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Cuphea wrightii seed oils contain 30% caprate (10:0) and 54% laurate (12:0),

whereas most seed oils contain 16 or 18 carbon fatty acids. The objectives of this thesis

were to isolate and characterize the genetic determinants of this unusual phenotype.

During fatty acid synthesis, the acyl-ACP thioesterase-catalyzed hydrolysis of the thioester

bond linking the acyl chain and ACP may regulate acyl chain length. Two cDNAs,

encoding thioesterases Cw FatB1 and Cw FatB2, were isolated from C. wrightii embryos

and expressed in Arabidopsis. Cw FatB2 seeds produced 10:0, 12:0 and 14:0, fatty acids

not found in wildtype Arabidopsis. Homozygous Cw FatB1 seeds produced 12:0 and

14:0. Both transgenic lines produced 2.5-fold more 16:0 than wildtype and decreased

levels of unsaturated fatty acids. Because 10:0 and 12:0-ACP specific thioesterases were

expected, the high levels of 14:0- and 16:0-ACP activity were puzzling. The possibility

that gene dosage effects might shift distribution towards 10:0 and 12:0 was considered but

not observed when hemizygous and homozygous phenotypes were compared. Thus Cw

FatB1 and Cw FatB2 may be necessary but insufficient determinants of the C. wrightii

phenotype. f3-ketoacyl-ACP synthases (KAS) may also regulate fatty acid chain length. A
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C. wrightii cDNA encoding KASII homologue Cw Kas21 was isolated and expressed in

Arabidopsis. The wildtype 16:0 content of 8.2 mol% dropped to 6.2 mol% in transgenic

Arabidopsis. In the presence of the KASI inhibitor cerulenin, transgenic seed extracts

extended 6:0- and 8:0-ACP in vitro indicating medium-chain activity; cerulenin reduced

this activity in wildtype seed extracts. Seeds homozygous for Cw Kas21 and Cw FatB I

produced 3-fold more 12:0 than the FatB1 parent with simultaneous decreases in 14:0 and

16:0. Seeds expressing Cw Kas21 and Cw FatB2 produced significantly more 10:0 and

12:0 than the Cw FatB2 parent while 14:0 and 16:0 accumulation declined. We

hypothesize that the dramatic shift towards shorter chains in double transgenics resulted

from increased pools of medium-chain acyl-ACPs produced by Cw KAS21 activity. The

combination of Cw Kas21 and Cw FatB thioesterases appears to determine the C. wrightii

phenotype. This synergistic effect can be exploited in genetic engineering of oilseeds.
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ACYL-ACP THIOESTERASES AND BETA-KETOACYL-ACP
SYNTHASE REGULATE FATTY ACID CHAIN LENGTH IN SEED

OILS OF CUPHEA WRIGHTII

Chapter 1

INTRODUCTION

Progress in plant transformation techniques and plant molecular biology opened

the doors for production of genetically-engineered crops. In addition to efforts towards

engineering useful agronomic traits such as herbicide or insect resistance, there is also

interest in manipulating biosynthetic pathways. Plants represent a tremendous genetic

resource of enzymes that catalyze the synthesis of over 20,000 different terpenoids,

flavonoids, alkaloids, and fatty acids (Ohlrogge, 1994). Commercial utilization of this

germplasm has been targeted towards production of novel compounds and alterations of

the relative amounts of naturally occurring substances. Fatty acid metabolism is a

particularly valuable target for genetic engineering because of the potential usage of plant

oils as surfactants, plasticizers, and lubricants in industrial applications and the

production of edible vegetable oils with modified nutritional values or consistencies.

Current world production of vegetable oils is -65 million tons per year (Murphy,

1994) with an approximate market value of -20 billion dollars (Battey et al., 1989).

Approximately one third of these oils are used for industrial, rather than food applications

(Ohirogge, 1994). The unique physical and chemical qualities of plant oils are derived

from their constituent fatty acids (Figure 1.1). Although more than 500 different fatty

acids have been identified in plants (Stobart et al., 1993), most plants synthesize only a
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very limited subset which are stored in seed oils (Table 1.1) Because of this

phenomenon, just six fatty acids account for more than 95% of world oil production

(Schmid, 1987). Nonetheless, some uncommon fatty acids such as laurate (recovered

from palm kernel), erucic acid (recovered from rapeseed), and ricinoleic acid (recovered

from castor) are commercially exploited. (Figure 1.1) Other fatty acids have potential

uses but are presently unavailable in commercial quantities (Battey et al., 1989), because

the plants which produce them are not viable crop species.

H C".""""/COOH
H COOH

H3 COOH

HC///--\/\"/\/\/COOH
H3CN/---\z\--\"/wCOOH

medium
chains

H3C

H3C/\"/\/COOH

H C/WW COOH

HA""/\/\/.\/C)\./W COOH
H3C

COON

H3C COOH

H3C COOH

COOH

Palmitic acid
Stearic acid
Oleic acid
Linoleic acid
Linolenic acid

Caprylic acid
Capric acid
Lauric acid
Myristic acid

16:0
18:0
18:1
18:2
18:3

8:0
10:0
12:0
14:0

Petroselinic acid 06 18:1

Ricinoleic acid 120H A9 18:1
Erucic acid M 3 22:1

Figure 1.1. The structure and nomenclature of some common fatty acids. The trivial
names have often been derived from a commmon plant source; eg., palmitic acid. The
first number in the numerical nomenclature refers to the number of carbons in the chain
and the second number refers to the number of double bonds. Fatty acids with 8 to 14
carbons are termed medium-chain.
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The potential for genetically engineering high market value oil seed crops

positively impacted research of plant fatty acid metabolism over the past decade. A

relevant example is laurate (12:0), which is produced from palm kernel oil and used as an

ingredient in many soaps, detergents, and shampoos. The U.S. imports approximately

640,000 tons per year (Battey et al., 1989) with an estimated market value of 350 million

dollars (Ohlrogge, 1994). Desire to produce a genetically-engineered domestic source of

laurate motivated research into mechanisms that regulate acyl chain length in plants that

produce medium-chain (C8 to C14) fatty acids

Table 1.1. Fatty acid composition of common vegetable oils.
Data represents percentage of each fatty acid by weight. The oils from the six species
listed (there are two varieties of rapeseed) account for over 85% of total commercial oil
production.

8:0 10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3
soybean 9 2 32 53 3
palm 2 42 4 42 10
rapeseed 3 1 24 15 8
rapeseed 4 2 60 20 10
sunflower -5 2 35 57
cottonseed 21 2 25 50
peanut 12 4 47 31

The initial reactions of fatty acid synthesis are catalyzed by a series of dissociable

enzymes within plant plastids (Figure 1.2) (reviewed by Browse and Sommerville, 1991;

Ohlrogge and Browse, 1995). Because enzymatic activities of fatty acid synthesis are

separable (Shimikata and Stumpf, 1982), plant fatty acid synthase (FAS) is similar to the

prokaryotic Type II FAS and not the multienzyme Type I complex found in yeast and
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Figure 1.2. Diagram of fatty acid synthesis in plants. The initial stages of fatty acid synthesis in plants occur within the plastid.
During elongation, the acyl chain is esterified to an acyl-carrier protein (ACP). Condensation of two carbon units donated from
malonyl-ACP is catalyzed by [3 -ketoacyl-ACP synthase (KAS). A cyclic pattern of reduction, dehydration, and reduction is catalyzed
by three separate enzymes of fatty acid synthase (FAS). In most plants, the acyl chain is elongated to 16 or 18 carbons. A soluble
acyl-ACP thioesterase (TE) hydrolyzes the acyl-ACP thioester bond releasing free fatty acids. The free fatty acids are reesterified to
Co A on the surface of the plastid membrane. The acyl-Co A molecules may be further modified prior to assembly into triglycerides

4=,
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animals. A 13-ketoacyl-acyl carrier protein synthase (KAS) catalyzes the sequential

addition of 2 carbon units from malonyl-acyl carrier protein (ACP) to an acyl chain which

is also esterified to ACP. The resultant 13-ketoacyl-ACP molecule undergoes a cycle of

reduction, dehydration, and reduction prior to additional condensation reactions. Most

fatty acyl-ACP chains are elongated to 16 or 18 carbons in length. Within most plants,

the majority of the stearoyl-ACP (18:0)-ACP is desaturated to oleoyl-ACP (18:1) by a

soluble stearoyl desaturase. Because palmitoyl-ACP (16:0-ACP) is not a substrate for

stearoyl desaturase, 16:0 and 18:1 are the major products of plastidal fatty acid synthesis.

Within the plastid, acyl groups may be transferred from ACP to glycerol -3-

phosphate or to monoacylglycerol-3-phosphate, which are then incorporated into plastid

membranes via the "prokaryotic" pathway. Alternatively, fatty acids may enter the

"eukaryotic" pathway if hydrolyzed from ACP by an acyl-ACP thioesterase (TE). Free

fatty acids exit the plastid by an unknown mechanism and are esterified to CoA on the

outer membrane of the chloroplast envelope. The resultant acyl-CoA may be further

modified in the ER and assembled into phospholipids or triacylglycerols.

As portions of the plant biosynthetic pathway were elucidated, several

mechanisms were proposed by which a plant might produce medium-chain fatty acids

(Harwood, 1989), including the possibility of a substrate-specific TE which would

prematurely terminate elongation of an acyl-ACP chain (Stumpf, 1987). This unusual

substrate preference was presumed to form an enriched pool of medium-chain free fatty

acids that would subsequently be incorporated into triglycerides. An alternative model

invoking the action of a substrate specific condensing enzyme (KAS) was also proposed
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(Harwood, 1988). These proposals were speculative as there were limited data to support

either.

Pollard et al. (1991) researched California bay (Umbellularia californica), a

species that accumulates primarily 10:0 and 12:0 in seed storage lipids, and succeeded in

partially purifying a 12:0-ACP-specific thioesterase from embryo extracts. Their work

was the first direct evidence of a mechanism which might produce medium-chain fatty

acids in plants. A 12:0-ACP TE was subsequently purified and characterized as a

monomer with a molecular weight of 34 kDa (Davies et al., 1991). Purification and

sequencing of protein fragments allowed design of degenerate oligonucleotides and

cloning of a cDNA encoding the 12:0-specific TE (Voelker et al., 1992). When the TE

was expressed in Arabidopsis, seeds accumulated a significant amount of 12:0.

The demonstration of the power of a single enzyme to divert carbon flux within

the fatty acid pathway and produce a novel phenotype immediately led to a search for

similar enzymes from other species; however, it was unknown if this mechanism was

universal to medium-chain-producing species or unique to California bay. Davies (1993)

assayed TE activity in seed extracts from elm (Ulmus americana), palm (Cocos nucifera)

and camphor (Cinnamomum camphora); each of these medium-chain species represented

separate plant families. All three extracts were found to have hydrolytic activities on

various medium-chains acyl-ACPs, although the range of substrates hydrolyzed was, in

each case, somewhat broader than predicted from in vivo accumulation patterns. This

survey suggested that medium-chain specific TEs were likely to be found in other plants

with medium-chain phenotypes.
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The new world genus Cuphea is unique in the number of its 250 species that

produce medium-chain seed oils (Table 1.2) (Graham et al., 1981). The potential of

Cuphea as a genetic resource for unusual enzymes has been widely recognized, and a

number of species have been investigated. C. wrightii is an herbaceous annual, found

largely in the highlands of Mexico (Graham, 1988). The species is an interesting model

in chain-length regulation because it produces seed oils containing 30% caprate (10:0)

and 54% laurate (12:0). (Graham et al., 1981). We hypothesized that the unusual

deposition patterns seen in seed oils of this plant reflected substrate specificities of acyl-

ACP TEs, as had been demonstrated in California bay. The primary objectives of this

research were to isolate TEs from C. wrightii, to characterize their function in fatty acid

metabolism, and to determine if they regulated the C. wrightii phenotype.

Table 1.2. Fatty acid composition of selected Cuphea species; percentage by weight.

8:0 10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3
C. lanceolata 83 2 2 3 3 5

C. denticulata 33 10 53 4
C. pulcherimma 94 3 1 - 1

C. wrightii 30 54 5 2 3 5

This thesis consists of two manuscripts as chapters and a third manuscript as an

appendix. The first chapter describes isolation of two cDNAs encoding TEs from C.

wrightii and characterization of their activities in transgenic Arabidopsis. The second

chapter describes experiments that tested the interaction of a C. wrightii KAS with each

of the two C. wrightii TEs in Arabidopsis expressing both classes of transgenes. Four
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other cDNAs encoding TEs isolated from C. wrightii and a clustering analysis of Cuphea

TEs are presented in the appendix.
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Chapter 2

CUPHEA WRIGHTII THIOESTERASES HAVE UNEXPECTED
BROAD SPECIFICITIES ON SATURATED FATTY ACIDS

Jeffrey M. Leonard, Mary B. Slabaugh, and Steven J. Knapp
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ABSTRACT

Cuphea wrightii A. Gray is an herbaceous annual that accumulates 30% caprate

(10:0) and 54% laurate (12:0) in seed storage lipids. We investigated the role of acyl-acyl

carrier protein (ACP) thioesterases (TE) in acyl chain length regulation in C. wrightii.

Two embryo-derived cDNAs, encoding the TEs Cw FatB1 and Cw FatB2, were isolated.

Both proteins were detected in developing embryos (-41 kDa) and mature seeds (-33

k Da) but not in other tissues, suggesting involvement in seed oil synthesis. Although

expected to be 10:0/12:0-ACP specific, both genes produced a broad range of fatty acids

(12:0, 14:0, and 16:0) in transgenic Arabidopsis with the greatest accumulation at 14:0.

Cw FatB2 transformants also accumulated small amounts of 10:0. Because C. wrightii

accumulates only -5% 14:0 and -2% 16:0, we tested the possibility that gene dosage

effects might significantly alter the overall kinetics of the pathway. Phenotypic

comparisons of progeny segregating for the transgenes individually and in a hybrid

population demonstrated that increased enzyme pools in vivo had a minor effect on

diverting fatty acid production to shorter chains. We propose that Cw FatB1 and Cw

FatB2 may be necessary but not sufficient determinants of the C. wrightii phenotype.

INTRODUCTION

Plants synthesize fatty acids (FA) through a series of discrete enzymes localized to

plastids (Browse and Sommerville, 1991). Acyl chains esterified to acyl carrier protein

(ACP) are elongated by the sequential addition of two-carbon units donated by malonyl-

ACP. Hydrolysis of the acyl-ACP thioester bond by an acyl-ACP thioesterase (TE)
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terminates elongation and releases ACP and free fatty acids. These fatty acids cross the

plastid membrane and may be further modified during assembly into membrane lipids or

triacylglycerols in seeds. C16 and C18 fatty acids predominate in the seed storage lipids of

most plants; however, a number of plant species are interesting for their unusual

accumulation of medium-chain (C8 C14) fatty acids in seeds. Biologists pursuing the

engineering of seed oils in crop species are particularly interested in the mechanism that

allows developing seeds of these species to switch from long-chain to medium-chain fatty

acid production (Ohlrogge, 1994).

The simplest explanation for this switch is induction of a TE with specificity for

medium-chain acyl-ACPs, such that acyl elongation terminates prematurely. Acyl

transferases would then assemble triacylglycerols from the increased medium-chain fatty

acid pool. Expression in Arabidopsis of a thioesterase isolated from California bay, a

species that accumulates caprate (10:0) and laurate (12:0) in storage lipids, causes

production of significant amounts of 12:0 in seed triglycerides (Voelker et al., 1992). To

date, medium-chain specific TEs have been cloned from three Cuphea species (Dehesh et

al., 1996a, Dehesh et al., 1996b, Martini et al., 1995) indicating a chain-length regulatory

mechanism similar to California bay exists in Cuphea. Expression in canola of a Cuphea

hookeriana TE, Ch FatB2, produces up to 11 mol% 8:0 and 27 mol% 10:0 in seeds

(Dehesh et al., 1996b). Although C. hookeriana seed oils contain twice as much 8:0 as

10:0, Ch FatB2 is probably a significant determinant of the phenotype. Two TEs have

been cloned from C. palustris (Dehesh et al., 1996a), a species that accumulates 20% 8:0

and 64% 14:0 in seeds. Assays done in vitro and in E. coli show Cp FatB1 has both 8:0-

and 10:0-ACP activity, and Cp FatB2 has both 14:0- and 16:0-ACP activity. Although
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the reported specificities are broader than suggested by the C. palustris phenotype, these

enzymes are indicated as major factors regulating chain length in this species.

Many Cuphea species have seed oils rich in medium-chain fatty acids (Graham et

al., 1981) and represent a potential source of both economically important medium-chain

fatty acids as well as a genetic resource for the engineering of seed oils in existing crops.

Two TEs were partially purified from C. wrightii (Dormann et al., 1993), whose seeds

contain 29% 10:0 and 54% 12:0. One TE is active on 18:1- ACP, while the other has

broad medium-chain specificity. Interestingly, 10:0- and 12:0-ACP specific TEs were not

found. Since Cuphea FatB TEs are members of a small gene family with at least four

members (Jones et al., 1995, Voelker, 1996), partial purification may have failed to

resolve individual TEs with differing specificities. To explore this possibility, we

isolated and characterized two FatB TEs from C.wrightii. We also investigated the

possibility of an interaction between the two thioesterases by combining their activities in

transgenic plants.

MATERIALS AND METHODS

Library Construction and Clone Isolation

Embryos were excised from immature seeds of greenhouse grown Cuphea

wrightii A. Gray. Poly(A+) RNA was purified from total RNA isolated from developing

embryos by oligo-dT cellulose spin chromatography. cDNA was synthesized and an

aliquot ligated into Lambda ZAPII (Stratagene) using the manufacturer's protocol.
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Approximately 140,000 plaques were blotted onto nylon membranes. Degenerate

oligonucleotides (TE 1 and TE 3, Figure 2.1) were designed to regions conserved in the

amino acid sequences of the California bay medium-chain TE (Voelker et al., 1992) and

two oleoyl-ACP TEs from safflower (Knutzon et al., 1992). Deoxyinosine was included

at all positions of four-fold degeneracy. The oligonucleotides primed a PCR

amplification of embryo-derived cDNA producing a 540-bp PCR product that was

labeled with [a- 32P]dCTP using random hexamer primers. The membranes were

hybridized at 42° in 50% formamide with a final wash at 68° in 1 x SSC and 0.1% SDS.

Sixteen of the thirty four plaques that hybridized at high stringency were screened a

second time with the same protocol. Phagemids excised from ten plaques isolated in the

second screen were separated into three classes by restriction analyses. Three clones,

cwTE11, cwTE48 , and cwTE55, were selected as representative of the classes and

analyzed further. Sequencing was done on an Applied Biosystems autosequencer using

vector-based primers and custom oligonucleotide primers. A suite of GCG computer

programs (Genetics Computer Group Software, Madison, WI) were used for analysis of

sequence data and multiple sequence alignment.

Production of Antibodies

A 560-bp Ndel-Xhol fragment from the 3' end of cwTEl l was ligated into vector

pET15B (Novagen, Madison WI) cut with the same enzymes, creating pET11-7. PCR

was used to amplify a 615-bp fragment from cwTEl l beginning at the putative start of

the mature protein (Figure 2.1) and to add a 5' Ndel site. A 460-bp Ndel fragment from
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the cloned PCR product was ligated into NdeI-linearized pET11-7. A clone with the

correct orientation of the Ndel fragment (pTE11E1) was transformed into E. coli strain

BL21(DE3) (Novagen).

A 5' Ndel site was added during amplification of a 780 by fragment from

cwTE48, beginning near the putative start of the mature protein (Figure 2.1). After

ligation into pBluescript SK II, a 640-bp NdeI-Xhol fragment was ligated into pET15B

cut with the same enzymes, creating p48P. A 470-bp XhoI fragment from the 3' end of

cwTE48 was ligated into the Xhol site of the intermediate p48P. A clone with the XhoI

insert in the correct orientation (pTE48E1) was transformed into E. coli strain

BL21(DE3).

Cultures of BL21(DE3) harboring plasmids pTE48E1 and pTE11E1 were grown

four hours at 30° C, induced with 0.1 mM isopropyl 0-D-thiogalactopyranoside (IPTG)

four additional hours at 30° C, pelleted by centrifugation, and stored at -80° C. Histidine-

tagged recombinant proteins were partially purified using a nickel affinity resin (Ni-NTA,

Quiagen) according to the manufacturer's protocol. Briefly, the frozen pellets were

resuspended in Buffer A (6 M GuHC1, 0.1 M Na-Phosphate 0.01 M Tris/HC1 (pH 8.0)),

stirred at room temperature for one hour, then sonicated. Recombinant proteins were

bound to the resin and washed per the protocol except the final wash, which included 30

mM imidazole. Proteins eluted with 250mM imidazole were further separated on a 10%

SDS polyacrylamide gel. Gel fragments containing recombinant proteins were

homogenized in complete Freund's adjuvant and used to raise antibodies in rabbits.
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Western Analyses

Seed materials for the developmental study analyses were crushed under liquid

N2, then homogenized in 1:10 w/v of tissue extraction buffer (50 mM Tris-HC1 (pH 7.5),

2 mM EDTA, 2% [w/v] SDS, 2 mM phenylmethysulfonyl fluoride (PMSF), 1 mg/1

pepstatin, 1 mg/1 leupeptin, 1 mM benzamide -HCI, and 1% [w/v]

polyvinylpolypyrrolidone (PVPP). The homogenate was incubated for one hour on ice

then centrifuged for 15' at 4° C. 1.5 ill samples at each time point were electrophoresed

on a 10% polyacrylamide gel, blotted, and immunostained with TE antisera (1:1000)

using standard methods.

Transformation of Arabidopsis

PCR was used to amplify a -1260 by fragment of cwTE 11 and -1300 by fragment

of cwTE48, including 10 by of the pBluescript vector at the 5' end in both cases. 3'

primers were designed to create BglII sites 36 by downstream of the stop codon of

cwTEll and 30 by downstream of the stop codon of cwTE48. PCR products were cloned

into pBluescript SKII cut with EcoRV and dT-tailed (Marchuk et al., 1991). Clones were

selected such that the insert was in the opposite orientation to the vector-encoded lacZ in

order to add a 5' Sall site to the cDNAs. Digestion with SallJBgiII released the entire

coding regions of both genes that were subsequently inserted into SalI/BglII -cut

pCGN3223 (Kridl et al., 1991) containing a seed-specific promoter and termination

fragment from Brasssica rapa. KpnI fragments containing the chimeric genes were

cloned into the binary plant transformation vector pCGN1557 (McBride and Summerfelt,
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1990). Vacuum infiltration (Bechtold et al., 1993; Bent et al., 1996) was used to

transform Arabidopsis thaliana (ecotype Wassilewskija) with Agrobacterium strain

LBA4404 harboring the plasmids.

T1 transformed seeds (3-5,000 per plate) were screened on media containing 50

mg/1 kanamycin while T2 and T3 seeds (1-200 per plate) were screened at 20 mg/1

kanamycin. Fatty acid profiles for single T2 seeds or pooled homozygous seeds were

determined using gas chromatography according to Brandt and Knapp (1993).

RESULTS

Isolation and Characterization of two TE cDNA Clones from C. wrightii

Degenerate oligonucleotides were designed to two conserved regions of the

medium-chain TE from California bay (Voelker et al., 1992) and the oleoyl-ACP TE

from safflower (Knutzon et al., 1992) (Figure 2.1). A TE specific probe was PCR

amplified using a template of cDNA derived from developing seeds of C wrightii. The

probe was used to screen a cDNA library derived from the same tissue. Seven clones

were isolated with inserts large enough to encode a TE, and were separated into three

classes by restriction digests. Two clones, cwTEl l and cwTE55, representing two

classes, were partially sequenced and found to be 96% identical for the first 250 predicted

amino acids. These are most likely alleles or orthologs since C. wrightii is an

allotetraploid (Graham 1988). cwTEl l was completely sequenced, but no further work
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was done with cwTE55. A representative of the third class, cwTE48, was also

completely sequenced.

The complete nucleotide sequence of cwTEll is 1296 bp. Beginning at an

initiation codon at position 20, an open reading frame of 1197 by encodes a 398-amino

acid protein with a predicted mol wt of 44,201. A 77 residue transit peptide and 36.3-kD

mature protein were predicted based on the putative N terminus of the TE from C.

hookeriana (Jones et al., 1995). cwTE48 contains a 1,449-bp cDNA with a 1,227-bp

open reading frame beginning at the initiation codon at position 23. The predicted 408

amino acid preprotein had a calculated mol wt of 45,843. The mature protein was

estimated to have a mol wt of 36,451 after cleavage of an 89-amino acid transit peptide.

Deduced amino acid sequences of the preprotein and mature forms of cwTE 11

and cwTE48 were 78% identical. The cDNAs were 84% identical overall and within the

coding sequence. Predicted amino acid sequences of both clones were approximately

48% identical to the amino acid sequence of the California bay TE (Voelker et al., 1992),

but only 38% identical to the safflower TEs (Knutzon et al., 1992). Relative to the

safflower TE, both cwTEl l and cwTE48 have deletions in the predicted mature proteins

characteristic of the recently designated FatB group of TEs (Jones et al., 1995).

Therefore, cwTEl l was designated Cw FatB1, and cwTE48 was designated Cw FatB2.

We used the computer program Pileup (Genetics Computing Group, Madison,

WI) to compare the deduced amino acid sequences of the C. wrightii TEs with five other

Cuphea FatB TEs (Figure 2.1), including representatives of four clades of Cuphea FatB

genes (Voelker 1996). Within the putative mature proteins, 171 residues (53%) were

identical, and 73 of the remaining sites had conservative substitutions. The two active-
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site motifs identified by Yuan et al. (1996) were completely conserved. Cw FatB1

clustered with the 14/16:0-ACP specific FatB2 from C. palustris (Dehesh et al., 1996a).

Cw FatB2 clustered with the 8:0/10:0-ACP specific FatB1 from C. palustris TE (Dehesh

et al., 1996a) and the 8:0/10:0-ACP specific FatB2 from C. hookeriana TE (Dehesh et

al., 1996b). Even with inclusion of the putative transit peptide sequences, the UPGMA-

derived clustering order reflected the same topology as a phylogenetic tree derived by

maximum parsimony analysis of homologous residues (Voelker, 1996). The clustering of

Cw FatB1 and Cw FatB2 with medium-chain specific TEs and not the 16:0 specific Ch.

FatB1 (Jones et al., 1995), was circumstantial evidence for their involvement in storage

lipid synthesis.

When three residues of the 12:0-ACP specific California bay TE are mutagenized

(M197R/R199H/T231K), the enzyme becomes 14:0-ACP specific (Yuan et al., 1995).

However, the homologous residues (Met-211, Arg-213, and Lys-245 of Cw FatB1) were

completely conserved in the Cuphea TEs (Figure 2.1), even though the Cuphea TEs

exhibit a range of specificities. Therefore, substrate specificity is not determined solely

by these residues in Cuphea. Interestingly, one of the California bay TE mutants (T231K)

created by Yuan et al. (1995) is identical to the Cuphea TEs at these three sites but retains

wildtype (12:0-ACP) activity. Unfortunately, without three-dimensional structures, it is

impossible to distinguish mutations that alter substrate specificity from neutral changes

that reflect only a common evolutionary history.
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Figure 2.1 Alignment of the deduced amino acid sequences of Cw FatB1 and Cw FatB2
with TEs from C. hookeriana (Dehesh et al., 1996b, Jones et al., 1995), C. lanceolata
(Toepfer et al., 1995) and C. palustris (Dehesh et al., 1996a). Dendogram on first line
represents the UPGMA clustering order determined by the computer program PILEUP.
Boxes around sequence names indicate orthologous genes (Voelker, 1996). Completely
conserved residues are printed in reverse contrast. Horizontal arrows indicate location of
degenerate primers TE 1 and TE 3. Putative start of the mature FatB proteins is indicated
by an arrowhead (Jones et al., 1995). Starting points of the histidine-tagged fusion
proteins of Cw FatB1 (Ala-95) and Cw FatB2 (Asp-115) are boxed. The active site
motifs (Yuan et al., 1996) are marked with asterisks. Filled circles indicate position of
residues mutated in California bay TE to confer 14:0 specificity (Yuan et al., 1995).
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Tissue-specific expression of Cw FatB1 and Cw FatB2

In order to characterize the expression patterns of Cw FatB1 and Cw FatB2, we

raised antibodies to recombinant fusion proteins. Regions of Cw FatB1 and Cw FatB2

encoding the putative mature proteins (Figure 2.1) were cloned into pET15B

(Novagen),and polyclonal antibodies raised to the histidine-tagged fusion proteins. When

antisera were assayed for specificity against the recombinant proteins, anti-Cw FatB1

serum recognized both recombinant proteins, whereas anti-Cw FatB2 serum detected only

the Cw FatB2 fusion protein (data not shown).

We expected thioesterases that regulate seed oil phenotype to be primarily

expressed in developing embryos. When various tissues of C. wrightii were assayed,

anti-Cw FatB1 serum reacted to 41.9 and 41.0-1d) proteins in developing seeds and three

proteins of -33 kD in mature seeds. Anti-Cw FatB2 serum reacted to a 41.9-1(D protein

in developing seeds and two -33 kD proteins in mature seeds. Neither antiserum

produced major bands in samples from flowers, cotyledons, roots, leaves, or stems (data

not shown). Because anti-Cw FatB1 serum recognized both recombinant proteins, the

41.9 -kD band probably represents Cw FatB2, whereas the 41.0-1W band is the Cw FatB1

gene product.

The two size classes apparent in developing (-41 kD) and mature (-33 kD) seeds

were investigated further by Western analyses of seed samples collected at two day

intervals during the course of seed development (Figure 2.2). Both anti-Cw FatB1 and

anti-Cw FatB2 sera detected -41-1d) proteins at 7 days postanthesis. The concentration

of the FatB proteins was maximal from 9 through 15 days postanthesis. Beginning 13
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Figure 2.2 Expression of thioesterases during seed development. Seeds of C. wrightii
were collected at two-day intervals from flowers tagged at anthesis. Proteins from
crushed, frozen seeds were solubilized in extraction buffer (1:10, w/v). Each lane was
loaded with 1.5 ill of crude lysate. Lane numbering indicates the number of days
postanthesis of each sample. A. Immunoblots probed with anti-Cw FatB1.
B. Immunoblots probed with anti-Cw FatB2 serum.

days postanthesis, the smaller class of proteins (-33 kD) appeared and a concomitant

reduction in the larger class of proteins (-41 kD) was observed, suggesting that the

smaller bands were degradation products of the larger bands.

Expression of Cw FatB1 and Cw FatB2 in Arabidopsis

No measureable thioesterase activity was detected during repeated attempts to

measure the in vitro activity of the histidine-tagged fusion proteins in either crude lysates

of E. coli expressing the fusion proteins or in assays of partially purified recombinant

proteins. To assess the in planta function of the Cuphea TEs, we transformed

Arabidopsis thaliana (WS) with the coding sequences of Cw FatB1 and Cw FatB2 under
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the control of the seed-specific napin promoter (Kridl et al., 1991). Five kanamycin

resistant T1 plants transformed with Cw FatB1 and six kanamycin resistant T1 plants

transformed with Cw FatB2 were identified. To confirm expression of the TE transgenes,

fatty acid profiles were determined for 10 to 12 individual T2 seeds from each of the

eleven transformants. Approximately 88% of the seeds tested from four of five plants

transformed with Cw FatB1 had dramatically altered fatty acid phenotypes. Increases in

medium-chain fatty acids ranged from 2.4 to 9.2% 12:0 and 10.7 to 23.3% 14:0, while

decreasing amounts of unsaturated long-chains were recorded (data not shown).

Accumulation of 16:0 in these seeds was 20% compared to 8% in the wildtype. Only

one of 11 seeds tested from the fifth Cw FatB1 transformant exhibited an altered fatty

acid phenotype. Similarly, 75% of seeds from three plants transformed with Cw FatB2

also had altered fatty acid profiles. Increases of medium-chain fatty acids ranged from

1.6 to 3.0% 10:0, 6.0 to 10.5% 12:0, and 10.4 to 12.8% 14:0 (data not shown).

Accumulation of 16:0 in these seeds ranged from 19.5 to 26.7%. Seeds from three other

kanamycin resistant plants transformed with Cw FatB2 did not accumulate medium-chain

fatty acids

We isolated a Cw FatB1 line and a Cw FatB2 line with single transgene loci by

characterizing segregation of kanamycin resistance in T2 progeny. T2 progeny from Line

11-1 (Cw FatB1) segregated 3:1 for kanamycin resistance as expected for a single

dominant gene (x2 = 0.298, P = 0.585). The T2 progeny from line 481-3 (Cw FatB2) also

segregated 3:1 for kanamycin resistance (x2 = 0.228, P = 0.633). T2 seeds from both of

these lines also accumulated medium-chain fatty acids indicating expression of the

transgenic TEs; therefore both lines were analyzed further.



24

Because of the unexpected broad fatty acid profiles of the transformants, we

considered gene dosage effects by analyzing the fatty acid profiles of both hemizygous

and homozygous classes of the T2 progeny from both lines. Three phenotypic classes

were identified in T2 seeds from plant 11-1 (Cw FatB1). One class (15 progeny)

accumulated no medium chains and was presumed to carry no transgenes. A second class

(15 progeny), presumed to be hemizygous, produced 5.1 mol% 12:0, 15.1 mol % 14:0,

and 20.1 mol% 16:0. The third class (11 progeny) produced 8.5 mol% 12:0, 22.6 mol %

14:0, and 21.1 mol% 16:0 and was presumed to be homozygous for Cw FatB1 . The

observed segregation ratio was not significantly different than expected for a single

segregating locus (x2 = 2.930, P = 0.087). Doubling the gene dosage in the homozygotes

caused a 67% increase in 12:0 and a 50% increase in 14:0 relative to the hemizygotes

(Figure 2.3A).

Three phenotypic classes were also identified among the 45 T2 progeny of 481-3

(Cw FatB2). One class (19 progeny) accumulated no medium chains and was presumed

to carry no transgenes. A second class (19 progeny), presumed to be hemizygous for Cw

FatB2, produced 1.7 mol% 10:0, 11.4 mol% 12:0, 13.7 mol % 14:0, and 18.6 mol% 16:0.

The third class (7 progeny) produced 2.0 mol% 10:0, 11.3 mol% 12:0, 15.5 mol % 14:0,

and 20.8 mol% 16:0 and was presumed homozygous for Cw FatB2. The observed

segregation ratio was significantly different than expected for a single locus (x2 = 7.119,

P = 0.008). Cw FatB2 was dominant for 10:0 and 12:0 accumulation; the mean

accumulations of these fatty acids was the same for hemizygotes and homozygotes.

However, both 14:0 and 16:0 increased by - 11% in the homozygotes relative to the

hemizygotes (Figure 2.3B)
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We confirmed the identification of the putative T2 homozygotes by isolating a T3

line homozygous for Cw FatB1 (111-C) and a T3 line homozygous for Cw FatB2 (4813

H). The T3 progeny from both lines were 100% kanamycin resistance. Fatty acid profiles

of pooled seed samples (Table 2.1) were not significantly different than the values of

A
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0 hemizygote
horn ozygote
wildtype

12:0 14:0 16:0 18:0 18:1 18:2
Cw FatB1

30
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10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1
Cw FatB2

Figure 2.3. Accumulation of fatty acids in T2 seeds of transformed Arabidopsis.
Approximately 40 individual seeds from a T1 plant with a single Cw FatB1 locus or Cw
FatB2 locus were analyzed by GC. Seeds were grouped and assigned putative zygosities
based on accumulation of 14:0 (Cw FatB1) or 14:0 and 16:0 (Cw FatB2). Data represent
means and error bars indicate standard deviation. A. Seeds from plant 11-1(Cw FatB1)
B. Seeds from plant 481-3 (Cw FatB2).
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the T2 homozygous classes. Both transgenes caused a 45% increase in saturated fatty

acids of which 30% were medium-chains (C10 to C14).

Analysis of F2 progeny segregating for Cw FatB1 and Cw FatB2

We further tested dosage effects by crossing a Cw FatB1 homozygous plant with a

Cw FatB2 homozygous plant and assaying the segregating F2 progeny. Four phenotypic

classes were identified among 101 F2 progeny (Figure 2.4A). One class (59 progeny)

produced 10:0 as well as 12:0 and 14:0. Because Cw FatB2 was dominant for 10:0

production, these progeny were presumed to carry one or two Cw FatB2 loci. Within this

group, we could not distinguish between those progeny with no Cw FatB1 locus and

those progeny carrying one or two Cw FatB1 loci. A second class (15 progeny) lacked

10:0 but produced 5.3 mol% 12:0 and 18.3 mol% 14:0, similar to the Cw FatB1

hemizygotes. This class was presumed to carry no Cw FatB2 loci but was presumed

hemizygous for Cw Fat Bl. A third class (16 progeny) accumulated no 10:0 and had a

phenotype similar to the Cw FatB1 homozygous parent. This group was presumed to

carry no Cw FatB2 loci but was presumed homozygous for the Cw FatB1 transgene. The

fourth class (10 progeny) produced no medium-chain fatty acids and was presumed to

carry no transgenes.

The expected segregation ratio for the four classes was 12:2:1:1. We could not

test for linkage between the transgenes because the first class was a mixture of all three

Cw FatB1 genotypes. For the same reason, only the last three classes could be used to

check for segregation of Cw FatB1. The observed segregation ratio for the Cw FatB1



Table 2.1 Fatty acid profiles of seeds from homozygous plants. Data are the means of five replicates of -100 seeds from a
wildtype plant, a plant homozygous for Cw FatB1, or a plant homozygous for Cw FatB2.

Fatty Acid Species (mol%)
10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1 20:2 22:1

wildtype 0 0 0 8.2 3.8 12.9 29.0 18.5 2.6 20.8 2.2 1.8
Cw FatB1 0 7.1 24.4 22.8 3.3 4.5 14.1 12.9 3.0 6.0 1.1 0.9
Cw FatB2 2.3 11.9 16.0 21.6 4.4 6.9 16.7 10.2 3.0 5.7 0.7 0.6
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Figure 2.4. A. Accumulation of 12:0 and 14:0 in 101 F2 progeny segregating for both
Cw FatB1 and Cw FatB2 loci. Putative zygosities were assigned based on accumulation
of 10:0, 12:0 and 14:0. Open diamond indicates progeny presumed to carry no
transgenes. Filled circles represent progeny presumed hemizygous for Cw FatB1 but
carrying no Cw FatB2 loci. Open circles indicate progeny presumed homozygous for Cw
FatB1 but carrying no Cw FatB2 loci. Open triangles indicate progeny presumed to carry
one or two Cw FatB2 loci and 0, 1, or 2 Cw FatB1 loci. B. 12:0 accumulation in T2
progeny segregating for Cw FatB1 (circles), Cw FatB2 (triangles), or F2 progeny
segregating for both Cw FatB1 and Cw FatB2 (diamonds). Numbers in parentheses
indicate the number of seeds that accumulated no 12:0.
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gene (31 FatB1 : 10 FatB2-) was not significantly different from the 3:1 expected ratio

(x2 = 0.008 P = 0.929). The whole population was used to check for segregation of Cw

FatB2. The observed segregation ratio for the Cw FatB2 gene (59 FatB2+: 42 FatB2-)

was significantly different than the 3:1 expected ratio (x2 = 14.815, P = 0.000). We

observed a lack of seedling vigor in plants carrying Cw FatB2 that may be correlated with

the apparent segregation distortion against Cw FatB2 (data not shown).

The additive effects of the genes could not be quantified because of the inability

to separate the genotypes in the first class. The mean fatty acid profile of this class was

not significantly different than the homozygous Cw FatB2 parent. However, the upper

range of 12:0 values in the F2 progeny exceeded both parental lines (Figure 2.4B). The

upper range of 16:0 values (maximum value = 24.5 mol%) slightly exceeded the Cw

FatB2 parent (maximum value = 22.3 mol%), but 14:0 accumulations never exceeded the

Cw FatB1 parent (maximum value = 23.5 mol%). Interestingly, the correlation between

12:0 and 14:0 production, which was positive in both homozygous parents, became

negative in the mixed genotype class (Figure 2.4A). We presumed that those progeny

with the highest 12:0 to 14:0 ratio were expressing three or four FatB alleles. The mixed-

genotype class accumulated 62.1 mol% saturated fatty acids, similar to the 60.6 mol%

total for a Cw FatB1 homozygote and 59.2 mol% total for a Cw FatB2 homozygote.

DISCUSSION

The broad specificities of both Cw FatB1 and Cw FatB2 when expressed in

Arabidopsis were completely unexpected. TE activity is a key determinant of fatty acid
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chain length in California bay (Voelker et al., 1992), C. hookeriana (Dehesh et al.,

1996b) and in C. palustris (Dehesh et al., 1996a). We hypothesized that the seeds of C.

wrightii accumulate 30% 10:0 and 54% 12:0 through the action of medium-chain specific

TEs. The broad substrate specificities for C. wrightii TEs we observed did not confirm

this assumption.

We cannot explain the lack of in vitro activity of the histidine-tagged clones.

Measureable activities have been reported from other Cuphea TEs cloned with an N-

terminal histidine tag (Dehesh et al., 1996a). However, in vitro activity levels of a C.

palustris TE are 900 fold less than those measured in California Bay (Yuan et al., 1995).

Therefore, it is possible that the activities of the C. wrightii TE recombinant proteins

were below the level of detection. Nonetheless, in vitro measurements of both the range

and relative activity levels of FatB TE on acyl-ACP substrates have closely matched

transgenic phenotypes in every instance of which we are aware. This includes Uc FatB1

expressed in Arabidopsis (Voelker et al., 1992) and in canola (Voelker et al., 1996), Ch

FatB2 expressed in canola (Dehesh et al., 1996b) and Ch FatB1 expressed in canola

(Jones et al., 1995). In the case of Ch FatB2, small amounts of laurate accumulated in

transgenic canola although no 12:0-ACP activity was detected by in vitro assay (Dehesh

et al., 1996b). It therefore seems likely that the phenotypes reported in our study reflect

the specific activities of both Cw FatB1 and Cw FatB2.

We considered the possibility that the impact on the overall pathway kinetics of

Cw FatB1 12:0 activity and Cw FatB2 10:0 and 12:0 activity might explain the C.

wrightii phenotype. Specifically, we wondered if the activities of these enzymes on 10:0 -

and 12:0-ACP pools would sufficiently reduce the pools of 14:0- and 16:0-ACP as to
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make these substrates unavailable to the C. wrightii TEs. A somewhat similar model was

proposed by Davies (1993) to explain the discrepancy between in vitro measurements of

TE activity from California bay embryo extracts and the actual seed oil phenotype.

Computer simulation demonstrates that increasing the concentration of a 10:0 specific TE

sufficiently reduces the carbon flux through the pathway to redirect fatty acid

accumulation primarily to 10:0 even in the presence of constant concentration of a 12:0

specific TE.

The segregating T2 populations allowed us to consider the phenotypic effect of

doubling 12:0 activity (Cw FatB1) or 10:0 and 12:0 activities (Cw FatB2) by comparing

hemizygous and homozygous phenotypes (Figure 2.3). The Davies model (Davies, 1993)

varied the concentration of one monospecific enzyme while holding the concentration of

a different monospecific enzyme constant. Because the C. wrightii TEs have broad

specificities, the concentration of the enzymatic activities for each substrate was

presumably doubled in the homozygote as compared to the hemizygote. Both 12:0 and

14:0 increased in the Cw FatB1 homozygotes relative to the hemizygotes. Therefore the

increased diversion at 12:0-ACP did not reduce the 14:0-ACP pool sufficiently to make it

unavailable to Cw FatBl. Cw FatB2 was dominant for 10:0 and 12:0 production;

doubling the gene dosage did not increase the accumulation of either fatty acid in the

homozygotes. Neither of these studies indicated that the C. wrightii phenotype could be

directly derived by increasing the concentrations of Cw FatB1 or Cw FatB2.

When Cw FatB1 and Cw FatB2 were combined, some F2 progeny of the mixed

hemizgous class exhibited 12:0 accumulations above either parent together with a

decrease in 14:0 (Figure 2.4). The 12:0 increase appears to be due to the addition of Cw
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FatB1 alleles because Cw FatB2 was dominant for a 12:0 phenotype of 11 mol%. The

negative correlation between 12:0 and 14:0 accumulation in the mixed class progeny

implies that, as suggested in Davies' model (Davies, 1993), increased hydrolysis of

shorter acyl-ACPs may reduce longer acyl-ACP pools sufficiently to make them less

available for TE hydrolysis. To further test this model in our system would require

adding a third FatB locus.

In transgenic canola expressing the 12:0 bay TE, 12:0 and 14:0 accumulations

remain positively correlated even as 12:0 production increases due to increased gene

dosage (Voelker et al., 1996). This suggests that the 14:0-ACP pool is not sufficiently

reduced by 12:0 activity to impact 14:0 production. The substantial levels of 14:0

(-15%) and 16:0 (-18%) we found in the high 12:0 F2 progeny of the Cw FatBlICw

FatB2 cross does not strongly support the hypothesis that even higher levels of Cw FatB1

and Cw FatB2 could yield the C. wrightii phenotype.

We propose two alternative interpretations of these results. First, there may be

uncharacterized FatB genes in C. wrightii with 10:0- and 12:0-ACP specific activity. In

Cuphea, four FatB genes have been identified in C. hookeriana (Voelker 1996), C.

lanceolata (Martini et al., 1995, Slabaugh et al., in press) and C. viscossisima (Slabaugh

et al., in press). Based on chromosome number and pollen morphology, C. wrightii is

hypothesized to be an allotetraploid (Graham, 1988), suggesting the possibility of eight

FatB genes in this species.

There are two objections to this interpretation. First, the 16:0 TEs from both

Arabidopsis and C. hookeriana are expressed in all tissues. Expression of both Cw FatB1

and Cw FatB2 was seed specific, implying a role in seed oil deposition as opposed to
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housekeeping. Second, within the four clades of Cuphea FatB genes (Voelker, 1996),

Cw FatB2 appears orthologous to the 8:0- and 10:0-ACP specific TEs from C.

hookeriana and C. palustris, (Dehesh et al., 1996a, Dehesh et al., 1996b) which are

implicated in chain length regulation of storage lipids. Cw FatB1 appears orthologous to

a 14:0-ACP specific TE from C. palustris, which also appears to determine storage lipid

phenotype. All gene members of both clades are seed specific (Dehesh et al., 1996a,

Dehesh et al., 1996b, Slabaugh et al, in press). The conservation of function and pattern

of expression in these clades further suggests that Cw FatB1 and Cw FatB2 participate in

chain length regulation in C. wrightii. If function and patterns of expression have been

conserved in the Glade of the ubiquitously expressed 16:0-ACP Ch FatB1, it is probable

that an uncharacterized 16:0-ACP TE occurs in C. wrightii as well.

A second interpretation is that monospecific TEs do not occur in C. wrightii. This

implies that chain length is determined by a combination of factors including possible

interactions with components of fatty acid synthase. Two pieces of evidence support this

model. First, Dormann et al. (1993) partially purified a medium-chain TE from C.

wrightii seeds. Approximately equal activity was demonstrated at 12:0-, 14:0- and 16:0-

ACP and slightly less 10:0-ACP activity. In addition to the lack of 10:0/12:0-ACP

preference expected in this species, the in vitro data mimics the fatty acid phenotype of

the transgenic Arabidopsis we reported. Second, cerulenin inhibition of fatty acid

synthesis in intact plastids of C. wrightii (Heise and Fuhrmann, 1994) causes an increase

in caprate accumulation. The only known cerulenin insensitive KAS enzyme is KASIII,

catalyst of the initial condensation reaction. However, addition of cerulenin to the system

decreases total fatty acid synthesis by only 10 to 20%, while greatly decreasing elongation
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of 10:0-ACP. These results suggest the possibility of an uncharacterized cerulenin-

insensitive KAS capable of medium-chain synthesis. It is interesting to speculate that

increased pools of medium-chain acyl-ACPs produced by this type of enzyme might lead

to the C. wrightii phenotype when coupled with the medium-chain activity of Cw FatB1

and Cw FatB2.

This is the first report of a correlation between seed development and in vivo

degradation of FatB TEs (Figure 2.2). Similar size classes were reported when antisera to

Uc FatB1, the 34 -kD TE protein purified from California bay (Davies et al., 1991),

reacted with a 40-Id) product in canola transformed with Uc FatB1 (Jones et al., 1995).

It was suggested that loss of an N-terminal hydrophobic domain occurred during

purification of the 34 -kD form (Jones et al., 1995). Although unnecessary for activity,

this domain (residues 78 99 in Cw FatB1) is highly conserved in all FatB TEs and may

serve to anchor the FatB genes to a membrane or other fatty acid synthase enzymes (Jones

et al., 1995). The physiological significance of the Cw FatB1 and Cw FatB2 degradation

is unknown. If loss of the N-terminal domain in bay is related to the proteolysis of C.

wrightii TEs, one possibility is that removal of this domain terminates association of FatB

with an as yet uncharacterized site in vivo. The expression patterns of the 41-1cD proteins

in developing seeds of C. wrightii (Figure 2.2) parallel the expression of acetyl-CoA

carboxylase in the same species (Deerberg et al., 1990), suggesting that this is the

physiologically relevant form.

Isolation of medium-chain specific TEs from three Cuphea species (Dehesh et al.,

1996a, Dehesh et al., 1996b, Slabaugh et al., in press) suggest that FatB duplication and

divergence may be primarily responsible for the diversity of fatty acid phenotypes in this
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genus. However, the C. wrightii FatB TEs we isolated have broad medium-chain

specificities that suggest a more complex mechanism in this plant. The patterns of

expression in C. wrightii as well as high levels of activity and broad specificities in

transgenic Arabidopsis lead us to conclude that Cw FatB1 and Cw FatB2 may be

necessary but not sufficient determinants of the C. wrightii phenotype.
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CUPHEA 13-KETOACYL-ACP SYNTHASE SHIFTS THE SYNTHESIS OF
FATTY ACIDS TOWARDS SHORTER CHAINS IN ARABIDOPSIS

SEEDS EXPRESSING CUPHEA FATB THIOESTERASES

Jeffrey M. Leonard, Steven J. Knapp, Mary B. Slabaugh
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ABSTRACT

Acyl-acyl carrier protein thioesterases (TE) with specificities on medium-chain

substrates (C8 to C14) are requisite enzymes in plants that produce 8:0, 10:0, 12:0, and

14:0 seed oils, but they may not be the sole enzymatic determinants of chain length. We

investigated the contribution to chain length regulation of ari-ketoacyl-ACP synthase, Cw

Kas21, isolated from Cuphea wrightii, a species that accumulates 30% 10:0 and 54%

12:0 in seed oils. Expression of Kas21 in Arabidopsis led to a 26% reduction in 16:0 in

homozygous seeds, consistent with expected KAS II activity on 14:0- and 16:0-ACP. In

the presence of the KAS I inhibitor cerulenin, however, transgenic seed extracts extended

6:0- and 8:0-ACP in vitro, whereas this activity was greatly reduced in wildtype seed

extracts. This medium-chain activity was tested by combining Kas21 with the C. wrightii

medium-chain specific thioesterases, Cw FatB1 or Cw FatB2, in crosses of transformed

plants. Fatty acid synthesis shifted towards shorter chains in progeny expressing both

classes of enzymes. Kas21/FatB1 homozygotes produced 16.3 mol% more 12:0 than the

FatB1 parent but 7.5 mol% less 14:0, and 11.9 mol% less 16:0. F2 progeny expressing

Kas21 and FatB2 produced 4.8 mol% more 10:0, 7.2 mol% more 12:0, 4.3 mol% less

14:0, and 8.2 mol% less 16:0 than progeny expressing FatB2 alone. We hypothesize that

the shift towards production of shorter chains resulted from increased pools of medium-

chain acyl-ACPs resulting from Kas21 activity. The combined activities of KAS21 and

FatB thioesterases appear to determine the C. wrightii phenotype
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INTRODUCTION

The potential industrial applications of uncommon seed oils has resulted in rapid

advances in plant lipid metabolism research. The most visible accomplishment has been

the isolation (Davies et al., 1991) and expression of the California bay 12:0-ACP

thioesterase (TE) in rapeseed (Voelker et al., 1992) resulting in the production of laurate

and the development of the first genetically engineered oil crop. The ability of a single

enzyme to divert carbon from the common C16 and C18 fatty acids to medium chain fatty

acids (C8 to C14) has spurred efforts to isolate similar enzymes from other plant species

with unusual fatty acid phenotypes. TEs with the potential to confer different medium-

chain phenotypes have now been isolated from a number of species, especially from the

genus Cuphea (reviewed by Voelker, 1996).

We are investigating chain length regulation in the herbaceous annual Cuphea

wrightii, a species that accumulates primarily caprate (30%) and laurate (54%) in seed

oils (Graham, 1981). Two FatB TEs isolated from C. wrightii, Cw FatB1 and Cw FatB2

have unexpected, broad specificities (Leonard et al., 1997). Both produce 12:0, 14:0, and

16:0 in transformed Arabidopsis, while only one, Cw FatB2, produces 10:0 as well.

Although the embryo-specific expression patterns of these TEs suggest that they function

in seed oil metabolism, there is a wide discrepancy between the fatty acid phenotypes of

the transgenic plants and that of C. wrightii.

We speculated that the FatB TEs are necessary determinants of fatty acid

phenotype but that other contributory enzymatic activities might exist in C. wrightii.

Likely candidates for chain-length regulation activities are 13-ketoacyl-acyl-ACP
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synthases (KAS), the condensing enzymes responsible for the cyclic two carbon

elongations. Of three known classes of plant KAS enzymes, only KAS I elongates

substrates from 4:0-ACP to 14:0-ACP (Shimikata and Stumpf, 1983); however, even

when KAS I is inhibited by cerulenin, intact C. wrightii plastids still produce 10:0

(Fuhrmann and Heise, 1993). This suggests the presence of a medium-chain specific

condensing enzyme in this species.

In a companion paper (Slabaugh et al., 1997), we report that C. wrightii embryo

extracts are capable of synthesizing 6:0-, 8:0-, and 10:0-ACP in the presence of 10 IIM

cerulenin. A KAS II type condensing enzyme is implicated because the activity is lost at

higher concentrations of cerulenin. We isolated an embryo-derived cDNA encoding a

KAS H homologue, Cw KAS21. Polyclonal antibodies raised to a recombinant Cw

KAS21 protein detect a 46 kDa protein band in six medium-chain producing Cuphea

species but not in a Cuphea species lacking medium-chain fatty acids (MCFAs).

Although circumstantial evidence suggests that a KAS II might contribute to the C.

wrightii phenotype, we were unable to directly assay the activity of recombinant Cw

KAS21.

We reasoned that a condensing enzyme with the ability to extend medium-chain

acyl-ACPs might complement the broadly specific C. wrightii FatB TEs to produce the

high levels of 10:0 and 12:0 found in the seed oils. In this study, we report the results of

two approaches we used to investigate the function of Cw KAS21 in seed lipid

metabolism. First, by expressing Cw Kas21 in transgenic Arabidopsis, we were able to

assay activity in vitro as well as directly assess the phenotypic perturbation. Second, we

tested the possibility of interaction with the C. wrightii TEs by combining the genes in
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pairwise crosses of transgenic Arabidopsis. The results clearly suggest that both types of

enzymes are involved in regulation of acyl chain length in C. wrightii.

MATERIALS AND METHODS

Plant transformation and analysis of Cw Kas21 transformants

Using a combination of PCR and restriction digests, the complete coding

sequence of Cw Kas21, including 13 5' untranslated nucleotides, was placed under the

control of the seed-specific napin promoter (Kridl et al., 1991) in the vector pCGN3223.

A Kpnl fragment containing the chimeric gene was then cloned into the binary plant

transformation vector pCGN1557 (McBride and Summerfelt, 1990). The nptll gene

carried on this vector allowed kanamycin selection of transformed plants. The completed

binary vector was introduced into Agrobacterium tumefaciens strain LBA 4404.

Arabidopsis (WS) plants were transformed using a modification (Bent et al., 1994) of the

vacuum infiltration method developed by Bechtold et al. (1993). Primary transformants

(3 - 5000 seeds per plate) were detected on media containing 50 mg/1 kanamycin. Eight

primary transformants were isolated and grown to maturity. The segregating T2 progeny

were assayed for expression of nptll on media containing 20 mg/1 kanamycin (100 -200

seeds per plate).
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In vitro analysis of Arabidopsis extracts

Siliques from wildtype Arabidopsis plants and from transformed plants

homozygous for Cw Kas21 were harvested and stored at -80° C. Preparation of extracts

and extension assays were performed as described by Slabaugh et al. (1997). Briefly,

whole siliques were homogenized in buffer, and proteins in the soluble fraction were

precipitated with 65% ammonium sulfate prior to use in extension assays. Reactions

were performed in the presence of 1 mm NADH, 2 mm NADPH, 50 p.M malonyl-CoA,

10 iiM [1-14C] acetyl-CoA (50 mCi/mmol), and 50 pLM recombinant spinach ACP1.

Crude seed protein was preincubated in 10 j.tM cerulenin (23° C for 10 min.) to inhibit

KAS I in specified reactions. Reactions contained 120 jig protein/120 p1 reaction mix.

Aliquots of 36 pi were removed at 15, 30, and 45 minutes and stopped by TCA

precipitation. Acyl-ACP products were analyzed on a 2.25M urea/18% polyacrylamide

gel. Spinach acyl-ACP1 standards detected by anti-ACP serum were included to

determine the size of the reaction products. Radioactivity in the acyl-ACP bands was

detected by phosporimaging and measured using ImageQuaNT software (Molecular

Dynamics, Sunnyvale, CA).

Construction of hybrid populations

Arabidopsis plants homozygous for Cw FatB1 or Cw FatB2 are described by

Leonard et al. (1997). Cw FatB1 and Cw FatB2 homozygotes were used as the female

plants in the crosses with a Cw Kas21 homozygote. F2 seed was collected from naturally

selfed F1 plants in the greenhouse.
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RESULTS

Cw Kas21 reduces 16:0 in transgenic Arabidopsis

The isolation and characterization of Cw Kas21 is described elsewhere (Slabaugh

et al., 1997). To test the activity of Cw KAS21, we expressed the Cuphea enzyme in

transgenic plants. The complete coding sequence of Cw Kas21 was placed under the

control of the seed-specific napin promoter (Kridl et al., 1991) in the binary vector

pCGN1557 (McBride and Summerfelt, 1990), which encodes kanamycin resistance. We

transformed Arabidopsis with this construct and identified plants with single transgenic

loci by assaying for kanamycin resistance in samples of T2 progeny from eight primary

transformants. The observed segregation ratio of resistance in the T2 progeny of primary

transformant K1 (120 resistant: 27 sensitive) was not significantly different than the

expected ratio (3:1) for a single dominant gene (x2 = 0.003, P = 0.956). K1 T2 progeny

fell into two non-overlapping 16:0 phenotypic classes. Progeny from the largest class (n

= 31) had 6.4 mol% 16:0 and were presumed to carry one or two copies of the transgene,

while progeny from the smaller class (n = 15) had wildtype 16:0 percentages (8.6 mol%)

and were presumed to carry no transgenes. The segregation ratio of the 16:0 phenotype

(31 Kas21/ : 15 -I-) (minus sign denotes lack of transgene) was not significantly different

than expected (3:1) for a single dominant gene (x2 = 1.420, P = 0.233). Two other

primary transformants produced T2 progeny segregating for a single transgenic locus.

Twelve T2 seeds from each of these two transformants were assayed, and the seeds from

both plants formed two 16:0 phenotypic classes identical to the classes identified in line
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K1. This was circumstantial evidence that the reduced 16:0 phenotype was the result of

Cw Kas21 expression and not an artifact of transformation. We produced a T3 line

homozygous for Cw Kas21. The T3 progeny were 100% kanamycin resistant and

produced a mean of 6.2 mol% 16:0 (Table 3.1). This confirmed the putative genotypic

classification of the segregating T2 progeny.

Table 3.1. Fatty acid profiles of seeds from homozygous plants.
The fatty acid profiles of homozygous plants were determined by GC. Homozygosity
was determined by lack of segregation of kanamycin resistance in the singly transgenic
plants and by lack of segregation of fatty acid phenotype in the doubly transgenic line.
a Data are the means of five replicates of -100 seed samples.
b Leonard et al. 1997

Data are the means of 41 single seeds from BlKAS-13

Fatty Acid Species (mol%)

10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1
wildtypea 0 0 0 8.2 3.8 12.9 29.0 18.5 2.6 20.8
FatB lab 0 7.1 24.4 22.8 3.3 4.5 14.1 12.9 3.0 6.0
Kas2la 0 0 0 6.2 4.3 16.6 29.2 16.7 2.7 20.5
FatB1 Kas21c 0 23.4 16.9 10.9 2.9 6.1 15.8 12.1 2.4 7.7

The reduced production of 16:0 in transgenic plants gave some clues to Cw

KAS21 activity. We reasoned that Cw Kas21 might encode a protein with 16:0-ACP

extending activity, thereby reducing the steady state pool of 16:0-ACP available for

hydrolysis by the endogenous A rabidopsis TE (DOrmann et al., 1995). It was also

possible that competition for malonyl-ACP between a transgenic medium-chain-specific

KAS and endogenous KAS I might reduce the 14:0-ACP extending activity of the
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Arabidopsis KAS. This scenario could also reduce the 16:0-ACP pool resulting in the

same phenotype.

Cw Kas21 promotes extension of 6:0-ACP and 8:0-ACP in extracts of developing
Arabidopsis siliques

The effect of Cw KAS21 on fatty acid synthesis in developing Arabidopsis seeds

was investigated using a biochemical assay in which silique extracts synthesized fatty

acid chains from [1-14C] acetyl-CoA and malonyl-ACP generated in situ from malonyl-

CoA and ACP. By supplying exogenous spinach ACP1 to the system, the reaction

products could be displayed on urea-containing acrylamide gels as a discrete set of acyl-

ACP bands (Post-Beittenmiller et al., 1991) and identified by comparison to authentic

standards.

Siliques were harvested 7-12 days after flowering from both wildtype and Cw

Kas21-transformed plants grown at the same time under identical conditions. Preliminary

experiments, in which silique extracts were analyzed by immunoblotting, established that

expression of the napin promoter-Kas21 construct was detectable six days after flowering

and accumulation was maximal for approximately a one-week period (data not shown).

Assays were performed with and without inhibition of KAS I activity by preincubation of

the extract with 10 µM cerulenin.

When we compared the relative distribution of chain lengths produced over a 45-

minute time course, the reactions containing untreated transgenic plant protein displayed

more rapid extension kinetics relative to the untreated wildtype extracts. At 15 minutes,

17% of the acid-precipitable radioactivity in the wildtype reaction and 26% in the



transgenic reaction was in the 10:0- and 12:0-ACP bands, a 1.5 fold difference. By 30

minutes, the bulk of the radioactivity in both reactions (59% in wildtype and 71% in

transgenic) was in 10:0- and longer acyl-ACPs, a 1.3-fold difference. There were

negligible differences in product distribution by 45 minutes (Figure 3.1).

Cerulenin 0 ILIM 10 uM
i it f

Minutes 15 45 15 45
I I 11 I I IWT T WT T WT T WT T

4:0-ACP
6:0-ACP

8:0-ACP

10:0-ACP
12:0+-ACP 1"""'"''911PFPNilw
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Figure 3.1. Elongation activities of wildtype and transgenic Arabidopsis silique extracts.
Extracts from siliques of wildtype (WT) and Cw Kas21 transformed (T) plants were
assayed for the ability to synthesize acyl-ACPs in vitro. It-labeled products were
separated on urea-containing acrylamide gels. Bands were identified by comparison to
acyl-ACP standards. Extracts were pre-treated with 10 [tM cerulenin where indicated.

Preincubation of silique extracts with 10 [IM cerulenin, however, revealed a

pronounced difference in resistance to the inhibitor. The transgenic extract produced

several times the amount of 8:0-ACP relative to the wildtype extract (4.5-fold greater at

15 minutes and 3.6-fold greater at 45 minutes). The transgenic extract also extended

acyl-chains to 10:0-ACP, a capability barely detected in wildtype extract. These results

suggested that Cw KAS21 is a condensing enzyme with preference for shorter chains and
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resistance to cerulenin concentrations reported to completely inactivate KAS I (Shimikata

and Stumpf, 1982).

Kas21 triples 12:0 production in transgenic progeny expressing Cw FatB1

The possibility of an interaction between Cw KAS21 and Cw FatB1 was tested by

producing an Arabidopsis F2 population segregating for both transgenes. We identified

four non-overlapping phenotypic classes among 105 F2 progeny by simultaneously

0
Aq,

10 15
16:0 mol%

20 25

Figure 3.2 F2 progeny segregating for Cw FatBI and Cw Kas21.
The fatty acid profiles of 105 single seeds from a hybrid F1 plant were determined by
GC. Four classes were identified by simultaneous comparison of 12:0 and 16:0
phenotypes. Genotypes were inferred by similarity to parental or wildtype phenotypes.
Numbers in parentheses indicates the putative number of transgene loci in each group.
Progeny of the largest class (filled diamonds) were presumed to be expressing both Cw
Kas21 and Cw FatB1
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comparing 12:0 and 16:0 percentages (Figure 3.2). The fatty acid phenotypes of progeny

of three of the classes were similar to the wildtype (n = 8), the Cw Kas21 parent (n = 18),

or the Cw FatB1 parent (n = 11). Eight progeny had wildtype 16:0 percentages and no

MCFAs, and were presumed to carry no transgenes (-/-, -/-). Eighteen progeny produced

less 16:0 than the wildtype and no MCFAs. Because Cw FatB1 is dominant for progeny

production of MCFAs (Leonard et al., 1997), and Cw KAS21 decreases 16:0, these were

presumed hemizygous or homozygous for Cw Kas21 and lacking Cw Fat Bl. Eleven

progeny had 12:0 and 16:0 percentages similar to the Cw FatB1 parent and were

presumed hemizygous or homozygous for Cw FatB1 and lacking Cw Kas21.

50

:'40
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.7)

E 30
P0
al, 20>

o

D 12:0
O 14:0

16:0

B1 (0) B1 (0) B1 (1 or 2) B1 (1 or 2)
Kas (0) Kas (1 or 2) Kas (0) Kas (1 or 2)

Figure 3.3 Major effects of Cw FatB1 and Cw Kas21 on saturated fatty acid production.
Data represent the mean accumulations of 12:0, 14:0, and 16:0 in four phenotypic groups
identified in an F2 population segregating for both transgenes. Numbers in parentheses
refer to the putative number of loci of each gene in each group.
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The fatty acid phenotypes of progeny in the largest class (n = 68) were strikingly

different from those of the other three classes (Figure 3.3). These progeny had more than

double the 12:0 of the Cw FatB1 parent. (16.8 versus 7.2 mol%) and were presumed to be

hemizygous or homozygous for both transgenes (FatB1 /_, Kas211_). While 12:0

increased in these progeny, 14:0 decreased by one quarter (24.4 to 18.4 mol%) and 16:0

decreased by one half (22.8 to 10.6 mol%) relative to the Cw FatB1 parent.

The observed segregation ratio for FatB1 (79 FatB1L: 26 -/-) was not

significantly different (x2 = 0.003, P = 0.956), and the observed segregation ratio for the

Kas21 gene (86 Kas211_: 19 -/-) was not significantly different (x2 = 2.669, P = 0.102)

than the expected segregation ratio (3:1) for a single dominant gene. The two transgenes

segregated independently (x2 = 2.972, P = 0.085).

Because we could not distinguish between hemizygotes and homozygotes for

either transgene, we used progeny tests to screen for and develop an F3 line (B1KAS-13)

homozygous for both transgenes. The fatty acid phenotypes of 41 progeny within this

line were similar; thus, B1KAS-13 did not segregate and was presumed to be fixed for

both transgenes. This line had three-fold more 12:0, one third less 14:0, and one half less

16:0 than the Cw FatB1 parent (Table 3.1). The 12:0 content of BlKAS-13 was similar

to the 12:0 content of progeny from the upper end of the F2 phenotypic distribution

(Figure 3.2). This suggests there was a gene dosage response to one or both of the

transgenes.

The production of medium chains in the Cw FatB1 homozygote is accompanied

by a decrease of longer unsaturated chains, 18:1, 18:2, 18:3, and 20:1 (Leonard et al.,

1997). The unsaturated long-chain fatty acid contents of BlKAS-13 (41.7 mol%) and the
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Cw FatB1 parent (37.5 mol%) were not substantially different. The increase in 12:0

production in the FatB1 1Kas21 seeds came at the expense of 14:0 and 16:0.

Kas21 doubles 10:0 production in transgenic progeny expressing FatB2

The possibility of an interaction between Cw FatB2, which has 10:0 activity

(Leonard et al., 1997), and Cw KAS21 was tested by developing an Arabidopsis F2

population segregating for both transgenes. As before, four classes were identified

among 97 F2 progeny. The phenotypes of progeny from three of the classes were similar

to the wildtype (n = 9), the Cw Kas21 parent (n = 25), or the Cw FatB2 parent (n = 15).

The progeny of the largest class (n = 48) produced 2-fold more 10:0 and 1.4-fold more

12:0 than the Cw FatB2 parental class, whereas 14:0 decreased by one quarter and 16:0

decreased by almost one half (Figure 3.4). Because this phenotype was markedly

different from either parental phenotype, we presumed that both transgenes were being

expressed in this class.

Progeny were assigned to phenotypic classes by simultaneously comparing 12:0

and 16:0 content. Nine progeny had wildtype 16:0 percentages and no MCFAs and were

presumed to be carrying no transgenes (-/-, -/-). Twenty five progeny had less 16:0 than

the wildtype (6.2 versus 8.4 mol%) and no MCFAs. These progeny were presumed to

lack Cw FatB2 and were hemizygous or homozygous for Cw Kas21 (-I-, Kas211_).

Fifteen progeny had MCFA percentages similar to the Cw FatB2 parent and were

presumed to be hemizygous or homozygous for Cw FatB2 and lacking the Cw KAS21

transgene (FatB2 /_, -1-). The 48 progeny of the largest class had the novel phenotype and
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were presumed to be hemizygous or homozygous for both transgenes (FatB2 /_, Kas211_).

The 18:1, 18:2 ,18:3, and 20:1 percentages were less than the wildtype, but similar to the

Cw FatB2 parental class (Table 3.2).
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Figure 3.4 Major effects of Cw FatB2 and Cw Kas21 on fatty acid production.
Data represent the mean accumulations of 10:0, 12:0, 14:0, and 16:0 in four phenotypic
groups identified in an F2 population segregating for both transgenes. Numbers in
parentheses refer to the putative number of loci of each gene in each group.

Among F2 progeny in the FatB2 /_, Kas211_ class, there were a range of 10:0 (6.3

to 11.7 mol%) and 12:0 (17.7 to 27.8 mol%) phenotypes; however, we could not

distinguish between hemizygotes and homozygotes for either transgene and were unable

to isolate a doubly homozygous line. Because of the gene dosage effects apparent in the

FatB1/Kas21 cross, it is probable that progeny with phenotypes at the upper ends of the

10:0 and 12:0 ranges were FatB21Kas21 homozygotes

The segregation of FatB2 (63 FatB2 /_: 34 -/-) was distorted (x2 = 5.226, P =

0.022). We have observed a lack of seedling vigor in plants carrying this transgene that
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may explain this segregation distortion, but have not determined if this is an effect of the

transgene or a position effect resulting from the transformation. The observed

segregation ratio for Kas21 (73 Kas211_: 24 -/-) was not significantly different than

expected for a single dominant gene (x2 = 0.003, P = 0.956), and the two transgenes

segregated independently (x2 = 0.092, P = 0.762).

Table 3.2. F2 progeny of Cw FatB2 x Cw Kas21 cross.
The fatty acid profiles of 97 F2 progeny of a cross between a Cw FatB1 homozygous
plant and a Cw Kas21 homozygous plant were determined by GC. Four phenotypic
groups identified by 12:0 and 16:0 content were assigned putative genotypes based on
comparison to both parental and wildtype phenotypes. The numbers of transgenic loci are
those presumed to be present in each class.

transgenic loci Fatty Acid Species (mol%)

FatB2 Kas21 10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1
0 0 0.0 0.0 0.0 8.4 3.8 13.0 29.2 20.1 2.4 19.3
0 1 or 2 0.0 0.0 0.0 6.2 4.0 15.1 30.9 18.6 2.5 19.1

1 or 2 0 4.4 16.4 15.3 18.1 3.9 4.9 13.9 13.6 2.8 5.7
1 or 2 1 or 2 9.2 23.6 11.0 9.9 3.9 7.2 14.2 12.0 2.5 6.2

DISCUSSION

The marked increase in 12:0 among FatBlIKas21 transformants and 10:0 and

12:0 in the FatB2/Kas21 transformants demonstrated that Cw KAS21 and FatB

thioesterases regulate the distribution of chain lengths in C. wrightii, and that they can be

used in concert to regulate the fatty acid profiles of oilseeds. The simplest explanation

we envision for the synergistic effect between the combined enzymes is that the observed

phenotypes directly reflected the size of the substrate pools available to the FatB
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thioesterases. This kinetic model assumes that changes in the relative concentrations of

acyl-ACPs were a direct effect of the expression and activity of Cw KAS21.

The in vitro extension assay (Figure 3.1) demonstrated the ability of Cw KAS21

to elongate 6:0- and 8:0-ACP in the presence of cerulenin with a subsequent

accumulation of 8:0- and 10:0-ACP. We hypothesize that these measurements reflect the

situation in planta, and that Cw KAS21 activity resulted in enlarged pools of 10:0-ACP.

Based upon work reported by Post-Beittenmiller et al. (1991), we estimate the

concentration of 10:0-ACP in spinach seeds to be less than 1.0 gM, well below the 5.1

jiM Km of purified spinach KAS I (Shimikata and Stumpf, 1982). If substrate

concentrations and enzyme kinetics in Arabidopsis and spinach are similar, the activity of

Arabidopsis KAS I on increased concentrations of 10:0-ACP in the transgenic plants may

have resulted in larger pools of 12:0-ACP available for hydrolysis by Cw FatB

thioesterases.

These results support the experiments of Fuhrmann and Heise (1993) wherein

intact C. wrightii plastids inhibited by cerulenin increased 10:0 at the expense of 12:0 and

longer chains. The cerulenin induced depression of 12:0 suggests that a cerulenin-

sensitive KAS I elongates 10:0-ACP substrate in C. wrightii, as we presume occurs in the

Arabidopsis transformants. Fuhrmann and Heise (1993) speculate that the acyl-ACP

equilibrium in C. wrightii may be primarily controlled by a cerulenin insensitive

condensing enzyme. The similarity between their findings and our extension assay results

with Cw Kas21 transformants leads us to suspect that Cw KAS21 may be the responsible

enzyme.
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In a companion paper (Slabaugh et al., 1997), we demonstrate that C. wrightii

embryo extracts inhibited by 101.1M cerulenin elongate acyl-ACPs up to 10:0-ACP. The

in vitro extension assays reported here confirmed our suspicion that Cw Kas21 encodes

this activity. Antibodies to Cw KAS21 detect a 46 kDa protein band in six Cuphea

species that produce medium-chain seed oils, although the 46 kDa protein is barely

visible in extract from C. denticulata, a species lacking MCFAs (Slabaugh et al., 1997).

The correlation between the presence of this protein and the medium-chain phenotypes

led us to wonder if the 46 kDa band represents homologues of Cw KAS21, whose

activities regulate fatty acid chain length. The in vitro and in planta tests of Cw KAS21

function strongly support this hypothesis.

Because both FatB enzymes are very active on 14:0- and 16:0-ACP substrates

(Leonard et al., 1997), it is puzzling that the accumulation of these acyl groups declined

so dramatically in the FatB /Kas21 seeds (Tables 3.1 and 3.2). Extending the kinetic

model implies that the decreased accumulation was the result of a reduction in the 14:0

and 16:0-ACP substrate pools available for TE hydrolysis. To account for this decline,

we can only speculate that overexpression of a 6:0-/8:0-ACP KAS decreased the pool of

malonyl-ACP available to the endogenous KAS I responsible for 10:0-/12:0-/14:0-ACP

elongation. This hypothesis may also explain the phenotype of the Kas21 homozygote as

follows. Carbon flux to 16:0-ACP decreased as the malonyl-ACP pools available to the

endogenous Arabidopsis KAS I were reduced by overexpression of Cw Kas21. The

smaller 16:0-ACP pool available for hydrolysis by the Arabidopsis TE resulted in the

reduction in 16:0 in the Cw Kas21 transformants.
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It is also possible that the substrate specificity range of Cw KAS21 is not a

continuum of acyl-ACP chain lengths but rather bimodal. A KAS II cloned from castor

(Genez et al., 1991) and expressed in Arabidopsis causes a similar reduction of 16:0

accumulation in the transgenic progeny attributed to 16:0-ACP elongation activity of the

cloned enzyme (reviewed by Ohlrogge, 1994). The deduced amino acid sequence of the

mature Cw KAS21 protein is 75% identical (Slabaugh et al., 1997) to the mature castor

KAS II. Therefore, it is possible that Cw KAS21 might be active on 16:0-ACP as well as

6:0- and 8:0-ACP. This type of activity pattern could explain both the 16:0 decrease in

the Cw Kas21 homozygotes and the phenotype of the transgenic seeds expressing both

Cw Kas21 and a Cuphea FatB.

The structure of plant KAS II enzymes is uncertain. E. coli KAS II is a

homodimer of a 45 kDa polypeptide (Garwin et al., 1980). A report that castor KAS II

exists as a heterodimer of 46 kDa and 50 kDa polypeptides (Nelsen et al., 1994) raises the

interesting question of whether Cw KAS21 is heterodimeric or homodimeric in C.

wrightii. This also introduces the possibility that substrate specificity is an effect of the

type of dimer formed.

The activity profile of Cw KAS21 suggested by our experiments does not match

the 14:-/16:0-ACP substrate preference of the partially purified spinach KAS II

(Shimakata and Stumpf, 1982); however, because spinach KAS II clones have not yet

been isolated, the relationship between the spinach KAS II and Cw Kas21 is not clear.

The depression of 16:0 in Arabidopsis seeds expressing the castor KAS II is the only

functional assay of a KAS II clone of which we are aware. We can only speculate

whether the novel activity we observed in Cw Kas21 transformants will be found in other
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members of the KAS gene family. Cw Kas21 may have evolved from the same gene

lineage as the spinach KAS II and acquired new specificities. Alternatively, it may

represent a different class of KAS enzymes. Isolation of KAS II clones from other species

and testing of their substrate preferences will answer this question.

Besides a strictly kinetic explanation, we considered the intriguing possibility of

interactions between Cw KAS21 and FatB thioesterases. Some provocative experiments

recently reported by Roughan and Ohlrogge (1996) demonstrate that semi-permeabilized

spinach plastids incorporate acetate into lipids under conditions in which other

chloroplast functions are impaired. This is indirect evidence that the enzymes of fatty

acid synthesis in spinach are arranged into a membrane-associated complex capable of

channeling substrates. It may be possible that the Cuphea enzymes form an arrangement

not available with their Arabidopsis counterparts. Jones et al. (1995) speculated that a

conserved hydrophobic region of the FatB thioesterases might be involved in a protein

complex or membrane interaction. Because the substrates for both Cw KAS21 and the

FatB thioesterases are the same, it is not unlikely that they would be positioned closely if

such a multienzyme assembly existed.

This is the first demonstration of the positive effect of a condensing enzyme on

medium-chain production. The combined activities of Kas21 with both Cw FatB1 and

Cw FatB2 are significant determinants of the C. wrightii phenotype and may also be

exploited in the engineering of oilseeds to increase the range of medium-chain

phenotypes. We are presently testing some of the hypotheses we have put forth to clarify

the role of KAS II and the FatB thioesterases in regulation of seed oil deposition.
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Chapter 4

CONCLUSION

The initial objectives of this research were to isolate acyl-acyl carrier protein

(ACP) thioesterases (TE) from Cuphea wrightii and characterize their role in

determination of the C. wrightii phenotype. We isolated cDNAs encoding Cw FatB1 and

Cw FatB2. When expressed in Arabidopsis, Cw FatB1 had 12:0-ACP activity, Cw FatB2

had 10:0- and 12:0-ACP activity, while both had 14:0- and 16:0-ACP activity. These

broad specificities were inconsistent with the C. wrightii phenotype. Combining a C.

wrightii KAS clone, Cw Kas21, with the C. wrightii TEs caused a dramatic shift towards

accumulation of shorter chains, indicating that the joint activities of both enzyme classes

are determinants of the C. wrightii phenotype. In addition to enhancing our

understanding of fatty acid synthesis in plants, this demonstration of a synergistic effect

makes a significant contribution towards development of genetically engineered oil crops.

When we initiated this research, the California bay 12:0-ACP TE, Uc FatB1

(Voelker et al., 1992), was the only TE clone demonstrated to be medium-chain specific;

it was unknown if substrate specific TEs existed in other medium-chain plants or if other

phenotype conferring mechanisms existed. Experiments done by Davies (1993) with seed

extracts from three medium-chain species strongly suggested that substrate specific TEs

were widespread within the plant kingdom. This was confirmed by the isolation of

medium-chain specific TEs from C. palustris (Dehesh et al., 1996a) and C. hookeriana

(Dehesh et al., 1996b). Our isolation of Cw FatB TEs confirmed this mechanism in C.

wrightii. The compilation of Cuphea medium-chain TE sequences with differing
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substrate specificities may allow insights into mechanism of substrate recognition through

rational testing of the primary structure of TE proteins.

The substrate specificities of the Cuphea TEs, however, were not as restricted as

expected. For example, Ch FatB1 (Dehesh et al., 1996b) has 2-fold more activity on

10:0-ACP than 8:0-ACP although C. hookeriana produces 2-fold more 8:0 than 10:0.

The activities of the C. palustris TEs are similarly skewed in that Cp FatB1 hydrolyzes

8:0- and 10-ACP while Cp FatB2 hydrolyzes 14:0- and 16:0-ACP; C. palustris primarily

produces 8:0 and 14:0 (Dehesh et al., 1996a). The discrepancies between FatB TE

activities and Cuphea phenotypes suggest that homologues of Cw KAS21 exist in other

Cuphea species and perform functions similar to those in C. wrightii. This presumption

is also evidenced by a 46 kD protein recognized in six medium-chain producing Cuphea

species by polyclonal antibodies raised to recombinant Cw KAS21, but not in a Cuphea

species lacking medium-chain fatty acids (Slabaugh et al., in review).

Lack of congruence between the in vitro activities of seed extracts from elm,

coconut, and camphor and the distribution of fatty acids in seeds of those plants led

Davies (1993) to propose a model whereby the relative abundance of substrate specific

TEs might produce phenotypes not predicted by measured activity profiles. Expression of

transgenic TEs in Arabidopsis allowed us to address the effects of enzyme concentration

by comparing hemizygous and homozygous transgenic populations. We concluded in

Chapter 1 that the C. wrightii phenotype could not be recreated through increased gene

dosage, and therefore that the dynamics proposed in the Davies model are probably not

significant in Cuphea. The results presented in the Chapter 2 confirmed this

interpretation. Whether substrate specific KASs occur in medium-chain species of other
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genera and what role they play in phenotype determination are interesting questions

derived from this work.

Expressing C. wrightii cDNAs in Arabidopsis allowed us to circumvent the

insolubility of recombinant Cw KAS21 and the unexplained inactivity of recombinant Cw

FatB1 and FatB2. There are several problems, however, inherent in using transgenic

plants, including background activity of the Arabidopsis enzymes. We were only able to

measure incorporation of fatty acids into triglycerides and could not directly measure

enzymatic activity. This could be misleading if Arabidopsis assembly enzymes were

unable to incorporate significant amounts of smaller fatty acids, or if large amounts of

free medium-chain fatty acids were produced but rapidly turned over through the J3-

oxidation pathway. We were also unable to measure or control concentrations of any

substrates consumed during fatty acid synthesis as would have been possible in vitro.

On the other hand, creation of transgenic plants allowed us to combine activities

in a manner impossible to recreate in vitro and has given us tools for future experiments.

Homozygous lines developed from unique primary transformants will allow the

construction of F2 populations with 1, 2, 3, or 4 transgenes facilitating the study of dosage

effects. This is of particular interest in the case of Cw Kas21 as increased gene dosage

appeared to stimulate 12:0 production at the expense of 14:0 (data not shown). We can

also combine Cw FatB1, Cw FatB2, and Cw Kas21 in a single plant to characterize their

joint effects. As additional KAS clones become available, they can be transformed into

Arabidopsis to allow similar studies.
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INTRODUCTION

Acyl-acyl carrier protein (ACP) thioesterases (TE) are determinants of fatty acid

chain length during de novo fatty acid biosynthesis in plants. Two classes of plant TEs

have been identified; 18:1-ACP specific FatA TEs and saturated acyl-ACP specific FatB

TEs (Jones et al., 1995). FatB sequences are characterized by several large deletions

relative to the FatA subclass. The duplication of an ancestral Fat gene and subsequent

divergence of the two TE classes is believed to have occurred either prior to origination

of angiosperms or early in angiosperm radiation (Jones et al., 1995).

Twelve of 22 FatB genes isolated to date have been cloned from four species of

Cuphea. These include medium-chain (C8 to C14) specific TEs from C. palustris

(Dehesh et al., 1996a), C. hookeriana (Dehesh et al., 1996b), C. wrightii (Leonard et al.,

in review), and C. lanceolata (Toepfer et al., 1995), and a 16:0-ACP specific TE isolated

from C. hookeriana (Jones et al., 1995). A phylogenetic analysis of plant TEs revealed

four clades of FatB genes in two Cuphea species, C. lanceolata and C. hookeriana

(Voelker, 1996). In addition, we detected four genomic FatB sequences in C.

viscossisima (Slabaugh et al., in press) which are presumed to be orthologous to those

cloned from C. lanceolata. Divergence among members of this small gene family is one

obvious hypothesis to explain the fatty acid phenotypic diversity in Cuphea. Previously,

we isolated and characterized two FatB TEs from C. wrightii (Leonard et al., in review).

Because C. wrightii is presumed to be an allotetraploid (Graham, 1988), we hypothesized

that eight FatB TEs might be found in C. wrightii; one gene from each of two diploid
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progenitors in each of the four clades. The objective of this study was to isolate cDNAs

for these C. wrightii genes.

MATERIALS AND METHODS

An embryo-derived C. wrightii cDNA library was constructed as described

elsewhere (Leonard et al., in review). Approximately 180,000 plaques were plated and

blotted onto nylon membranes. The blots were probed with a 32P labelled EcoRI/HindIII

fragment of Cw FatB1 corresponding to the first 837 bp. After stripping, the blots were

reprobed with a 32P labelled EcoR//Xho/ fragment of Cw FatB2 corresponding to the first

1008 bp. Hybridizations were performed for 16 h at 50° C in 6X SSC, 5X Denhardt's

solution, 0.5% SDS, and 100 gg/m1 salmon sperm DNA. The final wash was performed

for 2 h at 55° C in 1X SSC/0.1% SDS. Positive plaques were isolated in a secondary

screen and cDNA clones were recovered as excised plasmids Clones were grouped by

restriction digests and partial sequences. Sequences were assembled and analyzed using

programs included in GCG (Genetics Computer Group, Madison, WI).

RESULTS AND DISCUSSION

In work presented in Chapter 2, we isolated three classes of TEs while probing

plaque lifts of a C. wrightii cDNA library. Because one probe had hybridized with all

three classes, we tested whether we might isolate more members of the gene family by

reprobing plaque lifts of the cDNA library with probes derived from the full length TEs.

Although we hoped to distinguish gene classes by hybridization strength, both probes
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(84% identity) hybridized with approximately equal intensity. Fluctuations in signal

strength appeared to be due to variation in plaque size more than target DNA similarity.

Six of 54 clones isolated were discarded because the inserts were too small (<500 bp) to

encode a TE, or because they were larger than 2500 bp, suggesting a chimera. Eight

partially sequenced clones did not encode TEs. Eight clones contained Cw FatB1

sequences, and seven others contained Cw FatB2 sequences. Four classes were

recognized in the remaining 25 clones and designated Cw FatB3 (3 clones), Cw FatB4 (2

clones), Cw FatB5 (15 clones) and Cw FatB6 (5 clones). Full length cDNAs were

recovered for Cw FatB3 and Cw FatB4, however the plasmids carrying Cw FatB5 and

Cw FatB6 were chimeric. A 645-bp fragment of unknown DNA lay downstream of the

approximate 3' Cw FatB5 cDNA end as deduced by comparison to Cw FatB1 and

because 13 by of the clone (beginning at by 1459) are identical in sequence to the EcoRI

linkers used during synthesis of the library. A 425 by fragment of unknown DNA lay

upstream of the true Cw FatB6 cDNA 5' start based on comparison to another clone from

the same class. The reading frames of the cDNAs and the corresponding deduced protein

sequences of the four new genes were determined based upon comparison to known TE

sequences (Table A.1).

A UPGMA clustering analysis based on similarities between the deduced amino

acid sequences of the Cw FatB sequences reported here and other sequences recovered

from GenBank is represented in the dendrogram in Figure A.1. The topology of the tree

is similar to the same portion of a tree derived by maximum parsimony (Voelker, 1996).

The four genes we recovered each represent one of four different clades defined

by Voelker (1996). The similarity of Cw FatB1 to Cw FatB5 (95% identical, 98%
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similar) and of Cw FatB2 to Cw FatB6 (90% identical, 94% similar) suggest that the pairs

represent the contribution of the diploid C. wrightii progenitors; therefore, the genes are

orthologous. The allotetraploid nature of C. wrightii was inferred by chromosome

number (Graham, 1988). The two pairs of orthologous sequences support that inference.

The failure to isolate genes orthologous to Cw FatB3 and Cw FatB4 may indicate that

Table A.1 cDNAs isolated from C. wrightii encoding FatB acyl-ACP thioesterases. The
amino acid sequences were predicted based upon comparison to known FatB
thioesterases.

cDNA (bp) 5' UT (bp) cds (bp) 3' UT (bp)
preprotein
(residues)

predicted
mass (kD)

Cw FatB3 1798 318 1239 241 413 45.8
Cw FatB4 1843 299 1248 296 416 46.1
Cw FatB5 1458 16 1227 215 409 45.5
Cw FatB6 1469 28 1251 190 417 46.2

duplication of the Cw FatB3 /Cw FatB4 ancestral gene occurred subsequent to the

hybridization event that formed C. wrightii. Alternatively, the orthologous sequences

may not be expressed in embryonic tissue and were not represented in our cDNA library.

Cw FatB1 and Cw FatB2 have broad substrate specificities that do not correlate

with the C. wrightii phenotype. The sequence similarities of Cw FatB5 and Cw FatB6 to

Cw FatB1 and Cw FatB2, respectively, and their significant representation in our screen

suggest that both may contribute to fatty acid chain length regulation.
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Figure A.1 Dendrogram representing the UPGMA clustering analysis of Cuphea FatB
genes. The deduced amino acid sequences of the Cuphea genes reported here were
compared with sequences of other Cuphea FatB genes, a 12:0-ACP specific U.
californica FatB1 (Voelker et al., 1992), and 16:0-ACP specific A. thaliana FatB1
(Dormann et al., 1995). The scale bar represents a 10% difference. Acyl-ACPs for
which activities have been shown are listed on the right.
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