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ABSTRACT

An improved bound is obtained for the radius of the semicircle in the complex plane containing the complex
phase speed of baroclinically unstable plane wave disturbances. In the limit of long waves, this bound contains
a term increasing with b and decreasing with the mean stratification (i.e., decreasing with the baroclinic Rossby
radius of deformation). An extension of the bound, valid for finite wavelengths longer than order (du/b)1/2, where
du is half the range of velocities in the mean shear flow, is also obtained.

1. Introduction

Baroclinic instability is an important mechanism by
which fluctuations in the oceans or atmosphere of large
enough scale to be in approximate geostrophic balance
can spontaneously grow at the expense of a vertically
sheared mean flow. Case studies of specific shear flows,
solved by analytical or numerical means, have furnished
wavenumber ranges in which instability occurs and ob-
tained the dependence of growth rate on wavenumber
and physical environmental parameters. A more general
approach has been to provide theoretical limits to
growth rates of instabilities from consideration of in-
tegrated positive-definite properties of geophysical
shear flows. One line of this approach has furnished the
so-called semicircle bounds on the complex phase
speeds of unstable disturbances. Such bounds are of
important practical interest because of the limits they
place on the growth of baroclinic mesoscale, and longer-
scale, eddy variability in the oceans. The semicircle
bounds also provide a guide to the degree of modifi-
cation by the shear of stable modes that lie outside the
semicircle (Killworth et al. 1997).

Howard (1961) established a remarkable theorem
about plane-wave instabilities in a stratified parallel shear
flow. It states that the complex phase speed of an unstable
disturbance lies within a semicircle on the complex plane
centered on a speed halfway between an upper and a
lower bound of the range of velocities that spans the
shear flow, and with a radius equal to half the difference
between these bounds (Fig. 1). Pedlosky (1963, 1964)
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extended this theorem to cover quasigeostrophic baro-
clinic disturbances in rotating, stratified geophysical
flows on a b plane. The effect of the earth’s curvature
is to extend the radius of instability of the semicircle by
an amount that depends on the phase speed of a barotropic
Rossby wave of the wavenumber under consideration
(Fig. 1). In the limit of very long waves (low wavenum-
ber), the barotropic Rossby wave phase speed is un-
bounded so that the extended semicircle radius is likewise
unbounded. This limitation on the complex phase speed
(and growth rate) of a baroclinic instability is of very
little utility. Cavallini et al. (1988) obtained a bounding
semicircle for the complex phase speeds of long-wave
disturbances in zonal flows on the sphere (or b plane);
it has twice the radius of the Howard semicircle and is
centered on the minimum mean flow (Fig. 1).

The stratification of the mean flow appears nowhere
in the semicircle radius bounds. This is curious as the-
oretical case studies of simple shear flows show that in-
stability requires a minimum shear increasing with the b
parameter and a measure of the stratification—the bar-
oclinic Rossby radius of deformation—and that growth
rate varies with the excess of shear over this critical
threshold (Pedlosky 1987). Hence the question arises
whether a more severe bound, perhaps depending on
stratification, can be placed on the radius of the unstable
semicircle. In this paper, we shall establish such a bound.
The method follows very closely the development of
Howard (1961) and Pedlosky (1964). In section 2 we
state the governing equations for baroclinic disturbances
in rotating stratified flow and derive the constraint de-
termined by Pedlosky (1964) for the complex phase
speed. In section 3 we treat the simpler case of the long-
wave limit. The resulting semicircle bound in this case
resembles Pedlosky’s in form although the barotropic
Rossby wave speed dependence of the semicircle bound-



84 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

ary radius is replaced by the long-wave limit of the bar-
oclinic Rossby wave speed. The latter is of course a much
smaller bound than the former. Our treatment corrects a
flawed derivation of a similar bound by Colin de Verdière
(1986). In section 4 the result is extended to shorter wave-
lengths, but longer than order (du/b)1/2, where du is half
the range of the velocity profile, at which limit the Ped-
losky bound becomes comparable.

2. Quasigeostrophic equations; semicircle theorem

The equation for a small quasigeostrophic pressure
disturbance of the form Re[f (z)eik(x2ct)] on a zonal strat-
ified shear flow u(z) is

2 2f f
2(u 2 c) ] ] f 2 k f 1 b 2 ] ] u f 5 0,z z z z2 21 2 1 2[ ] [ ]N N

(1)

with boundary conditions

(u 2 c)]zf 2 (]zu)f at z 5 0, 2H (2)

(Pedlosky 1987). Here x, z are zonal and vertical co-
ordinates; k is the zonal wavenumber and c 5 cr 1 ici

is the complex phase speed of the disturbance; N(z) is
the buoyancy frequency; b 5 ]y f is the rate of variation
of Coriolis parameter f : in Eq. (1), however, the latter
is considered constant. An alternate form of these equa-
tions can be obtained by substituting

h 5 f /(u 2 c). (3)

Equations (1), (2) then become

2f
2 2 2] (u 2 c) ] h 2 k (u 2 c) h 1 b(u 2 c)h 5 0,z z2[ ]N

(4)

] h 5 0 at z 5 0, 2H. (5)z

By multiplying Eq. (4) by h*, the complex conjugate
of h, integrating from 2H to 0, and using (5), one
obtains

0 2f
2 2 2 2(u 2c) |] h | 1 k |h | dzE z21 2N

2H

0

25 b (u 2 c)|h | dz. (6)E
2H

Taking the imaginary part of this, if ci ± 0,

0 2f
2 2 22 (u 2 c ) |] h | 1 k |h | dzE r z21 2N

2H

0

25 b |h | dz; (7)E
2H

and the real part,

0 2f
2 2 2 2 2{(u 2 c ) 2 c } |] h | 1 k |h | dzE r i z21 2N

2H

0

25 b (u 2 c )|h | dz. (8)E r

2H

Next, substituting (7) into (8),

0 2f
2 2 2 2u |] h | 1 k |h | dzE z21 2N

2H

0 2f
2 2 2 2 25 (c 1 c ) |] h | 1 k |h | dzr i E z21 2N

2H

0

21 b u|h | dz. (9)E
2H

Equation (7) may be rewritten as

0 02f b
2 2 2 2u |] h | 1 k |h | dz 2 |h | dzE z E21 2N 2

2H 2H

c 5 .r
0 2f

2 2 2|] h | 1 k |h | dzE z21 2N
2H

(10)

From this it follows that

cr # max(u(z)) # uu, (11)

where uu is an upper bound on the velocity u(z). If ci

5 0, (11) follows from (8), rather than (7), by observing
that the left side of the equation is positive. The bound
uu is marked in Fig. 1.

If uu, ul are upper and lower bounds on the velocities
of the mean shear flow u(z), then

0 2f
2 2 20 $ dz(u 2 u )(u 2 u ) |] h | 1 k |h | .E u l z21 2N

2H

(12)

By multiplying out the integrand, and using (9) and (7),
one sees that

2 2u 1 u u 2 uu l u l0 $ c 2 2) ) 1 2[ ]2 2

0 2f
2 2 23 |] h | 1 k |h | dzE z21 2N

2H

0 u 1 uu l 21 b u 2 |h | dz. (13)E 1 22
2H

Because u $ ul, one deduces that
2

u 1 uu l 2c 2 # du 1 bduL, (14)) )2

where du 5 (uu 2 ul) /2 and
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FIG. 1. The Howard (1961) semicircle, encompassing all possible complex phase speeds for
parallel shear flow on a flat plane; the Pedlosky (1964) semicircle for disturbances of zonal
wavenumber k on the b plane [the example shown is for k 5 0.4(b/du)½]; Cavallini et al.’s (1988)
semicircle bounding complex phase speeds for long-wave disturbances on zonal flow on the sphere
(or b plane); and the bounding semicircle given by this paper (the example shown is for l1du/
b 5 100). On the abscissa the point u 2 r2 is marked (defined in section 4). The distance from
this point to the Pedlosky semicircle is r2 2 rp.

0

2|h | dzE
2H

L 5 . (15)
0 2f

2 2 2|] h | 1 k |h | dzE z21 2N
2H

Because the integrand in the denominator of (15) is
$k2|h| 2, it follows that

L # 1/k2. (16)

Then it follows from (14) that
2

u 1 u bu l 2c 2 # du 1 du. (17)
2) )2 k

This is the Pedlosky bound for the radius of a semicircle
in the complex plane, centered on (uu 1 ul)/2, in which
c must be contained. It is shown in Fig. 1. [A sector of
the semicircle for cr . uu may be amputated on account
of condition (11). Still, we shall continue to refer to the
domain of permitted instability as a ‘‘semicircle.’’] This
bound is unsatisfactory in the important long-wave limit
as k → 0 (Killworth et al. 1997). In the following sec-
tions we shall obtain a stricter bound for L than (16),
valid for wavenumbers k & (b/du)1/2.

We emphasize that uu and ul appearing in inequalities
(11)–(14), and (17), may be any upper and lower bounds
on u(z), not necessarily the least upper bound and great-
est lower bound. This fact will be useful in the sequel.

By defining a vertical average,

0

21h 5 H h dz, (18)E
2H

and a deviation from this average,

h9 5 h 2 h , (19)

we may write (15) as

2 2|h | 1 |h9 |
L 5 . (20)

0 2f
2 2 2 2 21 2k |h | 1 k |h9 | 1 H |] h9 | dzE z2N

2H

Colin de Verdière (1986) pointed out that h9 may be
expanded in eigenfunctions of the following Sturm–
Liouville problem:

2f
2] ] c 5 lc, (21a)z z2N

] c 5 0 at z 5 0, 2H. (21b)z

Denote these eigenfunctions and their eigenvalues by
cn(z) and ln for n 5 1, 2, · · · . It is straightforward to
show that the eigenfunctions are orthogonal and can be
normalized,

0

21H c*c dz 5 d , (22)E m n mn

2H

and have zero vertical average,

cn 5 0. (23)

The eigenvalues are real and strictly positive and can
be ordered in magnitude:

0 , l1 # l2 # · · · . (24)

Equations (21) pose the classic baroclinic Rossby
wave mode problem, obtained by setting u(z) [ 0 in
Eqs. (1) and (2). Hence the eigenvalues ln are the in-
verse squares of the baroclinic radii of deformation for
classic Rossby waves (Chelton et al. 1997). [For the
special case where N is a constant, the eigenfunctions
and eigenvalues are
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1/2c 5 2 cos(npz /H ), (25)n

2 2 2 2 2l 5 n p f /N H .] (26)n

Using the eigenfunctions cn as a basis set, h9 may
be written as an absolutely convergent series,

`

h9 5 a c . (27)O n n
n51

Hence

`

2 2|h9 | 5 |a | , (28)O n
n51

and
0 `2f

21 2 2 2H |] h9 | dz 5 l |a | $ l |h9 | . (29)OE z n n 12N n512H

The inequality in (29) follows from the ordering of the
eigenvalues (24). It must be emphasized that the small-
est eigenvalue l1 is strictly positive. In Eqs. (21), l 5
0 if and only if c 5 const. This eigenfunction is elim-
inated by the requirement (23). It is not needed to con-
struct a representation of h9. The contribution of h to
L will be bounded in a different way.

Substituting (29) into (20), it follows that

2 2|h | 1 |h9 |
L # , (30)

2 2 2 2k |h | 1 (k 1 l )|h9 |1

or

2 2 2 21 21L # [k 1 l (1 1 |h | / |h9 | ) ] . (31)1

Colin de Verdière appears to neglect the ratio |h | 2/|h9| 2

in (31), a step that is not justified.

3. The long-wave limit

In this section we shall obtain a bound on the ratio
|h | 2/|h9| 2 appearing in (31) for the simpler, though im-
portant, special case of long-wavelength disturbances,
for which we set k 5 0. In that event, by integrating
(1) or (4) from 2H to 0, and using (2) or (5), one obtains

0 0

b f dz 5 b (u 2 c)h dz 5 0. (32)E E
2H 2H

Then, substituting (19) and u(z) 5 u 1 u9(z), into (32),
this becomes

(c 2 u)h 5 u9h9 .

Taking the absolute values of both sides of this, and
applying Schwarz’s inequality (Jeffreys and Jeffreys
1956) to the right side,

|c 2 u | 2|h | 2 # u92|h9| 2 . (33)

The vertical mean u must lie between the bounds ul and
uu, and indeed these bounds may be chosen so that

u 1 uu lu 5 . (34)
2

Then it follows that

1
|u9 | # (u 2 u ) 5 du. (35)u l2

By introducing the parameter

e 5 (u92)1/2/du # 1, (36)

(33) may be rewritten as

|h | 2/|h9| 2 # e2du2|c 2 u |22. (37)

Using this in (31), with k 5 0, and then in (14), one
obtains

2 2e du
2 2 21|c 2 u | # du 1 bl du 1 1 . (38)1 21 2|c 2 u |

Multiplication by |c 2 u | 2 and factorization of the re-
sulting quadratic gives

2 2|c 2 u | |c 2 u |
2 g 2 g # 0, (39)1 22 21 21 2du du

where

1 1
2 2 1/2g 5 (1 1 b̂) 6 [(1 1 b̂) 1 4e b̂] , (40a)6 2 2

b̂ 5 b /l du. (40b)1

Now g2 , 0, so the second factor in (39) is positive.
Hence

2 2|c 2 u | # g du . (41)1

This is our estimate for the bounding radius of the unstable
semicircle for the long-wavelength limit. By writing the
radicand in (40a), which is certainly positive, as

2 2 2 2 2{1 1 (1 1 2e )b̂} 2 4e (1 1 e )b̂
2 2 2 25 {b̂ 1 1 1 2e } 2 4e (1 1 e ),

one sees that the radical in (40a) is bounded by either
of the expressions in braces. Hence the positive root g1

is bounded above by

,2 2g , 1 1 (1 1 e )b̂ or b̂ 1 1 1 e1 (42)

whichever is smaller. Since e # 1, from (36), a less
strict statement of (42) is

,g , 1 1 2b̂ or b̂ 1 21 (42)9

whichever is smaller. Because ocean currents are usually
concentrated near the surface, so that the ratio e may
be substantially smaller than 1, the stricter forms (42)
may have considerable advantage over (42)9. Substi-
tuting (42) into (41), we see that

2 2 2 21|c 2 u | # du 1 (1 1 e )bl du or1

2 2 21(1 1 e )du 1 bl du, (43)1
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FIG. 2. The parameter M appearing in the bound (54) as a function
of k̃ and e. The contour marked ` describes k̃0(e), beyond which M
is not defined.

whichever is smaller. One should recall that, for the pur-
poses of (43), uu and ul may not be the supremum and
infimum of the mean flow. These bounds resemble the
Pedlosky bound in form, except that the long-wave bar-
oclinic phase speed magnitude b appears, rather than21l1

the barotropic phase speed magnitude b/k2, apart from
factors of (1 1 e2). For k ; 2p/(3000 km), the barotropic
speed is of order 20 m s21; while for ; (50 km)2, the21l1

baroclinic phase speed is about 10 cm s21. This more than
hundredfold difference narrows the bounding radius of the
unstable semicircle tremendously (Fig. 1).

4. Moderate wavelengths

In this section we relax the assumption that disturbance
wavelengths are long and consider effects of finite, non-
zero wavenumber k on the bounding radius of the unstable
semicircle. We will obtain a semicircle bound, valid for k
less than a finite value, and from which the k 5 0 bound
of section 3 can be recovered as a special case. This treat-
ment thereby clarifies what is meant by the term ‘‘long
wavelength.’’ For waves longer than a finite threshold,
which can be calculated, the new bound is smaller than
the Pedlosky bound; for shorter waves, the latter is a better
bound. An interesting feature of the derivation is that the
Pedlosky bound is itself used to obtain the new bound.

The extension of the results (32) and (33) to nonzero
k is somewhat involved. Integrating (4) from 2H to 0
and using (5),

0

2 2[b(u 2 c)h 2 k (u 2 c) h] dz 5 0. (44)E
2H

Upon substituting (19), and u 5 u 1 u9, this may be
written

2 2 2 2[b(u 2 c) 2 k (u 2 c) 2 k u9 ]h
2 2 25 2[b 2 2k (u 2 c)]u9h9 1 k u9 h9 . (45)

Using Schwarz’s inequality, one may obtain
1/22|u9h9 | # edu( |h9 | ) , (46)

where e is defined by (36), and, because |u9 | # du,
1/22 2 2|u9 h9 | # du ( |h9 | ) . (47)

(Note that e does not appear in the latter inequality.)
Hence, from (45),

1/22|h | /( |h9 | )
2 2|b/k 2 2(u 2 c)|edu 1 du

# . (48)
2 2 2 2|(u 2 c)b/k 2 (u 2 c) 2 e du |

The denominator of (48) may be factored into

|c 2 u 1 r1| |c 2 u 1 r2|,

where
1/21 1

2 1/2r 5 du 7 2 e , k̃ 5 k(du /b) .1,2 2 41 2[ ]2k̃ 4k̃
(49a,b)

The Pedlosky semicircle theorem applies to c. Hence,
from (17),

|c 2 u | # rp [ du(1 1 k̃22)1/2. (50)

Consider the conditions under which the quantity

1/2 1/21 1 1
2r 2 r 5 du 1 2 e 2 1 12 p 2 4 21 2 1 2[ ]2k̃ 4k̃ k̃

(51)

is strictly positive. This is so as long as

k̃ , k̃0(e), (52)

where k̃0(e), a function of e, is shown in Fig. 2. While
condition (52) is met, the following inequalities hold:

|c 2 u 1 r2| $ r2 2 |c 2 u | $ r2 2 rp . 0. (53)

This means that, as long as the scaled wavenumber k̃
is lower than k̃0(e), the complex phase speed c is no
nearer u 2 r2 than the span r2 2 rp (Fig. 1). Then (48)
may be bounded by

h Mdu
# , (54)1/22 |c 2 u 1 r |( |h9 | ) 1

where
2 2(k̃ 1 e)du 1 2er k̃p

M 5 . (55)
2(r 2 r )k̃2 p

The latter is shown in Fig. 2; it is finite and positive as
long as restriction (52) is fulfilled. For small k̃, it ap-
proaches e.

It remains to introduce the inequality (54) into (31)
and (14). Before doing so, we may recall that (14) holds
for any choice of upper and lower bounds. In particular,
we may choose bounds and so that1 1u uu l

1 1u 1 uu l 5 u 2 r [ ũ (56)12

[cf. (34)] and
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1 1u 2 uu l1du 5 5 du 1 r . (57)12

The parameter r1 is given by the negative sign choice
in (49a). It is easy to see that

2due
2 2r 5 # 2duk̃ e . (58)1 1/21 1

21 2 e
2 41 22k̃ 4k̃

For low k̃, at which the Pedlosky bound (50) becomes
large compared to du, the shift r1 from u to ũ and the
increase from du to du1 are only a small proportion of
du. In general, the restriction on the domain of k̃ given
by (52) (see Fig. 2) guarantees that the right side of
inequality (58) is #0.82 du. Using and in (14),1 1u uu l

that inequality becomes, upon substituting from (31) and
(54),

2|c 2 ũ|
21212 1 2M (du )

1 2 1 2# (du ) 1 bdu k 1 l 1 11 25 6[ ]|c 2 ũ |
2 2 1 2|c 2 ũ| 1 M (du )

1 2 1# (du ) 1 bdu .
2 2 2 2 1 2(l 1 k )|c 2 ũ| 1 k M (du )1

(59)

Multiplying out the denominator on the right, one ob-
tains an inequality for a quadratic form in |c 2 ũ| 2. This
can be factored into

2 1 2 2 1 2[|c 2 ũ | 2 g̃ (du ) ][|c 2 ũ| 2 g̃ (du ) ] # 0,1 2

(60)

where

b 
2 22 k M 

11 du 
 g̃ 5 1 16 22 l 1 k 1

1/22 b b 
2 2 2 2 k M k 1 

1 11 du du   2 6 1 1 1 4M . 2 22 l 1 k l 1 k 1 1 
(61)

Now , 0 certainly, so the second factor in (60) isg̃2

positive. Thus the first factor must be nonpositive; that
is,

2 1 2 2|c 2 ũ| # g̃ (du ) [ r̃ . (62)1

This bound on the radius of the semicircle containing
c in the complex plane is the major result of this paper.
Some less strict, but perhaps more informative, bounds
can be obtained from it. Manipulation of the radicand
in (61), which is certainly positive, shows that it can be
written as the difference between positive quantities in
three distinct ways:

2
2 2 2k M M

2 2 21 1 b̃(1 1 2M ) 1 2 4b̃M (1 1 M ) b̃ 1
2 21 2[ ]l 1 k l 1 k1 1

2
2 2 2 2k M 4l M (1 1 M )125 b̃ 2 1 1 1 2M 2

2 2[ ]l 1 k l 1 k1 1

2
2 2k M l 4bl bl1 1 15 1 1 1 b̃ 1 2b̃ 2 1 1 b̃ 1 , (63a)

2 2 2 21 2[ ]l 1 k k k k1

where

b
b̃ 5 . (63b)

1 2du (l 1 k )1

Then it follows that the radical in (61) is smaller than
any of the bracketed terms in (63). So the positive root
of (61) can be bounded by

2g̃ # 1 1 b̃(1 1 M ) or1

2 2l (1 1 M ) 1 k b1 1 b̃ or 1 1 , (64)
2 1 2l 1 k du k1

whichever is smallest. The similarity of the first two of

(64) to (42) is obvious. Indeed, when k 5 0 so that M
5 e, r1 5 0, du1 5 du, 5 the first two of (64)b̃ b̂,
and (42) are identical. We see thereby that the long-
wave bounds (42) are valid for k2 K l1 as well as
condition (52). But the expressions for the bounds (64)
show that the former requirement is easily lifted. The
sole, essential restriction on the expressions in these
bounds is condition (52), that k , (b/du)1/2k̃0(e), so that
M is defined. As the upper range of k is entered, how-
ever, M increases without limit and the first two bounds
of (64) become much larger than the third, which does
not depend on M. The third bound of (64) is a Pedlosky
bound, of the type discussed in remarks following in-
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FIG. 3. The ratio r of the semicircle bound r̃ of this paper, plus center offset r1, to the Pedlosky
bound rp. Three r contours are shown, 1, 0.5, and 0.1, each for three settings of the e parameter,
as a function of k̃ and l1du/b.

FIG. 4. Two examples comparing the semicircle bound r̃ of this paper, calculated from (61), (62), to the Pedlosky bound rp. The respective
semicircles are centered at ũ and u 5 ũ 1 r1. Also shown are the radii du1 and du to the upper mean velocity bound uu. The examples are
for (a) k̃ 5 0.4, l1du/b 5 2, e 5 1; (b) k̃ 5 0.4, l1du/b 5 1, e 5 1, and are marked by crosses in Fig. 3.

equality (17), based on the bounds , on velocity.1 1u uu l

However, there are better Pedlosky bounds available,
such as (50) based on uu, ul. Yet it is interesting that
near the limits of their validity, the bounds (64) furnish
a weakened Pedlosky bound.

To gauge the relative utility of the bound given by
(61), (62) and the Pedlosky bound (50), we have plotted,
in Fig. 3, the ratio r 5 (r̃ 1 r1)/rp as a function of k̃
and l1du/b. When this ratio is less than one, the bound
(62) is contained wholly within the Pedlosky bound;
when it is greater than one, the Pedlosky bound overlaps
the former or is contained within it. (Examples of the
bounds in the complex c plane for ratios r near 1 are

shown in Fig. 4.) For nondimensional wavenumbers k̃
, 0.07 and deformation radius such that l1du/b . 10,
for example, the bound given by (61), (62) is more than
ten times smaller than the Pedlosky bound.

5. Concluding remarks

We have obtained a bound for the radius of a semi-
circle in the complex phase-speed plane, valid for wave-
numbers k , (b/du)1/2k̃0(e). The bound is stated for-
mally by inequality (62), with the definition (61) for

; k̃0(e) is given by the line marked ` in Fig. 2, thoughg̃1

approximately k̃0 5 0.7. Formula (61) can be bounded
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FIG. 5. Schematic showing the zero-shear free-mode phase speeds
along the negative real line, with an accumulation point at c 5 0.
All but the gravest modes fall inside the unstable semicircle when
perturbed by realistic shear.

by the smallest of three simpler forms, leading to in-
equality (64). The third of these is merely a weak Ped-
losky bound (stronger versions are available). At low
wavenumber k and large l1 (small baroclinic Rossby
deformation radius), the smaller of the other bounds
gives a narrower limit to the unstable semicircle radius
than even the strong Pedlosky bound. At higher wave-
number and smaller l1, and before the validity threshold
wavenumber (b/du)1/2k̃0 is reached, the Pedlosky bound
gives a narrower limit. The precise transition can be
gauged from Fig. 3, as well as the scale of the improve-
ment of the bound: for example, a diminution by more
than tenfold of the semicircle bound is obtained for
wavenumbers k(du/b)1/2 . 0.07 and l1du/b . 10.

The utility of the kind of semicircle bounds obtained
above for the complex phase speed of instabilities is
well known. The value of improvements to these bounds
is self-evident. Yet there is another use for these semi-
circle bounds, which has been intimated in recent cal-
culations of modifications of free baroclinic Rossby
waves by mean shear (Killworth et al. 1997). The free,
zero-shear, Rossby wave modes lie along the negative
real line at the points

2b
c 5 ,n 2l 1 kn

where the ln are eigenvalues of the Sturm–Liouville
problem of Eq. (21) above (Fig. 5). How are these modes
affected by shear? I offer the following conjecture. Free
modes are moved along the negative real axis from their
zero-shear position by an amount proportional to the
semicircle bound radius and inversely proportional to
the magnitude of the zero-shear real phase speed, as
long as the latter is larger than the former. This suggests
that zero-shear real phase speeds falling well outside
the semicircle are susceptible to perturbative calculation
of their corrections. (Modes whose zero-shear phase
speeds fall close to the edge of the unstable semicircle
are difficult to judge.) Modes whose zero-shear phase
speeds are within the unstable semicircle have no per-
turbed counterparts. Instead there may be a finite num-

ber of free shear modes, either stable or unstable, sup-
plemented by a continuous spectrum.

Now the countably infinite zero-shear normal modes
have an accumulation point at c 5 0. (Without loss of
generality, it is assumed here that u 5 0.) So all but a
finite number of these are swallowed up, as it were, by
the semicircle, no matter how weak the shear, and re-
placed by shear modes, possibly unstable, and the con-
tinuous spectrum. In fact, a mean velocity profile with
a range of order 5 cm s21 will absorb all but the first
zero-shear mode or two into the semicircle. It is common
to represent the forcing of the ocean by its projection
onto the ocean’s normal modes, calculated by neglecting
mean shear (e.g., Frankignoul et al. 1997). But the
modes of the shear-modified system are neither com-
plete nor orthogonal. The implications of this in regard
to the physical response of ocean variability to forcing
need to be examined. Perhaps the ocean should not be
thought of as an analogue of a stretched string or mem-
brane. On the other hand, it may be that the ocean’s
fundamental, the first baroclinic mode, is sufficiently
remote from the semicircle that modifications to it may
be handled perturbatively and that, as such, the first
mode accounts for a significant proportion of low-fre-
quency ocean variability.
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