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Ponding of water on roof systems leading to collapse causes expensive damage and 

jeopardizes the life safety of building occupants. Current building codes and design 

specifications for flat roof systems offer minimal guidance in designing for ponding loads. 

The present research investigated ponding load effects on a long span, lightweight roof 

system. A numerical study confirmed the established ponding stability theory and found that 

pitch does not provide large benefits until it becomes steeper than required by current 

specifications. Two full-scale roof systems consisting of steel joists, steel decking, rigid 

insulation, lateral bridging and roofing membrane (one flat and one on a 1/48 pitch) were 

designed, built, and loaded to failure under ponding water to permit detailed investigation of 

ponding load effects. Experimental results showed that the responses of both roofs were 

similar, that failure in both cases resulted from buckling of the joist top chord angles near 

midspan and that the total load on the roofs exceeded the specified strengths. 

Recommendations for future designs include proportioning the roof structure to support 

accumulated water to the level of the parapet wall and designing decking for the maximum 

water load that can accumulate at the lowest elevation of the roof. 
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PREFACE 

 

This is my Master’s Thesis project. Through the Opportunity Plus program at Oregon State, 

offered by the College of Engineering and the University Honors College, I began this 

research as an undergraduate and wrote my Honors College thesis on the same topic. Much of 

what is contained here comes from that report. The research has been updated, expanded and 

completed, and the changes made here reflect that. There have been small updates to the 

literature review and numerical analysis sections, the experimental design section has been 

updated to reflect actual testing procedures, and the experimental results and conclusion 

sections are new. 

 

 



 

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF PONDING LOAD 
EFFECTS ON A STEEL JOIST ROOF SYSTEM 

 
 

INTRODUCTION 

 
Despite consideration of a variety of loads, most building codes and design specifications 

provide only minimal guidance to design and construction professionals on the effects of 

ponding. The lack of dedicated space in code is not reflective of the importance or 

complexity of this type of loading. Ponding related roof collapses are common, destructive, 

and potentially life threatening. They often occur without warning, and can be difficult to 

predict (Blaauwendraad, 2007). They have occurred on roofs made of a variety of 

materials, including wood, steel, concrete and aluminum (Haussler, 1962) (Moody and 

Salama, 1967). Failures due to these loads have occurred across America, in both northern 

and southern regions, regardless of climate. This type of loading and the continued collapse 

of engineered roof systems under such conditions demand more research, a better 

understanding of the phenomena, and more prescriptive design provisions in building 

codes. 

 

Definition 

 
The ponding condition can be defined simply as progressive deflection and resulting 

accumulation of load until either stability or collapse is reached. In a typical scenario, a 

nearly flat roof will collect a certain amount of load in the form of snow or standing water, 

which will cause deflection. Assuming water is available, it can fill this deflection to a 

certain height (to at least the height of the supports), and the deflection will create a still 
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larger volume for the water to fill. As more water flows in, the deflection increases, and the 

water level continues to rise. This process can continue to one of three end cases. First, the 

roof system could reach stability, in which case excess water will flow over the edges, 

leaving collected water to eventually drain or dry out later. Second, the roof system could 

approach stability, but reach an overload condition before stability, and fail because the 

loads are too large. Third, in the most dangerous case, the roof deflections could become 

large and unbounded rapidly so that the roof system will never reach stability. In this case, 

the roof will fail eventually due to overload. 

 

Ponding Stability 

 
There are two phenomena that lead to failure under ponding loads: overload due to load 

amplification, and instability. While the overload condition will be experimentally tested, 

as it is more common, stability is also investigated. Ensuring stability of a roof system is 

not a simple matter, as the literature demonstrates. Many factors play a role, including the 

effects of two way systems, support conditions, sloped roofs, camber, and the geometry of 

the system. The work done in the area has shown that ponding stability or instability can be 

determined and that there are various methods of doing so. The most simple and widely 

cited ponding stability criterion was initially published by Robert Haussler in 1962, for a 

flat, simply supported beam. This generally represents the worst case, and a safe way to 

ensure stability. It is reproduced in modified form here: 

 4 4EI BLπ γ>  (1.1) 

Where E is the modulus of elasticity, I is the moment of inertia, L is the length, B is the 

spacing between beams and γ is the unit weight of the fluid ponding on the roof. It is worth 
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noting that the ponding problem is purely geometric. In general, the stability of a system 

will depend on the properties of the members and their layout in the system. The properties 

that determine stability are internal to the system and do not include external factors, such 

as the initial load. 

 

If a system is stable, then as the load and deflections increase, they will approach a limit. 

This limit may be above or below the critical load to cause failure, but if an infinitely 

strong, yet flexible system is assumed, then a stable system will come to equilibrium and 

not fail. If a system is unstable, the load and deflection will increase unboundedly until 

failure is reached. In this case, if an infinitely strong yet flexible system is assumed, then it 

will simply deflect to infinity. This means that for an unstable system with water available, 

any initial imperfection or deflection that allows water to begin to collect will cause 

collapse. 

 

Causes of Ponding 

 
Ponding loads can be caused by either rain or snow loads. It is common for snow on a roof 

to melt as heat passes through the building membrane, which can lead to the ponding 

effect. Additionally, snow on a roof often acts as a sponge, absorbing rainfall, and 

increasing the loads on a roof. Rain after a snowstorm may produce some of the heaviest 

loads a roof will experience, and can lead to ponding. 

 

Several things must be present in a roofing system for it to be susceptible to ponding loads. 

First, it must be a relatively flexible roof. Without this quality, the roof will not deflect 
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enough to collect additional water to create a ponding situation. Also, a roof must either be 

relatively flat or sloped with some form of a parapet that allows collection of runoff water. 

Other issues that can exacerbate the problem include blocked, misplaced, or missing drains 

or scuppers and initial sag due to mechanical units or other unexpected dead loads. One 

problem to be aware of is that often, drains are placed near columns (Kaminetzky, 1991). 

This can be a problem because as the roof deflects under load, the points at columns will 

be the high points, and there is little sense in providing a drain at a high point. 

 

Over the last century, there has been a trend in construction towards stronger materials. By 

using high strength materials such as steel, more efficient, long span roofs made of smaller, 

shallower and more slender building components have been possible (Bohannan and 

Kuenzi, 1964). This trend is epitomized in the efficiency provided by open web steel joists: 

very slender elements made of strong but ductile materials can lead to very efficient but 

very flexible structural units. While they allow for more efficient designs, high strength 

materials and flexible roofs require careful attention to detail to prevent ponding. 

 

Prevention 

 
It may appear to be a simple matter to ensure that a roof is stable and strong enough to 

withstand these loads, yet buildings continue to collapse under ponding loads. The problem 

in practice is that systems that are stable under the criteria provided in the literature and in 

the design specifications still experience ponding effects. A beam that is close to the 

critical ratio will be subjected to an amplification of the loads it experiences. A beam that 

is stable and strong enough to hold loads will still deflect, allowing larger loads to collect 
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on the system. The problem in design is that this amplification factor is not accounted for 

in roof systems that provide a slight pitch. The two simplest ways to avoid ponding are to 

either increase the pitch of the entire roof, or to provide more drainage in better locations 

(midspan), and conduct regular maintenance and inspection of the drainage systems. While 

not a cure for the problem, providing additional camber to steel joists or to the roofing 

system will help to reduce the effects of ponding loads. A cambered roof will collect water 

first at the edges, instead of at midspan, which produces much smaller bending moments 

and stresses in the system. This can easily be the difference between a failed and a safe 

roof. 

 

Data Collection 

 
The first thing any researcher will find regarding structural failures is that it is incredibly 

difficult to get data. It is hard to find any relevant, important, accurate data at all, let alone 

a comprehensive collection of information on the subject. It seems as though failures do 

not like exposure. In an article published in June 1981, a forward looking author wrote 

about the lack of available information on structural failures (ENR, 1981): 

“Large-scale structural failure is a nightmare that haunts the construction 
industry. The financial devastation, the demolished reputations and the 
loss of life that could result from collapse have troubled the sleep of 
probably every architect, engineer, contractor or owner at some time. 
This frightening quality of failures almost guarantees that they will 
continue to happen. Fear, embarrassment and the gag of interminable 
lawsuits have kept information on failures from traveling quickly enough, 
what little of it gets into general circulation at all. 
The way to dispel a nightmare is to attack it with hard fact, with eyes open 
wide and the mind alert… 
…A more promising development is the Engineering Performance 
Information Center. Its developers hope eventually to set up repositories 
for information on all types of failures, in a standardized format that would 
permit the comparisons necessary to develop an understanding of how 
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failures can be prevented. This availability of complete and accurate 
information could be the first step towards shaking the dread of collapse.” 

 

The result of this work was the Architecture and Engineering Performance Information 

Center, established at the University of Maryland in 1982. The center no longer exists in 

this form, and could not be found elsewhere. It is likely that the “Fear, embarrassment and 

gag of interminable lawsuits” kept support from reaching the volume required to make it 

useful. A data center as described here would be incredibly valuable, and could lead to 

fewer structural failures in the future. 

 

The best information obtained regarding failures, roof collapse and ponding loads came 

from the Factory Mutual Insurance Company (FM Global). They provide public data 

sheets on their webpage regarding the safety of a variety of commercial buildings and 

equipment. FM Global Public Data Sheet 1-54 provides information relevant to structural 

roof collapses, and some important statistics. An employee was also contacted for more 

specific information. 

 

According to FM Global statistics, more than 1700 roof failures occurred over the twenty 

years from 1977 to 1996 (FM Global, 2006). FM Global states that the primary cause of 

overloading that leads to these failures is ponding of water in roof depressions. Their 

statistics show that the majority of these failures occur on flat roofs, and that blocked or 

inadequate drainage systems are a large contributor to the ponding problem. In a phone 

conversation with an employee at FM Global, it was noted that roof collapse is a serious 

problem, and that roof failures are typically very expensive, but that the number of deaths 

is small. It was also pointed out that the majority of roof collapses are due to snow and 
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rain, and that collapse is a much larger problem in the southern states, as rainfall intensity 

is higher, and resistance to loads is often lower, due to lower design snow loads. 

 

FM Global also provided financial data on the costs involved in roof collapse. The data 

provided is representative of all roof collapses that were insured by FM Global, and 

provides the data both by number of failures and by the costs of those failures. This data 

shows that the average cost of a roof failure is around $770,000 and the total cost in 2007 

dollars over the last 20 years is almost a billion dollars, which illustrates how costly these 

failures are. In the first set of data, the failures are divided by the type of load; in the 

second set, they are divided by type of construction. From the first set, shown in table 1, it 

can be seen that the two most damaging loads, by expense, are snow and rain. From the 

second set of data, shown in table 2, it can be seen that the two most damaged roofing 

systems, by cost, are metal buildings and steel decking on a steel frame, indicating that 

flexible materials more often lead to failures. Together, this data indicates that the ponding 

effect is a very strong contributor to roof collapse. 

Table 1: Roof Collapse Data by Load, 1986-2005: 
Probable Overload Cause No. of Losses Indexed Gross 2007$
SNOW, ICE, HAIL 730 $588,739,011
RAIN, ETC 255 $219,910,829
FIXED EQUIPMENT LOAD 16 $40,473,920
MISCELLANEOUS OVERLOAD 90 $33,761,599
CEMENT, SAND 15 $13,511,047
SNOW, ICE EQUIPMENT OVERLOAD 21 $12,988,698
STORAGE 55 $10,788,188
MISCELLANEOUS MATERIAL 4 $4,526,282
SAWDUST, CHIPS 9 $4,434,785
TEMPORARY EQUIPMENT LOAD 16 $4,006,022
Grand Total 1,211 $933,140,380  
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Table 2: Roof Collapse Data by Construction, 1986-2005: 
Type of Construction No. of Losses Indexed Gross 2007$
All Metal Buildings 116 $369,027,896
Steel Deck on Steel 141 $207,629,811
Not Classified by Construction Type 779 $181,675,505
Concrete on Steel (Exposed) 22 $49,147,899
Boards on Joists 81 $42,292,682
Plank on Timber or Steel 24 $30,942,251
Plywood on Laminated Beam 23 $25,914,381
All Concrete (No exposed steel) 11 $14,050,841
Plank on Laminated Timber 7 $8,990,095
Miscellaneous 7 $3,469,019
Grand Total 1,211 $933,140,380  

To put this data in perspective, it is important to note that it only represents losses from the 

companies FM Global ensures, which include about one third of S&P 1000 companies. FM 

global does not track deaths in their statistics, but other estimates indicate that roof 

collapses cause about 20 deaths yearly (Senteck, 2008). They also lead to huge financial 

costs and delays to companies, which could force some smaller companies to close.  

 

Case Study: New OSU Energy Center 

 
The best way to get a good practical understanding of how these types of roofs (steel deck, 

steel joist) are put together is to look at an actual example. The new OSU Energy Center, 

which is a replacement and upgrade to the old facility, will have about 23 thousand square 

feet (2137 square meters) of building space and produce enough energy to power about 

half of campus. This facility provides an interesting example of steel joist roof design. A 

typical roof will be pitched to the edge so that rain runs off into gutters. This roof, 

however, is pitched in both directions, so the rain from either side collects in the middle of 

the building. 
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The structure will use a steel deck roof supported on steel joists. The membrane roofing 

system will consist of a two ply SBS modified bitumen roofing system on ½ inch (12.7 

mm) Georgia Pacific DensDeck insulation. Based on the design drawings, the joists of the 

highest roof are 30 ft (9.14 m) 16K9 joists spaced at 7.5 ft (2.29 m), and are welded to their 

supports. These joists are shorter than typical, but their strength is representative of roof 

loads in the area. Figure 1 shows the roof after the joists have been installed and figure 2 

shows the roof with the deck, then insulation installed. 

  
(a)      (b) 

Figure 1: OSU Energy Center, (a) November 15, 2007 (b) November 15, 2007 

  
(a)      (b) 

Figure 2: OSU Energy Center, (a) November 30, 2007 (b) February 25, 2008 
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Research Goals 

 
While there is a lot of knowledge in the literature regarding ponding loads, little of it has 

been incorporated into the design code. The ponding checks given in the code are brief 

when compared to the number of observed failures and the incurred costs over the past 

twenty years. It is hoped that this research will help create a better understanding of the 

ponding phenomenon, including how a roof deflects and how the loads are carried. 

Hopefully, the results will illustrate the joist deflection and strength, how the roof structure 

fails, what the load distribution looks like at failure, and what contribution the ponding 

effect makes to the load. A better understanding of ponding could reduce the number of 

failures, reduce costs, and prevent deaths by improving roof designs. 
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BACKGROUND 

 
Literature Review 

 
Although roof collapses have been a major concern for quite some time, collapse due to 

this specific load scenario was not studied until the 1960s. The literature comes from a 

variety of sources, and variables are defined differently by different authors. For this 

reason, all variables will be defined with the equations containing them. 

 

The first paper written on the topic was published in 1962 by Robert W. Haussler 

(Haussler, 1962). In this paper, the author begins by assuming that the roof structure is a 

simply supported beam, and that deflections can be approximated by a half sine wave. 

Many authors use this approximation, as it makes the mathematics much simpler, and is 

only slightly conservative. He also assumes that the ponding fluid is not held by any wall, 

but only rises to the level of the supports. Using this as a starting point, he finds that for a 

stable system under water loads: 

 
4

4

EI
L
π γ>  (2.1) 

Where E is the modulus of elasticity, I is the moment of inertia per inch of width, L is the 

length and γ is the unit weight of the fluid. If a roof is flat, provided with adequate 

drainage, and meets this stability requirement, then it will be safe from ponding loads. He 

also states that any roof built on an adequate slope will not experience ponding loads, as 

water will simply run off. 
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Haussler provides a very simplified method for calculating the required slope for a safe 

roof. He suggests the designer choose an initial slope, then use local rainfall data to 

estimate a depth at the low end. By assuming this depth is constant across the roof (a very 

conservative and simple assumption), an end rotation can be calculated. This rotation can 

then be used as a conservative value for the safe pitch of the roof.  

 

Finally, Haussler notes that the analysis of complex roof structures (those with primary and 

secondary members) could be handled by using the sum of individual deflections. A 

designer could apply a 5 psf (239 Pa) load (approximately one inch or 2.54 cm of water), 

then sum the resulting deflection of each system. If this deflection is greater than an inch 

(2.54 cm), then ponding will probably be a problem. He also considers long span systems, 

and concludes that the common code live load limit of a fraction of the length (live load 

deflection limited to L/360) is meaningless with respect to ensuring ponding stability. The 

equation Haussler arrived at, equation 2.1, is not dependant on the live load at all. A better 

limit to ensure ponding stability would be a ratio of deflection to load (1/2 inch per 5 psf or 

1.27 cm per 239 Pa).  

 

Two years later, analysis of ponding loads superimposed on existing load cases was done 

(Bohannan and Kuenzi, 1964). The authors began by assuming linear elastic behavior and 

a sinusoidal deflected shape. Using energy methods, the authors determine that the work 

done by the load will be less than the energy in the beam if: 

 
4

4

EI k
a
π

>  (2.2) 
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Where E is the modulus of elasticity, I is the moment of inertia, a is the length and k is the 

unit weight of the fluid times the beam spacing. They conclude that if the inequality is not 

satisfied, then the work done by the load will be greater than the bending energy, and the 

beam is unstable. This is essentially a confirmation of the work of Haussler. The authors 

continue, however, to expand the work to the case of an original distributed load in 

addition to the ponding load due to the deflection. The midspan deflection resulting from 

both loads can be calculated as: 

 
4

0
4

4
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384 1

w a
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EIπ

Δ =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (2.3) 

Where w0 is the initial uniform distributed load and all other variables are as previously 

defined. Note that this equation is simply a combination of the critical ponding criteria and 

the deflection due to a uniform distributed load. It is also good to notice that as a system 

approaches the limits for stability as defined in equations 2.1 and 2.2, this expression goes 

to infinity, and that the ponding effect amplifies the deflection due to initial loads by the 

factor: 

 4

4

1

1 ka
EIπ

−
 (2.4) 

As a result, the stresses in the materials are also increased by the same factor. The authors 

also go on to solve the problem for the case of a point load with additional ponding effects, 

and they repeat the analysis for both loading cases under fixed end conditions instead of 

the simply supported case. The theory was then tested with small aluminum beams. The 

experiment was set up with three cases. In the first, the total deflection should have been 

twice that under dead load alone, in the second, four times, and in the third case, the beam 
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was designed to be unstable and deflect to failure. The experiment verified the theory. The 

largest difference between the predicted and experimental results was the discrepancy 

between the theoretical and actual deflections under uniform loading, signaling that the 

greatest uncertainty was not in the ponding theory. 

 

Less than a year later, a paper regarding the failure due to overload of these simply 

supported flat roofs under ponding loads was published (Chinn, 1965). The author expands 

on the problem of overload of stable roofs. First, Chinn determines that the final deflection 

of a beam under ponding loads is: 

 4

41

dD
L
EI

γ
π

=
−

 (2.5) 

Where d is the initial deflection, γ the fluid unit weight times the beam spacing, L the 

length, E the modulus of elasticity of the material and I the moment of inertia. As in the 

Kuenzi and Bohannan paper, it is clear that as the system approaches the limits of the 

requirements for a stable system as outlined in equations 2.1 and 2.2, the final deflection 

will go to infinity. Chinn then solves for the maximum stress in a beam under ponding 

loads: 

 
2 2

0
4 4

M c L EcdF
I EI L

γ π
π γ

= +
−

 (2.6) 

Where M0 is the moment due to the initial loads, c is the distance from the neutral axis to 

the extreme fiber, and all other variables are as previously defined. This assumes that a 

beam will fail when it becomes inelastic. This equation allows an engineer to calculate 

when a stable system will fail due to overload, and could be used by a designer to choose 

an appropriate value for the moment of inertia of a member to prevent this failure mode. 
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The theory was then expanded to consider the effects of a two way system (Marino, 1966). 

Until now, all equations only considered a one way system bending independently of the 

supports. This paper treated the system as one with secondary members holding the load 

and supported by primary members that collect the load and transfer it to columns.  

 

In a two way system, the primary members hold up the secondary members. The secondary 

members are more closely spaced, and have less strength than the primary members. The 

critical secondary member is the one at the center of the span of the primary member 

because it will be at the lowest elevation, thus incurring the greatest load. The author 

assumed that all of the primary members will deflect together so that a single bay can be 

analyzed as a unit, and that all deflections are sine waves. He also assumed that a 

theoretically stable system will not fail in overload conditions. From his analysis, Marino 

concludes that: 
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And: 
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Where Δ is the midspan deflection of a primary member, and δ is the midspan deflection of 

the critical secondary member. Subscript w indicates after the fluid load, subscript 0 
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indicates before the fluid load. The parameters α are defined in terms of flexibility 

constants: 
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C

α =
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 (2.9) 
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 (2.10) 

And these flexibility constants are defined in terms of the properties of the system, 

reflecting the critical ponding criteria already outlined in previous literature: 
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Where s indicates secondary and p primary, S indicates the spacing between secondary 

members, L the length of the members, E the modulus of elasticity, I the moment of 

inertia, and γ the unit weight of the fluid. 

 

Marino went on to make simplifying assumptions that make these equations easier to work 

with, and, using a factor of safety of 1.25, creates design aides based on the important 

properties of these systems. This analysis is now the basis of the improved AISC steel 

manual check for ponding. Marino concludes by stating that the easiest method of 

preventing this type of collapse is to provide sufficient slope to adequate drainage. He 

claims that 1/8 inch per foot (3.175 mm per 30.5 cm) should be sufficient, but notes that 

roof drainage can be complex and should be analyzed in more detail for roofs of this pitch. 
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Soon thereafter, the theory was expanded to cover several variations on the ponding 

problem (Moody and Salama, 1967). The authors expand the theory to include beams with 

different support conditions, ponding loads on plates, and they are the first to draw a 

connection between the ponding problem and steady state vibrations.  

 

They begin by restating Haussler’s inequality for a simply supported beam, rearranged to 

identify the critical stiffness. The authors go on to calculate the critical stiffness for beams 

and plates with varied supports. Throughout, the authors use superposition and a set of 

differential equations with appropriate boundary conditions. They solve the problem of the 

critical stiffness under ponding loads for a beam with supports that are simple-fixed, fixed-

fixed, continuous over three supports with fixed ends, and continuous over any number of 

supports with simple supports. They also solve the problem for plates simply supported on 

all edges, simply supported on two edges and fixed on the others, fixed on all edges, and 

continuous over several simple supports. The results are summarized in figure 3: 



 
 
 

18 

 
Figure 3: Critical stiffnesses by boundary conditions (Moody and Salama, 1967) 

Whereγ is the unit weight times the beam spacing, L is the length, and a and b are the edge 

dimensions of a plate. The authors also note that the ponding problem is analogous to 

steady state forced vibrations. They relate the idea of the critical stiffness to the natural 

frequency of the member. This is useful, they assert, because there has been much more 

work done on the problem of steady state vibrations than ponding, so to relate the two 

would open up additional approaches for study of the ponding problem. In this analogy, the 

critical stiffness is analogous to harmonic vibration: as the period of a forcing function 

approaches the natural frequency, deflection becomes unbounded, just as deflection 

becomes unbounded when the stiffness of a beam or plate equals the critical stiffness. 

From this analogy, it is concluded that the critical stiffness can be calculated if the natural 

frequency of the beam or plate is known:  
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For Plates: 
2

cr

m
D D
γ ω⎛ ⎞ =⎜ ⎟

⎝ ⎠
 (2.13) 

For Beams: 
2

cr

m
EI EI
γ ω⎛ ⎞ =⎜ ⎟

⎝ ⎠
 (2.14) 

Where γ is the unit weight of the liquid, D and EI represent flexural rigidity, m is the mass 

per unit length or unit surface area, and ω is the natural frequency. The authors conclude by 

comparing the critical stiffness value for beams to the Euler buckling load for columns, and 

suggest that it should be used similarly as a critical design value. 

 

Authors began attempting to create simple aides for designing for ponding (Sawyer, 1967). 

Donald Sawyer starts by re-deriving Haussler’s original inequality. Sawyer sets the 

ponding critical stiffness criteria equal to a new value he terms the Criterion Ratio: 

 
4

4

BLR
EI

γ
π

=  (2.15) 

If the Criterion Ratio (R) is greater than unity, then Sawyer calls the beam supercritical. If 

the criterion ratio is equal to one, the beam is critical, and if it is less than that, it is 

subcritical. 

 

Supercritical beams will fail with sustained rain or snow that allows the roof to continually 

deflect and collect load. This analysis of supercritical beams is only applicable for a set 

amount of water, that is, if conditions are such that water is not continually entering the 

system. Based on the criterion ratio and the design plots provided in figure 4, a designer 

should be able to calculate maximum moments, maximum deflection, and maximum 

weight. 
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Figure 4: Design guide (Sawyer, 1967) 

After getting the values from the plots, the important properties of the supercritical beam 

can be calculated: 

 f ws sW C BY Lγ=  (2.16) 

 f
m
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W
Y

C BLγ
=  (2.17) 

 f f mY C Y=  (2.18) 

 2
m ms mM C BL Yγ=  (2.19) 

Where Wf is the total weight of the load, Ym is the maximum deflection, Yf is the midspan 

liquid depth, Mm is the maximum moment. Ys is the end depth of the liquid, γ is the unit 

weight of the liquid, B is the spacing, L is the length of the beams and the parameters Cws, 
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Cf and Cms are from figure 4. This analysis is somewhat limited in the fact that it only 

applies to the situation where a set amount of liquid sits on the structure. For this specific 

case, this method makes the calculations simpler from a design standpoint. 

 

It is more interesting, however, to study subcritical beams to determine when they will or 

will not fail, especially because most practical beams are subcritical. A general solution 

should allow for any depth, initial camber or sag, pitch, and include the effects of a two 

way system. The author constructs some curves that help identify parameters regarding 

subcritical beams. The use of the plot in figure 5 requires the designer to calculate both the 

Criterion Ratio, as well as a parameter, α, as defined individually in each plot, based on the 

degree of camber of the beam. From the plot shown in figure 5, a designer can find Cy for 

cambered or non-cambered beams, and Cw and Cm for cambered beams: 
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Figure 5: Design guide (Sawyer, 1967) 

From these parameters, important properties of the subcritical beam can be calculated: 

 f w sW C BY Lγ=  (2.20) 

 t y sY C Y=  (2.21) 

 2
m m sM C BY Lγ=  (2.22) 

Where Wf is the total weight of the load, Yt is the midspan deflection, Mm is the maximum 

moment, Ys is the height of the liquid above the supports, and Cy, Cw and Cm are values 

pulled from the plots. The values are important because they will let a designer determine 

whether a beam will fail under ponding loads, even if it is part of a subcritical system. 
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It is clear that initial upward camber is beneficial to preventing ponding from occurring, 

but the author notes that caution should be used. Camber should not be used to replace the 

additional benefits provided by increasing the beam stiffness because as the depth of water 

approaches the height difference provided by the initial camber, the rate of deflection 

increases rapidly. For this reason, some roofs could perform well in some events, but fail 

under slightly heavier loads, depending on how close to this tipping point the system gets. 

 

Sawyer also provides plots that allow a designer to calculate the maximum shear and 

moments in a beam on a slope, which is useful, as many sloped roofs should also be 

checked for ponding problems. He notes that in the current AISC specifications, (1963 Ed.) 

the check for ponding stability was disregarded for anything but a completely flat roof. He 

points out that some sloped roofs, if the slope is shallow enough, will still experience the 

ponding effect, and it is unacceptable to ignore this loading because a nominal pitch is 

specified. Sawyer argues that if it is reasonable to expect the water level to rise above the 

high end of the roof by at least one half of the depth at the low end, then the roof should be 

treated as flat. The plots he provides again require the user to calculate the Criterion Ratio 

and a parameter α based on the initial camber. The plots are shown in figure 6: 
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Figure 6: Design guide (Sawyer, 1967) 

Based on the values for the coefficients Cv and Cm from these plots, the maximum shear 

and moments can be calculated by equations 2.23 and 2.24: 

 2
m m sM C BY Lγ=  (2.23) 

 f v sV C BY Lγ=  (2.24) 

Sawyer goes on to discuss roof systems under ponding loads. Roof systems are more 

complicated than the simple one member case for several reasons. The variables are 

essentially compounded and interact in various ways. Sawyer treats the system in pairs of 

framing members. In each pair, he assigns a host (supporting members) and a parasite 

(supported members), and uses the properties of the parasite to modify those of the host. 

His procedure calls for the modification of the host Criterion Ratio by a factor of the 

parasitic member’s Cw. First, R values are calculated. Next, starting at the top of the 

system, a Cw value is found for the parasite, and multiplied by the host’s R to find the 

host’s effective R value. This new R is then used in the next iteration when the host is 

treated as the parasite. In this way, the modifications of the Criterion Ratio compound, and 
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a system that looks sound at first glance may by further analysis not be adequate. This 

method is more involved than the one presented by Marino for two way systems. 

 

Later, Salama and Moody expanded their study of beams and plates (Moody and Salama, 

1967) to those with a nonlinear response (Moody and Salama, 1969). Following a complex 

analysis, they outlined an iterative procedure for calculating the response of these 

members. They conclude that for these nonlinear-elastic members, the initial load is an 

important factor on the final response, which is in contrast to what other authors have 

shown for linear-elastic beams and plates. It is doubtful that much of this work would be 

useful in a design situation, as materials are generally assumed to be linear elastic. The 

authors outline a complex iterative analysis technique, but provide no simple method of 

analysis. 

 

That same year, an article was published that investigates subcritical beams with various 

loading conditions and the effect of initial imperfections on the ponding factor (Adams, 

Chinn and Mansouri, 1969). The authors begin with the usual assumptions, and analyze a 

simply supported beam with a fluid filling the depression formed in the middle of the span. 

They solve the governing fourth order linear non-homogeneous differential equation, and 

arrive at the same equation Haussler published years earlier. The authors provide equations 

for the maximum deflection, maximum moment, and beam end rotations for beams with 

ponded water superimposed with a point load, a distributed load, applied end moments, 

and nothing. The equations published are long and numerous; they will not be reprinted 

here. 
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The authors go on to investigate the effects of initial imperfections on ponding loads. They 

express the deflection in a Fourier sine series, which shows that the critical ponding factor 

is not dependant on the type of loading. They point out that a numerical solution would 

require truncating the series to the dominant term to get an approximate value of the 

internal forces. A more accurate method would be to treat the loads from the liquid in the 

depression separately from everything else. It has been shown that deflection is linear with 

initial imperfections and loads, so this analysis would work by superposition of all sources 

of deflection (Moody and Salama, 1967). 

 

Again, engineers began trying to make the analysis simpler and more suitable for use in 

design, this time for two way systems (Burgett, 1973). The author simplified the existing 

plots and equations, which were based on the work of Marino, and produced just two 

simple equations. Roof framing systems were identified as stable if: 

 0.9 0.25p sC C+ ≤  (2.25) 

 
4 625 10dI S −≥  (2.26) 

Where Id is the moment of inertia of the deck, S is the spacing, and Cp and Cs are defined: 
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Where L is span length, I moment of inertia, and the subscripts p and s represent the 

primary and secondary systems, respectively. Burgett also included graphical 

representations of these expressions for both deck and framing checks. This approach has 
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now been incorporated into the AISC code, in appendix 2, design for ponding, as the 

simplified design for ponding. 

 

The same year, a paper was published that focused specifically on truss behavior under 

ponding (Chao, 1973). The author studied a specific structure: warren, pin connected, 

simply supported trusses. Using a set of differential equations, Chao solves for the joint 

displacements in the x and y directions for every node of the truss. The solution for the 

nodal displacements lists the displacements as functions of several variables: several 

parameters, a, defined in equations 2.29 to 2.34, the number of panels in the truss, n, and 

an arbitrary constant C. 
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 ( )4 2 tana a= Θ  (2.33) 

 ( )5 3 tana a= Θ  (2.34) 

Where γ is the fluid unit weight, s is the spacing of the trusses in the one way roof, d is the 

width of a panel, A is the cross sectional area, E is Young’s Modulus, and Θ is the angle 

between chord and web members. The subscript w is for web, t for top chord, and b for 

bottom chord. The truss geometry and parameters are illustrated in figure 7: 
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Figure 7: Truss (Chao, 1973) 

With these parameters established, the solution for the nodal displacements is: 
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Where u and v are the displacements in the x and y directions, respectively. The parameter 

k is an index that represents the number of the panel point node. The subscripts t and b 

indicate either the top or bottom chord. Chao goes on to determine a stability condition 

requirement for trusses under ponding loads. He defines this condition in terms of the 

parameter β: 
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 (2.39) 

Based on this value of β, stability is mathematically assured if: 
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n
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By making some simplifying assumptions, this equation can be shown to be equivalent to 

the stability equation other authors have found (equations 2.1, 2.2, 2.15 etc.) These 

simplifying approximations are shown to be reasonable for large values of both n and the 

ratio AwEw/AtEt. Chao was the first to note that the typical 15% reduction in the moment of 

inertia to account for shear deformations may not be appropriate, and suggested that a 

better approach would be to use n and AwEw to adjust the critical load. 

 

More analysis was published on the topic of two way systems (Avent and Stewart 1975). 

The stated goal of the paper was to come up with an analysis method that was more 

accurate than the work of Marino, but more efficient for design use by the typical engineer. 

The general approach was the formulation of a set of differential equations solved by 

Fourier series analysis. The result of this analysis is an inequality that provided a check for 

the stability of the primary members. As the authors point out, the stability of the 

secondary members should still be checked by the same criteria that other authors have 

published. By these calculations, the primary members of a two way system are stable if 

equation 2.41 is true: 
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Where H is the Criterion Ratio as defined by Sawyer, and σ values are defined as: 
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Where n is the number of bays parallel to the secondary members and m is the number of 

bays parallel to the primary numbers. This solution provides a simple check for ponding 

stability in the primary members and is, according to the authors, more accurate than any 

other previous approach. The authors go on, using the same method, to find the maximum 

moment in a primary member. The equation they developed was a double summation, and 

would take time to use as an office tool. When used, however, it would help a designer 

determine whether a member would fail from a typical load combined with ponding, even 

if it meets the stability criteria. 

 

Richard Avent published another article on the topic the following year. He analyzes the 

deflection of steel joists under loads, including ponding loads (Avent, 1976). He notes that 

the deflection of these structural units is often important, and that not much work has been 

done on the subject. He analyzes the idealized warren truss, which is the configuration 

used in most joists today. The configuration as illustrated by the author is shown in figure 

8: 

 
Figure 8: Joist (Avent, 1976) 

The author began by improving what had been the equation for calculating the effective 

moment of inertia in a way he claimed was much more accurate than previous methods. He 

used this and calculated equations that govern the motion of each of the nodes in the truss 

with increasing load. The resulting equations resemble those published by Chao in 1973. 
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There are equations for the displacement of a node on each axis, for top and bottom nodes. 

The results produced the same stability criteria for joists as found by Chao. The author 

noted that stability can be determined, but that designers should calculate deflection and 

stresses to ensure that a stable system does not fail. To increase the ease of these 

calculations, the author determined simple equations to be used in design that very closely 

approximate the maximum chord and web member forces. The maximum top or bottom 

chord force is: 

 
( )max 1

sMF
h G

=
−

 (2.44) 

And the maximum web bar force is: 

 max
sin

1
sVS

G
θ

=
−

 (2.45) 

Where Ms is the maximum moment due to non-ponding loads, Vs is maximum reaction due 

to non-ponding loads, h and Θ are as defined in figure 8, and G is the Criterion Ratio as 

defined by Sawyer. These equations provide simple estimates for the forces experienced by 

the members in a warren truss, and should be useful to steel joists designers. 

 

Thus far, analysis of ponding loads on sloped roofs has been minimal. Bin Chang and Ken 

Chong presented a paper on this topic to the World Congress on Space Enclosures in 1976 

that was published the next year in the Forest Products Journal (Chang and Chong, 1976) 

(Chang and Chong, 1977). In the paper, the authors assume that the height of ponded water 

at the low end of the sloped roof is zero, allowing for water to collect only in the deflected 

shape below the low support point. This is limiting in that the analysis only allows for this 

single load case. The results of this analysis show that the deflection due to the ponding 
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effect is dependent on the initial loads and deflection. However, no results are given as to 

how the stability of such a system changes from that of the flat case. 

 
Figure 9: Sloped beam ponding setup (Chang and Chong, 1977) 

Based on the geometry shown in figure 9, the authors determine that the deflection due to 

ponding loads only, yp, can be expressed as a function of the total deflection, A, the angle 

theta, the length, L, the stiffness, EI, and the unit weight times the spacing, λ: 

 ( )( )
4

14 9
1440p

LEIy A Lλ
= − Θ  (2.46) 

It can be shown that when the angle is zero, this expression reduces to that found by Chinn 

(equation 2.5). It should also be noted that by increasing the angle, the deflection due to 

ponding is decreased. In fact, if the angle is increased to 14A/9L then there will be no 

deflection due to ponding. Because A is typically very small compared to L, the angle 

required to eliminate ponding deflection effects is typically very small. In general, a slight 

pitch should be sufficient to avoid these loads. This equation allows some insight to the 

ponding problem on sloped roofs, but is limited, as it does not provide an explicit equation 

for the stability criteria of a sloped roof. 

 

A new set of stability equations designed for office use were formulated and became 

candidates for inclusion in the specifications, and some engineers spent some time 

evaluating them (Carter and Zuo, 1999). The source of the new equations is cited as a letter 
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from author K. P. Milbradt to an AISC representative in February 1995. The equations 

proposed by Milbradt are candidates for replacement of the specifications based on the 

work of Marino in the AISC code (Marino, 1966). It is suggested that these equations may 

provide greater ease and accuracy, as they are calculation based, as opposed to Marino’s 

graphically based solution. The proposed equations for checking the primary and 

secondary systems are equations 2.47 and 2.48, respectively: 

 01.04 0.97 1.27p s
y

fC C
F

≤ − −  (2.47) 

 01 1.07 1.25s p
y

fC C
F

≤ − −  (2.48) 

Where Cs and Cp are as defined by Burgett in equations 2.27 and 2.28, Fy is the yield stress, 

and Fo is the maximum extreme fiber stress in the member due to all loads except ponding 

(Burgett, 1973). The authors’ conclusion regarding the comparison of Milbradt’s equations 

with those of Marino is that they are close but different. No conclusions about relative 

accuracy were drawn.  

 

In his discussion of the article, Milbradt argues that his equations should replace both the 

ponding analysis based on the work of Marino and the simplified method based on the 

work of Burgett (Milbradt, 2000). His argument is that the equations are more accurate 

than the simplified ones, and because his method is calculation based, it is easier and better 

than Marino’s method. Milbradt also discusses the effect of f0, residual stresses, and the 

trouble with calculating effective moments of inertia for joists. He argues that the equation 

provided in the Steel Joist Institute Design Manual 3 only represents an average 
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approximation and in some cases is unconservative (SJI, 1971). Milbradt suggests that all 

of this should be included in the commentary of the AISC code. 

 

A paper that presented and discussed ponding loads and a numerical model was presented 

to the second European conference on steel structures, in Prague (Colombi and Urbano, 

1999). The authors present no new results here, but the paper leads to a published article 

the following year that presents a new method of analyzing ponding loads (Urbano, 2000). 

In this paper, the author treats a beam under ponding loads as two equal length beams 

connected by a spring at midspan, as shown in figure 10: 

 
Figure 10: One DOF bar-spring model (Urbano, 2000) 

The author defines a factor he terms the influence coefficient, α, which is a property of the 

system and defined as the ratio of the displacement f due to a corresponding applied force 

F. Using this value, Urbano derives equations for the displacement of the system, as well 

as the moment carried in the spring: 

 0 0f Fα=  (2.49) 
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Where f, F, m and l are as defined in figure 10. The naught subscript indicates a value that 

is due to loads before ponding effects occur. Alpha is as previously defined, Y is the unit 

weight of the fluid times the spacing of the beams, and h is the height of the water on the 

system. For this system, Urbano determines that the critical value for the ponding effect 

occurs when αY = 1. For a system to be stable, it should be ensured that this value is less 

than one by whatever factor of safety is desired. 

 

Urbano goes on to incorporate the typical code serviceability requirements of restricting 

deflection to some fraction of the length into his equations. This is interesting, but adds 

little. He also adds the effect of shear on the deformation by repeating the analysis with 

three springs, as shown in figure 11: 

 
Figure 11: 3 DOF bar-spring model (Urbano, 2000) 

Based on this analysis, he finds that the deflection can be calculated by the equation: 
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Where r is the spring constant for the springs in shear, and k is the spring constant for the 

spring in flexure. He also continues to expand these ideas to a two way roofing system, 

shown in figure 12: 

 
Figure 12: 2-way bar-spring model (Urbano, 2000) 

Based on this analysis, Urbano calculates the ratios of moments due to additional ponding 

load to moment due to initial load for both framing systems as functions of the influence 

coefficients and Y. This is equivalent to the amplification factors discussed previously 

(Bohannan and Kuenzi, 1964). The factor amplifies both the displacements and the 

moments equally. The factors are solved for explicitly, and plots are provided (shown in 

figure 13) for clarity: 
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Figure 13: Design guides (Urbano, 2000) 

This analysis is good because it is the most comprehensive analysis provided in a single 

source. The results are equations and graphs that are simple and easy to understand and 

use. The only drawback is that the author provides no indication of how accurate his initial 

assumption of a spring connecting two beams is. The equations are simple enough for 

design use, but need to be evaluated for accuracy. In practice, constants would need to be 

derived for the spring coefficients and the influence coefficient, so more work is required 

before this approach can be useful. 

 

Work has been done on members with different end conditions, but it took quite a while 

before the ideas were expanded to cantilevered members. This is eventually done so that 

designers can take advantage of the benefits of a cantilevered system derived from 

balanced moments leading to smaller overall deflections (Bergeron, Green and Sputo, 

2004). The authors begin by defining a variable n as the ratio of the deflection of a simply 

supported system to the deflection of another system (cantilevered in most of this paper) 

under the same loading conditions. They define the parameter Cp, as used in previous 

literature (Burgett, 1973), as: 
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The authors then proceed to outline a method for determining n. They begin by showing 

that the midspan deflection of a cantilever is approximately equal to the maximum, and use 

this as a simplifying assumption. Based on the setup shown in figure 14, the maximum 

deflection will be at midspan, but will be less than for the simply supported case due to the 

negative moments caused by the point load on the cantilevered end.  

 
Figure 14: Cantilevered end (Bergeron, Green and Sputo, 2004) 

Based on this methodology, it is then shown that the value of n can be calculated by 

equation 2.57: 
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 (2.57) 

This is the appropriate value of n for this condition only. The authors go on to calculate the 

value of n for a beam with both ends cantilevered with point loads, as shown in figure 15: 

 
Figure 15: Two cantilevered ends (Bergeron, Green and Sputo, 2004) 
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The authors have provided equations for appropriate stiffness factors for two common 

cantilever setups. This allows designers to take advantage of the additional capacity of the 

cantilever system, and eliminates some of the unnecessary conservatism in the code on this 

topic. 

 

In another paper, the concept of partial ponding (ponding due to a given amount of water) 

was expanded (Colombi, 2005). Instead of water accumulating while a roof deflects, the 

water simply moves as the load changes and the deflected shape is adjusted. The author 

begins with an analysis of the traditional ponding problem, and based on the simply 

supported beam with residual camber, as shown in figure 16, he produces an equation for 

the deflected shape of the beam under water loads: 

 
Figure 16: Full ponding (Colombi, 2005) 
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Where all variables are as defined in figure 17 and m is the residual precambering 

parameter, the height of the beam at midspan over the straight line. The solution of the 

partial ponding problem is also found: 

 
Figure 17: Partial ponding (Colombi, 2005) 
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 (2.60) 

The author then goes on to outline the numerical approach he will use to solve some of the 

problems in the rest of the paper. He uses an iterative solution technique that evaluates the 

initial deflection due to the initial load, and then calculates the subsequent deflection due to 

the additional ponding load. He divides the surface into a grid to facilitate this analysis, and 

calculates the deflection of every section of the grid to determine an overall deflected 

shape. After outlining the procedure used to set up the numerical analyses, Colombi runs 

through three examples of how the analysis works in practice. 

 

The partial ponding condition is important, as it is representative of what can happen in the 

field. Often, a set amount of water will collect on a roof during a rainstorm, and will 

remain for some time afterward. It is concluded that the partial ponding condition cannot 
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lead to ponding instability. The deflected shape equations produced and the numerical 

analysis procedure described are the most useful results of this analysis. 

 

Most recently, the methods for approaching a ponding analysis were again expanded. By 

approaching the problem from a new angle, many problems become simplified. The author 

notes that “…true insight appears to be missing on the very nature of the ponding 

phenomenon.” (Blaauwendraad, 2007) In his paper, he outlines two new ways of 

approaching the problem of ponding analysis: the piston spring model and the bar spring 

model for stiff and flexible roof systems, respectively. The difference in the two models is 

that with stiff roofs, deflections will be small and the roof will likely be completely 

covered, whereas with a more flexible system, deflections will be larger and water may not 

completely submerge the roof. These models consider the effects of pitch, camber, slope, 

and various end conditions on the full ponding problem. 

 

The analysis begins by assuming a sinusoidal deflected shape and accumulated water load. 

It is then shown that the average accumulated water load is eighty percent of the maximum, 

and this simplification is used throughout. The author then outlines his piston-spring model 

for stiff systems, shown in figure 18: 
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Figure 18: Piston-spring model (Blaauwendraad, 2007) 

Where d is the original depth of water on the roof and δ is the average additional load, 

eighty percent of the maximum in the deflected shape of the roof. He then describes three 

relevant variables: W, the weight of a meter of water on the roof, D, the spring stiffness, 

and Fp, the overall total strength of the support structure: 

 W alγ=  (2.61) 

 396 /D EI l=  (2.62) 

If the support structure remains linear elastic, and Fp is not reached, then the deflection δ 

can be calculated: 

 
1

1
d

n
δ =

−
 (2.63) 

Where n is the ratio of D to W. Based on this result, it can be seen that for a very stiff roof 

(D >> W), the additional deflection and load, δ, will be small. When the ratio approaches 

unity however, the additional deflection becomes large. This is essentially the same as the 

original stability inequality published by Haussler (Haussler, 1962). This ratio, n, 

determines whether a system will be strength dominated or stability dominated. If n is 

greater than one (D greater than W), then the system will be strength dominated. This is 

because successive deflections will be smaller, and the system will eventually fail due to 
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overload. If n is less than one, then the system is stability dominated and will fail under 

pure ponding loading conditions. By analyzing the piston-spring system under a force 

equal to the maximum strength of the system, the author determines that an ultimate value 

of W can be calculated: 

 
1 1

u p

d
W D F

= +  (2.64) 

As W is a function of the fluid unit weight, spacing and length, and because fluid unit 

weight and length are typically known, this equation essentially limits the spacing of the 

beams in the system. It is shown that this method can easily include the effects of initial 

deflection or camber. This is done by using, as before, an average load or loss of load due 

to these effects of eighty percent of the maximum under the deflected shape. The deflection 

parameter, d, is modified by eighty percent of the midspan height change due to camber or 

initial deflection. The solution is also expanded to include the effects of a two or three way 

roofing system. To do this, the approach is identical but the formulation of D and W 

change: 

 
1 1 1 1

p s shD D D D
= + +  (2.65) 

 p sW l lγ=  (2.66) 

Where the subscripts p, s and sh stand for primary, secondary and metal sheet systems, 

respectively. 

 

The author also outlines a simple method for performing this analysis on systems with end 

conditions that are not simply supported. The only change required is that the effective 
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stiffness will be modified by a factor. The factors for several common support conditions 

are shown in figure 19: 

 
Figure 19: Stiffness ratios (Blaauwendraad, 2007) 

The author also outlines a simple method for taking slope into account. If the depth at the 

low end of the member is d, then the effective depth over the sloped member is: 

 wd d c lα= −  (2.67) 

Where α is the angle from horizontal and c is a parameter based on how deep the ponded 

water is. For water that completely submerges the beam, c is one half. For water that does 

not completely submerge the beam, c is defined in figure 20: 

 
Figure 20: Design guide (Blaauwendraad, 2007) 

Blaauwendraad continues by turning to more flexible systems and the bar-spring system as 

outlined by Urbano (Urbano, 2000), but expands the previous work to treat sloped roof 
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systems. He starts off by defining the location of the spring at the midspan of the horizontal 

projection of the submerged portion of the beam, as shown in figure 21: 

 
Figure 21: Bar-spring model (Blaauwendraad, 2007) 

To complete this analysis, the author finds the rotational stiffness of the spring in terms of 

E, I, and l, and treating the entire load due to water as an equivalent point load on the 

system at the spring. He goes on to check the results of both the piston-spring model and 

the bar-spring model at the point where water rises to the high end of the member, and 

finds that they give the same result. Based on the model as it is set up and a series of 

algebraic and geometric derivations, the author outlines the results for determining a stable 

system. He summarizes his findings in figure 22: 
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Figure 22: Design guide (Blaauwendraad, 2007) 

Figure 22 shows that for given values of roof strength or dw, as the ratio w/αl (equivalent to 

the ratio of the height of the water at the shallow end to the height of the high end) 

increases, so does the ratio of final load after ponding to initial load. The curve labeled roof 

in figure 22 indicates the ultimate load allowable on a roofing system in terms of F/F0, 

while the curves labeled d indicate the maximum induced load on a roofing system in 

terms of F/F0 for a given set of geometric parameters. It can be seen that for low values of 

dw such as d1, stable systems exist, and there are two critical points where systems 

transition from stable to unstable. For high values of dw such as d3, the system will always 

be unstable. The quantity d2 in figure 22 is the critical value for dw, the highest value it can 

be while not eliminating the possibility of a stable system. The second plot in figure 22 

shows a summary of the curves in the first. Any system that fits under the curve shown is 

stable, while any system fitting above is unstable. 

 

While these curves are instructive and conceptual, the author provides no simple way of 

mathematically determining where a system fits on these plots. As with the Chang paper 
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(Chang and Chong, 1977), work could still be done in the area of providing a simple, 

accurate, equation based method of determining stability of sloped roof systems. The 

author finishes by expanding the method for sloped members to include initial camber or 

sag, then works through some examples. 

 

Recent research has been nearly exclusively conducted in the Netherlands. Blaauwendraad 

has published a modification to his method that changes the way the accumulated water on 

simply supported secondary members is calculated in the piston-spring model 

(Blaauwendraad, 2009). Several additional articles have been recently published in the 

Journal, Heron, which describes itsself as “a joint publication by TNO Built Environment 

and Geosciences, Delft, and the Netherlands School for Advanced Studies in 

Construction.” (Heron, 2009) Five recent articles have been published in this journal in 

English on the ponding topic. They cover topics such as numerical modeling of ponding 

loads (Schouten, Locht and Derks, 2006), structural design for ponding loads (Van 

Herwijnen, Snijder and Fijneman, 2006), investigation of actual failures (Vambersky, 

2006), and more. 

 

The theory of ponding loads has covered many areas. It started as a paper that outlined the 

stability criteria for a flat, simply supported beam under water and has been expanded to 

cover two way systems, various support conditions, amplification effects, slope, initial 

imperfections, camber, partial ponding, nonlinear response, creep, trusses, and uses varied 

approaches and simplifications. It has been pointed out (Chinn, 1980) that the 

amplification factor, as discussed by Kuenzi and Bohannan (equation 2.4), is the important 

part of the ponding theory, and the important use of the Criterion Ratio. Most roof systems 
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will be stable by the theory, but all roof designs should include secondary loading due to 

ponding in the determination of roof loads. All roofs must be designed with this important 

loading in mind, whether the end result is additional drains or a steeper, stiffer or stronger 

roof. 

 

While this represents a summary of the theory developed for ponding loads thus far, the 

ideas have been expanded into some other fields. Probabilistic studies have been done on 

the reliability of wood members subject to ponding loads and creep (Folz and Foschi, 

1990) (Fridley and Rosowsky, 1993). Studies have also been done on ponding effects on 

floating membranes (Katsikadelis and Nerantzaki, 2003), more details on the effects of 

initial imperfections on roof behavior (Ahmadi and Glockner, 1984), and mapping flat 

roofs that may be prone to ponding (Avrahami, Doytsher, Raizman and Yerach, 2007). 

Other research has been done in the area of hydrology to determine how ponding is 

affected by specific rain storms (Sawyer, 1968). The work of Marino has been expanded to 

determine the excess concrete required when pouring on a flexible flooring system due to 

the ponding effect (Ruddy, 2005). This work is not directly related to the science of 

ponding loads, but is good background information. Despite this apparent interest in the 

nature of these loads, full-scale test results have never been reported. This is a partial 

motivation for the research at hand. 

 

Building Code Review 

 
While there is an abundance of information available on the subject of ponding, most 

structural engineers do not know this background and the evolution of the field. A small 
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fraction of the information available is published in building codes and design 

specifications. The following is a summary of what a designer who has done no 

independent research but uses the codes and specifications will know of ponding loads. 

 

International Building Code (IBC) 2006 

 
The model building code that is used throughout most of the United States has relevant 

provisions for rain and ponding loads. For roof drainage, the IBC requires that both a 

primary and a secondary drainage system be provided. For rain loads, the code requires a 

designer to assume there is standing water at the depth it would reach if the primary 

drainage system fails. To ensure ponding stability, the code requires that a designer provide 

adequate slope (at least 1/4 on 12) or else verify adequate stiffness to prevent ponding. For 

guidance on these calculations, the IBC refers designers to section 8.4 of ASCE 7. 

 

American Society of Civil Engineers (ASCE) 7-05 

 
This guide provides information collected by experts in the field of structural engineering 

and provides guidelines for structural designers. These guidelines require that two 

independent drainage systems be provided, each with the same capacity. It also requires 

that design of a roof system provide adequate strength to hold standing water to the height 

it would reach if the primary system failed. For stability against ponding, section 8.4 

requires either a sufficient slope (at least 1/4 on 12), or investigation to ensure adequate 

stiffness against progressive deflection. It is suggested that the larger of the snow and the 

rain load be used, and that the primary drainage system should be assumed to be blocked 
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for this investigation. The commentary for this section suggests that the guidelines in the 

AISC specifications for steel construction be used to perform this investigation. 

 

AISC Steel Construction Manual 

 
Section B3.8 of the AISC specification requires that the ponding problem be considered. It 

requires that a designer do one of three things to ensure ponding stability. Either adequate 

slope should be provided (at least ¼ on 12), adequate drainage be provided, or the ponding 

investigation be performed as outlined in appendix 2. This is more lenient than the 

requirements in the IBC and the ASCE 7, so those documents will typically control, and 

providing adequate drainage alone, as allowed by the AISC specification, will not be 

sufficient to satisfy ponding requirements. 

 

Appendix 2 in the AISC specification is the only place where a general and useful method 

of investigating ponding is presented in code or specifications. Two independent methods 

are presented: a simplified, conservative check, and a more in depth method. The 

simplified method is taken from Burgett, and allows for a factor of safety of four against 

instability (Burgett, 1973). When using this method for trusses and joists, it is required that 

the moment of inertia be reduced by fifteen percent to find the effective moment of inertia. 

This modification accounts for the part of deflections due to shear deflection. Also, within 

this method, steel decking should be considered a secondary member when it is supported 

directly by the primary members alone. The in depth analysis method is taken from Marino 

(Marino, 1966). 
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AISC Design Guide 3 

 
AISC publishes design guides in addition to the Steel Construction Manual. Design Guide 

3, which contains information relevant to ponding loads, is now in its second edition. It 

provides a good summary of what is contained in the building codes and the AISC 

appendix 2, but does not, however expand on any of the ideas or add much to help a 

designer do a ponding check. 

 

Steel Joist Institute Standard Specifications 

 
This document provides a list of standardized steel joists and should be used by anyone 

specifying a joist, and any company producing standard steel joists. It also provides some 

requirements on design, fabrication, and erection of steel joists. In section 5.10 of these 

specifications, the SJI requires that a ponding investigation be performed by the specifying 

professional, but provides for no method of performing such an investigation. There are 

three sections relevant to this research, the “Accessories and Details,” the “Standard 

Specifications for Open Web Steel Joists, K-Series” and the “Code of Standard Practice for 

Steel Joists and Joist Girders.” These will be investigated further in the design background 

section of this report. 

 

SJI Technical Digest 3 

 
This document provides more details on how to perform the investigation required by 

section 5.10 of the SJI standard specifications. It contains a summary of code related to 

ponding, and notes that it lacks in some areas, especially for atypical roofing systems. The 
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digest suggests ways of expanding the AISC analysis to fit additional systems. It suggests 

that a good general procedure for a ponding analysis is that outlined in the AISC 

specifications, but that more detailed methods are available. This digest presents methods 

for doing a ponding analysis for members with both flexible and rigid supports. 

 

For roof systems with flexible supports, it is suggested that the AISC method be used, but a 

special equation is provided for the calculation of F0, the initial extreme fiber stress. For 

systems with rigid supports, the digest recommends two checks, one for the capacity of the 

joist, and one for the capacity of the support, as the bearing seats of the joists are also 

limited in their capacity. The method starts by calculating three values by equations 2.68 to 

2.70. 
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Where L is the length, S the spacing, Ie the effective moment of inertia, wd the dead load, 

wr the impounded water load, and ws the snow load. By using these values and estimating a 

height of water, h, above the supports, the centerline deflection can be calculated: 
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1

S
C

S

C w h
C

Δ = + −Δ
−

 (2.71) 

Using this value, both the end reaction and the final maximum load can be calculated: 

 ( )1 0.375 1.95 1.24 CR SL w h= + + Δ −Δ⎡ ⎤⎣ ⎦  (2.72) 

 ( )1 0.75 3.9 3.16 cw S w h= + + Δ −Δ⎡ ⎤⎣ ⎦  (2.73) 
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These values must then be checked to ensure safety. The distributed load must be less than 

the capacity of the joist, while the reaction must be less than one half the product of the 

distributed load and the length. If both of these requirements are met, then the joist is stable 

and strong enough to support the loads, including the ponding effect. 

 

Conclusion 

 
In general, design codes require that adequate slope and adequate drainage be provided. 

The IBC and ASCE 7-05 do not provide a method for investigation of ponding stability; 

this is published in the AISC Steel Construction Manual instead. An additional method is 

presented by the SJI in a technical digest, but does not replace or add to the method 

presented in AISC. For a structural engineer interested in ponding loads, the single section 

of code that must be known is appendix 2 of the AISC specifications. Both the simplified 

method and the improved method are good ways to ensure stability, and are taken straight 

from the literature. 

 

The methods provided in the design specifications are somewhat limited. They work only 

for flat roofing systems with structural members of the same length, strength and stiffness, 

with identical adjacent framing plans and simply supported members. The design 

methodology provided by the AISC specifications could use expansion to make the method 

applicable to a wider variety of roofs. The biggest problem is that the specifications treat 

roofs as either flat or pitched, and assume that if a roof is pitched, then it is safe. Often, 

pitched roofs can still suffer from ponding loads, and should be investigated 

correspondingly. 
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It has also been suggested in the literature that serviceability limit requirements for the 

deflection to span ratio of roof and floor systems are not as helpful as they could be. It has 

been suggested that a good replacement to these requirements for roofs where ponding is 

an issue would be a limit on deflection per unit load (Haussler, 1962). This would be a 

simple, effective method to eliminate unstable systems from designs. The method would 

require that a designer analyze the roof system with a live load of 5 psf (239 Pa) 

(approximately the weight of one inch or 2.54 cm of standing water). Then, if the resulting 

deflection is greater than an inch (2.54 cm), it is clear that the system is dangerous and 

possibly unstable. 

 

Design Background 

 
Physical tests will be conducted on roofs built with steel joists and steel decking. Some 

important background on these materials and their implementation is included here. For 

full explanation of all design decisions and details, see the experimental design section. 

 

Open Web Steel Joist Design 

 
Open Web Steel Joists are proprietary products that are designed and manufactured 

according to industry standards established by the Steel Joist Institute (SJI). The Institute 

provides load tables that specify designations and strengths for a variety of joists. Any 

designer can chose steel joists as framing members, and by finding the required strength in 

the load tables, choose a joist from the SJI Standard Specifications. Joists come in several 

forms. The K-Series joists are the typical framing members that support steel decking. A 
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more specific category of K-Series joist is the KCS joist, which is designed for a wider 

variety of load cases. Longer span, stronger joists are available in the LH and DLH 

categories. Joist Girders are designed to be the framing members that support the joists. 

The K-Series joists are the most typical framing members, and come in designations such 

as 30K7, indicating a joist that is 30 inches (76.2 cm) deep and stronger than a 30K6 but 

weaker than a 30K8. The second number is the section number, but indicates nothing more 

than relative size within a family of joist depths. 

 

When these joists are purchased by a contractor for construction, the manufacturer can 

build the joist in a variety of ways, provided it meets the strength and other requirements 

from the specifications. Typically, K-Series joists are modified warren trusses, with 

vertical members providing additional support and bracing for the top chord. This reduces 

the effective bending length of these members, allowing larger uniform loads. In general, 

joists are fabricated from angle and channel sections, as well as solid round bars. The 

flanges are generally paired angles, while the web is made from channels and the last web 

member is a solid round bar. Joists are typically given camber during fabrication based on 

an arc radius of about 3,600 ft (1.10 km). This allows the joists to deflect slightly under 

dead loads and still be flat (SJI and SDI, 2008). The SJI specifications indicate that joists 

should be designed with a factor of safety of 1.67 over their listed strength, and that they 

should be built with 50 ksi (345 MPa) steel. 

 

Designing with joists is fairly straightforward. A roof design load is calculated as usual, 

and a framing plan is drawn. Based on the tributary width each joist will support, the load 

on each joist can be found in force per length. Using the Standard Specifications, joists can 
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be chosen. If a desired strength is not available or if a joist will be supporting an unusual 

load pattern (not a uniform load), then custom joists can be ordered. This is often done in 

practice (SJI and SDI, 2008). There are other considerations to take into account. When a 

pitched roof is required, it is more economical to pitch the joists themselves rather than the 

chords. In this case, the span is taken as the diagonal length. Joists are typically not 

designed for uplift. If this is required, then special joists may have to be ordered. Finally, it 

is usually more economical for joists to span the longer dimension of a bay, while the joist 

girders span the short dimension. 

 

Joists are slender and require significant lateral bracing in the form of bridging. Joists 

should be connected to each of the adjacent joists to ensure stability. Based on the length 

and the section number, the number of rows of bridging can be determined. Bridging is 

typically horizontal, but based on location of the selected joist in the load table, one set 

may be required to be diagonal. The design of these members is outlined in the Standard 

Specifications. 

 

Open web steel joists are usually simply supported structural members. In the field, the end 

of the top chord (the joist seat) is typically welded to the supporting member, forming a 

hinge and making the supports a pin-pin system. With the addition of a bottom flange 

extension, however, they can easily be built with fixed ends to resist moments as well. 

 

By looking at existing structures, it is easy to get an idea of what typical joist framing 

looks like. Decking is supported by joists, which are supported by joist girders, which are 

supported by columns. Warehouses in the Portland, Oregon area were investigated to see 
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what range of values is typical. All numbers here are approximate, as exact measurements 

could not be taken.  

• The Fry’s Electronics store in Wilsonville has 60 ft (18.3 m) joists spaced at 5½ ft. 

(1.68 m). 

• The IKEA store in Portland has a complex system of joists and joist girders. There 

are at least two sets of joists, one being 60 ft (18.3 m) joists spaced at about 8 ft 

(2.44 m), the second being 36 ft (11.0 m) joists spaced at 7½ ft (2.29 m). These are 

all supported on joist girders about 110 ft (33.5 m) long, spaced at 77 ft (23.5 m). 

These are supported on steel columns.  

• The Best Buy store in Tualatin has joists that span 50 ft (15.2 m) and are spaced at 

7 ft (2.13 m). 

• The Costco location in Tigard has joists that span 38 ft (11.6 m) and are spaced at 

4.5 ft (1.37 m). 

From this, it is clear that there are a variety of ways to deploy an open web steel joist roof. 

 

Bridging 

 
Steel joist roofs must be laterally braced to prevent system-wide lateral buckling. The 

supports used to accomplish this are refered to as the bridging members. Bridging is 

installed to connect both the top and bottom chords, and should be continuous over the 

length of the structure, with splices where needed between joists. Both chords are 

supported as either could be in compression. Under dead, rain or snow loads, the top chord 

should be in compression, but in high wind conditions, uplift can produce compression in 

the bottom chord as well. The bridging prevents buckling by reducing the effective length 
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of the bending members and ensures that the design assumption of two dimensional pin 

connections remains valid. Per the Standard Specifications for Open Web Steel Joists, K-

Series, 4.41 (a), 145 times the least radius of gyration of the chord angle sections should be 

greater than their length. Thus, by including more bridging members, increasingly slender 

angle sections are allowed. 

 

The number of sets of required bridging can be found in the SJI code in table 5.4-1. This 

table will provide a designer with the required number of rows of top chord bridging, and 

the code specifies that “The number of rows of bottom chord bridging shall not be less than 

the number of top chord rows” (SJI, 2005) 

 

Steel Decking 

 
Designing with steel decking is straightforward. If the roof pressure and span conditions 

are known, then steel decking can be selected. The Steel Deck Institute (SDI) publishes a 

Design Manual that includes load tables based on span, support conditions and type of 

decking. Generally, decking is continuous over three spans between joists, but the design 

manual allows for one, two or three spans per section of decking. Based on the number of 

supports and the space between them, four types of decking can be chosen: narrow rib, 

intermediate rib, wide rib and deep rib. By far the most commonly used is the wide rib 

decking. These load tables are all unfactored strength, so they must be given a factor of 

safety. 
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Summary 

 
A steel joist, steel deck roof will provide an excellent system with which to test the effects 

of ponding. These roofs are commonly used in practice, so it should be easy to acquire the 

materials and to seek advice on their use. These tests should allow investigation of some of 

the important principles of ponding outlined in this background information. 
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NUMERICAL ANALYSIS 

 
The ponding effect is a simple idea that can become complex rather quickly. There are 

several variables involved, and there are numerous variations on the problem. Because 

there are a variety of factors influencing this phenomenon, a solution for the deflected 

shape of a member under ponding loads cannot be easily and accurately found. A closed 

form solution to the problem would be long, tedious, and difficult, due to varied system 

properties, loads, and the iterative nature of the problem. Since it would be useful, 

however, to have a tool that could calculate the deflections under these loads, a computer 

program has been written to do just that. 

 

Approach 

 
The simplest case, a prismatic beam with walls built at the ends will accumulate load as 

water collects first behind the walls, then into the deflected area. This case has been 

analyzed using a numerical model in MATLAB. For simplicity, linear elastic behavior is 

assumed, and the program is set up only to analyze beams that are flat, or slope up in one 

direction. The program is set up only to analyze beams that are simply supported with 

displacements due only to bending moments induced by the water loads. Additional 

assumptions are that the ponding fluid is the only load, the beam is initially perfectly 

straight, and that the water will always rise to the specified height. Shear deformation 

contributions to the deflection are ignored. 

 

Even simplifying the problem to a simply supported single linear elastic prismatic beam 

can get complicated. Identifying the appropriate design approach to this problem took 
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some careful consideration. Problems arise with a simply supported beam for several 

reasons. First, if a simply supported, sloped beam is loaded with water, then the question 

arises: are the walls connected to the beam, or are the walls independent of the supports? 

Each setup presents difficulties and complications. In the case of independent supports, the 

load is shown in figure 23: 

 
Figure 23: Supports independent of walls 

Here it can be seen that if the pinned connection is made at the low end, then the beam will 

experience tension, and the roller support will be pushed outward. If the pinned connection 

is made at the top, however, the opposite occurs: the beam experiences compression and 

the roller support will tend to move inward. These forces will induce second order effects 

and induce additional bending moments in the beam. These may be small, but should be 

noted. In the case of walls attached to the beam, the loads are shown in figure 24: 

 
Figure 24: Walls attached to beam 

Here it can be seen that the problem of tension/compression in the beam has been 

eliminated, as the setup has changed, and the horizontal reactions are eliminated as they 
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balance within the tank itself. It is now essentially a solid tank with simple supports. A 

complication arises here, as the walls will experience pressure themselves. If the beam is 

isolated, then at the supports, where the walls meet the beam, bending moments will be 

induced from the walls. As before, this effect is small, but should be noted. 

 

Thus far, all of the designs have appropriately noted that the water pressure acts 

perpendicular to the surface it rests on, and increases linearly as a function of depth. This 

creates serious complications as the beam deflects. After the first iteration of an analysis, 

the beam may be deflected as shown in figure 25: 

 
Figure 25: Water pressure on deflected beam 

The problem here is that the orientation of the pressure, acting perpendicular to the surface 

at all points, is difficult to determine. The direction of the resulting forces on the beam will 

be hard to find, and will change with position along the beam and with each iteration. This 

effect may be small, depending on the total deflection of the beam, but should be noted. 

 

There are different setups for this design, and there are complications to the analysis. Due 

to these issues, a simplified case, shown in figure 26, was chosen for the analysis: 
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Figure 26: Assumed conditions for numerical analysis 

This setup ignores the effects of induced tension/compression on the bending moments in 

the beam, and ignores the possible end moments from the walls. This design also neglects 

to consider the water pressure as perpendicular to the surface, instead taking it as a vertical 

load at all times. This is justifiable by a small angle approximation, as the roofs to be 

analyzed here are usually on a very shallow pitch. This is further illustrated in figure 27: 

 
Figure 27: Loading for Numerical analysis 

The analysis from here will be done by a numerical integration process. The use of a 

Gaussian Integration method was considered, but decided against in part because it would 

be impractical to implement. As the load in each iteration of the analysis depends on the 

deflection in the previous iteration, each cycle of the analysis will add four to the degree of 

the polynomial that best describes the deflection. A simple midpoint rule numerical 
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integration seems the simplest, and after testing, provides accurate results in little 

computation time.  

 

Method 

 
This program calculates bending moments, rotations, and deflections iteratively using a 

double numerical integration. The core of the problem is fairly simple. After the input has 

been collected, the program first finds some of the basic, important values, including the 

necessary geometric properties and variables, end depths, and more. The program then 

divides up the beam into very small pieces and calculates the load on each. Based on the 

locations of these slices and the loads on them, the program calculates the moment at each 

slice. Once the moments are known, the program numerically integrates them, then 

determines and subtracts out the constant of integration. This determines the curvature at 

each point. The program then integrates again to calculate the deflection at each point. The 

deflected shape is now known, and the load for the next iteration is calculated based on 

this. The program simply repeats this process for the specified number of iterations, and 

the whole process is repeated for each beam being analyzed. 

 

Variables 

 
There are seven variables that go into the ponding analysis, most of these are geometric. 

These include the length, angle, spacing, modulus of elasticity, and moment of inertia. The 

final two have to do with the load: the unit weight of the ponding fluid and the initial 

height. The initial height represents the height of water that sits on the beam, and 
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determines the initial load. It is assumed that the water level will remain constant 

throughout deflection at this height. 

 

Variations 

 
There are four analysis options built in to the program. The first is the basic ponding 

analysis. The computer takes input regarding the system properties and loads for any 

number of beams, does the ponding calculations, and outputs the results (numerically) and 

the deflected shapes (graphically) for each iteration. This analysis will usually make it clear 

whether the system is stable or not, but will not indicate whether the system will fail under 

the given loads. The second option in the program checks the strength. By asking the user 

for a value for the strength of the beam, and comparing this to the moments induced by the 

loads, the program will determine whether the beam will fail. 

 

A third and very useful option has also been built in. It allows the user to input all but one 

of the variables for a ponding setup, then determines the value of the last variable that will 

put the system exactly at the point of instability. This option has been expanded into a 

fourth, in which the program will repeat the derivation of the critical value as for as many 

(closely related) setups as desired. This saves a lot of time, and was used to find the output 

that led to the conclusions of this section. In these analyses, it is important to note that an 

initial guess at the correct value for the variable is required. Based on the method of 

analysis, a final result that is more than twice this value will never be found. Results must 

be checked to ensure that the results are reasonable and that they are less than twice the 

initial guess. 
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Excel 

 
The analysis program was written in MATLAB but also created in Excel. While the 

MATLAB code allows the more involved analyses to be run, the Excel spreadsheet allows 

quick analyses to be run and all variables to be viewed. It provides a more convenient 

interface for simple analyses. 

 

Errors and Accuracy  

 
The results from the MATLAB program have been checked against results from the Excel 

spreadsheet, and hand calculations. The results of the MATLAB program and Excel are 

identical when MATLAB is using ten iterations and 100 divisions as the spreadsheet does.  

 

Hand calculations can only be done for the first iteration, as successive iterations get 

complicated for analysis by hand. Also, for the pitched case, the only setup analyzed by 

hand for checking accuracy was the first iteration of the case where water fills exactly to 

the high support, as this provides a simple load pattern. For the first iteration of the flat 

case, when the programs are compared to the hand calculations, the results are very close. 

It turns out that the error is independent of all but one of the variables (the pitch), and 

mostly depends on the number of divisions used in the analysis. The results of the analysis 

of the accuracy are shown in table 3: 

Table 3: Errors in Numerical Analysis: 
Divisions: 100 99 75 50 35 25 20 10 2

% Difference: 0.016 0.00408 0.00711 0.064 0.033 0.064 0.4 1.6 40  
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Where the divisions are all fairly small numbers, and the percent difference represents the 

percentage difference between the hand calculated values for maximum displacement from 

equations as provided in the AISC steel manual, and the value for the maximum 

displacements from the MATLAB and Excel program. 

 

Based on these numbers, it can be seen that errors are very small for a small number of 

divisions. Also, it can be noted that the error gets smaller at a rate proportional to the 

square of the rate of the increase in divisions. This can be shown by comparing the errors 

at 100 and ten divisions. Another important property to notice is that an analysis with an 

odd number of divisions is much more accurate than an analysis with an even number. In 

fact, if an odd number is used, only half as many divisions are needed. This can be seen by 

comparing the accuracies of the analyses with 50 and 25 divisions.  

 

Finally, by checking analyses of sloped beams, it was found that the results from the 

program are slightly small, but that it is still very accurate. Analyses of sloped beams show 

that the errors seem to be about 3.5 times larger than the corresponding flat case, regardless 

of slope. Because the MATLAB program allows large numbers of divisions with little 

problem, this error is insignificant. In some cases, analyses were run with more than 

10,000 divisions, which would put the worst case error at less than one part in ten million. 
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Results 

 
The program outputs results both in numerical and graphical forms. For the results 

discussed here, the numerical data is more useful, but the graphical data often gives a better 

understanding of the behavior. Shown in figure 28 are three plots from MATLAB. 

   
(a)    (b)    (c) 

Figure 28: Beams analyzed by numerical analysis 

Figure 28(a) represents a stable system. The successive deflections get bigger, but the rate 

of deflection increase decreases. This beam is approaching stability and will not deflect 

indefinitely. Figure 28(b) represents an unstable system. Successive deflections get 

increasingly larger, and will continue to infinity. Figure 28(c) represents a simplified 

version of both the other plots. The top curve represents the stable system, as the total 

deflection approaches a fixed value. The bottom curve represents the unstable system, as 

the deflection becomes unbounded. 

 

The results of the program, aside from it being a useful tool itself, are the results of the 

determination of the critical values of variables that put the system exactly at stability. 

Based on the results, it has been shown that this numerical analysis checks with the 

stability criteria in the literature, first presented by Haussler in 1962. 
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Using the program option to find a series of critical points, sets of ten such points were 

found. One variable, the unit weight, was isolated and varied between 100 and 10 pcf (15.7 

kN/m3 and 1.57 kN/m3). Based on the critical values, results for the critical values of each 

other variable were found in turn. Based on these, it was confirmed that unit weight is 

proportional to the moment of inertia and modulus of elasticity, inversely proportional to 

the spacing and inversely proportional to the fourth power of the length. These 

proportionalities all reflected the equation published by Haussler (Haussler, 1962).  

 

Both flat and pitched roofs were checked for the effect of the initial depth of water on the 

ponding stability and it was found that the critical point was not dependant on the initial 

load at all in either case. For the sloped case, it was found that the relationships between 

the variables remain unchanged, with the exception of length. The unit weight is still 

proportional to the modulus of elasticity and the moment of inertia, and inversely 

proportional to the spacing. The relationship between these variables, the length and the 

pitch angle is not known quite as well for a non-flat beam. The two variables in question, 

length and angle, were checked against each other to determine a relationship at the critical 

value for stability. For a beam with 110 pcf (17.3 kN/m3) unit weight, 6 ft (1.83 m) 

spacing, 2 ft (0.61 m) depth, 500 in4 (12.0 cm4) moment of inertia, and 29000 ksi (200 

GPa) modulus of elasticity, the results are shown in figure 29: 
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Figure 29: MATLAB output 

This typifies the plots of several different sets of the variables. They all have a vertical 

asymptote that crosses the length axis at the critical length for a flat beam with the other 

variables constant. It curves up quickly at first, but the growth of the angle with length 

slows down. This plot does not hit an upper bound, but simply continues up increasingly 

slowly as the length increases. 

 

Figure 29 illustrates an important fact of the ponding problem. Putting a roof on a pitch 

will always make it more stable, but it is interesting to note that, in this case, a pitch up to 

four degrees does not make the allowable length longer. The benefits come as the pitch 

rises above five or six degrees. Building codes and design specifications only require 

ponding analysis for roofs that have a pitch below ¼ on 12 or about 1.2 degrees. This 

requirement is based on ideology completely separate from this analysis. The basis of that 

angle is that for a pitched roof, the water can simply run off. The analysis presented here, 

however, assumes it cannot. It is more conservative to assume that the water will be 

blocked at the low end of a roof, and use the analysis presented here.  
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Conclusions 

 
Based on this analysis, there are seven variables that determine the deflection of a beam 

under ponding loads, six of which determine the stability criterion. The result presented by 

Haussler was verified for the flat case. The sloped case, however, is more complicated. The 

relationship of the variables length and angle to the other variables is unknown. In two 

different papers, the authors approach the problem of the sloped roof under ponding loads 

(Chang and Chong, 1977) (Blaauwendraad, 2007). While they both show that ultimate 

deflection depends on initial load, neither determines whether stability depends on initial 

load or not. Also, neither paper presents a simple method for calculating a stability factor. 

This analysis has shown that the initial load does not affect the stability, and has shown 

some insight into how the angle affects stability. 

 

It would be good for building codes and design specifications to include the pitch of a roof 

in the criteria beyond simply to provide a method of drainage. It would be safer to assume 

that the water draining will be blocked at least to the height of the secondary drainage 

system, and that this could initiate ponding. Requiring a ponding analysis for sloped roofs 

to a higher pitch would do a much better job of ensuring safe roof systems. 
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EXPERIMENTAL DESIGN 

 
The experiments were designed to provide data that will enable better understanding of 

ponding effects on light weight, long span roof systems. The vast majority of roofs that fail 

due to water overload and ponding are stable according to design specifications, but 

collapse due to overload as a result of ponding effects. The experiments were designed to 

measure the roof response under increasing water load to collapse.  

 

Structural Design 

 
Two roofs were tested to failure: the first was flat; the second was identical except for a 

1:48 pitch, the code minimum to allow exclusion of ponding checks in design. The basic 

design of the specimen was three steel joists simply supported on heavy rolled steel 

sections. The design intended to isolate the center joist as a typical roofing member within 

a roof continuum and testing, instrumentation and results focused on this joist for each test. 

Roofs were designed to be typical of current practice. Loading was accomplished by 

building walls around all four sides of the roof, placing a waterproofing membrane over the 

entire system, and allowing water to collect until collapse. 

 

Facilities 

 
The long wave channel at the O.H. Hinsdale Wave Research Laboratory at Oregon State 

University provided an effective setting to conduct these tests. The channel is 15 ft (4.57 

m) deep, nominally 12 ft (3.66 m) wide and effectively infinitely long. It provides one inch 

(2.54 cm) threaded inserts on 12 by 8 inch (30.5 by 20.3 cm) grids every twelve ft (3.66 m) 
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to anchor supports into the walls. These enabled the supporting brackets for the roof 

system to be anchored to the concrete wall. This facility created two restrictions on the 

experimental design: the length of the roof had to be a multiple of twelve ft (3.66 m) to 

facilitate convenient supports, and the roof slice had to be twelve ft (3.66 m) wide. 

 

Joists 

 
Steel joists were selected for testing because they provide an economical, light weight, 

long span roof system that is widely used throughout the country. Many large warehouse, 

office and commercial buildings deploy roofs built with steel joists and steel decking.  

 

Based on the facilities and materials available, a design consisting of three 48 ft (14.6 m) 

joists spaced a little less than 6 ft (1.83 m) apart was chosen. In this configuration, the 

center joist supports approximately twice as much load as the edge joists. By tributary 

areas of loading, the center joist suppports an area 67 inches (1.70 m) wide, the edge joists, 

38 inches (0.965 m) wide. Because the center joist supported more weight, if all joists were 

of equal stiffness, it would have had a greater deflection than the edge joists. To illicit a 

one way joist response, two different joists were used. The center joist was the standard 

24K9 (one of the most commonly used joists in practice), while the edge joists were 

specially designed to be approximately half as stiff, and to hold a slightly higher amount of 

water than the center joist, to ensure that they would not fail first. See appendix B for a 

comparison of the strengths (which are directly proportional to their stiffnesses), and a 

check to ensure the center joist would fail first. This modification ensured that the roof 

would provide more uniform deformations, consistent with a continuum roof system. 
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The center joists were 24K9 joists with a design capacity of 211 plf (3.08 kN/m). The 

design live load capacity was 101 plf (1.47 kN/m) and the moment of inertia including the 

fifteen percent reduction for shear deformations was 309.33 in4 (7.43 cm4). The edge joists 

were 24KSP121/58 joists with a total design capacity of 121 plf (1.77 kN/m), a design live 

load of 58 plf (0.846 kN/m) and a moment of inertia of 187.74 in4 (4.51 cm4). The joists 

were built with an extra two inches (5.08 cm) seat length at each end to facilitate support 

for the tests. The required 1.67 design factor of safety and typical one inch (2.54 cm) total 

camber were built into the joists. Materials used were nominally 50 ksi (345 MPa) steel. 

Post-test material testing was conducted in accordance with ASTM E8 on undamaged 

sections of the joists. These tests gave the material properties shown in tables 4 and 5. The 

larger double angle section was used in the top chord, the smaller in the bottom chord. The 

bar was used as the last web members and the 1-3/8” channels as the third web member 

from wither end. The remaining web members that angle up toward the center were made 

of the U sections, and the rest were made of the 1” channels. 

Table 4: Material Strengths, Flat Joist 
Fy ksi (Mpa) Fu ksi (Mpa) % Elongation

LL2x0.166 60.3 (416) 90.2 (622) 25.7
LL2x0.142 60.1 (414) 90.1 (621) 26.5
BR15/16 52.0 (359) 90.0 (620) 27.0
C1x0.8x0.09 61.4 (423) 70.8 (488) 22.0
C1-3/8x1.27x0.118 64.2 (443) 75.4 (520) 28.2
U1x1.1x0.118 59.0 (407) 70.9 (489) 26.2  
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Table 5: Material Strengths, Pitched Joist 
Fy ksi (Mpa) Fu ksi (Mpa) % Elongation

LL2x0.166 60.0 (414) 90.4 (623) 26.2
LL2x0.142 58.3 (402) 85.9 (592) 27.0
BR15/16 52.4 (361) 90.4 (623) 29.3
C1x0.8x0.09 63.2 (436) 73.3 (505) 19.8
C1-3/8x1.27x0.118 64.6 (445) 76.6 (528) 28.0
U1x1.1x0.118 58.6 (404) 71.0 (490) 26.5  

 

The purpose of the experiments was not to investigate ponding stability theory, as to do so 

would require very flexible joists, in part because the AISC specifications require a factor 

of safety of four against ponding. Custom joists would have be required, and they would 

have been unrealistically understrength and flexible, and would not have been 

representative of practice. The fact that none of the standard joists would be unstable 

against ponding loads in the facilities available demonstrates that common joist designs are 

theoretically safe for ponding stability. This does not mean, however, that it is not possible 

to design steel joists that will be unstable for ponding loads. For example, by increasing the 

spacing between joists enough, any joist could exhibit ponding instability. A comparison of 

the ponding stability of the chosen joist to the specified criteria is shown in appendix B. 

 

Roofing System 

 
The roofing system consisted of the steel joists, steel decking, insulation and waterproofing 

membrane, shown in figure 30: 
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Figure 30: Joist Elevation Views 

The joists supported 22 gage Wide Rib Steel Decking, a common decking material for 

these roof systems. The decking was welded to the top chord of the joists in a 36/4 pattern: 

one weld every 12 inches (30.5 cm). On top of the steel deck roofing, Georgia Pacific 

DensDeck was used to provide a flat roof surface on which to work. Over this, a 45 mil 

(45/1000 inch or 1.14 mm thickness) rubber waterproofing membrane was used to 

waterproof the roof. This membrane was draped over the concrete and plywood walls on 

all four sides and weighted to allow movement and keep it from falling into the pool. The 

load was applied by adding water via hoses on top of the roof. 

 

Supports 

 
For these experiments, the supports were pin and roller connections with no moment 

resistance to simplify construction and analysis. As the joist deflected, the roller end 

moved horizontally toward the other support due to top chord bending and compression. In 
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the field, joists are typically welded to both supports,which would prevent this motion, 

induce tension forces in the top chord and reduce the overall deformations. To eliminate 

these effects and use the idealized design assumptions, roller supports were used at the 

north end of both roofs. 

 

Each end of the pin and roller system was supported on a twelve foot (3.66 m) W10x49 

(W250x73) steel beam that carried the loads from the joists to the tank walls. The end of 

each of these rested on a bearing plate on top of a heavier column section that was bolted 

into the concrete wall. Details of this system can be seen in figures 31 and 32. The SJI code 

requires that for sloped joist seats at a pitch greater than ¼ on 12 the seats must be 

modified to accommodate the slope. It explicitly states, however, that “If slope is ¼: 12 or 

less, sloped seats are not required” (SJI, 2005). The slope used in this test was exactly ¼ on 

12, so no modifications were made to the seats. 
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Figure 31: Joist Supports and Parapet Design 

 

 
Figure 32: Parapet Wall and Supports 
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Bridging 
 

Bridging elements used in these tests were 1-1/4x1-1/4x7/64 (32x32x2.8) angle sections. 

These were welded to the top-most edge of the bottom flange and the bottom-most edge of 

the top flange, leaving them out of the way of the decking and allowing them to be 

continuous over all three joists. The maximum allowable spacing of the bridging was 14.5 

ft (4.42 m) for the center joists and 12.17 ft (3.71 m) for the side joists. These values are 

conservative, as they are calculated based on expected loads during construction. The limit 

for the edge joists was smaller because they were designed for approximately half the 

capacity, so smaller angle sections were used for their chords. Since the smaller number 

controls, none of the rows of bridging were spaced farther than 146 inches (3.71 m) apart. 

Based on the SJI specifications, four sets of bridging were required for these joists, the 

center-most of which was required to be cross bracing. 

 

In typical construction, where the bridging terminates at the end of a set of joists, it is tied 

into the structure so that the entire system is laterally anchored. This could not be done for 

these tests, as the roof moved vertically, and tying into the concrete walls would have 

resisted the deflection of the roof. These roofs should be restrained laterally, but able to 

move freely vertically. To accomplish this, custom roller supports were built and welded to 

the edge joists so the rollers were in contact with the walls on either side. They are shown 

in figure 33: 
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(a)      (b) 
Figure 33: Roller Bearing, (a) Schematic (b) Photo 

There were 16 rollers laterally supporting the roofs: one at the termination of each set of 

bridging. For the flat test, imperfections in the walls where these rollers would rest were 

avoided by shifting the bridging along the length of the joists. After the flat test, it was 

apparent that this would not affect the outcome of the test, so in the pitched test, bridging 

was spaced at even intervals. The bridging spacing distances and details are shown in 

figures 34 and 35: 
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Figure 34: Bridging Locations 

 
Figure 35: Lateral Bridging 
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Instrumentation 

 
Several different types of instrumentation were used to measure the response of the 

specimens, including: strain gages, displacement sensors, load cells, a flowmeter and a 

sonic water level sensor. Displacement and load cell sensors were calibrated either prior to 

or following the tests to ensure accuracy. Strain gages were used to measure components of 

the internal forces in some of the joist members. Displacement sensors were used to 

measure the vertical motion of the roofs as they were loaded and to measure the horizontal 

motion of the roller supported end of the joist. A load cell was used at each joist support to 

measure the six joist reactions. A flowmeter was used to monitor the volume of water 

applied to the roof during the tests, and the water level sensor measured the water elevation 

over the course of the tests. Finally, during and after the test, three video cameras and a 

still digital camera were used to document the experiments. 

 

Strain Gages 

 
Strain gages were used to measure individual joist member forces. In some cases, more 

than one gage was required at a section in order to measure multiple force components. For 

details on how this was done, see appendix A. The number of gages used in different 

locations for the tests is summarized in figure 36 and table 6. A multiple strain gage section 

is shown in figure 37: 



 
 
 

83 

 
Figure 36: Strain Gage Locations 

Table 6: Multiple Strain Gage Locations: 
Location First Test Second Test
Top Chord 6 6
Bottom Chord 6 1 or 2
Web 1 1  

  
(a)      (b) 

Figure 37: Multiple Strain Gage Instrumentation, (a) From Above (b) From Below 

The bottom chord was instrumented with six gages per location in the flat test but was 

found to carry only tension loads, so it was instrumented with either one or two gages per 

location for the pitched test. Additionally, strain gages were located on members at their 

midspan for two reasons: to capture the maximum bending moments, and to avoid stress 

concentrations at the ends. 
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Vertical Displacement Sensors 

 
Vertical displacement sensors were used at 25 locations on the roof to measure the vertical 

roof deflection as water was added. The sensors were fastened to a rigid frame supported 

on the top of the concrete walls above the roof and connected by brass wire to eye bolts, 

screwed into the steel decking as seen in figure 38: 

   
(a)    (b)    (c) 

Figure 38: Vertical Displacement Sensors, (a) Sensor (b) Frame (c) Eye bolt 

Three different types of vertical displacement sensors were used, including four inch (10.2 

cm) displacement transducers, one twelve inch (30.5 cm) displacement transducer, and 

fifteen inch (38.1 cm) string potentiometers. The locations of each type for the two tests are 

illustrated in figures 39 and 40: 

 
Figure 39: Vertical Displacement Sensor Locations 
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Figure 40: Plan View of Vertical Displacement Sensors 

The data collected by the four displacement sensors in the corners was unreliable, as the 

waterproofing membrane bunched up in the corner and likely contacted the brass wires, 

altering these measurements. 

 

Load Cells 

 
Load cells were placed under the six supports of the roof. These provide each joist reaction 

and summed represent the total water load on the roof. The load cell installation can be 

seen in figures 31 and 41: 
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(a)      (b) 

Figure 41: Load Cell Installation, (a) End View (b) Side View 

 

Horizontal Displacement Sensor 

 
The ends of the joists that sat on rollers moved horizontally as load was applied. The 

magnitude of this motion was critical during testing, as there was nothing keeping the 

entire roof from sliding off the supports and falling to the floor if it moved too far. This 

measurement was made using a 1½ inch (3.81 cm) displacement transducer attached to the 

steel support beam, as shown in figure 42(a): 

  
(a)      (b) 

Figure 42: (a) Horizontal Displacement Sensor (b) Water Level Sensor 
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Sonic Water Level Sensor 

 
In order to measure the level of impounded water throughout the test, a sonic sensor was 

used. Because the loading was slow enough for the entire test, the surface of the water 

remained level in both tests until collapse, at which point the water flowed quickly toward 

the point of failure. In the pitched test, this sensor was installed as close to the low end as 

possible, at a point directly above the center joist and exactly 6½ inches (16.5 cm) from the 

centerline of the support. The device can be seen in figure 42(b). 

 

Flowmeter 

 
To give a reference value for the total amount of water applied, a flowmeter was attached 

to the hose feeding the roof. Over the course of the experiments, however, water leaked 

through the holes created by puncturing the rubber membrane to install the eye bolts for the 

displacement sensors, thus the values provided by the flowmeter over time did not 

accurately reflect the total volume of water. 

 

Initial Conditions 

 
When built, the first roof was expected to be exactly level, the second, straight on a 1:48 

pitch. Due to joist and construction imperfections and the initial camber built into the 

joists, they were not perfectly flat. To determine the actual initial conditions, each roof was 

surveyed prior to testing. 125 measurements were taken on each roof on a grid of 25 

equally spaced measurements along the length of the roof and five across the width. All 
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measurements were taken with a Philadelphia rod and laser level while standing directly 

above one of the joists. The standard deviation of all measurements taken from the flat roof 

was 0.0124 ft. (3.8 mm), and the standard deviation of the measurements from the pitched 

roof from the expected straight line was 0.0130 ft. (4.0 mm). 

 

Experimental Methodology 

 
After construction and instrumentation were completed and the data acquisition system 

was set up, the tests were conducted. Both roofs were loaded with water using a one inch 

(2.54 cm) garden hose attached via a flowmeter. This produced slow accumulation of water 

on the roofs until the eventual failure. 

 

Test One: The Flat Roof 

 
Testing began in the early afternoon of Friday, November 21, 2008. The data acquisition 

system was set to sample at 2Hz and loading continued until the water level reached 

approximately 1.75 inches (4.45 cm) at the supports. It was noted that the roof was slowly 

leaking, so the height of the water was measured to check in the morning and the 

flowmeter was already known to be an inaccurate measurement of the total load. With the 

water supply stopped, the sampling rate was reset to 0.01 Hz, attempts were made to stop 

the leaks, and the roof was left to sit overnight while the data files were briefly analyzed to 

check for any significant problems in the data acquisition. 

 

The following morning, the water level was measured and, though the roof was still 

leaking, it had not made a measureable difference in the water level. All of the data looked 
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reasonable except that several strain gages were not working. As none of these gages were 

critical, the data sampling rate was reset to 1 Hz, the hose was turned on, and testing 

continued. Testing stopped briefly on Saturday afternoon to reset some of the displacement 

sensors as they became close to their capacity. Later in the afternoon, a second hose was 

added to speed the loading, and the roof broke at about 7:00 pm. 

 

Test Two: The Pitched Roof 

 
The second test was run very similarly to the first. Loading began in the late afternoon of 

Thursday, January 8, 2009. The sampling rate was set to 1 Hz, and the water was allowed 

to collect until it had reached the midpoint of the roof. The water was turned off, the data 

sampling rate was turned down, and the roof was left to sit overnight while the data was 

briefly analyzed. On Friday morning, the roof was still leaking, though the water level had 

not been noticeably changed. All of the data seemed reasonable, so the loading was 

continued. Again, the loading was stopped and sampling reduced while some of the 

displacement sensors were reset. Testing resumed, a second and a third hose were added, 

and the roof collapsed at 3:00 pm. 

 

Design Summary 

 
Two steel joist, steel deck roofs were built and tested to investigate ponding effects. The 

first test was flat while the second was on a ¼: 12 pitch. Each roof was made of a center, 

stronger joist, and two weaker, side joists, and was braced laterally by four sets of bridging. 

The experiments focused on the center joists, standard 24K9 joists. The joists were spaced 

at 67 inches (1.70 m) and supported by a pin-roller system on twelve foot (3.66 m) 
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W10x49 (W250x73) steel sections on steel column sections bolted into the concrete 

supporting walls. The joists supported steel decking, which supported insulation that was 

the foundation for the watertight liner that held the water in. 

 

The design was a three way roof system, though it was effectively a test of a one way 

system. The primary system members were steel beams that had very little deflection and 

acted as rigid supports. The secondary system was the system of three joists, and the 

tertiary system was the steel decking. Because the decking did not fail before the joists, it 

was only important to distribute the water load to the joists. Every structural component of 

the test was checked to ensure it was at least as strong as the loads that it was expected to 

incur. These checks are included in appendix B. 
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EXPERIMENTAL RESULTS 

 
Quantities measured during testing included the deflected shape of the roof, the strains in 

the joist members, the distribution of load at the supports, the horizontal motion of the 

roller supported end and the water level. These results are presented in the present chapter.  

 

Data Reduction 

 
Data were collected and initialized to zero. Some of the data was rescaled and the sonic 

water level sensor and some strain gage data were smoothed. Some other details of the data 

reduction process included: 

• The load cell used in the southwest corner in both tests did not work 

properly. For the flat test, the load in this corner was taken as the average of 

the loads in the other three corners. For the pitched test, this measurement 

was taken as the same as that for the southeast corner. 

• In the flat test, the strain gage on the southernmost web member was not 

working, so it was replaced and run through a different data collection 

channel. The offset value was determined from the center south load cell 

data. 

• Element forces in the joist members were recovered from strains following 

the method in appendix A. 

• The four corner vertical displacement measurements were taken as zero. 

• The center joist support displacements were not removed from the total roof 

displacements because they are a significant component of the overall 



 
 
 

92 

displacement. The test setup consisted of a three way system (beam, joist 

and decking), and the data from the vertical motion of the support bending 

under the center joist reflects this system response. 

• Some of the displacement sensors reached their stroke capacity during the 

test. The data after the limit was reached capacity were disregarded. 

• The sonic water level sensor had an additional offset due to the position not 

being located directly over the support. 

• Where duplicate strain gage data were collected, the average of the two 

sensor measurements was used. 

• Where appropriate, total load on the roof was used as the independent 

variable for the data presentation for clarity and uniformity. 

 

Distribution of Load 

 
The portion of the total water weight held by each of the six support points was measured 

with load cells. As expected, the center joist held approximately twice as much load as 

each of the edge joists. The accumulation of water load at each support in the flat test is 

illustrated in figure 43 and the same results for the pitched test are shown in figure 44. 
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(a)      (b) 

Figure 43: Flat Test Support Reactions, (a) Center Joist (b) Edge Joists 

For the flat test, the reaction distribution at the end of all three joists was similar 

throughout the test and the two side joists held very similar loads throughout the test, 

indicating that loading was symmetric in both directions. 
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(a)      (b) 

Figure 44: Pitched Test Support Reactions, (a) Center Joist (b) Edge Joists 

The support reactions were symmetric about the center joist for the pitched test as well, but 

they were not symmetric about the center of the span. This is because the water collected at 

the low end of the roof first, increasing the load on the north end load cells. It can be seen, 

however, that after a certain point (about 15,000 lb or 66.7 kN total load), the load does 

become more uniformly spread between the two ends and the curves representing the two 

opposite ends become parallel but offset due to the initial differences. A more meaningful 
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way of showing the distribution of the loads is to plot the reactions at each support with the 

sum of all six, as seen in figure 45. Results in subsequent sections will also be presented 

with respect to the total load on the roof. 
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(a)      (b) 

Figure 45: Reactions with Total Load, (a) Flat Test (b) Pitched Test 

In the flat test, the loads are distributed more evenly and increase linearly as the load 

distribution does not change noticeably with increasing total load. For the pitched test, 

however, the load distribution varied with total load, as the water conforms to the pitched 

roof. 

 

From the data for the flat test, it is clear that the side joists carry more than half the load the 

center joist does. They were expected to carry half plus an extra amount corresponding to 

the 4½ inch (11.4 cm) cantilever in the decking. By checking the data at failure, the side 

joists combined hold 24.0 kips (107 kN) while the center joist held 22.4 kips (100 kN). 

These values were compared with the relative tributary areas of loading, 67 inches (1.70 m) 

for the center joist and 76 inches (1.93 m) for the sides combined. Computing the ratios 

shows that the center joist supported more load per tributary area than the edge joists. This 

demonstrates that the ponding effect, while clearly working along the length of the roof, 

was also working in the transverse direction. The center joist deflected more quickly than 
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the side joists, increasing its load, but it appears to be a linear relationship throughout the 

test. Though this could be considered a ponding effect, nonlinear load distribution was not 

observed. 

 

For the pitched roof, the same ratios can be computed more easily if the reactions at the 

ends are summed. By summing the reactions and plotting the total weight supported by 

each of the three joists with the total load, linear relationships result and match those for 

the flat test, as shown in figure 46: 
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(a)      (b) 
Figure 46: Joist Loads, (a) Flat Test (b) Pitched Test 

Based on the tributary areas supported by each joist, the center joist should support 46.9% 

of the total load. For the flat roof near failure, the portion of the total load held by the 

center joist is 48.3% and for the pitched test the ratio is 48.7%. The ratios show that the 

center joist is carrying a slightly disproportionately high amount of load relative to the 

tributary areas, and that the disproportion is similar in both tests. 
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Displacements 

 
For investigation of ponding effects, the roof displacements are critical measurements. The 

displaced shape indicates the water load profile and also shows the overall structural 

response of the roof to these loads. 

 

Joist Displacements in Profile 

 
Figures 47 to 54 show the displacements of the three joists in both tests with a positive 

value indicating downward movement. For the center joists, nine measurements were taken 

along the length; for the side joists, five measurements were taken. The location of each 

measurement is at a distance measured from the north end of the roof. Symbols are shown 

at each of the sensor locations. As seen in the plots, the center joist displacements are not 

zero at their supports because the supports displace downward, and these effects were not 

removed. For both the flat and pitched roofs, initial geometry was removed to facilitate 

comparisons between the two tests. 
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Figure 47: Joist Displacements at 1 kip (4.45 kN) Total Load, (a) Flat Test (b) Pitched Test 



 
 
 

97 

Position (ft)

D
is

pl
ac

em
en

t (
in

ch
es

)

Joist Displacements at 2k Total Load
Flat Test

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0.26

0.22

0.18

0.14

0.1

0.06

0.02

-0.02
Legend

Center Joist
West Joist
East Joist

 Position (ft)

D
is

pl
ac

em
en

t (
in

ch
es

)

Joist Displacements at 2k Total Load
Pitched Test

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02
Legend

Center Joist
West Joist
East Joist

 
(a)      (b) 

Figure 48: Joist Displacements at 2 kips (8.90 kN) Total Load, (a) Flat Test (b) Pitched 
Test 
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(a)      (b) 

Figure 49: Joist Displacements at 5 kips (22.2 kN) Total Load, (a) Flat Test (b) Pitched 
Test 
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Figure 50: Joist Displacements at 10 kips (44.5 kN) Total Load, (a) Flat Test (b) Pitched 
Test 
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Figure 51: Joist Displacements at 20 kips (89.0 kN) Total Load, (a) Flat Test (b) Pitched 
Test 
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(a)      (b) 

Figure 52: Joist Displacements at 40 kips (178 kN) Total Load, (a) Flat Test (b) Pitched 
Test 
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(a)      (b) 

Figure 53: Joist Displacements near Failure, (a) Flat Test (b) Pitched Test 
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Figure 53 shows the deflections shortly before collapse. Figure 54 shows the same data as 

figure 53(b), but includes the positions taken from the initial conditions survey. 
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Figure 54: Pitched Joist Elevations near Failure 

Figures 47 to 54 show that the displacements for the pitched tests are asymmetrical early in 

the test because the load is unbalanced along the span. As the water load accumulates, the 

deflection profile flattens out and the difference between the two roofs becomes small. It 

can also be seen that the flat roof has larger deflections early in the test, but that this 

difference becomes less apparent with increased water load. This is because the load on the 

flat roof is, on average, closer to the center of the roof span. 

 

At early stages of loading in both tests, the displacements do not exhibit the expected curve 

shapes. This is likely due to initial imperfections in both construction and loading. 

Wrinkles in the waterproof membrane led to slightly uneven distribution of water early in 

each test. While the initial imperfections lead to noticeable changes in the data early in the 

test, these become less significant as the water load increases. 
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Midspan Deflections 

 
The overall performance of the joists and decking can be characterized by considering the 

midspan displacements of these elements. There were five displacement sensors at 

midspan, one over each joist and at the midspan of the decking between the joists. In the 

flat test, all five of the displacement sensors at midspan reached the limit of the sensor 

range before failure. For the midspan displacement of the center joist, the nonlinear portion 

of the load-deformation curve was measured and the adjacent responses were estimated 

from the center joist, as shown in the dashed lines in figures 55 and 56: 
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(a)      (b) 

Figure 55: Midspan Displacements, (a) Flat Test (b) Pitched Test 
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Figure 56: Midspan Displacements at Failure, (a) Flat Test (b) Pitched Test 
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The responses of the center joist midspan displacements are plotted together in figure 57 

and indicate similar overall performance: 
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Figure 57: Midpoint Displacements 

Initially, the pitched test was stiffer, but after significant load was applied, the two roof 

responses became similar. At failure, the flat test held slightly more total load. 

 

The maximum moment was calculated using the deflection measurements to estimate the 

load profile, 62.4 pcf (9.8 kN/m3) as the unit weight of water and the trapezoidal rule for 

integration. This is shown in figure 58. The moments were calculated at 5 kip (22.2 kN) 

total load increments for most of the test, and more frequently near the end. 
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(a)      (b) 

Figure 58: Maximum Moments Based on Load Profile, (a) Flat Test (b) Pitched Test 

The relationships illustrated in figure 58 are linear, though it appears that the moments 

become nonlinear at the end of the pitched test. These results further illustrate the 

similarity of the responses of the two specimens, even as they have different initial 

conditions. 

 

Contour Plots 

 
The roof displacement responses for the two specimens are shown in contour plots in 

figures 59 to 67. For the pitched roof, the net water induced displacements and the absolute 

elevations of the roof considering the initial geometry were both plotted. To create the 

absolute elevation figures, the initial conditions survey was used in combination with the 

test displacement data. For each roof, contours were plotted at three load steps. The in 

plane dimensions are in feet, and the displacements are measured in inches. 
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Flat Roof 
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Figure 59: Flat Roof Displacements at 5 kips (22.2 kN) Total Load 
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Figure 60: Flat Roof Displacements at 20 kips (89.0 kN) Total Load 
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Figure 61: Flat Roof Displacements at 40 kips (178 kN) Total Load 
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Pitched Roof 
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Figure 62: Pitched Roof Displacements at 5 kips (22.2 kN) Total Load 
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Figure 63: Pitched Roof Elevations at 5 kips (22.2 kN) Total Load 
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Figure 64: Pitched Roof Displacements at 20 kips (89.0 kN) Total Load 
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Figure 65: Pitched Roof Elevations at 20 kips (89.0 kN) Total Load 
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Figure 66: Pitched Roof Displacements at 40 kips (178 kN) Total Load 
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Figure 67: Pitched Roof Elevations at 40 kips (178 kN) Total Load 

 

Support Displacements 

 
The support displacement measurements are a combination of several effects. The largest 

of these is the bending induced displacement of the support beams under the center joist. In 

addition, support displacements could have been introduced by the compression of the 

support system, including the roller bearings, load cells, and column sections bolted to the 

concrete walls. 

 

The total support displacements were small, but not negligible. For the flat test, the north 

end support displacement near failure was 0.26 inches (6.60 mm); the south end support 

displacement was 0.18 inches (4.57 mm). For the pitched test, these values were 0.08 

inches (2.03 mm) and 0.10 inches (2.54 mm), respectively. 
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Decking Deflection 

 
The third component of the three way system was the bending of the decking. It is clear 

from the plots of the midspan deflections that there is bending in the decking. By 

comparing the decking deflections with the joist deflections in both tests (though it is more 

apparent in the pitched test), it is easy to see that the decking deflections are closer to the 

center joist deflections than the side joist deflections. This indicated that the decking at 

these locations was below the linearly interpolated location between the joists, indicating 

decking bending. In the present test specimens, the decking did not fail or appear to alter 

the failure of the joists. For real design applications, the decking would typically be 

supported over three spans and tied to the adjacent decking. For these tests, the decking 

was supported over two spans, and was not tied into additional decking at its ends, 

reducing beneficial continuity effects. 

 

Water Level 

 
The water level response throughout the tests is shown in figures 68 and 69: 
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Figure 68: Water Elevation 
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(a)      (b) 

Figure 69: Water Elevation at Failure, (a) Flat Test (b) Pitched Test 

Figures 68 and 69 show that the water level rose most quickly in the early stages of the 

pitched test because the water was filling a smaller volume concentrated at the parapet 

wall. As the test progressed, the rate of rise of the water level for an increment of load 

became parallel to that for the flat test. This occurs near the point where the water has risen 

above the high point of the roof. At this point, the additional water filled equal areas for 
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both tests. The water level at the low end of the roof when the water reaches the top would 

be 12 inches (30.5 cm), while the water level on the flat roof that gives an equivalent load 

would be half that, meaning the difference between the water levels for equivalent loads 

once the water reaches the top would be 6 inches (15.2 cm), which is reflected in the 

separation of the curves. Finally, as seen in figure 69, both roofs reached a maximum point 

then the water elevation decreased rapidly. This occurred because the deflection of the 

roofs increased at a rate higher than that of the water being added to fill the roof. When the 

water began to flow away from the supports, it can be seen that the roof is deforming 

rapidly and failure is occurring. 

 

Horizontal Motion 

 
The horizontal motion of the end of the roof on roller supports was measured throughout 

both tests and is shown in figure 70. The data for these measurements shows that the 

horizontal motion is nonlinear with the total load throughout the test, but still displays the 

same rapid increase in displacement at collapse. It is interesting to note what happens to 

the horizontal displacement in the flat test just after 25 kips (111 kN) total load has been 

applied. The displacement increased quickly then returned to the same rate of change. This 

is likely attributable to the effects of imperfections in the roller bearings. 
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Figure 70: Horizontal Motion 

Member Forces 

 
Many of the individual joist members were instrumented with strain gages so that the 

individual member force components could be determined. The member axial and bending 

forces were recovered from the strains using the methods outlined in appendix A, with axes 

and sign conventions as shown in figure 71: 

 
Figure 71: Angle Section Axes 

With these conventions, in-plane bending is positive when putting the top of the top chord 

or the bottom of the bottom chord in compression, and out-of-plane bending is positive 
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when the angles bend toward each other. Axial forces are defined as positive in tension and 

negative in compression. For the purposes of this section of the report, top chord, web and 

bottom chord members in both tests will be referred to by a number that represents their 

location from the north end of the joists, as shown in figure 72. The top chord members are 

numbered 1 – 22, the web members are numbered 1 – 33, and the bottom chord members 

are numbered 1 – 10. 

 
Figure 72: Joist Elevation View 

 

Double Angle Chord Behavior 

 
In the flat test, there were five chord locations where all six strain gages provided data. One 

of these was lost during testing, so only four locations (one in the top chord, three in the 

bottom) have complete data for the whole test. The data from the top chord location and 

the most representative of the three bottom chord locations are shown in figure 73: 
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(a)      (b) 

Figure 73: Flat Test Member Forces, (a) Top Chord (b) Bottom Chord 



 
 
 

111 

For the bottom chord element in figure 73(b), the axial tension force becomes large, as 

expected. The bending forces in the bottom chord angles are very small. For the top chord 

element, the in-plane bending forces are positive, meaning that the members are bending as 

expected under the water pressure loads, and both angles exhibit negative out-of-plane 

bending moments, indicating that the two angle sections are bending away from each other. 

In both cases, it can be seen that both angles carry forces and moments of similar 

magnitude except that the out-of-plane bending moments are opposites. Similar data was 

observed for the pitched roof test. For the pitched test, four top chord locations were 

instrumented with six strain gages. Only one gave complete data for the duration of the 

test. There were four bottom chord locations instrumented with two gages, of which two 

provided good data for the durations of the test. Representative data sets from the pitched 

test are shown in figure 74: 
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(a)      (b) 

Figure 74: Pitched Test Member Forces, (a) Top Chord (b) Bottom Chord 

The data for this test also showed that the two angle sections in the chord members carry 

similar force and moment magnitudes. It can be seen in figure 74(a) where the water level 

rose above top chord #11, as the force and moments increase more quickly at 

approximately 4 kips (17.8 kN) total load. The reversal of the top chord moments and 

decrease in axial load observed in figure 74(a) was a result of the element shedding load to 
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the web members late in the test. For all three top chord locations that provided data 

throughout two tests, the out-of-plane bending of the angle sections in the chord always 

forces the angles away from each other. This was reflected in the failure and buckling of 

these sections.  

 

Web Members 

 
Example web member force responses are shown in figures 75 and 76. Central member 

numbering is shown in figure 77 for reference: 
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(a)      (b) 

Figure 75: Web Member Forces, (a) End Members (b) Vertical Members 
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Figure 76: Central Diagonal Web Member Forces, (a) Flat Test (b) Pitched Test 
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Figure 77: Central Joist Member Numbering 

From these there are several interesting points to be made. The vertical members all carry 

approximately the same amount of compressive force. This is because they are supporting 

a tributary area of decking through the top chord. The vertical web member forces should 

be proportional to the water level above them. 

 

From the diagonal web member data, some other interesting points can be made. In the 

pitched test, it can be seen that the six central diagonal web members start out in sets of 

three and end up as pairs. In general, the diagonal web members that angle up toward the 

center of the load are compressive, while those that angle down towards the center of the 

load are tensile. Because the center of the load moves during the pitched test, some of the 

elements experienced both tension and compression forces over the course of the test, as 

seen in figure 76(b). It can also be seen that near the end of the test, the rate of compressive 

loading in the web elements accelerated. This corresponds to the point where the chord 

members shed load in figure 74(a) and shows that load is being redistributed through the 

web to maintain internal equilibrium. 
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Bottom Chord Strains and Joist Moments 

 
For the pitched test, the entire bottom chord was instrumented with strain gages so the 

moment profile could be estimated assuming the top and bottom chords carry all moments, 

the top and bottom chord forces are the same, and that the moment arm is the distance 

between the centroids of the top and bottom chord members. In the flat test, not all of the 

bottom chord members were instrumented, but a coarse moment profile could be 

determined. Shown in figures 78 to 80 are selected moment profiles based on the bottom 

chord strain data, with ends moments restricted to zero. 

 

Bottom Chord Member

Be
nd

in
g 

M
om

en
t (

lb
-ft

)

Moment Profile At 2k Total Load

0 1 2 3 4 5 6 7 8 9 10 11
5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
Lengend

Pitched Test
Flat Test

 Bottom Chord Member

Be
nd

in
g 

M
om

en
t (

lb
-ft

)

Moment Profile At 5k Total Load

0 1 2 3 4 5 6 7 8 9 10 11
15000

13000

11000

9000

7000

5000

3000

1000 Lengend
Pitched Test
Flat Test

 
(a)      (b) 

Figure 78: Moment Profiles, (a) 2 kips (8.90 kN) Total Load (b) 5 kips (22.2 kN) Total 
Load 
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Figure 79: Moment Profiles, (a) 10 kips (44.5 kN) Total Load (b) 20 kips (89.0 kN) Total 
Load 
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(a)      (b) 

Figure 80: Joist Moment Profiles, (a) 40 kips (178 kN) Total Load (b) Near Failure 

Because the midspan bottom chord strains were known in the flat test, and all of the bottom 

chord strains were known in the pitched test, the maximum bending moment could be 

estimated based on the strains for each test. These are shown in figure 81: 
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Figure 81: Maximum Moment Based on Displacements, (a) Flat Test (b) Pitched Test 

 

Failure 

 
Both tests failed in a similar manner. The ultimate failure in both tests was initiated by 

buckling of the top chord of all three joists. At the onset of failure, the displacements 

increased rapidly, water flowed toward the center of the roof, the top chords buckled, and 

the north end of the joists fell off their supports. In both tests, the chord failed in the same 

location: the centermost section just to the north of the centerline. Photos of the buckled 

members are provided in figures 82 and 83: 

  
(a)      (b) 

Figure 82: Failed Members, (a) Flat Test Side Joist (b) Flat Test Center Joist 
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(a)      (b) 

Figure 83: Failed Members, (a) Pitched Test Center Joist (b) Flat Test Center Joist 

 

Failure Mode 

 
The buckled double angle members failed under a combination of biaxial bending and 

axial compression. The minor y-axis bending was small compared to the x-axis bending 

and was disregarded in the subsequent analysis. The design strengths of the double angle 

section were computed per Chapter H of the AISC steel design code. The nominal 

compressive strength is Pc = 57.0 kips (254kN) and the nominal moment capacity is Mc = 

40.0 kip-ft (54.2 kN-m). Based on these design strengths and the loads measured during the 

test, the ratio of load to capacity for this section was calculated throughout the test and is 

plotted against the total load in figure 84: 
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Figure 84: Failed Member Combined Loading 

Additional details for these calculations are shown in appendix C. As seen in figure 84, the 

load to capacity ratio reaches a maximum value of 0.98. Note the early change in the slope 

of the plot that results from the water level reaching the level of the location of the failed 

element. Near the end of the test, this member begins to shed load, which has already been 

shown to be transferred to the web members. 

 

Strain Condition in Top Chord at Failure 

 
By reversing the procedure used to calculate the double angle member forces, the 

maximum strain in the failed element was calculated. The maximum strain in the top chord 

angle members occurred in the corners, due to the combined biaxial bending and 

compression forces. When most heavily loaded, the failed double angle section carried 

54.98 kips (244.6 kN) axial compression, 6.83 kip-in (0.772 kN-m) in-plane bending and 

3.92 kip-in (0.443 kN-m) out-of-plane bending. Based on these loads and the double angle 

section properties, the maximum strain in the corners was 1796 με. The yield strength of 
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this steel section, measured to be 60 ksi (414 MPa), indicates that the member should yield 

at 2067 με. This data shows that the failed element was elastic through collapse. See 

appendix A for the calculations in detail. 

 

Decking Strength 

 
As shown in appendix B, the decking was strong enough to support 12.9 inches (32.8 cm) 

of water. During the pitched test, the water level at the lower end of the roof exceeded 17 

inches (43.2 cm). The water at the bottom of the pitched roof was over 14 inches (35.6 cm) 

deep when the design strength (including the factor of safety) was reached. This illustrates 

a potential issue for design of the decking on pitched roofs that may be subjected to 

ponding loads. This decking was chosen to match the strength of the joists for a flat roof. 

In the case of a pitched roof, however, water builds up more quickly in the lower areas, 

thus the design could lead to understrength decking at lower elevation areas. This could be 

remedied either by designing decking in a tiered system, providing stronger decking where 

needed, or by designing all the decking for the loads at the lowest elevation. 

 

Lasting Displacement Effects 

 
During the flat roof test, loading was suspended to attempt to stop water leakage by adding 

marine grease around the membrane punctures that allowed the displacement sensor 

attachment. As personnel walked on the roof to do this, additional deflection of the roof 

and horizontal motion was observed, and when the additional load was removed from the 

roof, some additional deformations, while small, remained. The data for the midspan 
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displacement of the center joist and horizontal motion were representative of the motion of 

the roof, and are shown in figure 85 for the first eight hours of the overnight data. 
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(a)      (b) 

Figure 85: Lasting Displacement Effects, (a) Midspan (b) Horizontal 

It can be seen that the difference in the vertical displacement was approximately 0.015 

inches (.381 mm), and in the horizontal displacement was about 0.003 inches (0.076 mm). 

These resulted from an additional live load of approximately 350 lbs (1.56kN). This is 

important because it shows that if additional loads are applied to a roof with ponded water, 

the additional deformations produced do not simply go away when the additional loads do. 

If a roof with ponded water were also subjected to wind loads, for example, wind pressure 

induced deformations will cause additional, lasting displacement effects. 

 

Shear Deformations 

 
The AISC specifications require a 15% reduction in the moment of inertia of trusses and 

steel joists to account for shear deformations. The data collected in this test allowed for the 

effect of shear deformations to be estimated in two independent ways. First, the bending 

deformations were calculated from the load profile given by the displacement data using 

the reduced moment of inertia. These deformations and the measured values were then 
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compared to estimate the impact of shear deformations. Second, shear deformations were 

evaluated directly from the diagonal web member strains. 

 

Shear Deformations Based on Displacement Data 

 
The load on the roof can be estimated throughout the tests based on the displacements and 

the water level data. Using this data, it was possible to reconstruct the load profile, the 

reactions and shears, the bending moments and eventually the displaced shape. This 

calculated displaced shape was then checked against the same displacement measurements 

to determine how well they matched. The data is summarized in tables 7 and 8: 

Table 7 Calculated and Measured Displacements, Flat Test: 

Total Load Calc. (in) Meas. (in) Diff. (in) %
5k 0.781 0.662 -0.120 -18.1
10k 1.604 1.363 -0.241 -17.7
15k 2.310 2.069 -0.241 -11.6
20k 3.021 2.777 -0.244 -8.8
25k 3.684 3.440 -0.244 -7.1
30k 4.385 4.248 -0.136 -3.2
35k 5.117 5.012 -0.105 -2.1
40k 5.856 5.848 -0.008 -0.1
45k 6.594 6.822 0.228 3.3  

Table 8: Calculated and Measured Displacements, Pitched Test: 

Total Load Calc. (in) Meas. (in) Diff. (in) %
5k 0.521 0.564 0.043 7.6

10k 1.330 1.335 0.005 0.4
15k 2.082 2.096 0.015 0.7
20k 2.860 2.842 -0.018 -0.6
25k 3.586 3.494 -0.092 -2.6
30k 4.296 4.198 -0.098 -2.3
35k 4.996 4.936 -0.060 -1.2
40k 5.715 5.722 0.007 0.1
43k 6.161 6.267 0.106 1.7  
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From the data in tables 7 and 8, it can be seen that there are significant deviations in the 

two data sets early in the tests, as the load is small. As the load increases, however, the two 

data sets match well, typically to within two or three percent. Data from late in the test is 

omitted, as nonlinearities affect the results. This data shows that for much of the test, the 

fifteen percent reduction in the moment of inertia is a good estimate for the shear 

component of the total deformation. 

 

Shear Deformations Based on Strains 

 
Because the strains in the diagonal web members are known throughout the test, the shear 

displacements can be calculated directly from the data. See appendix D for details of these 

calculations. The vertical panel deformations at the end of each test are shown in figure 86: 
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(a)      (b) 

Figure 86: Shear Displacements across Joist, (a) Flat Test (b) Pitched Test 

Based on figure 86, a best fit linear function was found that allowed the shear deformations 

in all panels to be determined. By summing these, the contribution of the shear 

deformations to the total midspan displacement was calculated. This process was repeated 

for several total load steps (later in the pitched test to avoid large load imbalance early in 

the test) and it was found that the shear deformations make up 11.2% of the total 
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displacement in the flat test and 13.8% in the pitched test. The larger contribution in the 

pitched test can be attributed to the load imbalance which produces higher shear 

deformations at low roof elevations. This data indicates that the 15% estimate to account 

for shear deformations appears reasonable. 

 

Comparative Analysis 

 
End Reactions 

 
At the supports of the center joist in each test, the vertical end reaction was measured by 

the load cells. These forces are opposed only by the small vertical load (shear) carried in 

the top chord to the support, and by the large axial force in the end diagonal. The data for 

these two forces for both ends in both tests were compared, and it was found that in all four 

cases, their relationship was linear, except the south end early in the pitched test. For the 

flat test, the ratios of the local member forces to the support reactions were 2.25 at the 

north end and 2.16 at the south end. For the pitched test, the ratios were 2.42 and 2.20, 

respectively. Based on the member geometry, the force in the end diagonal should be 2.24 

times the support reaction. The pitched roof and the rotations of the joist at the supports 

changed the geometry slightly, but the ratios of the forces in all four cases are all fairly 

close to those predicted. 

 

Midspan Displacements 

 
The midspan displacements were calculated at varying water levels using the analysis 

program described in the numerical analysis chapter and the joist stiffness modified by 
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15% for shear displacements. The predicted displacements were compared to the measured 

midspan displacement values in figure 87: 
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(a)      (b) 

Figure 87: Displacement Comparisons, (a) Flat Test (b) Pitched Test 

From figure 87, the predicted displacements were reasonably close, especially in the 

pitched case. 

 

Total Load 

 
The total load was measured over the course of the test in multiple ways. The flowmeter 

was intended to give a direct measurement of the total water volume, thus load, but due to 

water leakage, was not a reliable measure. The load cells allowed measurement of the total 

water by weight. A third measurement of the total load is the volume of the water 

calculated from a combination of the deflected shape and the water level. Using the 

displacement data from the center joist to determine the load profile, the total weight of 

water was calculated and plotted with the total weight of water from the load cells in figure 

88: 
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Figure 88: Total Load Calculation Comparison 

For both tests, the displacements predict slightly higher load than that measured with the 

load cells. The slight over-estimation provided from the displacements is a result of the 

choice of the center joist because it had slightly larger displacements than the edge joists. 

 

Design Applications 

 
Two effects amplify the maximum joist moment when ponding is involved. First, the load 

is heavier in the center due to the roof deflection; second, the roof deflections allow a 

greater amount of water to collect if the basic premise is that water is available to fill the 

roof to a certain height. The results of these effects, calculated from both the load profile 

taken from the displacement data and the strain data from the bottom chords can be seen in 

figure 89: 
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(a)      (b) 

Figure 89: Maximum Moment Amplification, (a) Flat Test (b) Pitched Test 

For both tests, the moment amplification factor due to ponding was 1.45 based on the 

displacement data. For the flat test, the amplification factor is 1.18 and for the pitched test 

it is 1.34 when the strain data is used. The data from the displacements show that the 

moment due to ponding diverged very early from the no-ponding results, while the strain 

data showed that it took longer for the second order effects to become noticeable. For both 

tests, the moments calculated from displacement data are larger than the moments 

calculated from the strain data, in the flat case by a factor of 1.21, in the pitched case by a 

factor of 1.10. 

 

Another way of comparing the results of these tests to the design process is to show load-

deformation response along with predicted results based on the specified moment of 

inertia, modulus of elasticity and design strengths of the joists. These results are illustrated 

in figure 90: 
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(a)      (b) 

Figure 90: Design Strength Comparisons, (a) Flat Test (b) Pitched Test 

For the flat test, the design strengths were based on the prescribed values established by the 

manufacturers, while for the pitched case they were converted from the flat case based on 

the maximum resulting moment. The values are very close for both cases. From figure 90, 

it is clear that for both tests, the joists deflect more with ponding load than anticipated by 

the design parameters. The joist response remained approximately linear beyond the 

projected strength (including the 1.67 factor of safety) in both tests. 
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CONCLUSIONS 

 
Conclusions and Recommendations 

 
Research on ponding behavior and collapse was performed. Analytical models were 

created and used to numerically investigate ponding stability. Additionally, two full-scale 

steel joist roof systems were designed, built, and tested to failure using water loads to 

investigate the ponding response. The experimental roofs did not exhibit ponding 

instability, but did show ponding load amplification effects and eventual collapse under 

ponding water. Based on the experimental and analytical results, the following conclusions 

are drawn and recommendations and suggestions for future work are presented: 

 

Analytical Conclusions 

 
• The original ponding stability criteria published by Haussler was confirmed 

• Increased roof slope does not improve ponding stability until the roof pitch gets 

much steeper than the current AISC ¼ on 12 pitch requirement. 

 

Experimental Conclusions 

 
• Early in the experiments, the behavior of the two roof systems were different based 

on the initial geometries. After significant ponding load was added, however, the 

responses became similar in terms of moment profiles and displaced shapes. 

• Nearly all response quantities appear to be linearly related to the total load on the 

roof until it is near collapse. The horizontal motion of the roller supported end of 
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the roof, however, exhibited a nonlinear response relative to the total load 

throughout both experiments. 

• Near the point of collapse in both experiments, the water elevation starts to decline 

as the volume created by the displaced shape exceeded the volume provided by 

adding new water to the system. 

• The double angle sections that make up the top chords carry biaxial bending and 

axial loads. The only significant loads carried in the bottom chord double angles 

are tension forces. The magnitudes of these components were similar in paired 

angle sections. 

• Of the biaxial bending forces in the top chord, the in-plane bending is the larger of 

the two moments resulting from the loads applied by the decking on the top of the 

joist. The out-of-plane bending is smaller, and the direction of the moment tends to 

move the angle sections away from each other.  

• In both experiments, the failure mode was buckling of the joist top chord members 

due to combined compression and bending forces that resulted in gross changes in 

geometry and increased loads due to water flow. 

• The maximum water pressure on the decking occurred at midspan in the flat test 

and near the third point in the pitched test. These local pressures are significantly 

larger than the pressure equivalent to the uniformly loaded joist strength. 

• If an additional load is temporarily superimposed over water loads in a ponding 

situation, the displaced shape is permanently altered until the water is removed. 

The additional load leads to a change in the distribution of water loads, which 

creates the lasting displacement effects. This finding indicates there are possible 
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deleterious effects of wind pressure surcharges that could occur concurrently with 

water loading. 

• The factor by which the ponding effect amplified the maximum first order joist 

moment was calculated most reliably from the displacement data. In both roof 

tests, the amplification factor was 1.45. 

• The current practice of using a 15% reduction in the joist moment of inertia to 

account for shear deformations was reasonable and appeared slightly conservative 

when compared with experimentally measured responses. 

• For real in-situ cases, the large amount of water available in the area surrounding 

the collapsing section would further accelerate failure, resulting in local rather than 

global roof collapse. 

 

Recommendations 

 
• Recognize that the code requirement of a 1: 48 pitch to prevent ponding does not 

ensure roof stability or increase load capacity. 

• Current design code treatment of ponding load effects requires only sufficient 

plumbing and a slight pitch. This may not adequately protect against ponding for 

all roof systems. A foolproof approach would be to design the roof to support 

ponding loads up to the top of the parapet walls. 

• Steel decking should be designed to hold the maximum water load, which will be 

larger than the pressure equivalent to the uniformly loaded joists’ strength. 

 

 



 
 
 

131 

Areas for Further Research 

 
There are additional research needs to improve understanding of roof behavior and design 

under ponding loads. Presently, much of the research is focused toward finite element 

modeling and development of analytical tools. There are also a number of opportunities for 

further experimental research. 

 

Analytical Tools 

 
The analysis program developed for this thesis works for simple conditions. A short list of 

possibly useful additions is provided here. An updated program could: 

• Analyze truss deflections explicitly rather than use beam theory 

• Include serviceability checks 

• Allow for variations in loads (Point loads, two sets of loads, uplift etc.) 

• Allow for initial imperfections 

• Include material nonlinearity 

• Account for multi-directional roofing systems 

• Allow varied support conditions and include catenary action 

• Explicitly account for shear deformation contributions to overall deflection 

• Calculate a rate of convergence for stable systems to determine a safety factor 

One other item that needs more work in the future is the determination of a general 

equation for the stability condition in the pitched case. Results from the program have been 

presented for this, but no closed form analytical solution has been found. 
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Experimental Work 

 
There are several topics related to the ponding effect that require future research, including: 

• Ponding effects on different green roof designs 

• Ponding effects in water insulating systems on roofs 

• The seismic response of green roofs with ponding loads 

• Ponding response under a combination of rain and snow loads 

• The effect of different support conditions and catenary action in ponding response 

• Wind effects on the ponding response 
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Appendix A: Chord Member Forces 

 
Force Recovery from Multiple Strain Gages 

 
The top and bottom chords of the center joist were instrumented in several locations in 

both tests. The top chord members looked like this: 

 
Figure 1: Double Angle Cross Section 

The bottom chords members were similar: they were inverted, so figure 1 is upside down, 

and they were made of slightly thinner angle sections. The sizes of the sections will be 

reflected in the calculations. The protrusions from the sections in the figure 1 represent the 

locations of the six strain gages. Six strain gages were used for each segment of the truss in 

the flat test that was expected to have axial and bending forces. Each angle requires three 

strain gages, as each could have independent measures of axial forces and bending forces 

in two directions. Six strain gages per location allow recovery of all three of these 

components for each angle section. The results of the flat test showed that the bottom 

chord really only experiences tension, so in the pitched test, only the top chord locations 

were instrumented with six gages. 

 

Figure 2 will facilitate the coming calculations that will allow recovery of element forces 

from individual strain measurements: 
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Figure 2: Chord Angle Dimensions 

Here, the locations of the gages are defined by their position on the element relative to its 

center of mass. For the physical testing, all strain gages were placed on the same faces, as 

shown in both figure 1 and figure 2, at a position exactly one half inch (1.27 cm) from the 

end of the angle section. 

 

Section properties were provided by the manufacturer for the majority of the sections used 

in building the joists. The only section properties that were used that were not provided 

were those for the end web members, which have a circular cross section, and the moment 

of inertia about the weak axis of the joist. These were calculated by hand, and the provided 

values were checked by hand calculations. The angle section properties are for the double 

angle section that makes up the chord members. For these calculations, values for one 

angle alone were used. The relevant sections properties are as follows: 

 

Center Joist: 

1. Top chord: 
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• Angle Size: 2L 2x2x0.166 (2L 51x51x4.2) 

• A = 1.272 in2 (8.21 cm2) 

• Ix = 0.490 in4 (118 mm4) 

• Iy = 1.924 in4 (462 mm4) 

• Rx = 0.620 in (1.57 cm) 

• yc = 0.562 in (1.43 cm) 

2. Bottom Chord: 

• Angle Size: 2L 2x2x0.142 (2L 51x51x3.6) 

• A = 1.096 in2 (7.07 cm2) 

• Ix = 0.426 in4 (102 mm4) 

• Rx= 0.624 in (1.58 cm) 

• yc = 0.552 in (1.40 cm) 

 

The problem is defined: 

Define: Tension positive, moment positive by right hand rule 

Known: Modulus of Elasticity, Section area, moment of inertia, strains at A, B, C. 

Find: Axial force, bending moments about X and Y axis. 

 

Step One: By Hooke’s Law, Stresses are known at A, B, C: 

 n nEσ ε=  (7.1) 

Step Two: Determine expressions for stresses in terms of the forces: 

 12 yx
A

M XM YP
A I I

σ = − −  (7.2) 
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 11 yx
B

M XM YP
A I I

σ = − −  (7.3) 

 23 yx
C

M XM YP
A I I

σ = + +  (7.4) 

 

Step Three: Write this in matrix form: 

 

2 1

1 1

3 2

1

1

1

A

B x

C Y

Y X
A I I P

Y X M
A I I

MY X
A I I

σ
σ
σ

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

 (7.5) 

Step four: Invert the matrix, substitute section property values, and write in three 

equations: 

For the bottom chord: 

 2.075 1.91 0.3825A B CP E E Eε ε ε= − +  (7.6) 

 1.499 1.499X A BM E Eε ε= − +  (7.7) 

 1.499 1.656 0.1568Y A B CM E E Eε ε ε= − +  (7.8) 

For the top chord: 

 2.076 1.888 0.447A B CP E E Eε ε ε= − +  (7.9) 

 1.475 1.475X A BM E Eε ε= − +  (7.10) 

 1.475 1.659 0.184Y A B CM E E Eε ε ε= − +  (7.11) 

Notice that the numbers in the equations are similar for the different chords, as the 

difference in the thickness is small. These equations were used in the data reduction to 

determine the element forces throughout the test from the strains as collected by the strain 
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gages. In doing so, it is important to note the units used. Strain gage data was collected in 

microstrain, the section properties used in these conversions have units in inches and the 

modulus of elasticity of steel is taken as 29,000 ksi (200 GPa). These units will be used in 

the data reduction. 

 

Maximum Strain from Member Forces 

 
The maximum strain in the top chord was determined from the maximum loads using 

equations 7.12 and 7.13. 

 
54.98 6.83(0.562) 3.92(0.5) 52.1
1.272 0.490 1.924

σ = + + =  (7.12) 

 3

52.1 0.001796
29*10

ε = =  (7.13) 
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Appendix B: Design Calculation Checks 
 
In this section, every structural element involved in the test will be checked to ensure that 

everything can support more load than the center joist. It would be unfortunate if 

something other than the center joist failed first and little data was gathered regarding 

ponding or the failure was able to be collected. For these calculations, the joist design 

factor of safety (1.67) will be taken into account. 

 

Check the strength of McGill CYR 2½ inch (6.35 cm) Roller Bearings for Strength 

 
These bearings serve as the rollers of the pin-roller system, and as the rollers held in the 

clevises at the termination of bridging elements. The greatest load occurs at the end of the 

center joist: 

 ( )( )1 211 *48' 1.67 8457
2

R plf lb= =  (7.14) 

As there are two rollers under each support, each roller must be able to hold 4228 lbs (18.8 

kN). From McGill literature, these roller bearings are rated at 32900 lb (146 kN) static, 

11720 lb (52.1 kN) dynamic loads. The bearings should therefore be fine under these loads. 

 

Check Georgia Pacific ½ inch (1.27 cm) DensDeck for Strength 

 
This product is rated at 500 psi (3.45 MPa) and 2-5/8 inch (6.67 cm) flute spanability. The 

1½ inch (3.81 cm) Wide Rib decking used for the tests has flutes that are 2½ wide. Based 

on the strength, the allowable height of water can be calculated: 

 
3

3

500 (12 )
62.4

psi inh huge
pcf ft

= =  (7.15) 
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Based on these two criteria, the DensDeck material is strong enough for the tests. 

 

Check Edge Joists for Possible Failure 

 
From SJI, the moment of inertia of the joists is directly proportional to their live load 

capacity: 

 3 6*26.767*10llI w L −=  (7.16) 

From the test setup, the spacing between joists was 67 inches (1.70 m). Space between 

edge joists and the wall was about 4½ inches (11.4 cm). Based on this, the tributary area of 

loading for the center joist is 67 inches (1.70 m), and for the edge joists is 38 inches (0.965 

m). The center joist was rated at 101plf (1.47 kN/m) live load, the edge joists, 58 plf (0.846 

kN/m). The factor of safety against the side joist failing is the ratio of their deflections 

under a uniform load: 

 

67
0.663101 1.01338 0.665

58

= =  (7.17) 

The factor of safety here is very small, which is good. The goal was to use joists that were 

as close to balanced as possible, so the roof would deflect together. The problem is that 

when they are perfectly balanced, any of the joists could break first. This result shows that 

the center joist is expected to fail first, but that the joists are balanced enough that they 

should act as a unit. One percent may seem small, but as the load collects on the joists, any 

initial differences will begin to be exaggerated by the ponding effect, so any factor of 

safety, regardless of how small, should be fine. Experimentally, this is representative of a 

field condition where identical joists are used side by side, but due to manufacturing 
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inconsistencies, one is slightly weaker than its neighbors: it will start to collect load more 

quickly. 

 

Check the Decking for Failure 

 
As the center joist should fail first, the decking that was sent with the joists from the 

manufacturers should be checked to make sure it is strong enough to withstand the 

maximum loads. First, the maximum expected load will be calculated: 

 
( )( )( )1.67 211 12

61.0
67

plf
psf

in
−

=  (7.18) 

The decking used was 22 gage 1½ inch (3.81 cm) wide rib decking. At 6 ft (1.83 m) 

spacing with a double span condition, the Steel Deck Institute Design Manual load tables 

show that this decking can support up to 67 psf (3208 Pa). Based on this, it appears the 

decking should be safe from failure. The pitched roof complicates this, however. Because 

the water will be deeper at the low end of the roof, decking at this end will carry more load 

than decking at the high end. A more appropriate way to check the strength of the decking 

is to determine the allowable height of water at any point on the roof: 

 
67 1.07 12.9

62.4
psf ft in
pcf

= =  (7.19) 

If the water level at any point in the structure becomes greater than 12.9 inches (32.8 cm), 

then the decking may fail. It is not known how high the water will get, so this check will be 

revisited in the results section of the report. 
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Check the Steel Support Beam for Failure, Deflection 

 
The only significant force acting on the W10x49 (W250x73) steel beam is the reaction of 

the center joist. The maximum expected force can be calculated, including the built in 1.67 

factor of safety: 

 
( )( )211 1.67

63.1
67
plf

psf
in

=  (7.20) 

 ( )( )63.1 6 24 9088psf ft ft lb=  (7.21) 

Conservatively rounding this to 10k, the maximum shear and bending moment in the beam 

should be 5 kips (22.2 kN-m) and 30 kip-ft (40.7 kN-m), respectively. From the Manual of 

Steel Construction, table 3-10, the moment capacity is 238 kip-ft (323 kN-m) and from 

table 3-2 the shear capacity is 102k. These strength values both provide large factors of 

safety against failure of the beam, but the question remains, will the beam deflection be 

significant? Again from the manual of steel construction, the moment of inertia of the 

beam is 272 in4 (6.53 cm4). The deflection can then be calculated: 

 
( )( )

( )( )
333

4

10 12 12 0.0789
48 48 29000 272

k ftPL in in
EI ftksi in

⎛ ⎞
Δ = = =⎜ ⎟

⎝ ⎠
 (7.22) 

So the deflection in the beam, for the conservatively calculated expected loads, is very 

small. 

 

Check the Steel Column Sections for Strength 

 
Each of the steel beams is supported on two column sections which are bolted into opposite 

walls. The load each needs to support is: 
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( )( )( ) ( )( )12 48 63.1 49 24

9380
4

ft ft psf plf ft
P kip

+
= =  (7.23) 

The column section is at least a W12x72 (W310x107), and is 21 inches (53.3 cm) long. 

Checking the Manual of Steel Construction table 4-1, it is clear that because these column 

sections are so short, there is no way they will fail. 

 

Check Bolts Holding the Entire Structure to the Walls 

 
Each column section is bolted into the support walls with four, one inch (2.54 cm) diameter 

bolts. The load each must carry is one quarter the load on a column section plus the weight 

of the column section, or 2377 lbs (10.6 kN). Assuming the bolts used are the weakest 

structural bolts, then from the Manual of Steel Construction, table J3.2, A307 bolts’ shear 

strength is Fnv = 24ksi (165 MPa). The strength of one bolt can then be calculated: 

 ( ) ( )( )224 .5 18.8F ksi in kπ= =  (7.24) 

This shows that each bolt is strong enough to support the required loads by a large factor. 

 

AISC Ponding Check 

 
The only independent set of code provisions published anywhere for checking ponding is 

in appendix two to the AISC manual of steel construction; every other code provision 

references this one for ponding. There are two methods presented in this appendix. The 

“Improved Design for Ponding” provisions are based on the properties of the roof and the 

expected dead and rain load, and provide the engineer with the ponding contribution to the 

load. As this test is expected to go to failure, there is no design rain load. For the purposes 
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of this report, only the “Simplified Design for Ponding” provisions of the AISC code will 

be checked (AISC, 2005). 

 

According to this section of the code, a roof is considered stable if, for English units: 

 0.9 0.25p sC C+ ≤  (7.25) 

 4 625 10dI S −≥  (7.26) 

Where: 

 
4

7

32
10

s p
p

p

L L
C

I
=  (7.27) 

 
4

7

32
10

s
s

s

SLC
I

=  (7.28) 

And Id is the moment of inertia of the decking and S is the spacing between the members 

supporting the deck. Because the test is treated as a one way test of the single joist, these 

requirements simplify to the single equation: 

 
4

7

32 0.25
10

DL
I

≤  (7.29) 

Where D is the distance between the joists in feet, L is the length in feet and I the moment 

of inertia in inches4. For the joist tested in this experiment. This is essentially the same 

requirement that has been repeated throughout the literature with a factor of safety of four 

against instability. The code states that for trusses and steel joists, the moment of inertia 

should be reduced by fifteen percent for this check, and the numbers provided by the 

manufacturers include this reduction. By running the numbers for the joist tested, with 

length of 48 ft (14.6 m), spacing of just under six ft (1.83 m), and a moment of inertia of 

309.33 in4 (7.43 cm4), the equation becomes: 
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 .307 0.25≤  (7.30) 

So the roof that is being tested does not pass the ponding requirements of the code. This 

means that there is less than a factor of safety of four against the joist used being unstable 

in ponding loading. This should not affect the tests, for several reasons. First, the factor of 

safety of four is completely arbitrary; the joist is still stable by the theory. Second, the test 

is not investigating failure due to instability, or the assumptions that the theory was based 

upon. Whether or not the structure used for this test is stable against ponding loads, the 

contribution of these effects to the overall loads and stresses developed can still be 

determined. 
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Appendix C: Failed Member Design Strength Calculations 

 
Calculations of the design strength requirements for the failed member, the top chord 

double angle section are presented here. All equations and explanations given here are 

taken from the AISC steel construction manual. The known data regarding the failed 

member that are required for these calculations are presented here: 

 b = 2 in  (5.08 cm)    t = 0.166 in (4.22 mm) 

 E = 29000 ksi (200 GPa)   Fy = 50ksi (345 MPa) (nominal) 

 Φb = Φc = 0.9     Ag = 1.272 in2 (8.21 cm2) 

 Rx = 0.620 in (1.57 cm)    L = 24 in (61.0 cm) 

 I = 0.490 in4 (118 mm4)    yc = 0.562 in (1.43 cm) 

 

AISC Chapter H1.1 

 
The design of a double angle section in compression and bending is controlled by either 

equation H1-1a or equation H1-1b, depending on the loading. These equations both require 

the calculation of Pc, Mcx and Mcy. The moments about the Y-axis are ignored because they 

are small and the member is restrained in this direction: the member fails (buckles) as a 

result of the combination of compression and in-plane bending. 

 

AISC Chapter B4 

 
First, it was determined that the double angle section is a slender element. Based on table 

B4.1, the limiting width-thickness ratio for slenderness is: 
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 0.45
y

b E
t F
<  (7.31) 

The double angle section fails this check, so it is slender. 

 

AISC Chapter E7.1 

 
Based on chapter E, the following equations are given: Pc = ΦPn = ΦFcrAg. Chapter E7 

addresses slender elements and the calculation of Fcr. The equations require the 

determination of K, Q and Fe. Because the structure was designed as a truss all connections 

are treated as hinges and K is one. Because equation 7.32 is true and there are no stiffened 

elements, Q is one as well: 

 0.56
y

b E
t F
≤  (7.32) 

Because the failure mode is flexural buckling, Fe can be determined by: 

 
2

2 191e
EF ksi

KL
r

π
= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (7.33) 

Based on K and Q, the governing equation can be determined. Because the inequality is 

true: 

 4.71
y

KL E
r QF

≤  (7.34) 

Fcr is determined by: 

 0.658 44.8
y

e

QF
F

cr yF Q F ksi
⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

 (7.35) 
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Based on this, Pc can be calculated: 

 51.3c cr gP F A K= Φ =  (7.36) 

AISC Chapter F9.3 

 
Based on chapter F9.3, Mc = ΦFcrSxc. Sxc is the section modulus referred to the 

compression flange: 

 0.872xc
c

IS
y

= =  (7.37) 

Because the double angle is a slender section, Fcr is calculated: 

 2
0.69 551

2

cr

f

f

EF ksi
b
t

= =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (7.38) 

Then Mc can be calculated: 

 36c cr xcM F S kft= Φ =  (7.39) 

Summary 

 
Returning to the specifications for combined loading and keeping in mind that the 

compressive force reaches more than 50 kips (222 kN), the governing equation for the 

interaction of the axial and in-plane bending is: 

 
8 1.0
9

rxr

c cx

MP
P M
+ ≤  (7.40) 

 1.0
51.3 40.5

rxr MP
k kft
+ ≤  (7.41) 
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The same equation, using the unfactored strength values, is shown in equation 7.42. This is 

the equation that is referred to in the text of the thesis regarding the strength of the failed 

element. 

 1.0
57.0 45.0

rxr MP
k kft
+ ≤  (7.42) 
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Appendix D: Shear Displacement Calculation 

 
The shear displacements were calculated panel by panel based on the strains in the 

diagonal web members. The calculations use the dimensions shown in figure 3, where the 

panel shear displacement is shown as S: 

 
Figure 3: Shear Displacement 

From geometry: 

 2 2
1L a b= +  (7.43) 

 ( )22
2L a b S= + +  (7.44) 

From mechanics: 

 ( )2 1 1L L ε= +  (7.45) 

From these three equations, set up for a tension diagonal and modified for a compression 

member by changing two signs, the shear displacements are found by: 

For a tension diagonal: 

 ( )( )2 2 2 21 2S a b a bε ε= + + + − −  (7.46) 

For a compression diagonal: 

 ( )( )2 2 2 21 2S b a b aε ε= − + − + −  (7.47) 

 



 

 


