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Oversampling analog-to-digital and digital-to-analog converters are gaining more 

popularity in many signal processing applications. Delta-sigma modulators are used in 

practical applications of oversampling systems because of their apparent practical 

advantage over other oversampling converters in terms of insensitivity to the inevitable 

imperfection of the analog circuitry. 

In AZ modulators, analog integrators are always very important components and are 

usually modeled as ideal in real applications. However, theoretical analysis shows that the 

integrator nonideality due to capacitor mismatching and finite op-amp gain cause large 

signal-to-noise ratio degradation. The primary disadvantages of the dual-quantization and 

cascade modulators are that they rely on the precise cancellation of terms derived from 

two separate circuits, one analog and one digital, and that there are added complexities on 

the digital sides. 

This thesis describes digital adaptive correction of nonidealities in dual-quantization and 

cascade modulators. The sources and effects of nonidealities in a first-order delta-sigma 

loop are analyzed. Simple correction schemes are presented, and theoretical SNR 

improvements are calculated and compared with simulation results. 
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ADAPTIVE CORRECTION TECHNIQUES 

FOR DELTA-SIGMA AID CONVERTERS 

1. INTRODUCTION 

An analog-to-digital converter transform an analog input signal into a digital binary code 

representing a quantized value of the input signal. In the conventional Nyquist rate AID 

converters, if the analog input signal is band limited to fB, the minimum sampling rate 

required is 2fB. For Oversampled AID converters the analog signal is sampled at a rate 

much higher than the Nyquist rate. In this case the signal is sampled at OSR* fB where 

OSR is the oversampling ratio. One of the important advantage of oversampled A/D 

converters is that the requirement for analog pre-filtering is relaxed, where as Nyquist rate 

converters call for analog filters with sharp transition region to prevent aliasing. 

Among oversampled A/D converters, delta-sigma modulators are gaining more popularity 

in many signal processing applications. A/ modulators have several advantages over other 

oversampling converters in terms of insensitivity to the inevitable imperfection of the 

analog circuitry, and higher signal-to-noise ratio (SNR). 

The basic AZ modulator is the first-order lowpass modulator. In order to achieve a high 

SNR within the signal bandwidth, the order and the oversampling ratio (OSR) of the delta-

sigma modulator must be high. However, the OSR is limited by the maximal speed of the 

circuit and for higher-order modulators stability is conditional. The first effective 

improvement to the basic modulator, without the stability issue, was the development of the 

Multistage Noise Shaping (MASH) Modulator. The basic idea of the MASH modulator is 

to realize higher-order modulators by using cascade of lower order A/ modulators. If the 

individual loops are stable, then the whole modulator is stable. The primary disadvantage 

of this approach is that it relies on precise cancellation of terms derived from two separate 
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circuits, one analog and one digital. Furthermore, there is added complexity on the digital 

side. 

Another major improvement to the basic modulator, without the linearity issue, is the 

development of the dual-quantization modulator, introduced by Leslie and Singh. This 

modulator contains a single-bit AZ loop with a multi-bit digital forward path. It was shown 

theoretically that this technique can result in a higher SNR compared to the first-order AZ 

modulator. Similarly, this approach requires exact cancellation of terms from analog and 

digital circuitry. Theoretical results showed that the analog circuitry non-ideality can cause 

large SNR degradation and signal distortions 

Presented in this thesis is a simple and effective self-calibrating scheme to estimate the non-

ideal parameters of the analog components. These parameters are then used in the digital 

section to cancel the first-order quantization error. The emphasis of the thesis will be on the 

correction of the Leslie-Singh modulator and the MASH modulator, but the general concept 

is applicable to any other systems that suffers from sensitivity to the imperfection of the 

analog circuitry. 

The circuit implementation of the adaptive scheme is discussed. The digital adaptive circuit 

requires no multiplication. The resulting converters' structures has much higher SNR over 

the conventional approaches. 

The organization of this thesis is as follow. 

Chapter 2 discusses the existing oversampling converter architecture. It also discusses the 

effect of analog components non-ideality on the converters' performance. In chapter 3, the 

new digital correction method for the Leslie-Singh modulator is described. The self-

calibration scheme is also discussed in this chapter. The theoretical error analysis is 
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presented and verified by simulation. In Chapter 4, the adaptive scheme is applied to the 

MASH modulator. The performance improvement is also presented. In the conclusion, the 

major results of the thesis, and possible future research directions are discussed. 
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2 OVERVIEW OF AE MODULATORS AND EFFECTS OF 

ANALOG COMPONENTS NON-IDEALITY 

In this chapter the operation of the basic structure of AZ modulator will be discussed, the 

effect of analog circuit non-ideality in the converter will be presented. 

2.1 Basic AZ Converter Structure 

Figure 1: The first-order delta-sigma modulator. 

The simplest AZ modulator is the first-order lowpass modulator shown in Figure 1 [1]. 

The input signal u is a discrete-time continuous-amplitude analog signal with a discrete-time 

digital signal output y . If the quantizer is modeled as an additive noise source, y=x+e and 

the output can be expressed in the z-domain as 

Y =U+H*E (2.1) 

where the noise transfer function is H=1z-'. In contrast, the signal transfer function is 

unity. Thus we see that the output is equal to the input signal plus an error term whose 

spectrum is shaped by H. H is clearly a high-pass filter function which tends to eliminate 

the quantization noise at low frequencies including the baseband. Therefore, the noise 
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power is not present in the baseband avoiding any overlap with the signal. However, it has 

been shown that the error signal has a highly-colored, discrete spectrum which results in 

disturbing tones [2] [3]. 

A major shortcoming of this simple delta-sigma modulator is that it might generate low 

frequency tones, called pattern noise, for certain values of u. Methods for minimizing the 

tone includes: adding a small amount of dither to its input [4], using a finer quantizer with 

smaller levels, and a more successful solution is to uses a higher-order modulator [14]. 

An alternative strategy for the multi-bit modulator, without the non-linearity issue is Leslie-

Singh modulator. Where as an alternative strategy for high-order noise shaping, without 

the stability issue of high-order feedback loop is the MASH modulator. 

2.2 Leslie-Singh Modulator 

The Leslie-Singh modulator, shown in Figure 2, consists of two stages: a first-order delta-

sigma modulator with a one-bit quantizer and an M-bit A/D converter. The purpose of the 

M-bit A/D converter is to cancel the quantization error of the 1-bit ADC e, and replace it by 

the high-pass filtered quantization error e2 of the M-bit ADC, which is 2m-1 times smaller. 

Analyzing the system shown in Figure 2 in the z-domain results in Ye = HiYi+H2Y2 

where 

HU+EY,= a I (2.2)
1+z-111a 

El =H U z11-1,2E
Y2 = E2 + Y1 + E2 (2.3)

1+ 

Ha(HI + H2) U+ HI z1H2Ha +H (2.4)
1+z Ha I+ z-'Ha 



6 

The one-bit quantizer error ei can be eliminated from y if HI z-'11211a =0 is chosen. 

e2 

H2(z) 

Y1 

H1(z) 

Iz'I 
Figure 2: A General Leslie-Singh modulator. 

For the first-order AZ transfer function the analog loop filter is 

H = (2.5) 
1 

Noise cancellation of e, can be performed if HI = and H2 = Z-1 . However, if the 

analog integrator is not ideal due to finite op-amp gain and capacitors mismatches, the 

cancellation of the first stage quantization noise will not be exact. Figure 3 shows the basic 

block diagram of the integrator in a switch-capacitor implementation. The actual first-stage 

analog transfer function Ho of Figure 2 is 

H = (2.6)
1 fiz-1 

Where a is the integrator gain caused by the capacitor mismatches and /3 is the integrator 

pole caused by the finite op-amp gain. 
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Figure 3: Switch Capacitor integrator's implementation. 

The output of the integrator can be described as 

/ 
VÀ s) )= c,(1+ )(/ z-I)Vou, (2.7)

' A 

/ c f 

1 + 1 / A + cf.
VOW (2.8)(1+ 1 / A)Vin 

(1+ 1 / A+cdcf) 

From 2.7 and 2.8, a and could be expressed as a function of the op-amp gain and 

capacitor mismatch. Let A = cdcf 1 and it = 1/A 

(1 + A) c1 2 a = (2.9)
(/ + + gA) cf A 

(1 + /.1) 1
0 = 1 -- (2.10)

(1 + 2it + ALA) A 

In CMOS circuit implementation the value of IA I is in the order of HP' to 10-3 and p is in 

the order of 103 to 10-4. Hence, 0.9990 0.9999 and 0.9880 S a S 1.0098. 

Ideally, c, = cf and 1/A = 0, so that a = =1. However, due to the analog non-ideality 
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the one-bit quantizer error el would not be cancelled out and degrading the SNR 

performance of the modulator. 

Figure 4 plots the simulated SNR of a first-order Leslie-Singh modulator as a function of 

the error gain a and the pole error /3. The input signal is a sine wave with a peak 

amplitude of A = 0.4472, -10dB, the oversampling ratio OSR=64. with an 8-bit ADC. 

The signal and in-band noise powers were determined using an FFT with a Hann-window. 

As can be seen from Figure 4, the SNR experiences a severe degradation if the analog 

integrator is not perfect. For an op-amp gain of 60 dB and capacitor tolerances of 1.5% , 

the SNR degrades is degraded by about 10 dB. 

as 

z 
c/) 

I I I 

0.996 0.998 1.000 1.002 1.004 1.006 

a,/3 

Figure 4: SNR degradation as a function of the pole and gain coefficients a.g. 
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In order to improve the SNR performance of the modulator in the presence of non-ideal 

analog components we must improve the cancellation of e, by estimating the values of the 

integrator's pole /3 and gain a and using them in the digital filter forward path. For the 

digital filters let 1/2 = 1 flz-1 and H, = ecz-1. In this case, the output of the modulator is 

Ye = HeU + He,E1+ He, E2 where 

041 + (a /3)z -')
H = (2.11) 

s 1+ (a P)z-1 

a)z-1 + (a$ a0)z-2H = ( (2.12)
1+ (a 13)z-' 

H = 1 f3z-' (2.13) 
e2 

Ideally, in order to set Het =0, we need a = a and /3 = /3. Figure 6 plots the simulated 

SNR of a first-order Leslie-Singh modulator as a function of and a where the analog 

parameters are /3= 0.9990 and a=1.01. As shown in Figure 6, the SNR is reduced 

drastically for small error in the pole /3 resulting from the finite op-amp gain, whereas the 

SNR degradation due to the capacitor mismatches is not severe. In order to achieve a high 

SNR, we need to find an accurate estimates of a and especially /3. 

Assuming both quantization noises el and e2 are zero-mean white noises and uncorrelated 

the theoretical in-band noise power 1N1 and A are 

2 ai 4)2 r (a(13 f3)(1 a) + (a a)(1 13)(1 a))2
N 

all + a OSR(1 -p)(1- a)

1r2 (et a)( a(4 /3) 4(ec a))1 
30SR3 (2.14) 
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N2 1(1 0)2 + 7r2 ,141-41 (2.15)
OSR 30SR' 

where a.,2 is the mean square value of el. OSR is the oversampling ratio, and M is the bit 

resolution of the multibit A/D. The first-stage error is proportional to (/3 13)2 which will 

be reduced drastically. The effect of the capacitor mismatches is different from the effect of 

the finite op-amp gain. The latter always causes a positive noise component, the former one 

may cause positive or negative noise component with a zero average. Figure 4 shows the 

SNR degradation due to the finite op-amp gain and the capacitors mismatches. If 

a=0.9990 the SNR=95.69, where as ideally (i.e., a =p = 1) the SNR=91.92. The 

objective is to estimate values of a and /3 which will be described in chapter 3. 

Figure 5: A first-order Leslie-Singh modulator with errors in the integrator 
transfer function and adjustable parameters in the digital transfer 
functions. 
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0.9975 0.9985 0.9995 1.0005 1.0015 

,, a 

Figure 6: SNR degradation as a function of the estimated pole and gain 

coefficients 13, et. 

e2 

e, 

Y, Estimation 
Block 

Figure 7: Leslie-Singh modulator with estimation block. 
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Correction S NR 
Residue in 

i3/ 

80% 77.09 

40% 82.48 

20% 86.66 

10% 88.94 

5% 89.79 

0% 90.14 

Table I: Sensitivity of Leslie-Singh Modulator to the coefficient 13, . 

2.3 MASH Modulators 

Historically, the first improvement to the basic modulator was the development of the 

Multistage Noise Shaping (MASH) Modulator, shown in Figure 8 151. The basic idea of a 

two-stage MASH converter is to use a second AL modulator to digitize the error signal of 

the first stage. The output of the secondary modulator is digitally filtered and subtracted 

from the primary modulator's output to cancel the quantization noise e, leaving the 

quantization noise e2 which has been shaped by the product of two noise-shaping 

functions. This approach, similar to Leslie-Singh method relies on the precise cancellation 

of terms derived from two separate circuits and coefficient mismatches can degrade the 

system performance. 

Linear analysis of the system shows that the z-transform Ye (z) of the overall output signal 

is given by Ye =1111+HNIEI + HN2E2 where the noise transfer function is 
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[(1 + z -'12 )H, z-11112H2]
HN (2.16)

[(1 + 2-1 I 1)(1 + Z-112)] 

Where Ik and H, are the transfer functions of the various block as indicated in Figure 8. 

If 112 I H, =(1 + z-1I2) I (z-11,12), then HNI = 0 and e, will be cancelled from the output ye 

and H, = 111. For example, if we choose /1 = 12 =1 1 (1- Z-1 ), then el is eliminated from 

the output if H, = and H2 = I z -'. In this case, the output contains only the delayed 

input z-1U and a filtered quantization noise of the second stage (/ z-` )2 E2. Similarly to 

the first-order Leslie-Singh modulator, due to the unavoidable non-ideality in the analog 

integrators, the first stage quantization noise will not be perfectly cancelled. Let the actual 

transfer functions I, and 12 in the MASH modulator be 

a zI = (2.17)
1-01z-1 

a1 2 z 
2 (2.18)

1 /32z 

and the digital filters with adaptive coefficients can be expressed as 

H2 = ( 1 + ( 1 - / j 131))z +/J(/2 -1)Z-2) (2.17) 

where fj, and 132 are the estimates of 131 and /32, respectively. 

The first stage and the second stage output signals of the modulator shown in Figure 9 are 

Y = 11,,U + 111E, and Y2 = Hs,U + H2.1E, + H1 E2 

where 
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1 /31z -'H = (2.18) 
1" 1 -01 -1)z-' 

and 

z-I 
H2 -= 

-(01 -1)Z-1)(1 -($2 -1)Z-1) (2.19) 

The overall output of the modulator Ye = H3U + He, E1 + 14,2E2 where He is 

He =[z-11-11 /32 )61)z-1)4342 1)z-2)1112 (2.20)+(1 ('+(i/32
CI 

PI)Z-2

He, 
[(1 02 131032 1)Z-3)]-[(1 fi2 fil)Z-2 fi2 1)Z-3)1 

(1 (01 1)Z-j)(1 -(f32 -1)z-i) 

Ideally, in order to set Het =0 we need f31 =01 and 02 = P2. Figure I 0 plots the simulated 

SNR of a second-order MASH modulator as a function of the pole errors and $2. The 

input signal is a sine wave with a peak of A=0.4472, -10dB amplitude, and the 

oversampling ratio OSR=64. For the MASH modulator the SNR experiences a more 

severe degradation from the first-stage pole error pi than from the second-stage pole error 

/32 as shown in figure 10. 

Table II shows the sensitivity of the MASH modulator to the first-stage estimate pole /3, by 

examining the relative normalized error of as PI -431 . As can been seen from the table0/ 
an accurate estimate of /3/ is required to enhance the SNR performance of the MASH 

modulators. 
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Yi ). HI(z)I---­

First Stage 

z_ 

e 

Y H,( 

Figure 8: 

Second Stage 

el 
Second Order-Cascade Modulator. 

4 

First Stage 

Yi 

-1 

Ye 

Second Stage 

II 

Y2 
I + (1 fil 132)z-1 

+ 1(1.32 1)z-2

/ 
Figure 9: Second-order cascade Modulator with the Digital Adaptive Scheme. 
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140 

130
Second-Stage Pole

120­

110­

a
z 100 
cf) 

90­

80­
*---First-Stage Pole /3, 

70­

.60 I I I 

0.9980 0.9985 0.9990 0.9995 1.00(X) 1.(X)05 1.0010 

Pole coefficients 

Figure 10: SNR degradation in the MASH modulator as a function of the 
first stage and second stage Holes 

Normalized S N R 

error A 

10% 95.22 

5% 101.24 

2.5% 107.26 

0.3125% 124.59 

0.15625% 128.66 

0% 131.28 

Table II: Sensitivity of the MASH modulator to the op-amp coefficient /3, 
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3 DIGITAL ADAPTIVE CORRECTION 

IN LESLIE-SINGH MODULATOR 

In this chapter we will introduce adaptive digital processing techniques to estimate the non-

ideal analog parameters of the integrator to enhance the performance of Leslie-Singh 

modulator. 

3.1 Adaptive Estimation for The Leslie-Singh Modulator 

3.1.1 Problem Formulation 

In this section digital adaptive correction for the Leslie-Singh modulator will be analyzed. 

The objective is to use the output of the converter to estimate values of the analog 

components. 

We can formulate our problem as a "model-matching problem" illustrated in Figure 11 

where the unknown system, the reference system, is driven with a known input and 

generates an output which is corrupted by noise. The known input is passed through an 

adjustable system, the model, and the difference between its output and the corrupted 

output of the reference system is formed. The adaptive algorithm seeks to minimize the 

difference signal by adjusting the parameters of the model. For an accurate model, in the 

absence of noise, the difference signal can be reduced to zero and the model will match the 

reference. 

In the context of our problem, the Leslie-Singh modulator is modified as represented in 

Figure 12, such that an estimate of the error of the one-bit quantizer could be determined by 

subtracting the output of the second stage from the output of the first stage of Leslie-Singh 

modulator. The unknown system is the actual noise transfer function, and the known input 
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is an estimate of el, the error of the one-bit ADC. Both e2, the error of the M-bit ADC and 

u, the arbitrary input, constitute disturbances. The adjustable system and the adaptive 

algorithm provide estimates of the a and /3 parameters. 

A method for estimating the parameters of the model is the least mean-square (LMS) 

method. The LMS method is a stochastic gradient algorithm that iteratevely finds the 

parameters /3 in the adjustable system in the direction of the negative gradient of the 

squared amplitude of an error signal ye2 where ye = (y; y.2). The algorithm uses a 

gradient method where the gradient Vk is obtained by differentiating the mean-square error 

with respect to the variable parameter /3. To develop the LMS algorithm, we use ye2 itself 

as an estimate of E(ye2) because the simplest choice of estimators of E(ye2 ) is to use 

instantaneous estimates that are based on just sample values. At each iteration in the 

adaptive process, we have a gradient estimate Vk. The instantaneous estimate of the 

gradient is determined as follow 

(5,2 Sy
17k = = e (3.1) 

5f3 lye 

With the estimate of the gradient, the adaptive algorithm is 

13k+1 = -11V7k (3.2) 

Where At is the gain constant that regulates the speed and the stability of adaptation. It has 

been shown that minimizing the mean-square value of the difference signal will lead to 

perfect matching between /3 and /3 if the disturbance is white noise and uncorrelated with 

the input signal [8]. 
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Unknown 

Disturbanc e 

Known Unknown
input System

able 

Difference 

Signal1 Algorithm
Adaptive1 I I Ye 

Figure 11: The setting of the model-matching problem of adaptive filtering. 

21 

Figure 12: A modified dual-quantization modulator. 
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Output of the First Stage 
of Leslie-Singh Modulator 

Figure 13: The model-matching problem for a first-order system corresponding 
to a first-order delta-sigma modulator with a =I. 

From the foregoing discussion, it would appear that applying adaptive techniques to 

determine the noise transfer function of a delta-sigma modulator is fairly straightforward. 

However, it remains to be demonstrated that adequate convergence can be obtained in the 

face of noise. This will be shown next, for two important special cases. 

3.1.2 LMS Adaptive Algorithm 

As a first step toward verifying that adaptive algorithms are effective in the context of delta-

sigma modulation, consider the system shown in Figure 13. This system corresponds to a 

first-order modulator wherein a =1. The equations for the LMS algorithm can be derived 

as follows. First, we examine the outputs y; and y; in the time domain to find an 

expression for the LMS error ye . 

The output y; of the first stage modulator is 

y;(k) = u(k)+ ei(k) i(k 1) + (f3 1)y,(k 1) (3.3) 

and the output of the adaptive digital section, using an infinite precision for the multibit 

quantizer, is 
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y;(k) = e,(k) 4e1(k 1) + (/3 1)y;(k I) (3.4) 

defining the LMS error as ye(k)= y, (k) y; (k) . 

oye(k) 
= e i(k 1) Y2(k 1) (3.5)

84 

From the adaptive algorithm 4,, /3k -,uv, Substituting 

4k+, =4k (k)[e i(k 1) 1)] (3.6) 

Equation (3.4) is used to perform adaptation on the system shown in Figure 13 with the 

step-size parameter µ = 0.05 and with analog parameter = 0.999. For the simulations, 

three different test input signals were applied. The first test input is a white noise signal, the 

second test signal is set to zero (off-line method), and finally a sine wave signal was 

applied. 

Case I: u =white noise input signal 

In the first case, where the input was white noise, /3 essentially converged to /3, as 

predicted by theory. The small error is a result of not allowing At approach zero 

sufficiently. Reducingµ by a factor of 10 would have reduced the error by a factor of 10. 

Case II: u =0 ( Off line method) 

In the second case, p again converged to /3 . This case and the prior one show that the 

error signal generated by Leslie-Singh modulator has sufficient spectral content to 

adequately excite the reference system. 

Case III: u =low frequency sine signal 
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In the third case, /3 again converged to /3, although not with the same accuracy as before. 

The loss in accuracy is due to the extra "noise" present in yi : the output of Al modulator 

contain the input signal u as well as the filtered error. Table III shows the value to which /3 

converged and the improved SNR achieved for several situations. 

Situation Correction factorEstimated value of 

0' i 3 0 
1 0 

x is white noise 0.9989995 -.05%
x chosen as the error
generated by a AZ 0.9989995 -.05%
modulator with $ = 0.9990

y1 chosen as the output of a 
-.09%AZ modulator with 0.99139991

S =0.9990

Table III: The estimates given by the LMS algorithm for the first-order 

system with a =1 and f3 = 0.999. 

These results show that accurate knowledge of the error generated by the one-bit quantizer 

can be used to provide an accurate estimate of p. 

Output of the First Stage 
of Leslie-Singh Modulator 

Figure 14: The model-matching problem for a first-order system corresponding 
to a Leslie-Singh modulator. 
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Next, we examined the effect of using a finite-precision quantizer as in Figure 2. We will 

consider the system shown in Figure 14 to verify that the Least Mean Square adaptive 

method is effective in an actual Leslie-Singh modulator. 

Following the same procedure as before the update equations for /3 and a are 

PpYe(k)(e,(k 1) e2(k 1) y;(n - 1)) (3.7)13k+1 Ijk 

(3.8)eek+, = ak 110,(0Y2. (k 1) 

3.1.3 System Analysis and Simulation Results 

Equations (3.7) and (3.8) were used to perform adaptation on the system shown in Figure 

14 with different values for the step-size parameters, different quantizer word lengths, and 

with /3 set to 0.999. It has been shown that one important criteria of 1_,MS convergence is 

that the MSE should be bowl-shaped quadratic with a unique global optimum [10]. 

Examination of E[y,2] as a function of /3 and a shows that the error surface is not 

quadratic which explains the reason of the non-convergence of the update equations 3.4 

and 3.8. 

To get around this difficulty, we will look at a scheme, represented in Figure 15, that is 

suited to the filter synthesis problem. In this scheme, / Oz.- and (/3 a)z-'are adjusted 

separately as adaptive filters. The adaptive algorithm used to update /3 and a can be 

derived as follow. 
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Output of the first stage of 
Leslie-Singh Modulator Y/ 

Figure 15: Filter synthesis by the equation error method. 

Ye = (1 (fi 1.-3c)z-' )Y1 (1 fiz.-1 )E (3.9) 

dY: = (-1' +E) fik+i =$k 1-113Ye(n)(e(n 1) .Y1( n 1)) (3.10)
as 

dYe 
-1Y1 eq.] = ak 11.Ye(n)yjn- 1) (3.11)as 

From equation (3.9) Y, could be expressed as follow: 

Ye =(/ fiz-1)(Y1 E) + az-1Y suchthat Y E =Y2 (3.12) 

So the topology represented in Figure 15 is equivalent to the digital pail represented in the 

first-order Leslie-Singh Modulator Figure 2. The following simulation results is based on 

Leslie-Singh topology. 

Equations (3.10) and (3.11) were used to perform adaptation on the system shown in 

Figure 5 with step-size parameters set to /is= 0.001, pa= 0.01 and /3 set to 0.999. Table 
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IV shows the value to which converged and the correction factor achieved for several 

cases. 

Case I : u = White noise input signal 

In the first case, /3 essentially converged to /3. Appendix A shows the theoretical estimate 

of A = 0- /3 . It has been shown that /3 -13=0, if u is white and uncorrelated with e. The 

small discrepancies between /3 and /3 are due to the "noisy" gradient estimation. 

Case II : u = 0 (Off line method) 

In the second case, as predicted by theory, Appendix A, /3 again converged to /3. 

Case III : u = Sine wave signal 

In the third case, /3 did not converge to /3 with the same accuracy as before. As predicted 

by theory, the loss of accuracy is due to the extra noise "u" and the noisy gradient estimate. 

Correction factor 
Input Signal pole estimates /3 

ij )3 

1 -/3 

= white noise 0.9991770 17.7%

= 0 0.9991633 16.33%

u = sine wave signal 0.9996210 62.1%

Table IV: The estimates given by the LMS algorithm using different 
input signals. 



26 

3.1.4 SNR Performance 

Simulated SNR Performance 

The Signal to Noise Ratio performance of Leslie-Singh modulator is tabulated below. The 

multi-Bit quantizer used in the second stage of the modulator is an 8-bit quantizer , the 

input to the modulator is a -10 dB signal, and the Over-Sampling Ratio is 64. 

Parameters Values Simulated SNR Theoretical Comments 

SNR 

a =1.010 /3 =0.9990 90.14 93.76 Perfect cancellation 

74.81 78.93 No Correctiona =1.000 ;6=1.0000 

86.01 88.59 Simulation Resultsec=1.015213 /3= 0.999163 

Theoretical SNR Performance 

If there is no correction for the op-amp phase and gain error (i.e. H2 = 1 Z-1 and H1 = 

in Figure 2) there will be quite large amount of uncancelled first stage error signal el 

appearing in the output. Assuming both first and second stage noises, el and e2, are zero-

mean white noises and uncorrelated the in-band noise power components are given by 

2 r2 (1- a)(a /3) 
(3.13)

Nei -E OSR(1 + (a $))2 3 OSR3 (1+ (a /3))2 e/ 

4, M ,r22 /1, 2 
(3.14)

Nei 30SR3 j(Tei 
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where 6ei2 is the mean square value of el. OSR is the oversampling ratio, and M is the bit 

resolution of the multibit A/D. Obviously, when M is small the overall SNR is dominated 

by the second stage order. Each bit added to the quantizer will be gained in the final SNR. 

But when M is larger, between 5 and 8 bits the SNR is dominated by the first stage error. 

3.2 Implementation of the LMS Algorithm 

In the digital implementation of the LMS algorithm, the adjustable filter coefficients as well 

as the signal levels are quantized to within a least significant digits. 13y doing so we are 

introducing a new source of error namely, quantization error. 

Throughout, this section the update equation of will be the typical example to be studied, 

same results applies to the update equation of a. Each data sample in the algorithm ye and 

y2 is represented by Bs=8 bits. Similarly, we assume that the filter coefficient /3 is 

represented by Bp. 

In the infinite precision form, a large gain constant pp is needed to accelerate convergence, 

while a small step size is needed to reduce the mean squared error. When, however, the 

LMS algorithm is implemented digitally a decrease in the gain constant pp can actually 

degrade the performance. In particular, if the product I. tbe,aye( n)Y2( n 1) is less in 

magnitude than half the parameter quantizing interval, the quantized value of the product is 

set equal to zero and the algorithm stops making any further adjustments. When the 

following condition is satisfied for all values of k the LMS algorithm converges. 

-1
leuflye(k)y2(k 1)1< 2"913 (3.15) 

A possible solution for avoiding the arithmetic error arising when the algorithm is 

implemented digitally is by using more bits to represent the parameter than the data 

samples. However, since the hardware complexity of digital signal processing systems is 
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directly related to the digital wordlength, it is important to limit the numbers of bits in the 

various digital processing elements of the modulator. This requires an error analysis at each 

point in the system to assure that the system implementation does not degrade the 

modulator performance. The representation of /3 in 26 bits seems to be the first practical 

solution: p represented in 10 bits, ye(n)y2(n 1) is represented in 16 bits, hence the 

whole product could be represented in 26 bits. 

In order to determine the minimum number of bits that should be represented in without 

degrading the performance of the modulator we should analyze its internal representation: 

Mantissa 

0 

Binary 
point 

Figure 16: Finite arithmetic fractional wordlength 

Case 1: If the mantissa is represented in 7 bits (Bi, = 8 bits), the best we can achieve for 

the accuracy of is 0.99218750. 

Case 2: If the mantissa is represented in 10 bits (Bp =11 bits), the best we can achieve 

for the accuracy of /3 is 0.999023437. 

Table I shows the sensitivity of the modulator performance to the pole estimate /3. The 

relative normalized error of O should be less than 5% for an appropriate SNR 

enhancement. 11 bits are the minimum number of bits that /3 should be represented in, in 

order to enhance the SNR performance of the modulator. In a typical example, simulation 

results proved that if /3 is represented in 11 bits, the round-off errors will cause poor 

estimation for the analog non-ideal coefficients. Where as, if /3 is represented in 16 bits, 
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the update equation used to estimate /3 converges to 0.9990844. when the analog filter 

coefficients are = 0.9990, a = 1.01. 

0 1 1 1 1 1 1 1 1 1 1 0 

Binary point 

As mentioned in section 2.2, the range of the pole estimate is 0.9990 _s-13 0.9999 then 

the number of bits required for representing /3 is in the range 11 _s-tiof hits 18. This 

condition must be relaxed depending on the number of bits in the Multi-bit quantizer to 

reduce the introduced roundoff error. 

If instead of storing values of we'll store values of 1- during the updating of the 

parameters less bits will be needed to store these values and therefore a considerable 

hardware simplification can be achieved. 

The LMS algorithm (3.10)-(3.11) requires multiplication of y, by y, and y2. If 8-bit 

quantizer is used, an 8-bit multiply/accumulate is required to perform the update. To 

eliminate the multiplication involved in the adaptive algorithm a sign-data multiplier is 

used. Based on this, the update equations for /3 and a will become 

13k,i = Ilpy,(k)sign(Y2(k 1)) (3.16) 

CX k = eckpje(k)sign(y1(k 1)) (3.17) 
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Number of Number of Number of 

SNR Iteration Addition/ Multiplication 
13' aMethod Subtraction 

Adaptive 

Sign-Data 0.9990625 1.015625 87.5 5420 5420 None 

LMS 

Adaptive- 0.9990844 1.015625 87.5 5400 54(X) 5400 

LMS 

No 1.0000000 1.000000 74.8 

Correction 

Table V: SNR performance and the number of operations involved in the 
new adaptive schemes. 

The simulated SNR obtained using the sign-data is also plotted in Figure 17. Throughout 

the simulation, the iteration step sizes /..tp and /la are of power 2 as 2-N to replace the 

multiplication between ye and the iteration step sizes to only a shift operation(i.e. at each 

iteration shift the result of y2(k) by N bits). Table V compares the sign-data results with 

the exact LMS algorithm with multipliers to the LMS algorithm. Both methods converged 

after approximately 5400 iterations. Using the Sign-Data method the number of operations 

is reduced drastically, without much reduction in the accuracy. Figure 18 shows the block 

diagram of the Sign-Data algorithm. Further hardware simplification can be achieved by 

performing post-decimation, reducing the data rate prior to the correction scheme. No high 

speed computation will be needed. 
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120 9 Ideal Correction 

100 Adaptive Correction
40 Sign-Data Adaptive

z
80. 

0 No Correction 

60. 

4 1 V 1

0 2 4 6 8 10 12 14 1

Quantizer Wordlengih 

Figure 17: SNR plot vs. Quantizer bits of first-order Leslie-Singh modulator,

-10 dB input, OSR =64, 13 = 0 9 9 9 0, a=1.01 .

Sign Control 

Figure 18: Block diagram of the digital adaptive counterpart for the op-amp 

gain coefficient if; . 
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4 APPLICATION OF THE ADAPTIVE ALGORITHM TO 

THE MASH MODULATORS 

In this section, Application of the LMS algorithm to the MASH modulator is presented. Its 

applicability is discussed. 

4.1 Adaptive MASH Modulator 

The overall output of the MASH modulator, shown in Figure 9, in function of the first and 

second stage outputs can be written as 

Ye = z -'11, +(1+(1f3 +A(i32 1)z-2)}72 (4.1) 

Similar to the previous approach described in chapter 3, we use the 1,MS algorithm to 

estimate the values of the poles. The adaptive algorithm used to update /3, and /32 using the 

LMS method can be derived using the same procedure described in section 3.1. The 

gradient estimates Pa, and Pat are determined by differentiating y,2 with respect to /3, and 

132 , respectively. 

A A 

= 1)Z-2142 Z-1172 SI k+1 = Plk AYe(k)1(2, 1)y,(k 2) Y2(k 1)] 
5161 

(4.2) 

= [3,,z-2Y2 ziY2 02k+1 = #2k µa:Je(k)l/3I,.,Y2(n 2) y2(k 1)1 

(4.3) 

4.2 System Analysis and Simulation Results 

Equations (4.2) and (4.3) were used to perform adaptation on the system shown in Figure 

9 with step-size parameters set to poi= 0.0001, pp, = 0.0001, 131 and /32 set to 0.999. The 
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multi-bit quantizer used in the second stage of the modulator is a 12-bit quantizer, the input 

is a -10 dB sine wave and the Over-Sampling Ratio is 64. Table VI shows the value to 

which )3, and /32 converged, the correction residue of /3, achieved. defined as , and 
1 13 

the signal to noise ratio performance. 

. , 

Correction SNR Comments4/ and 42 
residue 

correction of 
4/ =0.9990 0.00% 131.82 

13, & 42
42=0.9990 

4/.1.0000 100% 75.20 No correction 

42=1.0000 

Simulation 
4, =0.9990262 2.62% 105.19 

Results 

/32=0.9984062 

Table VI: SNR performance of the second order MASH modulator. 

The degradation in the SNR performance of a second order MASH modulator if no 

correction is performed on the op-amp gain coefficients, /3, and 02, is around 55 dB. If the 

adaptive scheme described in equations 4.2-4.3 was used 30 dB from the SNR 

degradation were recovered. 

The LMS algorithm given by eqs. 4.5-4.6 requires the multiplication of ye by 

[(/32, 1)y2(k 2) y2(k 1)] and [131,,,y2(k 2) y2(k 1)1. To reduce these 
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multiplications the update equation for 4, and /32 can be simplified by using sign-data 

multiplication. 

=/3 //,3,Ye(k)SignRi32, 1)Y2(k 2) y2(k 1)1 (4.4) 

42k#, = 132k 11p, Ye (k)Sign[4, y2(k 2) Y2 (k 1)1 (4.5) 

Further simplification can be done on the update equation of /3, by approximating the sign 

of 02, 1)y2(k 2) y2(k 1)] to the sign of [ y2(k 1)1. Simulation results proved 

that such approximation is valid and the update equation represented in eq. 4.4 is equivalent 

to 

+ ye (k)Sign[Y2(k 1)] (4.6) 

The simulated SNR obtained using eqs. 4.5-4.6, using different quantizer wordlength in 

the second stage of the MASH modulator, and representing /3, and fi2 in 16 bits is plotted 

in Figure 19. "The saturation regions" in the adaptive correction and sign data correction 

graphs, when the quantizer wordlength is larger than 8, are due to the roundoff error 

introduced by representing the pole estimates in 16 bits. The SNR performance graphs of 

the adaptive and sign-data correction could easily follow the ideal correction graph by 

increasing the number of bits used to represent the pole estimates. 

Further hardware simplification is achieved by choosing the gain constants pm and Atp, as 

power of 2 to reduce multiplication to a shift operation, performing decimation prior to the 

correction scheme will avoid the need for high speed multipliers. 
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140 

Ideal Correction 
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120 

110 
Adaptive Correction 

a 
100 

x B Sign-Data Correction 
cop 90 

80 No Correction 

70 

60 
0 2 4 6 8 10 12 14 

Quantizer WordLength 

Figure 19: SNR plot vs. Quantizer bits of second-order cascade modulator, 

-10 dB input, OSR =64, 13,=0.9990, and P,=0 9990. 

Table VII shows the effect of correction and no correction in the op-amp gain coefficient 

P2. Between the simulation results and the total correction of /32 there is only a 1.5 dB 

degradation in the SNR performance of the MASH modulator. 
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SNR Comments/3, and /32 

4,=0.9990262 105.19 Simulation Results 

42=0.9984062 

4, =0.9990262 106.86 Correction of 42 

/32 = 0.9990000 

4,=0.9990262 102.77 No Correction of 42 

42=1.0000000 

Table VII: Effect of correction of /32 on the SNR performance of the MASH 
modulator 

The major degradation in the SNR performance of the two-stage MASH modulator is due 

to the error in the pole estimate 41. A major improvements results can be obtained if a 

third-order MASH modulator, realized as a cascade of a second -order and a first-order 

stage is used. It has been shown that a mismatch between the analog and digital transfer 

functions causes only first and second-order filtered quantization noise to appear in the 

output [17] [18]. Hence, the matching accuracy need not to be so extreme. 
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5 CONCLUSIONS AND FUTURE RESEARCH

Oversampled data converters use digital processing extensively taking advantage of the 

high operating speed offered by VLSI technology while being insensitive to the imprecise 

analog components. Certain topologies, such as Cascade and dual-quantization modulators, 

suffers from a severe degradation in terms of SNR performance due to these non-ideality. 

An adaptive algorithm was proposed to enhance the performance of the Leslie-Singh 

modulator in the presence of nonideal analog components. The resulting modulator has a 

significantly higher signal-to-noise ratio. A simplified digital adaptive correction scheme 

was presented which required no multiplication. In a typical example, the SNR 

improvement may be about 18 dB for an op-amp with a 60 dB gain. 

The self-calibrating method was applied to a second-order MASH modulators. In a typical 

example, the SNR improvement was about 30 dB for op-amp gains with 60 dB gains. 

Although, in general, the correction procedure is quite straightforward, nevertheless, it 

present serious computational difficulties, especially when the filter contains a large number 

of parameters to be estimated and when the input data rate is high. An alternative procedure 

is to use decimation technique prior to the update algorithm to prevent high speed 

operations. 

One of the important areas for future investigation is the implementation of the described 

self-calibration and correction method for the nonidealities of the analog components. 

Alternative adaptive techniques based on non-recursive algorithms have also been 

successfully used and will be described in a forthcoming publication. 
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APPENDIX : THEORETICAL ERROR ANALYSIS 

Convergence of the Least-Mean-Square (LMS) method 

As with all adaptive algorithm, a primary concern with the LMS algorithm is its 

convergence to the optimum solution. 

Figure 20: Digital adaptive block in Leslie-Singh modulator. 

The adaptive process that we used is the LMS algorithm w4lhich involves minimizing the 

mean-Square Error, MSE = E(y,2 ). 

The overall output signal of Leslie-Singh modulator, shown in Figure 20, can be expressed 

in the z-domain as follow 

Ye = (/ + (/ /3)z-')Y1 (1 13z-')E1 + (1 ijz-1)E2 
(A.1) 

=[(1 + z-1)Y + E2] )6[z-IY + 2'1 E2 I 

We now determine the mean-square error, and express it in terms of (A.1) 
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MSE = E(y ) 

= Egyi(n)+ yi(n 1) el(n)]2)+ 13Egyi(n 1) e 1(n 1)12 ) (A.2) 

213Egy1(n)+ yi(n I) ei(n)]*[yi(n 1) e 1(n 1)1) 

The LMS algorithm like many useful adaptive processes that cause the parameters to seek 

the minimum of the performance surface uses gradient methods. The gradient V can be 

obtained by differentiating (A.2) to obtain 

&ISE = 2,6E([yi(n 1) e1(n 1))2)-2Egyi(n)+ y,(n 1) e,(n)Viy ,(n 1) e (n 1)]) 
813 

To obtain the minimum mean-square error, the parameter is set at its optimum value of 

where the gradient is zero: 

SMSE : Ea.), l(n) + yi(n 1) e 1(n)1*1 y1(n 1) e,(n 1)1)=0 pitmum
80 Egyl(n 1) e 1( n /)J2) 

(A.3) 

Estimate of se 0 
The output signal of the first stage in Leslie-Singh modulator, shown in Figure 5, can be 

expressed in the z- domain as follows 

Y, = U'+ 1 
E c4, Y, = U' El (A.4)

1 + (1 1 +(1 1317:-' 

Equation (A.4) can be expressed as 

=U' 1 
E, such that b = (1,6)«1 (A.5)

z+ b 

Note that 
1 

---- 1 E 
2

E
1

+62 E hence : 
1z + b z z 

3 
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yi(n) = u/(n) + el(n) ei(n 1) + bel(n 2) b2el(n 3)+ (A.6) 

Substituting the above expression of the output signal of the first-stage in Leslie-Singh 

modulator in equation (A.3) 

E([u'(n) + bel(n 2) b2ei(n 1) el( 2) + 

.bei(n 3) b2ei(n 4)+....]*[V(n 1) e I( n 2) + bei(n 3)....]) 
E([u'(n I) ei(n 2) + be l(n 3)....12) 

(A.7) 

let e'(n) = n 2) + bei(n 3) b2e1(n-4)+ , then equation (A.9) is expressed as 

E[(u'(n) + u'(n 1))(u'(n 1))] + E[(2u'(n 1) + u'(n))(e '(n))1 + 0E1 e '(n)124^ 

P Optimums = E[u/( n 1)2 ] + 2 E[u'(n 1)0n)] + El e '0012 

(A.8) 

U' is a mildly shaped version of U that can be expressed as 

b2 
=

1 U b
+ U

z + b z z2 z3

U' +z'U'= 1 p 
(A.9) 

z z z 

u'(n) + 1) = u(n 1) + I3(u(n 2) bu(n 3) +.... ) 

= u(n I) + fs3u'(n I) 

Substituting the above equation into (A.8) yields 

PE[(u'(n 1)2] + E[u(n 1)14/(n I)] + E[(2(u(n 1) + 1)) u/(n))e/(n)] + SE[c 
POptinuon E[111(n 1)2] + 2 E[U1(11 1)e( n)] + Eie/(n)12 

(A.10)
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E[u(n 1)(u(n 2) bu(n 3) +...] + E[(u(n 1) + bu(n 2) b2u(n 3)+...)e'(n)] 
Optimum = E[u'(n 1) + e'(n)12 

(A.11) 

0^ /3 = 0 if u is white, and uncorrelated with e. 

If the adaptive algorithm is performed in the off-line mode the should converges 

exactly to f3. However, in developing the LMS algorithm we used ye itself as an estimate 

of MSE = E(y). Then at each iteration in the adaptive process, we have a gradient 

estimate V. 

,2 8 
V= 4- = 2y, (A.12) 

Gradient Estimation and its Effect on Adaptation 

We now examine the effect of "noisy" gradient estimation on the parameter /3 during the 

adaptation process. It has been shown that the adaptation based on noisy gradient estimates 

results in noise in the parameter /3 and therefore a loss in performance I B. Widrow 1970]. 

Let us define Nk as the noise in the gradient estimate at the Kth iteration. Thus: 

= Vk+Nk (A.13) 

If we assume that the LMS process, using a small step size p , has converged to a steady-

state parameter solution near )3 then V k will be close to zero. then : 

Nk = 'k = (Oh( n 1) (A.14) 
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Thus, due to the noisy estimate of E(ye2) , the experimental optimum solutions are seen to 

be somewhat different from the theoretical solutions. Such a result is typical with the LMS 

algorithm. 


