Optimal Fisheries Contracts with Asymmetric Information and Interdependent Species

Yulia Pavlova¹ Antti Iho¹ Marko Lindroos² Kimmo Ollikka³

¹LUKE Natural Resource Institute Finland

²University of Helsinki, dept. of Economics and Management

³VATT Institute for Economic Research

15 July 2016

Introduction

Figure: Commercial species x and non-commercial species y

- Two fish stocks competing for a resource (x is commercial and y is non-commercial)
- Presently, only commercial species regulation is common
- Two-species regulation can increase stock of x and lead to larger revenues if y is lowered
- Two-species regulation may fail due to asymmetry of information

Introduction

Figure: Commercial species x and non-commercial species y

- Two fish stocks competing for a resource (x is commercial and y is non-commercial)
- Presently, only commercial species regulation is common
- Two-species regulation can increase stock of x and lead to larger revenues if y is lowered
- Two-species regulation may fail due to asymmetry of information

Introduction

Figure: Commercial species x and non-commercial species y

- Two fish stocks competing for a resource (x is commercial and y is non-commercial)
- Presently, only commercial species regulation is common
- Two-species regulation can increase stock of x and lead to larger revenues if y is lowered
- Two-species regulation may fail due to asymmetry of information

Ecological-Economic Model. Gordon-Schaefer model.

- Two species: commercial x and non-commercial y
- Fish stock S_j , j = x, y, logistic growth function

$$\dot{S}_j = G_j(S_j) = r_j S_j(1 - \frac{S_j}{K_j}),$$

where r_j is intrinsic growth rate, K_j is carrying capacity, S_j is stock j;

- n = 2 fishing fleets (two players) can harvest x and y simultaneously
- Purely selective fishing:
 e_{ij} is (strategy) harvesting effort of species j of fisherman i.
 Total effort of harvesting x is E_x, and total effort of harvesting y is E_y.
- Individual harvest *j* of fisherman *i* is

$$h_{ij}(e_j,S_j)=q_jS_je_{ij},$$

where q_j is catchability coefficient.

Ecological-Economic Model

• Assumption: K_y is given, but K_x depends on S_y

$$K_x = K_{x0} \left(2 - \frac{S_y}{K_y}\right)^{\alpha},$$

 K_{x0} is carrying capacity x if y is not harvested, S_y is stock y, K_y is species y carrying capacity, α indicates how competing stocks are, so that $0 \le \alpha \le \overline{\alpha}$.

• Steady state of fish stocks are

$$\tilde{S}_{y} = \mathcal{K}_{y} \left(1 - \frac{q_{y}}{r_{y}} \left(e_{1y} + e_{2y}\right)\right),$$

$$\tilde{S}_{x} = \mathcal{K}_{x0} \left(1 - \frac{q_{x}}{r_{x}} \left(e_{1x} + e_{2x}\right)\right) \underbrace{\left(1 + \frac{q_{y}}{r_{y}} \left(e_{1y} + e_{2y}\right)\right)^{\alpha}}_{\text{effect of reduced stock } Y}.$$

Ecological-Economic Model

• Payoff of each fisherman i, i = 1, 2 be

$$p_x h_{ix} + p_y h_{iy} - c_{ix} e_{ix}^2 - c_{iy} e_{iy}^2$$

*h*_{ij} is individual harvest of fisherman *i* from harvesting *j*,
Price *p*_x depends on supply (linear demand function)

$$p_x = a - bq_x K_{x0} (1 - \frac{q_x}{r_x} E_x) (1 + \frac{q_y}{r_y} E_y)^{\alpha} E_x,$$

 $p_y = 0$ - Species y has no market value.

• $c_x = const$ is common knowledge, asymmetry of information on c_y

$$egin{array}{lll} \mathsf{c}_{iy} = & egin{array}{c} \mathsf{c}_L, & 0 \leq
u \leq 1 \ & \mathsf{c}_H, & 1-
u. \end{array}$$

Only fisherman knows her true c_y , other fisherman and the principal know only distribution.

Ecological-Economic Model

- $\bullet\,$ The principal has complete knowledge of $\alpha\,$
- Fishermen are assume $\alpha = 0$ ('pessimistic').

Contract is necessary to induce harvesting y!

- No regulation on y: BAU single-species regulation
- Two-species fishery and Complete Contract: no asymmetry of information. Principal proposes harvesting of x and y and subsidies according to joint welfare maximization (social optimum, first best)
- Two species-fishery and Contract under information asymmetry: adverse selection problem requires incentive compatibility constraints.

- No regulation on y: BAU single-species regulation
- Two-species fishery and Complete Contract: no asymmetry of information. Principal proposes harvesting of x and y and subsidies according to joint welfare maximization (social optimum, first best)
- Two species-fishery and Contract under information asymmetry: adverse selection problem requires incentive compatibility constraints.

- No regulation on y: BAU single-species regulation
- Two-species fishery and Complete Contract: no asymmetry of information. Principal proposes harvesting of x and y and subsidies according to joint welfare maximization (social optimum, first best)
- Two species-fishery and Contract under information asymmetry: adverse selection problem requires incentive compatibility constraints.

- No regulation on y: BAU single-species regulation
- Two-species fishery and Complete Contract: no asymmetry of information. Principal proposes harvesting of x and y and subsidies according to joint welfare maximization (social optimum, first best)
- Two species-fishery and Contract under information asymmetry: adverse selection problem requires incentive compatibility constraints.

Single-species regulation

'Business-as-usual' scenario: joint welfare maximisation of the fishermen payoff in the steady state (W_0 is individual payoff)

$$\max_{e_x} W^0 = \left\{ \left(a - b K_{x0} q_x (1 - \frac{q_x}{r_x} 2e_x) 2e_x \right) K_{x0} q_x (1 - \frac{q_x}{r_x} 2e_x) e_x - \frac{c_x}{2} e_x^2 \right\}.$$

 e_{x0} is (unique symmetric equilibrium) optimal harvesting efforts of species x, and S_x^0 correspondent steady state.

Complete Contract of Two-species Fishery

Two-species management problem and no information asymmetry. Objective in social optimum

$$\max_{e_{1x},e_{2x},e_{1y},e_{2y}}W^{SO} =$$

$$\begin{cases} 2\Big(p_x^{LL}h_{xL}^{LL} - \frac{c_x}{2}e_{xL}^{LL2} - \frac{c_L}{2}e_{yL}^{LL2}\Big), \text{ if both LL,} \\ p_x^{LH}(h_{xL}^{LH} + h_{xH}^{LH}) - \frac{c_x}{2}e_{xH}^{LH2} - \frac{c_H}{2}e_{yH}^{LH2} - \frac{c_x}{2}e_{xL}^{LH2} - \frac{c_L}{2}e_{yL}^{LH2}, \text{ if L and H} \\ 2\Big(p_x^{HH}h_{xH}^{HH} - \frac{c_x}{2}e_{xH}^{HH2} - \frac{c_H}{2}e_{yH}^{HH2}\Big), \text{ if both HH,} \end{cases}$$

and obtain fist-best solution (efforts & transfers)

Contract under information asymmetry

Principal's objective becomes maximization of the revenue from the fishing activity minus information rent paid to the fishermen (to reveal their true type)

$$\max_{\substack{e_{xH}^{HH}, e_{xH}^{LH}, e_{xL}^{LH}, e_{xL}^{LH}, e_{yH}^{LH}, e_{yL}^{LH}, e_{yL}^{LL}}} \left\{ 2\nu^{2} \left((a - bH_{x}^{LL})h_{xL}^{LL} - \frac{c}{2}e_{xL}^{LL2} - \frac{c_{L}}{2}e_{yL}^{LL2} \right) + 2(1 - \nu)^{2} \left((a - bH_{x}^{HH})h_{xH}^{HH} - \frac{c}{2}e_{xH}^{HH2} - \frac{c_{H}}{2}e_{yH}^{HH2} \right) + 2\nu(1 - \nu) \left((a - bH_{x}^{LH})h_{xL}^{LH} - \frac{c}{2}e_{xL}^{LH2} - \frac{c_{L}}{2}e_{yL}^{LH2} + (a - bH_{x}^{LH})h_{xH}^{LH} - \frac{c}{2}e_{xH}^{LH2} - \frac{c_{H}}{2}e_{yH}^{LH2} \right) - 2(1 - \nu)^{2}U_{H}^{HH}(0) - 2\nu(1 - \nu)(U_{H}^{HH}(0) + \frac{\Delta c}{2}e_{yH}^{HH2}) - 2(1 - \nu)^{2}U_{H}^{HH}(0)) \right\}.$$

Contract under information asymmetry

Next we need to take into consideration participation and incentive compatibility constraints (below we shall use notation $\Delta c = c_H - c_L$ and U(0) as out of contract utility, i.e. single species regulation e_s^0)

$$\begin{split} U_L^{LL} &\geq U_H^{LH} + \frac{\Delta c}{2} e_{yH}^{LH2}, \\ U_L^{LL} &\geq U_L^{LL}(0) \\ U_L^{LH} &\geq U_H^{HH} + \frac{\Delta c}{2} e_{yH}^{HH2}, \\ U_L^{LH} &\geq U_H^{LH}(0) \\ U_H^{LH} &\geq U_L^{LL} - \frac{\Delta c}{2} e_{yL}^{LL2}, \\ U_H^{LH} &\geq U_H^{LH}(0) \\ U_H^{LH} &\geq U_L^{LH} - \frac{\Delta c}{2} e_{yL}^{LH2}, \\ U_H^{HH} &\geq U_L^{LH} - \frac{\Delta c}{2} e_{yL}^{LH2}, \\ U_H^{HH} &\geq U_H^{HH}(0). \end{split}$$

Contract under information asymmetry

In case of 2-player contract $(e_x^{SB}, e_y^{SB}, t^{SB})$

Both players efficient (LL), harvesting efforts are efficient (=socially optimal)

$$e_{yL}^{LL,SB} = e_{yL}^{LL*}$$
 and $e_{xL}^{LL,SB} = e_{xL}^{LL*}$

One player is efficient and another inefficient, contract is suboptimal *LH.SB LH.* LH.SB LH.**

$$\begin{aligned} e_{yL}^{LH,SB} &\geq e_{yL}^{LH*} \text{ and } e_{yH}^{LH,SB} \leq e_{yH}^{LH*}, \\ E_{y}^{LH,SB} &\leq E_{y}^{LH,*}, \end{aligned}$$

$$e_{xH}^{LH,SB} = e_{xL}^{LH,SB} \ge e_{x}^{LH*}$$

Both are inefficient players (HH), harvesting effort to y below SO level and harvest x with higher effort than SO

$$\begin{split} e^{HH,SB}_{yH} &\leq e^{HH*}_{yH}, \\ e^{HH,SB}_{xH} &\geq e^{HH*}_{xH}. \end{split}$$

Table: Model parameters values

Parameter for x	value	Parameter for y	value	
K _{x0}	1500	K _y	1000	
r_x	0.325	ry	0.325	
q_{x}	[0.01, 0.4]	q_y	[0.01, 0.4]	
C _X	80	C_y	[20, 120]	
α	$[0,\infty]$			
а	20			
b	0.1			

In particular, parameters are $q_x = 0.05$, $q_y = 0.05$, $c_H = 120$, $c_L = 20$.

3

I ∃ ►

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Table: Model results

Regulation	e _{xH}	e _{xL}	e _{yH}	e _{yL}	S _x	S _y	t _H	tL
Single-species	0.812	0.812	-	-	1125.35	1000	-	-
regulation on x								
Social Optimum								
both efficient	-	0.669	_	0.623	1419.81	808.34	-	12.362
one efficient	0.707	0.707	0.125	0.750	1331.89	865.359	5.345	10.034
another inefficient								
both inefficient	0.769	-	0.167	_	1203.96	948.544	2.364	-
Optimal Contract								
both efficient	-	0.669	-	0.623	1419.81	808.34	-	12.556
one efficient	0.711	0.711	0.070	0.766	1322.45	871.481	4.327	10.668
another inefficient								
both inefficient	0.780	_	0.124	_	1183.56	961.861	1.302	_

글 > 글

• • • • • • • • • • • •

Figure: Steady state stock S_x Vs. Subsidy for harvesting y

∃ ⊳

< A

Implementation of social optimum (first best) in asymmetric information setting leads to adverse selection: only social optimum with inefficient players is implementable

Figure: Steady state stock S_x Vs. Subsidy for harvesting y

Fisheries Contract

Implementation of social optimum (first best) in asymmetric information setting leads to adverse selection: only social optimum with inefficient players is implementable

Figure: Steady state stock S_x Vs. Subsidy for harvesting y

Y. Pavlova, A. Iho, M. Lindroos, K. Ollik

Fisheries Contract

Implementation of social optimum (first best) in asymmetric information setting leads to adverse selection: only social optimum with inefficient players is implementable

Figure: Stock dynamics of commercial species x in case of contract and social optimum

Conclusion

- Fishing game with 2 interdependent species and incomplete and uncertain information of harvesting non-commercial species
- Image: modified Gordon-Schaeffer model
- Single-species regulation, Social optimum (no information asymmetry) and Contract
- Adverse selection in harvesting y and misinformation: only inefficient solution!
- Contract (second-best) leads to close-to-optimal harvesting and regulation and truthful cost structure

Future development:

compare 2-player contract with single-player contract: general vs. exclusive contracting

compare static vs. dynamic contracting