
 

 

 

 

AN ABSTRACT OF THE THESIS OF 

 

 

Kazuki Kaneoka for the degree of Master of Science in Computer Science presented on 

March 23, 2017. 

Title:  Feedback-Based Random Test Generator for TSTL 

 

 

Abstract approved: ______________________________________________________ 

Alex Groce 

 

 

Software testing is the process of evaluating the accuracy and performance of software, 

and automated software testing allows programmers to develop software more efficiently 

by decreasing testing costs. We compared two advanced random test generators, a 

Feedback-Directed Random Test Generator (FDR) and a Feedback-Controlled Random 

Test Generator (FCR), for an automated software testing tool in Python 2.x, the Template 

Scripting Testing Language (TSTL).  

An FDR generates test inputs incrementally. Feedback from previous trials is used 

to generate new inputs. As each test input is executed, the software properties are 

assessed to determine if there is any value. Because of this process of gradually 

generating new tests, the FDR avoids redundant and illegal test inputs commonly 

produced by traditional random test generators. An FCR employs a different feedback 

technique. It controls the feedback to produce varied test inputs using multiple input 

containers. In our experiments, we compared the performance of our test generators with 

TSTL’s generator in terms of coverage, time-efficiency, and error-detection capability. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

In software engineering, software testing is the examination of the properties of the 

software system. Generally, software testing is to establish 1) whether the software 

design satisfies the requirements it is supposed to be, 2) whether it computes the 

expected results from its inputs, and 3) what its limitations are under different 

circumstances. Specifically, determining the accuracy and reliability of the software 

system is a complex procedure. The procedure usually consists of 1) generating test 

case, which is the test input data to evaluate software, 2) defining the expected results 

of executing the test case under software, 3) executing the generated test case and 

then, 4) comparing the output with the defined expectation.  

However, to complete the procedure by human hand is tedious and 

unproductive work. This is the reason why software-test automation is an active area 

to research because it can make the complex procedure easier and it eventually leads 

the software development efficiently by increasing the productivity of software 

development [2, 6, 10, 20]. Although automated software testing is active area in 

research and industry, it has faced challenging because it is necessary 1) to generate 

test cases automatically and 2) to set a test oracle, defined as the means of setting the 

expected output of a test case. 
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In making the process of software testing automatically, an ideal strategy 

would generate test cases by following some mathematical strategy instead of human 

hands. We can let a computer to create test cases automatically following some 

mathematical strategy but it should not generate test cases too much. Otherwise, the 

test cases cannot be executed in reasonable time, because it is impossible to generate 

and examine all possible test cases. Therefore, a good test case generator that 

generates high-quality test cases, in terms of evaluating a software system, is required 

for an automated software testing. Different types of generators employs different 

types of strategy for producing test cases and each one has distinct advantage. 

 A wide range of test case generators have been experimented with in the 

software-testing field. A Random Test Generator (RTG), one that produces test case 

randomly, is fundamental software-testing strategy. It is worth mentioning that 1) an 

RTG can be implemented rather simply, 2) it executes the system quickly, and 3) 

avoids programmer’s bias, as well as reveals hidden information that the programmer 

may not recognize [1, 5]. However, it is argued that an RTG is inefficient because it 

requires a large amount of test case to achieve high-code coverage, meaning the 

identification of how much percent of source codes in software are being executed 

using test cases [25]. High coverage is important to software testing because bugs are 

never found in lines of codes that are not covered, although high coverage does not 

guarantee the detection of failures [13, 22].  

An RTG may require more test cases to cover certain parts of the software, 

even if only one test case is sufficient. For example, because of its randomness, an 

RTG may generate multiple test cases to cover the same lines of codes. In other 
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words, those multiples test cases are syntactically or semantically same. In addition, 

an RTG may generate unnecessary test cases, meaning a test case that the software 

does not accept as an input. For instance, there is no need to test the binary operation 

of dividing by zero. One possible idea to avoid those problems are to analyze 

software system before generating test cases. However, it is impractical to manually 

analyze and obtain the necessary input data for such complex software. Thus, the 

consequences of random generation are considered acceptable for software testing 

and it is worth to improve the idea. 

A Feedback-Directed Random Test Generator (FDR) was introduced to 

improve upon the RTG by mitigating the redundancy and illegality common to 

random generation [26]. With an RTG, test case is generated by the input domain 

with some probability distribution. An FDR, however, creates test cases 

incrementally through random sequences of methods produced by the input domain. 

The increment of the input domain can avoid generating a test case that is 

syntactically identical to previous test cases, and can avoid generating a test case that 

is semantically illegal for the program. It is a flexible technique for general software 

testing since the technique does not require pre-defined test cases and analyzing a 

software. It can grow test cases from scratch. Because of its versatility and 

practicality, the FDR has been widely adopted in industry and academic. Specifically, 

Pacheco introduced Randoop, a test generator for Java based on the concept of the 

FDR [27]. Randoop is a means of unit testing, defined as a strategy of software 

testing that assesses one or more components of the software. Furthermore, the FDR 

is also used in the field of software-testing research for evaluating and comparing a 
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researcher’s work [7, 12]. Despite resolving the weakness of RTG, FDR creates 

another problem; the random method sequences are biased by the method selected at 

the beginning of the generating process because its test cases are generated by 

appending a new methods to previous test cases. 

The Feedback-Controlled Random Test Generator (FCR) is an advanced form 

of the FDR [29]. The FDR can avoid generating the redundant and useless test cases 

of the RTG, by creating test cases incrementally; however, the generated test cases 

are biased by the method that is selected initially, meaning that the test cases have the 

same syntactic prefix. Additionally, it is impossible to determine which method is the 

best to begin with for detecting failures in the system. FCR approaches this problem 

by managing multiple test input sources. Each test input source works independently 

of the others to generate test cases. In other words, test case in one test input source 

differs from another test case in another test input source. Because of this, FCR 

retains the functionality of FDR and reduces bias at the same time. 

In our experiments, we designed and implemented an FDR and an FCR for the 

Template Scripting Testing Language (TSTL), with the goal of creating an automated 

software testing tool in Python 2.x (there is also a beta version in Java) [17, 23]. 

TSTL already supports some test generators. However, since test generators work 

differently in different situations, having an FDR and an FCR produces a more 

diverse array of results in TSTL. 

The rest of this paper is structured as follows. In Chapter 2, TSTL, FDR, and 

FCR is summarized for review. The design and implementation of an FDR and an 

FCR into TSTL is discussed in Chapter 3. The performance of the FDR and the FCR 
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compared with a random test generator in TSTL is presented in Chapter 4. Finally, 

our conclusion is found in Chapter 5. 

  



6 

 

 

 

 

CHAPTER 2: LITERATURE REVIEW 

Chapter 2 presents our project’s background information. It reviews an automated 

software-testing tool, the Template Scripting Testing Language (TSTL). Afterwards, 

two advanced random test generators are discussed, a Feedback-Directed Random 

Test Generator (FDR) and a Feedback-Controlled Random Test Generator (FCR). 

 

2.1 The Template Scripting Testing Language (TSTL) 

2.1.1 Overview 

TSTL is an automated software-testing tool in Python 2.x provided by Groce and it 

facilitates software-testing automation by creating test harnesses for programmers 

[17]. Per Groce, a test harness defines as a set of test cases and a set of properties that 

corresponds to those test cases. An automated software testing is easy for 

programmers if a test harness is provided since we can simply execute a test case 

defined by the harness and evaluate the output. However, writing test harnesses is a 

daunting task, specifically for human hands [14, 15]. 

There are couple points why a test harness is challenging for human hands. 

Firstly, a test harness should be written in the same language as the Software Under 

Test (SUT), defined as the software being tested, but writing test harnesses in this 

way involves a great deal of repetition, a common source of human error. In addition, 

it is normal in real industry software testing for the methods of the SUT to require 
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complex input parameters. Manually preparing the inputs for testing the methods is a 

rather frustrating endeavor. The test harness must be able to adapt to multiple testing 

situations. In other words, programmers should easily be able to implement the 

harness to test the SUT using different strategies. TSTL defines and works a test 

harness and let programmers to focus on software testing. 

TSTL produces test harnesses based on the notion of a domain-specific 

language (DSL) [16]. The reason TSTL supports the concept of DSL is that it can 

provide abstractions and notations for a specific language [11]. DSL consists of an 

external part, which has its own syntax of DSL, and an internal part, which is a stick 

with the language of the SUT. Generally, the external part is used to generate 

conditions that are difficult for programmers to write, and an internal part to utilize 

the benefit of the language under SUT. 

 

2.1.2 The Communication between TSTL and a Test Generator 

 

Figure 1: The Communication between TSTL and a Test Generator 

TSTL provides software-testing automation by creating a test harness that a test 

generator utilizes to produce test cases. In Figure 1, we highlight how TSTL interacts 

with a test generator. TSTL takes two inputs, a python file, which is the SUT, and a 

TSTL file, which defines the SUT properties, such as 1) the possible input domain of 

each method, 2) the possible methods that will be used, and 3) the test oracles. By 
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giving a python file and a TSTL file, TSTL compiles and produces an output file, 

named sut.py, which contains all the necessary and supporting information for a test 

generator to generate test cases. Eventually, a test generator accesses sut.py to 

generate and execute test cases to evaluate SUT. 

 

2.1.3 Test Cases in TSTL 

 

Figure 2: Test Cases in TSTL 

In TSTL, a test generator produces test cases using sut.py; the test cases are sequences 

of predefined methods with an input domain, named action. Figure 2 shows an 

example of how action is defined in sut.py. Assuming the SUT is a linked-list node 

implementation, the list node contains two member variables: an integer value of a 

node and a pointer of the next node. There are three member functions in the linked-

list node: a constructor, getValue(), and setNext(). By providing some information for 

the input domain, such as the range of integer value being between one and ten, TSTL 

defines all possible action in sut.py. It should be noted that TSTL defines action to 

satisfy a property of the SUT. For instance, a constructor should be called before a 

setter and a getter. TSTL defines action to behave following this manner. In TSTL, a 
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test case is a sequence of action. Therefore, a test generator generates test cases by 

selecting and executing action from sut.py. 

 

2.2 Random Test Generator (RTG) 

In software testing, an RTG is considered a basic but essential technique amongst test 

case generators [19, 24]. It can be implemented without analyzing a sophisticated 

system, and can generate test cases randomly from the input domain. Therefore, the 

cost of RTG implementation is inexpensive and the process can be automated easily. 

On the contrary, some researchers have mentioned that the RTG is inefficient for 

software testing in terms of coverage and failure detection because it simply employs 

the randomness and does not apply any strategies for them. 

 

2.3 Feedback-Directed Random Test Generator (FDR) 

2.3.1 Overview 

Common strategies used to generate test case automatically can be classified into two 

categories: random testing and systematic testing. As mentioned previously, one is 

random testing to generate test cases randomly. This can be done without knowing 

and analyzing the SUT. On the other hand, another one is systematic testing and it is 

for determining 1) whether the SUT contains the proper functions to satisfy the 

requirements, 2) whether the SUT computes the requirements correctly, and 3) 

whether the SUT performs efficiently [21]. Some researchers argue that random 

testing can be as efficient as systematic testing [8, 18], and yet, others suggest that 
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random testing is less efficient when compared to systematic testing since random 

testing does not investigate the software and simply generate test cases [9, 25, 28]. 

It is advantageous to have both random and systematic properties when 

generating test cases if it is possible. Pacheco proposed advanced random test 

generation, which is FDR, to achieve these two properties by generating test cases 

incrementally [26]. FDR generates test cases from scratch; it 1) selects some available 

methods with the input domain, 2) executes them, and 3) evaluates the results to 

checks whether the test cases are valuable to create the next ones. By this way, it can 

avoid producing test cases that it has been generated previously, and it only utilizes 

the useful test cases to generate the next test cases, which traditional random testing 

cannot achieve. 
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2.3.2 Algorithm: The FDR 

Originally, the FDR was proposed as a test generating approach for an object-oriented 

unit test. Thus, an FDR takes a set of methods with their parameter domains as inputs 

and generates a set of test cases as outputs for the SUT. 

Input: 

Output: 

 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

a set of methods with their input domains, and a time-limit 

a set of methods sequences 

 

fdr(methods, time-limit) 

errorSeqs := {} 

nonErrorSeqs := {} 

while a time-limit not reached do 

if nonErrorSeqs is empty then 

newSeq := {} 

else 

newSeq := selectSeqRandomly(nonErrorSeqs) 

end if 

m := selectMethodRandomly(methods) 

newSeq := appendSeq(newSeq, m) 

isOK := execute(newSeq) 

if isOK is true then 

nonErrorSeqs := nonErrorSeqs ∪ {newSeq} 

else 

errorSeqs := errorSeqs ∪ {newSeq} 

end if 

end while 

return errorSeqs and nonErrorSeqs 

Figure 3: Algorithm of an FDR 

Figure 3 shows the algorithm of an FDR. The FDR creates method sequences, 

as test cases. It first initializes two empty sets of method sequences: a set of 

errorSeqs, method sequences that result in errors, and another set of nonErrorSeqs, 

which is the sequences that succeed in execution with no errors (lines 2-3). 

Afterwards, it generates sequences continuously until a time limit is reached (lines 4-

21). For every iteration of the main loop, the FDR builds each method sequence using 

previous sequences. At the beginning of each iteration to create a new sequence, 

newSeq is initialized by selecting from previous sequences depending on the 



12 

 

 

nonErrorSeqs. newSeq is initialized as empty if no sequence is available in 

nonErrorSeqs (lines 6-10). Next, it chooses one or multiple methods (m) and append 

the selected methods to newSeq in order to create a new sequence (line 12). After 

creating a new sequence, newSeq, the FDR determines if it causes errors by executing 

it (line 15). If it is safe to execute, the sequence is added into nonErrorSeqs to be 

utilized in future iterations (line 17). Otherwise, it is saved in errorSeqs (line 19). 

 

2.4 Feedback-Controlled Random Test Generator (FCR) 

2.4.1 Overview 

The FDR improves upon the RTG by not generating duplicate and invaluable test 

cases through generating method sequences incrementally. However, Yatoh points 

out that FDR causes one problem such that the generated method sequences by FDR 

are biased [29]. 

 

Figure 4: Biased Test Inputs 

 Figure 4 illustrates what bias means here. An FDR uses method sequences 

that have been generated previously to create new ones. Method sequences are 

generated by selecting a previous sequence and appending an executable method 

randomly into the previous sequence. FDR repeats this step continuously to generate 

test cases until timeout is reached. Because of utilizing previous sequences to 

generate new sequences, the methods selected at the beginning affect what new 
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sequences will look like. This is a bias problem. The FCR introduces a more recent 

concept to solve the problem, called POOL, which is defined as a container that holds 

previously-generated method sequences. The sequences in POOL are still biased. 

However, the FCR utilizes a set of multiple POOLs. Therefore, a method sequence 

that uses a POOL does not affect the sequences of the other POOLs. Eventually, the 

FCR produces less biased sequences and has a greater variety of them. 

 

Figure 5: Biased Test Inputs with Multi-Pools 

 Figure 5 illustrates how the method sequences in each POOL are biased. As 

shown in the figure, each sequences are still biased in their own POOL. However, 

they are not affected each other in different POOLs. 

Since FCR handles multi POOLs, it is necessary to consider how to manage 

them. 

 It is unwise to use a single POOL too much because this would produce 

the same results as an FDR, 
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 Ideally, a better POOL will generate better sequences. Thus, it is necessary 

to define what POOL is better to generate better sequences. 

 How many POOLs is appropriate? Too much POOLs results less time to 

investigate each POOL while too few POOLs causes less biased-free. 

In FCR, POOL is managed by three procedures 1) how to add POOL, 2) how to select 

POOL, 3) how to delete POOL. 

 

2.4.2 Adding POOLs 

In an FCR, it prepares multiple POOLs to deal with bias problem. The question is 

how many of them we should prepare and whether we should add new POOL or not 

during the entire of procedure. For example, having more POOLs can reduced the 

amount of biased sequences. However, each POOL will have less time to generate 

method sequences if there are too much. Another thing that we need to consider is 

that suppose we prepare 100 POOLs. After some iterations, sequences in each POOL 

are biased differently. However, we do not know whether those biased sequences are 

enough or not to generate good test cases. Therefore, we still should create a new 

POOL in order to get new biased sequence. In original strategy, Yatoh created a new 

POOL every second [29]. 

 

2.4.3 Selecting POOL 

One problem of using a set of POOLs is that it is difficult to know which to select. In 

the paper, Feedback-Controlled Random Test Generation, a POOL was selected 

based on a score function, defined as follows: 
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𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑃𝑂𝑂𝐿) = {

|𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)|

𝑡𝑖𝑚𝑒(𝑃𝑂𝑂𝐿)
, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿) ≠ ∅

∞                          , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 

where coverage(POOL) is a set of coverage created by executing method sequences 

in the given POOL, and time(POOL) is the elapsed time using POOL to generate 

method sequences. The score represents how efficient POOL is in terms of providing 

more coverage in less time. This is vital because bugs are never found in lines of 

codes that have not be executed [13, 22]. Because of this, the FCR considers POOL is 

better if it provides better coverage based on the score function. The FCR calculates 

scores for each POOL and selects one, assigning the maximum score when it 

generates test cases. 

 

2.4.4 Deleting POOLs 

As mentioned in section 2.4.3, the FCR adds a POOL every second to vary its biased 

sequences. However, too many POOLs can substantially diminish the amount of time 

each POOL is used, leading to insufficient length in the method sequences. It is 

because of this that the number of POOLs must be reduced at some points. The FCR 

sets the maximum number of POOLs and deletes half of them when the limit is 

reached. A POOL is deleted when it is determined to be the least unique; the 

uniqueness of a POOL is defined as follows: 

𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑃𝑂𝑂𝐿) =
∑ 𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑐, 𝑃𝑂𝑂𝐿)𝑐∈𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)

|𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑂𝑂𝐿)|
 

𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠(𝑐, 𝑃𝑂𝑂𝐿) =
𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑃𝑂𝑂𝐿)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑝)𝑝∈𝑃𝑂𝑂𝐿𝑆
 



16 

 

 

where count(c, POOL) returns how many times the POOL covers the location c.  

In the above equation, the uniqueness of a given POOL is the average of the 

uniqueness of each coverage (c) covered by the POOL. Furthermore, the uniqueness 

of a coverage (c) covered by a POOL is a percentage of the number of times the 

POOL covers (c) amongst the number of times all POOLs covers (c). In the FCR, it is 

better to have more sequences. Because of this, it keeps POOLs that are unique in 

terms of covering coverage locations that other POOLs do not, ensuring that all 

biased sequences in each POOL are covered uniquely. 

 

2.4.5 Algorithm: The FCR 

The FCR is an alternative to the FDR in that it manages multiple POOLs. The input 

of the FCR is a set of methods using the SUT, same with FDR, and two additional 

parameters: the initial number of POOLs and the maximum number of POOLs. It 

outputs a set of method sequences which is the same as the FDR. 

Input: 

Output: 

 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

a set of methods with their input domains, and time-limit 

a set of method sequences 

 

fcr(methods, time-limit) 

pools := {} 

for i=1 to INP do 

pools := pools ∪ {createNewPool()} 

end for 

while a time-limit not reached do 

if need to add new Pool then 

pools := pools ∪ {createNewPool()} 

end if 

 pool := selectPool(pools) 

fdr(pool, methods) 

if number of pools is more than number of MNP then 

 pools := deletePools(pools, MNP/2) 

end if 

end while 

return getAllErrorSeqs(pools) and getAllNonErrorSeqs(pools) 

Figure 6: Algorithm of an FCR 
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 POOL: a container of errorSeqs and nonErrorSeqs. 

 POOLS: a set of POOLs  

 INP: the initial number of POOLS 

 MNP: the maximum number of POOLS 

 Figure 6 indicates how an FCR works. The POOL constructer createNewPool 

is called INP times to initialize POOLS (lines 2-5). After initialization, the FCR 

manages POOLS to generate method sequences (lines 6-15). At the beginning of the 

main loop, it assesses whether it needs to create a new POOL and adds it to POOLS if 

necessary (lines 7-9). Then, scores are calculated in each POOL and select the one 

which provides the maximum score. The, run it in the FDR to generate method 

sequences (lines 10-11). It also determines if the number of POOLS exceeds MNP. If 

so, the FCR deletes half of POOLS (lines 12-14). Finally, it returns all errorSeqs and 

nonErrorSeqs among POOLS. 
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CHAPTER 3: DESIGN AND IMPLEMENTATION 

The previous chapter discussed the way in which a test generator communicates with 

the Template Scripting Testing Language (TSTL) to generate test cases, and how 

Feedback-Directed Random Test Generators (FDR) and a Feedback-Controlled 

Random Test Generators (FCR) work. In this chapter, our design and implementation 

of an FDR and an FCR for TSTL, named feedbacktester.py, is presented.  

 

3.1 The Workflow of Main Components: feedbacktester.py 

The defining characteristic of feedbacktester.py is how we manage POOL and 

POOLS since we can consider FDR as special case of FCR such that FCR with 

having a single POOL is FDR. We defined two object-oriented classes in order to 

manage POOL in feedbacktester.py. 

First class is POOL which contains the following member variables and functions: 

 member variables: the information to generate method sequences 

 member function: method sequences produced by the FDR 

Another class is POOLS which contains: 

 member variables: a set of POOL 

 member functions: adding, selecting, and deleting POOL 

In feedbacktester.py, FDR and FCR were implemented by managing the above two 

classes. 



19 

 

 

 

Figure 7: The Workflow of Main Components: feedbacktester.py 

Excepting initialization step, there are four main components in 

feedbacktester.py as shown in Figure 7 and those components are controlled by the 

defined classes, POOL and POOLS. Firstly, at the initialization, the classes, POOL 

and POOLS are prepared. If it is generating method sequences under the algorithm of 

the FCR, POOLS identifies 1) whether it should create a new POOL, 2) selects a 

POOL from POOLS, 3) generates method sequences using the selected POOL, and 4) 

deletes and updates POOLS if necessary. If an FDR is used to generate method 

sequences, POOLS holds a single POOL only. It means that it always selects the same 

POOL to generate method sequences. By this way, FDR and FCR shared same 

workflow but generated test cases differently. 
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3.2 The Workflow of the Component: Generating Method Sequences 

 

Figure 8: The Workflow of the Component: Generating Method Sequences 

In this section, we describe the workflow of generating method sequences (shown in 

Figure 8). As mentioned in the previous section, we use the selected POOL to 

generate method sequences, and the selected POOL contains all necessary 

information to generate sequences. errorSeqs and nonErrorSeqs are the main 

information to generate test cases that POOL holds. They are defined as follows: 

 errorSeqs: a set of sequences that causes errors 

 nonErrorSeqs: a set of sequences that execute with no errors 

Additionally, we defined sequence and action as following: 

 sequence: a list of actions 

 action: a pre-defined method with input value in sut.py 

At the beginning of the workflow, it reset the runtime information which are the 

information of generating and executing method sequences previously. After 

resetting, a sequence from nonErrorSeqs is selected and each action in the sequence 

is executed one by one. Then, single or multiple action are selected to executed and 

appended into the selected sequence to generate a new sequence. Finally, it is 
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determined whether the generated sequence is duplicated or not. If not, the sequence 

is placed in nonErrorSeqs. Otherwise, it is put into errorSeqs. 

It should note that our implementation must reset the runtime information 

when generating method sequence each time even it causes inefficient in terms of 

time complexity. There are three reasons why the runtime information needs to be 

reset each time. 

 First reason is why it is necessary to reset a runtime information is because 

how TSTL defines action. As mentioned in section 2.1.3, action is defined 

by following the property of the Software Under Test (SUT). It means that 

it is runtime information stating which action is executable after another 

action is performed. 

 The second reason is that the FDR and FCR generates method sequences 

incrementally. In our implementation, we selected previous sequences 

from nonErrorSeqs and appended an executable action to generate a new 

sequence. Because of TSTL, we had to execute each action in the previous 

sequence to know which action was executable. 

 The third reason is that the method sequences are generated repeatedly 

until timeout is reached. This means that the runtime information of the 

previous method sequence not only still existed, but also affected the 

generation of a new method sequence. 
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CHAPTER 4: EXPERIMENTS 

Chapter 4 presents our experiments to measure the performance of our 

implementation of Feedback-directed Random Test Generator (FDR) and Feedback-

controlled Random Test Generator (FCR), named feedbacktester.py. We compared 

feedbacktester.py with a test generator from The Template Scripting Testing 

Language (TSTL), randomtester.py in terms of coverage, time efficacy, and error-

detection. 

 

4.1 Performance Measurement 

There are several ways of measuring performance for software testing [3]. The P-

measure is the probability of finding at least one failure in the test cases. The E-

measure is the expected number of failures reported in the test cases. When using 

those measurements, it is necessary to prepare test cases prior to execution since we 

need to know what those test cases look like. However, feedbacktester.py and 

randomtester.py generate test cases at runtime with accessing sut.py. Therefore, we 

needed another approach to measure our generator. F-measure is defined as how 

many test cases are generated to detect the first failure [4]. Using F-measure, we 

evaluated the coverage performance of feedbacktester.py and randomtester.py as the 

following ways: 

 How many test cases a generator creates to cover the max coverage is covered 
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 How many seconds a generator takes to cover the max coverage is covered 

Similarly, we evaluated the error-detection of those test generators for the following: 

 How many test cases a generator creates to find a first failure 

 How many seconds a generator takes to find a first failure 

 

4.2 Case Study 

Case Study Lines Classes Contains Bug? Description 

avl 288 2 Yes AVL Tree implementation 

simplejson 4071 2 No JSON parser 

sortedcontainers 3609 6 No 
a sorted containers for list, dictionary, and 

set 

sympy 415794 617 Yes symbolic computer algebra system 

my_xml 637 6 No XML parser as read-only 

Table 1: Case Study 

In our experiments, we needed a python file and a TSTL file for the Software Under 

Test (SUT) to create sut.py, and we used the files for various SUTs provided by 

Groce [17]. We reported the results of our experiments using the following SUTs: 

AVL Tree implementation, JSON parser, a sorted containers of List, Dictionary, and 

Set, a symbolic mathematics library, and XML parser (shown in Table 1). Some case 

studies, avl and sympy, contained bugs in order to measure the ability of a generator’s 

detecting failures. 

 

4.3 Results and Discussion 

In this section, we show the results and discussions of our experiments for each test 

generator, FDR, FCR, and RTG. 
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 We ran feedbacktester.py and randomtester.py for 600 seconds because of 

FCR. We set Initial Number of POOLs (INP) as 10 and Maximum Number of 

POOLs (MNP) as 100 for FCR and FCR added a new POOL in each second. 

It meant that it took 90 seconds to reach MNP and to delete POOL. Thus, we 

needed the long execution time to measure FCR and spent 600 seconds. 

 We used multiple seeds for generating random numbers to investigate the 

variety of each generators and we used random seeds as between 1 to 10. 

The following tables show our experiment results for each case studies. 

Test 

Generator 

Test 

Cases 

Coverage 

(%) 
Failures 

Test Cases 

(Coverage) 

Seconds 

(Coverage) 

Test Cases 

(1st Failure) 

Seconds 

(1st Failure) 

FDR 16320.600 76.677 0.700 1703.400 58.113 8495.333 305.478 

FCR 5189.100 76.422 15.200 1718.800 201.884 342.000 36.415 

RTG 4891.400 76.038 2.400 93.200 10.307 1983.400 215.378 

Table 2: Results for avl 

Test 

Generator 

Test 

Cases 

Coverage 

(%) 
Failures 

Test Cases 

(Coverage) 

Seconds 

(Coverage) 

Test Cases 

(1st Failure) 

Seconds 

(1st Failure) 

FDR 537.300 32.456 N/A 430.200 485.963 N/A N/A 

FCR 69.700 24.351 N/A 39.800 347.302 N/A N/A 

RTG 39.900 33.623 N/A 31.400 478.817 N/A N/A 

Table 3: Results for simplejson 

Test 

Generator 

Test 

Cases 

Coverage 

(%) 
Failures 

Test Cases 

(Coverage) 

Seconds 

(Coverage) 

Test Cases 

(1st Failure) 

Seconds 

(1st Failure) 

FDR 1699.444 22.905 N/A 1575.333 555.921 N/A N/A 

FCR 450.300 9.977 N/A 270.700 356.830 N/A N/A 

RTG 503.000 29.173 N/A 433.857 519.919 N/A N/A 

Table 4: Results for sortedcontainers 
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Test 

Generator 

Test 

Cases 

Coverage 

(%) 
Failures 

Test Cases 

(Coverage) 

Seconds 

(Coverage) 

Test Cases 

(1st Failure) 

Seconds 

(1st Failure) 

FDR 57.800 17.927 0.400 49.100 464.194 31.333 234.458 

FCR 8.889 16.813 0.667 4.500 288.095 7.400 364.348 

RTG 3.875 19.878 0.500 3.286 435.950 2.000 197.705 

Table 5: Results for sympy 

Test 

Generator 

Test 

Cases 

Coverage 

(%) 
Failures 

Test Cases 

(Coverage) 

Seconds 

(Coverage) 

Test Cases 

(1st Failure) 

Seconds 

(1st Failure) 

FDR 13927.700 33.135 N/A 6084.300 233.239 N/A N/A 

FCR 5502.100 32.649 N/A 1876.200 185.888 N/A N/A 

RTG 27871.100 33.784 N/A 1761.300 38.145 N/A N/A 

Table 6: Results for XML 

Each column represents as following description: 

 Test Cases: total number of test cases that a generator creates and executes 

until timeout 

 Coverage: the max coverage that a generator covers until timeout 

 Failures: total number of failures that a generator detect 

 Test Cases (Coverage): number of test cases that a generator to cover the max 

coverage 

  Seconds (Coverage): how many seconds a generator takes to cover the max 

coverage 

 Test Cases (1st Failure): number of test cases that a generator to detect 1st 

failure 

 Seconds (1st Failure): how many seconds a generator takes to detect 1st failure 
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 N/A indicates that we could not obtain results for some reasons. For example, 

SUT did not contains bugs or the running process was killed by OS because of 

extreme memory consumption. 

 

According to Table 2 and Table 5: 

 For coverage efficiency, RTG showed best score. For both avl and sympy, all 

generators outputted similar coverage score. However, RTG needed lesser test cases 

and seconds to cover it. 

 For detecting failures, FCR resulted best score. For instance, FCR used minimum test 

cases and seconds to find 1st failure for avl. Furthermore, FCR found more numbers 

of failures than others for avl and sympy. As mentioned in Chapter 2, FCR utilized 

unique POOL. It implied that the failures in those two SUTs were located in less 

frequent coverage locations. 

 When we compared FDR and FCR in avl and sympy, FCR was obviously better than 

FDR for detecting failures, but it showed different for covering coverage. For avl 

shown in Table 2, FDR was faster than FCR to cover max coverage. Approximately, 

FDR spent 60 seconds. As I mentioned before, FCR needed at least 90 seconds to 

handle its algorithm.  This result was because avl was relatively small program and 

FDR algorithm was enough to cover the entire of the program. On the other hand, 

FCR was faster than FDR to cover the max coverage in sympy since sympy was huge 

program and needed more complex algorithm such that FCR had advantage for 

coverage. 
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As shown in Table 3, Table 4, and Table 6: 

 RTG was better than feedback based generators in terms of coverage. Firstly, all 

generators covered few coverage because the functions defined from simplejson 

and sortedcontainers were called recursively in those tstl files. It meant that the 

amount of paths became exponential and it was impossible to cover high 

coverage in practical time. This may work against to feedback based generators 

since then generate test cases incrementally. 

 FCR provided the least coverage score compared with others. FCR managed 

multi POOLs and selected the most unique one to generate test cases. In other 

words, it was necessary for FCR to have enough coverage information to obtain 

its benefit. 

 FDR was better than FCR in simplejson and sortedcontainers. FDR was specious 

case of FCR in our implementation, using a single POOL. It implied that it was 

better to focus on single POOL when it had low coverage. In other words, FCR 

could not glow each POOL to calculate uniqueness. 

 Table 6 also showed similar trend with other case studies. All generators covered 

same coverage but we could say that RTG was more efficient than others for 

coverage because it needed less test cases and times. 

 

To sum up, the following insights were obtained: 

 Our implementation of FCR, feedbacktester.py, was effective in terms of 

error-detection. However, it required to obtain some amount of coverage to 

get advantage of its algorithm since it needed to calculate the uniqueness of 

POOL, whose uniqueness required coverage information.  
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 The differences between the FDR and the FCR was that FCR achieved greater 

coverage in less time when we could obtain enough coverage information. 

The FCR used a multi-POOL to generate more unique method sequences. 

However, FDR was appropriated if the SUT was simply enough or it was hard 

to get enough coverage information. 

 FDR showed low performance than others but FCR was superior in terms of 

detecting bugs. However, since FCR was based on FDR in our 

implementation, we could provide better results if we could improve FDR 

implementation more. One possible way might improve its time complexity. 

FDR was necessary to reset the runtime information in our current 

implementation. If we could avoid it, it would increase the time complexity. 

 The RTG used fewer test cases to perform greater coverage compared to the 

FDR and FCR. We concluded this result was that RTG was simple and 

feedback based generators were complex. RTG spent much less time than 

those two generators to generate test cases. In contrast, FDR and FCR needed 

huge calculations to create test cases. For examining the performance in our 

experiment, generating and executing test sequences simply results better than 

applying the complex strategy. 
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CHAPTER 5: CONCLUSION 

Our group presented a fully-automated test generator for the Template Scripting 

Testing Language (TSTL) based on two advanced random test generators: a 

Feedback-Directed Random Test Generator (FDR) and a Feedback-Controlled 

Random Test Generator (FCR). Unlike the generators supported by TSTL, we 

employed an incremental technique in the generation of test cases. Based on our 

observations, the proposed implementation is applicable in the scalable input domain, 

because the FDR and FCR are scalable. 

 In our experiments, we compared the performance of feedbacktester.py with 

randomtester.py from TSTL in terms of coverage, running time, and failure detection. 

Our experiments showed that FCR in feedbacktester.py was best in terms of detecting 

bugs. However, feedback based generators had low performance for coverage. RTG 

was better since it used less test cases and seconds to obtain more coverages. It was 

because feedback based generators required heavily calculations but random 

generator allowed us to generate test cases with light calculation. According to our 

experiments, light calculation, selecting and executing test cases randomly, was 

superior to heavy calculation, feedback based test generations. 

Therefore, to reduce time complexity for feedback based generations might be 

next step for our project. Currently, our implementation, feedbacktester.py, belonged 

to sut.py provided by TSTL. In other words, feedbacktester.py was strongly tied with 
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the implementation of TSTL. Because of it, our generator was necessary to reset the 

runtime information every time when it generated test cases. This process was 

inefficient. If our generator could be free from TSTL on this part, time complexity 

would become much better. In addition, calculating uniqueness of POOLs was also 

heavy calculation. It was worth to consider about how to manage coverage 

information for calculating the uniqueness. 
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