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Nonlinear Free Boundary Problems Arising From Melting

Processes

1. Introduction

In describing change of phase processes (for example,

evaporation, freezing, melting, dissolution, etc.), one is

frequently faced with a boundary value problem for the

heat equation in a domain whose boundary is unknown but

which must be determined together with the solution of the

differential equations. These phase changes are assumed

to take place at some specified temperature and pressure.

Such problems are often referred to as Stefan problems.

In this thesis, we shall consider a Stefan problem

for parabolic equations in two spatial dimensions and in

time. We shall be given an initial condition and an

additional condition on the free boundary; namely, the

equation for the conservation of energy. We shall think

of one phase as occupying a given domain in the xy-plane

at the time t>O with a prescribed initial temperature at

time zero and a prescribed flux on the boundary of the

domain. We need to determine the temperature of the

domain and the location of the free boundary at time t,

that is, we shall find the temperature of this phase and

the location of the interface between the two phases. The

typical problem involves the melting of ice and for

simplicity we shall think of that problem in the
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discussion below. In the melting of ice the interface

moves relatively slowly so we can solve the equations on a

fixed rectangular grid using finite difference

approximations. To track the melting front along grid

1 ines, we will use spline interpolation between grid

points. The melting front moves in the direction of the

normal to the boundary and depends on the flux condition

on the boundary which is occupied at time t. The melting-

point of ice means the temperature at which ice is in

equilibrium with the adjacent water under the existing

pressure. It varies with the pressure and with the purity

of the water, both of which are neglected here. The

melting temperature differs from point to point, so some

portions of a mass of ice melt at a temperature slightly

under OC, while others require a temperature slightly

over OC to liquefy them. The consequence is that such a

mass will have some of its parts solid and some of its

parts liquid. Thus, it is possible that there will not be

a sharp boundary between the liquid and the solid phases,

but rather a small region where the phases

coexist (see Fig. 1.1).

In our case, if we drop hot water onto a single block

of ice, then it melts and breaks up into several small ice

islands. At that time the ice and water interface
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(melting front) will not move until all the ice islands

have been completely converted into water. There will be

a waiting time before melting front moves. We call that

stage a "mushy region". In the mushy region, we need to

refine our time steps and the mesh points if it is

necessary. Physically, the mushy region is a thin region

and we shall assume that the ice/water front is sharp so

that it is determined locally by a function.

The governing equations of the physical situation are

derived in section 2.1 and a complete statement of the

problem is given in section 2.2. The literature survey is

done in section 2.3.

In the third chapter, we will prove existence and

uniqueness theorems for weak solution and discuss

variational inequalities. As part of the proof of the

existence of a weak solution, we will find some a priori

properties of the difference approximation which we will

need later in our convergence proofs in Chapter 4.

The fourth chapter deals with a numerical method. A

finite difference algorithm is used to get the numerical

solution of the temperature of the domain at time t and

the normal derivative by a difference quotient is used to

find the free boundary. Also, we will give convergence

proofs of the difference schemes.
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Finally, in Chapter 5, we will solve an example using

a numerical procedure which is discussed in Chapter 4 and

present the results of the location of the front.



*

I

Figure 1.1. Possible Development of a Mushy Region

The Dotted Region is Liquid

The Shaded Region is Solid

5



2. Physical Description

2.1. Statement of the Physical Problem

The phenomenon of melting is very important in

industrial processes such as the casting of metals in

foundries , arc welding and the melting of ice.

We shall consider a thin block of ice occupying a

domain -oo < x < :2 and -oo < y < oo, and drop hot water

onto the ice. As the ice starts to melt, the boundary

between the water and ice moves. Let us focus our

attention on a domain which is occupied by the water and

the interface between the water and ice.

The density and pressure of both phases, liquid and

solid, are assumed to be the same in the neighborhood of

the interface and the liquid remains stationary so that

heat is transferred through it only by conduction. We

assume that the temperature distribution of the hot water

depends on space variables and the temperature

distribution of the ice is everywhere OC and no internal

pressures build up. So we shall deal with the one-phase

Stef an problem. The ice will begin to melt and for every

time t > 0 water will occupy a certain domain. When a

body of ice having the shape Fig. 2.1 keeps growing, the

interface AB and CD may coincide. Then in the next moment

6
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the whole joint boundary will disappear and we will have

an ice island. So the free boundary varies in a

discontinuous manner and the mushy region starts. This

process will continue until the total energy available to

the system goes to zero. This energy depends upon the

temperature. Our problem is to find the temperature of

the domain and the free boundary at any time t > 0.

Another problem, which is of great importance in soil

science, involves the study of water invading a dry

medium. We shall think of a homogeneous, dry, porous

medium which is assumed to consist of a large soil slab so

that physical properties are determined by two variables.

As time passes, the incompressible liquid, in this case,

water, will flow toward areas of lower pressure. The

unknown boundary, which is called the free boundary, is

the wetting front. Let us suppose that the initial

distribution of the moisture is known as a function of the

space variables. For time t > 0, the free boundary is

determined by the water flux that is a prescribed function

of time. The problem is to find the moisture distribution

and the location of the wetting front at any later time

t>0.



Figure 2.1. A body of Ice
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2.2. Statement of the Problem

In the previous section the problem we discussed a

change of phase problem in two spatial variables, x and y,

and time t. If we think of this problem as the melting

ice problem and denote the water temperature which depends

on x
,
y and t by u, then this problem can be formulated

as follows.

Problem j. Find a function u=u(x,y,t) and a domain

= U Grx{r} with boundary O, the free boundary,
0<T<t

such that

ut=au 1t' t>0 (2.1)

u(x, y, 0) = x,y) on G0, t = 0 (2.2)

u(x,y,t)=f(x, y, t) = 0 on t (2.3)

+ vVf =0 on Oc, t (2.4)

where a is thermal diffusivity. Without any real loss of

generality we will take a=1. Gt will denote a bounded

domain at time t > 0 in two dimensional Euclidean space,

1R2, denotes its closure and OGt its free boundary.

v is the velocity at the position (x,y) at the time t.

The operator is called the Laplace operator (i.e.

9

Ox Oy
0

- 'Ox 'Oy
is the gradient operator and Ut

is the partial derivative of u with respect to t. In

general, partial derivatives with respect to the time and

spatial variables will be denoted by subscripts. Finally,

f and are assumed to be given functions.



2.3. Literature Survey

There have been many developments in the theory and

applications of free boundary value problems. The

historical development is summarized in L. I. Rubinstein

[43] and I. I. Kolodner [33]. Important developments in

the study of the free boundary problems have been achieved

using by a variational approach which seeks the solution

in some "weak" sense. Variational approaches of free

boundary value problems are to be found in C. M. Elliott

and J. R. Ockendon (1982), A. Friedman (1982),

D. Kinderlehrer and G. Stampacchia (1980), D. G. Wilson

and Solomon and P. T. Boggs (1977), and J. R. Ockendon and

W. R. Hodgkins (1975). Because of the large literature,

we will discuss only those papers related to our work.

The method mentioned in this thesis is based on the theory

introduced by S. Kamin [29] and further developed by

A. Friedman [20] for several dimensional Stefan problems.

In [21] , Friedman considered the case when the

temperature at the boundary is prescribed and water is

present at the beginning. His method was a modification

of the method of successive approximations. Lazaridis

[37] developed a numerical technique with which to treat

heat-transfer problems involving a change of phase for the

multidimensional problem. But he did not give any proofs

10
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for existence and uniqueness and only calculated the

location of the interface. In [47] , Peckover and Turland

considered a wide rectangular block of a solid which is

heated on its top horizontal surface and cooled on its

horizontal bottom surface. The local stability of the

horizontal interface plane (melting front) is studied when

the front between the solid phase and the liquid phase is

stationary. They considered both semi-infinite media and

layers of finite depth.

In [38], G. H. Meyer used an enthalpy transformation

for some multidimensional problems and absorption of the

phase transition process into the diffusion equation. If

this transformation is not applicable, he used a locally

one-dimensional Gauss-Seidel type front tracking method

coupled with invariant imbedding.

In concluding this survey, we mention the work of

Fasano and Primicerio in [12] - [16] . They gave a

detailed discussion for change of phase processes in one

spatial dimension with the aim of giving an outline of the

main features of the mathematical problems related to such

phenomena. Moreover, they gave an example and proved the

well-posedness of the problem in the classical sense and

obtained a better understanding of the typical behaviour

of systems with non-uniform melting temperatures.



3. Mathematical Background

3.1 Reduction of the classical problem to a generalized one

Let Gt be a bounded domain in 1R2 , whose boundary

consists of the surface oGt. For any t, 0 < t

let.t = U Grx{r}.
O<r<t

If the ice phase is known to be at temperature OC (or

very nearly so) , then we can assume the temperature of

the ice to be 0 and u(x,y,t) to be the temperature of the

water. This resulting problem is called the one-phase

Stefan problem, which we formulated in the previous

section as follows.

Consider the following system of equations for U:

Ut = uxx + Uyy for (x, y) E 0 < t < T (3.1)

u(x, y, 0) = (x, y) for (x, y)E G0, t = 0 (3.2)

u(x,y,t)=f(x, y, t) = 0 - on ô, t (3.3)

ft+v.Vf=0 onOf, t0 (3.4)

where v is the velocity at the position (x,y) at the time

t, and f(x,y,t) is a C' function in such that

OG{(x,y,t)EIf(x,y,t)=O}, Vf(x,y,t) 0 on oG,

u(x,y,t) > 0 on is closure of cli. The function

is the initial data for u(x,y,t) and

t= U OGt,O<T<oo,
0<t<T

12

is the "free boundary"
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u - ur) dx dy dr
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The classical , one-phase Stefan problem consists in

determining a solution of (3.1) - (3.4).

Definition. A bounded, measurable function, u, in

called a generalized solution of (3.1)(3.4) if

'Gr

(u + u )dx dy dr +

+ f e(x,y,O)u(x,y,O)dx dy = 0 (3.5)

G0

holds for any function E C( ). By C(ç) we denote

the class of functions, , which are infinitely often

differentiable on and which vanish in a neighborhood of

the boundary of E. Such functions are said to have

compact support.

Theorem 1. A classical solution of (3.1)(3.4) in is

also a generalized solution of (3.1)(3.4) in

Proof. Let us assume u is a classical solution of

(3.1)(3.4). We multiply both sides of (3.1) by , move

the left hand side of (3.1) to right hand side in equation

(3.1), and integrate over U Grx{r}. Upon applying the
O<r<T

Gauss divergence theorem and using the fact that u = 0 on

ôGr, we get after integrating by parts,



(ut + u 'T )dx dy dr +

+1 (x,y,O)u(x,y,O)dx dy =0.
G0

Here ii is the exterior unit normal to OGT. This equation

implies the assertion.

Theorem 2. Suppose uEC2"(c) is a generalized solution of

(3.1)(3.4) in Assume that there exist a

continuously differentiable function, 4 in satisfying

r(t) = {(x, y, t) edt (x, y, t) =0 }, V on

and > 0 in

Assume that u, V u are continuous in U Gx{T} and
0<r<T

are continuous in UGrx{r}.
0 <T <T

classical solution of (3.1)(3.4).

Then u is a

14

=': 'Gr
[{div( Vu) VVu} UT } dx dy dr

1T1 [{div(u V) u }+ uJ dxdydr
0 G

Next an application of the Reynolds' transport theorem

yields (see [26] Chapter 1)

dx dy dr

T

J
r=T

- u(x,y,r)dx dy
I

+ u T dx dy dr

GT
r=0 '0 'G
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Proof. Let u be a weak solution satisfying the assumption

of theorem 2. Taking in equation (3.5) with compact

support in the neighborhood of a point (x,y,$),

where (x,y,$) Ef(s), in other words, =O on F(t) and

x,y,T)=O, we have

01T
(u + u )dx dy dr +

0 Gr

+1 e(x,y,O)u(x,y,o)dx dy
G0

'O'Gr
(u + u -) dx dy dr +

+1 e(x,y,O)u(x,y,O)dx dy_f (x,y,T)u(x,y,T)dx
G0 G0

fTf
u dx dy dr+ff u rdx dy dr

0 Gr 0 G

-[f (x,y,T)u(x,y,T)dx dy_f (x,y,O)u(x,y,O)dx dy]

G0 G0

fTJ
u dx dy dr+ff u dx dy dr

0 G,. 0 Gr

T

_fGTu (x,y,r)(x,y,r) dx dyIT

J J uLdxdydr_fJ
0 G 0 Gr

1T1 [div(uVe) - Vu . V] dx dy dr_fl urdx dy
0 G 0 Gr
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(Vu V +UT) dx dy dr +JTJ div(Vu)dx dy dr
0 G 0 G

1T1 [div(Vu) Vu V - UT
]
dx dy dr

0 G

1T1
(

u - ur) dx dy dr.

0 Gr

We conclude that

1T1 - U) dx dy dr = 0 for arbitrary ,

0 G

whence, Lu = Ut.

This is local, so choose C(). Then all boundary

terms vanish. So f(x,y,t) = 0 on and we have Ut = Lu in

ct.

Since u(x,y,t) = 0 = f(x,y,t) °" t 0. Taking

derivative with respect to t, we get = 0 and Vf = 0 on

Hence,

+ Vu Vf = 0 on

and we see that equation (3.4) holds.



3.2 Existence and uniqueness theorems.

Let x = y = h, t = k. We cover the region

{(x,y) E R2, 0 < T} by a rectangular network by means

of lines tn = nk, x = ih, y = jh where i, j run through

all the integer and n is an integer lying in the interval

[0, ] . The lattice points of the net have coordinates

that are multiples of h and we take T to be a multiple of

k. Then

Rt(h) = { (x,y) E2 (x,y) = (ih,jh), i, j: integers)

denotes the rectangular network of mesh points.

Let

T(h) = Rt(h) fl .

If (x,y) Rt(h), the points (x,y)±he1± he2 will be called

the neighbors of (x,y), where e1 = (1, 0) and e2 = (0, 1).

The set of points in (h) which have at least one

neighbor lying outside (h), that is the boundary of

Gt(h), will be denoted by 8Gt(h). Set Gt(h)Gt(h)_oGt(h).

Now let t = nk and define the sets

t(h) = Gt(h) x {t=tl n =1, . . ,N},

St(h) oGt(h) x { ttnl fl 1, . ,N},

17

and

h) = t(h) U St(h) U {(h) x (t = 0)).

where N will be a fixed integer and k =
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We replace the problem (3.1) - (3.4) by a difference

scheme. To do that, we define the difference operators.

D U(x,y,t)
U(x+h,y,t) - U(x,y,t) - D

h

U(x,y,t) - U(x-h,y,t)
D U(x,y,t)

h

D U(x,y,t)
U(x,y+h,t) U(x,y,t),

U(x,y,t) - U(x,y-h,t)
D U(x,y,t)

h

DU(x,y,t) U(x,y,t+k) U(x,y,t)

D D U(x,y,t)
U(x+h,y,t) - 2 U(x,y,t) + U(x-h,y,t)

h2

D D U(x,y,t)
U(x,y+h,t) - 2 U(x,y,t) + U(x,y-h,t)

h2

U(x+h,y,t) =

We now seek a function, U(x,y,t), defined on

satisfying

Dt a(U(x,y,t)) = D D U(x,y,t) + D D U(x,y,t)

for (x,y,t)E Qt(h) (3.6)

U(x,y,t) = (x,y,t)=O, (x,y,t) E St(h) (3.7)

U(x,y,O) = (x,y), (x,y) E G0(h) (3.8)
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where we take U(x,y,O) to be zero for (x,y) E 0G0(h) and

set x,y) equal to zero for (x,y) E 8G0(h) when we deal

with the difference equations. In general, a(U(x,y,t)) is

a function of U(x,y,t) , in our case, a(U(x,y,t)) is equal

to U(x,y,t).

From now on we assume that h has been chosen to be

very small and certainly less than or equal to the

diameter dt of Gt so that Gt(h) is not empty. If A is the

number of mesh points in Gt(h), (3.6) represents a

nonlinear system of equations in A unknowns for each t

We shall be dealing with functions which vanish on oG(h)

or with the product of such a function and another

function defined on (h). It will be convenient to think

of these functions as being defined on all of Rt(h) by

simply assigning them the value zero in Rt(h) - Gt(h).

Lemma 1. At every mesh point lying in c1(h), there exists

a solution to equation (3.6) where ii and i

depends on

C0 = max
(x,y)EG0 1q5(x,y)I,kb(x,y,t)I} and a(u), but

(x,y,t)ESt(h)

is independent of h, k, x, y, and tn.

In this case, IUjI <Ch {1(x,y)
I I(x,y,t) }

(x,y,t)ES(h)

where (x,y,t) is a continuous function which will take on

the value 1'(x,y,t) over St(h) and has 3 continuous

derivatives in C



Remark. It is clear that Ch - C0 as h - 0. Let us

consider h to be so small that Ch < C0 + 1 is true.

Proof. Let us prove lemma 1 using mathematical induction.

We assume lemma 1 is true for tn and prove that it is also

true for t1. Rewrite equation (3.6). Then

a(U) _a(U?,) i+1,j
Un 2 U'

.

k - h2

+
2 u'? . +u _1,._J 1,J (3.9)

h2

Multiply both sides of equation (3.9) by k and add a(U?)

to obtain

a(U) a(U?,) + +U1,j +U,j1

+U?,_1 - 4 Uj) gj (3.10)

n+1 = Ia(Uj)I

< a(C +1) + Ch

That is,

- 1,3

If p is sufficiently small and < then

a(00-1) _8Ch 1>a(CO2) and

20



a( C0 + 1) + 8 Ch j < a(Co + 2).

Therefore, a(00 2) < < a(C+2).

Consequently, a(U) - has a solution and

IU?-I < C0 + 2. In this case depends on C0 and a(U)

where U = C0+1, C0+2, (C0+1), (C0+2).

Now let us prove < Ch for sufficiently small j. We

prove the contrapositive. Assume, to obtain a

contradiction, that we have found (x1, for which

> Ch is true.

Since a(U) _a(U) (C +2)U' - U .) (see [29]),1,3 1,31,3

ii(C0 +2)(U?1 - U'? .)< kfUn1,3 - j i+1,j

+U'?,..j+i + U,_1 4

Moreover,

ri(C0 +2)U < k(un +U'j'_1,ji,3 - j:- i+1,j

+U?,+i + U,j_1 )

4k(C0 +2) - (3.11)1,3

21

Choose >0 such that
(C0 +2)(1 -) (C0+2)

. (3.12)



kh2 1J 1J )2 < K0
k

t (h)

-u . u" -u''
k h2

1+1 1 J )2 + k.h2
,j+1 i J )2

hh
t(h) t(h)

< K, (3.14)

where in the summation is taken over values of the

t (h)

22

Substituting equation (3.12) into (3.11) and using the

induction assumption, we get

i1(C0 +2)U? < ij(C +2) Ch.

Therefore,

< Ch

because of i1(C0 +2) >0.

This is a contradiction, so

< Ci,j - h'

and the proof of the lemma is complete. An immediate

consequence of the proof is

Corollary 1. At every mesh point of

Un
I j,jI :

C0 + 1.

Lemma 2. For < u, the following estimates hold:

(3.13)



1n-i-i
n "i,j
71,j - k
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such that at least one of the mesh points (x1,y),

and (x1,Y+i) lies in t(h). K0 and K1 are

constants independent of h and k.

Proof. Let (0<x<x0; O<y<y0; O<t<T) denote the interior

mesh points and let = M1 = M2, where M1, M2 are

integers. Assume 7(x,y,t) = . We determine mesh points

belonging to cl(h) = as a function as follows. On

St(h), set

where n N-i and = -y(ih,jh,Nk)

n n
.7i,j+i --Yi,j

h i

K2 (0 n N, j =0, M2 i) (3.17)

(i = 0, ,M1, j = 0, .. , M2). Inside we will

set = 7(ih,jh,nk). The following estimates are

justified making use of the fact that 7(x,y,t) is twice

continuously differentiable with respect to x, y, and t.

n n-i
7jj 7i,j 7(ih,jh,nk) -y(ih,jh,(n-i)k),

<1<2k - k

(1 -1, 1 < j < M2 -1,1 < n < N) (3.15)

Similarly,

n n
7i+i,j _7i,ji

h
K2 (0 N, 0, i M1 -1) (3.16)



7i+i,j _2'v?, +

h2 IK2
(0 <n <N, 1 < i < M1 1) (3.18)

n
7i,j+1 _27?,J +7?,J_i1

< K2 (0 < n <N, 1< j <M2 1)(3.19)
h2

where K2 is a positive constant.

Multiply both sides of equation (3.9) by

-
h2k (

i,j
k

M1 -1
h2k

1=1

M1-i
- h2k

i=1

M1-i
- h2k

1=1

M2-i

j=i

Using the fact that

n
7i ,J

and sum over i, j,
to M1i, from 1 to M2i, and from 0 to Ni, respectively,

we obtain

N-i a(U) - a(U?,) U' - Ui,j i,j
k

n=O

n+i
- a(U?,)M21 N-i a(U1)
k (?,)

j=1 n=0

M2-i N-i Un1 -("a ii
k

j=i n=0

n
7i ,j

and n from 1

U . - 2 U" + U
. +

U?,+1 2 u'? . +u" ._i+i,j 1J 1_iJ 1,3 1,3
h2 h2

S1 + S2 + S3 + S4 = 0 (3.20)

24

a(U) - a(V)v > ij(C) where
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C=max{IUI IVI} and IU?,ICo+ 1, the first summation in

the expression will be estimated by

M1-i
S1 = h2k

i=1

M1 -1

i(C +1)(h2k) E
i=i

M2-1 N-i U'1 -a( - a(U?) i,j i,j
k k

j=l n=0

M2-1 N-i Un1 - -iJ 1,J 1,3 i,j
k k

j=1 n=0

M1-i M2-1 N-i -
= ij(C0 +1)(h2k)

[

1,3 12.
k

i=i j=l n=0
(3.21)

For the 2nd sum in equation (3.20), we sum by parts

and get

M1-i M2-i N-i n+1

S2 = - h2k
a(Uj,j) - a(U?,) (fl

)k 1,3
i=i j=1 n=0

= h2k
M1-1 M2-1 N-i Un+i +a(

i=1 j=i n=O

M1-i M2-i
- h2 [ a(U'j)( .)1,3i=i j=i

M11 M2-i N-i y'?

= h2k k
1,3

a(U?)i1 j=i n=1

M1-i M2-1
- h2 E [ a(U)( 7N_1)

1,3i=i j=1

Hence, JS2j by equation (3.15).

n+1
7i ,j

- a(U9 )()}.1,3

a(U)

- a(U9 )(?,)]1,3

(3.22)



If we apply summation by parts to S3, we will have

M1-i

S3 = - h2k
j1

M1-i
=h2k

i =0

M2-1 N-i -I(13 -1,3 n
k - 7i,jj=l n=0

_2Urlì+i,j i,j +

h2
J)]

- Un+i _UnM1-2 M2-i N-i U'1
h2k 1+iJ i,j i+i,j i+i,j

h2 k
i=0 j=i n=0

M1-i M2-i N-i - U'
h2k '' 1,3

k
i=i j=i n=0

u" - Uni+iJ i,j
)]

h2

n
7i ,j

- U'1 UI1 U'1M2-i N-i U1 i+i,j
h' k

j=i n=0

M,-i M2-i N-i U' -
- h2k

1,3 i
k=1 j=i n=0

i+i,j i,j
)]h2

n
7i+i ,j

n+iM2-1 N-i - U_1, - UM1,Jh2k
h2 k

j=i n=0

26



M1 -1
=h2k

1=0

M1 -1
S3= h2k

1=0

where n < N 1.
Rewrite (3.23) as

M1 -1

S3 h2k
1=0

M2-1 N-i Un - U'? . -i+1,j 1,3 i+i,j 1+1,j
h2 kj=1 n=0

U"0J - U0,j
k

Hence,

M2-i N-i

j=i n=0

n+1 n

fl
- UM.

7M1,j = k arid

- U'?
n 1,3 1,3 n

k -r

M2-1 N-i U1 rrfl
- k I (U - u,_1 M1,j - n

- k 7M1,jj=i n=0

n 1fl70,j 'Tn0,j

1+1,3 1,3 i+i,j i+i,j
h2 k

- U'?
n 1,3 1,3

7i+i,j i,j k

because of the boundary conditions

n+1 n
U U

n 0,j 0,370,j - 1<

M2-i N-i U" . - U" -i+i,j i,j i+i,j i+i,j
h2 1<j=1 n=0

-i,j i,j
k

-M1-1 M2-i N-i U?+i, 1,3 n n- h2k
h21=0 j=i n=0

27

(3.23)

= S5 + S6, (3.24)



where
M1-i M2-i i 1+i3

h2
S5h2k

i jI n=0

and

M1-i
S5 = h2

1=0

M1-i M2-1 u . -
h v v i+i,j
2 Z_i hi=0 j=i

with S7 =

M2-i N-iV' v' .(VV" .)L_.i 1,j i,j 1,3j=i n=0

M1-i M2-i N-i= 1 [(V'') - (V )2 - (V - v1 )2]i,j i,j i,j i,j1=0 j=i n=0

' ::
ri (V,)2 - 2ri

:
(V)2

M1-i M2-i N-i
(V - V?)

i=0 j=i n=0

12

M1-i M2-i U0 -
E (1+ii

1=0 j=i

0Ui,i )2

-i,j i,j
k

and
u'?.M1-1 M2-i N-i - 1,3S6 = - h2k

h2 , -? ,
1=0 j=i n=0

We simplify S5.

u" -
Let V'.' i+1,j i,j

1,3 h

2

28

S=1 2
M1-1 M2-i N-i -
1=0 j=i n=0

11n n+l Tin\(1+iJ - 'i+i ,j
1 k

I ,j )2 - s7 - s8 (3.25)



M1-i M2-i
Q _1-

M1-i M2-i=E
1=0 j=i

M1-i M2-1

1=0 j=i

M1-i

= k2

1=0

+k2

N-i
(Ur--i U'4) - (U' -

)

2

i=0 j=i n=0
i+i,j 1J i+1,j i,j

N-i
[

(Ur (U -i+l,j i+i,j i,j i,j
n=0

N-i
I (U )2 + (U - Ur )2i+i,j i+i,j i,j i,j

n=O

M2-i N-i - . - Un
i+i,j i+iJ )2

+ (
1.3 ii )2

k kj=l n=0

M1-i M2-i N-i U' - U'
=k2

1,3
k

1,3 )2 +
i=i j=i n=0

M2-i N-i U+i. - UL,j
+ k2 M1,j

k
)2

j=i n=0

M1-1M2-i N-i -
(
1J iJ )2

ki=i j=i n=0

M2-i N 1
+ k2 °' 0 .j )2

j=i n=0

29

Since the initial function a0(x,y) = a(u0(x,y)) is

smooth,

IS.71

We estimate the summation S8.



This implies that

ss=

+k2

M1-i M2-i N-i U"
2k2 >

(1J
i=i j=i n=0

M2-i N-i
E [ 0J - )2

k
j=i n=O

Using t'he smoothness of (P) and the latter two

summations of (3.26) tend to zero as h, k - 0.

In fact,

M2-i N-i
k2 > [ (

OJ -
)2

+
M,j M1,j )2

kj=i nO

M2-i N-i
= h2( k > {

(b(OJ(n+i)k) - t'(O,j,nk) )2 +
h2 j=i n=0

+
(1b(MlJ (n+1)k) - b(M1,j ,nk) )2}

< K5h2.
k

Therefore,
M1-i M2-i N-i U" - U"1,3 1,3 )2

1=1 j=l n=0

M1-iM2--i N-i U' -
K5h2 + 2 k h2ki(C0 + 1) (

13 1i
k- h2i(C0 +1) i=i j=i n=0

2
< K5h2 +

(C + 1)

However,

< , where 3 > 0.
ij(C0 +i) - 2

Hence, we will get

S8 < K5h2 + 2 k2

30

k
i,i \2 +

+
M1,j

k
)2 (3.26)



I

s h2i

hk

Ne,ct,

+ i1-fl)

b2k
M21

10
( 2+1

h 2k
1

'
71)

[(

h2j
1

M

i j1
1

J1

(V0, )J.

Ti Ti

EZ1,j

+ jrL' (UI ,J)]

+
h2

(U1,j) +

'M1, +
(U1 ,J) +

1
1-fr

(UTio,) I.

)(7]2+1 ,j

( u1,j) +

7I

(3. 2



n+1 n(ui3O - u,O
k

The estimates for the y-coordinate are obtained in a

similar manner using i,j+1 i,j equation

(3.17), and equation (3.19). We obtain

s4= S9 + S10

M1-iM2-1 u - uN
= i,j+i iJ )2 s11s12+s10,

h2
1=1 j=0

fl \ (11fl Tin
7i3O i,1 - (3.29)

S6 is

(3.16)

Let

Then

54=-

h2k

- k

uniformly

and equation

us estimate

M1-i
h2k

1=1

M1-1 M2-1

i=1 j=1

-i,j+i

bounded for all h and k by

(3.18). In other words,

S61 K6.

the fourth sum in equation

M2-1 N-i Uh1 -i,j i,j n
7i ,j
n

equations

(3.20).

i,j

j=1 n=0

U n2U .+u.i,j+1 1J 1,J-1
(

h2

N-i U" - UniJ+i iJ)

-

hn=0

u1?+
i,j+1 n n 1,J

M1-1

1=1

k

N-i

n=O

7i,j-fl i,j

iM2 -U?,M2 n

k

- u?,M2_1(U?,M2k 1,M2)



S1(1-3)
1S111 < K7 1S121 K8h2+ 2 , and S101< 1<9.

If we take all the estimates which we have obtained

and substitute them into equation (3.20), we will get

M1-1M2---1 u . -
1+lJ ii )2S1+i[ ( h

i=O j=1

M1-1M2-1 uN -
i,j+1 ii )2

i=1 j=0

1<3+ K4+K7+(K5 +K8)h2 +S1(1/3)+K6+K9

Hence,

M1-1M2-1 uN -
/S1+[E 11'h

iJ)2
1=0 j=1

M1-1M2-1 u' -
+ 1J+l

h
)2]

i=1 j=0

< K3+ K4+ K7+(K5 + K8)h2 + KG-I- K9 K

33

(3.30)

Equation (3.13) will follow from last inequality and

equation (3.21). Let us note equation (3.30) will be

justified for any whole number N1 < N, with the constant 1<

which may be chosen as one for all N1 N.

Therefore,



u"it is given by uh(X,31,t) = i,j

34

M,-1M21 N, uN1 M1-1M2--1 uN1 - u1
h2[E

i+lJ ii)2
( h

i,j+1 lJ )2]

h
i=O j=1 1=1 j=O

K.

If we multiply this inequality by k and sum over N,

from 0 to N, we will get equation (3.14), which completes

the proof of lemma 2.

Theorem 3. Suppose the following conditions hold:

a0(x,y) = a((x,y)) is continuously differentiable on

, (x,y,t) is three times continuously differentiable

on the

at t=0, '(x,y,t) = C, = constant

4(x,y) = C, near the surface

Then, there exists a generalized solution u(x,y,t) E

of equation (3.6) on which satisfies conditions (3.7)

and (3.8).

Remark. In our case, C1 is zero.

Proof. Let us introduce a üh such that within the

parallelepiped,{ih<x<(i+1)h, jh<y<(j+1)h, nk<t<(n+1)k},

uh denotes the function

which is linear over x, y, and t in ih<x<(i-f-1)h;

jhy<(j+1)h; nk<t<(n+1)k and which coincides with U?.

It is clear that uh is continuous and has a first

generalized derivative. From inequalities (3.13), (3.14),

corollary 1, and smoothness of function '(x,y,t)

Uhll1
(at)

< 1<11 holds.
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Let {h1} and {k1} denote subsequences of {h} and {k}
1<

which tend to zero as 1 -+ c. In this case
h,2

<

M1 M2 are integers. From the inequalitywhere s.-, and

above, a subsequence uh* exists with the following

properties:

{uh*} converges weakly in the norm of W(c2)

to a function u(x,y,t) E W(Q).

{uh*} converges strongly to u(x,y,t) in the norm of

L2 (cl)

Hence it follows that the limit function u(x,y,t)

satisfies the boundary conditions in x = 0, x = M1, y= 0,

and y M2 in the sense that

f[u(h,O,t) - (O,O,t)]2 dt 0 as h 0,

f[u(O,h,t) - (0,O,t)]2 dt 0 as h 0,

[u(x0h,y0,t) - (x0,y0,t)]2 dt 0 as h 0,

f[u(x0,yo_ht) - (x0,y0,t)J2 dt 0 as h 0.

The sequence {üh} converges to the limit function

u(x,y,t) in L2(1t). Consequently, there exists a sequence

which converges to u(x,y,t) almost everywhere. There is
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a subsequence of this sequence, denoted again by {üh},

which converges to u(x,y,t) almost everywhere. From the

uniform boundness of the ü , we obtain the uniform
l's

boundness of a(iih) and from this we get the weak

compactness of {a(üh)} L2(). Therefore, there

exists a sequence, {a(üh)}, which converges weakly to a

function b(x,y,t) 6 L2(). We prove that

b(x,y,t) = a(u(x,y,t)). (3.31)

Let be the set of those points of in which

u<u< u11 is true, where u is a constant. Over the

interval (u1,u1+i), a(u) will be continuously

differentiable. Hence, a ( Uh) converges to a(u) almost

everywhere on E1 because {üh} converges to u(x,y,t) almost

everywhere on E1. Therefore, equation (3.31) will be true

almost everywhere on E. We next prove equation (3.31) to

be true for the set which consists of points of in

which u equals to u. We must prove that a(u1 + 0)

b(x,y,t) 2 a(u1 - 0) for D. We prove the contrapositive.

Assume, to obtain a contradiction, we have found an e > 0,

C D1, and meas(F1) > 0 such that b(x,y,t) < a(u1O)

is true for an e> 0 on F. At almost all points P 6 F

uh(P) converges to u. Consequently, at each point P

where K13 is sufficiently large ('i3 depends on P),

a(iih(P)) > a(u1 - 0) - for 1> K13. For any w we will

be able to find a number K0 such that



meas(R[a(üh)<a(uO - 0) - e]) <w where R C F1 and 1 >1<0.

Hence,

fJ[ a(üh) - a(u1 - 0) + f} dx dy > - Aw where I > 1<0 and
F1

A is a positive constant.

If we let 1 tend to co, we find that

JJ[ b(x,y,t) - a(u - 0) + e] dx dy Aw.

F1

Since w is arbitrary, we have

fJ[ b(x,y,t) - a(u1 - 0) + ] dx dy 0,

F1

which contradicts the fact that b(x,y,t)< a(u1-0)--e on F1.

Hence b(x,y,t) a(uO). Similarly, we can prove

b(x,y,t) < a(u1 + 0) for D1.

We now prove that u(x,y,t) is our desired generalized

solution. Since luhi < C0 + 1, u(x,y,t)I < C -.

Therefore, all we need to do is show that u(x,y,t)

satisfies the integral identity (3.5) for any twice

continuously differentiable function (x,y,t) equal to

zero on Let us multiply both sides of equations

(3.9) by h2kJ where = .(ih,jh,nk), and then sum

over i, j , and n from 1 to M1-1, from 1 to M2-1, and from

0 to Ni, respectively. We find
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M11 M2-1 N-i a(U? - a(U?)
) -k (1,3

1=1 j=i n=O

M1-i M2-i N-i -2 +U?._1,

M1 -1

h2

i=i

i1 j=l n=0

+(
-2 U +U ._

.)J = 0.
1,3 1,3

h2 1,3

We now transform this identity making use of

summation by parts and the fact that e(x,y,t) equals to

zero on 0t to obtain

M1-i M2-i N '1,3 1,3-h2k
k )(a(U?,))-

i=i j=i n=i

M2-i

a(U?,j)(9 .,\ 1,31
jl

M1-i M2-i ri (?+i,j
+h2k >:

i=0 jO n=0

M1-i M2-1 N-i (?
+h2k

i=0 j=O n=O

+

fl \(TTfl
-ci ,jA''j+i ,j

h2

fl \fTrfl-ci ,jJJi ,j+i

h2

_Un
i ,j =0.
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If we make use of the notation and definitions which

we introduced above, we can rewrite this last equality as

fo 1 lows:

T+k M2 M1 M1-i M2-i
a(- 'hiZ dx dy dt - h2

'k 'h 'h i=i j=i

TM2M1 - -
p i 4ü. .

+j J j [(i) +(j-) (-)] dx dy dt = 0. (3.32)

000

i,J +



have

M1-1 M2-1
h2 a(,)(° '

i ,JJi1 j=1

M2 M1

10 '0

If I Ouif] Ox

T ,M2=//u
Jo

M2 M1

'0 '0 a0(x,y) dx dy.

Therefore, we get

Ou ae Ou
]

dx dy dtJJJ a(u) dx dy dt -ff f [ - - +-

By the smoothness of and the fact that u E W(lt),

8 8Udxdydt
+ Oy

Ox x=M1
dydt

,2
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In this equality we pass to the limits: hO, k-0

where h and k run through subsequences {h1} and {k1}.
n

The piecewise constant sequences of functions {--},

dan - inand {-.--J} converge strongly to ,

u.
L2(c). a(tih), ---, and - converge weakly to a(u) ,

and
Oy,

respectively. (see [29]) Because of the

smoothness of the initial function a0(x,y) = a(4(x,y)), we

(x,y,O) a0(x,y) dx dy 0. (3.33)

J:2 1:1 a((x,y)) dx dy

dydt+
x=0



T M1 T M1

1 J u dxdt -J J u
0 0

y=M2
0 0

y=O
dxdt-

JJJ u
( dx dy dt

o2e O2
j 8u öufTfdSd/// u(+)dxdydt

x oy
0t -

If we substitute equation (3.34) into equation (3.33), we

o bt a i n

a(u) dx dy dt + JJJu
( + ) dx dy dt

If

M2 M1

'0 O

(x,y,O) a0(x,y) dx dy = 0.

This completes the proof of theorem 3.

Theorem 4. Suppose the assumptions of theorem 3 hold.

Then there exists a unique, generalized solution of

equation (3.6) which satisfies conditions (3.7) and (3.8).

Proof. Assume that u, v are two generalized solutions of

equation (3.6). Substitute both solutions into the

equation (3.5) (definition of a generalized solution) and

subtract the resulting equation to get

J[(u-v)
+(a(u) - a(v)) dx dy

40

- V ) dx dy dt=0, (3.35)(a(u) -a(v)) (
+ a(u) - a(v)

=-JJJ u
( + ) dxdydt. (3.34)



for E C(ç) and =O on and t = T.

Let

e(x,y,t)
u(x,y,t) v(x,y,t)

a(u(x,y,t) a(v(x,y,t))

41

if u(x,y,t)v(x,y,t)

e(x,y,t) = 0 if u(x,y,t) = v(x,y,t), (3.36)

then e(x,y,t) is a measurable function on

Using the fact that
a(u)a(v)

where M0 = sup {iui , ivi}, we obtain

0 < e(x,y,t) < ,,2j \ if u
77

O
e(x,y,t) = 0 if u = v. (3.37)

Hence, e(x,y,t) is a bounded measurable function on

We now approximate e by a sequence of smooth functions

{ ej(x,y,t) } which converges to e(x,y,t) in measure on

L2(t) (see 29) , that is, choose a sequence such that
0 ë(x,y,t) <

( o)
and

lie - eflJL2()

Set en(x,y,t) = (x,y,t) +

This implies that

en 1+ 1 (3.38)

and lien eL2() lien - ej:j

1lL2(clt) +iI - eilL2()

(3.39)



Furthermore,

en elI 1<en
V - min(en) #eneIL2(Q)
L2(2t)

< n( + (meas(t))2) = 1 + (meas(t))2.

From the last inequality and the triangle inequality,

we have

e
en

H =H
L2(lt)

e en
en

< (1 + (meas(t))2) + (meas(t))2 = K,

where K is a constant and does not depend on n.

Let us consider the sequence of problems

oen+e oncIt

n =0 onOt

1t=T =0 on GT

L2()t)

42

(3.40)

(3.41)

(3.42)

for any '1 E (

It is not difficult to show that there exists a

(x,y,t) EC2 (), which satisfies the equations (3.40)

(3.42) (see [29]).

We will show that II < K1 for a constant K1 which

does not depend on n.

Let

n=ne - et (e > 0, any constant). (3.43)

Putting (3.43) into (3.40) and multiplying both sides of

(3.40) by eft, we get



If has a positive maximum at an arbitrary point P E

then

0, L < 0, > 0

where

This implies that

Furthermore,

Imax (P)
I

Let us multiply both sides of equation (3.40) by

and integrate on we get

JJJ en (n ) 2dx dy dt + ffJ L- dx dy

=JJJ e ) 2dx dy dt - fJJ(V.7n) 2dx dy

=JJJ e (L )2dx dy dt + Jf (Ve)2 dx
Gt

=JJJ dx dy dt =fff dx dy dt,

since = 0 on

Therefore,

fffen(Lfl)2dx dy dt JJf L dx dy dt < K2 (3.44)

- fn

0 T.

I
e (P)

I I
'F eft

I

=

43



where K2 is a constant which does not depend on n.

Substitute = into equation (3.35) and use equation

(3.40). We get

=ffJ(a(u) - a(v))(2 + enLn

=JJf (a(u) - a(v)) dx dy dt +

Let

This implies that

(a(u) a(v)) dx dy dt + J0

where

Jo

=

(a(u) a(v)) (e - en) Lrj dx dy dt.

If we prove that J0 - 0 as n - , then

III (a(u)-a(v)) dx dy dt = 0.

is estimated as follows.

= JJJ ie - eI tnI dx dy dt.

dx dy dt
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0
= fJJ (a(u) - on +e n) dx dy dt

11 I
(a(u) - a(v))(e - en) L1-1 dx dy dt

+(e - en) Ln)



and

InI dx dy dt +

111 I I IEnI dx dy dt (3.45)
cit

= + J3
where

=Iff I I dx dy

J3=JJJ H I Inl dx dy

We first estimate J2.

Using (3.44) and the Schwarz inequality, we obtain

I' -4D Df
L2(cit) L2(cit)

K22 0 as n co. (3.46)
L2(cl)

Since both { ëjj } and {e} converge to e in measure, fj
converges to in measure

It remains to estimate J3.

Given an e > 0, let Et = {(x,y,t) citi Lf > c}.
Because e - e in measure, for any 6 > 0 there exists an
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Ji =Jff( +fë)Ife InI dx dy dt.



M = M(e,6) such that meas(Et) < 6 if n > M.

Setting Ft = - Et and using (3.37) and (3.38)

J3=fJf

() + i)2ffJ jnI dx dy dt

Et

() + i)2fJJ
Et

+f1f1iii 4
Ft

Next an application of the Schwarz inequality yields

1

1) JJ4;

+f
L2(Ft)

< K3
e

K3

+ffff
Ft

Et
HI I&n dx dy dt +

"J J'f -flJ JL7J dx dy dt

e

1
dx dy dt

dx dy dt

,J-;; dx dy dt

+
L2(Et)

L2 (Et)

nj
L2 (Ft)

+ K4

L2(E)

dxdydt}2 +K4e
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111
Ft



Therefore,

where

and

J3K564 + K4f Oasncc, (3.47)

z _r- e5_13 e-j:;
(2

L2 (Et)

1<3 , 1<4 and 1<5 are constants which are independent of n

Substituting (3.46) and (3.47) into (3.45) leads to

0 as n -f cc.

Consequently,

IIJ (a(u)-a(v)) dx dy dt 0. (3.48)

for any E C().

We have proved (3.48) for any E C(T). Now let

be any function in L2() and construct a sequence of

functions
1
in C() such that - -+ 0.

L2(1t)
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Then (3.48) holds for c1 E L2(). Hence the equality

r (meas(Et))4 + 1<4 f
L2(Et)

1

K3 = (j0) + 1)2
II4

L2(Et)

K4 -

L2(Ft)
L2(F)



48

holds also for E L2(1l).

From equation (3.48), we get

a(u) = a(v).

This implies that u = v.

Thus we have proven theorem 4.

The proof of the regularity of the solutions of

parabolic systems of partial differential equations is

found in [24] and [36]



4. Numerical Method

4.1 Finite difference algorithms

In this chapter we shall give a numerical scheme and a

proof for the convergence of the algorithm approximating

solutions to the our problems which are given in 2.2.

Let zi(x,y) = (z.'1(x,y), u2(x,y)) be the interior unit normal

to Gt at the point (x,y). This is a change in notation

from Chapter 3, but it is more convenient here to use the

interior normal . Then the exterior unit normal is the

negative of the interior unit normal to OGt at a certain

point. If h e2, let jh= (h12 + h22)2. Then under suitable

conditions on f , , and Gt, we will show that the

difference schemes constructed below converge in the

maximum norm to the solution (2.1) - (2.4) like O(hI +

k) as hi, k - 0, where h1, h2, and k are the grid

increments for the variables x, y, and t respectively.

The convergence proofs are simple but need the

following assumption on the domain Gt, which we shall

refer to from now as the assumptions (A) and (B)

Assumption (A). Let Gt be such that the solution to

(2.1) - (2.4) exists. With the exception of at most a

finite number of points, oCt is continuously

differentiable. Denote by OG the set of points in UG
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where is continuously differentiable. For (x,y) EOGt,



t5(x,y) - inf I (x,y) - (x' ,y')
- (x' ,y')E St(x,y)

(x,y) - (x" ,y") I and further there exists a number

5 > 0 such that inf 6(x,y) = 5 > 0. (see Fig. 4.1)
(x,y) EOG

Figure 4.1. The Sketch of 6(x,y).

One can easily verify that if is twice continuously

differentiable, then Gt satisfies assumption (A).

Furthermore the "usual" domains arising in practice

satisfy assumption (A) and so do our domains.

Assumption (B): Let T > 0 be a real number. We denote

I -

)
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construct the straight line originating in (x,y) in the

direction of the interior normal zi(x,y) and denote this

line by L(x,y) Let St(x,y) = {(x',y') EIR2(L(x,y)fl

(Gt\(x,y))}. We now assume , for each (x,y) E

there exists an (x",y") ESt(x,y) such that
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the closed interval 0 < t by [O,TJ . We shall assume

that the known functions f(x,y,t) and (x,y) are defined

and continuous on the closed sets OGt x [O,T] and

respectively, where OGt x [O,T] is the topological product

of OGt with [O,T] , etc.. In addition to requiring that Gt

satisfy assumption (A) , we assume that oGt is everywhere

at least once continuously differentiable. Finally, we

assume that f and oGt are constructed so that the

solutions u(x,y,t) to (2.1) - (2.4) , exist, are uniquely

determined, and are three times continuously

differentiable with respect to the space variables and

twice with respect to the t variable. More precise

statements on the assumptions on f, , and G guaranteeing

the existence and uniqueness of solutions to (2.1) -

(2.4), having the required differentiability properties

may be found in Friedman [22] and Il'in, Kalashnikov, and

Oleinik [28] . As usual, place a rectangular grid on the

three dimensional space (x,y,t) with grid spacing h1 in

the x variable, h2 in the y variable and k in the t

variable. Let Gt(h) be the set of grid points in the open

set Gt corresponding to the cross-section of time

t = t = nk. Denote by OGt(h) the set of points where

either an x, or a y, or both an x and a y grid line

intersects OGt (see Fig. 4.2).

Let (h) = Gt(h) U oGt(h).



Gt(h){c.
J

E' :GridpointsinG

o Gt (h) ={ J S : Grid line intersects either an x, or a y, or
both an x and y}

Figure 4.2. The Sketch of Gt(h) and OGt(h).

Now let (x,y) e G(h). Let 0 < p, A, p, < 1 be four

numbers depending on (x, y) such that the points

(x+ph1, y), (x-Ah1, y), (x, y+ph2), (x, y-h2) are in (h)

We assume W(x, y,t) to be a function defined on Then

for (x,y,t) E Rh,k we define the difference operators

(see Fig. 4.3).

W (x,y,t) = a W(x+ph1, y, t) +9 W(xAh1, y, t)

+'yW(x, y+ph2, t) + 0 W(x, yh2, t) + wW(x ,y, t), (4.1)
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Assume Rh,k ={(x, y,t)
I (x,y) EGt(h), t=t, n=1, ,N}

and

Sh,k ={(x,y,t)l (x,y)eOGt(h) , tt n=1, ,N}.



where a = 2 / h12(pA +p2), ? 2 / h12(p +A2),

=2 / h22(po + 9 =2 / h22(pa +o2), and

w = 2 / h12pA 2 / h22po, and

Dt W(x,y,t) = [W(x,y,t) - W(x,y,t k)] / k (4.2)

p

- . . . .

:
:

(x,y+Ph2, t)

/.
Ph2 (x+JLh, y,t)(x-2,h1,y,t) I

2 h 1fm hr

(x,y-h 2 ,t)

Figure 4.3. The Grid on G(h).
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(x' , y' )

DvW(x, y,t)

[W(x' , y' ,t) - W(x,y,t)] / I
(x' ,y') - (x,y)

I
. (4.3)

xI'yI,

and set

Figure 4.4. The Point (x',y') of Case 1.

(x y)
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If W(x,y,t) is three times continuously differentiable

with respect to x, y and twice with respect to t in

x [O,T], then hW - L W = 0(ihI), hi -+ 0,

and DtW - W = 0(k), k - 0 for (x,y,t) E Rh,k.

We now turn to the problem of replacing the normal

derivative by a difference quotient. Let L(x,y) denote

the line lying in Gu{(x,y)}, which originates in

(x,y)EoGt and proceeds along the interior normal ii.

There are several cases to consider.

Case 1. Let (x,y) EÔGt(h) and suppose L(x,y) lies on a

grid line, either an x or a y grid line (see Figure 4.4).

Denote the grid point on L(x,y) closest to (x,y) by



(x,y)

I,)X(ç1)X
(x",y )

Figure 4.5. The Point (ç) of Case 2.
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Case 2. Let (x,y) E oGt(h) and suppose L(x,y) intersects

a grid line, either an x or a y grid line (see Fig. 4.5)

at a point ((,j) where (x,y)-(,ij)I<hI , and where ((,?7)

lies between a point (x',y') EGt(h) and a point

(x",y")e (h) on the x or y grid line as the case may be.

Define W((,,t) by interpolating linearly between

W(x' ,y' ,t) and W(x" ,y" ,t) and then set

D, W(x,y,t)

= [ W((,,t) - W(x,y,t)] / I (C,i) - (x,y) . (4.4)



Case 3. Let x=(x,y) EoGt(h) and suppose L(x,y)

intersects a point (x' ,y')E Gt(h), (see Figure 4.6),

(x,y) - (x',y') <ihi.

DW(x, y,t)

Then set

'ly,)

Figure 4.6. The Point (x',y') of Case 3.

It is a consequence of assumption (A) that for Jhj

56

chosen sufficiently small, only these cases need to be

considered in replacing the normal derivative by a

difference quotient and at least one of these cases does

occur. From now on we assume that hi has been chosen

sufficiently small so that D W(x,y,t) is well-defined.

If W(x,y,t) is a solution to (2.1) - (2.4) having the

required differentiability properties, then for

(x,y,t)eShk

DW(x,y,t) OW(x,y,t)
Oji O(ihi), hi - 0.

The finite difference schemes for approximating solutions

to (2.1) - (2.4) may be formulated as follows. We seek a

= { W(x' ,y' ,t) - W(x,y,t)] / I (x' ,y') - (x,y) I
4.5)
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function, U(x,y,t) for each t, defined for (x,y,t) ERh,k

such that

We shall show that for each h, k the solution U(x,y,t) to

the problem (4.6) - (4.9) exists and is uniquely defined.

Then we show that the family {U} converges to u as

hi, k -+ 0, where u is the solution to (2.1) - (2.4).

Theorem 5. The solutions to the difference scheme (4.6)

(4.9) converge weakly to the solution of problem (2.1)

(2.4).

Proof. Let (x,y,t) be an arbitrary point where (x,y) E

and 0< t T. Let (x',y',t') and (x",y",t") be mesh

points satisfying x'< x < x", y'< y <y", let t be such

that t' <t <t", and define the function U(x,y,t;h) by

interpolating linearly between U(x' ,y' ,t') and

1.3 (x" , y" , t,, ) Finally, let r= be fixed. Rewrite (3.14)

using D U(x,y,t) and U(x,y,t) (the notation is given

on page 18) and replace U(x,y,t) by U(x,y,t;h). Then the

summations over 1t(h) on the left hand side in (3.14)

become integrals of U(x,y,t;h) taken over x (0,t")

(In fact, the integrals are over Gt,,, since the U(x,y,t;h)

vanish outside Gt,,).

DtU(x,y, t) = hU(x,y,t), (x,y,t) E Rh,k (4.6)

U(x,y, 0) = (x,y), (x,y) E o (h),

f(x,y, t) = 0 for (x,y) E Sh,k

(4.7)

(4.8)

ft(x, t) + D U(x, t). ii = 0 on (x,y)Shk. (4.9)
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From this point on, we proceed in a manner similar to

that given in [28]. The functions U(x,y,t;h) and

D U(x,y,t;h) are uniformly bounded in L2(G) and for any

t, in L2(1t) since D U(x,y,t) and U(x,y,t) are

uniformly bounded (see lemma 2) . Consequently, we can

choose subsequences {U(x,y,t;h1)}1, {DU(x,y,t;h1)}1 and

{D U(x,y,t; h1)}r1 , h1 > hi+i 0 as r constant,

which converge weakly to functions u(x,y,t) E L2(t),

u(x,y,t) L2(Q), and uy(x,y,t) E L2(Q).

As in [28] , we can conclude that ux(x,y,t) and

uy(x,y,t) are the generalized derivatives of u(x,y,t)

i.e. U = and Uy = . The limit function u

satisfies the integral identity (3.5), and using the fact

that x,y) 0, u(x,y,0) = x,y). The assertion that u

satisfies (3.5) is proven by multiplying (3.6) by a

function C (cLG), (x,y,T) = 0 which is continuously

differentiable, summing the resulting equality by parts,

multiplying by hk and then letting h -* 0 with r held

constant to obtain (3.5). Therefore, we conclude that the

limit function, u(x,y,t), of U(x,y,t; h1) satisfies the

problem (2.1) - (2.4) in the sense of (3.5). Since from

any subfamily of the family U(x,y,t;h1), we can find a

weakly convergent subsequence converging to a solution to

(2.1) (2.4) and since solutions to (2.1) (2.4) are

unique, we can conclude that the whole family U(x,y,t;h)
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converges weakly to the unique solution to (2.1) (2.4)

like O(lhI +k). This completes the proof of theorem 5.



5. Example

In this chapter, we solve a given problem using the

finite difference method on uniform spatial grid points

for all time steps. A complete set of flow charts

illustrating the sequence of calculation by finite

difference methods can be found in Appendix. As a model

problem let us consider the following free boundary value

problem. (see Fig. 5.1)

ut = Lu in Gt, t > 0. (5.1)

u(x,y,0) e4_X_Y - e3 on G0 (5.2)

u(x,y,t)=f(x,y,t) = 0 on ôft , t (5.3)

ft+f=0on8t,t0 (5.4)
!d(O,y,t) = 0 , 0 < y < f(0,y,t) (5.5)

(x,O,t) = 0 , 0 < x < f(x,0,t) (5.6)

U!:J = 0

Figure 5.1. Test Problem.
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Let us set
1

'1 nhl+1

h 1i12_ nh2+l

for a fixed integer nhl

for a fixed integer nh2

k = , for a fixed integer N

x1 = ih1 , i = 1, . , nhl + 2

Yih2i=l ,nh2+2

tn = nk , n = 0, . . , N.

Un -i,j - U(xiYjtn).

where k stands for the time increment and h1 and h2 are

increments of x-axis and y-axis, respectively.

Choose several points on x2 + y2 = 1 obtained by

uniformly incrementing the angle (see Figure 5.2). Then

solve the differential equation (5.4) by approximating the

normal derivative with a. difference quotient at chosen

points and using the Euler method. In this way, we can

find the location of the front at the new time step. Once

we find the boundary, we will approximate the domain

temperature using the appropriate difference replacement

for the heat equation at the new time step. Calculate the

midpoints of the front at the new time step and solve the

equation (5.4) on those midpoints again (see Fig 5.3).

These steps will give us a new free boundary. Repeat this

procedure. We will get the free boundary and the domain
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temperature at each time step. As we identify the

boundary, the points of intersection of the boundary with

the grid lines or mesh points lie between the numerically

computed front (see Fig 5.4), we will interpolate the

front on those points using a 1-dimensional linear spline

(see Fig. 5.5). We use two methods to calculate the

domain temperature

boundaries.

Li'

Figure 5.2. The Graph of Starting Points on x2 + y2 =1.
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Figure 5.3. The Graph of the Midpoints of the



(x1'yj)

(x?, yji)

(xii, yj)

case a (find x-coordinate)
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both coordinates are known

need to calculate x-coordinate
(case a)

need to calculate y-coordinate
(case b)

Figure 5.4 The Graph of the Points of the Intersection

of the Boundary with the Grid Lines.

(xi, yj2)

(xi, yji)

?
(xii, y?)

(xii, yj)

case b (find y-coordinate)

Figure 5.5. A 1-dimensional Spline

x
(xi, yji)



5.1. Forward difference in time

In this section, we use the forward difference for

the time derivative Ut at the fixed time t = t as

-i,j 1,1Ut= k
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(5.7)

Rewrite the right hand side of (5.1) as

= aU',1 + I?U?_1,J + 7Uj + 9U1?,_1 + (5.8)

where a = 2 / h12(pA +p2) , = 2 / h12(pA +.)2)

=2 / h22(pu + p2), 0 =2 / h22(po +c72), and

= 2 / h12p.A 2 / h22po.

(for more details, see Figure 4.3)

Multiply both sides of (5.7) and (5.8) by k and equate the

left hand sides to get after some rearranging

U = + A + F U'_1,J +

+ C + D U,_1 + E u'j', (5.9)

where A = ka, k?, C= k7, D = 1<0, kw,

o < i < kfl(j), 0 < j < ifnp2.

Here, i, j, kfl(j), and ifnp2 are integers.

The equation (5.9) gives us the temperature distribution

in the domain at the new time step. Using these

temperature values and repeating the procedure, which we

discussed on page 61 , we get the free boundary at each



Figure 5.6. The Graph of the Possible Free Boundary
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time step. Using this method with the initial temperature

of the domain given in equation (5.2) and the boundary

conditions (5.3) - (5.6), we calculate the free boundaries

as well as the temperature of the domain. The graphs of

the computer(CRAY X-MP/48) output of free boundaries are

listed in Figure 5.7 - 5.9.

If the exterior normal derivatives, -i', become

negative (see Fig. 5.6), using a 2-dimensional spline to

interpolate between the mesh points gives more accurate

approximations.



I 1 I

a N-
d d d d d d

I I

d d
0

0

Figure 57 1st Free Boundary for h1=h9=1.3e-2,

k = 2.4e-5
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I I I I I

CO N. W W) .4 0
d d d d d d d d d

Figure 5.8. 3rd Free Boundary for h1=h2=1.3e-2,
k = 2. 4e-5
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0

0

0
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I I I I I I

a N LD W *
d d d d d d d d d

0

Figure 5.9. 5th Free Boundary for h1=h2=1.3e-2,

k = 2.4e-5

0

D
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5.2. Backward difference in time

Let us use the backward difference for the time

derivative ut at the fixed time t = t1 and rewrite

equation (5.1) as follows:

U+1. - U"
i,J i,j n+1

k
= a + fi Ui_1,j + + 0 +

+ w (5.10)

where a = 2 / h12(pA +/L2), 3 = 2 / h12(pA +)2),

=2 / h22(pcT + p2), 0 =2 / h22(pc +2), and

= 2 / h12A' 2 / h22po.

Multiply both sides of equation (5.10) by k and rearrange

the resulting equation. We find

(1E) UJ - A - F Uj..,J -
C U',1 - D = (5.11)

where A = ka, F= k1, C 1<7, 1<0, E= kw,

0 < i < ksl(j), 0 < j < isnp2.

Here, i, j, ksl(j), and isnp2 are integers.

The equation (5.11) represents a system of
isnp2 isnp2

E ksl(j) linear equations for ksl(j)
j=1 j=1

unknowns of the form
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M x = B,
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isnp2 isnp2
where M is an

( ksl(j)
) x

( ksl(j)
j=1 j1

tridiagonal matrix with fringes and B is the temperature

vector known from previous time step. By solving the

system M x = B, we can get the values of U'j'j, which are

the domain temperatures, at each point (ih1,jh2, (n+1)k).

Repeat the same procedures as in the forward difference

case to calculate the free boundaries. To store all the

information about M requires large memory spaces which is

not available at this time. In the future, CRAY-2 or

SCS-40 might be available to handle this problem, but it

is very expensive. Further research needs to be done

using sparse matrix techniques with new computer structure

designs.
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Appendix

conditions

start or stop

do loop

subprogram
(subroutine or function
statement)

connector

,/"initialize index

increment index
test md>

78

1. Flowchart Symbols

assignments or computations

input or output /1



2. Flowchart of the Computer Program for the Finite Difference
Scheme(forward in time)

$1

external b, u, spipi, splp2, ucipi, ucip2, ucipi, ucdp2
ucdp2, ucbpi, ucbp2, sp2l, spit, spi, sp2

'I,

call link(open files)

'V

/ read nhl, nh2, fit, it, nan

+

write nhl, nh2, fit, it, nan

79

parameter(ngrd=200, itmax=1 0, nmid=61)
real lam, nu, an(50), xm(nmid), ym(nmid), slope(nmid),

nox(nmid), noy(nmid)
integert, it, time, switch
character*3 ireply

+

common udi (ngrd,ngrd,2), dhi, dh2, fx(nmid,itmax),
fy(nmicl,itmax), bxs(ngrd,2), bys(ngrd,2),
bysl(50,2), bxsl(50,2)

common/blkl/kfl (ngrd), ksl (ngrd)
common/blk2/kf2(ngrd), ks2(ngrd)
common/blk3/kf 1 1(50), ksi 1(50), kf2l(50), ks2t(50)



write
unstab'e give me
different set

ireply = yes?

true

print =0
switch =0

pi=4.0*atan(1 .0)
dhl =1 .0/real(nhl +1)
dh2=1 .0/reat(nh2+1)
delt=0.01/real(nt1)
ck=(dhl *dhl dh2*dh2)/4.0

udi (i,j,1 )=O.0
udi (i,j,2)=0.0

1=1
I > ngrd

1=1+ 1



yes

k= 1

k=k+1

an(k)=pi*reaI(k1 )/rea(2*(nan1))
xm(k)=cos(an(k))
ym(k)=sin(an(k))
nox(k)=cos(an(k))
noy(k)=sin (an(k))
sbpe(k)=noy(k)/nox(k)

/ k=2
k=k+1

k>nan

no

k> nan - 1

no

x=reaI(-1 )*dhl

false false

true

xl =xl - dhl
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l=nhl+1
<2

I=1-1



yes

tn=ym(k) - yl
td=xm(k) - xl
ra=tn/td

y=ym(k)slope(k)*td
h=sqrt((ym(k)**2td**2)
fx(k,1 )=xm(k)+delt*u(xl,y)*nox(k)/h
fy(k,1 )=ym(k)+delt*u(xl,y)*noy(k)/h

j=1

j=j+

no

yl =real(j-1 )*dh2
yji =real(j)*dh2

false

I> nh2 + 1

x=xm(k)-tn/slope(k)
h=sqrt((xm(k)x)**2+tn**2
fx(k,1 )=xm(k)delt*u(x,yl )*nox(k)/h
fy(k,1 )=ym(k)delt*u(x,yl )*noy(k)/h
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udi (i,j,1 )=u(xi,yj)

xi=real(i-1 )*dhl

udi (ix,1 ,1 )=udl (ix,2,

udi (1 ,jy,1 )=udl (2,jy,1)

83



yes

udi (1,1,1 )=udl (1,2,1)
fx(i ,1 )=xm(1 )+delt*udi (nhl +1,1,1 )/dhi
fy(1 ,1 )=O.O
fx(nan,1 )=O.O
fy(nan,1 )=ym(nan)+delt*udi (1 ,nh2+1 ,1 )/dh2

=1 +

k=k+i

no

no

>it

> n-i
yes

calculate midpoints and slopes of normal vectors
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IIcall print

n=nan

true calculate boundaries using
given circle



calculate x - range of free boundaries
calculate y - range of free boundaries

*
call spline
(using spline and calculate free boundaries of
given mesh points)

calculate p., ?, p. a
and calculate the temperature of the
domain
using finite differences scheme

set the temperature
of axes

calculate the free boundaries on axes

4

true,,
P7/ call print /// (print the free boundariesV

4
iprint=O
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1

calculate the free boundaries of next time step
(If the point lies between mesh points, we
interpolate linearly.)



reset the temperature of the domain, spline, and
all variables

false

86

V

'witch
true

= =n+1

1false

true in=n-switch=3-


