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An analytical algorithm to formulate a sparser set of

adjacency constraints than the conventional algorithm is

proposed. Utilizing matrix algebra applied to an adjacency

matrix, constraints are systematically and efficiently

derived by the proposed algorithm. The proposed algorithm

is proved to provide a true set of adjacency constraints in

the sense that no adjacent harvests can occur.

A heuristic technique to solve a spatially constrained

area-based harvest scheduling problem with even-flow

constraints is proposed. The technique combines the

modified random search technique, the modified binary search

method, and the PATH algorithm. Partitioning the

multiperiod scheduling problem, period by period using the

PATH algorithm, the objective at each period is respecified

by minimizing harvest flow fluctuation from the lower bound

of the harvest flow level, and the feasibility of a solution

at each period is expanded to both the current and the



following periods. The modified random search technique is

applied to generate a feasible solution at each period. The

modified binary search method is used to obtain an optimal

or appropriate even-flow level.

By using the proposed heuristic technique, the cost

evaluation of implementing various spatial restrictions on

riparian zone planning is presented.
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ECONOMIC ANALYSIS OF INTEGRATING SPATIAL CONCERNS

INTO HARVEST SCHEDULING

Chapter 1

INTRODUCTION

In recent years, traditional and newer demands for use

of forest resources have increased and allocation decisions

have become controversial. The demands and expectations for

utilization of forests have accelerated and conflicts focus

needs for efficient allocation. Actions to protect wildlife

habitat and/or a stream side, vegetation and soils, for

example, have restricted harvesting, resulting in a need for

careful decision processes for managing forest resources.

Due to the complexity of the problems, mathematical

programming techniques have played an important and useful

role in seeking solutions. The techniques simultaneously

allocate activities, such as road construction, protection,

and silvicultural treatment, within the harvest scheduling

decision framework. Linear programming (LP) solution

techniques have been widely used in the decision making

process in harvest scheduling models. Most LP forest

planning applications require extensive aggregation to meet

dimensionality restrictions, and decision variables

therefore require disaggregation before they can be

implemented. Because of aggregation the optimal solution

from LP can be infeasible, inferior, or both, when compared
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with disaggregated approaches.

Integer optimization deals with problems of maximizing

or minimizing a function of many decision variables subject

to inequality and equality constraints and integer

restrictions on some or all of the decision variables. A

rich variety of problems, therefore, can be represented by

these discrete optimization models.

In order to obtain more precise solutions in harvest

scheduling problems, particularly those with spatial

concerns, many decision variables are required to be 0-1

integer. Forest managers can implement these solutions

knowing that they are spatially feasible. Because of this

requirement on the ground, the 0-1 integer programming

solution techniques have been replacing LP based models, for

problems with transportation and spatial concerns.

Multiple-use concerns and environmental requirements

can be taken into account by imbedding numerous constraints

in the problem formulation. Adjacency constraints are of

current concern in harvest scheduling. These constraints

require no adjacent harvest units, which permits limitation

of clearcut block size and leads to a discrete optimization

problem. The first manuscript, Chapter 2, describes the

development of an efficient algorithm to formulate adjacency

constraints, which can be used in integer programming

solution techniques or in heuristic techniques. This

algorithm utilizes matrix algebra to formulate nonlinear
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adjacency constraints from an adjacency matrix. The

algorithm converts such nonlinear constraints into linear

constraints by taking advantage of 0-1 restrictions on the

decision variables.

Imbedding adjacency constraints as well as even-flow

constraints, harvest scheduling problems become difficult to

solve by the exact solution techniques, such as the branch-

and-bound algorithm. The second manuscript, Chapter 3,

addresses the problem of solving a spatially constrained

area-based harvest scheduling problem with even-flow

constraints. A heuristic technique is developed to provide

a "good" integer solution. The technique combines the

modified random search technique, the modified binary search

method, and the PATH algorithm. Since the even-flow

constraints are most likely to be violated by the integer

solution, the proposed technique respecifies the problem by

minimizing a harvest flow fluctuation as well as maximizing

the present net worth of the sum of returns from harvest

units. A harvest scheduling model called SSMART (chedu1ing

ystem of anagement Alternatives fo iimber-harvest) is

developed. A comparison of this technique with several

different techniques is provided.

The third manuscript, Chapter 4, addresses the problem

of evaluating the cost of implementing spatial restrictions

on riparian zone planning. Three scenarios are addressed.

The first scenario prohibits harvest in the riparian
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management area, while the second scenario allows harvest

with additional adjacency restrictions among segments of the

riparian area. Instead of prohibiting harvest in the

riparian management area, the third scenario utilizes

additional adjacency lag periods as alternative spatial

restrictions to harvest scheduling. Because of its

capability to efficiently solve the long-term scheduling

problem, SSMART is used to implement the cost evaluation.



Chapter 2

COMPARATIVE EFFICIENCY OF ALGORITHMS

TO GENERATE ADJACENCY CONSTRAINTS

by

Atsushi Yoshimoto

and

J. Douglas Brodie

ABSTRACT

A mathematical programming formulation of the area-

based forest planning problem can result in a large number

of adjacency constraints with much potential for

redundancy. Two heuristic algorithms have been proposed for

reducing redundant adjacency constraints generated by the

conventional algorithm. In this paper another analytical

algorithm is proposed, and its efficiency and that of the

conventional algorithm and the two heuristics are evaluated

and compared. Comparison is based on the number of

constraints, and on the computational effort needed both to

derive the adjacency constraints and to solve the associated

planning problem. Evaluation for several adjacency maps

shows that the conventional algorithm has the largest number

of constraints with a low degree of effort in derivation of

5
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adjacency constraints and a small computational task to find

a final solution. The first heuristic algorithm has the

smallest number of constraints but involves a high degree of

effort and a large computational task. The second heuristic

has a small number of constraints with a moderate degree of

effort and a large computational task, and the proposed

algorithm has a small number of constraints with a low

degree of effort and a moderate to large computational task.



INTRODUCTION

Harvest scheduling problems are usually formulated

using mathematical programming techniques. Because of

multiple-use concerns, environmental requirements are taken

into account by imbedding numerous constraints in the

formulation. One of the current concerns is adjacency

constraints, which require no clearcutting among adjacent

areas during the same harvesting period. These adjacency

constraints disperse clearcut areas throughout the forest,

providing a landscape mosaic and limiting the size of

individual harvest blocks. Thompson et al. (1973) utilized

adjacency constraints to distribute clearcuts in a linear

programming formulation. Instead of using spatial

consideration as explicit constraints in the formulation,

Mealey et al. (1982) introduced decision variables

containing a scheduling package, which met spatial

considerations, in the linear programming formulation.

Hokans (1983) incorporated adjacency constraints into an

artificial intelligence procedure. Recently efforts have

been made to incorporate spatial concerns into applied

mathematical programming or heuristic algorithms for solving

applied harvest scheduling problems (Gross and Dykstra 1988,

Gross 1989, Nelson et al. 1988, Sessions and Sessions 1988).

From the viewpoint of the mathematical programming

formulation, adjacency concerns require a large number of

7
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constraints using the conventional algorithm. The

conventional algorithm consists of writing a pairwise

adjacency constraint for every adjacency relationship. Due

to limitations on the number of constraints in linear

programming commercial software, the reduction of the number

of constraints plays a critical role in formulating even

modest sized problems. Two heuristic algorithms which

generate a sparser set of adjacency constraints were

introduced by Meneghin et al. (1988) and Torres and Brodie

(1990). Although the number of constraints is reduced

dramatically, the procedures and rules of both heuristics

are difficult to follow and understand.

The purpose of this paper is to propose a simple

analytical algorithm to generate adjacency constraints which

can be proved to ensure that no adjacent harvest occurs, and

that is easier to understand than the heuristics. Then we

will compare the efficiency of each algorithm in terms of

the number of constraints, the degree of effort needed to

create the final constraints, and the computational burden

encountered in solving the associated planning problem. In

the first section, the conventional algorithm, the algorithm

by eneghin, Kirby and Jones (1988) (M-K-J algorithm), and

the algorithm by Torres and Brodie (1990) (T-B algorithm)

are reviewed. In the second section, the analytical

algorithm is derived. Then in the third section, a

comparison of the four algorithms is presented.



1. the i-th unit is selected, not the j-th unit,

9

REVIEW OF ALGORITHMS

Our problem is concerned with the selection of harvest

units to meet an objective with adjacency constraints. The

objective can be to maximize present net worth of return

from harvest units, to maximize harvest volume, etc. Since

the decision is to select a unit or not to select a unit

(harvest or not harvest), the control variable, X1 for the

i-th unit, is dichotomous or zero-one defined by:

r 1 if the i-th unit is selected

x= [0 otherwise
(1)

After introducing dichotomous control variables, adjacency

constraints can be formulated in several ways. In what

follows, three methods: the conventional algorithm, the N-K-

J algorithm, and the T-B algorithm are reviewed.

The conventional algorithm is widely used in mixed

integer programming or integer programming formulations.

Each constraint takes into account only two units adjacent

to each other. The number of constraints is therefore

determined by the number of combinations of these two

adjacent units. The pairwise formulation is applied:

X + X ± < j (2)

where the i-th unit and the j-th unit are adjacent. The

inequality (2) implies that one of the following decisions

is made:
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2. the j-th unit is selected, not the i-th unit,

or 3. neither is selected.

Applied to the simple spatial example shown in Figure 2.1,

the conventional algorithm provides the following adjacency

constraints:

xl + x2

xl + x4

x2 + x3

x2 + x4 (3)

X3 + X4

X3 + X5

X4 + X5

The advantage of this algorithm is that it is easy to

formulate and it constructs a "true" set of constraints, in

a sense that no adjacent harvests occur. The disadvantage

is that many redundant constraints are formulated.

The M-K-J algorithm was introduced to reduce the number

of adjacency constraints by using the three patterns (pair,

triplet, quadruplet) of adjacency structure depicted in

Figure 2.2. The M-K-J algorithm works as follows. At

first, a set of inequalities that were named type 1

inequalities is set up. A type 1 inequality is formulated

by one of the following forms:

Pair : X1+X (pattern 1 in Figure 2.2) (4)

Triplet : Xj+Xj+Xk (pattern 2 in Figure 2.2) (5)

Quadruplet: Xj+Xj+Xk+XL (pattern 3 in Figure 2.2) (6)



Figure 2.1. A five unit numerical example

b)
a)

c)

Unit
1

Figure 2.2. Three patterns for a type 1 inequality
Pattern 1 (pair)
Pattern 2 (triplet)
Pattern 3 (quadruplet)
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After type 1 inequalities are specified, combining a certain

set, say Ti, of type 1 inequalities creates an aggregated

inequality called a type 2 inequality.

Aggregation of type 1 inequalities in Ti follows the

following rule. Each type 1 inequality in TI. can be

formulated by either

E x + x i, j c p (7)

iE
or

E X1 + E X.
ieE jG

where index sets E, P and G are defined by:

if all inequalities In TI. have X, index i belongs
to a set E

if there exists only one element X in one type 1
inequality in Ti beside X. (iE), index j belongs to a
set P

if there exist more than one element in one type
1 inequality in Ti beside X (iE), the j indices
belong to a set G.

Then using r as the total number of type 1 inequalities in

Ti, one type 2 inequality can be formulated as:

(2r-l) E X1 + E X1 + r E X1 (2r-l) (9)

iE iP iG

Notice that at most one type 1 inequality in Ti can be

formulated by inequality (8). Since a coefficient (2r-1) of

X1 (iE) is the same as (2r-1) at the right-hand side (RHS),

when one of the X.'s (iE) becomes 1, all other units are

forced to be zero. A coefficient r of X1 (iG) doesn't

allow more than one unit of X1ts (ieG) to be 1 at the same

time because r 2r-1 < 2r. However, it does allow one unit

(8)
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of X1's (iG) and any combination of units in a set P to be

1 at the same time because the number of units in a set P is

less than or equal to (r-l). Thus, one type 2 inequality

provides all possible selections of units in Ti. After

creating all possible combinations of type 1 inequalities to

generate one type 2 inequality, the final set of type 2

inequalities are specified in accordance with the heuristic

procedure provided by Neneghin et al. (1988). Their

heuristic procedure requires that all possible combinations

of type 1 inequalities be set up for one type 2 inequality.

Among them the final constraints are determined following

four rules. The rules are made in order to combine all type

1 inequalities into type 2 inequalities. Since a set of

type 1 inequalities are generated to cover all adjacency

relationships, so does a corresponding set of type 2

inequalities. It can be proved, therefore, that as long as

rules are set up to include all type 1 inequalities, the

final set of constraints, type 2 inequalities, constructs a

true set of adjacency constraints.

Using the example in Figure 2.1, the procedure of the

M-K-J algorithm is described as follows. Type 1

inequalities are to be identified first. Following their

procedures, a lower triangular of the adjacency matrix is

first derived as follows:



element a1 is defined by:

1 J
if the i-th unit is adjacent to the j-th

a1 =[Lunit
(10)

0 otherwise

and n is the number of units. The adjacency matrix

represents all adjacency relationships among units, and so

does a lower triangular of the adjacency matrix. In the M-

K-J algorithm, first, select a21 and look for other units

adjacent to both unit 1 and unit 2. Unit 4 is adjacent to

them since a41 = a42 = 1. Thus unit 1, 2, and 4 construct a

triplet:

+ X2 + X4 (11)

Second, select a32. Since a42 = a43 = 1, then unit 4 is also

adjacent to both unit 2 and 3, resulting in another triplet:

X2 + X3 + X4 (12)

Third, select a43. Since a53 = a54 = 1, unit 5 is adjacent to

both unit 3 and 4. Then the last type 1 inequality is:

X3+X4+X51 (13)

After specifying type 1 inequalities, all possible

combinations of type 1 inequalities that construct a type 2

inequality are specified (see Table 2.1).

14

00000
10000
01000
11100
00110

The adjacency matrix is an (n x n) square matrix whose
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Table 2.1. Type 1 and possible Type 2 patterns for a five
unit problem

Type 1
label

Member Possible
Type 2

Type 2
Frequency

I 1-2-4 (1,11) 1
II 2-3-4 (I,II),(II,III) 2

III 3-4-5 (11,111) 1

Type 1
label

Possible
Type 2

Choice Final Constraints

I
III
II

(1,11)
(11,111)
(1,11) , (11,111)

(1,11)
III

3X2
X3

+
+

3X4
X4 +

+ Xl
X5

X3
1

For example, combining I and II type 1 inequalities, r is

set as 2, E = (2,4), p = (1,3) and there are no indices in

G, resulting in a type 2 inequality:

3X2+ 3X4+X1 +X3 3. (14)

Ascending order based on type 2 frequency reallocates type

1 patterns as in Table 2.2.

Table 2.2. Selection of final constraints for a five unit
problem

Choice is made in accordance with procedures by Meneghin et

al. (1988). The final type 2 inequalities are:

3X2+ 3X4+X1 +X3 3. (14)

and

x3 + x4 + x5 1. (15)

For this example, the number of type 1 inequalities is 3 and

the number of all possible combinations of type

inequalities for type 2 inequalities is 4.
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The advantage of the M-K-J algorithm is that once a set

of type 1 inequalities, Ti, is specified for one type 2

inequality, it can be proven that the type 2 inequality

represents all type 1 inequalities in Ti, resulting in a

reduction of the number of constraints. The difficulty is

that it takes too much time to identify all type 1

inequalities, combine them to make all possible type 2

inequalities for the final constraints, and then specify the

final constraints.

The T-B algorithm utilizes the technique of

penalization and the four-color conjecture. The T-B

algorithm first eliminates the obvious redundant constraints

by using an adjacency matrix. This is called Procedure 1.

Procedure 1 works as follows. Using n as the total number

of units and a1 as an element of an adjacency matrix at the

i-th row of the j-th column, if

n n
E a, i = l,,,n (16)

j=l j=l

we know that the i-th row and the i-th column represent the

same adjacency relationships. In other words, if = 1,

then a1 = 1. Thus we can replace by 0 at the i-th row

in the matrix without missing any adjacency relationships1.

After eliminating redundant rows, one adjacency constraint

1Torres and Brodie (1990), however, did not prove this.
Instead they warned that if Procedure 1 is applied, there is
a possibility of violating some adjacency relationships.
The proof is presented in the following section.
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is set up for each row not eliminated in Procedure 1 (the

unit corresponding to this row is called a reference unit).

This is referred to as Procedure 2. Torres and Brodie

(1990) provide heuristic rules to create an adjacency

constraint for each reference unit. The rules rely on the

technique of penalization. Unlike the pair, triplet, and

quadruplet relationships in Figure 2.2, a general adjacency

relationship of the reference unit to surrounding units

requires penalization on each coefficient of the control

variables in an adjacency constraint. The concept of the

"Four Color Conjecture" (May 1965) and a suggested "coloring

number" of five was introduced to support their use of

penalization. However, no theoretical derivation of use of

a coloring number of five instead of four was provided

except the statement ". . .by using larger coloring numbers we

reduce that possibility [possibility of violating adjacency

relations for complicated patterns].." This statement casts

some doubt on the applicability of their heuristic for many

types of patterns. Although Procedure 1 to eliminate

redundant rows can be proved correct and sufficient to

generate adjacency constraints, Procedure 2 remains

heuristic. The following describes the procedure for

penalization of a coefficient for a control variable in an

inequality from the example in Figure 2.1.

Following Torres and Brodie (1990), Procedure 1 is

applied to eliminate redundant rows in an adjacency matrix



for the example in Figure 2.1, resulting in:

00000
10110
00000
11101
00110
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The first and third rows are redundant. Following Procedure

2, units 2, 4, and 5 are selected as the reference unit.

After bringing adjacent units to a reference unit into a

constraint then penalizing coefficients of the control

variables, the following three constraints are obtained.

The adjacency constraint for the reference unit 2 is:

6X2+3X1+4X4+2X36, (22)

for the reference unit 4:

7X4 + 3X1 + 5X2 + 4X3 + 2X5 7, (23)

for the reference unit 5:

3X5+2X4+2X33. (24)

In order to obtain the final constraints the T-B algorithm

requires 9 entering units and 18 identical inequalities of

which equations (22), (23) and (24) require 6, 9 and 3

inequalities, respectively.

As can be seen in Meneghin et al. (1988) and Torres and

Brodie (1990), both algorithms utilize heuristic procedures

or rules for creating a smaller set of adjacency constraints

than results from application of the conventional algorithm.

However, it takes more time to set up adjacency constraints

by following their procedures than to use the conventional
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formulation. In what follows, an analytical algorithm is

proposed. The algorithm creates a sparser set of

constraints than the conventional algorithm and requires

less time to implement than either the M-K--J or T-B

algorithms.



AN ANALYTICAL ALGORITHM

In this section, we derive a new algorithm to write

adjacency constraints by using matrix algebra. Then we

apply the proposed algorithm to the example in Figure 2.1 in

order to demonstrate how it works.

As defined in the previous section, let A be an (n x n)

adjacency matrix, X. be a dichotomous control variable for

the i-th unit, and n be the number of units. In addition,

introduce an (n x 1) control vector X = (X1,X21"',X)t where

t represents the transpose. Further introduce a new vector

called an adjacency vector V which is defined by the product

of an adjacency matrix A and a control vector X:

V = AX (25)

The i-th element of the adjacency vector, v, is the sum of

Xi's where the j-th unit is adjacent to the i-th unit:

v = E X (26)

3 ESi

S is an index set called an adjacent set for the i-th unit

defined by:

Si { all j:such that the j-th unit is adjacent to

the i-th unit)

Adjacency constraints ensure that if two units are

adjacent, at least one of them can not be selected for

harvest. Thus the product of their 0-1 control variables is

always zero in any feasible solution. In other words, X1.X3

= 0 when the i-th unit and the j-th unit are adjacent. This

20
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is true also for all jS1. Thus we have the following

equation:

.E = 0

J Es1

X.[E X ] = 0 (27)

j
Equation (27) implies the following:

if X. = 1, all Xs (jeS1) are zero,

if any X = 1 (jcS1), X1 = 0,

X1 and Xi's (jeS1) can all be zero.

Therefore equation (27) represents all adjacency

relationships of the i-th unit to its surrounding units.

This is easily extended leading to the adjacency constraints

for all units by a matrix equation as follows:

Xt.V = 0 (28)

where 0 is an (n x 1) zero vector, and a control vector X

and an adjacency vector V are orthogonal. In order to

convert nonlinear adjacency constraints from equation (28)

to linear adjacency constraints, we go back to equation (27)

again.

Introducing r1 as the number of indices in S., we can

convert equation (27) into the following:

E X r1.[l - X1]
j 81

or (29)
+ E X.jsi

Actually, r. can be calculated by:

r1 = A1.2. (30)

or
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where A1, is the i-th row vector of an adjacency matrix A and

1 is an (n x 1) unit vector. Equation (29) also implies the

same cases as equation (27) does.

For the purpose of mathematical formulation, introduce

an (n x n) diagonal matrix B in which the i-th diagonal

element b11 is defined by:

b11 = r = A1,.1 (31)

Thus because A1,.X = E X, equation (29) can be expressed by:
j si

b11'X1 + A1,'X A10'l (32)

For all units i's, we have the true adjacency constraints

expressed by:

B.X + A'X
or (33)

M'X A'i.

where M = [A + B] called a modified adjacency matrix defined

by {m1} where:

ra1 ifij
m1= (34)

L A1,'l if i = j

As a result, we can derive the following proposition.

Proposition: If A is an (n x n) adjacency matrix with an

(n x n) modified adjacency matrix H,

H'X (33)

represents all adjacency constraints.

Based on equation (33), it is possible to further

reduce both the number of control variables in each

constraint and the number of constraints, while retaining

all adjacency relationships in the matrix. To reduce the
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number of control variables in each constraint, the nature

of symmetry of an adjacency matrix A is utilized. Since A

is symmetric, i.e., At = A, an upper triangular and a lower

triangular of the matrix of A represent the same adjacency

relationships as A itself does. This is due to the fact

that = a1, implying that X1.X = X.X1 0. Eliminating

elements above or below the principal diagonal of A, an

upper or lower triangular matrix of A is obtained (call this

as a triangular adjacency rnatrix (TAN)). This TAM can also

be applied to the above proposition with the corresponding

modified matrix to generate adjacency constraints.

For further reduction of the number of constraints from

A, Procedure 1 in Torres and Brodie (1990) is applied. As

mentioned in the previous section, if

n n
E a1 = E a11 I = l,,,n

j=l j=1

the i-th row and the i-th column represent the same

adjacency relationships. Thus, replacing the i-th row by

zeroes does not miss any adjacency relationships. This can

be proved by the nature of symmetry of an adjacency matrix

A.

Since At = A, equation (16) holds for any one of the

i's before changing any row. Choose the i-th row for the

first trial, replacing it by zeroes, i.e., = 0 for

j=l,,,n. At this point, no adjacency relationship is

missing. Elements in the i-th column represent the same

(16)
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adjacency relationship as the i-th row did. After changing

the i-th row, if there exists a k-th row and a k-th column

(k i) that satisfy equation (16), we know that alk = akl

=0, i.e., the i-th unit and the k-th unit are not adjacent

to each other. If they are adjacent, replacing the i-th row

by zeroes subtracts one from the sum of the elements in the

k-th column, but not in the k-th row, resulting in violation

of equation (16). If such a k-th row-and-column exists,

replacing the k-th row by zeroes also does not miss any

adjacency relationship. As long as such a row-and-column

exists satisfying equation (16), we can replace the

corresponding row by zeroes without missing any adjacency

relationship.

This adjacency matrix without redundant rows (called a

reduced adjacency matrix (RAN)) can also be applied to the

above proposition. In other words, this proves the

sufficiency of RAN to generate adjacency constraints. The

number of constraints will be less than or equal to the

number of reference units.

Reduction of a redundant element, or a1, from the

RAN, where = = 1, is accomplished by changing such an

element above or below the principal diagonal of the RAN to

zero (called a reduced triangular adjacency rnatrix (RTAN)).

The proposition is also effective for RTAN.

As a result, we can use the proposition to form four

different adjacency constraint formulations based on the



original adjacency matrix, TAN, RAN, and RTAN. To

demonstrate the derivation of adjacency constraints, the

example in Figure 2.1 is used.

The adjacency matrix becomes:

01010
10110
01011
11101
00110

A control vector X has a (5 x 1) dimension:

X = (X1,X2,X3,X4,X5)t (35)

If we decide to select unit 1 and unit 5, then a control

vector becomes:

X

An adjacency vector V is:

For instance, since the fourth unit has four surrounding

units, 1, 2, 3 and 5, then the following equality provides

all adjacency constraints for the fourth unit:

X4.( X1 + X2 + + X5 )
0 (37)

By converting a nonlinear constraint (37) into a linear

constraint, the following linear constraint can be obtained:

or
+ X2 + X3 + X5 4(1 - X4)

(38)
4X4 + X1 + X2 + X3 + X5 4.
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V = AX =

x2
xl
x2
xl
x3

+
+
+
+
+

x4
x3
x4
x2
x4

+
+
+

x4
x5
x3 + x5

(36)



Since

A1 = (2, 3, 3, 4, 2)t (39)

adjacency constraints based on the original adjacency matrix

are:

Since the TAN is:

TAN:A=

based on the TAM the adjacency constraints become:

RAN:A=

Based on the RAN, we have:

00000
10000
01000
11100
00110
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As for RAN, since the first and third rows of the original

adjacency matrix are redundant, elements in those rows are

replaced by zeroes. The following matrix is obtained:

00000
10110
00000
11101
00110

MX =

21010
13110
0 1 3 1 1
11141
00112

X1

X2

X4

X5

3

3

4

2

= A1 (40)

=

00000
11000
01100
11130
00112

xl
x2
x3
x4
x5

<

0

1

3

2

= A'l (41)



Reducing redundant elements from the RAN, the following

adjacency constraints based on the RTAM are obtained:

27

redundant control variables and redundant constraints, but

each is a true set of adjacency constraints. The choice of

constraints is dependent upon the user. The first

constraint formulation (40) based on the original adjacency

matrix does not require any calculation to further reduce

the number of constraints and control variables in the

constraints. The second formulation (41) based on TAM

requires a little calculation to eliminate redundant

elements from the original adjacency matrix. The number of

control variables in each constraint is less than or equal

to the number in the first formulation (40). The number of

M.x =

00000
13110
00000
11141
00112

.

xl

x2
x3
x4
x5

<

0

3

0

4

2

= A1 (42)

M'X =

The relationships

00000
12100
00000
11130
00112

.

in

xl

x2
x3
x4
x5

(40),

<

0
2

0

3

2

(41),

= A1

(42)

(43)

and (43) include

00000
10100

RTAN : 00000
11100
00110
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constraints is always less than the number of constraints in

the first formulation (40) by one. The third formulation

(42) based on RAN requires calculation to eliminate

redundant rows. The number of constraints is less than or

equal to that obtained in the second formulation (41), while

the number of control variables in each constraint is the

same or greater. The last formulation (43) based on RTAM

requires two operations to reduce redundant elements and

rows. The result is that the number of constraints is the

same as (42), but the number of control variables may be

reduced. Adjacency constraints derived from the last

formulation (43), therefore have a lesser number of control

variables in constraints and a lesser number of constraints

than the three other formulations.

Table 2.3 shows adjacency constraints derived for the

example in Figure 2.1 from the proposed algorithm based on

each adjacency matrix in addition to constraints resulting

from application of the conventional, the M-K-J and the T-B

algorithms. The number of adjacency constraints for the

conventional algorithm, the M-K-J algorithm, the T-B

algorithm are 7, 2, and 3, respectively. The number of

adjacency constraints based on the original adjacency

matrix, TAN, RAN and RTAN applied to the proposition are 5,

4, 3 and 3, respectively.
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Table 2.3.Adjacency constraints derived from each algorithm

ALGORITHM ADJACENCY CONSTRAINTS
CONVENTIONAL
ALGORITHM

Xl+X2<=l
X1+X4<=l
X2+X3<=l
X2+X4<=l
X3+X4<=l
X3+X5<=l
X4+X5<=l

M-K-J ALGORITHM 3X2+3X4+Xl+X3<=3
X3+X4+X5<=].

T-B ALGORITHM 6X2+3X1+4X4+2X3<=6
7X4+3X1+5X2+4X3+2X5<=7
3X5+2X4+2X3<=3

PROPOSED ALGORITHM
BY THE ORIGINAL
ADJACENCY MATRIX
(OAN)

2X1+X2+X4<=2
Xl+3X2+X3+X4<=3
X2+3X3+X4+X5<3
Xl+X2+X3+4X4+X5<=4
X3+X4+2X5<=2

PROPOSED ALGORITHM
BY THE TRIANGULAR
ADJACENCY MATRIX
(TAN)

Xl+X2<1
X2+X3<=l
X1+X2+X3+3X4<=3
X3+X4+2X5<=2

PROPOSED ALGORITHM
BY THE REDUCED
ADJACENCY MATRIX
(RAM)

Xl+3X2+X3+X4<=3
X1+X2+X3+4X4+X5<=4
X3+X4+2X5<=2

PROPOSED ALGORITHM
BY THE REDUCED
TRIANGULAR
ADJACENCY MATRIX (RTAM)

X1+2X2+X3<=2
X1+X2+X3+3X4<=3
X3+X4+2X5<=2



COMPARISON OF EFFICIENCY OF ALGORITHI4S

In this section, two adjacency maps are introduced for

further comparison of both the effort in deriving

constraints and the number of constraints that results for

seven different formulations. Then a one-period harvest

scheduling problem is solved for each of the seven different

formulations in order to investigate the influence of

different formulations on computational effort.

The first example (Figure 2.3-a) has 23 units with 12

triplets and 13 pairs of inequalities. The second example

(Figure 2.3-b) has 20 units with 1 triplet and 28 pairs of

inequalities.

Applying the conventional algorithm to the first

example, results in 41 constraints. The M-K-J algorithm

yields 25 type 1 inequalities and 121 possible combinations

of type 1 inequalities. The final number of constraints

becomes 12. Application of the T-B algorithm results in the

identification of 14 reference areas, implying that the

number of final constraints is 14. The total number of

entering units in the final constraints is 53, requiring

development of 88 identical inequalities to achieve the

final constraints. The proposed algorithm yields 23

constraints based on the original adjacency matrix, 22

constraints based on TAM, 14 constraints based on RAM, and

14 constraints based on RTAN. Since RAM and RTAM utilize

30
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17 - 18

19 20

Figure 2.3. Two example structures
23 unit problem
20 unit problem
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Procedure 1 in the T-B algorithm, the numbers of constraints

are the same as for the T-B algorithm. However, the number

of control variables in the constraints based on RTAN is

less than for the T-B algorithm, while the number based on

RAN is the same as for the T-B algorithm. Final constraint

sets for all algorithms are shown in Table 2.4.

For the second example (Figure 2.3-b), the conventional

algorithm yields 31 constraints. Application of the M-K-J

algorithm results in the creation of 29 type 1 inequalities,

and 232 possible combinations of type 1 inequalities. The

final number of constraints is 10. The T-B algorithm yields

10 final constraints, 34 entering units, and 36 identical

inequalities. The proposed algorithm based on the original

adjacency matrix, TAN, PAM and RTAN provides 20, 19, 10 and

10 constraints, respectively. The final constraint sets for

each algorithm are presented in Table 2.5.

The degree of effort required to generate the final

adjacency constraints is expressed in Table 2.6. The degree

of effort is a subjective rating which is based on the time

for completing procedures by hand. The conventional

algorithm has the largest number of constraints, but the

degree of effort is low. This is due to the fact that when

an adjacency matrix is determined, no further calculation is

required. In contrast, the M-K-J algorithm results in the

smallest number of constraints but requires a high degree of

effort, resulting from generating type 1 inequalities and



Table 2.4. Adjacency constraints for the 23 unit problem

*: Nuiter of constraints

CONy. :the conventional. pairwise formuLation

OAM: the original. adjacency matrix

TAM: the trianguLar adjacency matrix

RAM: the reduced adjacency matrix

RTAM: the reduced trianguLar adjacency matrix

33

CONy. M-KJ ALGORITHM ALGORITHM BY OAM ALGORITHM BY TAM

X1+X2<=1 2X2O+2X21+3X22+X23<=3 X3+X2+2X1 <=2 X3+X2+2X1 <=2

Xl +x3<=1 Xl +3X2+3X3+X6<=3 X6+X3+3X2+X1 <=3 X6+X3+2X2<=2

X2+X3<=1 X14+3X1 5+3X19+X16c=3 X6+X4+4X3+X2+Xl <=4 X6+X4+2X3c=2

X2+X6<=1 2X13+2X17+3X18+X21 <=3 X7+X5+3X4+X3<=3 X7+X5+2X4<=2

X3+X4<=1 2X5+2X8+3X9+X13<=3 X9+X8+3X5+X4<=3 X9+X8+2X5<2

X3+X6<=1 X6+3X10+2X11+2X15<=3 XlO+X7+4X6+X3+X2<=4 XlO+X7+2X6<2

X4+X5c=1 X3+5X4+X5+X7<=5 Xl 1X8+4X7+X6+X4c=4 Xl 1+X8+2X7<2

X4+X7<=1 3X1 1+X12+X15+3X16<=3 X12+X9+4X8+X7+X5<=4 X12+X9+2X8<=2

X5+X8<=1 3X12+X13+X16+3X17<=3 X13+3X9+X8+X5c=3 X13+X9<=l

X5+X9<=l X17+X19+3X2Oc=3 X15+X1 1+3X1O+X6<=3 X15+Xl1+2X10<2

X6-'-X7<=l X7+3X8+X12<=3 x16+x15+X12+5X11+X1O+X7<5 x16+X15+X12+3X1 1<=3

X6+X1O<=l X6+3X7+X11<=3 x17+X16+X13+5X12+Xl1+X8<=5 x17+x16+X13+3X12<=3

X7+X8<=1 x18+X17+4X13+X12+X9<=4 X18+X17+2X13<2

X7+Xl l<=1 X19Xl5+2X14<=2 X19+X15+2X14<=2

X8+X9<=1 X19+X16+5X15+Xl4+X1l+X1O<&5 X19+X16+2X15<=2

X8+X12<=1 X19+X17+5X16+X15+X12+Xl1<5 X19+X17+2X16c=2

X9+X13<=l X20+X18+5X17+X16+X13+X12<5 X2O+X18+2X17<=2

X1O+X1l<=1 X21+3X18+X17+X13<3 X21+Xl8c=l

Xl Q+X15<=1 X20+4X19+X16+X15+X14<4 X20+X19<=l

Xl 1+X12<=1 X22+X21+4X20+X19+X17<4 X22+X21+2X20<2

Xl l+Xl5<=1 X22+3X2l+X20+Xl8<3 X22+X21<=l

Xl l+X16<1 X23+3X22+X21+X20<3 X23+X22<=1

Xl2+X13<=l X23+X22c=l

X12+X15c=1 12 23 22

X12+X17<=1 T-B ALGORITHM ALGORITHM BY RAM ALGORITHM BY RTAM

X13+X1 7<=1 6X2+4X1+4X3+3X6<=6 X6+x3+3X2+X1<=3 X1+3X2+X3+X6c=3

Xl3+X18<=1 6X3+3X1+4X2+X4+2X6<=6 X6+X4+4X3+X2+Xl <=4 x1+3X3+X4+X6<=3

X14+X1 5<=1 4X5+X4+2X8+2X9<=4 X9+X8+3X5+X4<3 X4+3X5+X8+X9<=3

X14+X19<=1 4X7+X4+X6+X8+X1 1 <=4 Xl 1+X8+4X7+X6+X4<=4 X4+X6+4X7+X8+X1 1 <4

X15+X16<=1 4X9+2X5+2X8+X13<=4 X13+3X9+X8+X5<=3 X8+2X9+X13<2

X15+X19<=1 4X10+X6+2X11+2X15<=4 X15+X11+3X10+X6<=3 X6+3X1O+X11+X15<=3

X16+X17<=1 8X12+X8+3X11+2X13+4X16+3X17<=8 X17+X16+X13+5X12+X11+X8<5 X8+Xl1+5X12+X13+X16+X17<5

X16+X19c=1 9X15+3X1O+5X11+2X14+4X16+3X19<=9 X19+X16+5X15+X14+X11+X1O<!5 X11+X14+4X15+X16+X19<=4

X17+X18<=1 1OX16+6X11+5X12+4X15+2X17+2X19<=1OX19+X17+5X16+X15+X12+Xl1<5 X11+3X16+X17+X19<3

X17+X20c=1 8X17+5X12+5X13+2X16+2X18+X20<=8 X2O+X18+5X17+X16+X13+X12<5 X13+3X17+X18+X2O<3

X18+X21<=1 4X18+2X13+2X17+X21<=4 X21+3X18+X17+X13<=3 X13+2X18+X21<=2

X19+X20<=1 6X19+3X14+4X15+2X16+X2O<=6 X2O+4X19+X16+X15+X14<=4 X14+2X19+X2O<=2

X20+X21<=1 4X21+X18+2X20+2X22<=4 X22+3X21+X2O+X18<=3 X2O+2X21+X22c=2

X20+X22<=1 4X22+2X20+2X21+X23<=4 X23+3X22+X21+X2O<=3 X2O+2X22+X23<=2

X21+X22<=l

X22+X23<=1

41* 14 14 14



Table 2.5.Adjacency constraints for the 20 unit problem
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*: Nunber of constraints

CONV. :the conventional pairwise formulation

OAM: the originaL adjacency matrix

TAM: the triangular adjacency matrix

RAM: the reduced adjacency matrix

RTAM: the reduced triangular adjacency matrix

CONV. M-K-J ALGORITHM ALGORITHM BY CAM ALGORITHM BY TAM

X1+X2<=1

X1+X6<=1

X2+X3c=1

X2+X7<=1

X3+X4<=1

x3+X8<=1

X4+X5<=l

X4+X9<=1

X5+X1O<=l

X6+X7<=1

X6+Xl1<1

X7+X8<=1

X7+X12<=l

X8+X9<=l

x8+X13<=l

X9+X1O<=1

X1O+X13<=1

Xl O+X16<=1

Xl 1+X12<=l

X12+Xl3<=l

X12+X14<=1

X13+X15<=l

X14+X15<=1

Xl 4+X1 7<=1

X15+Xl6<=1

X15+X18<=1

X16+X18<=1

Xl7+X18<=1

Xl7+X19<=1

Xl8+X20<=l

X19+X20<=l

17X+3X19+X20<=3

X1+5X2+X3+X7<=5

X1+5X6+X7+X1 1<=5

X3+5X4+X5+X9<5

3X15+3X16+5X18+X17+X2O<5

X12+5X14+X15+X17c=5

X5+7X1O+X9+X13+X16<7

X7+5X12X1 l+X13<=5

X3+7X8+X7+X9+X13<=7

X13+X1 5<=1

x6+x2+2X1<=2

X7+X3+3X2+X1 <=3

x8+x4+3X3+X2<=3

X9+X5+3X4+X3<3

X1O+2X5+X4<=2

xl l+x7+3X6+Xl<=3

X12+X8+4X7+X6+X2<=4

x13+X9+4X8+X7+X3<=4

X1O+3X9+X8+X4<=3

x164-x13+4X1O+X9+X5<=4

X12+2X1 lX6<=2

X14+X134X12+X1 1+X7<=4

X15+4X13+X12+X1O+X8<4

xl 7+Xl 5+3X14+Xl 2<=3

X18+Xl6+4X15+X14+X13<4

X18'-3X16+X15+X1O<3

X19+X18+3X17+X14<=3

x2O4X18+Xl7+X16+X15<4

X2O+2X19+X17<2

2X2O+X19+X18<=2

X6+X2+2X1<=2

X7+X3+2X2<=2

X8+X4+2X3<2

X9+X5+2X4<2

X1O+X5<=1

Xl l+X7+2X6c=2

X12+X8+2X7<=2

X13+X9+2X8<=2

X1O+X9<=l

X16+X13+2X1 O<=2

X12+Xl1<=l

X14+X13+2X12<2

X15+X13<=l

Xl 7+X1 5+2X14<2

X18+X16+2X1 5<=2

X18+X16<=1

X19+X18+2X1 7<=2

X2O+Xl 8<=1

X2O+X19<=l

10 20 19

T-B ALGORITHM ALGORITHM BY RAM ALGORITHM BY RTAM

3X2+X1+X3+X7<3

3X4+X3+X5+X9<=3

3X6+X1+X7+X1l<=3

4X8+X3+X7+X9+X13<=4

4XlO+X5+X9+X13+X16<=4

4X12+X7+Xll+X13+X14<4

5X15+X13+X14+2X16+2X18<5

3X17+X14+X18+Xl9<=3

4X18+2X15+2X16+X17+X2O<=4

2X2O+X1 8+Xl 9<=2

X7+X3+3X2+Xl<3

X9+X5+3X4+X3<=3

xl l+X7+3x6+X1<=3

x13+X9+4X8+X7+X3<=4

X16+X13+4X1O+X9+X5<4

X14+X13+4X12+Xll+X7<4

X18+X16+4X15+Xl4+X13<4

X19+X18+3X17+X14<=3

x20+4X18+X17+X16+X15<4

2x2O+X19+Xl 8<=2

Xl+3X2+X3+X7<3

X3+3X4+X5+X9<3

xl+3X6+X7+Xll<=3

X3+X7+4X8+X9+X13<4

X5+X9+4X1O+X13+X16<4

x7+X11+4X12+X13+X14<4

Xl3+X14+4X15+X16+X18<4

xl4+3X17+X18+X19<3

Xl6+2X18+X20<2

Xl 9+X20<=l

31* 10 10 10



Table 2.6. A comparison of the efficiency of the algorithms

OAN : the original adjacency matrix, TAN : the triangular adjacency matrix,
RAM : the reduced adjacency matrix, RTAM : the reduced triangular adjacency matrix

Algorithms Problem
Number

of
Constraints

The Degree of Effort

Conventional
Algorithm

23 Units 41 Low (no further calculation)

20 Units 31 Low (no further calculation)

M-K-J
Algorithm

23 Units 12 High (121 combinations of Type 2)

20 Units 10 High (232 combinations of Type 2)

T-B
Algorithm

23 Units 14 Moderate (88 identical inequalities)

20 Units 10 Moderate (36 identical inequalities)

Proposed
Algorithm
By OAN

23 Units 23 Low(no arrangement of adjacency matrix)

20 Units 20 Low(no arrangement of adjacency matrix)

Proposed
Algorithm
By TAM

23 Units 22 Low (reduction of redundant elements)

20 Units 19 Low (reduction of redundant elements)

Proposed
Algorithm
By RAN

23 Units 14 Low (reduction of redundant rows)

20 Units 10 Low (reduction of redundant rows)

Proposed
Algorithm
By RTAM

23 Units 14 Low (reduction of rows and elements)

20 Units 10 Low (reduction of rows and elements)
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all possible type 2 inequalities, and then selecting the

final constraints. As for the T-B algorithm, it yields a

reduced number of constraints with a moderate degree of

effort due to the heuristic of Procedure 2. The proposed

algorithm yields a reduced number of constraints, and the

degree of effort is low. Once an adjacency matrix is

determined, only the elementary algebra is required, i.e.,

eliminating redundant rows and elements from an adjacency

matrix.

Although the number of constraints is dependent upon

the structure of the problem, the M-K-J algorithm seems to

result in fewer constraints as the number of triplets

increases. From the number of all possible combinations of

type 1 inequalities for the two examples in Figure 2.3, it

is noticeable that the more triplets, the less combinations

of type 1 inequalities. The T-B algorithm, on the other

hand, requires more identical inequalities with an increased

number of triplets.

It is interesting to note the relationship between the

numbers of constraints among different algorithms. Our

conclusion is that the number of constraints resulting from

the N-K-J algorithm might be less than or equal to the

number of constraints from the T-B algorithm and the

proposed algorithm. This is due to the fact that each

constraint generated by the proposed algorithm can be

formulated in one constraint by the M-K--J algorithm. To
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prove this, consider the general constraint (29) generated

by the proposed algorithm in the previous section:

E X r..[l - X1]
j Cs1

or
r1X1 + E X.

Cs1

This constraint can be disaggregated into:

X1 + X 1, for all jcS1

The j-th unit (jcS1) has the i-th unit in common, and the

above equation (44) satisfies the first condition of the M-

K-J algorithm for type 2 inequalities:

E X. + X 1, j P (= 5-) (7)

iE

Therefore we can formulate a type 2 inequality as follows:

(2r1 - l).X1 + X (2r1 - 1) (45)

jP
This implies that there exist such rules for the M-K-J

algorithm that result in the same number of constraints as

that of the proposed algorithm. If the heuristic rules of

the M-K-J algorithm are more efficient than such rules, the

number of adjacency constraints formulated by the M-K-J

algorithm could be less than or equal to that of the other

algorithms.

In considering the T-B algorithm, it is sufficient to

penalize coefficients of only reference units by the number

of entering units (adjacent units) so that the T-B algorithm

formulates the same adjacency constraints as the proposed

algorithm based on RAN. Penalization of entering units

(29)

(44)
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considers adjacency relationships among entering units,

which are already represented by relationships with other

reference units.

To evaluate the influence of different foiiuulations on

the computational task of solving the resultant integer

programming problem, LINGO/386 (anguage for teractive

eneral ptimization) by Cunningham and Schrage (1989) was

used. Like other commercial softwares, LINGO/386

incorporates the branch-and-bound algorithm. The branch-

and-bound algorithm was developed by Land and Doig (1960)

and Dakin (1965). The algorithm starts by solving the

integer programming problem without any integer restriction

on integer variables. A tree search is then utilized by

imposing bounds on integer variables which do not attain

integer values. Once all integer variables attain integer

values, one feasible solution is obtained. When the tree

search is completed, the best feasible solution is

identified.

The computational task for seven different formulations

is evaluated based on the number of pivots and the real time

in seconds. A pivot is a transformation which corresponds

to a step in the Gaussian elimination technique for solving

linear equations (Nemhauser and Wolsey 1988). The detail of

pivot operations can be found in operations research

textbooks, such as Bazaraa and Jarvis (1977) and Winston

(1987)
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The objective of the problem is to maximize the sum of

returns from each dichotomous control variable. Table 2.7

shows the return from each unit for the two examples. Both

problems are solved over a single period.

Table 2.8 shows results from the seven different

formulations. Linear programming relaxed solutions and the

final integer solutions are provided along with the

corresponding number of pivots and computational time. For

both examples, the integer solutions from all formulations

are the same. In terms of the number of pivots to obtain a

linear programming relaxed solution, we have the following

relationship among formulations:

23 unit problem:

T-B < M-K-J = RAM = RTAN < OAN = TAM < Cony.

20 unit problem:

T-B < RAM = RTAN < M-K-J < TAM <OAN < Cony.

where the notation is defined by:

Cony.: the conventional algorithm,

M-K-J: the M-K-J algorithm,

T-B : the T-B algorithm,

OAM : the proposed algorithm based on the original

adjacency matrix,

TAN : the proposed algorithm based on TAM,

RAN : the proposed algorithm based on RAN,

RTAN : the proposed algorithm based on RTAN.

Based on the objective value of the linear programming
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Table 2.7.Return from each unit for both 23 and 20 unit
problems

UNIT # 23 UNIT PROBLEM 20 UNIT PROBLEM
1 *1987.5 1546.3
2 1359.8 1161.0
3 1048.8 474.7
4 2143.4 346.5
5 1466.4 668.9
6 1131.1 488.2
7 615.0 1026.2
8 448.9 702.1
9 360.5 831.4
10 1247.1 568.8
11 853.2 1776.0
12 658.1 1333.5
13 2189.3 1852.5
14 1643.8 1390.9
15 1173.0 1469.8
16 744.4 1103.5
17 543.4 1362.6
18 436.4 1023.1
19 744.4 1156.2
20 543.4 791.0
21 436.4 *****

22 1351.0 *****

23 924.3 *****



Table 2.8. Results of computational comparisons among algorithms

ALGORITHM

ExampLe

ProbLems

IP relaxed solution FinaL IP solution

Objective Value #of Pivots Objective Value # of Pivots TIME(second) TIME/PIVOT(second)

CONVENTIONAL

ALGORITHM

23 UNIT

PROBLEM 12165.2 33 11872.1 54 6.97 0.129

20 UNIT

PROBLEM 11826.6 27 11826.6 27 4.72 0.175

M-K-J

ALGORITHM

23 UNIT

PROBLEM 14689.4 20 11872.1 2489 56.46 0.023

20 UNIT

PROBLEM 14696.3 20 11826.6 1150 25.76 0.022

1-B

ALGORITHM

23 UNIT

PROBLEM 14256.8 18 11872.1 2601 59.31 0.023

20 UNIT

PROBLEM 13206.0 17 11826.6 584 12.74 0.022

PROPOSED ALGORITHM

BY THE ORIGINAL

ADJACENCY MATRIX

(OAM)

23 UNIT

PROBLEM 13345.0 25 11872.1 367 14.88 0.041

20 UNIT

PROBLEM 12433.3 25 11826.6 113 6.81 0.060

PROPOSED ALGORITHM

BY THE TRIANGULAR

ADJACENCY MATRIX

(TAM)

23 UNIT

PROBLEM 13510.9 25 11872.1 322 10.54 0.033

20 UNIT

PROBLEM 12160.2 23 11826.6 44 4.77 0.108

PROPOSED ALGORITHM

BY THE REDUCED

ADJACENCY MATRIX

(RAM)

23 UNIT

PROBLEM 15657.7 20 11872.1 2864 70.52 0.025

20 UNIT

PROBLEM 13279.5 17 11826.6 725 15.54 0.021

PROPOSED ALGORITHM

BY THE REDUCED

TRIANGULAR

ADJACENCY MATRIX (RTAM)

23 UNIT

PROBLEM 15630.7 20 11872.1 1938 39.71 0.020

20 UNIT

PROBLEM 12984.7 23 11826.6 533 11.09 0.021
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relaxed solution, however, we have:

23 unit problem:

Cony. < OAM < TAN < T-B < M-K-J < RTAN < RAN

20 unit problem:

Cony. < TAM < OAN < RAN < T-B < RTAM < M-K-J.

As for the final integer solution, we have different orders

among formulations from the above results. In terms of the

nuniber of pivots:

23 unit problem:

Cony. < TAN < OAM < RTAN < M-K-J < T-B < RAM
(1) (6) (6.8) (35.9) (46.1) ( 48.2) (53)

20 unit problem:

Cony. < TAN < OAM < RTAN < T-B < RAN < M-K-J
(1) (1.6) (4.2) (19.7) (21.6)(26.9)(42.6)

The value in the parenthesis indicates the ratio of the

number of pivots to the number of pivots for the

conventional algorithm. Williams (1974) defines

formulations, such as the conventional, for which numerous

pivots are required in the linear programming relaxed

solution and a low value for its objective function, as

"tight.'t Tighter formulations will tend to be more

efficiently solved in the integer phase. For instance, the

proposed algorithm based on RAN takes 53 times more pivots

than the conventional algorithm for the 23 unit problem, and

the M-K-J algorithm takes 42.6 times more than the

conventional algorithm for the 20 unit problem. On the

basis of the computational time, we have the same order as



the above with different ratios:

23 unit problem:

Cony. < TAM < OAM < RTAN < M-K-J < T-B < RAM
(1) (1.5) (2.1) (5.7) (8.1) (8.5)(lO.l)

20 unit problem:

Cony. < TAN < OAN < RTAM < T-B < RAN < M-K-J
(1) (1.0) (1.4) (2.3) (2.7) (3.3) (5.5)

From the above results, it is possible to divide the

seven different formulations into three groups:

(Cony.), (OAN, TAN), {M-K-J, T-B, RAN, RTAN).

In terms of the number of pivots and computational time, the

first group is better than the other two groups, and the

second group is better than the third group, while in terms

of the number of adjacency constraints and computational

time per pivot, the opposite relationship is true.
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CONCLUSIONS

In this paper, an analytical algorithm to generate

adjacency constraints is proposed. The main advantage of

the proposed algorithm over the other two heuristic

algorithms is that the proposed algorithm is theoretically

proved to be correct and it is easy to create constraints.

The advantage over the conventional algorithm is the small

number of constraints.

Although the M-K-J algorithm provides fewer adjacency

constraints, a much larger effort is required. The M-K-J

algorithm efficiently transforms a group of type 1

inequalities into one type 2 inequality. However, the rest

of the ?I-K-J procedures remain inefficient in terms of the

effort to determine the final constraints.

Procedure 1 in the T-B algorithm is theoretically

proved to be correct in reducing redundant constraints and

sufficient to generate constraints. Because of this, the T-

B algorithm has some advantage in effort over the M-K-J

algorithm. Procedure 2, on the other hand, is heuristic and

can cause difficulty for understanding and explaining the

procedures. This might be the reason that Torres and Brodie

(1990) mentioned the possibility of violating adjacency

relationships in using the reference units to create

adj acency constraints.

One of the characteristics of both the M-K-J algorithm

44
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and the T-B algorithm is that both were derived from the two

dimensional map, where only the three patterns of adjacency

relationship in Figure 2.2 can be drawn, while the proposed

algorithm was not. Since the proposed algorithm was derived

by means of matrix algebra, any adjacency matrix can be

applied. For instance, suppose our problem is extended to

the multiperiod problem. Additional constraints may be that

only one treatment (decision) is made for each unit. This

constraint is easily included in the adjacency matrix, since

each decision for one unit has adjacency relationships with

other decisions. Once the adjacency matrix is obtained, the

rest of the work is easy.

The M-K-J algorithm creates the smallest number of

adjacency constraints, followed by the T-B algorithm and the

proposed algorithm based on both RAN and RTAM, followed by

the proposed algorithm based on TAM, the original adjacency

matrix, and the conventional algorithm. However, from our

experiments (even though not exhaustive), we can conclude

that it is not always true that the less the number of

adjacency constraints, the less the computational time for

integer programming problems. It may be true that the less

the number of adjacency constraints, the less the

computational time per pivot.

It is worth noting the following three points Williams

(1974) pointed out from his experiments in integer

programming:
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Ingenious formulations to make a model more compact

(less restraints) are usually not as good (efficient in

integer solution) as less sophisticated formulations.

It is desirable to make an integer programming

problem as tight as possible in a continuous sense.

The number of iterations taken to reach the

continuous optimum (linear programming relaxed

solution) is usually greater in the tighter

formulation.

Our experiments support the above points. Of all

algorithms, the conventional algorithm is revealed to be the

tightest formulation, followed by the proposed algorithm

based on the original adjacency matrix and TAN.

Applying the branch-and-bound algorithm for solving a

single period harvest scheduling problem, the conventional

algorithm is the way to go as it appears to offer the

easiest formulation to solve. For large problems where the

number of constraints/variables exceeds the capabilities of

the solution system being utilized, an approach such as the

one outlined here is useful. In other circumstances where

the use of the branch-and-bound algorithm is impractical in

terms of computational task, reduction of constraints plays

an important role in constructing a heuristic technique to

solve the problem. The composite relaxation method

presented by Torres et al. (1990) is such a heuristic.
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Chapter 3

A COMPARISON OF APPROACHES FOR INTEGRATING

SPATIAL CONCERNS INTO HARVEST SCHEDULING

by

Atsushi Yoshimoto

J. Douglas Brodie

and

Juan N. Torres R.

ABSTRACT

Due to capability limitations of the integer

programming solution technique, an alternative heuristic

algorithm was developed to solve spatially constrained area-

based harvest scheduling problems. The technique utilizes

random ordering heuristic optimization and the PATH

algorithm adapted from stand level optimization. Employing

the proposed algorithm, a harvest scheduling system was

constructed. The performance of the proposed algorithm is

presented in comparison to the branch-and-bound algorithm

and the composite relaxation algorithm. Solutions found for

the sample problems by the proposed algorithm are stable in

terms of the objective value, and have harvest flow
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fluctuation much less than 5 %. The proposed algorithm

yields better solutions for the 3 or more period problems

than those of the branch-and-bound algorithm using 100,000

iterations as the limit for iteration. The new algorithm

also outperforms the composite relaxation algorithm. For

the 1- and 2- period problems, the solutions by the proposed

algorithm can produce an objective value with deviation less

than 2 % from the optimal solution. From the upper bound of

the corresponding linear programming relaxation, the

proposed algorithm provides solutions with the objective

value within 7 % for 3 or more period problems. The

advantage of the proposed algorithm results from

partitioning the problem period by period using the PATH

algorithm, and respecification of the objective function of

the subproblem by minimizing the flow fluctuation, leading

to a final solution with small flow fluctuation and high

objective value.



INTRODUCTION

The determination of which harvest units should be

harvested, by what method, and when, is the main issue in

the harvest scheduling problem. If no constraints are

considered, optimization of each individual harvest unit

over the time horizon (stand level optimization) constructs

an optimal harvest schedule for the whole target forest. In

such an unconstrained harvest scheduling problem, for

example, the objective becomes to search for the optimal

rotation age and optimal thinning regime for each stand,

leading to an optimal harvest schedule.

Difficulty arises when harvest units are combined to

meet a physical or economic objective function subject to a

range of multiple-use resource constraints (forest level

optimization). Constraints generally deal with harvest

flows, habitat specifications and other societal concerns.

Mathematical programming techniques have been applied

to not only stand level optimization but also forest level

optimization. Among these techniques, a fundamental

methodology, linear programming (LP), plays an important

role in optimization of harvest scheduling problems. LP is

a widely used optimization technique and one of the

practical tools devised for complex decision-making problems

that optimally allocates limited resources to competing

activities. Timber RAM (Resource Allocation Model) (Navon

52
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1971) and FORPLAN (QRest PLANing) (Johnson and Stuart 1987)

are widely used LP based models for forestry problems.

To solve LP problems, the simplex algorithm developed

by Dantzig (1951) has been the most successfully applied.

The simplex algorithm involves a procedure that progresses

from one basic feasible solution to another basic feasible

solution so that each iteration is guaranteed to provide a

better solution.

Due to the increasing number of decision variables and

constraints in harvest scheduling problems, LP formulations

of timber management become so large that solution by LP

becomes infeasible, even with today's sophisticated software

and modern computer technology. As a result, techniques

that provide solutions that are near-feasible and near-

optimal have become acceptable as a "good" solution with

less cost and computational time. Minimally infeasible

solutions can be provided for specifications that are

inherently infeasible. LP would provide no solution for

such specifications. Decomposition (Berck and Bible 1984)

and simulation techniques (Lagrangean relaxation) (Hoganson

and Rose 1984) are introduced as an alternative technique

for large-scale LP problems.

As long as LP based models are utilized, the decision

variables must be divisible and continuous, taking any

nonnegative real value. A decision variable may not be

divisible, however, if it represents a discrete type of
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activity such as a "harvest"-or-"not harvesttl decision, a

"build a road"-or-"not build a road" decision and so on. In

such a case, a decision variable is forced to be a

dichotomous or zero-one variable. Introducing a dichotomous

decision variable into the area-based model can prevent

fractionalization of a harvest unit. Fractionalization

would occur if part of a harvest unit were assigned to

harvest and part to habitat protection. This can be avoided

by requiring that only one prescription be selected. By

doing so, a forest planner could readily implement

prescriptions without disaggregating a solution from LP.

Harvest scheduling problems containing dichotomous

decision variables can be formulated by mixed integer

programming (MIP) or 0-1 integer programming (IP). The

Integrated Resource Planning Model (1RPM) was developed by

Kirby et al. (1980) as an MIP model for solving this type of

scheduling problem.

A branch-and-bound algorithm with LP relaxation (B&B)

is most widely applied to commercial codes for solving MIP

or IP problems (Nemhauser and Wolsey 1988). This method was

developed by Land and Doig (1960) and improved by Dakin

(1965). The algorithm first solves an LP relaxed problem by

ignoring integer restrictions. Then a new constraint, which

forces the LP solution toward an integer solution, is added,

leading to a new LP relaxed problem to be solved. The

process continues until either a fully integer solution is
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found or the solution becomes inferior to the best solution

previously found or the problem is found to be infeasible

with no integer solution.

Difficulties are encountered in optimizing MIP or IP

problems by B&B when the number of integer variables is

large. There are two strategies to handle difficulties.

One is to arrange an IP formulation in order for the

algorithm to find integer solutions at the earliest stage of

the LP relaxation problem. Ghandforoush and Greber (1986)

proposed an efficient IP formulation method which reduced

the computational burden effectively.

The other approach is to use a heuristic. Zanakis and

Evans (1981) suggested the use of a heuristic "optimization"

procedure (in contrast to a more efficient formulation) in

order to reduce the computational burden. The nature of a

heuristic is such that a heuristic "optimization" algorithm

does not necessarily provide an optimal solution but

provides a "good" solution with reasonable computational

cost. There are two different types of heuristic techniques

in the forestry literature. One is a random search

technique and the other is a composite relaxation technique.

A random search technique utilized for an optimization

problem in forest management was first presented by Bullard

et al. (1985). They used a random search technique for a

stand level optimization problem. For the forest level

optimization problem, Sessions and Sessions (1988), O'Hara
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et al. (1989) and Nelson et al. (1990) introduced a random

search technique with or without modification. Using the

other heuristic technique, Torres et al. (l990b) introduced

a composite relaxation technique for a spatially constrained

area-based harvest scheduling problem.

The objective of this paper is to propose another

alternative technique for a spatially constrained area-based

harvest scheduling problem based on a random search

technique, then evaluate its performance in comparison to

other techniques. The remainder of this paper is organized

as follows. First, a spatially constrained area-based

harvest scheduling problem is formulated as an IP problem.

Then random search techniques by Sessions and Sessions

(1988), O'Hara et al. (1989) and Nelson et al. (1990), and

a composite relaxation technique by Torres et al. (1990b)

are briefly reviewed. In the third section, the alternative

technique is introduced based on a random search technique.

In the fourth section, the model applying the proposed

algorithm is developed, then the model experiment is

conducted in the fifth section. The evaluation of the

proposed algorithm is completed in the sixth section in

comparison to the best solution of B&B and the composite

relaxation technique developed by Torres et al. (1990b).



THE SPATIALLY CONSTRAINED HARVEST SCHEDULING PROBLEM

Integer Programming Formulation

The problem considered is a spatially constrained area-

based harvest scheduling problem with even-flow and

adjacency constraints. We formulate an IP problem where

is an (N x 1) dichotomous decision vector with N

representing the number of decisions and, an element of is

defined by,

1 if the i-th decision is implemented
xi =

0 otherwise

The objective is to maximize the present net worth of return

from each decision,

ZIP = maximize { )
(1)

{}

where C is an (N x 1) coefficient vector of ç, representing

present net worth of return and t denotes the transpose. In

this paper, a decision is meant to be a certain treatment of

a harvest unit, e.g., "harvest the 5-th unit at period

three" as in the Model I formulation (Johnson and Stuart

1988). Even-flow constraints can be expressed by,

V.X=VO (2)

where VO is a (T x 1) even-flow vector, and is a (T x N)

matrix whose element Vik represents harvestable volume

contributed by the k-th decision at the i-th period and T is

the number of periods.
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Great attention has been paid to the adjacency

constraint formulation. One of the most common formulations

is through conventional pairwise adjacency constraints.

Each pairwise adjacency constraint has the following form,

x + x for all i and j (>i) (3)

where the i-th and the j-th decisions cannot be achieved at

the same time and these two decisions do not belong to the

same harvest unit.

As for other formulations, Meneghin et al. (1988),

Torres and Brodie (1990), and Yoshimoto and Brodie (1990)

proposed efficient adjacency formulations in a sense that

the formulation has less constraints than the conventional

pairwise adjacency constraints. Unless the conventional

pairwise adjacency formulation is applied, an adjacency

matrix, A is necessary for other formulations. This

adjacency matrix consists of a1 elements whose values are

one if the i-th harvest unit is adjacent to the j-th unit,

and zero otherwise. Using n as the number of harvest units,

has a (n x n) dimension. Expanding the adjacency matrix

for N decisions by replacing harvest units by decisions,

has an (N x N) dimension. An element of A is one if the

i-th and j-th decisions cannot be implemented at the same

time, and zero otherwise. Again, note that these two

decisions don't belong to the same harvest unit.

Meneghin et al. (1988), Torres and Brodie (1990), and

Yoshimoto and Brodie (1990) have recently proposed
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algorithms for efficiently and sparsely specifying adjacency

constraints. The Yoshimoto and Brodie (1990) approach can

be systematically and analytically derived without use of

heuristics, and the formulation can be proved to be correct

in the sense that no adjacent harvests occur. In this

paper, we will use Yoshinioto and Brodie's (1990) formulation

to generate adjacency constraints for both IP and

alternative solution methods. Since the conventional

algorithm was shown to be most efficient for B&B, the IP

examples are also formulated using this algorithm.

Following Yoshimoto and Brodie (1990) for the purpose

of simplification of the formulation, adjacency constraints

are formulated by,

(4)

where

MO = A.1

M=A+B
and is a diagonal matrix whose i-th diagonal element is

the same as the i-th element of MO and ]. is a unit vector.

Each element of A is defined by,

1
J if the i-th and j-th decisions

a. . = T 1 cannot be achieved together
1J

0 otherwise

Equation (4) can be used for the conventional pairwise

formulation by changing dimension and elements of and

The last constraints are the land accounting

constraints which imply that only one decision is achieved
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for one harvest unit over the time horizon in considering

"no activity" as one decision for the unit. Letting D be

a decision set for the i-th harvest unit, these land

accounting constraints are expressed by,

E x. = 1 for i = (5)

jeD1

Deleting the no-activity decision from the decision set, the

equality in (5) becomes an inequality, i.e., less than or

equal to 1. Substituting the matrix notation, equation (5)

becomes;

(6)

where L is an (n x N) matrix. The i-th column vector of L

corresponds to the decisions for the i-th harvest unit. Any

decision of X for the i-th harvest unit has 1 value in the

i-th column vector of L.

As a result, the following IP formulation is utilized,

(IP) ZIP = maximize { CX ) (1)

uc}

subject to

v.x=vo (2)

(4)

(6)

e (0, 1)

It is interesting to mention that an adjacency matrix

can be augmented to include the relationship among all

decision variables. In other words, the augmented (N x N)

adjacency matrix A' includes not only the usual two
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dimensional adjacency relationship among harvest units

described by constraints (4), but also land accounting

constraints described by (6). Algorithms by Meneghin et al.

(1988) and Torres and Brodie (1990) may fail in application

to the augmented adjacency matrix ', because they

introduced their heuristic algorithms based on a two-

dimensional map, which describes spatial relation among

units. Utilizing the augmented adjacency matrix by

Yoshimoto and Brodie (1990) may reduce additional adjacency

constraints for the multiperiod scheduling problem.

Speaking of the computational effort, the more integer

variables in the problem, the greater the computational time

required to solve it by the B&B algorithm. Due to the

limitations on the number of iterations, a solution could

even be non-optimal. Because of this impracticability in

integer optimization, heuristic algorithms to resolve the

computational problem of providing a "good" solution have

been developed. Since the future conditions of timber

market or environmental conditions are uncertain, this

"good" solution may be acceptable from a practical point of

view. In what follows, a random search heuristic and a

composite relaxation heuristic are reviewed.

The Random Search Technique

One category of heuristic technique is the random
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search or Monte-Carlo search technique. Brooke (1958)

discussed the usefulness of a random search technique

compared to other nonlinear programming algorithms and

concluded that when the model is of such complexity and/or

size as to defy any attempt at an exact or approximate

solution, it may be possible to apply the random method to

yield an approximate solution backed up by a strong

statement of confidence.

Bullard et al (1985) applied this technique to

optimize thinning regime in stand level analysis. At the

forest level, Sessions and Sessions (1988), O'Hara et al.

(1989) and Nelson et al. (1990) utilized a random search

technique for a spatially constrained area-based forest

planning problem.

A basic idea in common to these studies is to generate

a set of feasible solutions in a random fashion, then select

the solution with the highest objective value (for the

maximization problem).

Sessions and Sessions' (1988) problem is a joint

optimization problem of a road network and a spatially

constrained harvest schedule with flow and adjacency

constraints in the short term (over three periods). Their

random search technique is the same as the original one (see

Conley 1980), but is combined with a heuristic road network

optimization (Sessions 1987). The procedure is such that it

generates a feasible solution over three periods, then
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applies a heuristic road network optimization to calculate

the objective value for a final solution. Harvest flow

level is given by the user, so that several trials with

different flow levels are required to get an appropriate

flow level. One of the reasons for limiting the problem to

the short term might be that the more periods, the less

probability that a solution is even feasible if each harvest

unit is equally likely to be selected for harvest.

Due to the difficulty in generating a feasible solution

over a long time horizon, Otllara et al. (1989) applied a

prebiasing search technique to favor harvest units

considered more likely to yield good solutions for harvest

scheduling problems with flow and adjacency constraints.

Prebiasing is based on contribution of each harvest unit to

the objective function, the number of adjacent units to each

unit, or a combination of both, so that the probability of

each unit to be selected for harvest is specified rather

than randomly generated. They mentioned the use of binary

search for determining the harvest flow level, but did not

incorporate it into their model. In their examples, several

trial-and-error procedures seem to be required to determine

the timing and type of prebiasing methods to be applied.

This poses the question of which prebiasing technique works

best for any particular spatially constrained harvest

scheduling problem.

Unlike the above two techniques by Sessions and
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Sessions (1988) and O'Hara et al. (1989), Nelson et al.

(1990) applied their random search technique to determine a

tactical strategy in the short term, then combined it into

FORPLAN (Johnson and Stuart 1987) for a long term

sustainable solution. Harvest flow level in their problem

is determined by initially solving the strata-based forest

planning problem for the entire forest.

While the above two random search techniques determine

harvest strategy at each period sequentially, a random

search technique used in Nelson et al. (1990) applied a

quasi-sequential look-ahead method to generate and improve

a feasible solution toward a best solution. In other words,

a quasi-sequential look-ahead method uses three best

feasible solutions among a set of feasible solutions over

all the periods (in their case three periods). Then only

strategies at the first period of those three solutions are

fixed. For the second period, three sets of feasible

solutions over the rest of periods are generated, resulting

from the previous three strategies. Then they select one

best solution from each set. From these three best feasible

solutions over the first two periods, harvest strategies for

the following period are generated by satisfying feasibility

over the rest of periods. This procedure continues until

the last period. At the last period, among all feasible

solutions, the one with the highest objective value is

selected as an optimal solution. Note that all feasible
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solutions at every period are derived from the three best

feasible solutions over all the periods, so that at each

iteration feasibility of a solution is guaranteed. When

using this technique for a long-term problem, the solution

time could increase dramatically due to the quasi-sequential

look-ahead.

The Composite Relaxation Technique

Torres et al. (1990b) used a composite relaxation

technique to solve the habitat dispersion problem, which is

an area-based forest planning problem with wildlife habitat

requirement constraints and harvest flow and adjacency

constraints as well. Eliminating the wildlife habitat

requirement constraints, the problem becomes the same as the

proposed problem.

Their relaxation technique consists of; 1). dualizing

complicated constraints (wildlife habitat requirement

constraints and harvest flow constraints) into the objective

function, 2). replacing the adjacency constraints by one

surrogate constraint. The resultant problem, therefore, has

a relaxed objective function and one surrogate constraint as

well as land accounting constraints (harvest and reharvest

decisions). The basic idea behind the composite relaxation

technique is to transfer the problem into a simple knapsack

problem, which has one objective function with only one
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constraint.

Applying the original problem (IP) without land

accounting constraints,

(IP) ZIP = maximize { çt.]
} (1)

(}

subject to

vx=vO (2)

(4)

X {O, 1)

the composite relaxation problem is derived as follows.

Dualizing constraints (2) with Lagrangean multipliers J, the

first relaxed problem becomes a Lagrangean relaxation

problem (LR) (Geoffrion 1974),

(LR) L(ll) = maximize { ct.X - llVX ) (7)

{)

subject to

(4)

X {O, 1)

Changing multipliers II provides several sets of and the

corresponding objective value L(). The best set of

multipliers 11* should satisfy,

L(ll*) L(ll) for all II (8)

An alternative relaxation of the problem (IP) is

formulated by a surrogate relaxation (Glover 1975) with

surrogate multipliers . Relaxing constraint (4), we have,

(S) S(a) = maximize { ç.]ç ) (1)

uc)

subject to
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v.x = vo (2)

ørt.M.X (9)

X {0, 1)

Like Lagrangean multipliers, the best set of surrogate

multipliers * is obtained by,

S(a*) S(a) for all a (10)

The Lagrangean relaxation reduces the number of constraints

by bringing constraints into the objective function while

the surrogate relaxation does so by transforming multiple

constraints into a single constraint.

Combining the Lagrangean relaxation (LR) and the

surrogate relaxation (S), a composite relaxation (Greenberg

and Pierskalla 1970) is obtained by,

(C) C(ll,g) = maximize { CX - llt.v.x } (7)

subject to

at.M.X aMO (9)

X e {0, 1)

Similarly, changing a set of multipliers II and the best

set of multipliers 11* and a* is obtained by,

C(ll*,*) C(ll,) for all II and (11)

The relationship among the above relaxation problems is

described by Gavish and Pirkul (1985a),

L(ll*) S(*) > C(ll*,*) ZIP (12)

Torres et al. 's (1990b) formulation utilizes land

accounting constraints with "no activity" as one decision,

LX=i (6)
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separately to adjust the feasibility of the solution. As a

result, their composite relaxation problem is actually

formulated by,

= maximize { C.X - flt.tq. ) (7)
{c}

subject to

LX=i (6)

at.M.X a'MO (9)

e (0, 1)

Their procedure starts finding surrogate multipliers first

by solving,

S(a) = maximize { C'X } (1)

{c)
subject to

atM.X aMO (9)

(0, 1)

The algorithm developed by Gavish and Pirkul (1985b) was

used with modifications. Sorting adjacency constraints in

terms of the objective values provided by maximizing S()

with only one constraint, i.e., each adjacency constraint,

the adjacency constraint with the lowest objective value is

determined with the first surrogate constraint, Checking

feasibility of a solution against the rest of the adjacency

constraints, a surrogate constraint is updated until none of

the adjacency constraints is violated by a solution.

Once surrogate multipliers are calculated, only

Lagrangean multipliers are adjusted following the
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subgradient method every time a solution is found

iteratively. There is no iteration for searching for the

best surrogate multipliers. Precise adjustment procedures

for multipliers can be found in Torres et al. (l990a,b).
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THE ALTERNATIVE TECHNIQUE BASED ON A R2NDOM SEARCH TECHNIQUE

As can be observed, the shortcoming of a random search

technique seems to be that it is difficult to generate even

a feasible solution over long time horizons, and to provide

an appropriate or optimal harvest flow level. In what

follows, the solution strategy of our proposed technique,

another modified random search technique, is introduced.

The proposed technique not only solves a long term forest

planning problem, but also provides an appropriate harvest

flow level simultaneously.

projection 1ternative ecfinique (PATH) in Harvest

Scheduling Problems

The PATH (Projection Alternative ecffnique) algorithm

was originally derived for the stand level optimization

problem (Paredes and Brodie 1987, and Yoshimoto et al.

1988). By eliminating projections from inferior

alternatives over the entire projection period and

redefining the objective function, the computational task

was vastly reduced. The basic concept behind the PATH

algorithm can be interpreted in such a way that the problem

can be partitioned into several subproblems stage by stage

or period by period with the iterative process over the

stage or period. One problem remains as to how to redefine
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the objective function of a subproblem in order to achieve

an optimal solution.

Applying PATH to the harvest scheduling problem, the

solution technique should consist of two phases. One is

global optimization, and the other is regional optimization.

By applying the one-stage look-ahead technique from PATH,

the problem is partitioned into a subproblem at each period

where regional optimization generates a feasible solution

for each period. The subproblem at the regional

optimization phase is specified as follows.

At the regional optimization phase, the subproblem

could be formulated by partitioning the original problem (1)

directly into,

Z1(i) = maximize { Q ) (13)

uci)

subject to

x xo1 (14)

V1.; = vo1 (15)

(0,1)

where is a vector representing only a solution for the i-

th period. C1 is a coefficient vector of g, is a sub-

matrix of , NO1 is the corresponding vector of , and

is a sub-matrix of V, for , respectively at the i-th

period. Since land accounting constraints can not be

specified period by period, they should be handled

implicitly. The random search technique could then be

applied to the above subproblein.
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Unlike the stand level analysis (Yoshimoto et al.

1990), due to the harvest flow constraints and adjacency

constraints, the subproblem cannot be treated independently.

In other words, a solution of the above problem is most

unlikely to be feasible for the following period. This is

because of the fact that if "good" harvest units with high

present net worth are always selected for harvest first,

then the rest of units would not be able to sustain the

even-flow level (Nelson 1988). A modification of problem

specification can be implemented by changing the objective

function and feasibility conditions of the subproblem.

Since even-flow constraints are most likely to be

violated, these concerns can be respecified as minimization

of flow deviation. The resultant problem becomes a

multicriteria problem which maximizes the present net worth

and minimizes the deviation of harvest flows over periods.

In the proposed technique, minimization of the harvest flow

deviation becomes the objective of the subproblem (SP). In

addition, feasibility is guaranteed in the following period

as well as the current period. These two modifications of

the subproblem will guide the random search technique to

generate a "good" feasible solution. Note that the

feasibility condition could be further expanded, however as

the number of periods for feasibility increases, the

computational time increases exponentially, and the random

search technique becomes complicated and inconvenient in
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application. Thus a feasibility condition for only two

sequential periods is used.

The subproblem (SP) at the i-th period is formulated

by,

(SP) Z1(i) = minimize - Vl
I

(16)

{}
subject to

(14)

i+1i+1 j'i (17)

(l-P) .VO V1X1 (l+P) VO (18)

(1-P) .VO (l+P) VO (19)

cl, c1+1 {O,l)
where P is an acceptable percentage of harvest flow

fluctuation. I.' denotes the absolute value, and Vl is set

as (l-P) 'VO, the minimum level of harvest flow in our model.

As can be seen, a feasible solution at each period is not

only feasible in the current period but also feasible at the

following period in a sense that it can generate at least

one feasible solution in the following period.

Minimizing Deviation of Harvest Flow

The random search technique called ROHO (andom

Qrdering Heuristic Qptimization) is applied for the

subproblem to generate a set of feasible solutions at each

period. ROHO works as follows. Assigning a random value to

harvest units, a descending ordered sequence is obtained
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based on a random value. The ordered sequence is used to

select units for harvest. In other words, at first, the

first ordered unit is selected for harvest. Eliminating the

adjacent units to the selected unit, a unit with the highest

random value among the rest of the candidates is selected as

the second unit. At each selection, units adjacent to the

units previously selected are eliminated. Since the

objective of the subproblem is to minimize a deviation of

harvest flow, once the total harvestable volume becomes

greater than a given harvest level, Vl, selection of units

ceases. Since the order, by which one harvest unit is

selected affects selection of the rest of the units, a

descending order is changed by replacing the first ordered

unit into the last one, the second ordered into the first,

and so on. After obtaining a new ordered sequence, another

trial to generate a feasible solution is implemented. This

changing procedure continues until the first ordered

sequence appears again. As a result, at least once, each

unit dominates the first selection for a solution with a set

of given random numbers. The following is a changing

procedure of the ordered sequence.

1st sequence: X(l),X(2),X(3),,,,X(n)

2nd sequence: X(2),X(3),X(4),,,,X(l)

3rd sequence: X(3),X(4),X(5),,,X(l),X(2)

S

S

S

n-th sequence:X(n),X(l),X(2),,,X(n-l)
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where X(i) is the i-th ordered harvest unit. Given a

sequence, after a feasible solution is generated for the

current period, the same trial is implemented to see if this

feasible solution can provide a feasible solution for the

following period. If there is no feasible solution for the

following period, a solution for the current period becomes

infeasible. After completion of this iteration, the ordered

sequence can also be arranged by assigning another set of

random numbers to units.

By changing the ordered sequence, a set of feasible

solutions for the current period and the following period is

obtained. Among them a solution with the closest current

harvest flow to a given flow level, Vi, i.e., minimum

deviation of harvest flow, is chosen as the best solution at

the current period and the remaining periods. A flowchart

of the ROHO algorithm is presented in Figure 3.1.

In comparison to the other random search technique,

ROHO sets up the ordered sequence randomly, but not the

selection of a harvest unit. The stochastic nature of the

random search technique does not influence the selection of

harvest units given an ordered sequence. Although ROHO and

the other random search techniques cease selection of

harvest units at each period when the harvestable volume

exceeds the lower bound of the flow constraints, the

solution from ROHO has the "minimum" deviation from the

lower bound among a set of feasible solutions. However, the
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other techniques do not have any particular solution

characteristics other than feasibility.

The Binary Search Method For The Harvest Flow Level

To search for a "good" solution over the time horizon,

the proposed technique combines the ROHO algorithm and the

PATH algorithm, called ROHO-PATH (Random Qrdering Ifeuristic

ptimization with projection lternative ecnique) for a

given harvest flow level, VO.

By changing the harvest flow level, VO, using the

binary search method at what we will call the global

optimization phase in the ROHO-PATH algorithm, a set of

feasible solutions with different objective value and with

"minimum" deviation of harvest flow over the entire period,

is created.

The binary search method to determine an appropriate or

optimal harvest flow level, VO with some modification is

described as follows. As an initial step, an initial

harvest flow level, VO° is to be specified. An acceptable

percentage, P, of harvest flow fluctuation for a given

harvest level is also to be specified. As long as harvest

flow level at each period lies within ± P % from a given

harvest level, VOk, a solution is regarded as a feasible

solution. Once a feasible solution is generated over all

periods, a new harvest flow level is determined by the



following incremental sequence,

(1 - P) VO' = (1 + P) .VOk

or (l+P)
VO' - VOk for k > 0 (20)

(l-P)

That is, a minimum harvest flow level for a new iteration,

VO1 is set equal to a maximum harvest flow level for a

previous iteration, VOk. If there is no feasible solution

after a given number of trials, harvest flow level is

reduced to a previous level, and then a new flow level is

specified by increasing this level by one percent until the

total number of sequential failures reaches a given number.

Since the problem is discrete leading to an irregular

response surface, the method of sequential increase in VO by

a constant rate works better than the original binary search

method, which works well for a smooth unimodal response

surface.

Maximizing Present Net Worth

For a given even-flow level, VO, the iterative

procedure of minimizing deviation of harvest flow at each

period creates one feasible solution for all the periods if

the even-flow level is feasible. Applying a modified binary

search method for optimizing an even-flow level with

"minimum" deviation of harvest flow, a set of feasible

solutions for all periods with different flow level is

78
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obtained. Among them, the best solution is to be selected

as a final solution based on a certain criterion.

Torres et al. (l990a) provide a criterion to

distinguish one primal infeasible solution from another

infeasible solution to the original IP problem with even-

f low constraints. They observed that the primal solution

associated with a Lagrangean problem with minimum value,

which in addition has the smallest sum of absolute

infeasibility, is a better primal solution than a solution

with larger objective function value and larger sum of

absolute infeasibility. As a result, the sum of absolute

infeasibilities was used as a criterion in their problem.

In our problem, however, the minimum sum of absolute

infeasibilities is not always preferable. For instance,

suppose the problem is a four period problem, and the first

primal infeasible solution has the following harvest flow

pattern,

530 mbf at 1st period

500 mbf at 2nd period

500 mbf at 3rd period

500 iubf at 4th period

and an even-flow level is 500 mbf. The sum of absolute

infeasibilities among periods is calculated as 30 mbf. In

addition, the sum of absolute infeasibilities from the 500

mbf even-flow level is also 30 mbf. Further suppose the

second infeasible solution has the following harvest flow
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515 mbf at 1st period

505 mbf at 2nd period

515 mbf at 3rd period

505 mbf at 4th period

and the even-flow level is the same as the other solution.

The sum of absolute infeasibility among periods is the same

as the first solution, 30 mbf, but there is a 40 mbf

deviation from the 500 mbf even-flow level. Although both

solutions have the same sum of absolute infeasibilities

among periods and the first solution has less infeasibility

from the 500 mbf even-flow level, the second solution is

preferable because of less fluctuation of harvest flow. In

other words, infeasibility is spread over all the periods.

In considering spread of infeasibility over periods,

one of the alternatives for a criterion can be percentage of

harvest flow FLUCtuation, FLUC (%), calculated by,

Flow.max - Flow.min * loo(%)FLtJC(%)
- Flow.max + Flow.min

where Flow.ivax is a maximum harvest flow during periods and

Flow.min is a minimum flow. Actually, FLUC is a solution of

the following system of equations for FLUC and flow level V1

(1 - FLUC/l00) .V = Flow.min (22)

(1 + FLUC/l00).V = Flow.max (23)

Thus FLUC reflects the fact that all harvest flows lie

within ± FLUC (%) fluctuation from V1 and FLUC is the

minimum fluctuation level. The smaller FLUC, the less

80
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fluctuation in harvest flow. For the above example, the

first solution has FLUC(l) = 2.9 % and the second has

FLUC(2) = .9 %. Thus based on the minimum fluctuation

criterion, the second primal infeasible solution is

determined as a better solution than the first one.

When ROHO-PATH generates a feasible solution, the

acceptable harvest fluctuation level, P, in the subproblem

(SP) is first specified. In addition, ROHO-PATH uses

further restricted fluctuation level, Pt (< P), dividing a

set of feasible solutions into two groups,

Gi = : P' < percent of fluctuation )

G2 = {X : 0 percent of fluctuation Pt}

Using the minimum fluctuation criterion, the second group is

better than the other. The solution with the highest

objective value in G2 is regarded as a final solution. If

there is no such solution in G2, a solution with the highest

objective value in Gi is regarded as a final solution. The

minimum fluctuation criterion is only used to divide a set

of feasible solutions by ROHO-PATH into these two groups.

Due to the discrete nature of the problem, there is a

case where ROHO-PATH with a small P value often fails to

generate a feasible solution to the subproblem, leading to

the failure of a search for the best solution. With two

different levels of flow fluctuations, we can not only

classify a set of feasible solutions but also let ROHO-PATH

continue to search a solution with the maximum allowable
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level of fluctuation, P, and obtain an optimal solution with

the preferable level of fluctuation, P'. That is, P is to

generate a set of feasible solutions, and P' is to select

the final solution by maximizing the objective function.

The structure of the ROHO-PATH algorithm is described in

Figure 3.2.

Since the original problem

(IP) ZIP = maximize ( t]

{c}

subject to

v.x=vo

X (0, 1)

is transformed into

Z1 = maximize { C. X ) =
{X)

where X1 is a solution of

(SP) Z1(i) = minimize
{}

subject to

MO1

i+1i+1
(l-P) 'VO

(l-P) 'VO

c1+1 (0,1)

the final solution of the proposed problem is not exactly

)

T
maximize ( E C1.X1

{X1) i=l

- Vi
I

)

(1)

(2)

(4)

(6)

(24)

(16)

(14)

(17)

(18)

(19)

(1+P) 'VO

y11.ç11 (l+P) V0
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Figure 3.2. The structure of the ROHO-PATH algorithm
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the same as the solution of the original one. However, with

small violations of harvest flow constraints, a set of

solutions generated by the proposed technique,

should be at least near-feasible and "good" for the original

problem.



MODEL DEVELOPMENT

Applying the ROHO-PATH algorithm, the spatially

constrained area-based harvest scheduling model called

SSMART (cheduling System of janagement alternatives foR

limber-harvest) was developed to handle 500 maximum harvest

units up to 20 periods. SSMART was written in FORTRAN 77

and compiled by RN/FORTRAN Compiler Version 2.43. A single-

tree/distance-independent growth model, Stand Projection

ystem (SPS) (Arney 1985) was incorporated into SSMART as an

option to generate volume and corresponding value of stands.

A random number generator by Schrage (1979) was used for the

ROHO part of SSMART.

When using SPS, value data for a stand is calculated

with price equation as a function of diameter-breast-height

(dbh),

Price = f(dbh)

Price can be specified on the basis of either thousand cubic

feet or thousand merchantable board feet. Regeneration cost

and interest rate are specified by the user as well as the

number of periods, the minimum rotation periods, and the

number of periods for adjacency lag, during which adjacent

harvest units cannot be harvested.

SSMART has three main parameters to modify the

efficiency of the iterative process. The first parameter is

the maximum number of internal iteration, NI, which
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determines the number of sets of random numbers assigned to

harvest units. Utilizing ROHO at each period, NI ordered

sequences are obtained. NI times n (number of units) is the

upper bound of the number of feasible solutions at each

period. Among those feasible solutions, the one with the

closest harvestable volume to a lower bound of flow level is

selected at each period.

The second parameter is the maximum flumber of entire

iterations over the time horizon, NE. In order to decide if

a given even-flow level, VO, is feasible, SSMART continues

the iterative process until the total number of failures to

search for a feasible solution reaches NE.

The third parameter is the maximum flumber of sequential

Zailures, NF, for a flow level VO. After the total number

of failures to search for a solution reaches NE, SSMART

keeps increasing VO by one percent for another trial, but

with only one trial over the time horizon, i.e., NE = 1.

Once the number of sequential failures reaches NF, SSMART

ceases the process, then selects the best solution with the

highest objective value among a set of feasible solutions

which satisfy P' of flow fluctuation. If any solution is

found before the number of sequential failures becomes NF,

NE is reset as before, then SSMART continues the iterative

process for another solution.

An initial harvest flow level is specified by dividing

the total volume at the first period by the number of
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periods, provided that the number of periods is more than

two. Otherwise, the total volume is divided by three for an

initial harvest flow level, VO. This can be changed by the

user depending on the problem.



MODEL EXPERIMENTATION

To evaluate the performance of the ROHO-PATH algorithm

by SSMART as an alternative technique for seeking the

optimal solution of forest planning problems, two forest

structures are adopted from Nelson et al. (1990) and Barker

(1989).

The first forest is located on the southern coast of

British Columbia. This forest consists of 109 stands

grouped into 62 analysis areas. Among them, 45 harvestable

units are used for spatially constrained area-based plans.

Spatial relationship among units is depicted in Figure 3.3.

As can be seen, 45 units are divided into two groups,

resulting in a reduction of the number of adjacency

relationships. Species of all trees are assumed to be

Douglas-fir (Pseudotsugarnenziesii (Mirb) Franco). Total area of

the 45 units is 4190 acres. Stand age ranges from 60 years

to 200 years. Age distribution at the current period is

given in Figure 3.4-a. Each stand structure was derived

from a stand with site index 135 feet at breast height age

basis by using the SPS growth model. Table 3.1 shows this

base stand input file for SPS.

The second forest is the Green River Subbasin on the

Alsea Ranger District, Siuslaw National Forest in Oregon.

Forest structure is depicted in Figure 3.5. The total area

is 6382 acres. This forest includes five private blocks.
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Table 3.1. Input data file for SPS (see Arney 1985)

SP SITE AGE REGION
STAND DF 135 10 PNW
MERCH 1.0 16.4 4.0 6.0
NAME input data file for SPS

SP DBH TOP TPA AGE SDEV NAT
TABLE 1 DF 1.0 30.0 100. 10 .25 1

TABLE 2 DF 2.0 32.0 150. 10 .25 1

TABLE 3 DF 3.0 33.0 50. 10 .25 1

CLUMP .90
REPORTS 10 20 30 40 50 60 80

91



23: harvest unit number
* : private block

: the stream
-: harvest unit boundary

Figure 3.5. The second example forest from Barker (1989)
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Species of all trees are also assumed to be Douglas-fir.

The number of harvestable units is 137 without the private

blocks. There are two age groups of stands. One is mature

stands above age 80, and the other is young stands with age

distribution ranging from 10 to 40 years (Figure 3.4-b).

Stand volume also is created based on the stand in Table 3.1

by SPS.

Price per cubic foot was unity for all diameter

classes. No price premium by dbh was assumed. A four

percent interest rate was used. No cost was imposed. Six

different time horizons were used, i.e., one, two, three,

five, seven and ten decades. The minimum rotation age was

set as 60 years (6 periods). Thus, there was no

regeneration harvest for the 1-, 2-, 3-, and 5-period

problems. The number of periods for which adjacent units

must lag between harvests was set as one.

As a criterion for a feasible solution in SSMART, 10 %

flow fluctuation was used as the first acceptable level of

fluctuation, P, and 5 % was used for the second preferable

level, P'. That is, a set of feasible solutions should

satisfy ± 10 % fluctuation over the time horizon, and a

restricted set should satisfy ± 5 %. The final solution is

selected from a restricted set with the highest present net

worth. Three different NI's, 1,2, and 3 were used for the

stopping rule of the ROHO algorithm at each period. NE was

set as 10, and NF was 5.
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The forest from Nelson et al. (1990) was used first.

Figure 3.6 shows the relationship between the objective

value and even-flow level, VO. In Figure 3.6-a, NI =1,

while NI = 3 in Figure 3.6-b. As can be seen in Figure 3.6,

all changing patterns for NI = 1, and NI = 3, are the same.

The initial large change in the objective value for the 1-,

2-, 5-, 7- and 10-period problems was caused by the

incremental change in VO from equation (20). The three-

period problem did not have this large initial change in VO,

while the 10-period problem had two large changes. For the

5-period problem, no feasible solutions were found after the

large change. Changing the initial even-flow level, VO,

might change the number of big jumps on points, which also

affect the computational time. Judging from the final

objective value, there is not much difference between

solutions by NI = 1 and NI = 3.

As for the quality of feasible solutions in terms of

flow fluctuation, however, there is some difference between

them. Figure 3.7 shows the change in flow fluctuation over

the number of trials. Note that the more the number of

trials, the larger the even-flow level, VO. The upper

graph, Figure 3.7-a, shows high deviation on flow

fluctuation of feasible solutions, while the lower graph

does not. The average flow fluctuation of feasible

solutions for NI = 1 is 1.3 (%) with 1.00 (%) standard

deviation. For NI = 3, the average is 0.6 (%) with 0.5 (%)
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standard deviation. From this result, it can be said that

the larger NI, the less the flow fluctuation. This may be

due to the fact that for larger NI, more feasible solutions

may be generated, resulting in a high probability of having

a solution with lesser flow fluctuation.

Figure 3.8 shows three sets of final solutions for 6

different period problems. Figure 3.8-a is in terms of the

objective value and Figure 3.8-b is in terms of the

calculational time (seconds). Difference in the objective

value among three different NI's is small relative to the

absolute value of the objective value. The largest

difference was 1.89 % and the smallest was 0.47 %. On the

other hand, the calculation time is not so. The larger NI,

the more the iterations. However, doubling NI does not mean

twice the calculation time.

Based on the objective value, NI = 3 provided the

highest value for the 1-, 3-, and 10-period problems, while

NI = 2 does so for the 5- and 7- period problems, and NI =

1 does for the 2-period problem. All final solutions are

given in Table 3.2.

Using a forest from Barker (1989), the second

experiment was completed. Figure 3.9 shows the same

relationship as Figure 3.6. For different NI, both graphs

in Figure 3.9 were almost the same. In comparison to Figure

3.6, because of the availability of harvestable units in

Barker's (1989) forest, final even-flow level VO for the 5-,
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Table 3.2. The final solutions for the first example forest by SSMART

the nuther of periods

the number of integer variabLes

1)

Period

2)

# of Integer Vars.

1

Internal Iteration

2

Internal Iterations

3

Internal Iterations

Best

Solution

1 45

Objective Value 29964798 29908054 30048438 30048438

FLuctuation (%) N/A N/A N/A N/A

Time (second) 164 252 312 312

2 90

Objective Value 45985504 45117420 45117420 45985504

Fluctuation (%) 2.64 0.16 0.16 2.64

Time (second) 299 338 480 299

3 135

Objective Value 48398436 48512456 49174844 49174844

Fluctuation (%) 1.09 0.12 0.71 0.71

Time (second) 620 1061 1909 1909

5 225

Objective Value 40299364 40659432 40319384 40659432

Fluctuation (%) 0.95 0.59 1.84 0.59

Time (second) 338 670 755 670

7 360

Objective Value 35485656 35680836 35615752 35680836

FLuctuation (%) 1.49 1.94 0.13 1.94

Time (second) 663 1016 1380 1016

10 900

Objective VaLue 32423532 32520914 32767306 32767306

Fluctuation () 1.22 0.41 0.41 0.41

Time (second) 980 1425 2171 2171
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7-, and 10-period problems were closer to the 1-, 2-, and 3-

period problems than those in Figure 3.6.

From Figure 3.10, it is also observable that the larger

NI, the less the flow fluctuation with lower standard

deviation. For NI = 1, the average is 0.21 (%) with 0.23

(%) standard deviation, while the average is 0.10 (%) with

standard deviation 0.11 (%) for NI = 3. Again, because of

the greater availability of harvestable units, these figures

are much less than those from Nelson et al. 's (1990) forest.

Three sets of final solutions are depicted in Figure

3.11. Figure 3.11-a is based on the objective value and

Figure 3.11-b is based on the calculation time (seconds).

NI = 1 provided the highest objective value for the 1-, 3-,

5- and 7-period problems, while NI = 2 does for the 2- and

10-period problems. There are no superior solutions by NI

= 3 (Table 3.3). The largest difference of the objective

value is 2.24 % and the smallest is 0.06 %.

Figure 3.12 shows the dynamics of stand age

distribution for Nelson et al.'s (1990) forest over 10

periods. At period 1, the forest does not have stands

younger than 50 years, at 90 years, and between 130 and 190

years. The oldest stand was 200 years. At period 2, 4, and

6, three age groups of stands remain. However, at period

10, no gap in age distribution was observed. Figure 3.13 is

for Barker's (1989) forest over 10 periods. The gap in age

distribution at period 1 disappears after period 4. At
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Table 3.3. The final solutions for the second example forest by SSMART

the nunber of periods

the nunber of integer variables

1)

Period

2)

# of Integer Vars.

1

Internal Iteration

2

Internal Iterations

3

Internal Iterations

Best

Solution

1 45

Objective VaLue 16672700 16626770 16611460 16672700

Fluctuation (V.) N/A N/A N/A N/A

Time (second) 404 719 932 404

2 90

Objective Value 21876402 22378024 22328280 22378024

Fluctuation (V.) 0.03 0.09 0.20 0.09

Time (second) 3656 7417 12981 7417

3 135

Objective VaLue 27697024 27639188 27584592 27697024

fluctuation (V.) 0.18 0.14 0.09 0.18
Time (second) 3793 6601 9737 3793

5 225

Objective Value 32716462 32709842 32697972 32716462

Fluctuation (%) 0.49 0.33 0.20 0.49

Time (second) 3816 6237 7156 3816

7 360

Objective Value 33231870 32912416 33211696 33231870
Fluctuation (V.) 0.33 0.08 0.04 0.33
Time (second) 3844 5727 10773 3844

10 900

Objective VaLue 32806306 33075206 33064266 33075206
fluctuation (V.) 0.31 0.09 0.06 0.09
Time (second) 4914 12236 13697 12236
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Figure 3.13. Dynamics of stand age distribution of the
second example forest over 10 periods by SSMART
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period 10, harvest can be implemented from most of stands at

age 60, which is the minimum rotation age. Conversion of

these unregulated forests into nearly regulated forests,

i.e., equal area in each age class, results from the

combination of the present net worth objective, minimum

harvest age and harvest flow constraints and occurs for

longer time horizons without specific inventory constraints.
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EVALUATION OF THE PERFORMANCE OF THE PROPOSED ALGORITHM

Two solution techniques were used to compare the

performance of the ROHO-PATH algorithm by SSMART. The first

utilized commercial software, implementing the branch-and-

bound algorithm with LP relaxation. This was accomplished

by using LINGO/386 (Language for teractive eneral

ptimization) (Cunningham and Schrage 1989). The second is

the composite relaxation technique. A computer program

called RELAX (Torres and Brodie 1989) was used. RELAX was

written in FORTRAN 77 code using RN/FORTRAN compiler version

2.43. A Compaq 386/25MHz personal computer with 80387 math-

coprocessor was used for calculation.

Before evaluation, the best problem specification for

B&B and for RELAX were determined, because using an

inefficient formulation for both techniques might result in

a tremendous amount of time to find any feasible solution,

leading to a false superiority of SSMART. Using the forest

from Nelson et al. (1990), selection of the best formulation

was completed first.

Solutions By The Branch-and-Bound Algorithm

In order to compare the performance of B&B to others,

it is necessary to select the best IP formulation on the

basis of the computational time and the final objective
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value. For efficiency of B&B varies depending upon the IP

formulation structure. Yoshimoto and Brodie (1990) used a

single period spatially constrained scheduling problem to

conclude that the conventional pairwise adjacency constraint

formulation would find a final solution faster than other

formulations even if it has the largest number of

constraints.

Expanding the time horizon further, land accounting

constraints should be taken into account, which might affect

the number of constraints and therefore the computational

time. Four different Ip formulation structures were used.

Two different stopping rules for B&B are applied in

LINGO/386. One is to use the IP tolerance, IPTOL. Once B&B

finds an incumbent integer feasible solution with the

objective value, z, the search is restricted to branches

which are at least IPTOL times z better than the incumbent.

The other is to limit the number of iterations, i.e.,

pivots. Using these two rules separately or jointly, we can

avoid inefficient searching by B&B. Even if B&B finds the

optimal solution, it continues searching until it is

guaranteed that the solution is optimal. Since heuristic

techniques cannot guarantee the optimality of the solution,

it is not necessary for B&B to guarantee it for the

comparison purpose, either.

Four different IP formulations shared the same

objective, maximizing the present net worth of return from
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each decision, and the following two sets of constraints,

harvest flow constraints

0-1 integer restriction.

With a preferable flow fluctuation, P' = 0.05, even-flow

constraints (2) in the original IP formulation were replaced

by,

(1 + P').VO (25)

(1 - P').vo (26)

"No activity" for a harvest unit is not considered as one

decision.

The first formulation, called CONy, was built with the

conventional pairwise adjacency constraints and the land

accounting constraints as well as the above two sets of

constraints. The number of constraints for the 1-, 2-, 3-,

5-, 7-, and 10-period problems was 85, 215, 300, 470, 1050,

and 8275, respectively. Sudden change in number for the 7-

and 10-period problems was caused by regeneration harvest

activities. Due to the limitation of the number of

constraints of LINGO/386, the 10-period problem could not be

solved.

For the problem formulated by CONy, two experiments

with different stopping rules for the iterative procedure

were conducted. The first achievement was done only with 5

% IP tolerance. Results are shown in the fourth column of

Table 3.4. Solutions for the 1-, 2- and 5-period problems

turned out to be optimal in a sense that there is no



Table 3.4. The final solutions for the first example forest by LINGO/386

the number of periods

the nuier of integer variables

based on the traditional formulation with the IP toLerance 5%

based on the traditionaL formulation with 100,000 maximum number of pivots

based on the trianguLar adjacency matrix and Land accounting constraints

based on the augmented triangular adjacency matrix

based on the reduced triangular adjacency matrix and Land accounting constraints
* : solution may be nonoptimat

**: out of the memory to run the model by LINGO/386

***: no integer solution found

1)

Period

2)

# of Integer Vars.

3)

TRAD.

IPTOL: 5 %

4)

TRAD.

PIVOTS: 100000

5)

TAM + LA

PIVOTS: 100000

6)

AUG.TAM

PIVOTS: 100000

7)

RTAM + LA

PIVOTS: 100000

1 45

# of Constraints 85 85 46 46 31

LP Objective Value 34593898 34593898 36775621 36775621 39412172

IP Objective VaLue 30048438 30048438 30048438 30048438 * 30048438

Time (second) 33 32 457 457 4551

2 90

# of Constraints 215 215 137 94 107

IP Objective Value 58942449 58942449 59119738 59596727 59976727

IP Objective Value 46414288 47215532 * 45824392 * 43474552 * 40511072

Time (second) 355 1055 4943 4406 5041

3 135

# of Constraints 300 300 183 142 138

IP Objective Value 53005586 53005586 53100039 77003016 53184406

IP Objective Value * 50240580 * 52574848 * 45715312 * 47345243 * 35521616

Time (second) 13756 12397 6096 5162 4627

5 225

# of Constraints 470 470 275 238 200

IP Objective Value 42818711 42818711 42915129 98418781 42955789

IP Objective Value 41852676 * 41258700 * 35323932 *** * 30174108

Time (second) 9461 11068 6666 6737 5018

7 360

# of Constraints 1050 1050 410 379 290

IP Objective VaLue 38030715 38030715 38048469 122165063 38054055

IP Objective Value * 35922504 * 33975016 * 24251412 ***

Time (second) over 48 hours 15635 8192 16428 7297

10 900

# of Constraints 8275 8275 935 928 635

LP Objective Value ** ** 35547160 183959797 35553766

IP Objective Value ** ** *** *** ***

Time (second) ** ** 18581 41328 13117
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feasible solution 5 % better than the best solution already

found. For the other two solutions, there was no guarantee

of optimality, so that the computational time to finish

iteration was large. However, the number of iterations to

find both solutions was 1569 for the 3-period problem and

38983 for the 7-period problem.

To look for the more precise solution, the second test

was conducted without the 5 % IP tolerance, but with 100,000

as the limitation of the number of iterations. Results are

in the fifth column of Table 3.4. Within the limitation,

LINGO/386 found the optimal solution for the 1- and 2-period

problems. There was no guarantee of the optimality for the

solution of the 3-, 5- and 7-period problems. While the

solution of the 3-period problem is better than the solution

with 5 % IP tolerance, the opposite is true for the 5- and

7-period problems. For large problems, a large number of

iterations is required, so that the IP tolerance stopping

rule might be more efficient to find a better IP solution

than the other stopping rule, the limitation of the number

of iterations. For the rest of the formulations, the

limitation 100,000 of the number of iterations was applied

for all problems. Also except for the 1-period problem, the

5 % IP tolerance stopping rule is used jointly.

Utilizing Yoshimoto and Brodie (1990), four different

adjacency constraints can be derived from one adjacency

matrix. Among them, two types of constraints were used for
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construction of the adjacency constraints. One is based on

the triangular adjacency rnatrix (TAN), which is made of the

upper or lower triangular matrix of the original adjacency

matrix. The other is based on the reduced triangular

adjacency matrix (RTAM). RTAN is constructed by reducing

redundant columns and elements from the adjacency matrix in

a sense that there is no duplication in the matrix for

elements to represent the adjacency relationships among

units.

The second IP formulation, TAN+L, had the land

accounting constraints and used TAN to construct the

adjacency constraints. The number of constraints for the

second formulation was vastly diminished, 46, 137, 183, 275,

410 and 935 for the 1-, 2-, 3-, 5-, 7-, and 10-period

problems, respectively. Remarkable reduction is observed

for the 10-period problem. An optimal solution was found

for the 1-period problem only. No integer feasible solution

was found for the 10-period problem within 100,000

iterations. Results are on the sixth column of Table 3.4.

The third IP formulation, AUG.TAN, utilized the

augmented adjacency matrix in TAN. Land accounting

constraints were incorporated into the original adjacency

matrix. Utilizing TAN for the augmented adjacency matrix,

the formulation had 46, 94, 142, 238, 379 and 928

constraints for the 1-, 2-, 3-, 5-, 7-, and 10-period

problems respectively. An optimal solution was found for
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the 1-period problem, while no integer feasible solution was

found for the 5-, 7- and 10-period problems as shown in

Table 3.4.

The last formulation, RTAN+LA, consists of land

accounting constraints and adjacency constraints derived

from RT of the original adjacency matrix as well as

harvest flow constraints and 0-1 integer restriction. The

number of constraints was further reduced except for the 2-

period problem. There was no guarantee for optimality of

the solution for all problems. The solution of the 1-period

problem, however, was the same as the optimal solution found

by other formulations. No integer feasible solutions were

found for the 7- and 10-period problems.

Across different formulations, CONV had the largest

number of constraints followed by TAN+LA, then AUG.TAM and

RTAM+LA. AUG.TAM had fewer constraints for the 2-period

problem than RTAN+LA, while for other problems, RTAM+LA had

fewer constraints than AUG.TAN. On the basis of the

objective value of the LP relaxed solution, CONV provided

the smallest value followed by TAN+LA. AUG.TAM provided the

second largest value for the 1- and 2-period problems,

however, for other problems, it provided the largest value.

Since the objective value of the LP relaxed solution is

always greater than the IP solution, it can be said that

CONV provides the closest LP relaxed solution to the IP

solution. As for the IP solutions, CONV provided the best
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solutions for all problems except the 10-period problem in

terms of the objective value. Although TAN+LA provided an

inferior IP solution for the 3-period problem to the

solution by AUG.TAN, TAM+LA may be the second best in

considering the use of 5 % IP tolerance. The objective

value of the solution for the 3-period problem by AUG.TAN

was not 5 % better than the solution by TAN+LA. The IP

solutions by RTAN+LA were inferior to others.

Solutions By The Composite Relaxation Technique

For the use of the composite relaxation technique,

computer problem RELAX was used. RELAX has a capacity to

handle 450 integer variables and up to 250 adjacency

constraints. Land accounting constraints are implicitly

handled. Since the model uses "no activity" as one

treatment to all harvest units, the number of integer

variables is always greater than that of the IP formulation

by the number of harvest units. Because of the use of the

subgradient method in dealing with the even-flow

constraints, problems with 2 or more periods may be solved.

Four different specifications of adjacency constrains

were used in order to seek the best solutions by the

composite relaxation technique. They were derived from

Yoshimoto and Brodie (1990). The first adjacency

constraints were based on the original adjacency fliatrix
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(OAN), the second were based on TAN, the third were based on

the reduced adjacency rnatrix (RAN), and the last ones were

based on RTAN. None of them was augmented to include land

accounting constraints. The objective value, percentage of

flow fluctuation, and computational time of each solution

are shown at Table 3.5.

For the 2-period problem, the first formulation based

on OAN provided the highest objective value with the

smallest percentage of flow fluctuation. The fourth

formulation by RTAN had the second highest objective value,

followed by the third by RAN and the second by TAN. For the

3-period problem, however, the second formulation provided

the highest objective value, followed by the first, the

fourth and the third formulation.

Applying 5 % preferable flow fluctuation, only the

solution by the first formulation was feasible for the 5-

period problem. Others had more than 5 % flow fluctuation

with less objective value.

Due to the limitation of the number of adjacency

constraints on RELAX, the first and second formulations with

360 and 344 constraints were unable to be solved at the 7-

period problem. As for the solution by the fourth

formulation, there was no integer solution after 20 hours of

running RELAX. Only the third formulation had a solution.

However, percentage of flow fluctuation was out of the

preferable range.



Table 35. The final solutions for the first example forest by RELAX

the number of periods

the nunber of integer variables

based on the originaL adjacency matrix

based on the trianguLar adjacency matrix

based on the reduced adjacency matrix

based on the reduced triangular adjacency matrix

**: out of the Limitation of the model RELAX

***: no integer solution found

1)

Period

2)

# of Integer Vars.

3)

OAM

4)

TAM

5)

RAM

6)

RTAM

2 135

Objective Value 44363879 39611121 41980926 43505996

FLuctuation (V.) 0.02 0.09 3.31 0.15

Time (second) 2420 2660 1319 1590

3 225

Objective Value 44000969 46787496 42779445 43484223

Fluctuation (V.) 0.88 2.16 3.71 2.36

Time (second) 10165 11126 7085 6309

5 360

Objective Value 39805277 36950094 37364219 38577133

FLuctuation (V.) 2.31 17.50 27.87 17.6

Time (second) 15883 15763 10347 11413

7 405

Objective Value ** ** 28417299

FLuctuation (V.) ** ** 40.99

Time (second) ** ** 16411 over 20 hours

10 945

Objective VaLue ** ** ** **

FLuctuation (V.) ** ** ** **

Time (second) ** ** ** **



118

In terms of the computational time, the first and the

second formulations seem to take more time than the others.

Since searching the best surrogate multipliers is most

likely affected by the number of adjacency constraints, the

less constraints, the less computational time.

Comparison Of Different Techniques

Comparison of different techniques for spatially

constrained area-based harvest scheduling problem has been

completed. Techniques were the B&B algorithm by LINGO/386,

the composite relaxation technique by RELAX, and the ROHO-

PATH algorithm by SSMART. One hundred thousand iterations

were used as the limitation for all problems with LINGO/386.

Five percent IP tolerance was jointly used in the 5- and 7-

period problems.

The first comparison was done using Nelson et al.'s

(1990) forest. Results are depicted in Figure 3.14. Two

solutions for LINGO/386 were provided. The first solution

had 5 % preferable flow fluctuation, and the other has P %

preferable flow fluctuation given by the solutions derived

from SSMART. Although 5 % is preferable, solutions from

SSMART had flow fluctuation less than 5 %. Thus, it is fair

to compare the solutions given the same flow fluctuation.

For all techniques, the best solutions in terms of the

objective value were selected.
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In terms of the objective value (Figure 3.14-a),

LINGO/386 with 5 % flow fluctuation yielded the highest

value for all problems except the 10-period problem. The

difference among solutions from LINGO/386 with 5 % and

SSMART was 2.6 %, 6.5 %, 2.9 %, and 0.7 % for the 2-, 3-, 5-

and 7-period problems, respectively. For the 1-period

problems the solutions were the same for both techniques.

As opposed to RELAX, SSMART yielded higher objective value

by 3.5 %, 4.9 %, and 2.1 % for the 2-, 3-, and 5-period

problems. Comparing the objective value of solutions by

SSMART and LINGO/386 with P %, LINGO/386 yielded a higher

solution for the 2-period problem by 2 %, while SSMART

provided better solutions for the rest of the problems, 3-,

5-, and 7-period problems. Although the solution for the 3-

period problem by LINGO/386 was 3.3 % less than that of

SSMART, others were 36.2 % (5-period) and 18.6 % (7-period)

less than those by SSMART. This is due to the fact that

solutions by LINGO/386 may not be optimal. The LP

relaxation with P % flow fluctuation yielded 13.1 %, 22.0 %,

6.3 %, 3.3 %, 4.3 % and 3.6 % higher objective value for the

1- to 10-period problems than those by SSMART. It is

observable that for the larger problem, the solutions by

SSMART are close to those of the LP relaxation in terms of

the objective value.

Figure 3.14-b describes the computational time.

Because of the use of the limitation of the number of
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iterations for LINGO/386, the computational time for

LINGO/386 did not increase exponentially. Except for the 1-

period problems, the computational time by SSMART was less

than the others. For the 5-and 7-period problems, it was

less than one-tenth of those by LINGO/386. RELAX yielded

the largest computational time for the 2-, 5-, and 7-period

problems and the second largest for the 3-period problems.

As for the quality of the final solution, i.e., actual

flow fluctuation, it is depicted in Figure 3.14-c. Since 5

% flow fluctuation was used for LINGO/386 with 5 %, the flow

fluctuation of LINGO/386 with 5 % was close to 5 %. RELAX

yielded the smallest flow fluctuation for the 2-period

problem. The other solutions by RELAX, however, had more

fluctuation than SSMART. Using P % given by SSMART,

LINGO/386 yielded smaller fluctuation for the 2-period

problem than that of SSMART, and almost the same for other

problems. Since the LP relaxation with P % had the same

fluctuation as those by SSMART, they were not depicted in

Figure 3.14-c.

The second comparison using a forest from Barker (1989)

was completed between SSMART and LINGO/386 with P % only.

The objective value, computational time, and actual flow

fluctuation are depicted in Figure 3.15. Compared to the

solutions from LINGO/386, SSMART provided better solutions

except for the 1-period problem in terms of the objective

value. For the 1-period problem, LINGO/386 had 1.3 % higher
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objective value, but 5.4 %, 6.4 %, 3.6 %, and 2.2 % lower

for the 2-, 3-, 5-, and 7-period problems than those by

SSMART. Due to the limitation of the memory in LINGO/386,

the 10-period problem was not solved by B&B. Solutions for

the 5- and 7-period problems turned out to be optimal with

5 % IP tolerance. Because of this, the computational time

for them was relatively small as opposed to others. When 5

% IP tolerance was removed to find another solution, the

computational time increased almost ten times as much as

before. The objective value of a new solution for the 5-

period problem was better than the previous one, while it

was not so for the 7-period problem. The objective value of

both problems were still lower than those by SSMART (Table

3.6)



Table 3.6. Comparison of solutions by SSMART and LINGO/386

the number of periods

the ROHO-PATH Algorithm

LP relaxation with P fluctuation X given by ROHO-PATH

the Branch-and-Bound ALgorithm with P fLuctuation % given by ROHO-PATH
* : solution may be nonoptimaL

**: out of the Limitation of the modeL RELAX

***: no integer soLution found

): without 5 X 1PTOL

t.J

1)

Period

NeLson et al.'s (1990) forest Barker's (1989) forest

2)

ROHO-PATH

3)

LP relax with P%

4)

B&B with P % ROHO-PATH IP relax with P% B&B with P %

1

Objective VaLue 30048438 34595898 30048438 16672700 17423051 16887100

FLuctuation (%) N/A N/A N/A N/A N/A N/A

Time (second) 312 10 32 404 20 121

2

Objective Value 45985504 58942449 46965004 22378024 24566182 * 21175700

FLuctuation (%) 2.64 2.64 0.35 0.09 0.10 0.08

Time (second) 299 25 1791 7417 49 8876

3

Objective Value 49174844 52466539 * 47552324 27697024 28206467 * 25922600

FLuctuation (%) 0.71 0.72 0.71 0.18 0.19 0.17

Time (second) 1909 56 5218 3793 104 11575

5

Objective Value 40659432 42041422 * 25924420 32716462 33060594 31534800 (*30086400)

FLuctuation (¼) 0.59 0.60 0.52 0.49 0.50 0.08 (0.50)

Time (second) 670 98 7742 3816 272 1763 (17028)

7

Objective Value 35680836 37279965 * 29035244 33231870 33731809 32498000 (*32522900)

Fluctuation (¼) 1.94 1.95 1.88 0.33 0.34 0.31 (0.28)

Time (second) 1016 286 14978 3844 676 3937 (33067)

10

Objective Value 32767306 33979398 *** 33075206 ** **

Fluctuation (¼) 0.41 0.42 *** 0.09 ** **

Time (second) 2171 443 18812 12236 ** **



CONCLUSIONS

Due to the difficulty of solving the spatially

constrained area-based harvest scheduling problem by the

integer programming technique, several heuristics have been

developed. The main purpose of this paper was to propose

another heuristic based on the random search technique.

The commonly used random search techniques (Sessions

and Sessions 1988, O'Hara et al. 1989, Nelson et al. 1990)

utilize the random number to be assigned to each harvest

unit so that each unit is determined to be harvested if the

corresponding random number is greater than or equal to a

certain value. By chance, therefore, ineffectual iteration

can occur in such cases because the number of selected unit

combinations is too small to satisfy the harvest flow

constraints due to failure to select some viable candidates.

The random search technique (ROHO) in the proposed model, on

the other hand, utilizes the random number to make an

ordered sequence of harvest units. Given the descending

ordered sequence, units are selected for harvest in order,

not randomly. As a result, at each iteration, none of the

candidates for harvest is missed unless the harvestable

volume by selected units exceeds the given minimum harvest

flow level.

Another difference between ROHO and other random search

techniques is that the solution derived at each period by

125
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ROHO has a "minimum" harvest flow fluctuation, while the

solution by the others is only guaranteed to be feasible.

In addition, the solution at each period by ROHO is feasible

at that period and the following, while the solution by the

others is only feasible at the present period except in the

case of Nelson et al. (1990).

Combining the ROHO algorithm and the PATH algorithm

(ROHO-PATH), the model called SSMART was developed. The

solutions by SSMART were insensitive to change in the

maximum number of internal iterations in terms of the

objective value. However, it can be expected that the more

the maximum number of internal iterations, the less the

actual flow fluctuation, and the longer the computational

time.

As observed in Yoshimoto and Brodie (1990) for a single

period scheduling problem, the conventional pairwise

adjacency constraints were efficient for the branch-and-

bound algorithm for inultiperiod scheduling problems as long

as the number of constraints is less than the limitation of

commercial software, e.g., LINGO/386. For REL2X, the

accuracy of the solution seems to depend on specification of

the adjacency constraints.

Because of the use of each decision (treatment) as one

integer variable, the number of integer variables for the IP

formulation and RELAX increases as the number of regenerated

harvests increases. This is not the case for SSMART. Since
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the PATH algorithm is incorporated into SSMART, the number

of integer variables is the same as the number of harvest

units times the number of periods. It is not affected by

the number of regenerated harvest units.

Comparing the performance of LINGO/386 and RELAX,

SSMART appears to yield a "good" feasible solution for all

period problems with a reasonable computational time and

fairly small flow fluctuation. With an infinite amount of

time, LINGO/386 could find an optimal solution, while with

100,000 iterations, the solutions for the 5 or more period

problems were inferior to those by SSMART. Since the longer

the time horizon, the more the integer variables, and thus,

the more the iterations needed, superiority of SSMART over

LINGO/386 might be obvious for long-term problems.

Although SSMART did not deal with road network

optimization, it is possible to combine SSMART with a

heuristic road network optimization by Sessions (1987)

without difficulty (Sessions and Sessions 1988).

The advantage of the proposed algorithm results from

partitioning the problem period by period, then respecifying

the objective of the subproblem at each period by minimizing

flow fluctuation. As a result, the final solution has not

only the largest objective value but also small flow

fluctuation among a generated set of feasible solutions.



LITERATURE CITED

Arney, J.D. 1985. A modeling strategy for the growth

projection of managed stands. Can. J. For. Res. 15:511-

518.

Barker, B.R. 1989. Utilizing scheduling and network analysis

program (SNAP) as a forest plan implementation tool on

the Siuslaw National Forest. M.S. thesis, College of

Forestry, Oregon State Univ., Corvallis, OR. 76p.

Berck, P. and T. Bible. 1984. Solving and interpreting

large-scale harvest scheduling problems by duality and

decomposition. For. Sci. 30:173-182.

Brooke, S.H. 1958. A discussion of random methods for

seeking maxima. Opns. Res. 6:244-251.

Bullard, H.S., H.D. Sherali, and W.D. Klemperer. 1985.

Estimating optimal thinning and rotation for mixed-

species timber stands using a random search algorithm.

For. Sci. 31:303-315.

Conley, W. 1980. Computer optimization techniques.

Petrocelli Books Inc., New York. 266p.

Cunningham, K. and L. Schrage. 1989. The LINGO modeling

language. LINDO Systems Inc., Chicago, IL. 93p.

Dakin, R.J. 1965. A tree search algorithm for mixed integer

programming problems. Computer J. 8:250-255.

Dantzig, G.B. 1951. Maximization of a linear function of

variables subject to linear inequalities. Chap. 21 in:

128



129

Activity Analysis of Production and Allocation, (T.C.

Koopmans, ed.) Cowles Commission Monograph No. 13,

Wiley, New York.

Gavish, B. and H. Pirkul. l985a. Zero-one integer programs

with few constraints - lower bounding theory. Europ. J.

Opns. Res. 21:213-224.

Gavish, B. and H. Pirkul. l985b. Efficient algorithms for

solving multiconstraint zero-one knapsack problems to

optimality. Math. Prog. 31:78-105.

Geoffrion, A.M. 1974. Lagrangean relaxation for integer

programming, in:M.L. Balinski, ed., Math. Prog. Study

No.2 (North-Holland, Amsterdam) :82-114.

Ghandforoush, P. and B.J. Greber. 1986. Solving allocation

and scheduling problems inherent in forest resource

management using mixed-integer programming. Comput. &

Opns. Res. 13:551-562.

Glover, F. 1975. Surrogate constraint duality in

mathematical programming. Opns. Res. 23:434-453

Greenberg, H.J. and W.P. Pierskalla. 1970. Surrogate

mathematical programming. Opns. Res. 18:924-939.

Held, N., P. Wolfe, and H.P. Crowder. 1974. Validation of

subgradient optimization. Math. Prog. 6:62-88.

Hoganson, H.M. and D.W. Rose. 1984. A simulation approach

for optimal timber management scheduling. For. Sd.

30:220-238.

Johnson, K.N. and T.W. Stuart. 1987. FORPLAN version 2:



130

Mathematical programmer's guide. USDA For. Serv., Land

Management Planning Systems Section, Washington, DC.

l58p.

Kirby, M.W., P. Wong, W.A. Hager, and M.E. Huddleston. 1980.

A guide to the integrated resources planning model.

USDA For. Serv., Berkeley, CA. 2llp.

Land, A.H. and A.G. Doig. 1960. An automatic method for

solving discrete programming problems. Econometrica

28:497-520.

Meneghin, B.J., M.W. Kirby, and J.G. Jones. 1988. An

algorithm for writing adjacency constraints efficiently

in linear programming models. The 1988 Symp. on Systems

Analysis in Forest Resources. USDA For. Serv. Gen.

Tech. Rep. PN-161:46-53. Rocky Mountain Forest and

Range Exp. Stn., Fort Collins, CO.

Navon, D. 1971. Timber RAN - a long-range planning method

for commercial timber lands under multiple use

management. USDA For. Serv. Res. Paper PSW-70. Pacific

Southwest Forest and Range Exp. Stn., Berkeley, CA.

2 2p.

Nelson, J., J.D. Brodie, and J. Sessions. 1990. Integrating

short-term, area-based logging plans with long-term

harvest schedules. For. Sci. Monograph. In journal

review.

Nelson, J. 1988. Integration of short-term spatially

feasible harvesting plans with long-term harvest



131

schedules using Monte-Carlo integer programming and

linear programming. Ph.D. Dissertation, Dept. of Forest

Management, Oregon State Univ., Corvallis, OR. 168p.

Nemhauser, G.L. and L.A. Wolsey. 1988. Integer and

combinatorial optimization. John Wiley & Sons Inc. New

York. 763p.

O'Hara, A.J., B.H. Faaland, and B.B. Bare. 1989. Spatially

constrained timber harvest scheduling. Can. J. For.

Res. 19:715-724.

Paredes V., G.L. and J.D. Brodie. 1987. Efficient

specification and solution of the even-aged rotation

and thinning problem. For. Sci. 33:14-29.

Schrage, L. 1979. A more portable Fortran random number

generator. ACM Trans. Math. Softw. 5:132-138.

Sessions, J. 1987. A heuristic algorithm for the solution of

the variable and fixed cost transportation problem. In

Proc: The 1985 Symp. on System Analysis in Forest

Resources. Univ. of Georgia, Athens, GA. pp.324-336.

Sessions, J. and J.B. Sessions. 1988. SNAP - a scheduling

and network analysis program for tactical harvest

planning. In Proceedings of International Mountain

Logging and Pacific Northwest Skyline Symp., Dec. 12-16

1988. Oregon State Univ., Corvallis, OR. pp.71-75.

Torres R., J.M. and J. D. Brodie. 1990. Adjacency constraints

in harvest scheduling: an aggregation heuristic. Can.

J. For. Res. In press.



132

Torres R., J.M. and J.D. Brodie. 1989. Manual to run program

RELAX. Unpublished manuscript.

Torres R., J.M., J.D. Brodie, and 3. Sessions. l990a.

Solution to the area-based harvest scheduling problem

through Lagrangean relaxation. In journal review.

Torres R., J.M., J.D. Brodie, and 3. Sessions. l990b. The

use of relaxation to solve the habitat dispersion

problem. In journal review.

Yoshimoto, A., G.L. Paredes V., and J.D. Brodie. 1988.

Efficient optimization of an individual tree growth

model. The 1988 Symp. on Systems Analysis in Forest

Resources. USDA For. Serv. Gen. Tech. Rep. RM-l61:154-

162. Rocky Mountain Forest and Range Exp. Stn., Fort

Collins, CO.

Yoshimoto, A., R.G. Haight, and J.D. Brodie. 1990. A

comparison of the pattern search algorithm and the

modified PATH algorithm for optimizing an individual

tree model. For. Sci. In press.

Yoshimoto, A. and J.D. Brodie. 1990. Comparative efficiency

of algorithms to generate adjacency constraints. In

journal review.

Zanakis, S.H. and J.R. Evans. 1981. Heuristic

foptimizationtt:why, when, and how to use it. Interfaces

11:84-91.



Chapter 4

COST EVALUATION OF INPLEMENTING SPATIAL RESTRICTIONS

ON RIPARIAN ZONE PLANNING IN WESTERN OREGON

by

Atsushi Yoshimoto

and

J. Douglas Brodie

ABSTRACT

Due to the significance of shade, wildlife habitat,

soil stabilization, and water-filtering effects of stream

side vegetation on the riparian zone, spatial restrictions

are often imposed by state and federal agencies on both

public and private lands. From the forest owners' point of

view, any restriction could reduce profit. In order to

satisfy the public needs, and minimize the forest owners'

costs resulting from new restrictions, appropriate

regulations are proposed. A case study was performed on the

Green River Subbasin on the Alsea Ranger District, Siuslaw

National Forest in Oregon using three scenarios in order to

estimate the cost of implementing different types of spatial

restrictions. In this study, prohibiting harvest in the

riparian management area cost approximately $14,954.59 to
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$17,951.73 per foot of zone width from the stream in the

example forest. Allowing harvest in the riparian management

area with additional adjacency constraints among segments of

the riparian management area cost almost nothing to

$3,439.73 for the basin per foot width of the riparian

management area. Imposing an additional adjacency lag

period as a restriction resulted in a marginal cost per lag

period of $2,266,219 to $2,820,074 for the whole subbasin.



INTRODUCTION

The framework of the forest level problem is to

allocate land and existing resources over the time horizon

to meet a physical or economic objective function subject to

a range of multiple-resource constraints. Among many

multiple-use resource allocation problems, planning for

multiple-resource production from riparian zones has

received a great deal of attention over the last decade both

politically and economically.

Elmore and Beschta (1987) summarized multiple-use of

riparian areas. Riparian areas provide forage for domestic

animals and important habitat for wildlife species. They

provide essential habitat for resident fish and other

aquatic organisms if streams are perennial. When overbank

flows occur, riparian areas can attenuate flood peaks and

increase groundwater recharge. The character and condition

of riparian vegetation and associated stream channels

influence property values. Aesthetics and water quality are

also important.

Social concerns and values with regard to the products,

services and factors involved in the production processes

from forest lands and the riparian zone have been translated

into new acts, laws, and regulations. In 1987, the State

Board of Forestry in Oregon developed new regulations to

protect riparian zones and incorporated them into the Oregon
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Forest Practice Rules. According to the Oregon Forest

Practice Rules (1988), it is required that any landowner,

operator, or timber owner conducting an operation shall

retain a riparian management area along each side of Class

I waters. Restrictions on operations in riparian zones

provide an environment for evaluation of costs for alternate

policies which may eventually, when combined with estimates

of benefits of riparian zoning, provide justification for

relaxation or tightening restrictions in future legislation.

A case study on riparian zone planning was done by

Olsen et al. (1987) before the revision of the forest

practice rules. They estimated the landowners' costs by

using three rule scenarios and concentrating on impacts of

harvest systems and harvest returns. They concluded that

landowners' cost would be significantly greater than costs

under the old rules.

There was no specific harvest scheduling in their work.

Instead they used the present net worth of the cash flow

impacts spread out equally across the planning periods. Due

to the lack of precise information on the spatial and

dynamic characteristics of the harvest schedule, their

estimates would differ from those that would be provided by

an optimization technique applied to old and new rule

scenarios.

Mathematical programming techniques currently are often

utilized to provide harvest schedules for both public and
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private land. Timber Resource Allocation odel (RM) (Navon

1971) and FORPLA.N (Johnson and Crim 1986, Johnson et al.

1986) are widely used linear programming based models. When

utilizing a linear programming based model, a decision

variable can be any nonnegative real value. Due to

dimensionality limitations, formulations must be highly

aggregated for applied scale problems. As a result,

disaggregation of a solution is required before a forest

manager can implement it on the ground.

Disaggregation of a solution can be avoided if a

decision variable is forced to be dichotomous, 0-1 integer

variable. The problem with 0-1 integer variables can be

solved by integer programming or mixed integer programming.

The integrated Resources Planning odel (1RPM) by Kirby et

al. (1980) is designed for these integer problems.

Due to the limitations of the integer programming

technique with respect to the number of integer variables

and constraints, alternative heuristic techniques have been

developed (Sessions and Sessions 1988, O'Hara et al. 1989,

Nelson et al. 1990, Torres et al. 1990, Yoshimoto et al.

1990). Heuristic techniques are designed to provide a

"good" solution without a guarantee of optimality.

Heuristics provide for faster solution of smaller integer

problems and can provide solution to larger problems that

cannot be formulated or solved using integer and mixed-

integer programming.
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The objective of this paper is to estimate the cost of

implementing spatial regulations on the riparian zone in the

context of implementing spatially constrained harvest

scheduling with even-flow constraints. No costs for

alternative harvest systems, e.g., yarding, skidding and

road network construction, are considered. A heuristic

technique developed by Yoshimoto et al. (1990) is used to

search for a tgoodfl harvest schedule. Changes in the width

of riparian zone protected and in harvest sequences allowed,

are evaluated. In the next section, the harvest scheduling

model by Yoshimoto et al. (1990) is reviewed. Then, the

model is applied to a study area in western Oregon and the

economic impact of alternate strategies is evaluated.
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THE SCHEDULING SYSTEM OF MANAGEMENT ALTERNATIVES FOR TIMBER-

HARVEST (SSMART)

This paper presents a new method for solving the

spatially constrained area-based harvest scheduling problem

with even-flow constraints. The objective of the problem is

to maximize present net worth of the sum of returns from

each stand. Adjacency constraints are imbedded in order to

avoid large clearcut areas, and to provide habitat for

wildlife. In addition, even-flow constraints are utilized.

The decision variables are set up in the same way as in the

Model I formulation (Johnson and Stuart 1987), and are

restricted to be 0-1 integer, so that a forest manager can

apply a solution without disaggregation.

Defining the decision variable by,

r 1 if the i-th decision is implemented,

x1= [0 otherwise

the proposed problem is formulated by the following integer

programming formulation,

ZIP = maximize Ct.X (1)

uc)

subject to

MXMO (2)

X c (0, 1)

where C is a coefficient vector representing present net
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worth of return from a decision vector = (x1, x2,,,,XN)t

and N is the number of decisions. "t" denotes the

transpose. Equation (2) is the adjacency constraint.

Derivation of a matrix M and a vector MO can be found in

Meneghin et al. (1988), Torres and Brodie (1990), or

Yoshimoto and Brodie (1990). The conventional pairwise

formulation can also be applied to equation (2). Equation

(3) is the even-flow constraint. A matrix V consists of

elements, v, which is a harvestable volume contributed by

the i-th decision at the j-th period. is a vector to

ensure an even-flow level. Equation (4) is the land

accounting constraint, which implies that at most one

decision can be implemented for one harvest unit.

Exact solution techniques, i.e., the integer

programming solution techniques, are impractical in terms of

the computational time and storage capacity necessary to

handle normal applied problems. In addition, minimally

infeasible solutions can be found for the problem

specifications which are inherently infeasible and are

sufficient for applied management. Some infeasibility is

inherent in the even-flow constraint (equation (3)). Other

desired conditions may not initially exist in long-term

multiperiod problems.

The cheduling System of anagement Alternatives foR

limber-harvest (SSMART) by Yoshimoto et al. (1990) is one of

several heuristic techniques proposed to solve a spatially
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constrained area-based harvest scheduling problem with even-

flow constraints over long time horizons of up to 20

periods. SSMART utilizes the ROHO-PATH algorithm (andom

rdering Heuristic Optimization with rojection alternative

ecnique) in order to make the iterative procedure

efficient and provide a "good" solution. To overcome the

inherent infeasibility of a problem with even-flow

constraints, the problem in SSMART is respecified by not

only maximizing the present net worth of the sum of returns

from decisions, but also minimizing harvest flow deviation,

ZIP = maximize CtX (1)

{X)

where X1 is the solution at the i-th period of the following

subproblem,

Z1(i) = minimize V1'X - (5)

{X1)

subject to

(6)

i+1 c+1 -i+1 (7)

(l-P).V0 V1X1 (l+P).V0 (8)

(l-P) V0 (l+P) 'VO (9)

Vi = (l-P)'VO (10)

i'i+1 (0, 1)

where H1 is a submatrix of H, V is a submatrix of , is

a subvector of MO, for the corresponding , respectively.

The land accounting constraint is handled implicitly. P is

a user-specified acceptable flow fluctuation.
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The modified random search algorithm called ROHO is

used to generate a solution for the subproblem Z1(i) at the

i-th period. The conunonly used random search technique

(Sessions and Sessions 1988, O'Hara et al. 1989, Nelson et

al. 1990) is such that a random number is assigned to each

harvest unit so that it is harvested if the assigned random

number is greater than or equal to a certain value. Thus,

choice of a harvest unit heavily depends on its random

number. By contrast, the ROHO algorithm assigns a random

number to each harvest unit. The stochastic nature of a

random search technique is only used to create the

descending ordered sequence of units based on its random

number. Selecting a harvest unit depends on this ordered

sequence, not its random number. Harvest units adjacent to

the previously selected units are eliminated as candidates

for a solution at the same time. By changing the ordered

sequence, a set of feasible solutions for the above

subproblem is created. The final solution of the subproblem

is selected with the minimum harvest flow deviation from Vl

among feasible solutions at each period. Since feasibility

of a generated solution should be guaranteed at both the

current and the following periods, the same procedure to

generate a feasible solution at the immediately following

period is applied whenever a feasible solution is found at

the current period.

The binary search method with modification is used to
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obtain an optimal or appropriate even-flow level, VO, and

the final solution for the problem. Unlike other random

search techniques by Sessions and Sessions (1988), O'Hara et

al. (1989) and Nelson et al. (1990), the solution derived

from SSMART has not only the largest objective value over

the time horizon, but also the minimum flow deviation among

a generated set of feasible solutions at each period.

In order to run SSMART, three main parameters are to be

specified by the user. These values are used to make the

iterative process in SSMART efficient. They are:

Maximum number of internal iterations: NI,

Maximum number of entire iterations over the time

horizon: NE,

Maximum number of sequential failures: NF.

To select a final solution, the user provides two different

levels of flow fluctuation. The first one is the acceptable

flow fluctuation, P, and the second is the preferable flow

fluctuation, P' (<P). A set of feasible solutions satisfies

the P flow fluctuation, and the final solution is selected

from a restricted set of feasible solutions satisfying P'

flow fluctuation. Further description of SSMART can be

found in Yoshimoto et al. (1990).



SITE SELECTION MID DATA DESCRIPTION

A case study is conducted on the Green River Subbasin

on the Alsea Ranger District, Siuslaw National Forest in

Oregon (Barker 1989). The total forested area is 6238 acres

including 893 acres in private blocks. A forest map showing

harvest blocks and the riparian system is depicted in Figure

4.1. There are two age groups of stands. One is mature

stands over age 80. The other is young growth stands. The

stand age of young growth stands ranges from 10 to 40 years.

Stand age distribution at the current period is given in

Figure 4.2. One hundred stands out of 137 non-private

stands are adjacent to a stream. Among these 100 stands, 46

are mature stands. Species is assumed to be Douglas-fir

(Pseudotsuga menziesii (Mirb) Franco).

Volume yields for these stands were derived using a

single-tree/distance-independent growth model called SPS

(tand projection ystem) by Arney (1985). The stand

conditions for the 10 year age class and subsequent stands

developed by SPS are given in Table 4.1. The site index is

135 feet on a breast-height age basis. Using this stand,

volume yields at age 80, and from age 10 to age 40 were

generated. Future volume of each stand was also predicted

by SPS.

Timber values were calculated using a price equation.

The price equation is a function of a diameter at breast
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Table 4.1. Initial stand condition for SPS (see Arney 1985)

SP SITE AGE REGION
STAND DF 135 10 PNW
MERCH 1.0 16.4 4.0 6.0
NAME input data file for SPS

SP DBH TOP TPA AGE SDEV NAT
TABLE 1 DF 1.0 30.0 100. 10 .25 1

TABLE 2 DF 2.0 32.0 150. 10 .25 1

TABLE 3 DF 3.0 33.0 50. 10 .25 1

CLUMP .90
REPORTS 10 20 30 40 50 60 80
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height (dbh) on the basis of thousand merchantable board

feet. Price premium was assumed with respect to dbh,

$Price/inbf = 12.5 dbh (11)

As shown in Table 4.1, the minimum dbh for a merchantable

tree is 6 inches, and the top diameter limit is 4 inches.

For the smallest diameter tree, the stumpage value is

$75.0O/mbf, and for a tree with 20-inch diameter, it is

$250.O0/mbf. Prices are assumed constant through the time

horizon in the analysis, i.e., no real price increases.

A two hundred dollar regeneration cost per acre is

embedded into the timber value of each stand. A four

percent constant real interest rate was used to calculate

the present net worth of return from each stand.

Clearcutting is the only option for harvest.



COST EVALUATION OF SPATIAL RESTRICTIONS

As mentioned before, the Oregon Forest Practice Rules

(1988) protect an aquatic area by establishing riparian

management areas, or buffers, along an aquatic area. The

width of the riparian management area may vary dependent

upon topography, vegetative cover, the needs of harvesting

design, and the needs for aquatic and wildlife habitat. For

streams, the width of the riparian management area shall

average three times the stream width, but it shall not

average less than 25 feet or more than 100 feet. Stream

width is the average of the main channel width of the stream

during its high water level flow. Figure 4.3 shows the

relationship between the aquatic area and the riparian

management area.

In this analysis, the width of the riparian management

area is assumed constant throughout the stream length. The

cost of implementing spatial restrictions on the riparian

zone is evaluated in terms of the difference in the present

net worth from the solution. without any spatial

restrictions:

COST($PNW) = $PNWwithout restrictions - restrictions (12)

Three scenarios were proposed for cost evaluation. The

first scenario (called the static-scenario) was modeled

according to the Oregon Forest Practice Rules. That is, no

harvest was allowed within the riparian management area.
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Aquatic Area> <-Riparian Management Area

Figure 4.3. The relationship between an aquatic area and the
riparian management area
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In the second scenario (called the dynamic-scenario),

harvest was allowed in the riparian management area.

However, adjacency restrictions among segments of the

riparian management area were applied. In other words, the

riparian management area specified in each harvest unit, if

any, is treated as another harvest unit. Adjacency

restrictions are

used among all units including segments connected by the

stream. This scenario can be used to provide wildlife with

shelter on at least one side of the stream through the

stream length.

The third scenario (called the lag-scenario) applied a

different number of periods for the adjacency lag, during

which no adjacent harvest occurs. The more periods for the

adjacency lag, the larger the forested area protected along

the stream at each period. No additional riparian

management is imposed for this scenario.

For the first two scenarios, four different buffer

sizes were used, 50, 100, 150, and 200 feet over four

different time horizons, 3, 5, 7, and 10 periods. One

period is set as 10 years. The adjacency lag was set as 1

period. In the third scenario, 2 and 3 periods were used

for the adjacency lag over four different time horizons, 3

to 10 periods. In using SSMART, each parameter was

specified as follows:

NI = 1 and 2,



152

As can be seen, two different trials with different NI's are

implemented to search for the best solution. Minimum

rotation age was set as 60 years (6 periods). Thus no

regenerated harvests occur for the problems with the 3- and

the 5-period time horizon.

Static Change In Buffer Size

For the static-scenario based on the Oregon Forest

Practice Rules (1988), two approaches are used to estimate

the cost of implementing spatial restrictions on the

riparian management area. The first approach utilized

SSMART to obtain solutions without any restrictions. Then

subtracting harvestable volume and returns of the riparian

management area from the solution, a new solution for each

restriction is derived. The second approach applied SSMART

to all problems with or without spatial restrictions on the

riparian zone. Spatial restrictions thus influenced the

solution throughout the search iterations.

Using the first approach, Figure 4.4-a shows the change

in the objective value, present net worth, over the time

horizon. Without restriction, the objective value increases
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Figure 4.4. Results from the static-scenario by the approach
without the use of SSMART to constrained problems

Changing patterns of the objective value
Changing patterns of the average harvestable volume
Changing patterns of the derived cost
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asymptotically toward $24 million from $19 million as the

time horizon increases. Prohibiting harvest on the riparian

management area, the objective value also goes up

asymptotically toward $23 million, $22 million, $21 million,

and $20 million for the 50-foot, 100-foot, 150-foot and 200-

foot buffer size problems, respectively. Figure 4.4-b shows

changing patterns of the average harvestable volume. The

longer the time horizon, the less the average harvestable

volume. Figure 4.4-c shows the derived cost over buffer

size. As can be seen, the cost for the problem with the 3-

period time horizon was underestimated compared to the

others. Cost for the 200-foot buffer size at the 3-period

time horizon was $3 million as opposed to $3.6 million for

the 10-period time horizon. In comparison to costs by the

7- and the 10-period time horizon, all costs for different

buffer sizes were almost the same. This might suggest that

the 3-period time horizon is too short to estimate the cost,

while the 7-period time horizon is long enough to

approximate the cost. All results from the first approach

are given in Table 4.2.

SSMART was also used in the second approach. Changing

patterns of the objective value over the different time

horizon, the average harvestable volume and the derived

costs are depicted in Figure 4.5. Changing patterns of the

objective value and the average harvestable volume were

almost the same as those in Figure 4.4. In comparison of



Table 4.2. Summary of results from the static-scenario in the first approach
No use of SSMART to constrained problems

a CHANGE IN OBJECTIVE VALUE

b CHANGE IN AVERAGE HARVESTABLE VOLUME

C) COST (PNW$)

* :the time horizon
** : buffer size

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 19,345,662 18,586,924 17,825,338 17,063,318 16,303,105

50 yr 23,046,212 22,160,335 21,273,294 20,382,515 19,496,645
70 yr 23,848,500 22,937,322 22,022,092 21,104,055 20,190,651
100 yr 24,015,17023,103,884 22,191,957 21,276,546 20,366,425

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 12,959,281 12,467,748 11,975,704 11,482,856 10,991,117

50 yr 12,368,536 11,915,629 11,469,640 11,021,138 10,575,559
70 yr 11,528,570 11,109,402 10,692,686 10,272,754 9,856,381
100 yr 10,948,496 10,558,289 10,169,249 9,777,893 9,389,041

* 30 yr 50 yr 70 yr 100 yr
**OFT 0 0 0 0

50 FT 758,738 885,877 911,178 911,286
100 FT 1,520,324 1,772,918 1,826,408 1,823,213
150 FT 2,282,344 2,663,697 2,744,445 2,738,624
200 FT 3,042,557 3,549,567 3,657,849 3,648,745
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the objective value as shown in Table 4.2 and Table 4.3, the

second approach provided slightly higher objective value for

9 problems, the 50-foot, 150-foot and 200-foot buffer size

problems of the 3-period time horizon, the 50-foot, 100-

foot, and 200-foot buffer size problems of the 7-period time

horizon, and the 50-foot, 150-foot, and 200-foot buffer size

problems of the 10-period time horizon, while the first

approach provided higher objective value for the other 7

problems. The largest difference relative to the absolute

objective value can be found for the 200-foot buffer size

problem of the 7-period time horizon. The percentage

difference was a 1.03 percent increase in the objective

value using the second approach. A superiority of the

objective value by the first approach was observed in the

150-foot buffer size problem with the 7-period time horizon.

It was 0.65 percent higher than the other approach. In

terms of the average harvestable volume, however, the second

approach provided higher average harvestable volume for only

6 problems, the 50-foot, 150-foot, 200-foot buffer size

problems of the 3-period time horizon, the 200-foot buffer

size for the 7-period time horizon, and the 50-foot and 200-

foot buffer size problems of the 10-period time horizon.

The solutions of the 50-foot and 100-foot buffer size

problems of the 7-period time horizon and the 150-foot

buffer size problem of the 10-period time horizon provided

higher objective value with less average harvestable volume



Table 4.3. Summary of results from the static-scenario in the second approach
SSMART applied to all constrained problems

CHANGE IN OBJECTIVE VALUE

CHANGE IN AVERAGE HARVESTABLE VOLUME

COST (PNW$

* :the time horizon
** : buffer size

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 19,345,662 18,686,692 17,764,066 17,175,062 16,321,182
50 yr 23,046,212 22,094,390 21,271,996 20,334,390 19,473,246
70 yr 23,848,500 23,055,726 22,068,474 20,966,192 20,400,664
100 yr 24,015,170 23,326,596 22,165,508 21,380,644 20,572,250

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 12,959,281 12,585,407 11,927,494 11,582,897 11,020,995
50 yr 12,368,536 11,888,273 11,388,368 10,930,197 10,458,278
70 yr 11,528,570 11,090,902 10,641,401 10,200,149 9,875,940
100 yr 10,948,496 10,621,172 10,133,388 9,776,593 9,427,117

* 30 yr 50 yr 70 yr 100 yr
**OFT 0 0 0 0

50 FT 658,970 951,822 792,774 688,574
100 FT 1,581,596 1,774,216 1,780,026 1,849,662
150 FT 2,170,600 2,711,822 2,882,308 2,634,526
200 FT 3,024,480 3,572,966 3,447,836 3,442,920
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than the first approach.

As for the derived cost over the buffer size, it

increases as the buffer size increases. Figure 4.5-c also

suggests that the 3-period time horizon is too short,

similar to the conclusion reached with Figure 4.4-c.

Although the solutions by these two approaches are

almost the same in terms of the objective value, the quality

of the solution, i.e., the actual flow fluctuation is not.

The actual flow fluctuation, FLUC, is defined by,

Flow.max - Flow.min
SFLUC(%) - Flow.max + Flow.min

100 (%)

where Flow.max is the maximum harvest flow and Flow.min is

the minimum harvest flow in the solution. Equation (13)

implies that harvest flow at each period lies within ± FLUC

(%) from an even-flow level and FLUC is the smallest flow

fluctuation to satisfy it.

Table 4.4 shows the actual flow fluctuation of each

solution. With the 50-foot buffer size, the first approach

without the application of SSMART to the constrained

problems, had 1.01 % at the 3-period time horizon as the

smallest fluctuation, and 1.42 % at the 7-period time

horizon as the largest one, while the second approach

applying SSMART to all problems had 0.13 % at the 10-period

time horizon as the smallest and had 0.50 % at the 7-period

time horizon as the largest. As for the 100-foot buffer

size, the first approach provided 2.29 % as the smallest,

(13)



Table 4.4. Comparison of the actual flow fluctuation in the static-scenario

NO OF!. :no use or SSMART to constrained problems
SSMART:SSMART applied to all constrained problems
* :buffer size
**:the time horizon

*50 FT
-

100 FT 150 FT 200 FT
SSMART NO OPT. SSMART NO OPT. SSMART NO OPT. SSMART NO OPT.

**30 yr 0.38 1.01 0.59 2.29 0.06 3.69 0.77 5.20
50 yr 0.30 1.15 0.07 2.45 0.24 3.85 0.33 5.42
70 yr 0.50 1.42 0.34 2.81 0.26 4.30 0.92 5.94
100 yr 0.13 1.20 1.05 2.54 0.30 3.98 0.35 5.52
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2.81 % as the largest. The second approach provided 0.07 %

as the smallest and 1.05 % as the largest. Solving the

problem with 150-foot buffer size, the first approach

provided 3.69 % minimum fluctuation and 4.30 % maximum,

while the second approach provided 0.06 % as the minimum and

0.30 % as the maximum fluctuation. With the 200-foot buffer

size problem, 5.20 % is the minimum fluctuation and 5.94 %

is the maximum for the first approach. By contrast, 0.33 %

is the minimum and 0.92 % is the maximum for the second

approach by SSMART. As can be seen from this result, the

second approach by SSMART provided less actual flow

fluctuation for all constrained problems than the first

approach without the application of SSMART to the

constrained problems. The average actual flow fluctuation

by SSMART is 0.41 % with 0.29 % standard deviation, while

the average actual flow fluctuation by the first approach is

3.30 % with 1.68 % standard deviation. It is observed in

Table 4.4 that the larger the buffer size, the larger the

actual flow fluctuation by the first approach. On the other

hand, this is not true for the solutions by SSMART.

Dynamic Change In Buffer Relationship

In the dynamic-scenario, a segment of the riparian

management area in each harvest unit adjacent to the stream

is treated as another harvest unit. The number of
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additional harvest units, therefore, is 103 including 3

units from the private blocks. Adjacency constraints are

applied among segments in the riparian management area, a

segment and its original harvest unit, as well as segments

connected by the stream.

Changing patterns of the objective value, the average

harvestable volume, and the derived cost are illustrated in

Figure 4.6. Unlike the patterns in Figure 4.4 or 4.5, the

objective value of problems with different buffer size

converges to $24 million. For the 10-period time horizon,

there is almost no difference in the objective value among

the 0-, 50-, 100-, 150- and 200-foot buffer size problems,

while the objective value of the 50-, 100-, 150-, and 200-

foot buffer size problems for the 3-period time horizon is

approximately 2 % below the one found in the no restriction

problem (Table 4.5).

Because of small differences in the objective value

with different buffer size (Table 4.5), the derived cost

line is rather flat over the buffer size as can be seen in

Figure 4.6-c. Especially for the 7- and the 10-period time

horizon, the derived cost was even negative for the 50-foot

and 150-foot buffer size problems. For the 3- and the 5-

period time horizon, the derived cost of the 50- to 200-foot

buffer size problems were almost the same, $4.8 million

average with $.7 million standard deviation.
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Table 4.5. Summary of results from the dynamic-scenario

CHANGE IN OBJECTIVE VALUE

CHANGE IN AVEPAGE HARVESTABLE VOLUME

c' COST (PNW

* :the time horizon
** : buffer size

0\

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 19,345,662 18,895,578 18,848,274 18,900,310 18,750,990

50 yr 23,046,212 22,609,766 22,636,042 22,605,814 22,432,944
70 yr 23,848,500 23,923,700 23,826,588 23,970,604 23,710,012
100 yr 24,015,170 24,026,208 24,008,318 24,037,688 23,996,740

** 0 FT 50 FT 100 FT 150 FT 200 FT
* 30 yr 12,959,281 12,618,808 12,640,919 12,637,549 12,506,033

50 yr 12,368,536 12,055,621 12,059,902 12,013,713 11,927,325
70 yr 11,528,570 11,532,907 11,416,853 11,521,129 11,422,457
100 yr 10,948,496 10,947,168 10,870,771 10,958,235 10,966,565

* 30 yr 50 yr 70 yr 100 yr
**OFT 0 0 0 0

50 FT 450,084 436,446 -75,200 -11,038

100 FT 497,388 410,170 21,912 6,852

150 FT 445,352 440,398 -122,104 -22,518

200 FT 594,672 613,268 138,488 18,430



Change In Adjacency Lag Periods

The lag-scenario utilizes restrictions on the adjacency

lag periods. No riparian management area is considered.

The alternative number of adjacency lag periods is 2 and 3.

Applying 2 periods for the adjacency lag, there is at least

1 period (10 years) during which no harvest occurs among

adjacent harvest units, while in the other alternative

period, at least for 2 periods (20 years) harvest has to be

prohibited among adjacent units, after one unit of adjacent

units is harvested.

Figure 4.7-a illustrates the changing patterns of the

objective value of each solution. The objective value was

vastly reduced when using 2 or 3 periods for the adjacency

lag. While the objective value for the 1-period adjacency

lag increases from $19 million for the 3-period time horizon

to $24 million for the 10-period time horizon, it increases

from $13 million to $19 million for the 2-period adjacency

lag and from $11 million to $16 million for the 3-period

adjacency lag.

Figure 4.7-b depicts changing patterns of the average

harvestable volume. Although the average harvestable volume

for other scenarios in Figures 4.4, 4.5, and 4.6 decreases

as the time horizon increases, the average harvestable

volume for the solution with the 2- and the 3-period

adjacency lag does not change much as the time horizon

165
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Changing patterns of the objective value
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increases. It can be noted that restriction on the

adjacency lag plays a more restricted role in determining

the harvestable volume than the harvest flow constraints.

The derived cost in the lag-scenario is much higher

than those in the static- and the dynamic-scenarios (Figure

4.7-c). Using the 3-period time horizon, the derived cost

was about $6.2 million and $8.0 million for the 2- and the

3-period adjacency lag problems (Table 4.6). For the 5-

period time horizon, they were $6.4 million and $8.9 million

for the 2- and the 3-period adjacency lag problems. The

derived cost was $5.4 million and $8.1 million for the 2-

and the 3-period adjacency lag problems in the 10-period

time horizon. As can be seen in Figure 4.7-c, for the 10-

period time horizon the cost was less than others. For the

5-period time horizon it was the largest.

Evaluating Marginal Cost

Using the derived cost from each scenario, the marginal

cost of implementing spatial restrictions on the example

forest is estimated. The marginal cost is estimated by

using the following simple regression model,

Y = a X (14)

where X is the buffer size for both the first and the second

scenario, and the period for adjacency lag for the last

scenario, and Y is the total cost ($PNW).



Table 4.6. Summary of results from the lag-scenario

CHANGE IN OBJECTIVE VALUE

CHANGE IN AVERAGE HARVESTABLE VOLUME

COST (PNW$

* :the time horizon
** : adjacency lag periods

**l period 2 periods 3 periods
* 30 yr 19,345,662 13,093,606 11,375,829
50 yr 23,046,212 16,613,337 14,174,449
70 yr 23,848,500 18,444,110 15,773,327
100 yr 24,015,170 19,333,216 16,560,778

**l period 2 periods 3 periods
* 30 yr 12,959,281 8,719,321 7,625,953
SOyr 12,368,536 8,607,086 7,411,273
70 yr 11,528,570 8,666,422 7,522,089
100 yr 10,948,496 8,552,016 7,402,103

* 30 yr 50 yr 70 yr 100 yr
**lperiod 0 0 0 0

2 periods 6,252,056 6,432,875 5,404,390 4,681,954
3 periods 7,969,833 8,871,763 8,075,173 7,454,392



169

Taking the first derivative of Y with respect to X in

equation (14), the marginal cost is calculated by,

dX
dY -a (15)

That is, the coefficient tiall represents the marginal cost in

the above regression model.

Table 4.7 shows the marginal cost, "a", of each problem

and its p-value, where the p-value is defined as the

probability that the marginal cost is not different for the

respective methods and constraints. For the 3-period time

horizon, the marginal cost for the first scenario by SSMART

is lower, $14,954.59, than that by the approach without

using SSMART. In the second scenario, the marginal cost is

about 23% of the one in the first scenario, while the

marginal cost in the third scenario is about 174 times more

than that of the first scenario. The same relationship of

the marginal cost among different scenarios can be found for

the 5-, the 7-, and the 10-period time horizon. The third

scenario provided much higher marginal cost than others,

followed by the first scenario, and then the second

scenario.

Judging from the p-value in Table 4.7, the marginal

cost for the 7- and the 10-period time horizon in the second

scenario can be regarded as zero. No change in the

objective value is expected as the buffer size increases or

decreases for these problems. For other problems, it is

expected that the larger the buffer size, the less the



Table 4.7. Marginal cost for different scenarios

M-Cost/ft:marginal cost per foot from the stream
M-Cost/pd:inarginal cost per adjacency lag period
SSMART:SSMART applied to all constrained problems
NO OPT:no use of SSMART to constrained problems
* :the static-scenario
** :the dynamic-scenario
***:the lag-scenario

0

* STATIC CHANGE IN BUFFER SIZE **DYNIC ***ADJACENCY
SSMART NO OPT. SSMART SSMART

N-Cost/ft p-value N-Cost/ft p-value M-Cost/ft p-value M-Cost/pd p-value
3 periods 14,954.59 0.000 15,211.09 0.000 3,439.73 0.017 2,600,972 0.000
5 periods 17,951.73 0.000 17,747.38 0.000 3,354.03 0.012 2,820,074 0.000
7 periods 17,860.75 0.000 18,285.81 0.000 104.17 0.819 2,502,449 0.000
10 periods 17,375.44 0.000 18,245.70 0.000 5.88 0.935 2,266,219 0.000



objective value and that the more the adjacency lag period,



CONCLUS IONS

The objective of this paper was to estimate the cost of

implementing spatial restrictions on the riparian zone of

the example forest from the Alsea Ranger District, Siuslaw

National Forest in Oregon. In order to analyze the effect

of alternative regulations on riparian zone planning, three

different scenarios were proposed.

The first scenario, the static-scenario, was modeled

using the static change in the riparian management zone

size, or buffer size. Following the Oregon Forest Practice

Rules (1988), no harvest occurs within the riparian

management area. With or without using the heuristic

optimal harvest scheduling system, the objective value of

the solution was almost the same, resulting in similar

derived cost of implementing spatial restrictions. The

marginal cost per foot of the riparian management area

length changed from $1,495.59 to $17,951.73 for the use of

the heuristic technique, SSMART, on all constrained

problems, while it changed from $15,211.09 to $18,285.81 for

the approach without the use of the SSMART on the

constrained problems. Although the approach without the use

of SSMART on the constrained problems provided values close

to those estimated using SSMART, the corresponding harvest

schedule was inferior to that developed by SSMART in terms

of the actual flow fluctuation. The solution without the

172
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use of SSMART tended to indicate that the larger the size of

the riparian management area, the more the actual flow

fluctuation of the harvest flow level. This was not the

case for the solution using SSMART.

Allowing harvest to occur within the riparian

management area was the second scenario (the dynamic-

scenario). It was modeled by treating segments of the

riparian management area as another harvest unit with

additional adjacency constraints among segments and the

original harvest units. Because of the availability of

harvest units, the solution did not differ much in the

objective value from that without any restrictions. The

marginal cost per foot of buffer width from the stream was

almost zero for the 7- and the 10-period time horizon and

$3,439.73 and $3,354.03 for the 3- and the 5-period time

horizon, respectively.

Finally a third scenario, the lag-scenario, was

proposed. The objective value of the 2- and the 3-period

adjacency lag problems was much lower than the one using the

1-period adjacency lag, resulting in high cost. The

marginal cost per adjacency lag period was also high,

changing from $2,266,219 to $2,820,074. While the average

harvestable volume for the static- and the dynamic-scenarios

decreases as the time horizon increases, it stays almost at

the same level over different time horizons for the third

scenario with the 2- and the 3-period adjacency lag.
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The heuristic harvest scheduling system, SSMART, can be

of use in solving the spatially constrained area-based

harvest scheduling problem with even-flow constraints to

provide a "good" solution. To estimate the cost of

implementing spatial restrictions, the long-term harvest

scheduling problem is solved. For these kinds of problems

the use of the exact solution techniques such as the branch-

and-bound algorithm in integer programming, could be

impractical in terms of both computational time and

dimensionality. Despite the lack of guaranteed optimality,

SSMART can be one of several alternative techniques to

create a "good" solution for the long-term scheduling

problem with riparian constraints so that estimates of cost

can be provided with ease for alternative policy selection.
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Chapter 5

CONCLUS IONS

This dissertation has presented the use of a heuristic

algorithm called ROHO-PATH (Random rdering lleuristic

Optimization with projection 1ternative TecHnique) to solve

a spatially constrained area-based harvest scheduling

problem with even-flow constraints. The PATH algorithm was

originally introduced to solve a stand level optimization

problem, which is equivalent to an unconstrained

optimization problem. The main advantage of using the PATH

algorithm is that the multiperiod problem is partitioned

into a subproblem period by period, resulting in a vast

reduction of the computational burden. When solving this

harvest scheduling problem by exact solution techniques, the

number of decision variables and constraints increases

dramatically as the time horizon increases. Thus, even

today's computer technology may fail in solving the problem

using commercial optimization software, e.g., LINGO/386.

This is not the case for the PATH algorithm. Instead of

solving the problem over the total time horizon

simultaneously, the PATH algorithm solves the problem at

each period iteratively, leading to reduction of solution

time and dimensionality.

Since our problem is constrained by even-flow and

adjacency constraints, the PATH algorithm and problem
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specification must be modified to deal with these

constraints and multi-stand harvest scheduling concerns. In

the proposed technique, the problem was partitioned into a

harvest flow minimization problem and a present net worth

maximization over the time horizon. Respecification of the

objective in the partitioned problem is necessary since

even-flow constraints are most likely violated, and these

infeasibilities are to be minimized. Taking into account

the dynamics of forest growth, feasibility of a solution in

the partitioned problem was expanded to both the current and

the following periods.

Since the respecified problem is not exactly the same

as the original problem, in which the objective is to

maximize the present net worth of the sum of returns from

harvest units with even-flow and adjacency constraints, the

modified random search technique, ROHO, is a key factor in

obtaining a "good" integer solution by bridging these two

problems.

The advantage of the ROHO algorithm over other random

search techniques is that ROHO utilizes the stochastic

nature of the random number to create the ordered sequence

from which harvest units are selected for a solution in

order, while other techniques use the random number directly

to determine if a harvest unit is selected. Thus, some

viable candidates could be missed. Using ROHO, a set of

feasible solutions is created by changing the ordering in



are inherently infeasible,
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the sequence.

Incorporating the ROHO-PATH algorithm, the cheduling

ystem of anagement Alternatives fo limber-harvest

(SSMART) was developed. SSMART can handle 500 harvest units

with a 20-period time horizon problem as the largest

problem. In comparison to the performance of LINGO/386 and

RELAX, SSMART appears to yield a "good" feasible solution

for all period problems with a reasonable computational time

and fairly small flow fluctuation.

The cost evaluation of spatial restrictions on riparian

zone planning was attempted for a forest on the Green River

Subbasin on the Alsea Ranger District, Siuslaw National

Forest in Oregon. Without use of any optimization or

heuristic techniques, the cost evaluation could be done

well. However, the derived solution tends to have larger

harvest flow fluctuation as the conditions become more

restricted. SSMART, on the other hand, provided a solution

with consistently small flow fluctuation.

A wide variety of the applications with the ROHO-PATH

algorithm can be implemented in spatially constrained

harvest scheduling. Since the exact solution techniques are

costly and fail in providing any solution for problems that

heuristic techniques will

probably replace them for harvest scheduling problems

requiring a high degree of spatial resolution with many

stands and periods. The techniques could be modified in
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future research to incorporate road network optimization or

questions of forest fragmentation.
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