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Adjoint-derived weight windowing is a hybrid deterministic/Monte Carlo method

to simulate radiation transport. In adjoint-derived weight windowing, a determin-

istic adjoint solution is used to create weight windows for a Monte Carlo simulation.

The intent of this work is to identify factors that reduce the Figure of Merit (FOM)

of Monte Carlo simulations using adjoint derived weight windowing. The method

used in this study pairs Transpire’s deterministic code AttilaTM and MCNP5. Two

computationally difficult source/detector problems of interest to nuclear nonpro-

liferation are used as case studies to determine the factors that affect the FOM .

Test Case I is an active interrogation problem similar to many radiography

problems. The model is used in two sets of trials: in the first, the quality of the

deterministic adjoint solution is varied to observe the effect of adjoint solution

quality on the FOM . In the second, the shielding density is varied to determine

the effect of increased shielding on the FOM .

Results from Test Case I suggest that weight windows that decrease monotoni-

cally along relevant paths from the source to the detector maximize the FOM . The

results also suggest that weight windowing is susceptible to false convergence that

could be avoided using a different hybrid method, such as the Local Importance

Function Transform (LIFT). A more sophisticated method for generating weight



windows relevant to the forward Monte Carlo simulation is described for future

work.

Test Case II is a detailed model of a detector array passively interrogating a

uranium hexafluoride cylinder. Test Case II is used to test the effect of appropriate

source biasing on the FOM .

Results from Test Case II confirm prior work, that source biasing is important

for problems in which the adjoint function varies widely in the source domain. Since

spectral information from the detector is very useful for nonproliferation purposes,

a new use of the forward weighted consistent adjoint driven importance sampling

(FW-CADIS) method is described to model the energy-dependent flux in a region of

interest. Properly modeling Test Case II also requires the use of rejection sampling

of the source position paired with source biasing, which currently cannot be used

together in MCNP5. The new use for the FW-CADIS method and a method to

allow the use of rejection sampling with source biasing are described for future

work.
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Performance of Hybrid Methods for Representative Nonproliferation
Problems

1 Introduction

Nuclear nonproliferation experts aim to prevent the spread of nuclear weapons,

often by controlling and tracking the spread of certain radioactive materials. Radi-

ation detectors — systems that electronically respond to the presence of radiation

— can be used in several ways to quickly identify smuggled contraband: at ports

and other critical gateways, hand-held and portal radiation detectors allow security

officers to assess the quantity and type of nuclear material entering the country.

In nuclear facilities abroad, cleverly placed detectors can quickly provide informa-

tion about radioactive materials used in the plant without interrupting the facility.

Outside of nuclear nonproliferation, X-ray radiography is commonly used to scan

packages as small as passenger luggage and as large as containerized cargo on trucks

[Miller 2010].

Radiation transport simulation — the study of radiation as it moves through

matter — is important in nonproliferation for several reasons. Radiography and

passive assay have vulnerabilities that reduce their sensitivity, such as the presence

of shielding or intense background sources, that can be quickly assessed using

simulation. New detection methods and equipment are often tested less expensively

with simulation than experiment. Finally, an efficient transport simulation allows

inverse problems, such as source location, to be solved in a timely manner. All

three of these source/detector problems call for efficient photon simulation. This

thesis focuses on the use of weight windowing to improve the efficiency of Monte

Carlo simulation of photons in source/detector problems.
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This chapter overviews the theory and previous work related to the topic of

this thesis. Section 1.1 discusses radiation transport concepts, including relevant

alternative representations that offer information about the region of interest as

well as the source. Section 1.2 discusses variance reduction methods that have

been used with Monte Carlo simulation. Section 1.3 specifically explores the use of

adjoint-derived weight windows, including the use of source biasing to improve the

efficiency of source sampling. Section 1.4 returns to the issue of source/detector

problems, reviewing the use of adjoint-derived weight windows for problems with

small regions of interest. Finally, Section 1.5 briefly overviews the remaining chap-

ters in this thesis.

1.1 Radiation Transport

Radiation transport theory is the study of the distribution of radiation quanta

as a function of phase space, P , i.e. space, angle, energy, and time. This section

will briefly discuss current photon transport models and the numerical methods

used to estimate the radiation flux distribution.

1.1.1 The Steady-state Photon Transport

We use the variable Ψ(P ) dP = Ψ(~x, Ω̂, E) d~x dΩ̂ dE to represent the instan-

taneous track-length rate density of photons within dP about P . The radiation

transport problem is often posed via the Boltzmann transport equation, which in

steady-state simplifies to

Ω̂ · ~∇Ψ(P ) + Σt(P )Ψ(P ) =

∫
Σs(P

′ → P ) Ψ(P ′) dP ′ + S(P ) (1)

where Σt is the total interaction probability per unit distance traveled by a photon,

Σs(P
′ → P ) dP ′ dP is the probability per unit distance traveled of a photon within
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dP ′ about P ′ scattering into an angle and energy within dP about P , and S(P ) dP

is the rate of creation of photons within dP about P . Equation 1 represents a

conservation of photons in the phase-volume dP about P : the first term denotes

the net streaming of photons out of the spatial boundaries of dP ; the second

term refers to the removal of photons via interaction; the third term refers to the

introduction of photons into P by scattering from other energies and angles; the

fourth term generically describes the introduction of photons by fixed sources, such

as radioactive materials or particle accelerators.

In some problems, we want to consider the “importance” of a photon at P

to some response function, such as an expected detector response. The transport

equation may be alternatively posed in terms of an adjoint equation, i.e.

−Ω̂ · ~∇Ψ∗(P ) + Σt(P )Ψ∗(P ) =

∫
Σs(P → P ′) Ψ∗(P ′) dP ′ + S∗(P ) (2)

where Ψ∗(P ) represents the expected response of a photon at P and S∗(P ) denotes

the response function of interest, such as the response cross section of a detector

material or the fission cross section in a criticality problem. Note that, while phys-

ical photons are generated by radiation sources and down-scatter as they interact

with matter, adjoint photons are created in the response region and up-scatter as

they travel through material.

Painter et al. offer a third description of the transport equation, combining the

ideas of forward flux and adjoint flux [Painter 1980]. The “contributon” flux is the

number of photons within dP of P that eventually contribute to the detector, i.e.

ΨC(P ) ≡ Ψ(P )×Ψ∗(P ) (3)

The contributon flux is therefore divergence-free in space except at the source

and detector, since all contributon paths begin at the source and terminate at the
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detector. Further details on the use of contributon modeling for shielding problems

can be found in [Williams 1991], and [Seydaliev 2008] offers an example of modeling

the contributon flux numerically.

1.1.2 Numerical Methods for Solving the Transport Equation

Numerical methods for solving the transport equation are generally catego-

rized as deterministic or stochastic. Deterministic methods use finite-difference,

finite-element, or finite-volume methodology to transform the integro-differential

transport equation into a system of linear equations. While these approximations

may achieve high-precision results faster than stochastic methods, they suffer from

systemic discretization errors, such as ray effects, that are difficult to assess without

expert judgment.

Stochastic or Monte Carlo methods solve the transport equation by statistically

simulating a number of photons to obtain an estimate for the response of inter-

est. Each photon is created by randomly sampling a birth location in the source

domain and transporting it through the problem according to physical probability

distributions. In this thesis, the word “history” is used to describe a Monte Carlo

simulation photon.

Though Monte Carlo methods are intuitive and avoid errors like ray effects and

convergence failure, they converge slowly when high precision is needed. In a Monte

Carlo simulation, the histories’ respective detector responses will have a statistical

distribution with some standard deviation (σ). The central limit theorem indicates

that as the number of sampled histories (Nhist) increases, the mean sample response

(X̂) will approach the true response with precision on the order of σ/
√
Nhist. Since

the Monte Carlo simulation time (T ) is expected to be proportional to Nhist, it is
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convenient to establish a Figure of Merit for Monte Carlo simulations

FOM ≡ 1

R2T
(4)

where R is the relative error in X̂:

R ≡ σ

X̂
(5)

Since R must be estimated with some statistical uncertainty, the FOM is also

estimated with statistical uncertainty. The FOM estimate is expected to approach

a constant value as Nhist approaches infinity.

Many widely-used Monte Carlo codes exist, including MCNP5 [MCNP 2008a],

MORET4 [Nouri 1999], Geant4 [Geant4 2010], and MCBEND [Chucas 1994]. Us-

ing Monte Carlo methods to solve a simplified transport equation may improve

efficiency when such approximations are appropriate. For example, introducing

diffusion approximation to the transport operator can speed up Monte Carlo sim-

ulation when scattering is a dominant phenomenon [Densmore 2008]. Other codes

couple deterministic and Monte Carlo solutions to take advantage of the determin-

istic simulation’s speed and the Monte Carlo simulation’s accuracy.

1.2 Monte Carlo Variance Reduction

Analog Monte Carlo refers to Monte Carlo simulation in which each history cor-

responds to a fixed number of physical photons. In many problems, the variance of

responses relative to the true solution may be too high to make analog Monte Carlo

a practical option [Smith 2005, Sheu 2008]. Several variance reduction methods

exist to increase the statistical sampling of important regions (to reduce variance)

while reducing the sampling in regions of low importance (to reduce runtime). The
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MCNP manual divides variance reduction methods into truncation methods, par-

tially deterministic methods, modified sampling methods, and population control

methods [MCNP 2008a].

Simplifications (truncations) of the problem geometry or energy treatment can

improve code efficiency. For example, terminating the simulation of histories below

energies of interest or outside of the relevant spatial domain will reduce computa-

tion time while minimally distorting the solution. Other techniques may be used

to take advantage of the symmetry of the problem, such as ring detectors [Booth

1985] or reflecting or periodic boundary conditions.

Partially deterministic methods circumvent the “random walk” Monte Carlo

process in certain regions, using instead a deterministically calculated response.

These methods include Deterministic Transport (DXTRAN), point tallies [MCNP

2008a], and other forced flight methods [Chucas 1994]. At every step of the ran-

dom walk, these methods deterministically compute the probability of scatter from

the local region to a region of interest and record the associated tally. Other ap-

proaches have coupled deterministic treatment of the transport through shielding

regions with Monte Carlo treatment of detector response [Baker 1993, Smith 2008].

Another method, Variational Variance Reduction (VVR), could be included as a

partially deterministic method. Codes employing VVR use a variational function

to combine a forward solution and an adjoint solution (each of which may be found

using deterministic or Monte Carlo methods) to obtain a higher-order estimate of

the system response [Barrett 2001, Densmore 2002, Densmore 2004]. Becker de-

scribes a similar paired deterministic / Monte Carlo method in which Monte Carlo

is used to correct errors in the deterministic solution [Becker 2007].

In modified sampling schemes, the random walk of each history is no longer
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based on physical distributions alone. Therefore, modified sampling schemes must

rely on the concept of history weight to maintain solution accuracy. One history

can be used to represent more than one physical photon, (i.e., a history with twice

the weight of another history represents twice as many physical photons). Modi-

fied sampling methods bias the sampling of transport phenomena, but compensate

the weight of the transported history to maintain overall solution accuracy. For

example, the exponential biasing method reduces the probability a history will

scatter as it travels through a region of space, but decreases the weight of unscat-

tered histories and increases the weight of scattered histories [MCNP 2008a, NEA

2008, Burn 1995]. Other methods implemented in MCNP include implicit capture,

forced collisions [Booth 1985], and source biasing [Nouri 1999]. Several codes [NEA

2008, Burn 1995, Chucas 1994] have demonstrated biasing of the scattering kernel

so that histories preferentially scatter toward high-importance regions.

Many of the modified sampling concepts have been combined in the Local

Importance Function Transform (LIFT), which modifies the entire transport op-

erator [Painter 1980, Williams 1991, Turner 1997a, Hoogenboom 2008]. Rather

than model the forward transport equation, LIFT combines an a priori estimate

of the adjoint flux with sampling distributions of the forward transport operator to

model the contributon transport equation. If an exact adjoint solution were avail-

able, every Monte Carlo history would contribute the same amount to the detector

response, resulting in a zero-variance solution. Some results for Monte Carlo LIFT

modeling are available in [Turner 1997b].

Population control methods modify the sampling of phase space by terminating

histories in unimportant regions and splitting histories in important regions. The

weight of surviving histories is adjusted to maintain accuracy. Population control
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can be applied in two ways: importance-based splitting or weight windows.

Importance-based splitting compares a priori importance estimates Ii and Ij

of two regions i and j as a history travels out of i and into j. If Ij is larger than Ii,

the history is split into roughly Ij/Ii independent sub-histories, each with weight

reduced by a factor of Ii/Ij. If Ij is smaller than Ii, the history will play the

roulette game: either be terminated (with probability 1 − Ij/Ii) or survive with

weight increased by a factor of Ii/Ij. Therefore, on average, the initial history

weight wi is conserved in the mean of all possible outcomes:

〈wj〉 =

(
1− Ij

Ii

)
× 0 + wi ×

Ij
Ii
× Ii
Ij

= wi (6)

Several examples are available from [Burn 1995], and MCNP uses importance bi-

asing as a standard variance reduction method [Booth 1985].

The weight window method uses the same splitting and rouletting principles

to conserve the weight of the initial history, but considers only the weight of the

history compared to the weight window assigned to the region in which the his-

tory currently resides. This dictates, in theory, that all histories will reside in

the local weight window as they travel through a region. In practice, weight win-

dows are usually applied only at collisions, material interfaces, and occasionally

along streaming paths to keep the associated cost reasonable. Section 2.4 further

describes the practice of weight windowing.

1.3 Adjoint-Derived Weight Windows and Source Biasing

Several studies [Coveyou 1967, Wagner 1998, Haghighat 2003] argue that op-

timal weight windows are inversely proportional to the adjoint distribution. Intu-

itively, one may reason that more-important regions (i.e., those with higher adjoint)
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should be sampled more frequently than those irrelevant to the problem. Recent

research efforts have focused on weight windows generation schemes that seek to

minimize the second moment of each history’s contribution to the tally, explicitly

seeking to minimize the variance of the solution [Booth 2010].

Several methods exist for automatically generating adjoint weight windows.

A forward Monte Carlo run [Booth 1983, Booth 1984], perhaps with a modified

source distribution [Shuttleworth 2000], can collect information about the fraction

of photons in each region of phase space that contribute to the detector tally. Al-

ternatively, a deterministic solution of the adjoint transport equation can be parsed

into weight windows for use in a forward Monte Carlo run. This hybrid method

has been implemented using deterministic diffusion [Mickael 1995, Gardner 1999,

Garcia-Pereja 2007] and discrete ordinates [Van Riper 1997, Tang 1998, Wagner

1998, Wagner 2000, Shuttleworth 2000, Sweezy 2005, Peplow 2006, Sheu 2008]

codes.

Regardless of the method of weight window generation, the use of a weight

windows grid distinct from the problem geometry is preferred in most cases. Sepa-

rating the problem into two discretizations allows adequate resolution of the weight

windows distribution without encumbering the Monte Carlo engine with extrane-

ous cell crossings [Liu 1997, Hendricks 2000].

1.3.1 The Consistent Adjoint-Driven Importance Scheme

In some problems, the importance function varies widely over the source domain

[Wagner 1998, Hendricks 2000, Mosher 2010b]. When weight windows are applied

to these problems, histories are frequently split or rouletted as they are born. This

creates an implicit form of source biasing: in important regions the histories are
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split at birth, creating a higher population of low-weight histories. In other regions

the population is reduced.

This implicit source biasing is computationally expensive if many histories are

terminated at birth; efficiency gains can be offered by explicitly biasing the source

distribution such that every history is born in the local weight window. The

consistent adjoint driven importance sampling (CADIS) method demonstrates that

the source should be biased proportionally to the adjoint distribution [Wagner

1998].

To prevent the source biasing from affecting the tally mean, histories born in

preferred regions are assigned reduced weight. For example, consider region i of

the source in which some fraction pi of the photons are generated. If region i is

assigned a source biasing factor Bi, then a normalized fraction p′i of the histories

will be born in i, i.e.,

p′i =
piBi∑
j [pjBj]

(7)

The fraction of photons born in region i must equal pi; therefore, the weights of

the p′i histories born in region i are

wi =

∑
j [pjBj]

Bi

(8)

Note that if rejection sampling is used, MCNP5 cannot properly estimate pi. There-

fore wi will be inaccurate unless Bi = 1 for all regions, i.e., source biasing is not

used [MCNP 2008b p. 3-59].

Several codes implement CADIS, including A3MCNP [Wagner 2000], ADVANTG

[Wagner 2002, Mosher 2010a], and MAVRIC [Peplow 2007] with good results. In

these codes, volumetric sources are approximated by a series of biased point sources

in MCNP, avoiding the conflict between rejection sampling and source biasing

[Wagner 2000, Mosher 2010b].
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1.3.2 Forward Weighted CADIS

In problems where multiple regions of interest exist, the adjoint source must

be balanced so that the flux in each region of interest is sampled adequately. The

forward weighted CADIS (FW-CADIS) method accounts for the forward flux distri-

bution when calculating the strength of each adjoint source [Wagner 2007, Peplow

2007, Mosher 2009, Mosher 2010a]. Wagner notes that the FW-CADIS’s require-

ment of forward and adjoint deterministic solutions is very economic compared to

the cost of running a separate Monte Carlo calculation for each detector [Wagner

2009].

1.4 Source/Detector Approaches

Transport problems are frequently categorized by the scope of their region of

interest. For example, global problems require flux estimates over a large region of

the problem; the eigenvalue of interest in criticality problems is strongly affected

by the flux in highly multiplicative regions of the core. This thesis focuses on

source/detector problems, in which a small region of interest is defined within a

larger physical model. Many problems fit this description, including nuclear oil-

well logging, passive assay, and radiography models. Source/detector problems

may be further categorized based on how widely the importance function varies

over the source domain; thickness of shielding between the source and detector;

and the relative contribution of streaming paths to the overall result.

The importance of a region depends on the presence of paths from that region to

the region of interest. In some problems of interest, such as ex-core detector or cask

shielding applications, the importance function varies substantially over the source
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domain [Wagner 1998, Haghighat 2003, Mosher 2010b]. In these cases, CADIS

methodology is important to ensure efficient sampling of the source distribution.

While the Monte Carlo efficiency is generally insensitive to the adjoint solution

quality [Haghighat 2003], some important exceptions exist. Gardner found that

better efficiency was achieved by generating weight windows from deterministic

solutions than forward Monte Carlo runs [Gardner 1999]. The benefit is lost for

problems with highly angle-dependent importance functions [Sweezy 2005], unless

angle-dependent weight windows are also applied [Booth 1983, Van Riper 1997,

Peplow 2010]. In some cases, steps must be taken to generate sufficiently accurate

weight windows in streaming regions [Shuttleworth 2000].

Overall, the degree to which adjoint weight windowing improves the FOM for

source/detector problems depends on problem attenuation, presence of streaming

paths, use of source biasing, and choice of weight window generation method. An

ideal variance reduction scheme could provide an accurate and efficient solution

with no user interaction or expert judgment needed. Several studies note that

expert judgment is often called for, especially in considering the possibility of

false convergence (in which the precision of the solution is over-estimated because

important paths have been under-sampled) [Booth 1985, Hendricks 2000]. Efforts

have been made to simplify the decision-making process, including statistical checks

in MCNP5 [MCNP 2008a] and automatic weight windows generation.

1.5 Thesis Overview

In several source/detector problems of interest to the nuclear nonprolifera-

tion community, the adjoint weight windowing method insufficiently improves the

FOM . This thesis aims to identify the causes for weight windowing’s diminished
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performance in these problems so that solutions can be devised and perhaps in-

corporated into an automated variance reduction package. The remainder of this

thesis is organized as follows:

II. The hybrid method used in this thesis is described in Chapter 2. First, the

adjoint flux is deterministically solved using Transpire’s AttilaTM code [Ware-

ing 2001]. Next, AttilaTM generates adjoint weight windows for MCNP5. The

user must create source biasing parameters using an empirical method. Fi-

nally, the Monte Carlo simulation is performed.

III. In Chapter 3, two source/detector case studies, including one with a rela-

tively small source domain and one with a relatively large source domain, are

considered. Test Case I is used for two trials in which the FOM is recorded as

a function of the adjoint solution quality and shielding density, respectively.

Test Case II quantifies the improvement in FOM when appropriate source

biasing is used for a problem of interest to the nonproliferation community.

Results from the method developed in Chapter 2 are presented.

IV. In Chapter 4, conclusions of the case studies are presented. The results

in Chapter 3 suggest that weight windows should monotonically decrease

along relevant paths from the source to the detector. The appropriate use

of source biasing, such as the CADIS method, is critical for problems where

the importance varies greatly in the source domain. Finally, a comparison of

weight windowing with LIFT explains how LIFT’s scatter-angle biasing may

be important when large streaming regions exist near the detector.

V. In Chapter 5, several directions for future research are described. For prob-

lems where precise results are desired in many energy groups, the FW-CADIS
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method could be applied to energy instead of position. A method is described

for generating weight windows that more appropriately use the adjoint solu-

tion information. Finally, a new “F0” tally for allowing source biasing with

rejection sampling is described.
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2 Methods

2.1 Introduction

Although the idea of adjoint-derived weight windowing is well-established, there

is need to determine the limits of the method and reasons for the decline in its

effectiveness. The methods outlined in this chapter are intended to allow adjoint-

derived weight windowing in the best way possible while shedding light on the

problems that limit the domain of problems over which weight windowing improves

the FOM .

First, AttilaTM is used to simulate the adjoint flux and generate weight windows.

Special care is taken to prevent nonphysical adjoint flux solutions in regions relevant

to the solution. Source biasing is applied to preferentially sample regions where

the weight windows are low. Since MCNP5 does not derive source biasing directly

from weight windows and AttilaTM does not generate source biasing parameters, the

source biasing parameters are generated empirically by the user. Finally, MCNP5

simulates the flux in the detector.

2.2 Deterministic Adjoint Solution

Transpire’s AttilaTM version 7.0.0 code is used to deterministically solve the ad-

joint solution and generate weight windows. Cross sections used in AttilaTM were

generated using the CEPXS libraries installed in RADSAT [Smith 2008]. Although

some coded features of AttilaTM are proprietary, the tools of interest will be de-

scribed in this section.
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AttilaTM uses tetrahedral meshing to discretize the spatial domain of the prob-

lem, discrete ordinates treatment of angular dependence, and multigroup treatment

of the energy variable [Attila 2009]. The spatial distribution is represented using

discontinuous finite element spatial differencing. The scattering source is stored as

an expansion of spherical harmonic moments, which is updated between “sweeps”

of the spatial mesh.

The deterministic adjoint solution is considered converged when all regions

with importance above 10−4 times the importance of the source location are well-

resolved. If the solution appears rough or nonphysical, a finer mesh or angular

treatment may be required.

2.3 Creating Weight Windows

AttilaTM can automatically generate a weight window map for MCNP. The user

specifies the number of mesh divisions in each of the three Cartesian directions, and

a normalization constant Cww for the weight windows. The number of divisions is

chosen so that each division is approximately one mean-free-path for the photon

energy group with the longest mean-free-path. The normalization constant Cww

is chosen to prevent information in the deterministic adjoint solution with high

relative error from affecting the Monte Carlo run, as described in this section.

AttilaTM uses Cww, the number of divisions, and the deterministic solution

to generate weight windows. For each hexahedral cell in the weight window file,

AttilaTM uses the following method to find an appropriate weight window: first,

AttilaTM finds the solution at each of the eight vertices of the hexahedral cell

by evaluating the finite element solution at those points. The mean of these
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eight adjoint fluxes estimates the average adjoint flux in the hexahedral cell, Φ∗.

AttilaTM then assigns a weight window lower bound inversely proportional to the

adjoint flux, up to 1010, i.e.,

wwl = min

(
Cww

Φ∗
, 1010

)
(9)

These values are stored in a text file that MCNP can read.

Very often if the adjoint flux is very close to zero, the relative error of the

deterministic solution will be significant. (Negative adjoint flux values may exist,

which is an unphysical phenomenon.) The upper bound in Eq. 9 provides a conve-

nient way to ignore portions of the deterministic solution that are below a certain

threshold. To disable weight windowing in these regions (which, if the determin-

istic solution has been properly resolved as per Section 2.2, will have little impact

on the tally of interest), the user sets Cww so that wwl in the regions to be disabled

falls above the 1010 threshold. For example, the user could set Cww = 10 to force

constant weight windows for adjoint solution values below 10−9 in Fig. 1.

2.4 Source Biasing

By default MCNP5 applies weight windows at birth. “Perfect” weight win-

dows would be an exact inversion of the adjoint flux, and the weight windows

would be “narrow” if the window had no width, i.e., all histories at P would be

split or rouletted to one weight. If perfect, narrow weight windows were applied

at birth, the result would be an “implicit” biasing of source histories (following

the first weight windows application) proportional to the adjoint flux. Each sur-

viving history would have its weight modified so that the weight of all histories

born in a region of phase space is equal to the weight born in the same region in
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an analog simulation. As described in this section, however, perfect and narrow

weight windows cannot and should not be used. Explicitly defining source biasing

parameters (rather than relying on weight windows to implicitly bias the source)

therefore offers an improvement in the Monte Carlo FOM in problems where the

importance function varies widely over the source domain.

MCNP5 weight windows are isotropic and fail to capture the angular depen-

dence of the adjoint flux distribution. Similarly, the simplification of the spatial

dependence from a fine tetrahedral mesh to a coarser hexahedral mesh reduces the

resolution of the adjoint solution. The advantages of these simplifications are that

they greatly reduce the memory requirements for storing the weight windows and

reduce the cost associated with applying the weight windows.

Using isotropic weight windows limits the effectiveness of angular source bias-

ing. If histories are preferentially born in certain directions with smaller weight,

rouletting will be applied to these histories (or other histories will be split) so that

the source biasing is negated.

Also, the weight windows are not narrow. MCNP5 defaults to set the upper

limit of the window at 5 times the lower limit. Using wide windows is impor-

tant because it prevents excessive rouletting and splitting of histories due to small

changes in the importance function. Page 2-148 of [MCNP5 2008a] indicates that,

based on empirical evidence, the default window width “works well, but the FOM

is reasonably insensitive to this choice....” Therefore the default window width is

used throughout this thesis.

Using wide windows means that histories can exist anywhere within that win-

dow, meaning a range of weights may be found in one region of the problem. This

offers the user flexibility in applying angular source biasing: important directions
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may be sampled up to 5 times more often than unimportant directions.

By default, splitting and rouletting are applied in no more than a 5:1 ratio.

In other words, a history is split no more than five-fold, and survives a roulette

game at least 20% of the time. This limitation is intended to prevent nonsensical

splitting. For example, a history may take a path around a shield and scatter into a

region with very high importance. In this case, excessively splitting this history is

unlikely to reduce its contribution to the problem variance but will incur significant

computational cost and therefore reduce the FOM . (Booth gives another example

in slide 42 of [Booth 2010].) Additionally, excessive rouletting — perhaps a result

of underestimating the importance of a path from the source to the detector — can

allow relevant paths to be inadequately sampled, resulting in a false appearance of

solution convergence.

Limiting the application of weight windows can severely interfere with im-

plicit source biasing. Consider histories born far below the local weight window:

Although many are terminated at birth by the roulette game, 20% will survive

with 5-fold increased weight. These will be transported through the problem until

weight windowing is applied again, presumably still in a low-importance region

of the problem. Eighty percent of these histories will be terminated here. (The

remaining 20% — 4% of the histories born in the low-importance region — will be

transported further.) The result is that computational effort is wasted transporting

histories that are unlikely to contribute information to the solution.

The source biasing methods used in this thesis attempt to take advantage of

MCNP5 features to maximize the FOM by matching the source biasing distribu-

tion to the adjoint flux distribution.
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2.4.1 Case I: Point Source

When the importance function is fairly constant across the spatial domain of

the source, the birth weight of histories should fall within the local weight window.

If the weight windowing parameters are known at the source location, it is simple

to use energy biasing and the WGT parameter of the SDEF card to match the

source weight distribution to the weight windows exactly.

When angular source biasing is used, the histories’ birth weights are decreased

in preferred directions and increased in non-preferred directions. It is likely that

not all birth weights can fall within the weight window. In this case, a binary

search is used to find the ideal compromise between splitting and rouletting at

birth.

MCNP5 prints a warning indicating how many histories are born above and

below the local weight window. This warning allows the user to quickly bound the

domain of the ideal WGT parameter. To find the upper bound, the user simulates

1000 histories with an initial guess for WGT . If roughly 99% of the histories are

born above their weight window, that value of WGT is a good upper bound for the

optimization search. Otherwise WGT is changed and the simulation is performed

again. A similar method is used to find the lower bound for the optimization

search.

To perform the binary search, the FOM is noted at the upper and lower bound-

aries of WGT and at three logarithmically equidistant values between the upper

and lower boundaries using the preliminary simulation procedures described in Sec-

tion 2.5. The FOM measurements are not expected to smoothly vary with WGT

(since they are subject to statistical variance) but should give a clear indication

which of the five WGT values offers the highest FOM . The neighboring values of
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WGT become the new boundaries of the binary search. For example, if a series of

five FOM values were simulated as depicted in Fig. 2, the user would reason that

the ideal WGT would exist between 10 and 103. The five values next considered

Figure 2: An example of data recorded in the search process used to find the ideal
WGT parameter.

would be 10, 101.5, 102, 102.5, and 103. The search is terminated when the optimal

WGT is bounded within an order of magnitude or the differences in FOM among

the five points is no longer statistically significant.
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2.4.2 Case II: Volumetric Source

When the importance function varies significantly over the source domain, steps

must be taken to match the source biasing distribution to the weight windows dis-

tribution. Ideally the biasing distribution would be proportional to the determin-

istic importance function, so that every history would be born in the local weight

window. This is not possible, because MCNP5 only allows the biasing function to

depend on the three Cartesian coordinates independently. (The A3MCNP [Wagner

2000] and ADVANTG [Mosher 2010b] codes implement source position biasing by

representing the source volume as a series of points with independent biasing pa-

rameters.) In this thesis, the source biasing is matched to the importance function

using empirical corrections to a logical initial guess.

Neglecting scatter, the importance function decays exponentially through shield-

ing material. A reasonable guess for the source position biasing distribution is

therefore an exponential distribution with decay rate based on measurements of

the adjoint flux from the deterministic adjoint solution. MCNP5 allows source

biasing in each of the Cartesian directions independently. For this thesis, the ini-

tial guess for the biasing distribution will be exponential in the direction from the

detector to the source, and constant with respect to the other two directions. This

initial guess is used to find the ideal WGT , as described in Section 2.4.1.

Once the ideal WGT is established, similar binary searches are used to find

the ideal decay rate for the exponential biasing distributions. It is assumed that

the optimal decay parameter in one direction is not affected by the parameter

used in the other direction; this assumption was demonstrated as reasonable by

re-performing the binary search using the optimal parameters and arriving at the

same parameters.
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2.5 Monte Carlo

The Monte Carlo portion of the hybrid method used Los Alamos National

Laboratory’s MCNP5 version 1.51 on the Windows 7 operating system. Since the

MCNP5 FOM is one of the important metrics of success, care was taken to provide

consistent processing power and memory for each simulation. A DellTM PrecisionTM

M4400 with 4.00 GB of random access memory (RAM) and a 2.53 GHz Intel R©

Q9300 four-core central processing unit (CPU) was used to perform the MCNP5

simulations. No more than three simulations were performed simultaneously, and

each simulation used only one core. Therefore each MCNP5 simulation had exclu-

sive use of one core, while the computer operating system and auxiliary programs

were handled by the fourth core. The available RAM exceeded simulation require-

ments in all cases.

2.5.1 Monte Carlo Stopping Criteria

Since this thesis is interested in the mean of each tally as well as the FOM

(which is derived from the relative error), the Monte Carlo solution must assess

both with sufficient precision. The number of histories used in the simulation

must be sufficient so that R and the relative error of the relative error (ROR) are

sufficiently small. One can apply the propagation-of-uncertainty relationship to

Eqn. 4 to estimate the standard error of the FOM estimate:

σ2
FOM = σ2

R

(
∂ FOM

∂R

)2

= σ2
R

(
−2

TR3

)2

= 4 FOM2
(σR
R

)2
(10)

where σFOM is the standard error of the FOM estimate and σR is the standard

error of R. Since ROR ≡ σR/R and MCNP5 reports the variance of the variance

(V OV ≡ ROR2) [MCNP 2008a p. 2-122] instead of ROR, we can rewrite Eq. 10
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to show that the relative error in our estimate of the FOM is

σFOM

FOM
= 2
√
V OV (11)

When searching for optimal WGT or source biasing parameters in preliminary

simulations, relative error in the FOM estimate of less than 20% was considered

sufficiently precise; therefore the simulation must aim to achieve V OV < 0.01.

After the ideal simulation parameters are chosen, one conclusive simulation was

run, targeting R less than 5% and relative error in the FOM of less than 10%;

therefore the simulation must achieve R < 0.05 and V OV < 0.0025.

Monte Carlo simulations ended after one of several stopping criteria was met:

All simulations were initially run for 5 minutes of CPU time using the CTME

card. If the solution did not meet the conditions in the previous paragraph, the

simulation was continued for an additional time that was expected to exceed the

precision requirements (based on the 1/
√
Nhist convergence of R and the 1/Nhist

convergence of V OV ). No more than 60 or 600 minutes of CPU time were allowed

for preliminary and conclusive simulations, respectively.

2.5.2 Post-Processing

As described in Section 2.4, WGT was chosen to match the weight windows.

Adjusting the mean history birth weight will proportionally increase the tallies in

the simulation. To make the results comparable with one another, each tally was

divided by the WGT parameter in post-processing.
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3 Results

3.1 Introduction

The methods described in Chapter 2 were applied to two problems of interest

to the nuclear safeguards community. The problems were constructed by collabo-

rators at Pacific Northwest National Laboratory. The first problem is a collimated

barium-133 point source, shielded by low-Z material of varying densities. The

second problem is the passive assay of a pressurized uranium hexafluoride (UF6)

cylinder using a photon detector. Problem descriptions and results from these

simulations are given in this chapter.

3.2 Test Case I Description: Mulch Crate

Active interrogation is currently used for screening small luggage, and its role

is expanding to include larger cargo items [Miller 2010]. Although these active

interrogation scenarios vary in optical thickness and exact geometry, many are

conceptually similar from a radiation transport perspective. Therefore, although

the mulch crate problem has limited direct use for the safeguards community, it is

representative of many radiography problems.

The layout of the mulch crate problem is shown in Fig. 3. In this problem,

the AttilaTM mesh size is varied to change the quality of the adjoint solution. In

another set of trials, the mulch material density is varied from 0.266 g/cc up to 2

g/cc to consider a variety of shielding thicknesses encountered in other problems.

A barium-133 photon spectrum was used. (Photons in low-Z material frequently
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Figure 3: The top, front, and side views of the mulch crate model show Test Case
I consists of a point source (sphere at left), shielding region, and detector region
(cylinder at right).
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undergo Compton scatter.)

3.2.1 Test Case I Specifications: AttilaTM

The AttilaTM model is simplified to model the essential features of the prob-

lem without burdening the simulation with features that have little impact on the

Monte Carlo simulation. Since the detector is very small, it will be treated as a

point source for the adjoint flux. AttilaTM uses a ray-tracing algorithm to simu-

late the uncollided adjoint flux from the point source. A “first-scatter distributed

source” (FSDS) is generated from the ray trace to serve as a source for the de-

terministic calculation. The settings used for the deterministic calculation and

associated adjoint calculation are recorded in Tables 5 through 7 of Appendix A.

The adjoint flux moments generated by the deterministic calculation are used

in a report-only calculation to generate weight windows. Table 8 of Appendix A

notes the modifications made to the deterministic calculation to generate weight

windows.

3.2.2 Test Case I Specifications: MCNP5

The MCNP5 model adds a small detector region to the AttilaTM model. The

geometry portion of the mulch MCNP5 input is included as Table 9, and the

material compositions used are included in Table 10. (See Appendix A.)

The photon source is located at ~x =< −57.75, 0, 53.5 >. The source direction

distribution is linearly anisotropic (toward the ±î directions, where î is the unit

vector along the x-axis) with quadratic source biasing toward ±î. In other words,
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histories were distributed with probability density

P (µ) =
|µ3|
2

(12)

where µ is the dot product of Ω̂ with î, and the weight of each history was corrected

by a factor of

w(µ) =
2

µ2
(13)

to make the distribution linearly anisotropic. TheWGT parameter is set differently

for each case to match the weight window at the source position, as described in

Section 2.4.1. The source energy distribution is entered as a histogram and is

described in Table 11 of Appendix A. Although the true distribution would be a

discrete series of values, the inconsistency is not expected to affect the results of

this study; the Monte Carlo results and FOM will be similar to those using the

barium-133 spectrum because the simulated radiation is in the same regime and

will experience similar scattering and absorption.

An F4 tally was applied to tally photon flux in cell 500. Energy-dependent

tally information was not used in this study. Only photons are transported, with

importances of unity in all cells except for the “universe” cell that demarcates the

vacuum boundary of the problem. The weight-windowing parameter card is used

to direct MCNP5 to look for an external weight-window file.

3.3 Test Case I Results

Test Case I is used in two sets of simulations to determine the characteristics of

the adjoint solution that could reduce the FOM when using weight windowing. In

the first set of simulations, the quality of the adjoint solution is controlled by the
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spatial mesh size. In the second set of simulations, the shielding density is varied.

Increasing the shielding thickness reduces the fraction of photons that reach the

detector and increases the relative importance of photon paths that scatter around

the crate and reach the detector.

3.3.1 Effect of Adjoint Solution Quality on FOM

In the first set of Case I simulations, the spatial mesh size in the deterministic

calculations is varied from 5 to 60 cm to understand the effect of deteriorating

adjoint solution quality on the FOM . The mulch density was 2.0 g/cm3 in every

simulation. Results from the mulch crate simulations of varying deterministic

mesh sizes are summarized in Table 1, including a trial with no weight windowing

(“analog”) and the ratio of the largest single-history contribution to the mean non-

zero contribution (“Contribution Ratio”). Although the FOM is an unreliable

indicator here due to high-weight contributions, note the significant decrease in

the number of histories reaching the detector between Trials 3 and 4. The number

of histories reaching the detector per minute of CPU time has a strong effect on

the FOM as Nhist approaches infinity. (All trials in Table 1 used 600 minutes of

CPU time.) Figures 4 and 5 depict the two numerical solutions, offering insight

into the cause of decrease in the number of contributing histories.

3.3.2 Effect of Shielding Density on FOM

In the second set of Case I simulations, the shielding density is varied from

0.266 to 2.0 g/cm3 to investigate the effect of increased shielding on the FOM .

The mesh size was 30 cm by default, but was decreased as needed to avoid numerical

inaccuracy such as the nonphysical solution depicted in Fig. 5. Results from the
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Data File Attributes --
Problem Title: FSDS_15
File Name: FSDS_15.tecplot_out.1.plt
Created: 00:39:39 26 Apr 2011 -06:00Z
Host Name: rogue.ne.oregonstate.edu
Variables: 8
Zones: 5

Frame 001  28 Apr 2011  Attila Transport Solver Results

Figure 4: A false-color plot of the deterministic adjoint flux solution at z = 71.19 cm
above the concrete slab with a mesh size of 15 cm. Compare to Fig. 5.
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Figure 5: A false-color plot of the deterministic adjoint flux solution at z = 71.19 cm
above the concrete slab with a mesh size of 30 cm. Compare to Fig. 4.
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Test Case I Results at Varying Mulch Densities

Trial 0 Trial 1 Trial 2 Trial 3

Shielding Density
(g/cm3)

0.266 0.5 1.0 2.0

Shielding thickness
(mean free paths)

2.33 4.37 8.74 17.49

Deterministic
Mesh Size (cm)

30 30 30 15

MCNP5 Histories
(Nhist)

107 107 108 323277310

Tally 6.2833E-06 2.0825E-06 9.0865E-08 1.6229E-10
±3.09% ±3.26% ±1.81% ±18.02%

FOM 271 296 136 0.051
±18.4% ±33.5% ±70.1% ±166.3%

Results Without Weight Windowing (Analog)

MCNP5 Histories
(Nhist)

4× 107 4× 107 4× 107 532233837

Tally 6.6743E-06 2.0484E-06 1.0353E-07 0
±3.33% ±6.04% ±24.62%

FOM 66 19 1.1 0
±8.9% ±14.4% ±54.9%

Table 2: Results from MCNP5 runs of the mulch problem at various mulch densities

mulch crate simulations of varying mulch densities are summarized in Table 2.

In Table 2, note the significant decrease in FOM between Trials 1 and 3.

Figures 6 and 7 depict the two adjoint solutions, offering insight into the cause of

decrease in Monte Carlo FOM .

In several instances during the MCNP5 runs, the FOM suddenly decreased

because a single high-weight history contributes an amount on the order of 104

larger than the average contribution, e.g., Fig. 8. “Table 160” in the MCNP5

results identifies the history with the largest contribution to the tally, and the

DBCN card allows the user to print a detailed log of that specific history. Logs

for the high-contribution histories showed that they often scattered in or near the
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Figure 6: A plot of the energy-dependent scalar adjoint flux solution along a line
from the source (~x =< −57.75, 0, 53.5 >) to the detector (~x =< 51.25, 0, 51 >) with
shielding density 0.5 g/cm3. Compare to Fig. 7.
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Figure 7: A plot of the energy-dependent scalar adjoint flux solution along a line
from the source (~x =< −57.75, 0, 53.5 >) to the detector (~x =< 51.25, 0, 51 >) with
shielding density 2.0 g/cm3. Compare to Fig. 6.
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Figure 8: A screenshot showing a large single-tally contribution to the detector be-
tween histories 49152000 and 57344000.

concrete slab, often within a few mean free paths of the detector.

3.4 Test Case II Description: Uranium Hexafluoride Cylinder

The second test case considered in this thesis is the passive interrogation of

a UF6 transport cylinder. Rapid non-destructive assay of isotopic composition is

an important tool in the accounting of nuclear material for safeguards purposes.

Measurements similar to the one simulated may be used to determine isotopic com-

position of the uranium material within the cylinder, which would provide inspec-

tors with information to consider the overall intent of a foreign nuclear program.

This Monte Carlo simulation is challenging because the dense high-Z UF6 material

very effectively shields photons, especially the low-energy photons characteristic of

uranium-235. The UF6 problem is sketched in Fig. 9 and dimensioned in Figs. 12
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through 14 of Appendix B. Results were generated using the F4 track-length tally,

although an F8 pulse height tally is more useful for radiography simulation.

Figure 9: An isometric view of Test Case II shows the partly-filled UF6 cylinder
suspended above a “cart” and a large concrete slab. The small detector cylinder has
a recess in its right side.

3.4.1 Test Case II Specifications: AttilaTM

As in Test Case I, a first-scatter distributed source (FSDS) calculation is used

to approximate the detector region as a point detector. (The detector is the ad-

joint source.) The settings used for the FSDS calculation and associated adjoint
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calculation are recorded in Tables 12 and 13 of Appendix B.

The flux moments generated by the FSDS calculation are used in a report-

only calculation to generate weight windows. Table 14 of Appendix B notes the

modifications made to the FSDS calculation to make the weight-window-generating

calculation.

3.4.2 Test Case II MCNP5 Input

The MCNP5 model for Test Case II adds considerable detail to the AttilaTM

model. The geometry portion of the UF6 MCNP5 input is included as Tables 15

through 18 in Appendix B. MCNP5 uses translation cards to easily reposition

surfaces. The cart (TR 111) was not translated. The detector apparatus (TR 211)

was translated by < 0, 43, 60 > and rotated 90◦ about the positive x-axis. The

material compositions used are included in Table 19 of Appendix B.

The photon source is defined on the domain

{
~x =< x, y, z >

∣∣∣−88.9 ≤ x ≤ 88.9
⋂
−36.83 ≤ y ≤ 36.83

⋂
34.29 ≤ z ≤ 76.97

}
(14)

Any histories born outside of cell 8521 are rejected and sampled again. The

uranium-235 gamma spectrum used to define the source is given in Tables 20

and 21 of Appendix B.

An F4 tally was applied to estimate photon flux in Detector 3 (cell 230). Only

photons are transported, with importances of unity in all cells except the “universe”

cell. The weight-windowing parameter card directs MCNP5 to look for an external

weight-window file.

Optimal source biasing parameters were found using a binary optimization
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search on each of the independent parameters. Since an exponential decay of

importance is assumed, the biasing parameters take the form

Bi =
Bi−1

CSB

(15)

where grid cell i − 1 is nearer to the detector than adjacent grid cell i, CSB ap-

proximately accounts for angular and attenuation effects in the x, y, or z direction.

The values are normalized so that ∑
i

Bi = 1 (16)

for x, y, and z separately.

3.5 Test Case II Results

The grid and optimal CSB values are listed in Table 3 and plotted in Fig. 10.

Results from the UF6 runs are summarized in Table 4. Because of the problem’s

Test Case II Source Biasing Distribution

Direction Number of Grids Optimal CSB

x 18 2.5
y 8 3.5
z 8 1.0

Table 3: Details on the biasing parameters for Test Case II as a function of x, y,
and z

unique geometry, biasing as a function of height did not produce any statistically

significant benefit in preliminary simulations. Therefore results from Trials 3 and

4 are identical.

Note that the tally does not converge on the correct mean when source biasing

is used. This is expected, since MCNP5 is not capable of using source biasing with
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Figure 10: The source biasing parameters as a function of x and y overlayed on a
schematic showing the detector location in Test Case II.

Test Case II Results

Analog Trial 1 Trial 2 Trial 3 Trial 4

Source Biasing
Dependence

none none x x, y x, y, z

MCNP5 Histo-
ries (Nhist)

4427407358 697857695 442546144 375449347 375449347

Tally 5.2986E-10 5.4020E-10 4.8660E-10 6.2733E-10 6.2733E-10
±4.18% ±2.55% ±1.46% ±0.75% ±0.75%

FOM 0.95 2.6 7.8 30 30
±14.6% ±23.7% ±18.9% ±8.2% ±8.2%

Table 4: Results from MCNP5 runs of Test Case II with various degrees of source
biasing sophistication
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rejection sampling. (See Section 1.3.1.) The FOM is still expected to be valid,

since the relative error and runtime are unaffected by the MCNP5 problem that

distorts the tally mean.

Also note that the MCNP5 random number generator may overrun its period

when more than 460 million histories are sampled. The results are not expected

to be affected by the overrun, since random numbers are used in different ways in

different histories [Hendricks 1991, MCNP 2008a, p. 2-195].
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4 Conclusions

4.1 Introduction

This chapter will discuss the results presented in Section 3. Test Case I suggests

that the FOM is greatly reduced by weight windows that do not monotonically

decrease along paths away from the source, even if the weight windows are derived

from an adjoint solution that is physically accurate. The results from Test Case

II demonstrate the necessity of source biasing in problems where the importance

function varies greatly over the source domain. Finally, the false-convergence prob-

lem observed in Test Case I suggests that other hybrid methods (such as LIFT)

may be better suited for strongly angle-dependent problems.

4.2 Smoothness of Weight Windows

Results in Section 3.3 indicate that non-monotonicity of the weight windows

along frequently sampled paths will reduce the FOM . This non-monotonicity

may be caused by a poor deterministic solution (as in Section 3.3.1) or by the

characteristics of the problem (as in Section 3.3.2).

This finding is reasonable: consider histories traveling from a region of low

importance toward a region of high importance. If the weight window smoothly

decreases from 1 to 0.5, each history will split into two. If the weight window

increases from 1 to 2 before decreasing to 0.5, half of the histories will be termi-

nated, while the surviving half will be split four-fold. Although the computational

cost is slightly reduced by terminating half of the histories, most of the cost is still
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incurred because the surviving histories are split four-fold. Because the four-fold

split histories are all at the same position in P , the covariance of their detector re-

sponses is much higher than the covariance of responses among two sets of two-fold

split histories. Therefore in the non-monotonic case, the overall solution variance

is increased, with trivial reduction of the CPU cost.

4.3 Advantage of CADIS

Results in Section 3.5 support prior work that an explicit source biasing tech-

nique (such as CADIS) is an important improvement in Monte Carlo simulation.

One can even defend a process in which source biasing is a consideration for any

simulation using weight windowing.

This paradigm suggests that CADIS-like source biasing capability should be

included more often in weight-windowing codes. For example, AttilaTM has features

designed to generate weight windows, but no capability to create a complementing

source definition. MCNP5 can read externally generated weight windows, but

cannot automatically generate a volumetric source that is biased to complement

the weight windows. Automatic source biasing features would be an important

step toward a fully automated hybrid method.

4.4 Comparison of Adjoint-Derived Weight Windowing with Alterna-
tive Methods

False convergence is an over-estimation of the Monte Carlo solution’s precision

due to under-sampling of photon paths which contribute significantly to the mean.
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Weight windowing can significantly improve the FOM for heavily shielded prob-

lems, but may increase the frequency of false convergence when large streaming

regions exist near the detector. For example, Test Case I has a streaming region

near the detector. In that case, regions of phase space near the concrete slab were

significantly undersampled, leading to false convergence. The LIFT method may

prove to be a more reliable hybrid method for problems where the adjoint function

varies strongly with angle, such as Test Case I.

Ideally, a variance reduction method re-distributes the Monte Carlo histories

to resemble the contributon flux. In the limit as the weight window mesh becomes

infinitely fine; the frequency of weight window application approaches infinity;

and window width approaches zero, the history flux will approach the contributon

flux. In that limit, adjoint-derived weight windowing is similar to LIFT. The

difference between these approaches is that weight windowing is an inherently

reactive method; only once a history reaches an important region of P is it split

or rouletted to match the contributon flux. By design, the LIFT method modifies

the transport operator, actively channeling histories into important regions of P .

Consider histories in Test Case I as they leave the shielding or concrete regions

and enter the air with a free path to the detector. Any splitting that occurs in

the free-streaming region is irrelevant, since each split photon would contribute

identically to the tally. The last effective weight windowing event therefore occurs

before the history enters the streaming region. Since the adjoint function decreases

as 1/r2 in the streaming region, where r is the distance from the detector, it is

reasonable to make the following estimation: a history whose last effective weight

windowing event occured at distance r from the detector will contribute an ex-

pected amount proportional to r2 to the tally with probability 1/r2. When the
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rare history scatters from a large distance r to the detector, the large contribution

to the tally significantly increases the estimated solution variance. This increase

in solution variance indicates that the path described is undersampled and the

solution precision was overestimated prior to this history.

The LIFT method’s “proactive” re-distribution of histories avoids this false con-

vergence by biasing the scattering kernel. When histories approach the streaming

region near the detector, LIFT preferentially scatters the histories in the direction

of the detector; therefore, many histories with reduced weight reach the detector.

If the adjoint solution were perfectly known and LIFT were perfectly applied, ev-

ery history would reach the detector and contribute identically; LIFT therefore

approximates a zero-variance method, while weight windowing cannot. [Turner

1997a]
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5 Future Work

5.1 Introduction

This chapter presents several ideas that may be useful for improving the simu-

lation of nonproliferation problems or hybrid simulation in general.

Test Case II is an example of a problem in which the energy distribution of the

detector response is useful for discriminating between fissile and non-fissile isotopes.

Although the FW-CADIS method has been used to balance the adjoint source of

two or more detectors in space, the method could be extended to improve the

simulation of the energy response distribution of a single energy-sensitive detector.

The use of FW-CADIS in spectrography problems is discussed in Section 5.2.

In most hybrid methods, the adjoint solution is simplified in space or direction

when generating weight windows. A rigorous method has not been presented for

simplifying the adjoint solution. Section 5.3 presents a new method for the simpli-

fication of the adjoint solution derived from neutronic cross section homogenization

theory.

The codes used in this thesis were designed to generate weight windows, but

could not automatically generate a complementing source biasing distribution. Sec-

tion 5.4 suggests a new method to easily match a volumetric source distribution to

weight windows. This method would require rejection sampling and source biasing

to be simultaneously used, which is likely to produce inaccurate results. A new

type of tally is presented to correct the inaccuracy that arises when source biasing

is used with rejection sampling.
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5.2 Use of FW-CADIS for Energy-Dependent Source-Detector Prob-
lems

In many non-destructive assay problems similar to Test Case II, spectral infor-

mation from the detector is key in assessing the quantities of interest. When one

region of the spectrum has a relatively low flux, the FOM for the corresponding

energy bin will be lower than for bins in other regions of the spectrum.

In problems where multiple detectors respond to photons in different regions

of phase space, the FW-CADIS method offers a way to balance the adjoint source

strength of the detectors so that their Monte Carlo response estimates converge at

similar rates. This tool has been applied to problems with detectors at different

spatial locations; it could be extended to problems where detectors exist at the

same spatial location but respond differently to photons of different energies (i.e.,

the energy bins of a spectral detector).

5.3 An Improved Simplification Scheme for Weight Windows Genera-
tion

The adjoint solution is often simplified in space and angle as it is converted

to weight windows. When the forward and adjoint fluxes vary widely within the

homogenized region, care should be taken to use the most relevant adjoint infor-

mation when simplifying the adjoint function.

For example, consider regions near the air/concrete interface of Test Case I.

AttilaTM simplifies the adjoint solution in space by averaging the solutions at the

eight vertices of the weight window cell. Because the importance of photons is so

low below the concrete interface, the weight window for the cell will be set very



49

high. Setting the weight window high for this cell is not appropriate, since most

of the photons simulated in this cell will be above the concrete.

As another example, consider the active interrogation problem described in

[Peplow 2010]. A narrow neutron beam is directed through air to a distant inter-

rogation target, i.e., Fig. 11. For a region of the problem far from the target, the

Figure 11: In the distant interrogation problem, a neutron beam (green) is incident
upon a target of interest (right). The scalar adjoint flux Φ∗ changes much more
rapidly than the adjoint flux in the beam direction, Ψ∗(Ω̂ = î).

importance of photons traveling in all directions is proportional to 1/r2 where r is

the distance from the region to the target. Intuitively, however, the importance of

neutrons in the beam increases very little as they stream toward the target, since

all neutrons in the beam are likely to reach the target. Since simulation of this

problem is “not always helped by traditional space/energy CADIS,” Peplow solved
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it using anisotropic weight windows, i.e., by making fewer simplifications to the

adjoint solution [Peplow 2010]. Peplow’s method suggests that the information in

the anisotropic adjoint solution should not be represented isotropically by simply

integrating ψ∗ over all angles.

The task of simplifying the adjoint flux is conceptually similar to the spatial

homogenization of cross sections in reactor analysis. The best practices in reactor

analysis are intended to conserve the reaction rate within the cell. In other words,

the reaction rate

RR =

∫
CV

Φ(~x) Σ(~x) dV = Σ

∫
CV

Φ(~x) dV (17)

where CV is the control volume which contains multiple materials, Σ(~x) is the

reaction cross section of interest, and Σ is the homogenized cross section.

A similar concept could be applied to the simplification of the adjoint function

for use in weight windows. Accounting for the distribution of photons throughout

the cell (i.e., the forward flux), the expected contribution of photons in the phase

control volume CV is

Ψ∗ =

∫
CV

Ψ(P ) Ψ∗(P ) dP∫
CV

Ψ(P ) dP
(18)

Weight windows derived from Ψ∗ would be most appropriate for simulating Ψ.

5.4 Extending the CADIS Source Distribution to Volumetric Sources
in MCNP5

In many problems, such as Test Case II, the source domain is not a simple

function of space. For these cases it is often effective to sample from a simple

superset of the domain, then reject and re-sample any values that fall outside

the domain. The “rejection” sampling method could even automate the process of
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creating a volumetric source with biasing parameters derived to perfectly match the

weight windows distribution: appropriate regions of the weight window distribution

could form a superset of the source domain, and the sampling routine could bias

the source toward regions with low weight windows. (A3MCNP and ADVANTG

employ a similar method by representing volumetric sources as a series of points

from which to sample.)

Unfortunately, MCNP5 may produce biased results if source biasing is used

with rejection sampling [MCNP 2008b p. 3-59]. Based on the source biasing

parameters, the MCNP5 code automatically adjusts and normalizes the histories’

birth weight assuming that none are rejected. If a larger fraction high-weight

histories are accepted than low-weight histories, the mean weight of histories will

be higher than expected. (See Section 1.3.1.) Tally results are proportional to the

mean birth weight.

To effectively use source biasing with rejection sampling, a correction for the

unfairly biased mean birth weight must be applied. To find the correction factor,

an “F0” tally could be used to find the mean birth weight of histories. Implement-

ing such a feature in MCNP5 would give users important information about the

simulation’s accuracy and grant them greater flexibility in their source definition.
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Appendix A Test Case I Specifications

Test Case I Adjoint Calculation Settings, Part 1

Parameter Value

Calculation Type Steady State
Transport Operator Adjoint

Global Mesh Size 30 cm
Nodes 2136
Sides 1662
Cells 10963

Transport Correction None
Few-group Structure 400.000 – 334.348
(keV) 334.348 – 293.790

293.790 – 239.366
239.366 – 170.673
170.673 – 25.000

Volume source no volume source
boundary values vacuum

FSDS Ray Trace Formulation Geometric (dot product)
Point Source Visualization no
Skip Merge Step no
Point Source Position < 51.25, 0, 51 >
Ray Tracing Style Trace to Quadrature Points
Intensity 1
Minimum Radius 0.0001
Source Spectrum Particle Gamma
Spectrum Type Constant
Conserve Particles
Spectrum χ = 1 for each energy bin

Table 5: Problem, mesh, cross section, source, and boundary value settings used
in the deterministic simulation to generate adjoint flux moments
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Test Case I Adjoint Calculation Settings, Part 2

Parameter Value

Quadrature Triangular Chebychev Legendre
SN Order 4
Scattering Treatment Galerkin
Scattering Degree 1

Maximum Runtime 3276.7 hours
Maximum Outer Iterations 1
Maximum Inner Iterations 100
Convergence Criterion 1.00E-04
Memory Strategy High Speed
Sweep Data Strategy High Speed
Advanced Options no

Write Terminal Restart File yes
Terminal Restart Precision single
Write Tecplot File yes
Write GMV File no
Include Default Visualization

Data
yes

Hours Between Contingency
Restart File Writes:

0

Weight Windows Input Genera-
tor Enabled

no

Enable Activation? no

Table 6: Quadrature, convergence, and output settings used in the deterministic
simulation to generate adjoint flux moments
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Test Case I Adjoint Calculation Settings, Part 3

Parameter Value

Edit 1: Adjoint Scalar Flux at
Source
Active yes
Type Scalar Flux
Scale Factor 1
Response Function none
Energy Groups All
Spatial Set Point at < −57.75, 0, 53.5 >
Extra Report Output By Energy Group
Last Collided Option no
Visualization File Output: In-

clude Report Results
no

Edit 2: Adjoint Scalar Flux
Along Path
Active yes
Type Scalar Flux
Scale Factor 1
Response Function none
Energy Groups All
Spatial Set Line: 50 points from

< −57.75, 0, 53.5 > to
< 51.25, 0, 51 >

Extra Report Output By Space and Energy
Last Collided Option no
Visualization File Output: In-

clude Report Results
no

Table 7: Extra reports used in the deterministic simulation gather information
about the solution
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Test Case I Weight Window Calculation Settings

Parameter Value

Volume Source Region-wise Constant (soil)
Volume Source Spectrum constant spectrum, multiplier 1e-12
Starting Flux File corresponding adjoint calculation
Report Run Only yes
Write Terminal Restart File no
Write Tecplot File no

Weight Windows Generator En-
abled

yes

Nx 150
Ny 40
Nz 40
Normalization (Cww) varies
Custom Reports no custom report

Table 8: Settings used in the report-only AttilaTM simulation to generate weight
windows from adjoint flux moments

Test Case I MCNP5 Geometry

Cell Cards
101 1 -1.0 -101 $ Mulch
102 2 -0.433 -102 #101 $ Crate
103 3 -2.3 -103 $ Concrete Slab
104 4 -1.82 -104 $ Soil
105 5 -0.001205 -105 #101 #102 #500 $ Air
500 5 -0.001205 -106 $ Tally Volume
999 0 105 #101 #103 #104 $ Universe

Surface Cards
101 rpp -43.21 43.21 -58.46 58.46 5.08 99.04
102 rpp -45.75 45.75 -61.00 61.00 0.00 110.0
103 rpp -100.00 100.00 -100.00 100.00 -7.62 0.00
104 rpp -100.00 100.00 -100.00 100.00 -57.62 -7.62
105 rpp -100.00 100.00 -100.00 100.00 0.00 207.62
106 sph 51.25 0 51 1.0

Table 9: Geometry input cards for the MCNP5 simulation used in the mulch case
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Test Case I MCNP5 Materials

ID Material Composition

M1 Mulch hydrogen-1 5.7889 %
carbon-12 48.2667 %
oxygen-16 45.9444 %

M2 Crate same as “Mulch”
M3 Concrete hydrogen-1 2.2101 %

carbon-12 0.2484 %
oxygen-16 57.4930 %

sodium (natural) 1.5208 %
magnesium (natural) 0.1266 %
aluminum (natural) 1.9953 %

silicon (natural) 30.4627 %
potassium (natural) 1.0045 %
calcium (natural) 4.2951 %

iron (natural) 0.6435 %
M4 Soil hydrogen-1 0.1325 %

carbon-12 0.0292 %
oxygen-16 47.1188 %

sodium (natural) 2.8817 %
magnesium (natural) 2.1296 %
aluminum (natural) 8.2089 %

silicon (natural) 28.0267 %
potassium (natural) 2.6407 %
calcium (natural) 3.6824 %

M5 Air carbon-12 0.0124 %
nitrogen (natural) 75.5268 %

oxygen-16 23.1781 %
argon (natural) 1.2827 %

Table 10: Material compositions used in the MCNP5 model of the mulch case,
expressed in weight percent
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Test Case I Source Distribution

Lower Bound Upper Bound Rel. Strength
[MeV] [MeV]

0 0.0038 8.81E-04
0.0038 0.0041 4.03E-04
0.0041 0.0043 2.43E-02
0.0043 0.0047 2.37E-02
0.0047 0.0054 3.31E-03
0.0054 0.0306 1.29E-01
0.0306 0.031 2.39E-01
0.031 0.035 6.53E-02
0.035 0.036 1.60E-02
0.036 0.0531 7.88E-03
0.0531 0.0796 1.16E-02
0.0796 0.081 1.24E-01
0.081 0.1606 2.17E-03
0.1606 0.2232 1.67E-03
0.2232 0.2764 2.57E-02
0.2764 0.3029 6.68E-02
0.3029 0.356 2.26E-01
0.356 0.3838 3.24E-02

Table 11: Histogram energy distribution for the mulch case
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Appendix B Test Case II Specifications

310

80
170

76.200

73.660

24

30.480

7.900

39.220

5.850

Figure 12: The front view of Test Case II shows the large (diameter 76.2 cm) UF6

cylinder, small cylindrical detector (at right), a metal slab representing a cart (center),
and a large concrete slab (bottom). The UF6 cylinder is partly emptied.
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310
43.030
2.540
10.160

1.270
74.830

177.800

1.270

330

Figure 13: The top view of Test Case II shows the large UF6 cylinder and small
detector suspended above the concrete slab. The cart is mostly concealed by the UF6

cylinder.
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7.620

12.700

60

149.760

Figure 14: The side view of Test Case II shows the small (diameter 12.7 cm) detector
in front of the UF6 cylinder. Below the cylinder are the cart and concrete slab.



67

Test Case II Adjoint Calculation Settings, Part 1

Parameter Value

Calculation Type Steady State
Transport Operator Adjoint

Global Mesh Size 100 cm
Nodes 17594
Sides 8749
Cells 102225

Transport Correction Diagonal
Few-group Structure 2.14182 – 1.40561
(MeV) 1.40561 – 0.800770

0.800770 – 0.341016
0.341016 – 0.050000

Volume source no volume source
boundary values vacuum

FSDS Ray Trace Formulation Geometric (dot product)
Point Source Visualization no
Skip Merge Step no
Point Source Position < 15.24, 46.81, 60 >
Ray Tracing Style Trace to Quadrature Points
Intensity 1
Minimum Radius 0.0001
Source Spectrum Particle Gamma
Spectrum Type Constant
Conserve Particles
Spectrum χ = 1 for each energy bin

Table 12: Problem, mesh, cross section, source and boundary value settings used
in the AttilaTM FSDS run to generate adjoint flux moments
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Test Case II Adjoint Calculation Settings, Part 2

Parameter Value

Quadrature Triangular Chebychev Legendre
SN Order 8
Scattering Treatment Galerkin
Scattering Degree 2

Maximum Runtime 3276.7 hours
Maximum Outer Iterations 1
Maximum Inner Iterations 100
Convergence Criterion 1.00E-04
Memory Strategy Low Memory
Sweep Data Strategy High Speed
Advanced Options no

Write Terminal Restart File yes
Terminal Restart Precision single
Write Tecplot File yes
Write GMV File no
Include Default Visualization

Data
yes

Hours Between Contingency
Restart File Writes:

0

Weight Windows Input Genera-
tor Enabled

no

Enable Activation? no

Table 13: Quadrature, convergence, and output settings used in the AttilaTM FSDS
run to generate adjoint flux moments
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Test Case II Weight Window Calculation Settings

Parameter Value

Volume Source Region-wise Constant
(NaI)

Volume Source Spectrum constant spectrum,
multiplier 1e-12

Write Terminal Restart File no
Write Tecplot File no

Weight Windows Generator En-
abled

yes

Nx 32
Ny 24
Nz 12
Normalization (Cww) 10−2

Custom Reports no custom report

Table 14: Settings used in the report-only AttilaTM run to generate weight windows
from adjoint flux moments
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Test Case II MCNP5 Cells, Part 1

Detector 1
NaI Crystal 210 2000 -3.76 -210
ID of inner sleeve 211 9100 -0.001205 -211 210
OD of inner sleeve 212 2100 -2.7 -212 211
ID of outer sleeve 213 9200 -11.4 -213 212
OD of outer sleeve 214 2100 -2.7 -214 213

Detector 2
LaBr Crystal 220 2300 -5.06 -220
ID of inner sleeve 221 9100 -0.001205 -221 220
OD of inner sleeve 222 2100 -2.7 -222 221
ID of outer sleeve 223 9200 -11.4 -223 222
OD of outer sleeve 224 2100 -2.7 -224 223

Detector 3
NaI Crystal 230 2000 -3.76 -230
ID of inner sleeve 231 9100 -0.001205 -231 230
OD of inner sleeve 232 2100 -2.7 -232 231
ID of outer sleeve 233 9200 -11.4 -233 232
OD of outer sleeve 234 2100 -2.7 -234 233

Detector 4
LaBr Crystal 240 2300 -5.06 -240
ID of inner sleeve 241 9100 -0.001205 -241 240
OD of inner sleeve 242 2100 -2.7 -242 241
ID of outer sleeve 243 9200 -11.4 -243 242
OD of outer sleeve 244 2100 -2.7 -244 243

Neutron Detector
Outside Neutron Shielding

Box (Borated Poly)
260 4200 -1.08 261 -260

Neutron Shielding Box
(Poly)

261 4100 -0.93 -262 #262 #263
#264 #265

He-3 Neutron Detector 1 262 4000 -4.85E-4 -263
He-3 Neutron Detector 2 263 4000 -4.85E-4 -264
He-3 Neutron Detector 3 264 4000 -4.85E-4 -265
He-3 Neutron Detector 4 265 4000 -4.85E-4 -266
Detector Electronics 266 2200 -0.96 -261 262

Spacing
Bounding box 250 9100 -0.001205 -250 214 224

234 244 260

Table 15: Cell input cards for the MCNP5 simulation used in Test Case II —
detectors
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Test Case II MCNP5 Cells, Part 2

UF6 Cylinder
Cylinder wall 8501 9410 -7.85 8001 -8002 8003

-8004
Support to sit on 8507 9410 -7.85 8002 -8065
Support to sit on 8508 9410 -7.85 8002 -8066
Cylinder wall left 8510 9410 -7.85 8006 -8005 -8001
Cylinder wall right 8511 9410 -7.85 8007 -8008 -8001
N2 in cylinder 8520 9510 -8.933E-4 8005 -8007 -

8001 8020
UF6 in cylinder 8521 9500 -5.1 8005 -8007 -8001

-8020
Cart
Cart 8529 9410 -7.85 -8029
Front Axle 8530 9410 -7.85 -8030
Back Axle 8531 9410 -7.85 -8031
Front right wheel 8532 9410 -7.85 -8036 8030
Front left wheel 8533 9410 -7.85 -8037 8030
Back right wheel 8534 9410 -7.85 -8038 8031
Back left wheel 8535 9410 -7.85 -8039 8031

World
Concrete Floor 8603 9400 -2.3 -8103 8104 8105
Railings 8604 9410 -7.85 -8104
Railings 8605 9410 -7.85 -8105

Air Within World
Air inside universe 8611 9100 -1.205E-3 -9999 8002

8065 8066 8029 8030 8031 8036
8037 8038 8039 8103 250

-x cylinder end 8612 9100 -1.205E-3 -9999 -8002
-8003

+x cylinder end 8613 9100 -1.205E-3 -9999 -8002
8004

-x cylinder endcap gap 8614 9100 -1.205E-3 -8001 8003 -
8006

+x cylinder endcap gap 8615 9100 -1.205E-3 -8001 -8004
8008

Edge of Model’s Universe
Outside universe 9999 0 9999

Table 16: Cell input cards for the MCNP5 simulation used in Test Case II — all
geometry except detectors
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Test Case II MCNP5 Surfaces, Part 1

Detector 1

Crystal 210 211 rcc -45.72 0 0 0 0 7.62 3.81

ID of inner sleeve 211 211 rcc -45.72 0 0 0 0 10.16 4.1275

OD of inner sleeve 212 211 rcc -45.72 0 0 0 0 10.16 4.445

ID of outer sleeve 213 211 rcc -45.72 0 0 0 0 10.16 6.0325

OD of outer sleeve 214 211 rcc -45.72 0 0 0 0 10.16 6.35

Detector 2

Crystal 220 211 rcc -15.24 0 0 0 0 7.62 3.81

ID of inner sleeve 221 211 rcc -15.24 0 0 0 0 10.16 4.1275

OD of inner sleeve 222 211 rcc -15.24 0 0 0 0 10.16 4.445

ID of outer sleeve 223 211 rcc -15.24 0 0 0 0 10.16 6.0325

OD of outer sleeve 224 211 rcc -15.24 0 0 0 0 10.16 6.35

Detector 3

Crystal 230 211 rcc 15.24 0 0 0 0 7.62 3.81

ID of inner sleeve 231 211 rcc 15.24 0 0 0 0 10.16 4.1275

OD of inner sleeve 232 211 rcc 15.24 0 0 0 0 10.16 4.445

ID of outer sleeve 233 211 rcc 15.24 0 0 0 0 10.16 6.0325

OD of outer sleeve 234 211 rcc 15.24 0 0 0 0 10.16 6.35

Detector 4

Crystal 240 211 rcc 45.72 0 0 0 0 7.62 3.81

ID of inner sleeve 241 211 rcc 45.72 0 0 0 0 10.16 4.1275

OD of inner sleeve 242 211 rcc 45.72 0 0 0 0 10.16 4.445

ID of outer sleeve 243 211 rcc 45.72 0 0 0 0 10.16 6.0325

OD of outer sleeve 244 211 rcc 45.72 0 0 0 0 10.16 6.35

Neutron Detector

Outside Neutron Shield-
ing Box (Borated Poly)

260 211 rpp -28.336875 28.336875 7
35.09875 -4 9.208

Inside Neutron Shielding
Box (Borated Poly)

261 211 rpp -23.256875 23.256875 12.08
30.01875 1.08 4.128

Neutron Shielding Box
(Poly)

262 211 rpp -23.145750 20.859750 12.08
29.86 1.1435 4.0645

He-3 neutron detector 1 263 211 rcc -15.24 16.144 2.604 30.48 0 0
1.3081

He-3 neutron detector 2 264 211 rcc -15.24 19.954 2.604 30.48 0 0
1.3081

He-3 neutron detector 3 265 211 rcc -15.24 23.764 2.604 30.48 0 0
1.3081

He-3 neutron detector 4 266 211 rcc -15.24 27.574 2.604 30.48 0 0
1.3081

Spacing

Bounding box 250 211 rpp -55 55 -6.4 35.1 -4.1 10.2

Table 17: Surface input cards for the MCNP5 simulation used in Test Case II —
detectors
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Test Case II MCNP5 Surfaces, Part 2

UF6 Cylinder
Inside Cylinder 8001 111 C/X 0 71.12 36.83
Outside Cylinder 8002 111 C/X 0 71.12 38.10
Left end of lip 8003 111 PX -109.22
Right end of lip 8004 111 PX 97.97
Inside - end cap 8005 111 PX -88.9
Outside - end cap 8006 111 PX -90.17
Inside + end cap 8007 111 PX 88.9
Outside + end cap 8008 111 PX 90.17
UF6 Fill level 8020 111 PZ 76.97

Cart
Cart 8029 111 RPP -88.9 88.9 -40 40 25.12 33.02
Front Axle 8030 111 RCC 78.73 -50 15.24 0 100 0 2.54
Back Axle 8031 111 RCC -78.73 -50 15.24 0 100 0

2.54
Front right wheel 8036 111 RCC 78.73 -50 15.24 0 9 0 15
Front left wheel 8037 111 RCC 78.73 41 15.24 0 9 0 15
Back right wheel 8038 111 RCC -78.73 -50 15.24 0 9 0 15
Back left wheel 8039 111 RCC -78.73 41 15.24 0 9 0 15
Support to sit on 8065 111 RPP 77.46 80 -51.435 51.435

33.02 54.61
Support to sit on 8066 111 RPP -80 -77.46 -51.435 51.435

33.02 54.61
World
Concrete Floor 8103 RPP -165 165 -100 100 -30.48 0.0
Metal Railing 8104 RPP -150 -134.76 -100 100 -2.54 0.0
Metal Railing 8105 RPP 134.76 150 -100 100 -2.54 0.0

Edge of Model’s Uni-
verse

Universe Definition 9999 RPP -165 165 -210 100 -30.48 150

Table 18: Surface input cards for the MCNP5 simulation used in Test Case II —
all geometry except detectors
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Test Case II MCNP5 Materials

ID Material Composition

M2100 Aluminum aluminum (natural) 100 %
M2000 NaI Scintillator sodium-23 50 a/0

iodine-127 50 a/0
M2200 Electronics hydrogen-1 4.25 %

carbon-12 45.75 %
aluminum-27 50 %

M2300 LaBr Scintillator lanthanum (natural) 25 a/0
bromine (natural) 75 a/0

M4200 Borated Polyethlylene hydrogen-1 63.3333 %
carbon-12 31.6667 %
boron-10 0.98 %
boron-11 4.02 %

M4100 Polyethylene hydrogen-1 66.6667 a/0
carbon-12 33.3333 a/0

M4000 Helium-3 helium-3 100 %
M9100 Air carbon-12 0.0124 %

nitrogen-14 75.5267 %
oxygen-16 23.1781 %

argon (natural) 1.2827 %
M9200 Lead lead (natural) 100 %
M9400 Concrete hydrogen-1 1 %

oxygen-16 53.2 %
sodium-23 2.9 %

aluminum-27 3.4 %
silicon (natural) 33.7 %

calcium (natural) 4.4 %
iron (natural) 1.4 %

M9410 Steel carbon (natural) 0.19 %
manganese-55 0.718 %

silicon (natural) 0.282 %
sulfur (natural) 0.1028 %
iron (natural) 98.7072 %

M9500 UF6 uranium-234 0.016226 %
uranium-235 2.0042 %
uranium-236 0.012341 %
uranium-238 65.579 %
fluorine-19 23.388 %

M9510 Nitrogen filler nitrogen-14 100 %

Table 19: Material compositions used in the MCNP5 model of the UF6 case,
expressed in weight percent (or atom percent, as denoted by a/0)
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Test Case II Source Distribution, Part 1

Energy Rel. Energy Rel. Energy Rel.
[MeV] Strength [MeV] Strength [MeV] Strength

0.0044 1.11E+04 0.019 2.36E+03 0.087 1.23E+03

0.0092 8.45E+07 0.0191 4.44E+08 0.0877 3.40E+03

0.01 2.50E+03 0.0191 1.56E+05 0.09 5.69E+08

0.0102 1.28E+08 0.0196 1.03E+10 0.09 1.59E+08

0.0109 8.85E+03 0.0198 1.26E+09 0.0909 5.53E+03

0.0111 2.14E+08 0.0198 1.83E+05 0.0923 6.55E+07

0.0111 2.99E+04 0.02 1.76E+03 0.0923 1.39E+03

0.0114 4.95E+08 0.0203 3.18E+03 0.0924 4.61E+05

0.0114 3.96E+04 0.0204 3.33E+03 0.0928 4.54E+05

0.0116 1.02E+03 0.0256 2.47E+09 0.0931 8.29E+06

0.0117 2.02E+03 0.0274 6.64E+04 0.0934 9.23E+08

0.0123 3.52E+03 0.0316 2.70E+06 0.0947 2.03E+04

0.0126 1.54E+05 0.0382 1.06E+03 0.0947 4.25E+03

0.013 3.64E+09 0.0411 5.07E+06 0.0947 1.76E+03

0.013 5.09E+05 0.042 6.76E+06 0.0959 1.06E+08

0.0133 8.25E+09 0.0428 9.80E+06 0.0959 2.25E+03

0.0133 6.62E+05 0.0441 1.18E+05 0.0962 1.45E+07

0.0133 3.05E+03 0.0464 1.48E+03 0.0984 3.26E+04

0.0136 1.68E+04 0.0496 1.18E+04 0.0984 6.83E+03

0.0136 1.16E+04 0.0501 1.73E+03 0.0993 2.03E+07

0.0141 2.63E+03 0.0512 3.38E+06 0.0999 1.30E+03

0.0143 1.93E+03 0.0542 2.54E+06 0.1023 6.90E+07

0.0144 2.52E+03 0.0586 8.11E+07 0.1026 2.00E+03

0.0145 3.69E+07 0.0629 3.25E+03 0.1037 1.06E+03

0.0145 1.41E+04 0.0633 6.44E+05 0.1054 3.34E+08

0.015 6.76E+07 0.0638 3.89E+06 0.1058 1.20E+06

0.015 8.34E+03 0.0643 3.38E+06 0.1066 2.87E+06

0.0152 4.36E+03 0.0685 9.63E+05 0.108 1.00E+03

0.0157 1.81E+05 0.0727 1.86E+07 0.1082 3.86E+07

0.0161 2.61E+09 0.0728 4.24E+07 0.109 1.11E+08

0.0162 7.00E+05 0.0739 2.64E+03 0.1092 2.54E+08

0.0164 2.71E+03 0.0739 1.85E+03 0.111 1.19E+04

0.0165 3.53E+03 0.074 7.21E+03 0.111 2.50E+03

0.0166 6.32E+09 0.075 1.01E+07 0.1119 1.29E+07

0.0166 7.41E+05 0.0811 2.99E+03 0.1128 4.09E+04

0.0171 1.56E+04 0.0812 1.52E+08 0.1149 4.01E+03

0.0171 1.42E+04 0.0821 8.32E+07 0.1156 1.69E+05

0.0172 3.68E+07 0.0833 1.19E+04 0.1161 1.18E+07

0.0181 2.79E+07 0.0838 4.97E+03 0.1168 3.50E+06

0.0186 4.19E+04 0.0842 1.12E+09 0.12 4.39E+06

Table 20: Line energy spectrum of uranium-235 below 0.12 MeV
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Test Case II Source Distribution, Part 2

Energy Rel. Energy Rel. Energy Rel.
[MeV] Strength [MeV] Strength [MeV] Strength

0.1249 9.43E+06 0.2409 1.15E+07 0.4017 1.31E+03

0.1313 5.41E+03 0.2425 1.42E+05 0.4103 5.07E+05

0.134 4.06E+06 0.2469 1.01E+07 0.4484 1.69E+05

0.1357 1.32E+07 0.2496 1.32E+05 0.4551 1.35E+06

0.1367 2.03E+06 0.2504 1.10E+05 0.5172 6.76E+04

0.1367 7.10E+05 0.2562 1.37E+03 0.5695 2.89E+03

0.1405 1.20E+05 0.2582 9.59E+03 0.6988 1.24E+03

0.1408 3.72E+07 0.2603 1.30E+03 0.7332 2.33E+03

0.1438 1.78E+09 0.2665 1.01E+06 0.7409 1.20E+03

0.1451 9.80E+05 0.2676 1.96E+05 0.7425 6.76E+04

0.1459 5.41E+06 0.2694 2.68E+03 0.7428 9.55E+03

0.151 1.28E+07 0.2711 1.95E+03 0.7664 3.49E+04

0.1527 1.81E+03 0.2741 5.07E+03 0.7863 5.78E+03

0.1542 1.10E+03 0.2755 8.28E+06 0.7947 1.01E+05

0.1631 2.62E+07 0.2814 1.01E+06 0.7953 1.03E+03

0.1634 7.94E+08 0.283 8.45E+05 0.8099 8.61E+04

0.165 6.59E+05 0.2837 1.14E+04 0.8258 1.08E+03

0.1696 2.03E+05 0.2896 1.18E+06 0.8314 1.49E+03

0.1723 1.69E+06 0.2917 5.07E+05 0.8763 1.08E+03

0.1742 3.10E+06 0.2939 1.06E+03 0.8805 2.43E+03

0.1825 6.76E+07 0.3001 1.70E+04 0.8805 1.08E+03

0.1835 5.56E+06 0.3017 8.45E+05 0.8832 3.26E+03

0.1848 2.02E+03 0.3026 4.57E+03 0.8986 1.11E+03

0.1857 8.98E+09 0.3027 1.22E+04 0.922 1.40E+03

0.1888 5.41E+05 0.3087 6.59E+04 0.9257 2.97E+03

0.1927 1.44E+03 0.3107 6.76E+05 0.9267 2.43E+03

0.195 9.97E+07 0.311 4.90E+05 0.946 2.20E+03

0.1989 6.75E+06 0.3171 1.69E+05 0.946 1.21E+03

0.2021 1.69E+08 0.3179 1.35E+04 0.948 2.16E+03

0.2053 7.94E+08 0.3202 1.86E+04 1.001 1.10E+05

0.2153 4.56E+06 0.3301 9.38E+03 1.1937 1.52E+03

0.2179 6.76E+06 0.3409 1.24E+03 1.5101 1.54E+03

0.2214 1.69E+07 0.3438 5.07E+05 1.5536 1.06E+03

0.2266 1.60E+03 0.3459 6.42E+06 1.7378 2.40E+03

0.2272 1.49E+03 0.3501 2.52E+03 1.7657 1.03E+03

0.2288 1.35E+06 0.3518 1.18E+04 1.8317 1.89E+03

0.2335 6.76E+06 0.3561 8.45E+05

0.236 1.56E+06 0.3573 1.10E+03

0.236 2.28E+03 0.3879 6.42E+06

0.2402 4.73E+04 0.3903 6.76E+06

Table 21: Line energy spectrum of uranium-235 above 0.12 MeV
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