53.02 N (-7.47%), and -39.34 N (-5.54%), respectively. 

These tests of body weight demonstrated that absolute force values from the treadmill 

contained errors which were consistent, but relatively large. Therefore body weight 

measures could be compared to each other with little error, but when compared to 

measures taken with criterion devices, errors were large. 

C.B. Repeat of Body Weight Measurements 

Following the body weight calculations, one of the transducers was contaminated 

with moisture, resulting in fast signal reductions following a loading, effectively reducing 

the time constant. This transducer (E) was replaced with a new 208B02, "B" indicating 

hermetically sealed. Otherwise this transducer was identical to the 208A02 which it 

replaced. Following replacement, the new sensitivity value was entered into the 

conversion program. To verify that the system had not changed with this new transducer, 

the last two validation experiments were repeated: measurement of a body weight moving 

rearward on the treadmill and calculation of body weight from stationary and walking 

trials. 
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Table C.8: Body Weight Calculation from Walking at 4 kph 
Actual Body Weight = 782.88 

Trial 

1 

2 

3 

4  

Average  

Standard Deviation  

Measured BW 

746.97 
746.39 
744.65 
749.44 

746.86 
1.98 

Absolute Error  

-35.92  

-36.49  

-38.23  

-33.44  

-36.02  

1.98  

Percent Error 

-4.59 

-4.66 

-4.88 

-4.27 

-4.60 

0.25 

Table C.9: Body Weight Calculation from Walking at 6 kph 
Actual Body Weight = 775.10 

Trial 

1 

2 

3 

4 

Average 
Standard Deviation 

Measured BW 

758.44 
763.38 
770.52 
759.97 

763.08 

5.37 

Absolute Error  

-16.66  

-11.72  

-4.58  

-15.13  

-12.02  

5.37  

Percent Error 

-2.15 

-1.51 

-0.59 

-1.95 

-1.55 

0.69 

Table C.10: Body Weight Calculation from Walking at 8 kph 
Actual Body Weight = 775.10 

Trial 

1 

2 

3 

4 

Average 
Standard Deviation 

Measured BW 

737.66 
757.00 
750.06 
752.87 

749.40 
8.33 

Absolute Error  

-37.44  

-18.10  

-25.04  

-22.23  

-25.70 

8.33 

Percent Error  

-4.83  

-2.34  

-3.23  

-2.87  

-3.32 

1.07 
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C.8.1 Body Weight Moving Rearward 

The same method was used as above: a subject gently lowered himself onto the 

front of the treadmill belt and rode the slow-moving belt rearward. Two sets of such 

trials were conducted while force was measured. Zero was calculated from the force 

record prior to the weight application. For the first set of trials, body weight was 

calculated at the relative positions along the length of the bed. The results from these 

trials, demonstrating similar errors to the previous trials, appear in Tables C.11, C.12, and 

C.13. 

C.8.2 Calculation of Body Weight from Static and Locomotion Trials 

Several trials were performed in which body weight was calculated from static 

body weight or an integral number of walking or running strides. These results appear in 

Table C.14. 

From these trials it was apparent that the system had not changed with the 

replacement of one of the transducers. The treadmill apparatus remained more precise 

Table C.11: Total Body Weight Errors 
Trial 1 

Actual BW=789.56 N 
Trial Average BW (N) Absolute Error (N) % Error 

1 773.67 -15.89 -2.01 

2 782.40 -7.16 -0.91 

3 807.61 18.05 2.29 

4 809.22 19.66 2.49 

5 800.49 10.93 1.38 

Average I 794.68 5.12 0.65I 
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Table C.12: BW Along the Bed  
Trial 1  

Trial Average Front % Middle % Rear % 
Force Deviation Deviation Deviation 

1 773.67 770.42 -0.42 773.94 0.03 775.64 0.25 

2 782.40 767.87 -1.86 784.52 0.27 785.96 0.46 

3 807.61 812.25 0.57 805.95 -0.21 809.32 0.21 

4 809.22 798.25 -1.36 811.67 0.30 807.21 -0.25 

5 800.49 783.64 -2.10 805.94 0.68 798.34 -0.27 

I I IAverage I 794.68 786.49 -1.03 796.40 0.22 795.29 0.08 

Table C.13: Total Body Weight Errors  
Trial 2  

Actual BW=784.00 N 

Trial Average BW (N) Absolute Error (N) % Error  

1 794.69 10.69 1.36  

2 765.85 -18.15 -2.31  

3 799.85 15.85 2.02  

4 795.58 11.58 1.48  

Average I 798.99 I 4.99 I 
0.64 

than accurate, with a lower measurement of force than actual. Therefore the other 

validation tests were not repeated. 

C.9 Validation with Dynamic Loads 

To validate the ability of the treadmill to measure dynamic loads, a force hammer 

was employed. This device had a transducer at its head to measure force. The transducer 

was a 208A03 crystal from PCB Piezotronics, the same kind of transducer used in the 

http:BW=784.00
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Table C.14: Calculation of Body Weight  
Body Weight = 800.68 N  

Method Measured BW (N) Absolute Error (N) % Error 

Walk at 1.5 kph 793.67 -7.00 -0.88 

Walk at 1.5 kph 768.53 -32.15 -4.01 

Walk at 1.5 kph 767.76 -32.92 -4.11 

Run at 9 kph 761.73 -38.95 -4.86 

Stationary BW 762.68 -38.00 -4.75 

Stationary BW 750.85 -49.83 -6.22 

treadmill apparatus. A 408B signal conditioner set at DC-coupling provided comparable, 

if not equal, conditioning for the criterion measure of the hammer as compared to the to-

be-proven treadmill. 

The hammer was pressed into the treadmill bed along the midline of the belt. 

Rather than striking the treadmill, load was applied to the hammer for about a second. 

While this was not an impact normally associated with a hammer, it was more realistic 

for the loads which were applied to the treadmill during gait. 

The data for these loads were collected using a version of the normal collection 

program modified for faster data collection (VBDHMDMA.EXE). The original program 

was written to collect from seven channels; the seventh intended for synchronization with 

video. For this procedure the force hammer was connected to the seventh channel and 

only the scan rate was changed. To provide greater time-base resolution, a Keith ley-

Metrabyte DAS-1402 data acquisition board was used. This enabled data collection at 

2000 Hz, although page boundaries were a problem, limiting the length of the data 

collections. The universal drivers (Computer Boards Universal Library) allowed an 

upgrade to this board with the change of a single number in the code. 
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Conversion of the data was performed using the same Visual Basic program 

which converted all of the subject data. For these data no filtering was used. Again the 

program was written for seven channels of data. In this case the conversion factor for 

channel seven was changed from unity to 11.23 mV/lb (2.52 mV/N) corresponding to the 

hammer transducer. 

Following conversion, a spreadsheet was utilized to subtract the offset values, 

sum across transducers, and correlate the treadmill and hammer forces. When plotted as 

force versus time, the curves were very similar (See Figures C.11 and C.12). The only 

differences arose in the first tenth of a second when resonance was evident on the 

treadmill force curve. The low amplitude vibrations were superimposed on the general 

shape of the force curves from the hammer. A gross measurement of this vibration 

indicated the resonance to be at approximately 100 Hz. This was much lower than the 

value of 275 Hz measured previously . 

When the hammer (HM) and treadmill (TM) force curves were plotted against 

each other, the slopes were close to one as was the R2-value. See Figures C.13 and C.14. 

One loading provided a trend line at TM = 1.0043 * HM + 0.1665 N, R2 = 0.9995. 

Another curve yielded a trend line of TM = 1.018 * HM + 0.176 N, R2 = 0.9996. When 

impact was removed from these plots, the trendlines switched to TM = 0.9992 * HM + 

1.1411 N, R2 = 0.9998 and TM = 1.0122 * HM + 1.211 N, R2 = 0.9998, respectively. 

These curves were made with the load increasing to 250 N. 

More than two impacts were originally recorded. Because of page boundary 

limits, each of the data files was a second shorter then expected, cutting off some impacts. 

Another file was incorrectly triggered, missing the impacts altogether. Despite having 

only two trials, the data analyzed indicated validity of dynamic force measurements. 

While resonance may have been a concern if heelstrike was to be analyzed, filtering 

could have removed the bulk of the vibration from the signal. For the changes in force 

studied in gait, the validation with the force hammer proved they were accurate. 
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C.10 Repeatability 

To test the repeatability of the force measurements taken by the treadmill, specific 

tests were performed. These tests were designed to be very similar to actual testing 

conditions for the study which was undertaken. Two subjects walked and ran on the 

treadmill at four speeds: 1.4, 1.6, 1.8, and 2.0 m/s. The order of testing was to walk over 

the range of speeds, then run over the range of speeds. This series of trials was repeated 

three times within a day. Between each trial, the transducers were turned off, then reset. 

Because the experiment to be undertaken was to measure midstance vertical 

ground reaction force, these repeatability tests evaluated the same variable. Following 

testing, the analysis programs were used to pick off midstance and the corresponding 

vertical ground reaction force. For each speed and trial, the mean, standard deviation, 

coefficient of variation, and range of forces were calculated. These were summarized for 

each foot. See Tables C.15, C.16, C.17 and C.18: Repeatability Measures. 

With only two subjects an R-value could not be calculated. Instead two error 

terms were calculated: the mean of the differences between sessions and the mean 

squared error. The differences were calculated between sessions (1-2, 1-3, 2-3). The 

error score was the sum of the absolute values of the differences divided by the number of 

differences (three). The mean squared error was calculated as the square root of the sum 

of squares. 

For walking, the error scores varied from a low of 4.58 N (1.5% of average force) 

to 51.05 N (9% of average force). The corresponding mean squared errors were 3.45 N 

(1.1% of average force) and 38.60 N (7.0% of average force). When calculated for 

running, the lowest error score was 46.96 N (4.8% of average force) while the highest 

was 225.05 N (22.2% of average force). The corresponding mean squared errors were 

38.00 N (3.9% of average force) and 175.77 N (17.4% of average force). The lower 

bound of these errors were in the range of the average error calculated from static force 

measurements. While the largest errors were alarming, these were from two particular 



Table C.15 Repeatability Measures: Left Foot, Walking  
All Values are Midstance Vertical Ground Reaction Forces (N)  

Gait: Walk Walk Walk Walk Walk Walk Walk Walk 
Speed: Slow Slow Med Med Med-Fast Med-Fast Fast Fast 

Trial Subject: 1 2 1 2 1 2 1 2 
1 Mean 447.5 589.0 372.5 492.3 342.8 473.3 305.5 398.6 

SD 23.9 15.2 13.7 35.3 24.8 44.3 17.8 22.2 
CV 18.7 38.7 27.1 13.9 13.8 10.7 17.2 17.9 

Max 486.1 616.0 389.4 561.4 404.5 556.8 334.0 436.6 
Min 399.1 572.0 351.9 442.0 313.9 434.7 272.4 367.4 

2 Mean 457.1 544.9 398.6 498.6 336.4 462.3 286.6 414.7 
SD 10.3 10.6 17.2 18.6 16.1 24.1 24.4 32.8 
CV 44.3 51.3 23.2 26.9 20.9 19.2 11.7 12.6 

Max 472.1 556.4 428.1 518.5 359.7 495.8 319.4 458.3 
Min 442.2 527.7 374.2 472.9 308.1 420.2 239.0 364.3 

3 Mean 502.3 516.0 399.4 450.2 330.8 409.7 306.0 371.5 
SD 17.4 13.8 13.5 21.6 14.8 18.3 12.0 41.5 
CV 28.8 37.4 29.7 20.8 22.4 22.4 25.4 9.0 

Max 518.3 537.2 420.2 480.1 349.6 437.0 322.3 424.8 
Min 466.8 500.9 387.0 410.7 305.5 380.2 283.0 305.5 

Mean xl-x2 -9.6 44.1 -26.1 -6.3 6.4 11.0 18.9 -16.1 
Diff. xl-x3 -54.8 73.0 -27.0 42.1 12.0 63.6 -0.6 27.2 

x2-x3 -45.2 28.9 -0.8 48.4 5.6 52.6 -19.4 43.3 
Error: (N) 36.5 48.7 18.0 32.3 8.0 42.4 13.0 28.9 
MSe: (N) 29.3 36.8 15.3 26.3 6.0 34.0 11.1 21.9 



Table C.16 Repeatability Measures: Right Foot, Walking  
All Values are Midstance Vertical Ground Reaction Forces (N)  

Gait: Walk Walk Walk Walk Walk Walk Walk Walk 
Speed: Slow Slow Med Med Med-Fast Med-Fast Fast Fast 

Trial Subject: 1 2 1 2 1 2 1 2 
1 Mean 450.3 590.8 381.2 492.6 334.4 469.2 312.2 419.7 

SD 11.0 15.8 11.8 6.8 14.8 36.0 19.6 30.3 
CV 41.0 37.4 32.3 72.0 22.6 13.0 15.9 13.8 

Max 467.1 605.8 401.4 501.5 357.4 544.0 340.2 478.1 
Min 434.4 561.4 364.0 482.0 319.1 433.3 268.7 377.7 

2 Mean 450.0 544.0 404.1 502.1 348.0 460.0 308.1 427.3 
SD 14.2 16.2 15.5 13.2 16.0 19.0 15.5 34.7 
CV 31.6 33.7 26.1 38.0 21.7 24.2 19.8 12.3 

Max 477.0 555.2 423.7 520.6 373.9 489.6 337.0 483.1 
Min 429.8 506.0 377.2 483.1 324.7 433.5 287.6 390.8 

3 Mean 479.5 514.2 405.1 470.1 339.6 409.6 315.0 402.3 
SD 14.4 17.4 16.0 15.2 12.4 19.8 21.3 29.9 
CV 33.4 29.6 25.4 30.8 27.3 20.7 14.8 13.4 

Max 498.0 541.8 429.3 490.8 352.7 440.9 362.6 440.9 
Min 460.5 487.7 378.1 445.3 318.9 373.7 289.8 335.8 

Mean xl-x2 0.2 46.8 -22.9 -9.5 -13.6 9.1 4.0 -7.6 
Diff. xl-x3 -29.2 76.6 -23.8 22.5 -5.2 59.5 -2.8 17.4 

x2-x3 -29.5 29.7 -1.0 32.0 8.4 50.4 -6.9 25.0 
Error: (N) 19.6 51.0 15.9 21.3 9.1 39.7 4.6 16.7 
MSe: (N) 16.9 38.6 13.5 16.4 6.9 32.1 3.5 12.8 



Table C.17 Repeatability Measures: Left Foot, Runing  
All Values are Midstance Vertical Ground Reaction Forces (N)  

Gait: Run Run Run Run Run Run Run Run 
Speed: Slow Slow Med Med Med-Fast Med-Fast Fast Fast 

Trial Subject: 1 2 1 2 1 2 1 2 
1 Mean 1000.4 1389.9 1153.7 1418.9 1155.3 1401.1 1257.3 1475.7 

SD 50.1 32.8 51.7 27.4 51.8 30.7 26.4 34.4 
CV 20.0 42.4 22.3 51.8 22.3 45.6 47.7 42.9 

Max 1114.0 1435.5 1240.0 1476.1 1234.8 1429.3 1321.1 1528.1 
Min 943.2 1311.7 1071.0 1377.4 1066.5 1318.4 1207.3 1411.0 

2 Mean 952.9 1264.4 816.2 1263.0 1081.4 1315.0 1202.0 1367.3 
SD 47.2 48.2 330.2 20.8 45.4 33.4 33.5 31.2 
CV 20.2 26.2 2.5 60.7 23.8 39.4 35.9 43.8 

Max 1049.6 1369.5 997.0 1300.2 1169.3 1372.6 1272.5 1415.5 
Min 864.7 1184.0 61.7 1222.9 1019.2 1256.9 1157.2 1297.7 

3 Mean 1032.3 1387.1 1069.9 1445.7 1189.0 1437.5 1281.1 1466.8 
SD 56.4 41.6 56.6 21.5 40.1 31.2 31.9 51.1 
CV 18.3 33.3 18.9 67.4 29.7 46.1 40.2 28.7 

Max 1138.8 1454.5 1190.9 1490.4 1276.1 1483.7 1347.0 1539.9 
Min 963.3 1313.6 994.9 1409.4 1106.0 1385.9 1240.4 1371.4 

Mean xl-x2 47.5 125.6 337.6 155.9 73.8 86.1 55.3 108.4 
Diff. xl-x3 -32.0 2.8 83.8 -26.9 -33.8 -36.4 -23.7 8.9 

x2-x3 -79.4 -122.8 -253.7 -182.7 -107.6 -122.5 -79.0 -99.4 
Error: (N) 52.9 83.7 225.1 121.8 71.7 81.7 52.7 72.3 
MSe: (N) 40.0 71.7 175.8 98.7 55.0 62.9 40.6 60.2 



Table C.18 Repeatability Measures: Right Foot, Running  
All Values are Midstance Vertical Ground Reaction Forces (N)  

Gait: Run Run Run Run Run Run Run Run 
Speed: Slow Slow Med Med Med-Fast Med-Fast Fast Fast 

Trial Subject: 1 2 1 2 1 2 1 2 
1 Mean 1013.0 1381.9 1212.6 1447.5 1203.1 1421.8 1304.6 1496.7 

SD 36.2 34.2 61.7 20.7 76.8 27.7 42.5 30.2 
CV 28.0 40.3 19.6 70.0 15.7 51.4 30.7 49.6 

Max 1081.0 1433.9 1317.0 1475.7 1286.4 1499.4 1354.3 1537.6 
Min 966.4 1322.6 1115.9 1414.1 1026.9 1389.8 1200.2 1442.7 

2 Mean 942.6 1266.9 966.8 1288.2 1106.8 1343.2 1251.7 1365.0 
SD 47.6 38.8 30.8 26.6 33.2 19.1 25.4 31.2 
CV 19.8 32.7 31.4 48.3 33.3 70.3 49.3 43.8 

Max 989.0 1304.0 1015.5 1340.2 1157.7 1372.7 1291.6 1413.0 
Min 841.8 1188.4 927.8 1255.2 1043.0 1296.8 1208.7 1318.6 

3 Mean 1002.5 1388.3 1067.0 1417.8 1186.6 1433.7 1326.5 1461.0 
SD 37.4 30.5 54.0 16.6 46.1 32.3 19.0 52.5 
CV 26.8 45.6 19.8 85.5 25.7 44.3 69.8 27.8 

Max 1088.2 1446.9 1155.0 1444.1 1238.9 1486.2 1351.1 1562.7 
Min 947.6 1353.6 971.4 1379.7 1088.9 1373.7 1290.9 1386.9 

Mean xl-x2 70.4 115.0 245.8 159.4 96.3 78.6 52.9 131.7 
Diff. xl-x3 10.5 -6.4 145.6 29.7 16.5 -11.9 -21.9 35.8 

x2-x3 -59.9 -121.4 -100.2 -129.6 -79.7 -90.5 -74.8 -95.9 
Error: (N) 47.0 81.0 163.9 106.2 64.2 60.3 49.9 87.8 
MSe: (N) 38.0 68.3 123.6 84.7 51.5 49.2 38.4 68.1 
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speeds, with the other errors being substantially smaller. Furthermore, these large errors 

were from the running trials, which were used in only two of the statistical analyses. 

C.11 Discussion 

Many pilot experiments were conducted on the treadmill apparatus. From these 

tests some procedures for operating the treadmill were established. These procedures and 

other comments regarding the treadmill and possible future work are included in this 

discussion section. 

C.11.1 Apparatus 

Variability was noted in treadmill force values due to different pre-calibration 

procedures. To prevent such variation and prepare the transducers for measurement they 

were warmed up for at least two hours prior to testing. After this period the 484B02 

conditioners were grounded. When initially turned on, the 484B02's output values were 

above the collection range; grounding lowered the signals to measurable units. Directly 

prior to any force measurement a subject walked or ran on the treadmill for several 

minutes. This generated any offset that would occur in any of the transducers, 

particularly for channels 5 & 6. With the treadmill vacant, a zero-reading was taken. In 

running, zero-values were calculated during flight phases. If a long period of time passed 

between zero-value measurements, drift occured. This drift was due to the type of 

transducers and the length of their time constants. 

Two separate pilot experiments measured the natural frequency of the treadmill to 

be either 275 Hz or 100 Hz. While neither values should have caused a problem with 

the measurements conducted in this study, the large discrepancy between the two values 

is not easily explained. Perhaps two different sections of treadmill bed were tested in 

each experiment. More specifically, perhaps one set of impacts was directly over a frame 
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member, while the other set was over an area without close support by the frame. The 

resulting difference in bed stiffness could have attenuated the force transmission of the 

initial impact, perhaps lowering the natural frequency measured by the six force 

transducers. Alternately, it is possible that different treadmill locations and set-up 

procedures caused the different results. Perhaps the vertical adjustment of the transducers 

yielded improper support of the bed in one case, resulting in a lower stiffness and 

diminished natural frequency. 

For further experiments, especially those involving impacts of running, the 

treadmill should be mounted permanently on a solid floor, leveled with extreme care, and 

then tested for natural frequency over a range of locations on the bed. These values are 

expected to be at least 100 Hz. 

C.11.2 Treadmill Versus Force Plate 

A pilot study was performed to demonstrate the similarity in measurement ability 

between the criterion of the floor-mounted force plate and the force-measuring treadmill. 

Knowing that the treadmill was an accurate device, the majority of the variability was 

intrinsic to the subjects. 

If better validation and correlation is desired, the force plate vs. treadmill 

experiment should be repeated with more subjects with a wide range of body weights and 

running abilities. A greater number of trials, particularly on the force plate, would also 

help control for intra-individual variability. This experiment would quantify the kinetic 

differences between treadmill locomotion and overground or in-laboratory locomotion. 

Much research has been performed on the kinematic differences between treadmill and 

force plate running (Nigg, De Boer, & Fisher, 1995), but no literature has addressed the 

kinetic differences. 
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C.11.3 Possible Improvements to the Treadmill Apparatus 

The most important pieces of the treadmill measurement system were the 

transducers themselves. While the piezoelectric crystals used did not require balancing, 

they did drift over a trial. Kistler has produced a ground reaction force measuring 

treadmill which utilizes piezoelectric crystals. To allow approximately 30 min of data 

collection without more than 5 N drift they made a special amplifier which does not use 

time constants (R. Redd, personal communication, August 25, 1995). Such signal 

conditioning would be optimal if it could be made for the existing transducers. PCB 

Piezotronics should be offered this challenge. 

If such improvements are not possible and hardware improvements are desired, 

the sensors may be changed to minimize drift. Strain-gage devices or load cells should 

be considered as the replacements. Such devices may be much larger than the existing 

transducers, causing design changes to the supports and motor mounts. In addition, the 

load cells would require a new set of signal conditioning. 

When making such improvements, the ability and benefits of engineering the 

treadmill to measure all three (A-P, M-L and vertical) ground reaction forces should be 

considered. Both anterior-posterior and medial-lateral forces would be difficult because 

of the drive belt and the movement of the belt on which the subject walks. On the other 

hand, such a system should be feasible and may be able to provide qualitative, if not 

quantitative, information in these other two directions. 

Software is the key to collecting and analyzing data from the treadmill. Any 

improvements which would facilitate data collection and decrease the amount of time 

necessary to analyze the data should be considered. All of the existing software for 

collection, filtering, conversion, and analysis could be integrated into one package. 

Further modifications could easily be made to minimize analysis time. These changes 

would depend on the research directions and variables to be analyzed. 



172 

If desired, the A/D board and software could be upgraded to allow for 

biofeedback to the subject. For gait analysis or training, such variables could include 

stance time, peak vertical ground reaction force, average force, or impulse. 

C .1 1 .4 Summary 

The treadmill built for this experiment was valid for both static and dynamic 

measures. Extensive testing was performed to quantify the variability of the device. 

These results indicate that when the zero-value for the transducer was properly 

calculated, average errors could be expected to be approximately 30 N. The treadmill 

was also valid for dynamic loading. Several software steps forced baseline to zero force 

and compensated for drift. The overall result was a valid measuring device which was 

economical and rivals the commercially available force measuring treadmill. This device 

will remain at Oregon State University for the use of researchers in the Department of 

Exercise and Sport Science. 




