

AN ABSTRACT OF THE THESIS OF

Kazuki Kaneoka for the degree of Master of Science in Computer Science presented on

March 23, 2017.

Title: Feedback-Based Random Test Generator for TSTL

Abstract approved: __

Alex Groce

Software testing is the process of evaluating the accuracy and performance of software,

and automated software testing allows programmers to develop software more efficiently

by decreasing testing costs. We compared two advanced random test generators, a

Feedback-Directed Random Test Generator (FDR) and a Feedback-Controlled Random

Test Generator (FCR), for an automated software testing tool in Python 2.x, the Template

Scripting Testing Language (TSTL).

An FDR generates test inputs incrementally. Feedback from previous trials is used

to generate new inputs. As each test input is executed, the software properties are

assessed to determine if there is any value. Because of this process of gradually

generating new tests, the FDR avoids redundant and illegal test inputs commonly

produced by traditional random test generators. An FCR employs a different feedback

technique. It controls the feedback to produce varied test inputs using multiple input

containers. In our experiments, we compared the performance of our test generators with

TSTL’s generator in terms of coverage, time-efficiency, and error-detection capability.

©Copyright by Kazuki Kaneoka

March 23, 2017

All Rights Reserved

Feedback-Based Random Test Generator for TSTL

By

Kazuki Kaneoka

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented March 23, 2017

Commencement June, 2017

Master of Science thesis of Kazuki Kaneoka presented on March 23, 2017

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Kazuki Kaneoki, Author

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Alex Groce of the School of Electrical

Engineering and Computer Science at Oregon State University. His enthusiasm and

eagerness to provide guidance whenever I needed it was of great value to my experience.

I would also like to thank Xin Liu and Zixuan Zhao for their support and suggestions.

Finally, I must express my profound gratitude to my family for their continuous support

and encouragement throughout my studies and research. There is no doubt that I would

not have accomplished this achievement without them. Thank you for everything.

TABLE OF CONTENTS

 Page

1. Introduction 1

1.1. Overview 1

2. Literature Review 6

2.1. The Template Scripting Testing Language (TSTL) 6

2.1.1. Overview 6

2.1.2. Communication between TSTL and a Test Generator 7

2.1.3. Test Cases in TSTL 8

2.2. Random Test Generator (RTG) 9

2.3. Feedback-Directed Random Test Generator (FDR) 9

2.3.1. Overview 9

2.3.2. Algorithm: FDR 11

2.4. Feedback-Controlled Random Test Generator (FCR) 12

2.4.1. Overview 12

2.4.2. Adding POOL 14

2.4.3. Selecting POOL 14

2.4.4. Deleting POOLS 15

2.4.5. Algorithm: FCR 16

3. Design and Implementation 18

3.1. The Workflow of Main Components: feedbacktester.py 18

 3.2. The Workflow of the Component: Generating Method Sequences 20

4. Experiments 22

4.1. Performance Measurement 22

4.2. Case Study 23

4.3. Result and Discussion 24

5. Conclusion 29

Bibliography 31

LIST OF FIGURES

Figure Page

1. The Communication between TSTL and a Test Generator 7

2. Test Cases in TSTL 8

3. Algorithm of an FDR 11

4. Biased Test Inputs 12

5. Biased Test Inputs with Multi-POOLs 13

6. Algorithm of an FCR 16

7. The Workflow of Main Components: feedbacktester.py 19

8. The Workflow of Component: Generating Method Sequences 20

LIST OF TABLES

Table Page

1. Case Study 23

2. Results for avl 24

3. Results for simplejson 24

4. Results for sortedcontainers 24

5. Results for sympy 25

6. Results for XML 25

1

CHAPTER 1: INTRODUCTION

1.1 Overview

In software engineering, software testing is the examination of the properties of the

software system. Generally, software testing is to establish 1) whether the software

design satisfies the requirements it is supposed to be, 2) whether it computes the

expected results from its inputs, and 3) what its limitations are under different

circumstances. Specifically, determining the accuracy and reliability of the software

system is a complex procedure. The procedure usually consists of 1) generating test

case, which is the test input data to evaluate software, 2) defining the expected results

of executing the test case under software, 3) executing the generated test case and

then, 4) comparing the output with the defined expectation.

However, to complete the procedure by human hand is tedious and

unproductive work. This is the reason why software-test automation is an active area

to research because it can make the complex procedure easier and it eventually leads

the software development efficiently by increasing the productivity of software

development [2, 6, 10, 20]. Although automated software testing is active area in

research and industry, it has faced challenging because it is necessary 1) to generate

test cases automatically and 2) to set a test oracle, defined as the means of setting the

expected output of a test case.

2

In making the process of software testing automatically, an ideal strategy

would generate test cases by following some mathematical strategy instead of human

hands. We can let a computer to create test cases automatically following some

mathematical strategy but it should not generate test cases too much. Otherwise, the

test cases cannot be executed in reasonable time, because it is impossible to generate

and examine all possible test cases. Therefore, a good test case generator that

generates high-quality test cases, in terms of evaluating a software system, is required

for an automated software testing. Different types of generators employs different

types of strategy for producing test cases and each one has distinct advantage.

 A wide range of test case generators have been experimented with in the

software-testing field. A Random Test Generator (RTG), one that produces test case

randomly, is fundamental software-testing strategy. It is worth mentioning that 1) an

RTG can be implemented rather simply, 2) it executes the system quickly, and 3)

avoids programmer’s bias, as well as reveals hidden information that the programmer

may not recognize [1, 5]. However, it is argued that an RTG is inefficient because it

requires a large amount of test case to achieve high-code coverage, meaning the

identification of how much percent of source codes in software are being executed

using test cases [25]. High coverage is important to software testing because bugs are

never found in lines of codes that are not covered, although high coverage does not

guarantee the detection of failures [13, 22].

An RTG may require more test cases to cover certain parts of the software,

even if only one test case is sufficient. For example, because of its randomness, an

RTG may generate multiple test cases to cover the same lines of codes. In other

3

words, those multiples test cases are syntactically or semantically same. In addition,

an RTG may generate unnecessary test cases, meaning a test case that the software

does not accept as an input. For instance, there is no need to test the binary operation

of dividing by zero. One possible idea to avoid those problems are to analyze

software system before generating test cases. However, it is impractical to manually

analyze and obtain the necessary input data for such complex software. Thus, the

consequences of random generation are considered acceptable for software testing

and it is worth to improve the idea.

A Feedback-Directed Random Test Generator (FDR) was introduced to

improve upon the RTG by mitigating the redundancy and illegality common to

random generation [26]. With an RTG, test case is generated by the input domain

with some probability distribution. An FDR, however, creates test cases

incrementally through random sequences of methods produced by the input domain.

The increment of the input domain can avoid generating a test case that is

syntactically identical to previous test cases, and can avoid generating a test case that

is semantically illegal for the program. It is a flexible technique for general software

testing since the technique does not require pre-defined test cases and analyzing a

software. It can grow test cases from scratch. Because of its versatility and

practicality, the FDR has been widely adopted in industry and academic. Specifically,

Pacheco introduced Randoop, a test generator for Java based on the concept of the

FDR [27]. Randoop is a means of unit testing, defined as a strategy of software

testing that assesses one or more components of the software. Furthermore, the FDR

is also used in the field of software-testing research for evaluating and comparing a

4

researcher’s work [7, 12]. Despite resolving the weakness of RTG, FDR creates

another problem; the random method sequences are biased by the method selected at

the beginning of the generating process because its test cases are generated by

appending a new methods to previous test cases.

The Feedback-Controlled Random Test Generator (FCR) is an advanced form

of the FDR [29]. The FDR can avoid generating the redundant and useless test cases

of the RTG, by creating test cases incrementally; however, the generated test cases

are biased by the method that is selected initially, meaning that the test cases have the

same syntactic prefix. Additionally, it is impossible to determine which method is the

best to begin with for detecting failures in the system. FCR approaches this problem

by managing multiple test input sources. Each test input source works independently

of the others to generate test cases. In other words, test case in one test input source

differs from another test case in another test input source. Because of this, FCR

retains the functionality of FDR and reduces bias at the same time.

In our experiments, we designed and implemented an FDR and an FCR for the

Template Scripting Testing Language (TSTL), with the goal of creating an automated

software testing tool in Python 2.x (there is also a beta version in Java) [17, 23].

TSTL already supports some test generators. However, since test generators work

differently in different situations, having an FDR and an FCR produces a more

diverse array of results in TSTL.

The rest of this paper is structured as follows. In Chapter 2, TSTL, FDR, and

FCR is summarized for review. The design and implementation of an FDR and an

FCR into TSTL is discussed in Chapter 3. The performance of the FDR and the FCR

5

compared with a random test generator in TSTL is presented in Chapter 4. Finally,

our conclusion is found in Chapter 5.

6

CHAPTER 2: LITERATURE REVIEW

Chapter 2 presents our project’s background information. It reviews an automated

software-testing tool, the Template Scripting Testing Language (TSTL). Afterwards,

two advanced random test generators are discussed, a Feedback-Directed Random

Test Generator (FDR) and a Feedback-Controlled Random Test Generator (FCR).

2.1 The Template Scripting Testing Language (TSTL)

2.1.1 Overview

TSTL is an automated software-testing tool in Python 2.x provided by Groce and it

facilitates software-testing automation by creating test harnesses for programmers

[17]. Per Groce, a test harness defines as a set of test cases and a set of properties that

corresponds to those test cases. An automated software testing is easy for

programmers if a test harness is provided since we can simply execute a test case

defined by the harness and evaluate the output. However, writing test harnesses is a

daunting task, specifically for human hands [14, 15].

There are couple points why a test harness is challenging for human hands.

Firstly, a test harness should be written in the same language as the Software Under

Test (SUT), defined as the software being tested, but writing test harnesses in this

way involves a great deal of repetition, a common source of human error. In addition,

it is normal in real industry software testing for the methods of the SUT to require

7

complex input parameters. Manually preparing the inputs for testing the methods is a

rather frustrating endeavor. The test harness must be able to adapt to multiple testing

situations. In other words, programmers should easily be able to implement the

harness to test the SUT using different strategies. TSTL defines and works a test

harness and let programmers to focus on software testing.

TSTL produces test harnesses based on the notion of a domain-specific

language (DSL) [16]. The reason TSTL supports the concept of DSL is that it can

provide abstractions and notations for a specific language [11]. DSL consists of an

external part, which has its own syntax of DSL, and an internal part, which is a stick

with the language of the SUT. Generally, the external part is used to generate

conditions that are difficult for programmers to write, and an internal part to utilize

the benefit of the language under SUT.

2.1.2 The Communication between TSTL and a Test Generator

Figure 1: The Communication between TSTL and a Test Generator

TSTL provides software-testing automation by creating a test harness that a test

generator utilizes to produce test cases. In Figure 1, we highlight how TSTL interacts

with a test generator. TSTL takes two inputs, a python file, which is the SUT, and a

TSTL file, which defines the SUT properties, such as 1) the possible input domain of

each method, 2) the possible methods that will be used, and 3) the test oracles. By

8

giving a python file and a TSTL file, TSTL compiles and produces an output file,

named sut.py, which contains all the necessary and supporting information for a test

generator to generate test cases. Eventually, a test generator accesses sut.py to

generate and execute test cases to evaluate SUT.

2.1.3 Test Cases in TSTL

Figure 2: Test Cases in TSTL

In TSTL, a test generator produces test cases using sut.py; the test cases are sequences

of predefined methods with an input domain, named action. Figure 2 shows an

example of how action is defined in sut.py. Assuming the SUT is a linked-list node

implementation, the list node contains two member variables: an integer value of a

node and a pointer of the next node. There are three member functions in the linked-

list node: a constructor, getValue(), and setNext(). By providing some information for

the input domain, such as the range of integer value being between one and ten, TSTL

defines all possible action in sut.py. It should be noted that TSTL defines action to

satisfy a property of the SUT. For instance, a constructor should be called before a

setter and a getter. TSTL defines action to behave following this manner. In TSTL, a

9

test case is a sequence of action. Therefore, a test generator generates test cases by

selecting and executing action from sut.py.

2.2 Random Test Generator (RTG)

In software testing, an RTG is considered a basic but essential technique amongst test

case generators [19, 24]. It can be implemented without analyzing a sophisticated

system, and can generate test cases randomly from the input domain. Therefore, the

cost of RTG implementation is inexpensive and the process can be automated easily.

On the contrary, some researchers have mentioned that the RTG is inefficient for

software testing in terms of coverage and failure detection because it simply employs

the randomness and does not apply any strategies for them.

2.3 Feedback-Directed Random Test Generator (FDR)

2.3.1 Overview

Common strategies used to generate test case automatically can be classified into two

categories: random testing and systematic testing. As mentioned previously, one is

random testing to generate test cases randomly. This can be done without knowing

and analyzing the SUT. On the other hand, another one is systematic testing and it is

for determining 1) whether the SUT contains the proper functions to satisfy the

requirements, 2) whether the SUT computes the requirements correctly, and 3)

whether the SUT performs efficiently [21]. Some researchers argue that random

testing can be as efficient as systematic testing [8, 18], and yet, others suggest that

10

random testing is less efficient when compared to systematic testing since random

testing does not investigate the software and simply generate test cases [9, 25, 28].

It is advantageous to have both random and systematic properties when

generating test cases if it is possible. Pacheco proposed advanced random test

generation, which is FDR, to achieve these two properties by generating test cases

incrementally [26]. FDR generates test cases from scratch; it 1) selects some available

methods with the input domain, 2) executes them, and 3) evaluates the results to

checks whether the test cases are valuable to create the next ones. By this way, it can

avoid producing test cases that it has been generated previously, and it only utilizes

the useful test cases to generate the next test cases, which traditional random testing

cannot achieve.

11

2.3.2 Algorithm: The FDR

Originally, the FDR was proposed as a test generating approach for an object-oriented

unit test. Thus, an FDR takes a set of methods with their parameter domains as inputs

and generates a set of test cases as outputs for the SUT.

Input:

Output:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

a set of methods with their input domains, and a time-limit

a set of methods sequences

fdr(methods, time-limit)

errorSeqs := {}

nonErrorSeqs := {}

while a time-limit not reached do

if nonErrorSeqs is empty then

newSeq := {}

else

newSeq := selectSeqRandomly(nonErrorSeqs)

end if

m := selectMethodRandomly(methods)

newSeq := appendSeq(newSeq, m)

isOK := execute(newSeq)

if isOK is true then

nonErrorSeqs := nonErrorSeqs ∪ {newSeq}

else

errorSeqs := errorSeqs ∪ {newSeq}

end if

end while

return errorSeqs and nonErrorSeqs

Figure 3: Algorithm of an FDR

Figure 3 shows the algorithm of an FDR. The FDR creates method sequences,

as test cases. It first initializes two empty sets of method sequences: a set of

errorSeqs, method sequences that result in errors, and another set of nonErrorSeqs,

which is the sequences that succeed in execution with no errors (lines 2-3).

Afterwards, it generates sequences continuously until a time limit is reached (lines 4-

21). For every iteration of the main loop, the FDR builds each method sequence using

previous sequences. At the beginning of each iteration to create a new sequence,

newSeq is initialized by selecting from previous sequences depending on the

12

nonErrorSeqs. newSeq is initialized as empty if no sequence is available in

nonErrorSeqs (lines 6-10). Next, it chooses one or multiple methods (m) and append

the selected methods to newSeq in order to create a new sequence (line 12). After

creating a new sequence, newSeq, the FDR determines if it causes errors by executing

it (line 15). If it is safe to execute, the sequence is added into nonErrorSeqs to be

utilized in future iterations (line 17). Otherwise, it is saved in errorSeqs (line 19).

2.4 Feedback-Controlled Random Test Generator (FCR)

2.4.1 Overview

The FDR improves upon the RTG by not generating duplicate and invaluable test

cases through generating method sequences incrementally. However, Yatoh points

out that FDR causes one problem such that the generated method sequences by FDR

are biased [29].

Figure 4: Biased Test Inputs

 Figure 4 illustrates what bias means here. An FDR uses method sequences

that have been generated previously to create new ones. Method sequences are

generated by selecting a previous sequence and appending an executable method

randomly into the previous sequence. FDR repeats this step continuously to generate

test cases until timeout is reached. Because of utilizing previous sequences to

generate new sequences, the methods selected at the beginning affect what new

13

sequences will look like. This is a bias problem. The FCR introduces a more recent

concept to solve the problem, called POOL, which is defined as a container that holds

previously-generated method sequences. The sequences in POOL are still biased.

However, the FCR utilizes a set of multiple POOLs. Therefore, a method sequence

that uses a POOL does not affect the sequences of the other POOLs. Eventually, the

FCR produces less biased sequences and has a greater variety of them.

Figure 5: Biased Test Inputs with Multi-Pools

 Figure 5 illustrates how the method sequences in each POOL are biased. As

shown in the figure, each sequences are still biased in their own POOL. However,

they are not affected each other in different POOLs.

Since FCR handles multi POOLs, it is necessary to consider how to manage

them.

 It is unwise to use a single POOL too much because this would produce

the same results as an FDR,

14

 Ideally, a better POOL will generate better sequences. Thus, it is necessary

to define what POOL is better to generate better sequences.

 How many POOLs is appropriate? Too much POOLs results less time to

investigate each POOL while too few POOLs causes less biased-free.

In FCR, POOL is managed by three procedures 1) how to add POOL, 2) how to select

POOL, 3) how to delete POOL.

2.4.2 Adding POOLs

In an FCR, it prepares multiple POOLs to deal with bias problem. The question is

how many of them we should prepare and whether we should add new POOL or not

during the entire of procedure. For example, having more POOLs can reduced the

amount of biased sequences. However, each POOL will have less time to generate

method sequences if there are too much. Another thing that we need to consider is

that suppose we prepare 100 POOLs. After some iterations, sequences in each POOL

are biased differently. However, we do not know whether those biased sequences are

enough or not to generate good test cases. Therefore, we still should create a new

POOL in order to get new biased sequence. In original strategy, Yatoh created a new

POOL every second [29].

2.4.3 Selecting POOL

One problem of using a set of POOLs is that it is difficult to know which to select. In

the paper, Feedback-Controlled Random Test Generation, a POOL was selected

based on a score function, defined as follows:

15

𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑃𝑂𝑂𝐿) = {

|𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)|

𝑡𝑖𝑚𝑒(𝑃𝑂𝑂𝐿)
, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿) ≠ ∅

∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where coverage(POOL) is a set of coverage created by executing method sequences

in the given POOL, and time(POOL) is the elapsed time using POOL to generate

method sequences. The score represents how efficient POOL is in terms of providing

more coverage in less time. This is vital because bugs are never found in lines of

codes that have not be executed [13, 22]. Because of this, the FCR considers POOL is

better if it provides better coverage based on the score function. The FCR calculates

scores for each POOL and selects one, assigning the maximum score when it

generates test cases.

2.4.4 Deleting POOLs

As mentioned in section 2.4.3, the FCR adds a POOL every second to vary its biased

sequences. However, too many POOLs can substantially diminish the amount of time

each POOL is used, leading to insufficient length in the method sequences. It is

because of this that the number of POOLs must be reduced at some points. The FCR

sets the maximum number of POOLs and deletes half of them when the limit is

reached. A POOL is deleted when it is determined to be the least unique; the

uniqueness of a POOL is defined as follows:

𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑃𝑂𝑂𝐿) =
∑ 𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑐, 𝑃𝑂𝑂𝐿)𝑐∈𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)

|𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)|

𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑐, 𝑃𝑂𝑂𝐿) =
𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑃𝑂𝑂𝐿)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑝)𝑝∈𝑃𝑂𝑂𝐿𝑆

16

where count(c, POOL) returns how many times the POOL covers the location c.

In the above equation, the uniqueness of a given POOL is the average of the

uniqueness of each coverage (c) covered by the POOL. Furthermore, the uniqueness

of a coverage (c) covered by a POOL is a percentage of the number of times the

POOL covers (c) amongst the number of times all POOLs covers (c). In the FCR, it is

better to have more sequences. Because of this, it keeps POOLs that are unique in

terms of covering coverage locations that other POOLs do not, ensuring that all

biased sequences in each POOL are covered uniquely.

2.4.5 Algorithm: The FCR

The FCR is an alternative to the FDR in that it manages multiple POOLs. The input

of the FCR is a set of methods using the SUT, same with FDR, and two additional

parameters: the initial number of POOLs and the maximum number of POOLs. It

outputs a set of method sequences which is the same as the FDR.

Input:

Output:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

a set of methods with their input domains, and time-limit

a set of method sequences

fcr(methods, time-limit)

pools := {}

for i=1 to INP do

pools := pools ∪ {createNewPool()}

end for

while a time-limit not reached do

if need to add new Pool then

pools := pools ∪ {createNewPool()}

end if

 pool := selectPool(pools)

fdr(pool, methods)

if number of pools is more than number of MNP then

 pools := deletePools(pools, MNP/2)

end if

end while

return getAllErrorSeqs(pools) and getAllNonErrorSeqs(pools)

Figure 6: Algorithm of an FCR

17

 POOL: a container of errorSeqs and nonErrorSeqs.

 POOLS: a set of POOLs

 INP: the initial number of POOLS

 MNP: the maximum number of POOLS

 Figure 6 indicates how an FCR works. The POOL constructer createNewPool

is called INP times to initialize POOLS (lines 2-5). After initialization, the FCR

manages POOLS to generate method sequences (lines 6-15). At the beginning of the

main loop, it assesses whether it needs to create a new POOL and adds it to POOLS if

necessary (lines 7-9). Then, scores are calculated in each POOL and select the one

which provides the maximum score. The, run it in the FDR to generate method

sequences (lines 10-11). It also determines if the number of POOLS exceeds MNP. If

so, the FCR deletes half of POOLS (lines 12-14). Finally, it returns all errorSeqs and

nonErrorSeqs among POOLS.

18

CHAPTER 3: DESIGN AND IMPLEMENTATION

The previous chapter discussed the way in which a test generator communicates with

the Template Scripting Testing Language (TSTL) to generate test cases, and how

Feedback-Directed Random Test Generators (FDR) and a Feedback-Controlled

Random Test Generators (FCR) work. In this chapter, our design and implementation

of an FDR and an FCR for TSTL, named feedbacktester.py, is presented.

3.1 The Workflow of Main Components: feedbacktester.py

The defining characteristic of feedbacktester.py is how we manage POOL and

POOLS since we can consider FDR as special case of FCR such that FCR with

having a single POOL is FDR. We defined two object-oriented classes in order to

manage POOL in feedbacktester.py.

First class is POOL which contains the following member variables and functions:

 member variables: the information to generate method sequences

 member function: method sequences produced by the FDR

Another class is POOLS which contains:

 member variables: a set of POOL

 member functions: adding, selecting, and deleting POOL

In feedbacktester.py, FDR and FCR were implemented by managing the above two

classes.

19

Figure 7: The Workflow of Main Components: feedbacktester.py

Excepting initialization step, there are four main components in

feedbacktester.py as shown in Figure 7 and those components are controlled by the

defined classes, POOL and POOLS. Firstly, at the initialization, the classes, POOL

and POOLS are prepared. If it is generating method sequences under the algorithm of

the FCR, POOLS identifies 1) whether it should create a new POOL, 2) selects a

POOL from POOLS, 3) generates method sequences using the selected POOL, and 4)

deletes and updates POOLS if necessary. If an FDR is used to generate method

sequences, POOLS holds a single POOL only. It means that it always selects the same

POOL to generate method sequences. By this way, FDR and FCR shared same

workflow but generated test cases differently.

20

3.2 The Workflow of the Component: Generating Method Sequences

Figure 8: The Workflow of the Component: Generating Method Sequences

In this section, we describe the workflow of generating method sequences (shown in

Figure 8). As mentioned in the previous section, we use the selected POOL to

generate method sequences, and the selected POOL contains all necessary

information to generate sequences. errorSeqs and nonErrorSeqs are the main

information to generate test cases that POOL holds. They are defined as follows:

 errorSeqs: a set of sequences that causes errors

 nonErrorSeqs: a set of sequences that execute with no errors

Additionally, we defined sequence and action as following:

 sequence: a list of actions

 action: a pre-defined method with input value in sut.py

At the beginning of the workflow, it reset the runtime information which are the

information of generating and executing method sequences previously. After

resetting, a sequence from nonErrorSeqs is selected and each action in the sequence

is executed one by one. Then, single or multiple action are selected to executed and

appended into the selected sequence to generate a new sequence. Finally, it is

21

determined whether the generated sequence is duplicated or not. If not, the sequence

is placed in nonErrorSeqs. Otherwise, it is put into errorSeqs.

It should note that our implementation must reset the runtime information

when generating method sequence each time even it causes inefficient in terms of

time complexity. There are three reasons why the runtime information needs to be

reset each time.

 First reason is why it is necessary to reset a runtime information is because

how TSTL defines action. As mentioned in section 2.1.3, action is defined

by following the property of the Software Under Test (SUT). It means that

it is runtime information stating which action is executable after another

action is performed.

 The second reason is that the FDR and FCR generates method sequences

incrementally. In our implementation, we selected previous sequences

from nonErrorSeqs and appended an executable action to generate a new

sequence. Because of TSTL, we had to execute each action in the previous

sequence to know which action was executable.

 The third reason is that the method sequences are generated repeatedly

until timeout is reached. This means that the runtime information of the

previous method sequence not only still existed, but also affected the

generation of a new method sequence.

22

CHAPTER 4: EXPERIMENTS

Chapter 4 presents our experiments to measure the performance of our

implementation of Feedback-directed Random Test Generator (FDR) and Feedback-

controlled Random Test Generator (FCR), named feedbacktester.py. We compared

feedbacktester.py with a test generator from The Template Scripting Testing

Language (TSTL), randomtester.py in terms of coverage, time efficacy, and error-

detection.

4.1 Performance Measurement

There are several ways of measuring performance for software testing [3]. The P-

measure is the probability of finding at least one failure in the test cases. The E-

measure is the expected number of failures reported in the test cases. When using

those measurements, it is necessary to prepare test cases prior to execution since we

need to know what those test cases look like. However, feedbacktester.py and

randomtester.py generate test cases at runtime with accessing sut.py. Therefore, we

needed another approach to measure our generator. F-measure is defined as how

many test cases are generated to detect the first failure [4]. Using F-measure, we

evaluated the coverage performance of feedbacktester.py and randomtester.py as the

following ways:

 How many test cases a generator creates to cover the max coverage is covered

23

 How many seconds a generator takes to cover the max coverage is covered

Similarly, we evaluated the error-detection of those test generators for the following:

 How many test cases a generator creates to find a first failure

 How many seconds a generator takes to find a first failure

4.2 Case Study

Case Study Lines Classes Contains Bug? Description

avl 288 2 Yes AVL Tree implementation

simplejson 4071 2 No JSON parser

sortedcontainers 3609 6 No
a sorted containers for list, dictionary, and

set

sympy 415794 617 Yes symbolic computer algebra system

my_xml 637 6 No XML parser as read-only

Table 1: Case Study

In our experiments, we needed a python file and a TSTL file for the Software Under

Test (SUT) to create sut.py, and we used the files for various SUTs provided by

Groce [17]. We reported the results of our experiments using the following SUTs:

AVL Tree implementation, JSON parser, a sorted containers of List, Dictionary, and

Set, a symbolic mathematics library, and XML parser (shown in Table 1). Some case

studies, avl and sympy, contained bugs in order to measure the ability of a generator’s

detecting failures.

4.3 Results and Discussion

In this section, we show the results and discussions of our experiments for each test

generator, FDR, FCR, and RTG.

24

 We ran feedbacktester.py and randomtester.py for 600 seconds because of

FCR. We set Initial Number of POOLs (INP) as 10 and Maximum Number of

POOLs (MNP) as 100 for FCR and FCR added a new POOL in each second.

It meant that it took 90 seconds to reach MNP and to delete POOL. Thus, we

needed the long execution time to measure FCR and spent 600 seconds.

 We used multiple seeds for generating random numbers to investigate the

variety of each generators and we used random seeds as between 1 to 10.

The following tables show our experiment results for each case studies.

Test

Generator

Test

Cases

Coverage

(%)
Failures

Test Cases

(Coverage)

Seconds

(Coverage)

Test Cases

(1st Failure)

Seconds

(1st Failure)

FDR 16320.600 76.677 0.700 1703.400 58.113 8495.333 305.478

FCR 5189.100 76.422 15.200 1718.800 201.884 342.000 36.415

RTG 4891.400 76.038 2.400 93.200 10.307 1983.400 215.378

Table 2: Results for avl

Test

Generator

Test

Cases

Coverage

(%)
Failures

Test Cases

(Coverage)

Seconds

(Coverage)

Test Cases

(1st Failure)

Seconds

(1st Failure)

FDR 537.300 32.456 N/A 430.200 485.963 N/A N/A

FCR 69.700 24.351 N/A 39.800 347.302 N/A N/A

RTG 39.900 33.623 N/A 31.400 478.817 N/A N/A

Table 3: Results for simplejson

Test

Generator

Test

Cases

Coverage

(%)
Failures

Test Cases

(Coverage)

Seconds

(Coverage)

Test Cases

(1st Failure)

Seconds

(1st Failure)

FDR 1699.444 22.905 N/A 1575.333 555.921 N/A N/A

FCR 450.300 9.977 N/A 270.700 356.830 N/A N/A

RTG 503.000 29.173 N/A 433.857 519.919 N/A N/A

Table 4: Results for sortedcontainers

25

Test

Generator

Test

Cases

Coverage

(%)
Failures

Test Cases

(Coverage)

Seconds

(Coverage)

Test Cases

(1st Failure)

Seconds

(1st Failure)

FDR 57.800 17.927 0.400 49.100 464.194 31.333 234.458

FCR 8.889 16.813 0.667 4.500 288.095 7.400 364.348

RTG 3.875 19.878 0.500 3.286 435.950 2.000 197.705

Table 5: Results for sympy

Test

Generator

Test

Cases

Coverage

(%)
Failures

Test Cases

(Coverage)

Seconds

(Coverage)

Test Cases

(1st Failure)

Seconds

(1st Failure)

FDR 13927.700 33.135 N/A 6084.300 233.239 N/A N/A

FCR 5502.100 32.649 N/A 1876.200 185.888 N/A N/A

RTG 27871.100 33.784 N/A 1761.300 38.145 N/A N/A

Table 6: Results for XML

Each column represents as following description:

 Test Cases: total number of test cases that a generator creates and executes

until timeout

 Coverage: the max coverage that a generator covers until timeout

 Failures: total number of failures that a generator detect

 Test Cases (Coverage): number of test cases that a generator to cover the max

coverage

 Seconds (Coverage): how many seconds a generator takes to cover the max

coverage

 Test Cases (1st Failure): number of test cases that a generator to detect 1st

failure

 Seconds (1st Failure): how many seconds a generator takes to detect 1st failure

26

 N/A indicates that we could not obtain results for some reasons. For example,

SUT did not contains bugs or the running process was killed by OS because of

extreme memory consumption.

According to Table 2 and Table 5:

 For coverage efficiency, RTG showed best score. For both avl and sympy, all

generators outputted similar coverage score. However, RTG needed lesser test cases

and seconds to cover it.

 For detecting failures, FCR resulted best score. For instance, FCR used minimum test

cases and seconds to find 1st failure for avl. Furthermore, FCR found more numbers

of failures than others for avl and sympy. As mentioned in Chapter 2, FCR utilized

unique POOL. It implied that the failures in those two SUTs were located in less

frequent coverage locations.

 When we compared FDR and FCR in avl and sympy, FCR was obviously better than

FDR for detecting failures, but it showed different for covering coverage. For avl

shown in Table 2, FDR was faster than FCR to cover max coverage. Approximately,

FDR spent 60 seconds. As I mentioned before, FCR needed at least 90 seconds to

handle its algorithm. This result was because avl was relatively small program and

FDR algorithm was enough to cover the entire of the program. On the other hand,

FCR was faster than FDR to cover the max coverage in sympy since sympy was huge

program and needed more complex algorithm such that FCR had advantage for

coverage.

27

As shown in Table 3, Table 4, and Table 6:

 RTG was better than feedback based generators in terms of coverage. Firstly, all

generators covered few coverage because the functions defined from simplejson

and sortedcontainers were called recursively in those tstl files. It meant that the

amount of paths became exponential and it was impossible to cover high

coverage in practical time. This may work against to feedback based generators

since then generate test cases incrementally.

 FCR provided the least coverage score compared with others. FCR managed

multi POOLs and selected the most unique one to generate test cases. In other

words, it was necessary for FCR to have enough coverage information to obtain

its benefit.

 FDR was better than FCR in simplejson and sortedcontainers. FDR was specious

case of FCR in our implementation, using a single POOL. It implied that it was

better to focus on single POOL when it had low coverage. In other words, FCR

could not glow each POOL to calculate uniqueness.

 Table 6 also showed similar trend with other case studies. All generators covered

same coverage but we could say that RTG was more efficient than others for

coverage because it needed less test cases and times.

To sum up, the following insights were obtained:

 Our implementation of FCR, feedbacktester.py, was effective in terms of

error-detection. However, it required to obtain some amount of coverage to

get advantage of its algorithm since it needed to calculate the uniqueness of

POOL, whose uniqueness required coverage information.

28

 The differences between the FDR and the FCR was that FCR achieved greater

coverage in less time when we could obtain enough coverage information.

The FCR used a multi-POOL to generate more unique method sequences.

However, FDR was appropriated if the SUT was simply enough or it was hard

to get enough coverage information.

 FDR showed low performance than others but FCR was superior in terms of

detecting bugs. However, since FCR was based on FDR in our

implementation, we could provide better results if we could improve FDR

implementation more. One possible way might improve its time complexity.

FDR was necessary to reset the runtime information in our current

implementation. If we could avoid it, it would increase the time complexity.

 The RTG used fewer test cases to perform greater coverage compared to the

FDR and FCR. We concluded this result was that RTG was simple and

feedback based generators were complex. RTG spent much less time than

those two generators to generate test cases. In contrast, FDR and FCR needed

huge calculations to create test cases. For examining the performance in our

experiment, generating and executing test sequences simply results better than

applying the complex strategy.

29

CHAPTER 5: CONCLUSION

Our group presented a fully-automated test generator for the Template Scripting

Testing Language (TSTL) based on two advanced random test generators: a

Feedback-Directed Random Test Generator (FDR) and a Feedback-Controlled

Random Test Generator (FCR). Unlike the generators supported by TSTL, we

employed an incremental technique in the generation of test cases. Based on our

observations, the proposed implementation is applicable in the scalable input domain,

because the FDR and FCR are scalable.

 In our experiments, we compared the performance of feedbacktester.py with

randomtester.py from TSTL in terms of coverage, running time, and failure detection.

Our experiments showed that FCR in feedbacktester.py was best in terms of detecting

bugs. However, feedback based generators had low performance for coverage. RTG

was better since it used less test cases and seconds to obtain more coverages. It was

because feedback based generators required heavily calculations but random

generator allowed us to generate test cases with light calculation. According to our

experiments, light calculation, selecting and executing test cases randomly, was

superior to heavy calculation, feedback based test generations.

Therefore, to reduce time complexity for feedback based generations might be

next step for our project. Currently, our implementation, feedbacktester.py, belonged

to sut.py provided by TSTL. In other words, feedbacktester.py was strongly tied with

30

the implementation of TSTL. Because of it, our generator was necessary to reset the

runtime information every time when it generated test cases. This process was

inefficient. If our generator could be free from TSTL on this part, time complexity

would become much better. In addition, calculating uniqueness of POOLs was also

heavy calculation. It was worth to consider about how to manage coverage

information for calculating the uniqueness.

31

BIBLIOGRAPHY

[1] V.D. Agrawal. When to Use Random Testing. In IEEE Trans. Computers, no. 11,

pp. 1054-1055, November 1978.

[2] Y. Amannejad, V. Garousi, R. Irving and Z. Sahaf. A Search-Based Approach for

Cost-Effective Software Test Automation Decision Support and an Industrial Case

Study. In 2014 IEEE Seventh International Conference on Software Testing,

Verification and Validation Workshops, Cleveland, OH, pp. 302-311. 2014.

[3] T.Y. Chen and Y.T. Yu. On the Expected Number of Failures Detected by

Subdomain Testing and Random Testing. In IEEE Trans. Software Eng. no. 2, pp.

109-119, Feb. 1996.

[4] T.Y. Chen, H. Leung, and I.K. Mak. Adaptive Random Testing. In Proceedings of

Ninth Asian Computing Science Conf. pp. 320-329. 2004.

[5] L. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental assessment of random

testing for object-oriented software. In Proceedings of the 2007

international symposium on software testing and analysis, pp.84-94, 09 July 2007.

[6] E. F. Collins and V. F. de Lucena. Software Test Automation practices in agile

development environment: An industry experience report. In 2012 7th International

Workshop on Automation of Software Test (AST), Zurich, pp. 57-63. 2012.

[7] B. Daniel and M. Boshernitsan, Predicting Effectiveness of Automatic Testing

Tools, In 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, Sept. pp.363-366, 2008.

[8] J. W. Duran and S. C. Ntafos. An evaluation of random testing. In IEEE

Transactions of Software Engineering, July 1984, Vol.SE-10(4), pp.438-444 [Peer

Reviewed Journal].

[9] R. Ferguson and B. Korel. The chaining approach for software test data

generation. In ACM Transactions on Software Engineering and Methodology

(TOSEM), 01 January 1996, Vol.5(1), pp.63-86 [Peer Reviewed Journal]

[10] I. Fernandez, A. D. Cerbo, E. Dehnhardt and M. Tipaldi. Test automation for

critical space software. In 2016 IEEE Metrology for Aerospace (MetroAeroSpace),

Florence, pp. 551-555. 2016.

[11] M. Fowler. Domain-Specic Languages. Addison-Wesley Professional. 2010.

[12] S. Galler and A. Bernhard, Survey on test data generation tools, In International

Journal on Software Tools for Technology Transfer, Vol.16(6), pp.727-751, 2014.

[Peer Reviewed Journal]

[13] R. Gopinath, C. Jensen, and A. Groce. Code coverage for suite evaluation by

developers. In Proceedings of the 36th International Conference on Software

Engineering, ICSE’14, pages 72–82, 2014.

[14] A. Groce and R. Joshi. Random testing and model checking: Building a common

framework for nondeterministic exploration. In Workshop on Dynamic Analysis. pp.

22-28. 2008.

32

[15] A. Groce and J. Erwig. Finding common ground: choose, assert, and assume. In

Work-shop on Dynamic Analysis, pp. 12-17, 2012.

[16] A. Groce, A. Fern, M. Erwig, J. Pinto, T. Bauer, A. Aipour. Learning-based test

programming for programmers. In International Symposium on Leveraging

Applications of Formal Methods. Verication and Validation, pp. 752-786. 2012.

[17] A. Groce, J. Pinto, P, Mittal, P, Azimi, K. Kellar, and J. O’brien, TSTL: the

template scripting testing language, In International Journal on Software Tools for

Technology Transfer, 2 December 2016. [Peer Reviewed Journal]

[17] A. Groce. Template Scripting Testing Language tool. Retrived from

https://github.com/agroce/tstl. 2017.

[18] D. Hamlet and R. Taylor. Partition testing does not inspire confidence. In IEEE

TSE, 16(12):1402-1411, Dec. 1990.

[19] R. Hamlet. Random testing. In Encyclopedia of Software Engineering, pp. 970-

978, Wiley, New York, 1994.

[20] M. Harman. Automated Test Data Generation using Search Based Software

Engineering. In Automation of Software Test , 2007. AST '07. Second International

Workshop on, Minneapolis, MN pp. 2-2. 2007.

[21] M. Höge, A. Hohmann, K. V. D. Horst, A. Evans. and H. Caeyers. User

participation in the TWB II project - the first test cycle. In Report of the ESPRIT II

project 6005 Translator's Workbench II (TWB II). Mercedes-Benz AG, SITE and

CEC Language Services, Stuttgart, Paris. Luxembourg. 1993.

[22] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test

suite effectiveness. In Proceedings of the 36th International Conference on Software

Engineering, ICSE’14, pages 435–445, 2014.

[23] K. Kellar. TSTL-Java. Retrieved from https://github.com/flipturnapps/TSTL-

Java. 2015.

[24] P. S. Loo and W. K. Tsai. Random testing revisited. In Information and Software

Technology, vol. 30, no. 7, pp. 402-417, 1988.

[25] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation

of exhaustive testing for data structures. Technical Report MIT/LCS/TR-921, MIT

Lab for Computer Science, September 2003.

[26] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random

test generation. In Proceedings of the 29th International Conference on Software

Engineering, ICSE’07, pp.75-84. 2007.

[27] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for

java. In Companion to the 22nd ACM SIGPLAN Conference on Object-oriented

Programming Systems and Applications Companion, OOPSLA’07, pages 815–816,

2007.

[28] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input generation for Java

containers using state matching. In ISSTA, pages 37-48, July 2006.

[29] K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden. Feedback-Controlled

Random Test Generation. In Proceedings of the 2015 International Symposium on

software testing and analysis, pp.316-326, 13 July 2015.

https://github.com/agroce/tstl
https://github.com/flipturnapps/TSTL-Java
https://github.com/flipturnapps/TSTL-Java

