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The advent of deep learning models leads to a substantial improvement in a wide range of NLP

tasks, achieving state-of-art performances without any hand-crafted features. However, training

deep models requires a massive amount of labeled data. Labeling new data as a new task or do-

main emerges consumes time and efforts and needs domain expertise. As a result, the approaches

that address the data scarcity are getting increasing attention in recent years, including, but not

limited to, transfer learning, zero-shot learning, and weak supervision. We present three differ-

ent methods to learn from limited labeled data. In the first work, we present a Transfer Learning

method to transfer the knowledge between two domains (source and target) with disparate la-

bels. Our approach exploits the relationship between the source and the target labels to enhance

the transfer of the learned knowledge. We apply our methods to two NLP tasks: Event Typing

and Text Classification. In our second work, we address the problem of modeling the tasks with

evolving type ontologies. We present a Zero-shot Fine-Grained Entity Typing (ZS-FGET) ap-

proach that exploits the Wikipedia description of the type to construct the representation of that

type. Then, the type can be recognized requiring zero training examples. Since FGET deals with

a large number of types organized into a hierarchy, Distant Supervision is employed to automati-

cally collect training data, leading to significant label noise. Several methods have been proposed

to tackle the problem of FGET, some of them suggest special ways to learn robustly from the

data with noisy labels. Most of these methods are evaluated using three publicly available bench-

mark datasets: FIGER, OntoNotes, and BBN. However, there are some fundamental issues in

the empirical evaluation of these methods. Critically, most existing evaluation only reports the

overall performance on all types, which can be dominated by the performance on coarse types



and provides very little information regarding how well these methods work for the fine-grained

types. This is further compounded by the fact that the testing sets for two of the three bench-

marks actually have very poor coverage of the fine-grained types. In our final work, we present a

new empirical study that re-evaluates the most recently proposed FGET methods by introducing

new testing sets with significantly improved coverage for fine-grained types and examining not

only the overall performance but also per-level, type-specific performance. Our analysis of the

tested methods reveals new insights about these methods and suggests new directions for future

improvement.
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Chapter 1: Introduction

Traditional supervised learning methods typically require a significant amount of training data

to learn effectively. It is also commonly assumed that the training data must include instances

of all the classes that can be potentially tested on. However, obtaining sufficient labeled training

data can become a key development bottleneck in supervised machine learning especially due

to the emerging popularity of the deep neural models. Deep learning (DL) has become the

dominating technique for NLP, achieving the state-of-art results for most tasks in the span of

the past few years [48]. Deep learning models automatically learn high-quality and task-specific

representations and thus reduce the need for feature engineering. Nevertheless, deep models

are more complex than traditional models, have considerably more parameters, and thus require

more labeled training data.

The reliance on massive amounts of hand-labeled training data is often not feasible due to

several reasons. First, it is expensive in term of time, human efforts and the need for domain

expertise. Also, the systems built on heavily annotated data are not scalable to deal with new do-

mains or with larger sets of types. These systems are usually incapable of handling domain shift

or ever-growing type taxonomies. In real-world applications, it is a common scenario that new

types may emerge over time whereas existing types may be refined into finer-grained classes, or

become obsolete. Re-annotating the labeled data partially or entirely to accommodate the new

types is undesirable or even impractical. Moreover, annotating data manually can be error-prone

when the task deals with a large number of types; as it is hard for a human to distinguish more

than one hundred types consistently. [58].

Driven by the need to alleviate the supervision bottleneck, learning paradigms that address

the data scarcity problem become increasingly popular. They can be divided, by the data limita-

tions they address and the type of data they leverage, into the following categories: (1) Transfer

Learning [54, 69, 60] aims to enhance learning in a new task or domain through the transfer of

knowledge learned from one or more related tasks or domains; (2) Zero-shot and few-shot learn-

ing[71, 76, 30, 81] try to recognize classes with a few or zero training examples; (3) Weakly

supervised learning [97] attempts to construct predictive models effectively from data collected

via Weak Supervision, in which low-cost approaches (e.g., Distant supervision [45], Crowd-
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sourcing [33, 5]) are employed to collect labeled data, with the caveat that they tend to introduce

low-quality annotations with significant label noise.

In this thesis, we present three works to address the problem of learning from limited training

data. First, we present a Transfer Learning method that exploits the label structure to transfer the

learned knowledge between tasks that have related but disparate label sets. Second, We propose

a Description-based Zero-shot entity typing approach that utilizes a type description to recognize

new types without the need for collecting training examples. Finally, we highlight several critical

flaws in the evaluation of Fine-grained Entity Typing (FGET) in prior work, which relies on

benchmark datasets that are originally collected by distant supervision, and present a rigorous

re-evaluation of recently proposed models for this task.

1.1 Overview

Transfer Learning. Traditional supervised learning typically tries to learn a mapping from

the input space to the output (label) space, with a common assumption that the training data and

the unseen test data are drawn from the same distribution. It also assumes the existence of a

sufficient amount of labeled training data that includes examples for all classes (that one might

encounter during testing). If one of these assumptions doesn’t hold, supervised learning fails

to learn a robust model. Collecting new data each time a new domain or task is introduced,

or a new class is added is an undesirable or infeasible process. Transfer learning provides a

solution to this problem by leveraging the knowledge extracted from one or more source tasks

or domains and transferring the learned knowledge to a target task or domain. The desire of

making the machine, like a human, be able to intellectually apply previously learned experiences

and knowledge in solving new problems motivates the study of transfer learning. The difference

between traditional supervised learning and transfer learning is illustrated in Figure 1.1.

We start first by defining the domain and the task following the definition by [54]. A domain

D consists of the feature space X and the marginal probability distribution P (X) (i.e., D =

{X , P (X)}) where X ∈ X . Given a domain {X , P (X)}, a task consists of the label space Y
and an objective predictive function f(.) (T = {Y, f(.)}). Transfer learning aims to enhance

the learning of the target prediction function ft : Xt → Yt by utilizing the source domain Ds
and the task Ts. Base on different settings of Ds , Dt , Ts , and Tt , We can define the following

transfer learning scenarios as follows:

• Xs 6= Xt. The feature space of the source and the target domains are heterogeneous. One
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example is transferring learning between textual datasets form different languages, this is

called Cross-lingual Transfer Learning [12, 86, 96]. Another example is transfer learning

between domains of different modalities such as image vs. text [98, 10]

• P (Xs) 6= P (Xt). The marginal probability distributions of source and target domains

are different, .e.g, Part of Speech Tagging (POS) of newswire and biomedical domains.

This is also known as domain adaptation. Significant research has been devoted to domain

adaptation, which typically assumes that the source and the target tasks deal with the same

label space [4, 14, 53, 20, 25].

• P (Ys|Xs) 6= P (Yt|Xt). It assumes that the feature spaces and the marginal distributions

of the source and the target domains are the same, but the class distributions are imbal-

anced. This is known as imbalanced domain adaptation [72]. Approaches that minimize

the conditional distribution discrepancy between domains are usually used to handle the

class imbalance [72, 44, 75].

• Ys 6= Yt. The label spaces between the two tasks are different, regardless of whether the

source and target domains are the same or not. Examples include two text classification

tasks that use various label schemes (e.g., 20Newsgroups vs. Reuters) [46], or transfer

the learning from data set annotated with POS tags to a Named Entity Recognition dataset

[38]. If the goal is to improve the learning for both domains, then this is called Multi-task

learning[39, 80, 61, 51]. If we focus on enhancing the target task, then it is referred to as

Model Transfer [74]. A subcategory of Model Transfer that uses label space transforma-

tion between the source and the target domains [3, 28]

In this thesis, we focus on the problem of transfer learning for NLP tasks where the target

task and the source task share the same domain but have different label spaces. Specifically,

motivated by the practical applications in NLP, our investigation focuses on transfer learning

under the scenarios where there are known structures between the source and target labels.

Zero-shot learning aims to recognize classes whose instances have not been seen during train-

ing. An increasing number of zero-shot learning methods are proposed to alleviate the need for

annotating additional training examples as a new class is introduced. Zero-shot learning has

been successfully applied to a wide range of Computer Vision tasks [32, 59, 17, 82], and it

is also becoming an important focus for the NLP community [65, 23, 24, 95, 66]. Zero-shot
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Figure 1.1: Traditional Supervised Learning vs.Transfer learning

learning can be considered a special case of transfer learning where Ys ∩ Yt = Φ. The source

domain is assumed to contain manual annotations of seen types while on the target side, we have

unseen types that do not have any training examples. Instead, we assumed the availability of

an auxiliary source of information ( e.g., descriptions, attribute vectors, annotation guidelines)

that encodes the semantics of the seen and unseen classes. The auxiliary information source is

then used to learn a shared concept semantic space of all types along with alignment between

the source examples and the seen classes. Afterward, the learned knowledge can be transferred

from seen to unseen types. The second work of this thesis follows this general scheme for the

problem of zero-shot classification of fine-grained entity types and learns the representations for

the types based on their Wikipedia descriptions.

Weakly supervised learning is a general term that covers a variety of techniques that are

developed for the goal of learning effectively from noisy data collected under a weak supervision

scheme. Weak supervision refers to the general scenario where the labels of the training data are

acquired at a substantially lower cost, resulting in annotations that are of considerably lower

quality or lower resolution.

Several methods have been introduced to obtain weakly labeled data including but not lim-
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ited to 1) Distant supervision where the unlabeled data are heuristically mapped to an external

knowledge base[43, 21, 90], 2) Crowdsourcing is another cost-saving way to collect training data

by recruiting a large group of independent non-expert workers to provide labels for training data

based on their own judgments [11, 97]. 3) Pre-trained models on different domains combined

with heuristics are used to obtain labels for unsupervised data.

Another type of week supervision is obtained by leveraging higher-level inputs from Sub-

ject Matter Experts (SMEs). Instead of preparing detailed annotation guidelines and asking the

experts to follow the guidelines and annotating every single example in the training data, SMEs

can infuse their knowledge into the model in the form of hand-written heuristics that are trans-

lated into a programming script to be used in annotating data points automatically. Alternatively,

SMEs can provide a limited number of high-level annotations, such as annotating samples with

coarse types instead of going over all of the fine-grained types or provide annotation at a coarse

resolution and use multi-instance learning to infer finer resolution labels [97]. For example,

most image categorization datasets only have image-level labels while the task is to recognize

and classify the objects in the image. Getting image-level annotation needs far fewer annotation

efforts than acquiring the object-level ones. SMEs can be also a part of an active learning cycle

where they are asked to iteratively annotate critical data points, such as the points laying on the

decision boundary of a model trained on automatically generated data [97]. More recent tech-

niques have been proposed to manage multiple sources of weak supervision that have different

levels of accuracy [2].

The last work of this thesis presents a systematic empirical examination of the problem of

fine-grained entity typing for which distant supervision is not only the primary source of training

data, but also the primary source of technical challenge in learning [40, 45, 90, 58].

There are also other related lines of research aimed at increasing data efficiency in learning,

including Semi-supervised learning [60, 52], and Data augmentation [77, 26]. Semi-supervised

learning assumes the availability of a small labeled training set and a much larger unlabeled data

set. The goal is to exploit the unlabeled data in addition to labeled data to improve learning

performance, it differs from transfer learning in that both labeled and unlabeled data have the

same marginal feature distribution. Data augmentation is a strategy that is used increase the

diversity of the training data without collecting new data, instead, labeled distribution is extended

to extend cover set of transformation {ti(x)}mi=1 of the labeled instance x, and then set P (y|x)

to P (y|ti(x)) ∀i ∈ 1, ...,m. These topics are closely related to weak supervision, but they are

not the focus of this thesis.
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Figure 1.2: Contributions in this work.

1.2 Thesis outline

In Chapter 2, We study the transferability of neural networks between related NLP tasks that

differ in their labeling schemes. We present a method that exploits the relationship between the

target and source labels as an additional source of information to enhances the learning transfer.

In our study, we consider two NLP tasks: Event Typing and Text Classification. For each task,

we use two different datasets to serve as the source and the target tasks respectively. The datasets

are selected such that they have different but related label spaces.

Our method utilizes a bipartite graph that represents the source and target label connections

(which can be 1-1, 1-n, n-1 or n-m) to assign each source example to a target label set. Because

the mapped source examples may have incorrect types within the assigned candidate label set,

we formulate the learning as a weak supervision problem and introduce a weak supervision

objective for training a neural network for the target domain on both the target and the mapped

source examples. We compare it with alternative previously used weak supervision objectives

[58, 1]. We test our method and compare it with traditional fine-tuning based transfer learning

methods and multi-task learning under several label-relationship scenarios and data sizes. Our

experimental results show that our method compares favorably to the standard deep transfer

learning approach under several scenarios.
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Chapter 3 considers the problem of zero-shot fine-grained entity typing (FGET). Fine-grained

Entity typing (FGET) is the task of assigning a fine-grained type from a known type hierarchy

to the entity mentions in the text. As the type taxonomy often evolves over time, it is desir-

able for an entity typing system to be able to recognize new types without additional training

data, motivating zero-shot learning for FGET. In this thesis, we present a zero-shot entity typing

approach that leverages the Wikipedia descriptions of the types to build a distributed semantic

representation of the types. During training, our system learns to align the entity mentions and

their corresponding type representations on the known types. At test time, any new type can

be incorporated into the system given its Wikipedia descriptions. We evaluate our approach on

FIGER, and BBN, two public benchmark FGET datasets. Because the existing testing set of

FIGER covers only a small portion of the fine-grained types, we created new testing set by man-

ually annotating a part of the noisy train data. Our experiments demonstrate the effectiveness of

the proposed method in recognizing novel types that are not present in the training data.

Distant supervision in conjunction with a knowledge base (KB) is extensively used to auto-

matically generate labeled training data for the task of FGET. However, the types obtained from

the KB are usually noisy as they are assigned without taking the mention’s local context into

account. Several methods have been proposed to tackle FGET, most of them are evaluated us-

ing three publicly available benchmark datasets: FIGER, OntoNotes, and BBN. These methods

vary in different aspects, one aspect is how they treat the typing noise. Typically, FGET systems

either use pruning heuristics to clean the data from the noisy mentions [19], or use weak supervi-

sion to learn from the mentions with the noisy types [1, 58, 83], or even neglect the typing noise

entirely and assume that all mentions are assigned clean type sets [87, 63]. However, there are

some fundamental issues in the empirical evaluation of these methods. Critically, most existing

evaluation only reports the overall performance on all types, which is dominated by the perfor-

mance on coarse types and provides very little information regarding how well these methods

work for the fine-grained types. This is further compounded by the fact that the testing sets for

FIGER and OntoNotes have very poor coverage of the fine-grained types. For example, about

50% of test mentions for OntoNotes only have the coarse type “other”. In chapter 4, we present

a new empirical study that re-evaluates the most recently proposed FGET methods by introduc-

ing new testing sets with significantly improved coverage for fine-grained types and examining

not only the overall performance but also per-level, type-specific performance. The ability of

different methods to learn from noisy data effectively is one of the dimensions that we focus on

in our analysis. We noticed the efficiency of the methods to learn from noisy data can be masked
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by reporting the overall performance solely. Chapter5 concludes our work and provide a brief

discussion of potential directions for future improvement.



9

Chapter 2: Deep Transfer learning for NLP tasks with disparate labels.

2.1 Abstract

Deep neural Networks hold strong promise for transfer learning when the source and target do-

mains have disparate labels because the hidden layers can be easily transferred independently

from the output layer connecting to the labels. This method, however, ignores the relationship

between the target and source labels, which can provide valuable information to enhance the

learning transfer. We investigate how to best exploit the label structure between domains by

mapping the source examples to corresponding target labels. We examine several weak super-

vision objectives for training neural networks for the target domain on both the target and the

mapped source examples. We apply our methods on two NLP tasks: Event Typing and Text

Classification. We study the performance of the proposed method against the standard neural

transfer techniques under several systematic label relationship scenarios.

2.2 Introduction

In NLP supervised learning requires a significant amount of training data to learn effectively.

Transfer learning aims to leverage the knowledge from one or more source tasks or domains to

improve the learning performance in a related target task or domain. It is important because it

reduces the need to annotate a large amount of data each time a new task or domain emerges.

Significant research has been devoted to Domain Adaptation [14, 4], which assumes that the

source and target domains use the same label set but with different input distributions.

In many real-world applications, however, the label sets may evolve from one task to another

— labels may be merged or partitioned into finer-grained concepts, and new labels may be intro-

duced, and old labels may phase out. Transfer learning with disparate label sets thus becomes an

important problem, which unfortunately cannot be solved by directly applying standard domain

adaption techniques.

Few works have been proposed to address this problem. Kim et al. [28] propose a solution

to this problem by deriving a mapping between the source and the target labels to reduce the
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problem to the standard domain adaptation settings. They learn an embedding for each label

in both domains induced by Canonical Correlation Analysis (CCA). Then, they use the label

embeddings to create a mapping by finding the nearest neighbor of each label type. However,

their method is just applicable if the relationship between the target labels and the source labels

are 1-1 or n-1. In other words, if the source-to-target label relationship is n-1 or if the labels

overlap, then this method will produce erroneous mapping. For Example, assume that the source

has the label type ”life,” and the target has it’s the fine-grained label types ”be-born,” ”die,”

”marry,” and ”divorce.” Then, all examples under ”life” will be mapped to one of its four sub-

types, the one that has the most similar label embedding. Bhatt et al. [3] assume that no labeled

data are available in the target domain, and use multiple source domain with different label

schemes to induce labels for the target.

With the emerging popularity of the deep neural networks for NLP applications, one might

expect that having a disparate label set should not prevent the knowledge transfer across domains

because the feature extraction layers, e.g., convolutional neural networks (ConvNet), are inde-

pendent of the number and type of labels. One can simply take a deep network that is trained on

the source domain and replace the final fully connected output layer with a target-specific output

layer and train its weight on the target domain data.

Based on how the source and the target examples are scheduled in the learning process,

neural transfer learning can be classified into parameter initialization and multi-task learning.

In parameter initialization, a model is trained on the source, and then, the last output layer is

removed and the model parameters (e.g. word embeddings, convolutions) used to initialize the

target model. A target specific output layer is added to the target model. The transferred weights

are either tuned (aka Fine Tuning) or frozen, i.e. used as a fixed feature extractor for the target

domain. Multitask learning means the source and the target models are trained simultaneously.

They shared some or all of the hidden layers while keeping the task-specific output layer.

A recent study [47] demonstrates that the transferability of DNN for NLP tasks depends

highly on how the source and target tasks are related semantically. However, they only consid-

ered the simplified scenarios in which the source and target tasks that are either identical (e.g.,

two different sentiment analysis datasets), or semantically completely different but using the

same neural architecture. Transferability of DNN across semantically related domains that use

different but related labeling schemes is still an open question, which is the subject of this work.

In this work, we are interested in the transferability of DNN across semantically related

domains where the labeling schemes are different but related. We show that the relationship
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between the source and target labels, if known, can provide tremendously useful information to

enhance the knowledge transfer. Specifically, given a bipartite graph representing the source and

target label relations (which can be 1-1, 1-n, n-1 or n-m), we assign each source example to a

target label set. Learning can then be performed on both source and target data with weak super-

vision objectives. We study how source-to-target label relationships affect the performance of

the standard deep transfer learning methods in comparison with the proposed weak-supervision

methods on two NLP tasks: event typing (ET) and text classification (TC).

2.3 Problem Statement

We are given data from two related domains, the source domain S = {xis, yis}Ni=1 and the target

domain T = {xit, yit}Mi=1, where yis ∈ Ys and yit ∈ Yt, N and M are the number of training

examples in S and T respectively. We assume that the two domains have a shared input space but

map them to different (yet related) label spaces, whose relationship is represented by a bipartite

graph B. An edge of B between two labels as and bt can be interpreted as “an input example

belonging to the source class as can possibly belong to the target class bt.” B is designed to

reflect human knowledge about the relations between the source and target labels. We assume

that M << N and the goal of transfer learning is to leverage the data-rich source domain S to

improve the performance on the data-scarce target domain T .

2.4 Transfer Learning by Weak Supervision

The proposed method aims to benefit from the label structure between the source and target

domains S and T represented by B. Specifically, the bipartite graph B defines a mapping from

each source label ys to a (possibly empty) set of target labels: Bst(·) : Ys → 2Yt . A source

domain instance {xis, yis} can thus be mapped to the target domain labeled with an ambiguous

set of labels Y it = Bst(y
i
s) (see also Figure 2.1). If Y it = ∅, it is ignored, which helps to avoid

the Negative Transfer that may come from S. Let Smap = {xis,Y it}N
′

i=1 be the set of source

examples mapped to non-empty target label sets. We can then add Smap to the T to created an

augmented training set Taug = T ∪ Smap. The mapped examples often have |Y it |> 1, which

provides a candidate label set ambiguous for learning.
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Figure 2.1: An illustration of the transfer learning by weak supervision.

Weak Cross-Entropy (WeakCE). Mapped examples often have |Y it |> 1. For such examples,

Y it can be viewed as providing a candidate label set, which is ambiguous for learning. To learn

from Taug, our method must account for the ambiguity for those mapped examples. To this end,

we extend the classic Cross-Entropy loss and define a weak Cross-Entropy (WeakCE) loss for

xi ∈ Taug as follows:

lossiWeakCE = − 1

|Y it |
log

∑
yj∈Yi

t

P (Y = yj |xi) (2.1)

where P (Y = yj |xi) = Softmax(fyj (x
i)), and fyj (x

i) is the score assigned to class yj for

instance xi by the deep learning model. Minimizing this loss maximizes the probability that

the predicted label for xi is in Y it , leaving it to the model to decide which label in Y it to assign

high scores based on xi. We also weigh each example by 1
|Yi

t |
because the larger the size of the

candidate label set, the less informative is the example.

Partial-label Pairwise Ranking(PL-rank). Alternatively, we consider partial-label pairwise

ranking loss function (similar to [58, 87]) that tries to rank the best label inside Y it higher than

all labels in Ȳ it . Partial-label ranking (PL-rank) loss function for xi is defined as follows:

lossiPL-rank =
∑
yk∈Ȳi

t

max(0, 1− fy∗j (xi) + fyk(xi))
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y∗j = argmaxyj∈Yi
t
fyj (x

i)

Multi-label Cross Entropy (MLCE). We also consider a multi-label extension of cross-entropy

that weighs all labels in Y it equally assuming that all of them are correct:

lossiMLCE = −
∑
yj∈Yi

t

1

|Y it |
logP (Y = yj |xi)

Note that both WeakCE and MLCE reduce to the classic cross entropy loss for the target training

examples with unambiguous label.

Training details. It is crucial to control the strength of the weak training signal from Smap,

especially because Smap is often overwhelmingly larger than T . Blindly treating the source and

the target examples the same during training can overwhelm the learning process with source

examples, leading poor performance for target testing.

We use two training strategies to avoid the “source-take-over”. First, we balance the source

and target contributions to the overall loss with a hyberparameter λ:

Loss =
∑
i∈T

lossi + λ×
∑

j∈Smap

lossj

Secondly, batches are formed with equal number of examples from Smap and T . Due to the

significantly smaller size of T , this will lead to completing multiple epochs on T before finishing

one epoch on Smap, ensuring that our model is always trained with a current focus on T .

2.5 Deep Transfer Learning Methods

In addition to Target Only (TO) which is training a model only using the target data, we examine

the following deep transfer learning methods: Fine Tuning (FT) trains a model on the source

domain 1 and use it to initialize the target model and fine tune all the parameters including the

embeddings and the convolutions. We also consider FreezC which is a variant of FT that freezes

the convolution layer. Multitask learning(MULT) generally applied by sharing the embeddings

and the feature extraction layers between the source and the target domain, while keeping several
1We use a subset of S as the development set and train on the rest.
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Figure 2.2: Parameter sharing for multi-tasking (MULT) in deep neural networks.

task-specific output layers as shown in figure 2.2, then the network is trained simultaneously for

both domains. The training process is similar to the one we adopted for our method. The loss in

MULT is be computed as:

Loss =
∑
i∈T

lossi + λ×
∑
j∈S

lossj

2.6 Tasks and models

We consider two different NLP tasks: Event Typing (ET) and Text Classification (TC). Below

we briefly describe the two tasks and the models used.

Event Typing. The input to ET is a span of text and the goal is to assign an event type label.

Here we bypass the upstream extraction step and simply use the text span around the ground

truth trigger words as the input text and train a model to predict its event type. We adopt the

convolutional network architecture (CNN) by [50]. Specifically, each input example is a text

span of 31 tokens centered around the event trigger (padding is performed if necessary). Each

token is represented by a word embedding [55] and a position embedding. The representation of

the text span is then passed to a convolutional layer, a max-pooling layer and a softmax layer at

the end to perform the classification. In the convolution layer, three sets of feature maps (filters)
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Figure 2.3: Convolutional Neural Network for Event Typing.

are used for the convolution operation. Each set corresponds to some window size. Figure 2.3

illustrates the adopted CNN Architecture.

Text Classification Given a span of text, the goal is to assign a topical label to the text. We

use a similar architecture for this task but without position embedding, and the text inputs are

complete sentences. The detailed architecture can be found in [27].

2.7 Experimental Setup

Datasets. We conducted experiments on two datasets for each task. For Event Typing, we use

ACE2005 as the source domain and Rich ERE 2015 as the target domain. ACE 2005 contains

eight event types and 33 sub-types. Rich ERE 2015 (RichERE) contains nine event types and 38

sub-types(see figure 2.4 for the type hierarchies ). To examine the ability of our method to handle

different types of source-to-target relationships, we created four synthetic scenarios where the

source and target domains use coarse, fine and mixed event types respectively. All the bipartite

graphs of the four scenarios presented in figure 2.4. Since transfer learning assumes data scarcity

on the target side, we sample several small train/development sets from the original RichERE

training set. Specifically, we randomly sampled five different train/development set with 300 ex-

amples for training. For each sample, we run all the models with five random initializations. All

results are reported on the target (RichERE) testing set which contains 402 examples, averaged

over the 25 runs. We repeat the process with training sizes 400, 500 and 600. Each time the
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Figure 2.4: Type Hierarchies of ACE2005 and RichERE, the coarse types are in boldface.

development set size is half of the training size. ACE2005 training has 4420 examples.

For Text Classification, we use two publicly available datasets: News (source) and Google-

snippets (target). Examples of both datasets are short snippets. News contains seven classes,

while Google-snippet has eight. Labels in these datasets are not the same but highly related with

no clear precise mapping. Since Google-snippets is fairly large, we randomly sample 10 training

examples and 5 dev examples for each class. This is repeated five times to generate five different

train/development sets. Each time we run all the models with five different initializations, leading

to 25 random runs. The reported testing performances are averaged over the 25 runs. News

training has 25023 examples. Figure 2.6 presents the bipartite graph that maps the types between

News and Google-snippets.

Training and evaluation We evaluated the performance using the prediction accuracy, and

macro-averaged recall, precision, and F1. For every model, we tune all hyper-parameters using

a fixed development set. For each experiment, we report the testing results of the model with

the best Accuracy on the development set. We evaluated the performance using the prediction

accuracy, and macro-averaged recall, precision, and F1. For the CNN architecture, we use filters

of width sizes 3, 4, 5, to generate feature maps. We utilize 100 feature maps for each window

size. The window size for triggers is set to 31 in ET while it is the length of longest sentence in

TC padded if necessary. We use the pretrained word embeddings word2vec with 300 dimensions

[55] and we adopt position embedding of size 50. We employ Adam optimizer with lr = .001,

dropout rate = 0.5, the mini-batch size = 64. We train each model for 12 epochs.
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Figure 2.5: The bipartite graph that defines the mapping between labels in News dataset (source)
and Google-snippets dataset (target) used in Text Classification.
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Figure 2.6: The bipartite graph that defines the mapping between labels in News dataset (source)
and Google-snippets dataset (target) used in Text Classification.

2.8 Results and Discussion

Results on ET Table 2.1 presents the results on Entity Typing for four scenarios using a target

training set of 300 examples. Specifically, in scenario 1, the bipartite graph B defines a fine-to-

fine source-types to target-types mapping. This mapping is mostly 1-to-1 except for one type

in the source (“movement”) that is mapped into two subtypes in the target (“Transport.Person ”

and “Transport.Artifact”). In Scenario 2, B maps multiple fine-grained source types to a single

coarse target type (n-to-1). Scenario 3 is the inverse of Scenario 2 (1-to-n). Finally, the mapping

for scenario 4 is mixed, containing 1-to-1, 1-to-n and n-to-1 mappings.

From the table, we note that all of the transfer learning methods provide a significant im-

provement over Target Only (TO) in most cases.

We also observe that weak supervision with WeakCE consistently outperforms the other

methods for scenarios 1 and 4 and get comparable performance to PL-rank and MLCE for sce-

narios 2 . Specifically, we see that WeakCE outperforms the best baseline methods by a margin

of 1-3%, for these three scenarios, especially achieving a substantial gain in recall (4-6%). For

scenario 1 and 2, MLCE performs comparably to WeakCE, but is substantially worse for sce-

nario 4. This is because in scenario 4 Smap contains some ambiguous cases, the assumption

made by MLCE is that all labels in the ambiguous candidate set are correct for the given source

instance, which can potentially mislead the training.

In scenario 1, WeakCE outperforms MLCE. Although the relationship between the source
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and the target labels are 1-1, there is one 1-n relations, e.g., the label transport in ACE2015 is

mapped to two RichERE labels ( transport-person and transport-artifacts). MLCE considers

both labels as true labels and treats them equally while only one of them is the true label. In

Scenario 2, the three objectives produce comparable performance since scenario 2 deals with

n-1 label relationships, thus the candidate label set assigned to a mapped source-example has

only one label, which means that both WeakCE and MLCE become identical to the standard

cross entropy.

Another interesting observation is that WeakCE outperforms PL-rank in Scenario 3 and 4,

we think this is because WeakCE is more capable of modeling the type correlation. E.g., In

Scenario 3, a source example of the type life is mapped to the label candidate set {be-born,

die, marry, divorce and injure}. If the correct label is marry, one intuitively can expect that

divorce should get higher score than be-born, die, and injure. However, PL-rank tries to score

the best label given the event mention and its context higher than incorrect labels ignoring the

varying level of correlation between the labels in the candidate set, while WeakCE accounts for

these correlations by leaving it for the training process to distribute the probability between the

candidate labels.

Scenario 3 is the most challenging scenario for weak supervision since every mapped exam-

ple is assigned an ambiguous candidate set, which can be overly large. For example, the label

justice in the ACE2005 is mapped to 13 fine-grained types in RichERE (e.g., appeal, execute

..., etc.). More critically, as demonstrated by Cour et al. [9], how much can be learned from

ambiguous training data is fundamentally affected by the ambiguity degree of the labels, which

intuitively measures the maximum probability of an erroneous label co-occurring with the cor-

rect label in the candidate set. Because each source training example with label justice will be

mapped to the same 13 fine-grained target types, the ambiguity degree will be high, limiting

the potential benefit from weak-supervision. Indeed, we note that FT and MULT achieve better

accuracy than WeakCE and MLCE for this scenario, although the weak supervision approaches

are still advantageous in terms of the recall.

To close the gap between WeakCE and traditional transfer learning, we also consider WeakCE+,

a variant of WeakCE that trains with the introduced objective (Equation 2) for the first four

epochs and then continue to train only on unambiguous examples. From the results, we can see

WeakCE+ improves over WeakCE by 1% for accuracy in scenario 3.
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ET : ACE2005→ RichERE
Scenario 1 (fine to fine) Scenario 2 (fine to coarse)

Macro-Avg Macro-Avg
Method Accuracy P R F Accuracy P R F

TO 47.41±3.04 43.93±4.03 36.06±3.74 39.56±3.59 70.71±2.27 62.59±4.85 56.05±2.74 59.08±3.39
FT 63.71±1.04 65.53±3.24 59.62±1.99 62.40±2.24 76.71±1.89 65.19±6.12 62.14±3.15 63.58±4.43

FreezC 64.87±1.31 66.84±3.39 62.97±2.06 64.83±2.56 78.66±1.46 68.93±4.34 65.76±3.01 67.27±3.40
MULT 63.67±2.20 63.01±3.77 59.22±2.84 63.01±3.77 77.58±2.21 68.54±4.31 64.58±3.72 68.54±4.31
MLCE 65.54±1.19 66.69±2.26 67.48±1.29 66.69±2.26 79.80±1.29 71.11±1.23 71.26±1.54 71.11±1.23
PL-rank 66.68±1.28 65.32±3.16 64.78±2.75 65.32±3.16 80.00±1.33 71.35±1.28 71.90±1.68 71.35±1.28
WeakCE 66.76±1.36 66.72±3.10 66.10±2.74 66.72±3.10 79.88±1.07 71.26±0.89 71.25±1.39 71.26±0.89

Scenario 3 (coarse to fine) Scenario 4 (mixed to mixed)
TO 47.41±3.04 43.93±4.03 36.06±3.74 39.56±3.59 52.80±4.94 48.13±4.32 45.09±4.40 46.49±4.05
FT 57.02±2.05 53.22±4.15 47.48±3.93 50.13±3.63 63.76±1.97 61.69±3.33 59.61±2.40 60.59±2.36

FreezC 53.79±1.90 46.60±3.37 45.37±3.11 45.94±2.95 64.97±1.20 64.44±3.40 62.49±1.77 63.42±2.38
MULT 56.52±2.12 51.28±3.90 47.19±3.41 51.28±3.90 64.91±1.81 61.64±3.82 60.37±2.58 61.64±3.82
MLCE 54.98±2.18 50.64±3.52 51.87±3.37 50.64±3.52 64.91±1.58 64.68±2.78 64.75±2.01 64.68±2.78
PL-rank 49.94±2.42 46.09±3.82 41.09±2.58 46.09±3.82 66.55±1.20 65.31±3.34 64.41±2.26 65.31±3.34
WeakCE 55.55±2.83 52.95±4.67 48.16±3.82 52.95±4.67 68.25±1.36 69.58±2.94 68.24±1.51 69.58±2.94

WeakCE+ 56.51±1.87 51.46±3.71 48.46±3.12 51.46±3.71 - - - -

Table 2.1: Accuracy and macro-averaged recall, precision and F1 of the methods TO, FT, and
FreezC, MULT, MLCE, WeakCE, WeakCE+ on the task of ET. The size of the target training set
is 300.

Varying the Size of Target Data of ET. Table 2.2 presents the accuracy of all tested method

by varying the size of the target (RichERE) set. We can observe that freezing the word embed-

dings and the convolutional layers is better than fine-tuning them for small target training set

size. If the network weights learned from the source are fine-tuned using a small target data, the

network may overfit to this data and fail to generalize well to unseen data. This explains why

the performance of FT become comparable to FreezC as the size of the target dataset increases.

It can also observe from Table 2.2 that the improvement margin that can be obtained by transfer

learning decreases as the size of the target data increases. In addition, we can see that the tra-

ditional deep transfer learning methods are more sensitive to the size of the target data than the

mapping-based methods, as the later can maintain reasonable improvement over TO regardless

that target set size in most of scenarios.

Results on TC. Results on TC are presented in Table 2.3. It can be observed that FT and its

variant are surprisingly harmful to the target task even though the two domains are very related

while MULT does not add any improvement. MLCE and WeakCE improve the accuracy of the

target task by 2-3%. Interestingly, this is the only case where we see MLCE outperform WeakCE.

To understand this, we studied the bipartite graph used to map the source label to target labels.
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ET : ACE2005→ RichERE
Scenario 1 (fine to fine) Scenario 2 (fine to coarse)

Training set size Training set size
Method 300 400 500 600 300 400 500 600

TO 47.41±3.04 53.86±2.63 59.78±2.50 61.29±1.98 70.71±2.27 75.84±1.43 75.16±2.97 76.14±1.48
FT 63.71±1.04 64.81±2.51 66.67±1.46 67.94±1.31 76.71±1.89 79.32±0.81 80.27±1.08 79.72±0.98

FreezC 64.87±1.31 65.22±1.95 66.89±1.33 67.73±1.49 78.66±1.46 80.36±1.46 80.57±1.08 81.30±1.17
MULT 63.67±2.20 64.89±2.36 66.76±1.60 67.86±2.14 77.58±2.21 80.38±1.09 80.22±1.17 79.95±0.76
MLCE 65.54±1.19 66.37±1.48 67.33±1.41 67.98±1.62 79.80±1.29 81.07±0.84 81.63±1.00 82.18±1.20
PL-rank 66.00±1.11 67.01±1.61 67.76±1.12 67.92±1.40 80.00±1.33 81.23±0.94 81.62±1.04 81.81±1.06
WeakCE 66.76±1.36 68.00±1.07 68.31±1.46 69.58±1.08 80.00±1.24 81.19±0.93 81.89±0.86 82.00±1.29

Scenario 3 (coarse to fine) Scenario 4 (mixed to mixed)
TO 47.41±3.04 53.86±2.63 59.78±2.50 61.29±1.98 52.80±4.94 58.04±3.32 59.81±3.73 62.04±3.14
FT 57.02±2.05 59.94±2.27 63.36±2.26 64.06±1.73 63.76±1.97 66.13±1.44 67.10±0.95 68.35±1.55

FreezC 53.79±1.90 56.89±1.70 59.32±1.77 60.30±1.58 64.97±1.20 66.30±0.97 66.75±1.46 68.43±1.80
MULT 56.52±2.12 59.00±2.52 60.58±2.90 64.17±1.32 64.91±1.81 66.62±1.68 67.98±1.06 69.24±1.55
MLCE 54.98±2.18 59.30±2.34 61.86±2.20 62.69±1.64 64.91±1.58 66.87±1.05 67.37±1.28 68.42±1.91
PL-rank 49.94±2.42 54.22±2.38 57.89±2.66 59.64±1.77 66.55±1.20 67.46±1.60 69.29±1.32 69.60±1.77
WeakCE 55.55±2.83 58.77±2.28 62.02±2.76 62.91±1.35 68.25±1.36 69.27±1.78 69.61±1.19 70.34±1.59

WeakCE+ 56.51±1.87 60.15±2.43 63.32±2.62 64.10±1.47 - - - -

Table 2.2: Accuracy of TO, FT, and FreezC, MULT, MLCE, WeakCE, WeakCE+ on the task of
Entity Typing for varying training set sizes.

TC : News→ Google Spinets

Method Accuracy Macro-Avg
P R F1

TO 82.20±2.34 82.34±2.05 82.93±2.34 82.34±2.05
FT 79.48±2.72 80.11±2.22 79.98±2.80 80.11±2.22

FreezC 79.58±2.35 79.99±2.04 80.10±2.35 79.99±2.04
MULT 82.26±1.82 82.26±1.53 82.75±1.96 82.71±1.73
MLCE 85.50±1.99 85.35±1.81 85.40±2.37 85.35±1.81
PL-rank 82.17±2.59 83.94±1.80 81.26±3.56 83.94±1.80
WeakCE 84.69±2.10 85.13±1.79 84.20±2.81 85.13±1.79

WeakCE+ 84.88±1.81 85.35±1.48 84.53±2.28 85.35±1.48

Table 2.3: Accuarcy and macro-averaged recall, precision and F1 of the methods TO, FT, and
FreezC, MULT, MLCE, WeakCE, WeakCE+ on the task of TC.
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We observed that the source label Sci-tech is mapped into three target labels: education-science,

computers and engineering. Taking a closer look at the specific examples, we found that many

source examples in Sci-tech truly belong to two or more of the corresponding target classes.

In other words, the underlying assumption made by MLCE is more accurate for this particular

transfer scenario, hence leading to improved performance compared to WeakCE. PL-rank is less

effective in modeling this relationship because it pushes the score of exactly one label up and

suppresses the score of rest.

To conclude our discussion of the experimental results, we note that Weak supervision, es-

pecially WeakCE and WeakCE+ appear to offer the most consistent and substantial gain from

transfer learning across a variety of tasks and transfer scenarios. However, it should be noted

that when the bipartite graph introduces highly ambiguous training from the source, Fine Tuning

remains a highly competitive method.

2.9 Conclusion

In this paper, we address the problem of transfer learning in neural network-based NLP tasks

with variant but related label sets. We proposed a method to employ the knowledge about the

relationship between the source and the target labels represented by a label bipartite graph to

improve the transfer learning. The bipartite graph is used to map the training examples of the

source task to the target task label space where the mapped example could be assigned an am-

biguous target label set. Then, the training is performed on a union of the target data and the

mapped source data using a weak supervision objective function. We compare our method to the

standard neural-based transfer learning methods under several label relationships scenarios. We

found that even for related tasks, the structure of the label relationships plays an important role

in the efficacy of the tested methods. We also found that our method outperforms that standard

neural transfer learning except for the scenario where the ambiguity degree of label set assigned

to a source examples is high. As future work, we would like to explore ways to learn an initial

mapping automatically and adjust this mapping during the learning.
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Chapter 3: Description-Based Zero-shot Fine-Grained Entity Typing.

3.1 abstract

Fine-grained Entity typing (FGET) is the task of assigning a fine-grained type from a hierarchy

to entity mentions in the text. As the taxonomy of types evolves continuously, it is desirable

for an entity typing system to be able to recognize novel types without additional training. This

work proposes a zero-shot entity typing approach that utilizes the type description available

from Wikipedia to build a distributed semantic representation of the types. During training, our

system learns to align the entity mentions and their corresponding type representations on the

known types. At test time, any new type can be incorporated into the system given its Wikipedia

descriptions. We evaluate our approach on FIGER, a public benchmark entity tying dataset.

Because the existing testing set of FIGER covers only a small portion of the fine-grained types,

we created a new testing set by manually annotating a portion of the noisy train data. Our

experiments demonstrate the effectiveness of the proposed method in recognizing novel types

that are not present in the training data.

3.2 Introduction

Entity Typing assigns a semantic type (e.g., person, location, organization) to an entity mention

in text based on the local context. It is useful for enhancing a variety of Natural Language

Processing(NLP) tasks such as question answering [22, 13], relation extraction [40, 85], and

entity linking [68, 62]. Traditional Named Entity Typing systems consider a small set of coarse

types (e.g., person, location, organization) [70, 31, 6]. Recent studies address larger sets of fine-

grained types organized in type hierarchies (e.g., person/artist, person/author) [37, 8, 83, 49].

Fine-Grained Entity Typing (FGET) is usually approached as a multi-label classification task

where an entity mention can be assigned multiple types that usually constitute a path in the

hierarchy [58].

In real-world scenarios, there is a need to deal with ever-growing type taxonomies. New

types emerge, and existing types are refined into finer sub-categories. Traditional methods for
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Figure 3.1: Framework Overview of DZET

entity typing assume that the training data contains all possible types, thus require new annota-

tion effort for each new type that emerges. Zero-shot learning (ZSL), a special kind of transfer

learning, allows for new types to be incorporated at the prediction stage without the need for

additional annotation and retraining. The main idea behind ZSL is to learn a shared semantic

space for representing both the seen and unseen types, which allows the knowledge about how

examples link to the seen types to be transferred to unseen types.

For fine-grained entity types, we observe that their associated Wikipedia pages often pro-

vide a rich description of the types. To capture this, we propose a Description-based Zero-shot

Entity Typing (DZET) approach that utilizes the Wikipedia description of each type (e.g., see

https://en.wikipedia.org/wiki/Artist for description of the type person/artist)

to generate a representation of that type. We learn to project the entity-mention representations

and the type representations into a shared semantic space, such that the mention is closer to

the correct type(s) than the incorrect types. The mid-level type representation derived from the

Wikipedia page along with the learned projection function allows the system to recognize new

types requiring zero training examples. The framework of DZET is presented in Figer 3.1.

We investigate different approaches for constructing the type representation based on Wikipedia

descriptions. Note that the descriptions can be quite long, often containing many different parts

https://en.wikipedia.org/wiki/Artist
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that are useful for recognizing different entity mentions. This motivates us to generate a bag of

representations for each type and apply average pooling to aggregate the results.

Framework Overview of AFET

We evaluate the performance of our methods on FIGER, a benchmark dataset for the FNET

task, in which types are organized in 2-levels hierarchy. In this work, We focus on testing our

method’s capability in recognizing unseen fine-grained types ( Level-2 types in this dataset). As

the current testing set of FIGER contains examples from only a few level-2 types, we created a

new test data that covers most of the level-2 types by manually annotating a portion of the noisy

training data.

Below we summarize our main contributions.

• We proposed a description-based zero-shot fine-grained entity typing framework that uses

Wikipedia descriptions to represent and detect novel types unseen in training.

• We created a new testing set for fine-grained entity typing that provides much better cov-

erage of the level-2 (fine-grained) types compared to the original FIGER test data.

• We provided experimental evidence of the effectiveness of our approach in comparison

with established baselines.

3.3 Related Work

Existing work on FGET focuses on performing context-sensitive typing [19, 8], learning from

noisy training data [1, 58, 83], and exploiting the type hierarchies to improve the learning and

inference [87, 49]. More recent studies support even finer granularity [7, 49]. However, all the

methods above have the limitation that they assume all types are present during training.

Zero-Shot Learning has been extensively studied in Computer Vision (CV) [76] for tasks

such as image classification [32, 94, 64], object localization [35, 36] and image retrieval [84, 92].

A common approach for zero-shot learning in CV is to represent each class (e.g., Zebra) by

a set of semantic attributes such as its shape and color. The semantic attributes serve as the

intermediate level that connects the visual features with the classes. The model is trained to

learn an alignment between the semantic attributes and the visual features where a new class

can be recognized using its semantic attributes without the need for any training examples. In

contrast, this type of approach tends not to work well for NLP applications as the semantic
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concepts/classes in NLP are often more complex and cannot be easily described by a set of pre-

defined attributes. This explains why the few studies of ZSL for NLP use very different methods

to create the transferable intermediate representations.

Zero-Shot Learning has been studied for a number of NLP tasks including event extraction

[24, 34, 67], relation extraction[40], Conversational Language Understanding [34]. Specifically,

Zero shot entity typing has also been explored, where most of the prior methods adopt the idea

of learning a shared semantic space for representing the entities as well as the types, but differ

in how they construct the type embeddings. In OTyper [89], each type is represented by aver-

aging the embedding of the words constitutes the type label. On the other hand, ProtoLE [41]

represents each type by a prototype that consists of manually selected entity mentions, where

the type embedding is obtained by averaging the prototype mentions’ word embeddings. While

label embeddings adopted by OTyper not sufficient to compensate for the absence of training

data, ProtoLE still requires a very careful manual mention collecting. In contrast, our work dif-

fers from OTyper and ProtoLE by constructing the type representations based on the Wikipedia

descriptions of the types, which not only carry more information about the type but also can be

easily adapted to other tasks such as event typing and text classification.

3.4 Proposed Approaches

3.4.1 The Typing Function

We will begin by introducing our typing function that is used to compute a score between a given

mention and type pair, given their corresponding vector representations. We will discuss how to

construct the representations in later sections. Formally, the input to this typing function consists

of the representation of the mention, denoted by x ∈ Rd; and the representation of a candidate

type t, denoted by yt ∈ Rd́. It computes a bi-linear score for the (x, yt) pair as follows:

f(x, yt,W ) = xTWyt

where W ∈ Rd×d́ is a compatibility matrix. Following [87, 41], we factorize W as a product

of two low-rank matrices to reduce the number of parameters. That is W = ATB, where

A ∈ Rh×d and B ∈ Rh×d́ (We use h = 20). The scoring function f can be rewritten as:

f(x, yt, A,B) = θ(x,A) · φ(yt, B) = (Ax)TByt
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where θ(x,A) : x → Ax and φ(yt, B) : yt → Byt serve as the projection functions that map x

and yt into a shared semantic space.

3.4.2 Entity Mention Representation

To obtain the representation for entity mentions, we adopt the same neural approach proposed

by Shimaoka et al. [63]. Given an entity mention with its context, we compute a vector vm to

present the mention m itself, and another vector vc to represent its left and right contexts cl and

cr. vm is computed by simply averaging the embedding of the individual words in m.

To compute the context embedding vc, we first encode cl and cr using a bidirectional-LSTM.

Let cl1, ..., c
l
s and cr1, ..., c

r
s be the word embedding of the left and the right context respectively,

where s is the window size (we use s = 10), the output layer of the bi-LSTM is denoted as:−→
hl1,
←−
hl1...,

−→
hls,
←−
hls and

−→
hr1,
←−
hr1...,

−→
hrs ,
←−
hrs . We then compute a scalar attention for each context word

using a 2-level feedforward neural network:

eji = tanh(We

−→hji←−
hji

); ãji = exp(Wae
j
i )

Where We ∈ Rdh×2×da , Wa ∈ R1×da , dh is the dimension of LSTM, da is the attention

dimension, j ∈ {l, r}. Next, we normalize aji s such that they sum up to 1. i.e., aji =
ãji∑s

i=1(ãli+ã
r
i )

.

Finally the context representation is computed as:

vc =
s∑
i=1

(ali

−→hli←−
hli

+ ari

[−→
hri←−
hri

]
)

. The final representation of the entity mention x ∈ Rd is a concatenation of vm and vc.

3.4.3 Type Representation

Let Pt be the Wikipedia page that is used to build a representation for type t. Some types do not

have a Wikipedia page with a title the same as the type label. In such cases, we manually look

for a Wikipedia page of a similar concept. For example, we represent the type living-thing by

the Wikipedia page organism.

To get a type representation, We started by the simplest possible method which is averaging
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Figure 3.2: Overview of the general neural architecture used for DZET + Multi-rep, DZET +
Avg encoder, DZET + Weighted Avg encoder, and the basellines(Label-embd, ProtoLE).All of
these methods use the same architecture but differ in how they construct the label embeddings.
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Figure 3.3: Overview of DZET +Multi-rep. Bi-directional LSTM and attention are used to get
an embedding yti of every representation rti in the bag of representations of the type t. Then,
the multiple representations are averaged to obtain a single representation of the type t.

the embedding of words in the Wikipedia page ( we call this Avg encoder). Since some words

in the Wikipedia page carry more of the type semantic than the other words we also consider a

(tf-idf)-weighted version of the Avg encoder. Figer 2.2 illustartes the Neural architecture used in

this work.

Learning multiple representations. Wikipedia descriptions are often long and contain mul-

tiple parts, where different parts may capture different aspects of the type and relate to different

mentions. Moreover, sequence models such as LSTM cannot be applied to such long sequences.

This motivates us to consider the approach of constructing a bag of multiple representations for

each type based on its Wikipedia description. To obtain a bag of representations for type t, we

first use a fixed-length window to incrementally break Pt into multiple parts, one paragraph at a

time. If a paragraph fits in the current Window, it is added. Otherwise, a new window is initiated.

Each window of text rti is then used to generate one representation. To construct an embedding

for rti, we adopt the same Bi-directional LSTM and attention mechanism that is used to embed

the mentioned context. Figure 3.2 illustrates learning multiple representations.
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To compute the score for type t given its multiple representations, we compute the score with

each individual representation and average them to produce the final score. This is equivalent to

applying average pooling to the multiple representations to obtain a single representation due to

the bi-linear typing function. During the training, it is important to apply backpropagation after

aggregating the results, this helps greatly in alleviating the effect of differences in the size of the

representation bags of different types.

3.4.4 Training and Inference

Given the training data, we jointly train the representation and the scoring function by minimiz-

ing a ranking score. Let Y(i) and Y(i) denote the set of correct and incorrect types assigned to

the example x(i) respectively, we learn to score types in Y(i) higher than types in Y(i) with a

multi-label max-margin ranking objective as follows:∑
y∈Y

∑
ý∈Y

max(0, 1− f(x, y,A,B) + f(x, ý, A,B))

At testing, both seen and unseen types are mapped to their learned representations, which are

then scored for a given input. Given the scores, we conduct a top-down search following the type

hierarchy Ψ. Starting from the root we recursively find the type with the highest score among

the children. Since we focus on the fine-grained types, we stop the search when a leaf type is

reached and predict that the mention is positive for all types along the path leading the to leaf

type.

3.5 Experimental Settings

Datasets. Our experiments use FIGER and BBN, two publicly available fine-grained entity

typing benchmark datasets in which types are organized into a 2-level hierarchy. The training

data of FIGEr consists of sentences sampled from Wikipedia articles, while BBN training comes

from Wall Street journal articles. Both training sets are and automatically annotated via distant

supervision [37], and the testing sets are of manually annotated.

Setting. To evaluate our capability to recognize fine-grained types in zero-shot setting, we

assume all second-level types are unseen during training, i.e., we remove all level-2 types from
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Original dataset New dataset
train dev test train dev test

# of mentions 2000k 10k 563 1999k 10k 917
# of types 111 111 47 46 46 66
# of level-2 types 65 65 26 0 0 40

Table 3.1: Statistics of FIGER dataset.

the train and dev data but keep them in the test data. We observe that the FIGER testing set

covers only a small number of second-level types. This renders it insufficient for testing under

the evaluation setting we adopt. Moreover, the training data is noisy since it is automatically

annotated by distant supervision. As a result, we cannot just use part of it for testing.

To overcome this limitation, we manually annotated new testing set from the noisy training

data of FIGER. We first divide the training set into clean and noisy as suggested in [58]. Clean

examples are those whose types fall on a single path (not necessarily ending with a leaf) in Ψ.

For instance, the mention with labels person, person/author, and person/doctor is considered as

noisy example because the labels form two paths.

We then manually verify the correctness of up to 20 examples from the clean training data

for every level-2 type. These examples are removed from training and added to the testing set.

We ignore the types with no clean examples. The statistics of the new and original datasets are

reported in Table 4.1.

Baselines. We consider two baselines that employ the same neural architecture but use dif-

ferent type representations. The Label-embd baseline use the average of the embedding of the

words in the type label as the type representation. ProtoLE baseline uses the prototypes-based

label embedding learned by Ma et al.[41], where each type is represented by the set of the most

representative entity mentions. The type embedding is the average of the word embeddings of

all mentions in the corresponding prototype.

Evaluation metrics. Following prior works in FGET, we report Accuracy (Strict-F1), loose

Macro-averaged F1 (F1ma) and loose Micro-averaged F1 (F1mi) [37].

Training and hyperparameters. For every model we trained, we tune all of the hyper-parameters

using a development set. We use the version of FIGER provided by [63] which already with-
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Approach
Overall Level-1 Level-2

Acc F1ma F1mi F1ma F1mir F1ma F1mir

Label-embd 0.2846 0.5510 0.5603 0.8165 0.8163 0.2854 0.2954
ProtoLE 0.2541 0.4982 0.5093 0.7424 0.7422 0.2541 0.2657

DZET + Avg encoder 0.3141 0.5522 0.5614 0.7903 0.7902 0.3141 0.3247
DZET + Weighted Avg encoder 0.3261 0.5500 0.5607 0.7740 0.7738 0.3261 0.3390
DZET + Multi-rep 0.3806 0.5953 0.6045 0.8100 0.8098 0.3806 0.3926

Table 3.2: Level-1 , Level-2 and overall performance of Label embd, ProtoLE, and DZET
variants on FIGER dataset.

Approach
Overall Level-1 Level-2

Acc F1ma F1mi F1ma F1mir F1ma F1mir

Label-embd 0.2458 0.5031 0.5180 0.7603 0.7603 0.2458 0.2608
ProtoLE 0.2186 0.5031 0.5201 0.7877 0.7877 0.2186 0.2338

DZET + Avg encoder 0.3435 0.5409 0.5583 0.7382 0.7382 0.3435 0.3664
DZET + Weighted Avg encoder 0.4030 0.5697 0.5899 0.7364 0.7364 0.4030 0.4325
DZET + Multi-rep 0.4460 0.5993 0.6161 0.7525 0.7525 0.4460 0.4718

Table 3.3: Level-1 , Level-2 and overall performance of Label embd, ProtoLE, and DZET
variants on BBN dataset.

hold a portion of the training set as a development set. We randomly development set from

BBN training set. For each experiment, we report that testing results of the model that has the

best accuracy on the development set. We adopt glove 300-dimensional word embedding [55]

throughout this work except for prototype baselines; we use word2vec [42] as it is used to com-

pute the prototypes embedding in the original works [41]. The hyper-parameters used in the

feature representation component are the same as in [63]. we set both of the hidden-size of the

LSTM was set and the hidden-layer size of the attention module to 100. We use Adam optimizer

[29] with the learning rate .001. The model is trained for five epochs. We use Window of size

200 to build a bag of representations for each type from its Wikipedia description.

3.6 Results and Discussions.

Tables 4.6 and 4.5 present the results on FIGER and BBN, evaluated on all types (Overall),

the seen types (Level-1) and the unseen types (Level-2) respectively. From the results, we can

see that our description-based methods have a particularly strong advantage over baselines on

level-2 types. This is consistent with our expectation because Wikipedia descriptions tend to be
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Figure 3.4: The relationship between the length of the Wikipedia description (word count) of
level-2 types and the F-score obtained by DZET+Multi-rep method on FIGER dataset.

highly informative for fine-grained types, but less so for coarser types.

Among the average encoders, we found that weighting the word embedding by the word tf-

idf produces better results than treating the words equivalently. As expected, using LSTM based

multi-representation adds a noticeable benefit to our system as it produces the best performance

among all tested methods, achieving the best performance for level-2 types on both datasets and

outperforming others by a large margin while maintaining highly competitive performance for

level-1 types on FIGER. For BBN, ProtoLE and Label-embd achieve better level-1 performance

than Multi-rep, This could be due to the fact that the descriptions of level1-types tend to be more

abstract and less informative than the description of level-2 types, which suggest that combining

Multi-rep with ProtoLE or Label-embd could lead to further improvement.

The effect of description quality. Figure 3.4 analyzes the relationship between the length

of the Wikipedia description as one criterion of the description quality and the performance

of Multi-rep method on FIGER dataset. In particular, we group the types based on the length

of their Wikipedia descriptions and provide the five-number summary box plot of the F-scores
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for each group. It can be readily observed that the performance is low when the description

of the type’s Wikipedia page is too short (< 1000 words) or too long ( > 4000 words). Short

descriptions are less informative and carry less shared semantics with the type’s mentions. On

the other hand, overly long descriptions could also be confusing as it might share a significant

number of common words with the descriptions of other types. A closer look into the results

unveils some exceptions. For example, the F-score on the type ‘/education/educational-degree’

is 0.7742 even it has a long description (6845 words). The description of this type is indeed very

informative and includes a comprehensive list of the educational degrees awarded all around the

world.

The length of the description is not the only factor that affects the performance of DZET

methods. One factor is the performance on the Level-1 types. Since the inference is performed

by following the type hierarchy, if an incorrect type is inferred at level-1, there is no hope to get

the correct level-2 type. Another factor is the amount of overlapping between the descriptions of

the related types. For instance, Multi-rep produces zero F-score on the types‘/event/protest’ and

‘/location/province’ because they share a lot of common words with the types ‘/event/attack’

and ‘/location/county’ respectively, which negatively affects the ability of Multi-rep to distin-

guish between the related types. Both ‘/event/protest’ and ‘/location/province’ have a description

length between 2000 and 3000 words.

To mitigate the effect of the contents overlapping between the highly related type, We plan to

apply mention-sensitive attention mechanisms for future work to aggregate the scores in Multi-

rep instead of max-pooling.

3.7 Conclusions

In this paper, we propose a novel zero-shot entity typing approach that uses Wikipedia descrip-

tions to construct type embeddings. Our architecture relies on the type embeddings to make

predictions for unseen types. We explore several ways to build labels embedding of the type

from its corresponding Wikipedia description starting from using simple averaging weighted

averaging encoders to representing each type by a bag of representations. We demonstrate ex-

perimentally that the bag of representation approach outperforms the simple averaging encoders

and the baselines by a substantial margin, especially for the fine-grained types. We Also analyze

the effect of the length of the type’s Wikipedia description on the ability of the system to recog-
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nize that type. We found that the description with moderate length is the most appropriate. A too

short description is not sufficiently informative while too long description overlaps greatly with

the descriptions of the semantically related types, making it harder to distinguish them during

the training. As future work, we would try to focus on extracting the most useful information

from the description that is specific to the type and not shared with other types. We also would

like to explore combining several methods for the best performance on the types from different

levels.
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Chapter 4: Fine-grained Entity Typing: An Evaluation Focusing on

Fine-grained Types.

4.1 Abstract

Fine-Grained Entity Typing (FGET) is the task of tagging entity mentions in the text with fine-

grained type, organized in type hierarchies (e.g., person/author). Several methods have been

proposed to tackle this problem, most of which are evaluated using three publicly available

benchmark datasets: FIGER, OntoNotes, and BBN. However, we identify several fundamental

issues in the empirical evaluations of these methods. Critically, most existing evaluations only

report the overall performance aggregated on all types in the hierarchy, which is typically dom-

inated by the performance on coarse types and provides very little information regarding how

well these methods work for the fine-grained types. This is further compounded by the fact that

the testing sets for two of the three benchmarks have very poor coverage of the fine-grained

types. For example, about 50% of test mentions for the benchmark dataset OntoNotes only have

a single coarse type “other”. In this work, we present a new empirical study that re-evaluates

the most recently proposed FGET methods by 1) introducing new testing sets with significantly

improved coverage for fine-grained types; and 2) examining not only the overall performance

but also detailed per-level, type-specific performance. Our analysis of the tested methods reveals

new insights about the tested methods, invalidates some of the previous claims due to flawed

evaluations and suggests new directions for future improvement for FGET performances.

4.2 Introduction

Tagging entity mentions in the text with their entity types based on the local context (e.g., person,

location) is an important task in Natural Language Processing (NLP). It plays an important role

in a large variety of NLP tasks such as question answering [22, 13], relation extraction [40, 85],

and entity linking [68, 57]. While traditional Named Entity Typing systems (aka Named Entity

Recognition) only consider a small set of coarse types ( e.g. person, location, and organization)

[70, 31, 6], Fine-Grained Entity Typing (FGET) addresses a significantly more challenging task
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involving much larger sets of fine-grained types organized in type hierarchies (e.g., person/artist,

person/author, person/actor) [37, 8, 83, 49].

FIGER, OntoNotes, and BBN are three publicly available benchmark corpora used exten-

sively in current FGET research. The training sets in these corpora are annotated automatically

using distant supervision from the Knowledge Base (KB), while the testing sets are manually

annotated to ensure accurate evaluation. Distant supervision for FGET is performed as follows.

First, it identifies the borders of the entity mentions in the text. The entity mentions are then

linked to their corresponding entities in the knowledge base. All the types that are associated

with the linked knowledge base entities are then assigned to their corresponding mentions. One

potential issue with distant supervision is that it introduces out-of-context typing noise since

mention is assigned all of the types associated with its linked KB entity without taking its lo-

cal context into account. We illustrate the typing noise in Figure 4.1. The mentions of Allen
in all sentences (S1-S4) are linked to the entity Woody Allen, which has several types includ-

ing {person, person/author,person/actor, person/director}. Distant supervision thus assigns all

these types to all the mentions, which creates challenges in learning because some types are not

supported by the contextual evidence. For example, it is clear the local context of S1 only sup-

ports the type person, S2 supports the type person/actor, S3 supports the type person/director,

and S4 supports the type person/author.

Numerous FGET approaches have been proposed in the literature to perform context-sensitive

typing [19, 8, 63], learn from noisy distant supervision training data [1, 58, 83], and exploit the

hierarchical structure of the types to improve learning and inference [87, 49]. However, the em-

pirical evaluation protocols followed by these methods have a critical issue: most existing work

only reports the overall performance averaged across all of the types. As a result, the reported

performance could be dominated by the performance on the coarse types and fails to provide

satisfying answers regarding the ability of these methods to recognize the fine-grained types and

the robustness of these methods against the typing noise. Also, the literature frequently com-

pares models trained using different training data. A recent work [63] demonstrated that the

training data has a drastic impact on the performance, and the choice of the training data can

lead to substantial differences in the reported results.

Moreover, we noticed that the testing sets of FIGER and OntoNotes don’t cover most of the

fine-grained types. For example, about 61% of the test mentions of OntoNotes have only coarse

types (e.g., person, location, other, etc.). Of these coarse-type-only mentions, 82% of them

belong to a single type “other”. In other words, simply predicting “other” for all test mentions
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Figure 4.1: Typing noise introduced by distance supervision: the mention Alen in all sentences
are labeled with the types { person, person/author,person/actor, person/director}, while for each
mention only some of them are correct given the local textual context.

will lead to an accuracy of almost 50%, which is not that far off from the current state-of-the-art

on this dataset. Similar issues can be found for FIGER’s testing set: it a tiny set that has only

563 examples in comparison with the training set of more than 2 million examples. Also, more

than 60% of the fine-grained type are not covered at all. Even for those fine-grained types that

are covered, we found that 72% of them have five or few test examples. This highlights the need

for more representative testing sets with adequate coverage of the fine-grained types.

In this work, we introduce new testing sets for FIGER and OntoNotes with significantly im-

proved coverage for fine-grained types. We manually annotate part of the noisy training set for

each benchmark to augment the corresponding testing set. We present a new empirical study that

re-evaluates the most recently proposed FGET methods on both current and new testing sets. We

train all models using the same train/dev/testing sets to ensure complete fairness in all compar-
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isons. In addition to the overall performance, we report per-level, type-specific performance.

Finally, we analyze the tested methods in view of the new results, which reveals new insights

and suggests new directions for further improvement.

4.3 Related Work

This section reviews most of the FGET approaches that have been proposed to shed light on the

deficiency of the de-facto evaluation protocols and benchmarks in assessing their performance.

FGET was first investigated by Ling and Weld [37]. They used distant supervision to collect

FIGER, a large, noisy FGET training set that consists of 112 types organized into a hierar-

chy. They also manually annotated a significantly smaller testing set to evaluate their approach.

Their system uses linear perceptron to perform multi-label classification. Gillick et al. [19]

proposed a context-dependent FGET method that assigns types to the entity mentions based

on the local context. They used distant supervision to annotate OntoNotes [78] with 89 types

and provided manually annotated testing data. Subsequent FGET studies focus on performing

context-sensitive typing [19, 8], learning from noisy training data [1, 58], and exploiting the type

hierarchies to improve learning and inference for FGET [87, 83]. More recent studies support

even finer granularity [7, 49].

Context-sensitive typing. Earlier works [8, 87, 19, 56] used hand-crafted features ( e.g., head-

word, word shape, brown cluster, etc.) to build a representation of the mention given its context.

However, these features are extracted using various NLP tools, therefore, the inevitable errors of

these tools propagate to the resulting FGET models. Shimaoka et al. [63] proposed an attentive

neural network that uses bi-directional LSTM to encode the mention’s context in addition to the

attention mechanism to focus on the most relevant parts of the context. The mention itself is

encoded by an average encoder. Abhishek et al. [1] added a character-level LSTM to capture

the entity mention morphological and orthographic properties. Xu et al. [83] used similar input

encoding mechanisms as [63] except that they added LSTM over the words in the mention in

addition to the average encoder to obtain the mention embedding. Murty et al. [49] employed

CNN with position embeddings to obtain a representation of the mention and the context.

Learning from noisy training data. Many previous studies [37, 88, 15, 63] ignored the la-

bel noise introduced by distant supervision and assumed that all candidate types assigned to the
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mentions are true types. As revealed by Table 4.2, there is a considerable percentage of noisy

mentions in the training data of the benchmark tasks. Noisy labels may be misleading to the

training and negatively affect the system’s performance. Gillick et al. [19] are the first to ad-

dress the typing noise issue by proposing pruning heuristics. However, this can significantly

reduce the size of the training data primarily for types whose mentions are predominantly noisy

(see Table 4.2). As we will show later in the experiments that even though pruning has been

demonstrated to have limited impact on or even improve the overall performance, it may lead

to substantial performance degradations on the fine-grained types and these types whose major-

ity of the mentions have noisy typeset. We show also these interesting findings are completely

masked by only reporting the overall performance.

Yogatama et al. [87] presented a label embedding method that projects the type labels and

user-defined features into a shared semantic space to encourage the information sharing between

related labels and alleviate the effect of the typing noise. Ma et al. [41] proposed a zero-shot

label embedding framework that incorporates hierarchical and prototypical information of the

labels to learn embeddings that are robust to the label noise and facilitate recognizing both seen

and unseen types. Zhang et al. [91] presented a path-based attention neural model to learn from

the noisy data by leveraging the hierarchical structure of the types. Nevertheless, these methods

still treat all of the noisy candidate types as correct types.

Ren at al. [58] proposed an FGET system (called AFET) that separately models the clean

and the noisy mentions, leading to a significant performance gain on benchmark datasets. AFET

incorporates the type hierarchy and the type correlation information to induce two loss functions

to learn from mentions with clean and noisy candidate types, respectively. The learning is per-

formed collectively by minimizing the two objectives. Following the same direction, Abhishek

et al. [1] presented a neural network model that uses two different loss functions to model the

clean and the noisy mentions separately. Their loss functions are non-parametric zero-centered

variants of the Hinge loss. More recently, Xu et al. [83] proposed to treat FGET as a single-label

multi-class classification problem where each class is a node in the type hierarchy. They pro-

posed a neural network and used a variant of the cross-entropy objective to handle the mentions

with noisy labels.

However, all of these approaches use an uninformative testing set with very poor coverage

of fine-grained types. Besides, they settle for reporting the overall performance and ignore how

different methods may behave for types from different levels and with varying ratios of noise.

As we will demonstrate later in the experiments, the overall performance can hide interesting
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details of the performance and hinder a deep understanding of the weaknesses and the strengths

of different methods.

4.4 Problem Description

Fine Grain Entity Typing aims to automatically tag an entity mention in a natural language

sentence with its entity type(s). The training data Dtrain for FGET is automatically collected

via distant supervision using a knowledge Base with a set of types T that are organized in a

hierarchy Ψ. Specifically, Dtrain consists of a set of sentences, each sentence consists of the

entity mention m(i), the context c(i) = [cl(i), cr(i)], which includes both the left context cl(i) and

the right context cr(i) respectively, and the assigned candidate type set Y(i) ⊆ T . In other words

Dtrain = {([m(i), c(i)],Y(i))}Ni=1. Frequently we use Ȳ(i) to denote the complement of Y(i),

which contains the set of types that are not true for a mention m(i), i.e., T = Y(i) ∪ Ȳ(i). Given

a test mention m along with its context c, the goal is to learn a classifier that predicts a one-hot

label vector ŷ ∈ {0, 1}L, where L denotes the number of types Ψ. Here ŷt = 1 if the mention

m is of type t, and 0 otherwise. It is typically assumed that the types of a mention should form

a single path in Ψ. Hence ŷ is commonly restricted such that the positive types form a single

type-path (not necessarily ending with a leaf type).

4.5 New Evaluation Setting

4.5.1 Datasets

Our experiments use three standard and publicly available benchmark datasets: FIGER, OntoNotes,

and BBN. For FIGER and OntoNotes, we use the versions that are provided by Shimaoka [63]

as they are used in the most recently proposed works. For BBN, we use the version provided by

Ren et al. [58]. Table 4.1 shows the statistics of these datasets. The details are as follows:

• FIGER. The training data of FIGER consists of sentences sampled from Wikipedia pages

and automatically annotated with a total of 111 types organized into a 2-level hierarchy

derived from Freebase. The testing set consists of 77 news reports manually annotated as

described by Ling and Weld [37].

• OntoNotes. This benchmark dataset consists of sentences from the news-wire documents
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FIGER OntoNotes BBN
train test new-

test
train test new-

test
train test

# of mentions 2001k 563 1232 218K 8963 9370 86K 13766
# of types 111 47 73 87 67 79 47 46
# of level-1 types 46 15 25 4 4 4 16 16
# of level-2 types 65 26 48 43 34 40 31 30
# of level-3 types - - - 40 29 35 - -
% of mentions with level-1 types only 28.6 65.02 27.35 9.3 61.9 59.2 45.5 29.13
% of mentions with levels 1&2 types 71.4 34.98 72.65 56.2 33.6 34.5 54.5 70.87
% of mentions with levels 1&2&3 types - - - 34.5 4.5 6.3 - -
% of levels 2&3 types occur 5 times or
less

0 72.0 1.1 0 36.5 5.3 0 6.8

Table 4.1: Statistics of FIGER, OntoNotes and BBN datasets including training sets, current
testing set, and new testing sets.

Dataset FIGER OntoNotes BBN

% Noisy mentions 35.3% 27.0% 24.11%
% Types with ≥ 50% noisy mentions 63.9% 42.5% 37.5%
# Types with 100% noisy mentions 5 4 4

Table 4.2: Statistics about noisy lables in FIGER, OntoNotes and BBN training sets.
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presented in OntoNotes dataset [78]. The training set is automatically annotated using

DBpedia Spotlight to link the entity mentions to Freebase, then mapped to a refined 3-

level hierarchy. The testing set is manually annotated as described in [19].

• BBN. This dataset is a set of Wall Street journal articles. The DBpedia Spotlight entity

linking system is used to annotate the training data, and the testing set contains mentions

manually annotated using 47 types constituting a 2-level hierarchy.

The need for additional testing data. By observing Table 4.1, We can see that the testing

sets in FIGER and OntoNotes are inadequate for testing FGET systems for fine-grained entity

typing. For example, the testing set of FIGER is very small, containing only 563 mentions, and

covers only 36.9% of all types. In addition, only 35.5% of the testing mention has a level-2

type, while 71.4% of the mentions in the training set belong to a second-level type. Even worse,

87.6% of level-2 types in FIGER’s testing set have only 5 or fewer examples. Likewise, 51% of

the fine-grained types are not presented in OntoNotes’ testing set, and the size of 36.5% of the

types that are present do not exceed five examples. In order to achieve an effective evaluation of

the capability of fine-grained typing, we need to augment the testing data for both benchmarks

to enhance their coverage of fine-grained types.

Testing data augmentation. Because the training sets of the benchmarks are noisy as they

are annotated by distant supervision, it is not valid to simply take part of the training data to

augment the testing set. To address this issue, we manually annotated a new testing set for

FIGER and OntoNotes respectively from their corresponding noisy training set as follows. We

first divide the mentions in the training set into the clean and noisy mentions as suggested by

Ren et al. [58], where clean mentions are those whose types fall on a single path in Ψ (not

necessarily ending with a leaf node). For instance, a mention with labels person, person/author,

and person/doctor is considered noisy because the types form two pats in Ψ. We then collect

a set of new testing data by manually verifying the typing correctness of a number of mentions

from the clean mentions for types that have sufficient clean mentions. For the types that have

limited or insufficient clean data, we then randomly sample some mentions from the noisy part

and manually verify them by deleting types that are inconsistent with the mention’s context.

Following this procedure, we collected at least 20 testing examples for every level-2 types for

FIGER and between 5 to 20 examples for level-l2 and level-3 types for OntoNotes. These
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mentions are then removed from the training sets and added to the testing sets.

Additional Preprocessing. We apply some preprocessing steps to the datasets to fix some

inherited issues. In addition to removing the redundant examples from Shimaoka’s [63] version

of OntoNotes, we perform the following:

• Merging labels. We found that FIGER has two identical types: living thing and livingth-

ing. We observed that mentions under both are about living species, thus we combined

them. We found a similar issue in OntoNotes with the type geography. It is split into

two types geography and geograpy because of a typo. Likewise, we combine them. This

explains the slight differences in the number of types in these datasets with previous work.

We also found three sub-types in the BBN testing set that do not exist in the training set,

we back off the examples under these types to their parent types.

• Fixing annotations in FIGER’s testing set. We found that some mentions in FIGER’s

original testing set only have level-2 types (e.g., mentions under /education/department

should be under /education as well). We added the level-1 types to all of these examples.

4.5.2 Evaluated FGET Methods

In this work, we empirically evaluate four FGET methods: Attentive [63], AFET [58], AAA [1],

and NFETC [83]. We choose them because they are the most recently proposed FGET methods

with the highest reported results. Besides, the code of these systems is publicly available, en-

abling us to re-evaluate them using our new evaluation setting. Note that fundamentally FGET

is a hierarchical multi-label classification problem with labeling noise due to distant supervision.

Critically, these methods differ in how they approach the multi-label problem, how they incorpo-

rate the hierarchical information, and how they address the labeling noise. Below we introduce

each method.

4.5.2.1 Attentive

Shimaoka et al. [63] proposed Attentive, which transforms the multi-label classification task

for FGET into a set of binary classification tasks (often referred to as the binary relevance

method [93]). Specifically, Attentive trains a neural network model that uses bi-directional
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LSTMs to encode the left and the right context of an entity mention and uses an attention mech-

anism to focus on the most relevant expressions in the context. Notably, this method ignores

the out-of-context typing noise and assumes that all labels obtained via distant supervision are

correct. The details of Attentive are as follows:

Input Representation. To obtain a representation of the entity mention given the context, all

words in m , cl and cr are represented by their word embeddings. The mention vector vm is sim-

ply computed by averaging the individual words in the entity mention. The context embedding

is generated by a trained bi-directional LSTM with attention mechanism to weight the LSTM

outputs toward computing the final context representation. Formally, let cl1, ..., c
l
s and cr1, ..., c

r
s

be the word embeddings of the left and the right context respectively, where s is the window size

(s = 10 is used). cl and cr are encoded using bi-directional LSTMs. The output layer of the

bidirectional LSTM is denoted as:
−→
hl1,
←−
hl1...,

−→
hls,
←−
hrs and

−→
hr1,
←−
hr1...,

−→
hrs ,
←−
hrs . Then a scalar attention

is computed for each context word using a 2-level feed-forward neural network:

eji = tanh(We

−→hji←−
hji

) (4.1)

ãji = exp(Wae
j
i ) (4.2)

Where We ∈ Rdh×2×da , Wa ∈ R1×da , dh is the dimension of LSTM, da is the attention

dimension, j ∈ {l, r}. Next, we normalize aji ’s across both the left and right contexts such that

they sum up to 1, i.e.,

aji =
ãji∑s

i=1 ã
l
i + ãri

. Finally the context representation is computed as

vc =

s∑
i=1

ali
−→hli←−
hli

+ ari

[−→
hri←−
hri

]
. The final representation of the entity mention x ∈ Rd is a concatenation of vm and vc (

i.e. [vm, vc])) .
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Training and Inference Having computed the entity mention representations, the probability

of the type y is computed as follows:

p̂(y = 1|m, c) =
1

1 + exp
(
−Wy

[
vm

vc

]) (4.3)

Where Wy ∈ RL×(da+dh) is the weight matrix. The binary cross-entropy objective is used for

training. At inference time, the assumption that at least one type is assigned to each mention

is enforced by first assigning the type with the largest probability. Then, additional types are

assigned to the mention based on the condition that their corresponding probabilities must be

greater than a threshold (0.5) that is determined by tuning on the development set.

Hierarchical Label Encoding. Since Binary Relevance treats the multiple types indepen-

dently and neglects the hierarchical structure of the types, Attentive also employs a hierarchical

encoding scheme that allows for parameter sharing between the types and their ancestors in Ψ.

Note that the rows of weight matrix Wy can be viewed as the embedding of the types, whose dot

product with the mention and context representation is used to score each type. To capture the

hierarchical structure of the types, Attentive assumes that Wy is decomposed as the product of a

learned matrix Vy and the structure matrix SΨ defined based on Ψ:

W T
y = VySΨ

where SΨ ∈ RL×L is a binary matrix that encodes the “is-a” relationships between the types

in Ψ. Concretely, SΨ is defined as follows:

SΨ(i, j) =

1, if i = j or j ∈ Γi.

0, otherwise.
(4.4)

where Γi denotes the set of ancestors of the type yi.
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4.5.2.2 AFET

AFET was proposed by Ren et al. [58] and was the first FGET system that separately mod-

els clean and noisy mentions, leading to a significant reported performance gain, especially on

OntoNotes. A key novelty of AFET is that it incorporates the type hierarchy Ψ and type-to-type

correlation information to induce an adaptive-ranking loss function that poses a smaller penalty

on negative types that are semantically more relevant to the positive types.

Input Representation. AFET relies on hand-crafted features to capture the syntactic and se-

mantic properties of the mention and its context. Examples of these features include the head-

word of the mention, Part Of Speech (POS) tags, word shape, and the brown cluster.

Training set partition. Let M to be the set of all mentions in the training set, AFET separates

the mentions in M into the sets of clean mentions Mc and noisy mentions Mn. If the types in

Y(i) associated with the mentionm(i) constitute a single path in Ψ (not necessarily ending with a

leaf node), then it is considered clean and added to Mc, otherwise, it is deemed noisy and added

to Mn.

Training and Inference. AFET adapts a ranking-based learning objective for the task of

FGET [16]. Their system learns a projection function to map the mention and its types (path)

into a shared semantic space. The learning from the clean mentions is performed by Weighted

Approximate-Rank Pairwise loss (WARP) [79] enhanced by adding adaptive margins between

the types. The goal of the adaptive margins is to rank the positive types ahead of the negative

type while differentially imposing varying penalties on the negative types according to how re-

lated they are to the positive types. For example, if the positive label is “athlete”, the negative

type “coach” should receive a smaller penalty (i.e., has a smaller margin) than the negative type

of “businessman” since the former is more related to the type “athlete” than the latter. More

precisely, AFET defines the loss for clean mention m(i) ∈Mc as follows:

lc(m
(i),Y(i), Ȳ(i)) =

∑
yk∈Y(i)

L(ryk)
∑

yk̄∈Ȳ(i)

l
(i)

k,k̄
(4.5)

l
(i)

k,k̄
= max(0, γk,k̄ − fk(m(i)) + fk̄(m

(i))



49

ryk =
∑
yk̄

1(γk,k̄ + fk̄(m
(i) > fk(m

(i)))

where γk,k̄ is the adaptive margin between yk and yk̄ computed as γk,k̄ = 1 + 1
wk,k̄+α . Here

α is a smoothing paramter, and wk,k̄ is the normalized number of shared entities between yk and

yk̄ in a KB. This implies that the smaller the margin γk,k̄ is, the less that type yk̄ gets penalized.

L(z) =
∑z

i=1
1
i transforms ranks into weights. The intuition of using L(ryk) is that if the pos-

itive type is ranked lower, the violation should be penalized more. The loss ln(m(i),Y(i), Ȳ(i))

over Mn is computed as follows:

ln(m(i),Y(i), Ȳ(i)) = L(ryk∗ )
∑

yk̄∈Ȳ(i)

l
(i)

k∗,k̄
(4.6)

l
(i)

k∗,k̄
= max(0, γk∗,k̄ − fk∗(m(i)) + fk̄(m

(i))

ry∗k =
∑
yk̄

1(γk∗,k̄ + fk̄(m
(i) > fk∗(m

(i)))

where y∗k = argmaxyk∈Y(i) fk(m
(i)).

Finally, the overall loss is computed as follows:

J(θ) =
∑

m(i)∈Mc

lc(m
(i),Y(i), Ȳ(i)) +

∑
m(i)∈Mn

ln(m(i),Y(i), Ȳ(i)) (4.7)

The type inference is conducted via a top-down greedy search following the type hierarchy Ψ.

Starting from the root, the type with the highest similarity to the mention among the children is

returned. This continues recursively until a leaf type is reached or the similarity falls below a

predefined threshold.

4.5.2.3 AAA

AAA [1] is another embedding-based system that separately models the mentions in Mc and

Mn. It aims to overcome two limitations of AFET. First, it employs a neural network to learn

a representation of the mentions instead of relying on hand-crafted features. Second, it uses a

ranking-based objective [18] that is calibrated around zero to eliminate the need for a similarity

threshold during the type inference.
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Input Representation. Similar to Attentive, AAA uses bi-directional LSTMs to compute a

context representation. However, AAA does not use attention mechanism to get a weighted

average of the LSTM hidden states. Instead, the representation is simply the concatenation of

the final outputs of the forward and backward LSTMs. Another difference is that it takes the

whole context into account, not just a fix-sized window around the mention. It also includes

the mention itself in the computation of the left and the right context embeddings. Furthermore,

AAA uses a character-based LSTM to obtain an embedding of the mention itself that encodes

information about the entity mention’s morphology and orthography, instead of using an average

encoder over the word embeddings.

Training and Inference AAA uses a non-parametric version of hinge loss that maintains a

margin centered at zero between the positive and the negative types to learn from Mc as follows:

lc(m
(i),Y(i), Ȳ(i)) =

∑
yk∈Y(i)

max(0, 1− fk(m(i)) +
∑

yk̄∈Ȳ(i)

max(0, 1 + fk̄(m
(i)) (4.8)

On the other hand, AAA learns fromMn by considering only the type in Y(i) with the best score

fk∗(m
(i)). ln is defined as follows and the total loss is computed exactly as in equation 4.7:

ln(m(i),Y(i), Ȳ(i)) = max(0, 1− fk∗(m(i)) +
∑

yk̄∈Ȳ(i)

max(0, 1 + fk̄(m
(i)) (4.9)

.

Similar to AFET, the type inference AAA is also performed by a top-down search in the

given Ψ, Starting from the tree root, the best type with the highest score among node’s children

is recursively selected based. This process continues until a leaf node is encountered, or the best

score falls below zero.

4.5.2.4 NFETC

As mentioned before, binary relevance methods transform multi-label classification to a set of

binary classification problems. Another approach for multi-label classification is the Label pow-

erset (LP) [73] method that reduces MLC into a single-label multi-class classification problem.

In particular, it treats each unique type set that has appeared in the training data as a single unique

class. This approach is adopted by Xu et al.[83] to tackle FGET as a multi-class classification
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problem based on the assumption that each mention can only have one type-path depending on

the context, and each type-path can be represented uniquely by its terminal type, which may or

may not be a leaf node in Ψ. Their Neural Fine-Grained Entity Type Classification (NFETC)

model uses a variant of cross entropy loss function to handle out-of-context labels automatically

during the training phase. Additionally, a hierarchical loss normalization is introduced allowing

the model to utilize the type hierarchy and to adjust the penalties for correlated types.

Input Representation. NFETC uses a similar input representation as in Attentive with two

slight differences. First, when computing the context representation, the embedding of each

context word eji in equation 4.1 is computed by applying tanh directly on the hidden states

of the bi-directional LSTMs without using the weight matrix We. Formally, let cl1, ..., c
l
s and

cr1, ..., c
r
s be the word embeddings of the left and the right context respectively, where s is the

window size (s = 10 is used). cl and cr are encoded using bi-directional LSTMs. The output

layer of the bidirectional LSTM is denoted as:
−→
hl1,
←−
hl1...,

−→
hls,
←−
hrs and

−→
hr1,
←−
hr1...,

−→
hrs ,
←−
hrs . Then a

scalar attention is computed as follows:

eji = tanh(

−→hji←−
hji

) (4.10)

Secondly, in addition to the mention average encoder, the mention is extended by adding one

word before and one word after, then apply word-level LSTM on the extended mention to capture

more semantic information from the mentions. The last output ht+1 then serves as the LSTM

representation ve of the mention. It is worth mentioning that we tried to add this component to

Attentive observed that it did not add any noticeable difference to the performance.

Training and Inference. We first update the definition of Y(i) to be the set of type paths from

Ψ that are associated with the entity mention mi, each represented by its terminal type. Given a

mention m and the computed entity mention and context representations, the probability of type

y (aka the path ending at y) for mention m is computed as follows:

p̂(y|m, c) = Softmax
(
Wy

vmvc
ve

+ b
)

(4.11)
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Similar to AFET and AAA, NFETC separately model the Mc and Mn during the training. For

all the mention in Mc , Y(i) has only one type-path which is y(i), while it has more then one type

path for every mention in Mc. To learn from Mc, NFETC employs the traditional cross-entropy

function as follows:
J(θ) =

1

N

N∑
i

log p̂(y(i)|m(i), c(i)) + λ||θ||2 (4.12)

where θ denotes all parameters of model, λ is the regularization parameter. In contrast, NFETC

learns from Mn using a variant of the cross-entropy loss:

J(θ) =
1

N

N∑
i

log p̂(y∗
(i) |m(i), c(i)) + λ||θ||2

wherey∗
(i)

= argmax
y∈Y(i)

p̂(y|m(i), c(i))

This follows the assumption that the type (path) in Y(i) that gets the highest probability given

the local context during the learning is the correct type.

Hierarchical Loss Normalization. Since it is unreasonable to treat all types equally and ig-

nore the hierarchical relationship between the types, NFETC introduced the concept of hierar-

chical loss normalization to adjust the probability in 4.11 as follows:

p̂∗(ŷ|m, c) = p̂(ŷ|m, c) + β
∑
t∈Γ(ŷ)

p̂(t|m, c) (4.13)

where Γ(ŷ) is the set of ancestor types along the type-path of ŷ. This can be viewed as perform-

ing smoothing of the probability where the probability of a type is enhanced by adding a portion

of its ancestors’ probabilities. This also helps in introducing less penalty on the ancestors of the

correct type. β is a hyperparameter to control the amount of smoothing. This update is followed

by a re-normalization to form a valid probability distribution.

4.5.3 Evaluation Metrics

Following prior works in the literature, we evaluate all methods using Accuracy (Strict-F1),

loose Macro-averaged F1 (F1l.ma) and loose Micro-averaged F1 (F1l.mi) [37]. Let Ti and T̂i
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be the true types and the predicted types of the mention mi respectively, N is the total number

of mentions.

Accuracy =
1

N

N∑
i=1

I(Ti = T̂i)

Recalll.ma =
1

N

N∑
i=1

|Ti ∩ T̂i|
|Ti|

Precisionl.ma =
1

N

N∑
i=1

|Ti ∩ T̂i|
|T̂i|

Recalll.mi =

∑N
i=1|Ti ∩ T̂i|∑N
m=1|Ti|

Precisionl.mi =

∑N
i=1|Ti ∩ T̂i|∑N
m=1|T̂i|

F1l.ma and F1l.mi are computed as the harmonic mean of the corresponding recall and

precision. Accuracy measures the exact matches between the prediction T̂i and ground truth

T . The correctness of partial matching is reflected in F1l.ma and F1l.mi. Specifically, types

missed by the system will penalize recall, and incorrect predictions will penalize precision. The

difference between F1l.ma and F1l.mi is that the later aggregates the statistics overall mentions

before computing precision and recall, and thus favors methods that work well on mentions with

larger type sets.

A closer inspection of these de facto metrics reveals that they are limited in evaluating the

effectiveness in recognizing fine-grained types as they aggregate all types and the results can be

dominated by coarse-types. To address this, we propose additional metrics that are type-centric

and focus on evaluating how well different methods can recognize different types. Specifically,

we consider the macro-averaged F1 (F1ma) and per-level F1ma and F1mi by computing the

precision/recall for the individual types and aggregate them per level. Let Y denote all the types

in Ψ, M(y) denote the set of all mentions that belong to type y, and M̂(y) denote the set of

all mentions that are predicted to belong to type y. Below we give the definitions of overall

macro-averaged and micro-averaged precision and recall.
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Precisionma =
1

|Y|
∑
y∈Y

|M(y) ∩ M̂(y)|
|M̂(y)|

Recallma =
1

|Y|
∑
y∈Y

|M(y) ∩ M̂(y)|
|M(y)|

Precisionmi =
1

|Y|

∑
y∈Y |M(y) ∩ M̂(y)|∑

y∈Y |M̂(y)|

Recallmi =
1

|Y|

∑
y∈Y |M(y) ∩ M̂(y)|∑

y∈Y |M(y)|

By restricting Y to including only types of a specific level, we can easily compute per-level

F1ma and F1mi measures.

Note that F1ma and F1mi reveal different insights about a method’s performance. Specifi-

cally, F1ma computes per-type precision and recall before averaging over all types. If a method

performs well on a few highly populated types but poorly on some rare types, it will score well

with F1mi but poorly with F1ma. By examining both F1ma and F1mi over all the types as

well as level-specific types, we expect more information can be revealed about the strengths and

weaknesses of different methods.

4.5.4 Training and Hyper-parameter Tuning

For all methods, we follow the same training and parameter tuning protocol. Specifically, we

used the same training set for all methods and randomly sampled 10% of the testing set as the

development set. Then we run each of the tested methods using the corresponding publicly

available code five times with different random initializations using the same dev/test split and

report the mean and the standard deviation of the five runs. For each method, we used the hyper-

parameters that are reported for each dataset in the corresponding article. If a method has not

been tested and reported previously on a dataset, we perform hyper-parameter tuning using the

development set (e.g., we carefully tuned NFETC for BBN).

Method Variations. We tried several variants of the evaluated methods as their source code

allows to understand the impact of different components on the performance.
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• For Attentive, we consider two variants, with (Attentive-Hier) and without (Attentive) the

hierarchical label encoding respectively.

• For AAA, we consider the original algorithm AAA and an additional variant named AAA-

AllC, which treats all mentions as clean mentions, i.e., with not special handling of the

noisy mentions.

• For NFETC, we consider the variant NFETC-hier(f), which filters the noisy mentions

before learning. In contrast, we will refer to the original NFETC as NFETC-hier(r), which

uses the raw data and separately models the clean and the noisy mentions with different

loss functions.

4.6 Results and Discussions

In this section, we present the results of our evaluation and discuss the specific insights that are

revealed by the results.

4.6.1 The Effect of Pruning The Noisy Mentions

We start by re-examining the effect of removing the noisy mentions from the training and de-

velopment data on the performance of the FGET systems. This pruning heuristic was originally

proposed and examined by Gillick et al. [19]. Their experimental results showed that applying

this heuristic can help greatly in improving the overall performance. More recently, Xu et al. [83]

reported the performance of NFETC with and without applying this heuristic. Their results in-

dicate that separately modeling the clean and the noisy mention adds little or no improvement

over using the pruning heuristic. These prior results appear to support that this simple pruning

heuristic can be as effective as (even outperform) approaches with specially designed objectives

for learning from the noisy data.

To put this hypothesis to test under the new evaluation setting, we run Attentive on BBN and

FIGER with and without applying the pruning heuristic. With pruning, there are some types that

are removed completely from the training set as 100% their mentions are noisy. Such types are

also removed from the testing set. The resulting filtered testing set is then used to evaluate the

systems trained on both the filtered and the raw data for a fair comparison. We selected Attentive

because it does not have any special handling of the noisy mentions. That is, it assumes that all
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Filtered data

Dataset Overall Level-1 Level-2

Acc F1l.ma F1l.mi F1ma F1
>50%-noisy
ma F1ma F1mi F1ma F1mi

BBN 53.8±0.7 72.3±0.4 72.0±0.5 36.9±1.5 35.3±1.3 49.2±1.0 75.7±0.5 29.6±1.5 66.0±1.1
FIGER
(org test) 58.4±0.5 75.7±0.6 71.5±0.5 34.5±1.2 34.3±1.6 42.6±1.5 78.1±0.5 28.8±2.5 49.1±0.5

Raw data

BBN 49.3±0.5 73.4±0.5 72.1±0.5 38.1±1.6 38.9±1.6 45.8±0.3 74.0±0.5 33.6±1.1 68.9±0.5
FIGER
(org test) 58.1±1.2 76.8±0.8 73.3±0.7 45.1±0.7 43.1±0.9 51.4±1.0 77.9±0.6 39.8±0.5 58.8±1.2

Table 4.3: A comparison between the performance of Attentive by using the row training data
of BBN and FIGER vs the training data after being filtered from noisy mentions. Performance
is evaluated in term of overall Accuracy, F1l.ma and F1l.mi , per-level F1ma and F1mi, and
F1

>50%-noisy
ma which is the F1 macro-averaged over the types that more the 50% of their mentions

have noisy type sets.

types assigned to the mention are correct. The results are reported in Table 4.3 — the results

on the filtered (raw) data are shown on the top (bottom). The first three columns of the results

report the de-facto metrics, and the remaining columns report the new metrics that we consider.

Focusing on the previously considered metrics, we can see that the pruning heuristic improves

the accuracy of both datasets (a significant 4.5% for BBN). Considering the noisy mentions leads

to a higher F1l.ma and F1l.mi, but the difference is small. This to a large extent is consistent

with the findings of [83, 19]. However, by looking at F1ma, F1
>50%-noisy
ma (considering only

types that have more than 50% of the mentions being noisy) and level-2 F1ma and F1mi, we

can see that pruning noisy mentions drastically decrease the performance (up to 11%) of the

system, especially on the fine-grained types and the types that are dominated by noisy mentions.

To understand how pruning of the noisy mentions affects the performance, we report the

detailed recall, precision, and F1 for the types that are dominated by noisy mentions in Table 4.4.

We removed the types that have zero recall, precision, and F1 in both settings from the table. We

found that removing the noisy mentions significantly affects the recall for most of these (noisy)

types, which is consistent with our expectation because after filtering they tend to have very few

training mentions remaining. The precision is also affected for some of these type. There are a

few types that gained some improvement by removing the noisy mentions. We notice that most

of them have a large number of training mentions, thus eliminating the noisy mentions helped

in improving the quilty their training data while still maintaining a sufficiently large number of
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Type Filtered Raw
Precision Recall F1 Precision Recall F1

/time 100.00 95.83 97.87 100.00 91.67 95.65
/internet 100.00 50.00 66.67 100.00 50.00 66.67
/internet/website 0 0 0 100.00 50.00 66.67
/law 100.00 50.00 66.67 100.00 50.00 66.67
/person/coach 0 0 0 100.00 50.00 66.67
/building/sports˙facility 0 0 0 100.00 60.00 75.00
/medicine 100.00 50.00 66.67 100.00 66.67 80.00
/education 100.00 20.00 33.33 100.00 33.33 50.00
/transportation 0 0 0 50.00 25.00 33.33
/transportation/road 0 0 0 66.67 50.00 57.14
/news˙agency 0 0 0 50.00 25.00 33.33
/government˙agency 100.00 12.50 22.22 50.00 25.00 33.33
/military 0 0 0 66.67 100.00 80.00
/art 100.00 14.29 25.00 0 0 0
/living˙thing 0 0 0 100.00 33.33 50.00
/written˙work 33.33 28.57 30.77 20.00 20.00 20.00
/people 50.00 60.00 54.55 57.14 80.00 66.67
/people/ethnicity 50.00 60.00 54.55 66.67 80.00 72.73
/building 100.00 07.14 13.33 100.00 35.71 52.63
/location/province 100.00 28.57 44.44 100.00 25.00 40.00
/title 33.33 50.00 40.00 50.00 50.00 50.00
/person/athlete 35.29 60.00 44.44 43.75 70.00 53.85
/organization/sports team 67.74 77.78 72.41 75.00 75.00 75.00
/event 20.00 28.57 23.53 20.00 25.00 22.22
/organization/company 75.00 46.15 57.14 68.42 48.15 56.52
/location/country 85.71 60.00 70.59 90.00 75.00 81.82
/location/city 72.41 60.00 65.62 85.71 64.86 73.85
/organization 78.46 71.83 75.00 75.35 74.83 75.09
/person 92.54 97.69 95.05 85.31 97.21 90.87
/location 80.56 62.37 70.30 72.73 68.82 70.72

Table 4.4: Precision, recall, and F1 for types that more than 50% of their mentions are noisy
using Attentive approach on filtered and raw FIGER training data. We omitted the types that get
zero precision, recall, and F1 for both data versions. The types that get better F1 by using the
raw un-filtered data are in boldface font while the types that get better F1 when the filtered data
is used are in italic font.
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Approach Overall Level-1 Level-2
Test
Acc

F1l.ma F1l.mi F1ma F1ma F1mi F1ma F1mi

Attentive 47.8±1.3 73.1±0.8 71.9±0.9 35.9±2.0 47.2±1.4 74.2±0.5 29.6±2.2 67.9±2.0
Attentive-Hier 48.0±0.7 73.4±0.5 72.3±0.6 36.7±2.0 43.3±1.3 73.8±0.7 32.8±1.4 69.7±0.6
AFET 64.9±0.6 70.7±0.5 71.1±0.7 35.6±1.2 45.0±0.9 74.5±0.5 28.7±1.5 47.8±2.0
AAA-AllC 58.7±0.5 70.9±0.8 72.6±0.9 34.9±1.1 40.8±1.1 75.9±0.9 29.4±1.3 67.1±0.8
AAA 62.4±1.0 70.8±1.0 72.5±0.8 34.4±6.6 40.1±3.5 74.6±1.2 29.3±6.6 69.1±0.5
NFETC-hier(f) 66.4±0.4 72.6±0.3 72.7±0.3 37.7±0.9 48.5±0.4 76.5±0.3 31.7±1.2 67.1±0.3
NFETC-hier(r) 70.9±0.2 75.6±0.2 76.4±0.2 42.9±1.0 50.7±0.7 78.2±0.2 38.5±1.2 73.7±0.2

Table 4.5: Level-1 , Level-2 and overall performance on BBN.

mentions for effective learning.

4.6.2 Insights From The New Evaluation

In this section, we present the performance of the evaluated methods using the new evaluation

metrics on the original and the new testing sets. Table 4.5 reports the overall and per-level

performance on BBN using the original testing set. Tables 4.6 and 4.7 report the overall and

per-level performance on FIGER and OntoNotes respectively using the original and new testing

sets. Tables 4.8 present the results on OntoNotes testing sets after removing the type “other”. In

the following, we discuss some insights derived from the new experimental results.

Performance on fine-grained types can be masked by the overall performance. First, by

looking at the results presented in the tables 4.5, 4.6, 4.7 and 4.8, we can see that the poor

performances on fine-grained types are not called out by the commonly used overall performance

metrics and by the testing set with poor fine-grained type coverage. Several methods (e.g.,

AFET on both BBN and FIGER) performed poorly on level-2 and level-3 types, yet the overall

performance appears competitive measured by accuracy, F1l.mi, and F1l.ma. For instance, all

methods achieve (61.1% - 71.1%) overall F1l.mi scores on OntoNotes using the original testing

set as can be noted by looking at Table 4.7, on the other hand, the F1ma scores achieved for

level-2 and level-3 are (14.5% to 42.8%) and (0.8% to 9.7%) respectively. Similar performance

gaps can be observed by looking at the results on the new testing set.

The high accuracy values and loose F1 scores don’t necessarily imply that the system can
adequately recognize different types. It is a common scenario to have skewed class distribu-
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Original testing set

Approach Overall Level-1 Level-2
Acc F1l.ma F1l.mi F1ma F1ma F1mi F1ma F1mi

Attentive 60.8±1.7 77.8±1.1 74.3±1.5 46.7±4.3 54.6±3.3 78.7±1.2 40.1±3.8 59.6±3.3
Attentive-Hei 60.5±1.3 77.9±1.0 74.3±1.1 47.9±3.1 54.9±2.9 78.8±0.9 41.9±2.8 60.0±2.3
AFET - - - - - - - -
AAA-AllC 66.9±0.5 81.0±0.5 78.1±0.6 42.2±1.2 50.6±1.3 82.8±0.6 35.1±1.7 62.1±1.9
AAA 65.4±1.0 79.7±0.9 77.3±0.7 47.8±1.3 52.7±0.9 81.5±0.9 43.6±1.5 64.5±0.8
NFETC-hier(f) 66.4±1.0 78.7±1.2 75.5±1.2 47.0±2.0 55.9±1.8 79.7±1.2 42.9±2.8 62.9±1.3
NFETC-hier(r) 68.8±1.2 81.0±0.9 78.2±0.8 46.7±1.7 55.3±2.5 81.9±0.8 42.8±1.6 67.0±0.7

New testing set

Attentive 50.8±0.8 77.0±0.2 75.6±0.2 66.5±0.6 65.7±1.9 80.1±0.4 66.7±0.7 68.3±0.5
Attentiv-Heir 51.8±0.5 77.4±0.3 76.1±0.3 67.2±0.9 64.8±0.8 80.1±0.2 68.4±0.9 69.8±0.6
AFET - - - - - - - -
AAA-AllC 69.4±0.3 85.3±0.4 85.3±0.4 66.8±0.5 65.1±1.8 89.6±0.5 67.5±0.3 78.2±0.4
AAA 71.1±0.9 84.6±0.3 84.9±0.2 71.9±1.2 67.6±2.1 88.4±0.3 74.0±0.9 79.4±0.6
NFETC-hier(f) 63.1±0.8 82.6±0.5 82.1±0.5 62.2±0.8 66.0±1.9 88.4±0.4 60.3±1.1 71.8±0.7
NFETC-hier(r) 61.9±0.7 82.2±0.4 81.5±0.3 58.8±1.1 65.5±0.5 88.6±0.5 55.4±2.0 69.6±0.8

Table 4.6: Level-1 , Level-2 and overall performance on FIGER for the original and the new
testing sets.

Original testing set

Approach Overall Level-1 Level-2 Level-3
Acc F1l.ma F1l.mi F1ma F1ma F1mi F1ma F1mi F1ma F1mi

Attentive 50.6±0.4 67.2±0.5 60.5±0.7 8.6±1.8 59.5±2.5 71.9±0.6 7.8±1.4 13.5±3.9 0.8±1.5 2.6±5.2
Attentiv-Heir 50.7±0.3 67.2±1.2 61.0±1.8 13.0±2.6 58.8±6.2 71.5±1.7 12.0±2.2 22.8±5.2 6.4±1.8 13.2±2.4
AFET 57.1±0.3 74.8±0.3 68.1±0.3 8.9±0.4 69.4±0.4 79.9±0.2 8.2±0.2 21.6±1.1 0.4±0.8 2.2±4.4
AAA-AllC 54.4±1.2 72.6±0.8 66.7±0.6 11.7±1.7 67.8±0.9 78.0±0.7 12.9±1.7 29.2±1.5 1.1±1.1 0.8±1.0s
AAA 53.3±0.5 71.4±0.8 65.9±0.7 14.9±2.1 66.7±0.8 76.7±0.9 15.6±2.1 31.8±1.7 5.0±2.2 15.5±2.9
NFETC-hier(f) 59.7±0.2 76.0±0.3 69.7±0.3 21.1±1.0 71.7±0.6 80.6±0.4 23.2±0.7 40.6±0.4 9.7±0.9 16.6±3.4
NFETC-hier(r) 60.3±0.4 76.2±0.3 70.1±0.4 20.5±0.7 72.1±0.4 80.6±0.3 23.1±1.3 42.8±0.4 7.6±0.9 18.0±0.7

New testing set
Attentive 51.0±0.6 70.0±0.6 63.7±0.8 20.1±5.1 65.4±1.1 75.4±0.7 23.3±5.4 25.4±4.0 9.9±3.4 12.5±5.0
Attentiv-Heir 49.7±0.4 68.3±0.7 62.5±0.8 27.3±3.4 63.7±2.0 73.3±0.9 28.7±2.3 28.9±1.0 20.5±3.5 22.0±2.9
AFET 54.9±0.2 74.6±0.1 67.7±0.2 10.1±0.3 71.4±0.3 80.8±0.2 10.5±0.3 21.5±0.6 0.9±0.7 2.9±3.1
AAA-AllC 54.1±0.5 73.0±0.5 67.3±0.6 18.6±4.2 70.2±0.4 78.9±0.3 22.1±5.1 33.4±2.2 7.9±2.8 8.0±3.7
AAA 54.4±0.3 72.5±0.4 66.8±0.3 17.4±1.8 69.1±0.4 78.2±0.4 20.2±2.2 33.4±1.2 7.6±1.8 13.4±1.7
NFETC-hier(f) 59.4±0.2 75.9±0.2 69.9±0.2 29.6±0.5 73.1±0.2 80.9±0.2 38.0±0.6 44.7±0.3 14.5±1.2 20.8±1.6
NFETC-hier(r) 59.2±0.1 75.7±0.2 69.9±0.1 32.7±1.3 73.1±0.3 80.7±0.2 41.4±1.3 44.8±0.2 17.4±1.5 23.0±1.6

Table 4.7: Level-1 , Level-2, Level-3 and overall performance on OntoNotes for the original
and the new testing sets.



60

Original testing set

Approach Overall Level-1 Level-2 Level-3
Acc F1l.ma F1l.mi F1ma F1ma F1mi F1ma F1mi

Attentive 20.2±0.3 51.4±0.5 49.7±0.6 14.4±0.1 63.0±0.8 61.5±0.6 13.4±0.3 28.3±1.4 6.9±0.2 14.9±0.4
Attentiv-Heir 19.5±0.4 50.8±0.7 49.3±0.9 15.1±0.5 62.5±1.0 60.5±0.7 14.9±0.7 29.5±1.2 6.8±0.3 14.5±0.8
AFET 17.3±0.4 50.4±0.9 49.5±1.0 9.0±0.2 67.8±1.3 63.4±1.0 9.1±0.1 22.0±1.0 0.0±0.0 0.0±0.0
AAA-AllC 24.9±0.3 56.3±0.3 55.1±0.3 14.8±0.9 68.3±0.3 67.4±0.3 17.7±1.2 34.7±0.5 2.6±0.7 1.8±0.8
AAA 26.8±1.0 56.1±0.1 55.2±0.2 18.7±0.9 67.0±0.5 66.1±0.5 20.5±1.6 38.3±1.3 8.3±0.6 20.2±1.1
NFETC-hier(f) 31.3±0.8 58.3±0.6 57.4±0.5 23.1±1.1 69.6±0.6 67.3±0.5 27.0±0.9 42.7±0.6 10.4±0.6 18.8±0.6
NFETC-hier(r) 32.7±0.2 59.9±0.2 59.1±0.3 21.6±1.0 70.5±0.3 68.9±0.3 24.5±1.3 45.9±0.3 10.5±0.4 20.7±0.9

New testing set
Attentive 20.5±0.1 53.1±0.3 51.3±0.3 28.3±1.1 65.2±0.7 63.6±0.5 32.6±0.7 30.5±0.9 17.8±1.5 20.5±0.7
Attentive-Heir 19.8±0.4 52.9±0.3 51.4±0.4 31.8±1.5 64.6±0.4 63.1±0.3 32.7±1.0 31.4±0.9 25.9±1.8 26.7±1.5
AFET 16.7±0.2 51.4±0.2 50.2±0.3 9.5±0.4 68.9±0.3 65.8±0.2 10.1±0.4 21.6±0.8 0.6±0.6 1.7±2.8
AAA-AllC 25.6±0.5 57.9±0.5 56.6±0.4 23.2±0.6 70.5±0.5 69.8±0.5 27.1±0.6 36.2±0.6 12.6±1.3 12.4±1.3
AAA 27.1±0.7 57.6±0.3 56.6±0.3 26.4±2.5 69.3±0.4 71.6±0.5 30.1±1.7 40.0±0.3 16.4±2.7 21.3±3.0
NFETC-hier(f) 33.3±0.4 61.0±0.4 59.7±0.3 30.8±0.2 70.5±0.5 71.6±0.5 40.0±0.3 45.8±0.4 15.1±0.7 17.7±2.9
NFETC-hier(r) 33.9±0.4 62.2±0.5 60.9±0.4 30.8±0.5 72.6±0.6 71.8±0.5 39.5±0.9 47.3±0.1 15.7±1.2 24.0±1.1

Table 4.8: Level-1 , Level-2, Level-3 and overall performance on OntoNotes for the original and
the new testing sets after removing the type “other”.

tion in the testing set. If the system performs well on the heavily populated types, it achieves

high overall performance. BBN is a good example where the two types “/gpe/city” and “/or-

ganization/corporation” represent 46.08% of the testing set. Most of the methods perform well

on these two types. E.g., the F1 scores achieved by NFETC-hier(r) on “/gpe/city” and “/orga-

nization/corporation” are 81.37% and 80.74% respectively. The nuanced differences between

methods cannot be revealed by just reporting overall accuracy, F1l.ma, and F1l.mi. On the other

hand, when looking at F1.ma and level-2 F1.ma in Table 4.5 we can see that, in average, most

of the methods don’t recognize more 1⁄4 of the level-2 types.

Current evaluations can’t adequately assess the contribution of different component of the
systems. Comparing AAA-AllC vs. AAA as shown in Tables 4.6, 4.7, we notice that when

evaluated by the overall performance, AAA appears to have little or no advantage over AAA-

AllC, which treats the noisy training data as clean, especially on the original testing sets. In fact,

AAA performed worse than AAA-AllC on FIGER and OntoNotes original testing sets. This

seems to suggest that the noisy training data does not really hurt the performance and we can

simply treat them as clean. However, when comparing the performance on level-2 and level-

3 types using the original testing sets, and by looking at the results of the new testing sets as
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shown by Tables 4.6, 4.7, we see noticeable gain by AAA compared to AAA-AllC, suggesting

that careful treatment of the noisy training data will likely have a stronger impact on fine-grained

types.

Another example is when we compare Attentive vs. Attentive-Heir. By looking at the overall

performance, we can see that using the hierarchical label encoding adds a very slight improve-

ment to the accuracy of Attentive on FIGER (using new testing set) as presented in Table 4.6, or

even hurt the performance as for BBN and OntoNotes (shown by Tables 4.5, 4.7). On the other

hand, Attentive-Heir significantly outperforms Attentive by observing the overall, level-2 and

level3 F1ma in most of the cases.

Test data composition has a huge impact on the overall performances. We see much flip-

ping of the ordering of methods when looking at the overall accuracy and F1l.ma and F1l.mi

when the testing set used for evaluation is altered. For example, by comparing the overall and

per-level performance of OntoNotes before and after removing the type “other” as shown in Ta-

bles 4.7 and 4.8, we can observe that removing the type “other” from OntoNotes original and

new testing sets significantly changes the relative performance of AFET in comparison to other

methods.

Another example can be seen by examining the overall and per-level performance of AAA

vs. NFETC-hier(r) on the original testing set vs. the new testing set of FIGER presented in

Table 4.6. Using the original testing sets, NFETC-hier(r) outperforms AAA consistently over

all datasets using all metrics. However, AAA gains a substantial improvement in level-2 F1ma

(17.9%) and the accuracy (9.1%) over NFETC-hier(r) on the new testing set of FIGER which

basically has the evenest coverage of the fine-grained types among all testing sets used in this

study. This suggests that when it comes to the effectiveness of FGET systems on the fine-grained

types, AAA is a highly competitive method.

The new metrics are less sensitive to the dominant types. Table 4.7 reports the performance

on OntoNotes for both the original and the augmented testing sets. Table 4.8 present the per-

formance on both the original and the augmented testing sets of Ontonotes after removing the

type “other”. By comparing the results in these tables, we can see that the overall performance

dropped significantly( about 30% performance degradation) for both original and augmented

testing set when the type “other” is removed. On the other hand, we can see that the newly

introduced evaluation metrics are less sensitive to that dominant types (e.g., “other”).
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Misidentified
mention
(#occur)

Label
(#occur) Training example Potential KB entry

uh
(580)

/location/geography
/body of water
(839)

[Uh], that was the gist of Mei
Shirong ’s remarks at the end of
the report

Uh is the Slovak name of Uzh
River in Ukraine and Slovakia

yes
(245)

/organization/music
(1390)

[Yes], eh, just now Director Xing
mentioned a very important issue

Yes (band)

who
(161)

/organization/music
(839)

[Who] else was in attendance at
the time ?

The Who, an English
rock band

it
(2042)

/other/internet
(4356)

[It] is both a European and
Asian nation

the Internet top-level
domain for Italy

As
(591)

/other/scientific
(4025)

[As] a matter of fact, Professor
Liu has already been affected to
some extent

Arsenic (As), a chemical
element

Table 4.9: Examples of identification noise in OntoNotes’ training set including misidentified
mention and #occurrences, the assigned type label and #occurrences of that label, an example
from the training set, and a potential KB entry to which it was linked during generating the
training data by distant supervision

Example Assigned type Correct type

The production of internal - combustion engines, metal-cutting machines,
large, medium and small-sized tractors, vans, [motor trucks], etc.

/other /other/product/car

The capability of existing fields to deliver oil is dropping,and oil
exploration activity is also down dramatically , as many producers
shifttheir emphasisto [ natural gas ], said Ronald Watkins.

/other /other/product

[ Harvard Law School Professor Laurence Tribe ] says,
there is a “ generation - skipping ” flavor to current dissents

/person /person/title

[ Officials in the Iraqi Department of Defense ] said that .... /person /person/title

Table 4.10: Examples of mentions in testing set that are assigned to higer level types while they
can be assigned to more fine-grained types.
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OntoNotes has a major issue to be used for training and evaluating FGET systems. The

performance drops after removing the type “other” from the testing set of OntoNotes encouraged

us to take a closer look at both train and testing set of OntoNotes. In addition to the typing noise,

we observe that the training data of OntoNotes has a substantial identification noise that comes

from incorrect identification of the mentions. We found that there is a considerable number of

completely incorrect identifications which we think are more harmful to the learning process

more than the typing noise. Table 4.9 lists examples in the mention identification noise along

with potential reasons of why they are linked to the knowledge base. Another issue can be

observed by looking at the testing set. We found that a lot of mentions that are labeled under

coarse types can be labeled under fine-grained types. By referring to the paper that describes

how OntoNotes testing set is originally annotated [19], it is mentioned that the annotators back

off all the confusing mentions to their coarse types. This means that even if a correct fine-grained

type is predicted for these test mentions, it is considered as an erroneous prediction and affects

both accuracy and F1 scores, Table 4.10 lists some examples from the original testing set of

OntoNotes.

4.7 Conclusion

Tagging entity mentions in the text with fine-grained types is a beneficial step for a variety of

downstream NLP applications. Several FGET approaches have been proposed in the literature.

Most prior works are evaluated using FIGER, OntoNotes, and BBN benchmark datasets. How-

ever, the current empirical evaluation only reports the overall performance on all types and fail

to assess the ability of these systems to recognize fine-grained types. Moreover, the testing sets

for FIGER and OntoNotes have very poor coverage of the fine-grained types, which means that

these systems are mostly evaluated by their performance on the coarse types. In this work, we

present a new empirical study that re-evaluates the most recently proposed FGET methods by

augmenting the current testing set to have almost a full coverage of the fine-grained types and

examining not only the overall performance but also per-level, type-specific performance. The

new experimental results reveal very interesting observations about the tested methods. For ex-

ample, we found that the performance on fine-grained types is not always consistent with overall

performance; systems with high overall scores are not necessarily the best for recognizing the

fine-grained types, or for sufficiently covering different types. Moreover, current evaluations do

not adequately assess the contribution of different components of the systems. Furthermore, the
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Figure 4.2: Examples of auxiliary connections (shown by the dashed arrows) between types in
the type hierarchies of FIGRE and BBN datasets.

type distribution in the test data has a significant impact on the overall performances, which can

be observed by the flipping orders for the tested method when the new test data is introduced.

We also observed that our new metrics are more rubost to the dominat types. Finally, we note

several issues with OntoNotes datasets that are not previously revealed.One of these issues is

the incorrect identification of mentions. We leave dealing with the identification noise to future

work.

We also observed that the definition of clean mentions followed by all the methods that sepa-

rately model the clean and the noisy mention is not always correct. As mentioned before, Ren et

al. [58] define the clean mentions as the mentions with types ( assigned by distant supervision)

form a single path in the type hierarchy; otherwise, it is noisy. However, we found that the types

in type set of mention could truly belong to several paths in the tree. For example, by looking at a

part of the type hierarchy of FIGER, in Figure 4.2, we can see the political party is a sub-type of

government, However, it is known that political parties are organizations, and this is consistent
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with the fact that the government/political party always co-occur with the type organization in

the training set. Similar examples can be found in BBN. Moreover, we can see that about 7%

of the mention in FIGER test set (which is manually annotated) have types that don’t constitute

paths in the tree, these mentions are missed by most of the proposed FGET methods. As future

work, we would extend the type hierarchy to include these correct assignments by adding auxil-

iary connections between the nodes in the type hierarchy and develop an FGET system that uses

these connections to improve training and type inference.



66

Chapter 5: Conclusion

Despite the noticeable gain coming from applying deep learning models to NLP applications, it

difficult to be translated into real-world settings. In real NLP applications, we always face the

challenge of not having enough high-quality labeled data available because of the high annota-

tion cost, and the need for reannotating the hand-labeled training data partially or completely as

the modeling goals change. As a result, techniques that address how to learn effectively from

limited or cheaply collected labeled data are receiving growing attention in the NLP community.

This research is a manuscript of scientific articles through which we propose methods to address

the data scarcity problem in supervised learning for NLP applications.

Our first work (chapter 2) proposes Transfer Learning approaches to transfer the knowledge

between domains with variant but related label space. The goal is to model the relationships

between the labels of the source and the target domains represented by a bipartite graph and use

it to enhance the transfer learning. We utilize the bipartite graph to map the source examples to

corresponding target labels. Because the source mapped examples could be assigned multiple

target labels where not all of them are necessarily true, we examine several weak supervision

objectives for training neural networks for the target domain on both the target and the mapped

source examples. We compare them to the standard deep transfer learning techniques such as

fine-tuning and multi-tasking. We apply our methods on two NLP tasks: Event Typing and Text

Classification and created several synthetic label-relationship scenarios to rigorously study the

strengths and the weaknesses of our methods in comparison with the baselines.

We demonstrate that all the transfer learning methods provide a significant improvement

over training a model on the target data only. We experimentally proved that in most cases, the

label structure can provide considerably useful information to improve the knowledge transfer

between the domains. Our weak supervision methods outperform the standard deep transfer

learning methods by a substantial margin when the relationships between the source and the

target labels are 1-to-1, n-to-1 or a mix of relationships. For the 1-to-n, the performance of

our approach depends highly on the ambiguity degree of the mapped example label set. With

a moderate label ambiguity, our method is still beneficial over the other methods. On the other

hand, learning from an example with highly ambiguous candidate label set is challenging espe-
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cially when compounded with having few examples under these labels in the target as it is hard

to differentiate these labels during training. Additionally, we found that source-to-target label

relationships affect the performance of the standard deep transfer learning methods: they work

better if the source-to-target relationships are 1-to-1 or n-to-1. Furthermore, the improvement

margin that can be obtained by transfer learning in general decreases as the size of the target

data increases. However, we found that traditional deep transfer learning techniques are more

sensitive to the size of the target data than the mapping-based methods, as the later can maintain

a reasonable improvement with varying target set sizes.

In Chapter 2, we propose a Zero-Shot Fine-grained Entity Typing approach that utilizes the

description of the types available from Wikipedia to recognize new types, requiring zero-training

examples. At training time, our methods learn a compatibility function to project the mentions

and the descriptions of the types presented in the training data into a shared semantic space. At

testing time, the learned compatibility function paired with the description of the new types can

be used to recognize that type without the need for new training examples. We compare our

method with two previously proposed methods on two benchmark datasets and found that our

approach outperforms these methods substantially and consistently on the fine-grained types.

We examine several methods to construct a type representation from the type’s Wikipedia

description and found that representing the type by a bag of representations extracted from the

corresponding description combined with sequence modeling gives marginally better results than

the simple averaging techniques. Finally, we analyze the effect of the description length on our

method’s performance for individual types and found that it works better if the type description

is not too short or not too long. The short description can be inadequate in capturing sufficient se-

mantics of the types while the long description can overlap with other types’ descriptions making

it hard to distinguish between highly related types. Extracting high-quality representations from

the noisy Wikipedia descriptions of the types draw future directions for further improvements.

In Chapter 3, we present a new empirical study that re-evaluates the most recently proposed

FGET methods to overcome two primary limitations of the current evaluations. First, the testing

sets of some of the benchmarks have poor coverage of the fine-grained types. Second, they only

report the overall performance on all types ignoring how the performance of these methods may

vary on the types from different levels. To overcome these limitations, we augment the current

testing sets to have substantially better coverage of the fine-grained types. We also examine

not only the overall performance but also per-level, type-specific performance. The new experi-

mental results reveal very interesting observations about the tested methods. We found that the
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performance on fine-grained types is not always consistent with overall performance; systems

with high overall scores are not necessarily the best for recognizing the fine-grained types, or

sufficient covering different types. Moreover, current evaluations don’t adequately assess the

contribution of different component of the systems. For examples, it turns out that separately

modeling the clean and the noisy mentions significantly improve the performance of the fine-

grained types, this conclusion is masked by the previously reported overall scores. Furthermore,

the testing data composition has an enormous impact on the overall performances, as the rank-

ing of some of the tested method change by switching to the new testing sets. We also observed

several issues with OntoNotes datasets that are not previously revealed such as the incorrect

identification of the mentions. As future work, we would try to focus on cleaning OntoNotes

from Identification noise. Also, we would try to enhance the type hierarchy by adding auxiliary

connections between types from different paths and develop FGET system that utilizes these

connections to enhance the training and the type inference.
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