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The Mathematics of Critical Shifts in Ecological Networks with

Alternative Stable State Theory, A Potential Framework for Early

Warning Indicators

1 Introduction

Theoretical ecology attempts to construct and analyze abstract mathematical models that

describe physical ecological systems [18, 26, 27, 20, 23]. As such, describing model param-

eters in terms of the underlying ecological system is often necessary to begin quantifying

parameters in structured models. However, gathering independent observations of an eco-

logical system for parameter estimation is quite difficult as parameters in ecological systems

tend to be highly autocorrelated [32, 44, 15] and have a large number of simultaneous non-

linear interactions with multiple feedback pathways (see [48] for a review). As a result,

direct estimation is quite difficult, requiring high-powered statistical analyses to generate

robust estimates of underlying parameter distributions [31, 30]. As a result, classical ana-

lytical methods in mathematical biology have emphasized the mathematical and ecological

relationships between model parameters, rather than relying on good estimates of the pa-

rameter values from which to begin an analysis (see [28] for a comprehensive discussion of

classical techniques and case studies, [25] for a classical technique, and [8, 46] for modern

deterministic and stochastic techniques respectively).

After reading the above, one may have the impression that the statistical complications

which may appear as noise in ecological systems is at best another layer of experimental

complexity, and at worst a significant technical challenge in the study and analysis of eco-

logical systems. However, one quickly realizes that across the life sciences, the structural

complexity, stochasticity, and nonlinearity that complicate the analysis are essential char-

acteristics of biological systems [18]. The complexity required to maintain robust biological

systems provides numerous opportunities to study the underlying interactions and structure

from both an ecological and mathematical standpoint. If real systems were only as robust

as our smooth and continuous deterministic approximations, their comprehension would

not present nearly an interesting challenge.



2

Classical modeling methodologies assume that parameter values are unknown, but obey

fixed algebraic relationships (e.g. a < b). This allows for the application of standard meth-

ods in dynamical systems analysis, both discrete and continuous, to be utilized. However,

these methods rely on the assumption that the parameters that describe the ecological sys-

tem are fixed while independent of the state of the population. As a result, these methods

offer a limited framework to describe the interplay between stability of models and the

randomness in the underlying system not explicitly depicted in deterministic models.

This thesis seeks to determine the potential significance of stochastic parameter varia-

tions on model end-behavior and examines the possibility of the application of the frame-

work we will develop to extinction prediction within the existing ecological framework of

alternative stable state theory [13, 14, 40].

1.1 A biological description of the problem

Parameters in mechanistic models of biological systems attempt to reduce complex phe-

nomenon down to a numerical value, often this value will be selected from an empirical

distribution computed by measurements of a system. Direct parameter estimation from

observational data is quite difficult, resulting in the generation of multiple distributions of

data from which a single best point estimate is extracted (see [30]). Statistical techniques

have been employed to attempt to reduce the variability of parameter estimates, but no

technique to date directly incorporates parameter variability directly into the mechanisms

encapsulated in an ODE model. In measurements of materials, often seen in chemistry,

physics, and material science, assumptions about the behavior of the system allow for ho-

mogeneity assumptions which result in parameters that are often exact within a small error

bound. Error in the estimate is primarily a source of measurement error or approximations

of behavior made in the model rather than variability within the object being measured.

In biological systems, parameters may themselves be described by a distribution with a

non-negligible variance [47]. For example, a birth or death rate process on an intermediate

sized population may exhibit variance between measurements of process, where the process

may occur at some rate over some interval of time, (t0, t0 + (∆t)0), and then occur at a
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different rate over another interval of time (t1, t1 + (∆t)1). We can state that the observed

process exhibits some degree of stochasticity.

The effect I am describing is not to be confused with demographic stochasticity or envi-

ronmental stochasticity. These processes are described as stochastic, but are perhaps better

characterized as a deterministic modification to the system as a result of an unpredictable

or random event, such as a flood impacting a habitat or a mutation impacting the birthrate.

The ecological effects we are attempting to model in these works are intrinsic phenomenon

to the population that describes an underlying process that may appear stochastic. This

will be further explored in section 2.2.2.

1.2 A mathematical description of the problem

This thesis examines the question of the stability of a dynamical system when parameter

values are fixed for short intervals of time, and attain new random values from a known

underlying distribution. Standard mathematical modeling techniques and analytical meth-

ods in literature largely avoid addressing this situation due to both its limited parallels

with other physical systems and the difficulty of potentially novel technical challenges that

must be overcome. Ecological systems are often investigated either statistically through

statistical analyses of population data or theoretically with the usage of bifurcation theory

to identify critical parameters in bifurcations and describe the associated transitions. The

problem I have introduced can be viewed as a novel variation on the premise of control

theory, in which model parameters are controlled directly by dials which are all randomly

changed independent of each other.

The reader may notice that these observations echo those similar to those developed by

early mathematical biologists [24, 26] of the applicability of classical dynamical systems the-

ory. Random dynamical systems theory offers stochastic differential equations as a method

to describe the population. However, the overwhelming majority of stochastic models used

in modeling literature assume that populations have a continuous random rate of change

coupled with a randomly occurring deterministic modification to the rate of change. This

is a primarily due to historical factors, rather than the difficulty of associated technical
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challenges. Much of the probabilistic development of random dynamical systems can be

traced back to stochastic analysis and the pursuit of understanding stochastic differential

equations [1].

As we are interested primarily in the stability of the system, we introduce a method to

relate the distribution of the stochastic parameter(s) of interest to the probability that a

solution trajectory originating at a known initial condition transitions from one region of

stability to another as the parameters change randomly over time. Classical methods for

introducing noise with stochastic processes rely on introducing a white-noise term to repre-

sent some stochastic noise acting on the system in addition to the deterministic term. This

rests on the validity of the assumption that the parameters for both the deterministic term

and stochastic term are known to within a small error bound. Rather than attempting to

introduce and define a new stochastic term [12], we introduce and develop a new modeling

technique that incorporates stochasticity at the parameter level. This approach can be im-

plemented with less parameters while incorporating the variance of parameter distributions

directly into the model. This approach begins from a relatively simple observation about

the fundamental nature of global stability as it applies to alternative stable state theory.

This approach gives rise to a new method to investigate regime changes and transitions

across a critical threshold.

Simulation strategies for ordinary differential equation and stochastic ordinary differ-

ential equation models often utilize a combination of Monte-Carlo methods and direct nu-

merical simulation to obtain results. These experiments are limited by available computing

capabilities. To perform parameter sweeps over high dimensional parameter state spaces

often requires large amounts of time and computer storage space. We will then develop an

alternative method to describe the behavior of systems with stochastic parameters explic-

itly. We show that these systems can be described as a Markov chain and demonstrate how

to construct a Markov Kernel under mild assumptions.
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1.2.1 Approach

The approach described in this thesis, in broad terms, is to treat model parameters as

random variables, then proceed by analyzing the systems as a result of new probabilistic

behavior. In sections 3, we develop the method of stochastic parameters as a technique to

directly compute theoretical probabilities of a regime change event within a simulation. We

consider the population as deterministic, with randomly occurring changes in the param-

eters, which may or may not cause a regime change event (see figure 1.1). In section 4,

we develop a theorem which encapsulates this technique. In section 5, we observe that a

Markov chain can be produced by constructing a sequence of transition points and provide

a constructive technique to define the associated transition kernel.

13-12-07.png

Figure 1.1: A depiction of the general scheme by which the population trajectory can be
described. An initial state and set of parameters are fixed, then the population is simulated
forward in time. This occurs until a randomly selected time, at which all parameters are
redrawn from their respective distributions. This may or may not cause a regime change
event. The population is forward simulated until another parameter change event occurs.
This process can be iterated until an extinction event occurs, the population stabilizes at
an equilibrium, or a stopping time is reached on the simulation.
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2 Preliminaries

This section presents an overview of the relevant mathematics and ecology for this thesis.

2.1 Mathematics

2.1.1 Population modeling

When constructing a population model, there are three significant decisions that must be

made before any equations can constructed:

1. Is the spatial distribution of the population a significant contributor to the system of

interest? Can we make the assumption that the population is spatially homogeneous?

2. Is a discretization appropriate for the population size and time variable? This deter-

mines if a difference equation or differential equation framework is to be used.

3. Can we assume that all members of a species can be attributed to the same population?

Are there significant factors or attributes that can be used to partition the population?

A classic example of a system where the spatial homogeneity cannot be assumed is in

the study of wolf-moose systems as Canis lupis are social but territorial species - packs

compete with other packs for territory and the resources that they contain. The age or sex

of a member within a population may significantly influence the population dynamics. On

a finer note, populations may be partitioned by non-karyotype genetic factors that influence

preferences and/or behavior.

A standard approach in mathematical biology is to assume that populations are large

enough to be approximately spatially homogeneous [7] unless there is explicit evidence to the

contrary [19]. This approach is common in systems governed by the principle of mass action

and is often found in well mixed populations, including microbial ecosystems, biochemical

systems, (historical) fisheries models, and susceptible-infected-recovered (SIR) models.
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This permits the construction of compartment model for populations. In a compart-

ment model, the behavior of the population is entirely characterized by births, deaths,

immigration, emigration, nutrient flux, and predation effects. All models of this type can

be summarized into the following equation (2.1).

dN

dt
= births(t)−deaths(t)+feeding(t)−predation(t)+immigration(t)−emigration(t) (2.1)

The right-hand side of this equation is often summarized into the generic form f(N) or

f(t,N) to preserve generality. We will assume that f is a continuous function on R+ with

an infinity of derivatives (f ∈ C∞(Rn+)). There are multiple expressions used by modelers

to represent different phenomena, however linear or constant functional forms are preferred

where possible. The usage of linear terms is two-fold: linear representations of systems

may permit algebraic manipulation into a matrix model and/or decrease the computational

difficulty of finding or approximating solutions. The introduction of nonlinear behavior is

required to commonly reflect a saturation effect in which per-capita returns are diminishing,

or to reflect a decrease in per-capita rates at low population density. Examples of the five

main functional forms used within this thesis are described in table 2.1.

The interaction between two species: prey N and predator P can be described in the al-

gebraic form given within equation (2.2), for a functional form f . Several common examples

of functional forms are given in Table 2.1. This is not a representative sample or exhaus-

tive list of functional forms in literature, these are due to Holling [18] and are commonly

accepted algebraic generalizations of these functional forms.

Nf(N, t)P (2.2)

Population models can have two additional qualities. They can be well-defined and

well-posed.

Definition 2.1.1.1 (Well-defined model). A mathematical model given by the function

f : X → Y is well defined if and only if ∀x ∈ X, f(x) ≡ y for only one y ∈ Y .

Definition 2.1.1.2 (Well-posed model). A model is well-posed if and only if it is both well-
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Table 2.1: A table of commonly found functional forms in mathematical models for inter-
action terms. The functions f(N, t) are used within a mass action functional framework,
see equation 2.2.

Functional form Parameters Description

Constant rate f(N, t) = k
N k Note that Nf(N, t) = k, de-

scribing a constant rate inde-
pendent of time and popula-
tion. Often used for immi-
gration or emigration.

Linear (Holling type I) f(N, t) = aN a Dependent linearly on pop-
ulation size, a commonly
describes the interaction
strength.

Holling Type II f(N, t) = aN
1+ahN a, h Describes saturation behav-

ior at N = 1
h , where

a describes the interaction
strength.

Holling type III f(N, t) = aNn

1+ahNn a, h, n One generalization of the
type II response. The same
end behavior as in type II
is also found, this functional
form imposes a penalty for
‘low’ densities. Commonly,
n ∈ [1, 3], but there is no rule
governing this.
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defined, where there exists a unique solution for a given set of allowed initial conditions,

and all populations are always non-negative.

Remark 2.1.1.3. Many well-defined models can be written down that are not well posed.

To ensure that the model is well-posed, we wrap the function f that describes the population

within a maximum argument, to obtain f̃(N) = max {f(N), 0}.

All models posed in this thesis will be well-defined.

We next transition to a discussion of a more abstract mathematics. The remainder of

this section is centered around the discussion of dynamics and probability theory. We begin

by introducing an algebraic structure in preparation for dynamical systems. We then will

continue our development of ordinary differential equation models into dynamical systems,

where we will utilize the algebra we next introduce. The details presented here are primarily

used in section 5.

2.1.2 Algebra

Our discussion of algebra is limited to a discussion of groups and monoids.

Definition 2.1.2.1 (Group). A group G is a pair (S,+), where S is a set and + : S×S → S

is a binary operation such that

1. for any a, b ∈ S, a+ b ∈ S, b+ a ∈ S (closure)

2. for any a, b, c ∈ S, (a+ b) + c = a+ (b+ c), (associativity)

3. there exists some iS ∈ S named the identity element which for all a ∈ S satisfies

iS + a = a = a+ iS (identity)

4. for any a ∈ S, there exists some element b ∈ S which satisfies, b = a−1 (ie ab = iS)

(invertibility)

We often abuse notation and write a + b rather than +(a, b). Note that condition 1 of

the prior definition follows trivially from the definition of the binary operation, and thus
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is often omitted. We introduce groups as an algebraic object in advance of introducing

dynamical systems. We will later observe that the flow operator ϕ forms a group on the

time index.

The second algebraic structure we will introduce is the monoid. A monoid is a group

where assumption 4 does not hold. Note that property 1 is obtained from a totality axiom

on the map + in some texts, rather than being obtained from this definition. Formally,

Definition 2.1.2.2 (Monoid). A monoid M is a tuple (S,+), where S is a set and + :

S × S → S is a binary operation such that

1. for any a, b ∈ S, a+ b ∈ S, b+ a ∈ S (closure)

2. for any a, b, c ∈ S, (a+ b) + c = a+ (b+ c), (associativity)

3. there exists some iS ∈ S named the identity element which for all a ∈ S satisfies

iS + a = a = a+ iS (identity)

A monoid time index set can preserve one direction of dynamical behavior. We next

introduce a specific monoid constructed from the real line.

Definition 2.1.2.3. Let Tt0 = [t0,∞) for some t0 ∈ R be a set. Then the associated

monoid M = (T ,+T ) is homomorphic to the submonoid S = ([0,∞),+) of the monoid

R = (R,+). The definition of the binary operation +T follows from this characterization.

The operation is defined +T (a, b) = a + b − t0, where operations on the right side are

inherited from the group (R,+). T can be thought of as a forward time index set for

dynamical behavior, which we will introduce formally in the next subsection. If T is used

without reference to a specific t0, then t0 is assumed to be arbitrary in R.

2.1.3 Function spaces

In this section, we introduce the space of bounded continuous functions on X.

Definition 2.1.3.1 (Space of bounded continuous functions C). The space C(X) is a
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metric space of continuous functions is given as

C(X) = {f : X → R : f is continuous, sup
x∈X
|f(x)| ≤M for some M ∈ R} (2.3)

Where sup
x∈X
|f(x)| = ||f ||∞ is the uniform norm.

2.1.4 Dynamical systems and ordinary differential equations

The study of dynamical systems lends itself well to providing both vocabulary and theory to

describe the behavior of populations. Differential equations are but one type of dynamical

system, however we will first limit our discussion of dynamical systems to that which can

be described deterministically as differential equations (as opposed to stochastic differential

equations). A robust conversation can be found here [34] (or for a much more abstract

approach see [22]).

Let

dx

dt
= f(x) (2.4)

be an autonomous (possibly) nonlinear system where f(x) is defined in (2.1). The solutions

of (2.4) are called flows or flow functions, and are denoted a ϕ. This flow is sometimes

interchangeably referred to as the flow of the differential equation (2.4) or the solution flow

operator. Solution flows to differential equations are useful as they satisfy multiple algebraic

properties.

Definition 2.1.4.1 (Flow). Let E ⊂ X where E is a nonempty open subset of X containing

an identity element of X, ϕ : T × E → X, (t, x) 7→ ϕ(t, x) as a flow over X on the group

(T,+T). This in fact defines a group when T = R equipped with +, or a monoid when we

relax T to a monid where T = T equipped with the binary operation +T . The flow function



12

ϕ satisfies the following properties

ϕ(0, x) = x (2.5)

ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) (2.6)

ϕ(t, ϕ(−t, x)) = ϕ(0, x) (2.7)

The map ϕ is also referred to as the group action of the system (2.4).

Remark 2.1.4.2. The flow ϕ is referred to as a local flow if E ( X, or a global flow if

E = X.

Remark 2.1.4.3. In literature, the flow ϕ(t, x) is often written as ϕt(x) or simply ϕt for

brevity if a specific x is assumed.

Formal proofs that the solution of a differential equation (solution flow) is in fact a flow,

and satisfies the above criteria can be found in [34]. Often, statements before some starting

time t0 may describe behavior outside of the observable time frame of ecological interest

(history). As such, we are often only interested in the forwards behavior of the system,

where t ∈ [t0,∞) ⊂ R. To adjust accordingly, we select a monoid (definition 2.1.2.2)

instead of a group by removing the requirement for the existence of additive inverses from

our group structure. This results in the removal of the third statement (2.7). Thus, we may

restrict our time index space to the subspace of all time values greater than an arbitrary

initial condition, t0 ∈ R. We will later show that the restriction to [t0,∞) induces several

useful properties, namely that many flows on R+, are now bounded functions.

Corollary 2.1.4.4. The map ϕ(t0, ·) defines an identity map idX : X → X.

The proof of this corollary follows from the definition of a dynamical system with a

monoid index. These properties can be extended to form an algebraic structure known as a

cocycle. Loosely, a cocycle is a structure within a dynamical system that has a group-like

structure which preserves some semblance of the dynamical action and which obeys the

cocycle equation.
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Definition 2.1.4.5 (Cocycle of a dynamical system). The map ϕ : T×X → X is a cocycle

if it satisfies the following

ϕ(g + h, x) = ϕ(g, ϕ(h, x)) ◦ ϕ(h, x) (2.8)

Such a map is said to satisfy the cocycle equation (2.8).

This characterization allows for the operation of the action of a dynamical system to

be decomposed into the composition of the sequential actions of many random dynamical

systems. The study of objects characterized by this is the study of skew products, which

include objects other than a dynamical system.

A practical discussion of the application of cohomological algebra to abstract dynamical

systems can be found here [43].

2.1.5 Equilibria, stability analysis, and regions of attraction

Stability and the existence or nonexistence of regions of attraction are significant properties

of dynamical systems. An equilibrium state for a system occurs at x? if and only if x?

satisfies

dx

dt
= f(x?) = 0 (2.9)

where f(x) is defined in 2.4. This construction permits a parallel construction from func-

tional analysis. Define ker(f) =
{
x? ∈ Rn+|f(x?) = 0

}
. The elements of ker(f) are indexed

if ker(f) is finite or countably infinite. Once ker(f) is known, every element of ker(f) may

be characterized as stable or unstable.

Nonlinear systems can be approximated with a linear approximation for some ε-neighborhood

around a point of interest. The system 2.4 can be approximated by the linear system 2.10,

where D[f(x)](x?) is defined as the jacobian matrix at the point x? (definition 2.1.5.1).

dz

dt
= J(x?) (z), z = x− x? (2.10)

Definition 2.1.5.1 (Jacobian matrix of a system). The jacobian matrix J(x) of a system
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(formula (2.4)) at a point x? is given component-wise by J(x?)i,j = ∂fi(x)
∂xj

∣∣∣∣
x=x?

.

Remark 2.1.5.2. The Jacobian matrix J(x?) is equivalent to D[f(x)]

∣∣∣∣
x=x?

and is some-

times referred to in this form. The later form arises through series approximations of f .

Note that the matrix J(x?) is square as the size of f and x are the same in biological

models. Then the system (2.10) can be diagonalized and decoupled, resulting in a similar

constant-coefficient differential equation ẋj = λjxj , where λj is the jth eigenvalue. If

all eigenvalues λj < 0, then every 1-dimensional flow ϕ defined by the decoupled system

approaches the origin. This follows from theorem 2.1.5.5, which we will soon introduce.

Definition 2.1.5.3 (Spectrum of a matrix). Let σs : V → C where V is the space of all

square matrices. Then the spectrum a matrix A is given by σs(A), the elements of σs(A)

are the eigenvalues of A.

The following definition is from [34] and is the most general definition.

Definition 2.1.5.4 (Stable equilibrium point of an autonomous differential equation). Let

ϕ denote the flow of the differential equation ẋ = f(x) defined over all t ∈ R. A point x? is

a stable equilibrium point if f(x?) = 0 and if for all ε > 0 there exists some δ > 0 such that

for some open neighborhood of radius ε Nε containing x?, all x ∈ Nε and t ≥ t0,

ϕ(t, x) ∈ Nε(x
?) (2.11)

This definition is not ideal due to both the number of components involved and the

analytical requirement of proving convergence. Rather, we introduce the following theorem

as a more practical working definition of a stable equilibrium.

Theorem 2.1.5.5 (Stable equilibrium point). A point x? is a stable equilibrium of the

system 2.4 if and only if all of the following hold.

1. x? ∈ Rn+.

2. x? ∈ ker(f).

3. ∀λ ∈ σs(J(x?)),Re(λ) < 0.
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A full derivation and proof of theorem 2.1.5.5 can be found in many textbooks (see [34]).

However, this leaves an ambiguity as we have not formally defined a maximal subset of the

space Rn+ where this characterization can be extended. To do so, we turn to the theory of

regions of attraction.

Definition 2.1.5.6 (Region of attraction). A region of attraction (RoA) is defined for an

equilibrium state x? of the system 2.4 as Z ⊂ Rn+, where Z =
{
x0 ∈ Rn+ : limt→∞ ϕ(x0, t) = x?

}
.

Each region of attraction is denoted Zx?,

Zx? =
{
x0 ∈ Rn+| lim

t→∞
x(t) = x? where x0 := x(t0)

}
for x? ∈ ker(f) (2.12)

Methods for determining the existence and definitions of RoA vary depending on the

dimension (number of species). Exact characterizations are algebraically complicated to

compute for high dimensional spaces, and even in two dimensions.

Method for one dimension

In the one-dimensional case, exact characterizations of Zx? are possible when ker(f) is

sufficiently easy to obtain. Suppose the model f is well-posed and that ker(f) contains some

x? > 0 that is stable. Then 0 ∈ ker(f) also. As x? is a 1-dimensional stable equilibrium,

f(x − ε−) > 0 and f(x + ε+) < 0, where ε+, ε− ∈ R>0. If ε+ = ε−, then the interval

(x− ε−, x+ ε+) is a ε-ball at x. However, we can find a maximal ε by identifying the largest

values of ε− and ε+ such that f(x − ε−) > 0 and f(x + ε+) < 0. As a consequence of the

intermediate values theorem (recall that f ∈ C∞), only some other y? ∈ ker(f) for y? 6= x?.

While the existence of some y? as a lower bound is guaranteed by y? = 0 (for a sufficiently

well-posed biological system), the existence of a second y? > x? is not guaranteed. Then

ε− = x? − ys. However, should such y? > x? exist, then ε+ = y? − x?. This method is used

to construct exact characterizations of RoA in 3.1.
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Method for higher dimensions

An optimal method to compute an exact characterization of the region of attraction in two

or more dimensions is through the usage of Lyapunov functions. However, since a criterion

for the existence has not been proven, we shall instead use computational approximations

or indirect estimation from observation. For dimensions greater than two, notably with

nonlinear functions, computational approximations are a primary method for identifying

regions of attraction. The Matlab global optimization toolbox contains implementations of

standard algorithms for finding and approximating regions of attraction.

Note that these are sometimes referred to as basins of attraction, however the difference

is nontrivial. A basin of attraction is a general term defined for all types of attractors

including limit cycles and fixed points, whereas a region of attraction is defined only for

an equilibrium state. As we shall see, no significant theoretical issue arises from the ap-

plication of these methods or the application of relevant ecological theory. Construction

of these objects for limit cycles requires minimal deviation from theoretical methods. The

application to limit cycles is not within the scope of this thesis.

A comprehensive discussion of the details of these search methods and convex hull

algorithms are largely beyond the scope of this thesis. An implementation of Qhull [2]

can be found within the standard functions of Matlab (R2018a) to construct a convex

approximation of the region of attraction.

2.1.6 Probability theory

We partition our discussion of probability theory into distributions and stochastic topics.

2.1.6.1 Random variables and distributions

Let X : ΩX → E be a random element. Then roughly speaking, ΩX is defined as the sample

space for random element X and E is a measurable space containing the values that can

be mapped to by X for some ω ∈ ΩX . Elements of the σ-algebra of ΩX are referred to
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as events. If E is discrete, X is said to be a discrete random element. Likewise, if E is

a continuous measurable space, X is said to be a continuous random element. If E ⊂ En

where E is a euclidean space, then X is said to be a euclidean-valued random variable. Often

E = R, E = R+ or E = V for some vector space V . Then X is said to be a real-valued

random variable or random vector respectively. This is not to say that random variables

cannot have E = C, however the case of E = C has no direct biological or mathematical

application within the scope of this thesis.

Definition 2.1.6.1 (Sampling from a random variable). The parameter a is said to be

sampled from the random variable A if any of the following are true

• a is said to be drawn from A.

• a is a realization of A.

• a = A(ω) for some ω ∈ ΩA.

• a is an observation of A.

The last definition is primarily used in the context of statistics, however we will refer to it

within the context of collected data.

Let P : E→ R+ be the probability measure on Ω. As P is a probability measure it must

be non-negative. The probability of an event S ⊆ E occurring is given by

PrX(S) = P({ω ∈ Ω : X(ω) ∈ S}) (2.13)

where PrX : E → [0, 1]. If E is a continuous space, the map is defined with an integral

equation

PrX(S) =

∫
S

rX(~x)d~x (2.14)

Where rX(x) is the probability density function rX : E → R+ (if such a function exists).

Note that for the one-dimensional case, if we fix S = (−∞, s], then

PrX(S) = Prx(X < s) =

∫ s

−∞
r(x)dx (2.15)

The above discussion centers around distributions that return a single value. If the dim(S) >
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1, then X is a multivariate distribution and can be written as

PrX(S) =

∫
· · ·
∫

S

rX(~x)d~x (2.16)

where rX(~x) is the joint density function. If E = (Rn+) for some fixed n ∈ N, then the com-

putation of PrX(s) can be accomplished directly or approximated with numerical methods.

Multivariate distributions are one way to compact the notation for the sequence of integral

operations that commonly occurs in multivariate distributions.

Every non-trivial differential equation model for an ecological system has more than one

parameter before any change of variables occurs. We are primarily interested in distributions

that define parameters of the form:

Θ : Ω0 → Rn, FΘ : Rn → [0, 1]n, rΘ : Rn → R+, rΘ(x)i := rα(xi) (2.17)

T : ΩT → R+, FT : R→ [[0, 1], rT : R+ → R+, rT (x) =
1

τ
e
x
τ (2.18)

where T and Ω0 =
∏
α∈I Ωα, where I is an index set for all random variables in a given

model, n = |I| <∞.

Remark 2.1.6.2. The definition of rT is a nonstandard definition. This is done such that

the distribution parameter τ satisfies τ = ET , where E is the expectation function.

We may construct a sequence of Ωn, denoted as {Ωn}n∈N0 , and associated sequence Θn

denoted as {Θn}n∈N0 to describe a sequence of random variables. Often, this sequence will

be i.i.d.

2.1.7 Stochastic processes, random dynamical systems, and Markov

chains

To proceed, we require more general notion of a random variable. This generalization is

called a random element.
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Definition 2.1.7.1 (Random element). Let (Ω,F , P ) be a probability space and (E, ε) be

a measurable space. A random element X is a map X : Ω → E that is (F , ε) measurable,

where

• Ω is a (nonempty) space called a sample space,

• F is a σ-algebra on Ω,

• P is a probability measure on Ω.

Remark 2.1.7.2. A real valued random variable is a random element where E = R. Like-

wise, a random vector is a random element where E = V where V is some vector space. A

random function is a random element where E is a set of ε-measurable functions.

Stochastic processes are a common method for characterizing a sequence of random

events that with respect to a time variable. We consider here stochastic processes that are

defined on real spaces.

Definition 2.1.7.3 (Stochastic process). Let (E, σ) be a measurable space along with a

probability triple (Ω, β,P). Let T be an arbitrary set, called the index (or time) set. For

each s ∈ T, the random variable Xs are functions xn : Ω → E. The collection of these

random variables {Xs : s ∈ T} defines a stochastic process.

Remark 2.1.7.4. Often T = N,N0,R,R+ or is finite. We are primarily interested in

stochastic processes in which T ⊂ R+, Card(T) = Card(N), such that for all i ∈ N0, ti ∈ T

satisfies ti − ti−1 ∼ T , where T is an exponential random variable.

The class of object we introduce in this section is the random dynamical system (RDS).

Random dynamical systems are derived from dynamical systems with the introduction of a

probability space. The theory of random dynamical systems were first developed for a more

abstract approach to stochastic differential equations, however the theory has found broad

applicability within the study of Markov chains and applied stochastic processes due to the

applicability of ergodic theory. The following definitions of a random dynamical system is

from [1].
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Definition 2.1.7.5 (Random Dynamical system). A measurable random dynamical system

on the space (X,B) covering a metric dynamical system (Ω,F , P (θ(t))t∈T), where T is the

time set, is a mapping

ϕ : T× Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x)

which satisfies the following properties

1. measurability: ϕ is B(T)
⊗
F
⊗
B,B-measurable.

2. Cocycle property: The mappings ϕ(t, ω) ≡ ϕ(t, ω, ·) : X → X form a cocycle over θ(·),

i.e. they satisfy

ϕ(t0, ω, ·|t0) = idX for all ω ∈ Ω if t0 ∈ T (2.19)

where t0 is the identity element of the group (or monoid) T, and

ϕ(t+ s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω)∀s, t ∈ T, ω ∈ Ω (2.20)

Definition 2.1.7.6 (Continuous random dynamical system). A random dynamical system

ϕ is said to be continuous if the map

ϕ(·, ω, ·) : T×X → X, (t, x) 7→ ϕ(t, ω, x) (2.21)

is continuous.

The reader may notice that the cocycle of an RDS resembles a skew product, or skew

dynamical system, in addition to the algebraic structure. This is similar to that of a

(classical) random dynamical system.

Definition 2.1.7.7 (Smooth random dynamical system). A smooth random dynamical

system of class Ck, or a Ck random dynamical system, for 1 ≤ k <∞ on a d−dimensional

(C∞) manifold X is a topological RDS which in addition satisfies the following property:

for each (t, ω) ∈ T× Ω, the corresponding random flow ϕ(t, ω, ·) : X → X is Ck.
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2.2 Biological

2.2.1 Ecological Regimes

Definition 2.2.1.1 (Ecological state). An ecological state is a unique set of biotic and

abiotic environmental conditions. This includes the habitat, population sizes and spatial

distributions, pollution, resource availability, and inter-species interactions found in the

ecosystem at a moment in time. We notate the population state as x and collect the en-

vironmental and biological interactions into y. An ecological state is characterized by the

tuple (x,y).

Remark 2.2.1.2. An ecological state assumes that the interactions between populations can

be perfectly described by a set of parameters. These parameters are constant with respect

to time within a given interval [a, b) for a < b, a, b ∈ R. Classically this interval is [0,∞),

where the time of the observation is set to zero. A more apt characterization for this interval

within the context investigated in this work is [0,∆t), where ∆t is exponentially distributed.

Due to experimental constraints in the observation of ecosystems, ecological states are

better characterized experimentally over an interval of time.

Definition 2.2.1.3. An ecological regime A is a set of ecological states {(x,y)} character-

ized by the following:

• There exists a subset of ecological states which can be reached from any other ecological

state in the regime. Such a subset is said to be connected.

• All ecological states in the regime have the same parameters, captured by y.

The set of all ecological regimes is denoted Ω.

Often, multiple ecological regimes will exist which contain similar population states

with different parameter values. Algebraically, these are described by the same region of

attraction with different parameter values. Ecological regimes of a system can be partitioned

by an equivalence relation.
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Definition 2.2.1.4 (Equivalent Ecological regimes). Two ecological regimes A and B

are said to be equivalent under the equivalence relation ∼̇ if both ecological regimes can be

described algebraically with the same region of attraction but with different parameter values.

The class of equivalent regimes is denoted by [A]Er = {B ∈ Ω : B∼̇A}. The elements of

[A]ER are pairs expressed as (x0,y0). x0 is an ecological state with the associated parameter

vector y0.

Note that all possible population states may not be represented by an ecological state

in any ecological regimes. Such populations are said to be not stable (or unstable).

2.2.2 Intrinsic parameter variations

Observed ecological networks are generally highly structured [33, 41, 21, 42], with signifi-

cant variation in species phenotype and behavioral preferences within populations. Large

variations can result in the formation of subpopulations identified by a common phenotype

or behavioral preference. Fluctuations in subpopulations across spatial and time dimensions

can drive within-population variation of interactions by modifying the rate at which mem-

bers of both predator and prey subpopulations encounter each other, the probability that an

encounter results in an interaction, and the regulation of this interaction by environmental

factors [36, 35].

The distillation of ecological interactions from the highly structured underlying networks

constructed around interactions between subpopulations characterized by different pheno-

types or behavioral preferences into a network assuming homogeneity within populations

can be aptly characterized by a single set of parameters [36]. This assumption may not al-

ways be possible for an arbitrary biological system [33]. For large ecosystems or ecosystems

that present multiple generalist predators, this presents challenges that are statistical [47]

and/or experimental [3, 30] in nature.

These network-derived models describe populations as the fundamental units of study,

where feeding experiments, longitudinal capture/tag/release studies, and patch-observation

studies are used to elucidate and approximate the mathematical representations of the

underlying mechanisms. While such studies provide robust data on population level inter-
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actions, they rarely capture information on sub-populations and individuals at the genomic

level as this data is not incorporated directly into the model. Historically, the cost of ge-

nomic data collection and analysis has presented additional financial barriers to collection

of rich datasets. These obstacles have only recently been overcome to provide meaningful

results and contributions to the field [37, 16, 6, 38, 5]. This recent work suggests that within-

population and within-subpopulation variation can contribute to parameter variation that

appears intrinsic at the population level.

2.2.3 The extinction prediction problem

A major goal of theoretical ecology is the prediction of extinction events and the develop-

ment of early warning indicators for extinction events. This question is in essence, a simpli-

fication of the problem of predicting regime change events. Predicting extinction events and

ecological regime changes experimentally is a difficult task [39, 41]. Previous works have

examined compositional disorders in biodiversity [11], random matrix steady state models

[42, 21], and bifurcation theory [10, 39, 18]. None of these previous methods directly ad-

dress population level parameter variation within the developed deterministic mathematical

framework at the population level. Of the above techniques, bifurcation theory provides

an analytical framework which can aid in the analysis of transient or near-steady state be-

havior. However, this method fails to provide a robust integration of parameter variation,

allowing for the study of transient behavior of such systems. Multi-species models may

possess multiple stable equilibria, bifurcation theory does not afford systemic method to

describe the transition between stable states.

2.3 General terminology and notation

Throughout this work, we will refer to a transition between ecological regimes as a regime

change, a regime change event, or a transition between regions of attraction. These terms

are equivalent, different usages are used to emphasize the ecological, probabilistic, or deter-

ministic aspects.
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3 Motivating and Worked Examples

3.1 Example I

3.1.1 The model

Consider the 1-dimensional C∞ system

ẋ = (x)(r1)
(
−ab+ ax+ bx− x2

)
(3.1)

which permits the mapping given by f : R+ → R,

f(x) = r1x(x− a)(b− x) (3.2)

where a, b, r ∈ R+ without loss of generality and are drawn from representative distributions

as a ∼ A, b ∼ B, and r1 ∼ R1 respectively where each random variable is determined

statistically from system data. This is a nice equation, but (3.1) does not immediately

correspond to an interpretation of a physical system. Instead, consider equation (3.3).

ẋ = r1x
2(b− x) + r1ax(x− b) (3.3)

The first term can be interpreted as a variation on the logistic growth function. The second

term can be viewed as a state dependent immigration function, in which population flow

in or our is described with the unique parameter a with population growth r1, carrying

capacity b. Specifically, the rate of immigration is a product of the r1ax and the ‘distance’

to the carrying capacity b. If the population is less than the carrying capacity b, there is

outward emigration, but if the population is above the carrying b capacity, there is immi-

gration. We will then assume that a� b biologically, so any choice of a or b selected from

their corresponding distribution obeys a < b.
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The representation of the system in the form in equation (3.1) is more insightful ana-

lytically and we will default to this form.

3.1.2 Equilibria and Stability Analysis

As (3.1) can be written as a single polynomial, it follows that ker(f) = {0, a, b} so the

equilibria are x? ∈ ker(f). We can index these equilibria as x?1 = 0, x?2 = a, and x?3 = b.

We can then compute the stability of each equilibrium by linearization. As f is a C∞

polynomial, f ′ must exist, so

f ′(x) =
df

dx
= r1

(
2x(a+ b)− ab− 3x2

)
(3.4)

Then

f ′(x?1) = f ′(0) = −r1ab < 0 (3.5)

f ′(x?2) = f ′(a) = r1(2a(a+ b)− ab− 3a2) = r1a(b− a) > 0 (3.6)

f ′(x?3) = f ′(b) = r1(2b(a+ b)− ab− 3b2) = r1b(a− b) < 0 (3.7)

We are able to conclude the last inequality in (3.6-3.7) from the observation that a < b. We

have shown that x?1 = 0 and x?3 = b are stable, and x?2 = a is unstable. Then x?1 = a is the

stability bound between the two regions of attraction.

3.2 Probabilistic State Transition

We must define the random variables from which a, b, and r1 are drawn from as A,B, and

R1 before proceeding. Let A = {An}∞n=1, B = {Bn}∞n=1, and R1 = {R1n}∞n=1 be sequences

of i.i.d. random variables. Note that our only requirement is that all values attained by

these distributions is strictly positive. Let rA, rB, and rR1 be the respective probability

distributions of A,B, and R1. For simplicity, let all distributions be uniform with mean
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parameters µA, µB, and µR1 . Let each distribution have width 2εX for each X = A,B,R1,

such that all µA− εA > 0, µB − εB > 0, µR1 − εR1 > 0, and µA−µB > εA + εB, so any value

chosen from the distribution satisfies the conditions on the parameters for this model.

Formally,

An : ΩA → R, FA : R→ [0, 1] rA : R→ R+, rA(a) =


1

2εA
a ∈ supp(An)

0 elsewhere

(3.8)

Bn : ΩB → R, FB : R→ [0, 1] rB : R→ R+, rB(b) =


1

2εB
b ∈ supp(Bn)

0 elsewhere

(3.9)

R1n : ΩR1 → R, FR1 : R→ [0, 1] rR1 : R→ R+, rR1(r1) =


1

2εR1
r1 ∈ supp(R1n)

0 elsewhere

(3.10)

We can thus describe parameter space with a joint probability distribution Θ, whose

event space is given by

Ω0 = ΩA × ΩB × ΩR1 (3.11)

and the random variable Θ is defined with

Θn : Ω0 → R3 FΘ : R3 → [0, 1] Θ : R3 → R3
+ rΘ(a, b, r1) =


rA(a)

rB(b)

rR1(r1)

 (3.12)

For notational simplicity, we use rΘ(θ) and rΘ(a, b, r1) interchangeably, as we can define

θ = (a, b, r1)T . Where each probability density function is defined as above. Thus, we have

defined a multivariate random variable that describes the model parameters.
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3.2.1 Regions of Attraction

Let Zx? be the region of attraction for the equilibrium point x?. As the population is one-

dimensional, it follows that the regions of attraction for each equilibrium (for arbitrary a

and b as defined above) are given by

x?1 :Zx?1(Θ) = [0, x?2) = [0, a) (3.13)

x?2 :Zx?2(Θ) = {x?2} = {a} (3.14)

x?3 :Zx?2(Θ) = (x?2,∞) = (a,∞) (3.15)

We will abuse notation and drop the dependence of Zx? on Θ. It then follows from this

construction that the probability of changing regimes can be characterized by parameter

space and the population state at time t. We then must define the subset of parameter

space (R3, equation (3.12)) ‘different enough’ such that drawing a new parameter triple

Θn+1 results in x0 ∈ Zx?(Θn)∧x0 /∈ Zx?(Θn+1). Further, notice that this can be generalized

for every x0. Thus, for a given position x0 ∈ R+,

SB(x0|Θn) = supp(Θn) \ {Zx? |x0 ∈ Zx?∀x? ∈ ker(f), for fixed Θn} (3.16)

where supp(Θn) is the region of support of the random variable Θn. Notice that every

region of attraction is invariant of the parameters r1 and b. In fact, any value of r1 and b

do not impact any region of attraction.

3.2.2 Probabilistic State Transition

Note that as the distribution is invariant of r1 and b, then SB(x0|Θn)c ∩ supp(Bn) =

supp(Bn) and SB(x0|Θn)c∩supp(R1n) = supp(R1n). For brevity, defineA∗ = (SB(x0|Θn))c∩

supp(An). Thus, the probability of a regime change event (denoted RC) at a fixed position

in phase space is given by
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P(RC |Θ(ω)) =

∫∫∫
SB(x0|Θn)

rΘ(θ)dθ = 1−
∫∫∫

(SB(x0|Θn))c

rΘ(θ)dθ (3.17a)

= 1−
∫
A∗

rA(u)

 ∫
supp(Bn)

rB(v)

∫
supp(r1)

rR1n
(s)dsdv

 du (3.17b)

= 1−
∫
A∗

rA(u)

 ∫
supp(Bn)

rB(v)(1)dv

du (3.17c)

= 1−
∫
A∗

rA(u) ((1)(1)) du (3.17d)

= 1−
∫
A∗

rA(u)du (3.17e)

Further simplification is case-dependent. First, note that if x0 ∈ Zx?2 , then x0 = a, then

P(RC |a = An(ω), x0 ∈ Zx?2) = 1−
∫
u=a

rA(u)du =

a∫
a

rA(u)du = 1− 0 = 1 (3.18)

as a consequence of the Riemann integral. (Note that this calculation may encounter prob-

lems with numerical implementations of random number generations). For the remaining

two cases, we can further simplify this integral by applying the same invariant property

used to evaluate the inner integrals. Next, consider the nontrivial cases, where x0 ∈ Zx?1 or

x0 ∈ Zx?3 . Suppose x0 ∈ Zx?1 . Then

P(RC |a = An(ω), x0 ∈ Zx?1) = 1−
∫

u∈[0,a)

rA(u)du (3.19a)

= 1−
a∫

0

rA(u)du (3.19b)

= 1− P (An < a) (3.19c)

= 1− FAn(a) (3.19d)
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Likewise,

P(RC |a = An(ω), x0 ∈ Zx?3) = 1−
∫

u∈[(a,∞)

rA(u)du (3.20a)

= 1−
∞∫
a

rA(u)du (3.20b)

= 1− P (An > a) = 1− (1− FAn(a)) (3.20c)

= FA(a) (3.20d)

These are well defined as the associated cumulative density functions are well defined on R.

Then the probability P(RC) can be described as

P(RC |Θn(ω), x0) =


1− FAn(x0) x0 ∈ Zx?1

1 x0 ∈ Zx?2

FAn(x0) x0 ∈ Zx?3

(3.21)

Thus we have a closed form equation that describes the probability of a regime change

event at a specified position. A natural question is how to extend this construct when the

time that the regime change occurs is either not known, or is random. Let us set aside the

experimental question of detecting these events for now. Computing closed form explicit

flows that are insightful is often impossible, but a close numerical approximation often is. A

numerical approximation to the solution of the differential equation (3.2) is easily available.

A numerical simulation where parameters are held constant is shown in figure 3.1, where

the parameters are set at a = 1.005, b = 3, r1 = 0.25. We use the uniform distributions

specified above. These correspond to the expected value for the uniform distribution where

µA = 1.005 and εA = 1. This strategy provides sufficient information to characterize regime

change events that occur randomly, given that we know the state x(t?) = x1 when and

where the transition occurs. We can then construct P(RC) for the new parameter values

and determine if a regime change occurs.

The alternative question, what if the regime changes occur randomly, provides a more
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Figure 3.1: A plot of the numerical approximation of the solution (top) and associated
P(RC) (bottom) when the initial condition is set at x0 = 1.01. Note that the associated
transition probability is zero when x(t) > 2.01. This is consistent with our intuition, as
no parameters can be drawn such that changing the parameter values changes the region
of stability. Also note that the curvature of the associated transition probability (bottom)
appears similar to the curvature of the position function x(t) (top). This follows from the
linear relationship described by the cumulative density function of the uniform distribution.
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interesting path forward. Rather than considering the question of when does the next tran-

sition occur we may instead ask the equivalent question: what is the ‘length’ of the time

interval that a parameter tuple Θ maintains one value before changing? There are several

candidate distributions that are well known for describing this type of behavior, depend-

ing on what additional properties we ascribe to this ‘length’. All obvious candidates are

within the family of generalized extreme value distributions. This includes the exponential,

Weibull, Frechet, and Gumbel distributions, all of which are well understood with physically

meaningful parameters within the context of waiting times or life expectancy. We select the

exponential distribution as requires the least number of parameters and has the simplest

algebraic form. The benefit of selecting a compact algebraic form that is easily integrable

will become apparent in the next section.

3.2.3 Generalized Probabilistic State Transitions

In this subsection, we consider the question posed at the end of the prior section. We

will consider an exponential distribution T that describes the time between transitions.

We introduce an additional parameter τ which is the scale parameter for an exponential

distribution T . The following definition of T generalizes

T̄ : ΩT → R+, FT : R→ [0, 1] rT : R+ → R+, rT (x|t0) = τ−1e
−(t−t0)

τ , t ≥ t0 (3.22)

Then we can construct the probability of a regime change event occurring in the in-

terval [tn, tn+1]. To do so, we must define RC with respect to time. Let PP(RC ∈

[tn, tn+1)|Θ(ω)) ≡ P(R̄C |Θ(ω)) to denote the implicit dependence on the interval. We

make the dependence of the regime change probability on the time value explicit within the

construction,

P(R̄C |Θ(ω)) =

tn+1∫
tn

rT (t)P(RC |Θ(ω), x(t))dt (3.23)

As we already have a closed form for P(RC), then computing this integral is dependent
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upon which Zx? each x(t) is contained in. To proceed, we invoke a closure property of

regions of attraction: For every state x0 ∈ Zx? , the forwards trajectory {x(t)}(t∈T ).

To construct P(R̄C |Θ(ω)), we evaluate the integral by cases. Before we do so, we note

that each case corresponds entirely to one region of attraction and as such is not a piecewise

function in the traditional sense.

First, suppose that x0 ∈ Zx?1 Then P(RC |Θ(ω)) = 1− FAn(x(t)), so

P(R̄C |Θ(ω)) =

tn+1∫
tn

rT (t)P(RC |Θ(ω), x(t))dt (3.24a)

=

tn+1∫
tn

rT (t)(1− FAn(x(t)))dt (3.24b)

=

tn+1∫
tn

rT (t)dt−
tn+1∫
tn

rT (t)FAn(x(t))dt (3.24c)

= (FT (tn+1|tn)− FT (tn|tn))−
tn+1∫
tn

rT (t)FAn(x(t))dt (3.24d)

Computing the remaining integral requires knowledge of the solution, x(t). The next case

x(t) ∈ Zx?2 does have a closed form, as

P(R̄C |Θ(ω)) =

tn+1∫
tn

rT (t)P(RC |Θ(ω), x(t))dt (3.25a)

=

tn+1∫
tn

rT (t)(1)dt (3.25b)

= FT (tn+1|tn)− FT (tn|tn) (3.25c)

The final case x(t) ∈ Zx?3 is similar to the case of x(t) ∈ Zx?1 .
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P(R̄C |Θ(ω)) =

tn+1∫
tn

rT (t)P(RC |Θ(ω), x(t))dt (3.26a)

=

tn+1∫
tn

rT (t)(FAn(x(t)))dt (3.26b)

The primary obstacle here is not complexity introduced by the cumulative density functions,

but rather the algebraic complexity induced by x(t). However, a numerical approximation of

x(t) is easily accessible. To do so, construct a numerical approximation of the solution tra-

jectory. There are two canonical approaches that can be implemented depending on the de-

sired output. The first approach is to construct a polynomial approximation of the solution,

and then distribute. To do so would generate integrals of the form
∫
e−αt

(∑j
i=0 ait

i
)

dt for

some j � 1. This can be decomposed into a difference of sums of j + 1 incomplete gamma

functions, after applying a unique affine transformation to every term in the polynomial.

Alternatively, we could numerically integrate the function and sample the polynomial inter-

polation for values of x(t). This is easier to implement with generality with many numerical

software packages. With implementation, we omit the second case as P(a = An(ω)) = 0.

3.2.4 Sequences of Generalized Probabilistic State Transitions

Once the parameters update, the system ‘resets’, and we can then repeat the previous proto-

col, recording the time of each transition. The first value in the sequence is P(RC ∈ [t0, t1)),

the second value is P(RC ∈ [t1, t2)), etc. The sequence of regime change probabilities is

a new measurement of stability to describe and predict regime change events or extinc-

tions. With simulations, we can record the sequence of ecological regimes (RoA) attained

and compare how well the prediction of a change does predict the change. Further, we

can separate the transition probabilities by those that are followed by a transition event

and those that are not. Figure 3.3 and figure 3.4 depict two instances of the time series

generated through this simulation technique. Figure 3.3 depicts the result of four different

simulations. The top depicts the population time series, the bottom depicts the associated
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transition probabilities. The probabilities plotted below correspond to the population data

of the same color plotted above. No clear pattern emerges with only 500 steps. In figure

3.4, two simulations with the same initial condition x0 = 1.01 are plotted. With ≥ 600

iterations a pattern now becomes clear. The noise in the dataset subsides as the trajectory

approaches an equilibrium. Near an equilibrium, the transition probabilities more accu-

rately correlate to correct predictions. That is, near an equilibrium, high values more likely

predict a transition and low probabilities predict no transition. Thus if the ecological state

is near the equilibrium state for the current ecological regime with the average associated

parameter values, a high transition probability is a good indicator of the system. However,

when near an equilibrium, most regime changes do not result in a transition event. Near a

‘tipping point’, many regime change events occur in sequence, often with a probability near

0.5.

Identifying an optimal critical threshold for classification remains an open problem not

addressed in this thesis.

A good question to ask is there structure to this data? Is the distribution of probabilities

that correctly predict a change different that the distribution of probabilities that do not

predict a change? Additionally, if the distributions are different, if we collect a single tran-

sition probability, might it be possible to determine if this data comes from the distribution

of probabilities that correctly predicted a change or the distribution of probabilities that

correctly predicted no change.

The latter of these problems is statistical in nature and is beyond the scope of this

thesis. The development of the statistical machinery to further analyze this data further

remains an open problem.

The first of these problems could generally be answered by a Kolmogorov-Smirnov (KS)

test. This is not an ideal strategy as continued iteration of the simulation inevitably results

in the population converging to one of the two equilibrium, resulting in the probability

sequence saturating with zeros or near zero values, skewing the distribution towards zero.

These distributions have similar regions of support and are practically indistinguishable
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Figure 3.2: The top depicts a numerical implementation of the iterative scheme of the
population. An ensemble of 20 different simulations are shown, each colored differently, with
the same initial condition x0 = 1.00. Each simulation was iterated for 600 steps, observing
599 transitions. The associated probabilities are shown below. The color of the data point
(bottom) corresponds to the time series data (top). The white centered points correspond
to a prediction that resulted in no-change. Likewise, a black-centered point denotes that a
regime change event did occur. A violin plot [17] (right) shows the probabilities obtained,
partitioned by those that were followed by a regime change event (denoted +), and those
that were not followed by a regime change event (-). Here, τ = 0.01 and r1 is uniformly
distributed on (0, 0.25). The p-value for the 2-sample Kolmogorov-Smirnov test computed
by Matlab is 0.2089.
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Figure 3.3: The top depicts a numerical implementation of the iterative scheme of the
population. An ensemble of 20 different simulations are shown, each colored differently,
with the same initial condition x0 = 1.01. Of the 20, 11 resulted in an extinction event, 8
converged to the stable equilibrium, and one continues to exhibit transient behavior after
600 iterations. Each simulation was iterated for 600 steps, observing 599 transitions. The
associated probabilities are shown below. The color of the data point (bottom) corresponds
to the time series data (top). The white centered points correspond to a prediction that
resulted in no-change. Likewise, a black-centered point denotes that a regime change event
did occur. A violin plot [17] (right) shows the probabilities obtained, partitioned by those
that were followed by a regime change event (denoted +), and those that were not followed
by a regime change event (-). Here, τ = 0.01 and r1 is uniformly distributed on (0, 1). The
p-value for the 2-sample Kolmogorov-Smirnov test computed by Matlab is 0, suggesting
p≪ 1.
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Figure 3.4: Two additional simulations for 600 iterations with the initial condition x0 =
1.01. The blue set of points (bottom left) corresponds to the blue time series data (top
left). The green set of points (bottom left) corresponds to the orange time series data (top
left). The white centered points correspond to a prediction that resulted in no-change.
Likewise, a black-centered point denotes that a regime change event did occur. Note that
when the population is near the equilibrium, the proportion of high probability transitions
that correctly predict transitions dominates the data. This holds for both the extinction
and existence equilibrium. A violin plot [17] (Right) shows the probabilities obtained,
partitioned by those that were followed by a regime change event (denoted +), and those
that were not followed by a regime change event (-). Here, τ = 0.01 and r1 is uniformly
distributed on (0, 1).
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Figure 3.5: Two simulations for 1000 iterations with the initial condition x0 = 0.51. Only
2 probabilities above 0.1 did not result in a change. Overall, 95% of probabilities over 30%
correctly predicted a regime change event occuring. Additionally, over 96% of probabilities
below 30% correctly predict no change in ecological regime. The 30% threshold is arbitrarily
selected a priori. The density of points exceeds what can be plotted in the histogram in
the bottom region of the scatter plot. Here, τ = 0.01 and r1 is uniformly distributed on
(0, 0.25).
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without knowledge of the construction.

4 Method of stochastic parameters

This section formally introduces the method of stochastic parameters (MSP) that we have

demonstrated in the section 3.1, develops the theory behind the technique, and introduce

several new directions of study and applications.

4.1 Assumptions

We consider functions ẋ = f(x) such that f ∈ C∞(Rn+)l, where C∞l (X) is the space of

infinitely-differentiable Lipschitz continuous functions f : Y → X over any closed Y ⊂ X.

While this is a strong condition, most differential equations used to describe ecological

models can be easily shown to satisfy this condition. By the Picard-Lindelöf theorem

equipped with a contraction map and the usual norms, there exist unique functions that are

solutions to any differential equation characterized above with an initial condition x0 ∈ Rn+.

4.2 Derivation

We will motivate the construction of the MSP by considering three events, characterized

by the number of parameter space transitions and length of time. We will first consider a

parameter space transition (a ‘jump’) at a fixed time and known position. We then consider

a single jump at a time sampled from an exponential distribution. We finally consider the

case of multiple jumps, the time step between them given by an exponential random variable.
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4.2.1 Case 1

4.2.1.1 Motivation

Consider the following question. Given an initial population state x0 ∈ Rn+ in the region

of attraction Zx?k and parameter state Θ0(ω), what is the probability that selecting a new

parameter triple Θ1(ω) such that under the new parameters, x0 /∈ Zx?k , x0 ∈ Zx?j for j 6= k.

We can provide an equivalent characterization of this question within an ecological

context. Given an initial population state x0 ∈ Rn+ in a given ecological regime A of an

ecological system with the dynamics described by ẋ = f(x) and an initial parameter state

y0 drawn from distribution Θ0, what is the probability that drawing a new parameter state

y1 transitions out of A, such that (x0,y1) /∈ A, if the parameter state is drawn randomly

from the parameter distribution?

4.2.1.2 Method

To do so, we must construct the set S ⊂ Rn such that x0|y1 6∈ [A]Er. This is rather

straightforward with classical techniques in probability theory. For brevity, denote a regime

change event at time t as Rct .

P (Rct) = P (y1 ∈ S) =

∫
· · ·
∫

S

rΘ(s)ds (4.1)

following equation 2.16.

4.2.2 Case 2

4.2.2.1 Motivation

Consider a variation on case 1, in which time that the parameter change occurs at some

time t ∼ T which is exponentially distributed. The initial states x0 and y0 are known, as

well as the dynamical system (equation 2.4) that describes the changes in the population.
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4.2.2.2 Method

As the time at which the parameter change occurs is not known, we expand our approach

and introduce our first theorem. This requires us to introduce a brief lemma.

Lemma 4.2.2.1. For a continuous random variable X with continuous density function

rX ,

P (x < X < x+ dx) = rX(x)dx

Proof. Let X be a continuous random variable with continuous density function rX . Then

P (x < X ≤ x+dx) = lim
h→0

P (x < X ≤ x+h) =

x+h∫
x

rX(x)dx ≈ lim
h→0

(x+h)rX(x) = rX(x)dx

Theorem 4.2.2.2. Let f : Rn+ → Rn+ be a dynamical system under the prior assumptions,

with a known ecological state xi|yi ∈ [A]Er. Then the probability of xi|yi+1 6∈ [A]Er occurring

over the interval [ti, ti+1) is given by

P(RC ∈ [ti, ti+1]) =
1

τ

ti+1∫
ti

e (t−ti)
τ

∫
· · ·
∫

S

rΘ(s)ds

dt (4.2)

where RC denotes the time that the regime change occurred τ > 0 and the integral over the

region S is defined in section 4.2.1.

Proof. Let the exponential random variable T have parameter 1
τ . Additionally, define RCt

as a random variable denoting that a regime change occurred at time t and define BE as

an indicator variable denoting if the parameter change was big enough to cause a regime

change. Then the probability of a regime change can be derived from the construct

P(RC ∈ [ti, ti+1]) =

ti+1∫
ti

P (RCt)P (BE) (4.3)
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By lemma 4.2.2.1,

P(RC ∈ [ti, ti+1]) =

ti+1∫
ti

P (t ≤ T − ti ≤ t+ dt)P (BE) (4.4)

Then,

P(RC ∈ [ti, ti+1]) =

ti+1∫
ti

(rT (t− ti) dt)

∫
· · ·
∫

S

rΘ(s)ds

 (4.5)

Finally,

P(RC ∈ [ti, ti+1]) =

ti+1∫
ti

e t−tiτ ∫
· · ·
∫

S

rΘ(s)ds

 dt (4.6)

4.2.3 Case 3

4.2.3.1 Motivation

In practice, we may be interested in the behavior of a system where at least one parameter

change occurs in the interval of interest. Once a parameter change does occur, we cannot

extend the integral described in theorem 4.2.2.2. Rather, once the parameter change event

does occur, we can no longer predict the probability of the transition event occurring as it

has already occurred. Instead, we may describe the occurrence of a sequence of parameter

changes over a given interval.

4.2.3.2 Method

Definition 4.2.3.1. Let Un be an Erlang distribution which defines the time until n pa-

rameter changes occur. Thus,

Un =
n∑
k=1

T (τ) = T (τ) + T (τ) + · · ·T (τ) = Γ(τ−1, n) (4.7)
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where T (τ) is an exponential distribution with parameter τ , then E(Un) = nτ and Var(Un) =

nτ2.

The Erlang distribution is considered a special case of the Gamma distribution, where

the shape parameter n is a positive integer. Then we can construct the sequence of regime

change probabilities

nX = {Xi}0<i≤n, Xi = P (Rc) : t ∈ [ti−1, ti), (ti−1 − ti) ∼ T (τ) (4.8)

The total time that nX describes is given by Un.

4.3 Computation of terms

This approach does not rely on the construction of Lyapunov functions to describe the

regions of stability. Instead, the computational difficulty of this technique rests in the

construction of equation 4.1. The general procedure is as follows for an initial state x0|θ0:

1. Determine the set of equilibrium points {x? ∈ Rn : x? ∈ ker(f)}.

2. Consider just one construct Zx? such that x? ∈ Zx? .

3. Construct a system of inequalities on the parameters Θ given x0.

4. Restrict the parameter space Rm by applying the system of inequalities. Declare this

subset of parameter space S(x).

5. Construct Sc. Then compute

F (t) =

∫
· · ·
∫

S

rΘ(s|t)ds = 1−
∫
· · ·
∫

Sc

rΘ(s|t)ds (4.9)

as a function of time. These probability density functions rΘ are conditioned on the

time parameter t as the set S is a function of the position, which implicitly is a

function of the time.
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6. Draw ∆t ∼ T , update ti = ti−1 + ∆t. Integrate equation 4.2 to compute the ith

element of the sequence 4.8.

7. Repeat steps 1 - 6 to generate the sequence constructed in (4.8).

Where Zx? is defined in definition 2.1.5.6, SB can be considered the subset of population

space (R+) that does not belong to the same region of attraction as x0.

4.4 Changing parameter distributions

In many cases, representing the parameter distribution Θn as a sequence of i.i.d. random

variables may be unrealistic or be overly simplistic. Parameters may change over time while

the functional forms used to construct the model given by equation 2.4 may be robust. Sea-

sonal trends may have small influences on parameters, while evolutionary processes may

be at play for large timescales which alter the distribution of parameters. Both conditions

severely complicate classical ODE analysis of the model by introducing nonlinear or non-

autonomous terms into the model. If the observed or predicted effect of these changes is

small, estimation of parameters to reconstruct these models may be subject to increased

uncertainty. However, by applying the periodic effects to the parameter distributions in-

stead, and then sampling from them rather than explicitly including these model features,

the complexity of the model analysis can be preserved. Simulation can be used to determine

the variation in end behavior.

4.4.1 Always stable models and critical parameter identification

Some models do not include multiple stable equilibrium, thus only one regime is described

by the model. The simulation portion of this technique can still be used to evaluate the

stability of these models, however we must define a new question of interest. Instead, we

can ask

1. Is the expected value of the population under the assumption of stochastic param-
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eters equal to the constant-parameter model formulation? If so, does this limiting

population average utilize mean parameters?

2. Do specific parameters not involved in the equilibrium position (e.g. scaling parame-

ters) impact the expected value of the population? Do they alter the variance?

3. Given a bounded set S that containing the equilibrium, what is the probability that

the population exits this bounded region?

Questions 1 and 2 can be answered directly through a statistical analysis of the time series

of the population generated by simulation, followed by analysis step. The first question is

analogous to the dominated convergence theorem for expectations. The third question is

explored in section 4.2.

4.4.2 Seasonal variation

Seasonal variation can often be captured by a sine function. Consider

r(t) = rc − rwsin(2πt) (4.10)

when |rw| � |rc|, we can approximate r(t) ≈ rc. We demonstrate the utility of this technique

with a simple example. Consider the classic Lotka-Volterra model

ẋ = r1x− axy (4.11)

ẏ = bxy − r2y (4.12)

This system has an extinction equilibrium at (0, 0) and a coexistence equilibrium at
(
r2
b ,

r1
a

)
.

This conclusion is easily reached through a steady state analysis, and is excluded due to

it’s simplicity. Constructing this model where r1 and r2 are seasonally influenced gives the

system of equations

ẋ = (r1 − ra sin(2πt))x− axy (4.13)

ẏ = bxy − (r2 − rb sin(2πt))y (4.14)
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Where ra � r1 and rb � r2. No steady state exists for this model for all t > 0 as this is not

an autonomous differential equation. A simplification to drop time-dependent terms allows

for the incorporation of more complex parameters without significantly increasing model

complexity.

5 Embedded Markov Chains models

In this chapter, we will connect and formalize the idea we have developed and provide an

alternative method for simulation of populations that does not require the usage of numerical

techniques to simulate the differential equation. Essential corollaries, theorems, and lemmas

are proven with some generality to demonstrate the generality of this approach and provide

a standard approach for further generalizations. Further, this section draws from global

notions of stability and random dynamical systems. Many physical systems do permit a

global characterization due to the possibility of explosion. However many ecological systems

can be described by well-posed models which lack the capability of explosions found in the

context of physical systems.

5.1 General approach

A primary technical challenge in the construction of probabilistic models is the development

of good transition operators, either as stochastic differential equations, Markov Chains, or

a general stochastic process. In sections 3 and 4, we have computed the change in the

population as forward action of the differential equation or associated dynamical system.

The significant drawback of this approach is that it computationally expensive, requiring

hundreds to tens of thousands of numerical solutions to differential equations to be ob-

tained. Rather, if we could identify the specific flow and the time step, we could determine

symbolically a probability distribution that describes the next population at the next time

point. Fortunately, the mathematical construction of our system permits this approach as

we have already defined or assumed distributions for every parameter. Because parameter

distributions are defined, we can construct a bijective map from the space of parameters into
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the space of maps that satisfy an initial condition. By noting that the time step is known

(even if randomly distributed), we can determine the next position if we know the map.

This pair of observations allows us to randomly select a sequence of maps to be followed

for randomly selected intervals of time. By combining both, we can randomly select a next

position of the system.

Such a strategy can be furthered by invoking the memoryless property of the sequences

of random variables describing the parameters and the dependence only on initial condition

property of solutions to differential equations. Once at a population state, the probabil-

ity of attaining a specific new state is entirely determined by the initial position and the

distributions for each parameter. As a result, the sequence of population positions (popula-

tion states) satisfies a Markov property. Further, if we can well-characterize the transition

operator between states, we can well characterize a Markov chain. This is the transition

operator we will develop in the remainder of this section.

5.2 Overview

First, we introduce formal definitions for specialized mathematical structures not yet used.

We begin by providing a formal definition of the mathematical structure described in the

previous chapter.

Definition 5.2.0.1 (Stochastic Parameters System (SP-system)). The tuple (X, f, {Θk}, ς̄ , τ, x0)

is a SP-system where

1. X ⊂ Rn+ is the set of possible population states where n is the number of species in

the model,

2. f : X → X is a well defined uniformly continuous map on X with a set of parameters

θ,

3. ς̄ is the set of all solution flows (denoted as ϕ) of the differential equation described

by f ,

4. {Θk}k∈N0 is an infinite sequence of independent variables θk, which completely de-
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scribes the model parameters contained in the map f ,

5. τ is a strictly positive real number that is the single parameter of an exponential

distribution (T (τ))

6. x0 ∈ X is an initial position of the system.

Remark 5.2.0.2. We say that an SP-system is well posed (definition 2.1.1.1) if the con-

tinuous map f : X → X is also well posed.

We next define a specific class of Markov chain structures. This definition of a Markov

chain is one of many found in literature and is not the most general definition. Rather, this

definition captures a specific set of properties that will be most applicable.

Definition 5.2.0.3 (Discrete time continuous state Markov Chain). A discrete time con-

tinuous state Markov chain is a tuple (X,κ, T,{Yt}, ν) where

1. X is an infinite set called the state space

2. κ : X × 2X → [0, 1] is the transition kernel that describes

3. T is a discrete index set which is further indexed by N,

4. {Yt} is a sequence of random variables indexed by T.

5. ν is an initial state of the Markov chain.

Additionally, the sequence of random variables satisfies the Markov property:

P (Ytn = xn|Ytn−1 = xn−1) = P (Ytn = x|Ytn−1 = xn−1, Ytn−2 = xn−2, . . . , Yt1 = x1) (5.1)

where xn is a sequence of observed values in X.

Rather than define Φ, it is often easier to construct the transition kernel κ : X × 2X →

[0, 1]

Remark 5.2.0.4. The index set T is indexed by N to ensure that T is discrete and to

emphasize that while tn may not be uniformly interspersed, we may construct Yn from Yt.
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This formulation is essential for the case T 6= N which is rarely studied within the context

of Markov chains.

Note that while refer to Φ as a function, the dependence on the initial condition allows

for the construction of a family of transition operators (dependent on the initial condition),

each of which is defined a specific initial conditionx ∈ X. In this chapter, we will show that

a discrete time continuous state Markov chain on an integer index can be constructed from

an SP-system. We will proceed by example.

5.3 Example 2

In this section, we show that the logistic differential equation (definition 5.3.0.1) can gener-

ate an SP-system, and then construct a markov chain. The logistic equation is a commonly

used model for population growth due to the algebraic simplicity of the model and the

number of parameters (see [24] section 2.8 for a full discussion and references). First, how-

ever, we will state and briefly prove several classical results about the logistic differential

equation that would otherwise suggest that the logistic map is not an interesting object of

study with this strategy.

Definition 5.3.0.1 (Logistic differential equation). The logistic differential equation f :

R+ → R+ is defined as

dx

dt
= f(x) = f(x|r, k) = rx

(
1− x

k

)

where r and k are strictly positive real valued-constants. Note that this is sometimes called

the Velhurst equation, in honor of Pierre Francois Velhurst [45].

Remark 5.3.0.2. Classically, the logistic differential equation is defined where f : R→ R.

We restrict the domain and codomain to non-negative values to emphasize the biologically

significant events.

Theorem 5.3.0.3. The logistic model contains one stable equilibrium x? = k, the region of

attraction Zk is (0,∞).
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Proof. We first show that x? = k is the only stable equilibrium. Let

dx

dt
= f(x|r, k) = rx

(
1− x

k

)

At equilibrium, dx
dt |x=x? = f(x?) = 0 then

0 = rx?
(

1− x?

k

)

As this is a polynomial, either rx? = 0 or 0 = 1 − x?

k . Then x? = 0 or x? = k. Then

x? ∈ {0, k} is the set of equilibrium. Next, we perform a linear stability analysis. As

f ′(x) = r − 2
rx

k
= r

(
1− 2x

k

)

then f ′(0) = r > 0 and f ′(k) = −r < 0, so the only stable equilibrium is x? = k. Next,

recall the definition of a region of attraction (2.1.5.6). To show that the region of attraction

for x? = k is (0,∞), we will show that any initial condition x0 ∈ (0,∞) trends towards k.

We outline the next several steps, omitting the details of convergence for brevity. Note that

such a result can also be attained by inspection of the solution flow of the system. Every

x0 ∈ (k,∞) satisfies f ′(x0) < 0, so lim
t→∞

f(x) = f(x?) = 0 implies lim
t→∞

x(t) = k, where

x(t0) = x0. Likewise, every x0 ∈ (0, k) satisfies f ′(x0) > 0, so lim
t→∞

f(x) = f(x?) = 0 implies

lim
t→∞

x(t) = k. Thus any initial position x0 ∈ (0,∞) converges to k in the limit.

The solution flow operator for the logistic differential equation ϕ : Tt0 × R+ → R+is

given by

ϕ(t− t0, x|r, k, 0) = ϕ(x, t|r, k, t0) =
kxert

(k − x)ert0 + xert
(5.2)

where x ∈ [0,∞), t ≥ t0 ≥ 0, and r, k are defined as above. Notice that the solution

flow operator is conditioned on t0, as well as r and k. This is a relaxation of the initial

condition part of the definition, such that ϕ(x, t0) = x, rather than formally requirement

that ϕ(x, 0) = x, as our flow is defined over time index [t0,∞) which may not include all

inverse elements.

Corollary 5.3.0.4. The set of all solution flows to the logistic function {ϕ} satisfies{ϕ} ⊂
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C(R+).

Proof. This follows from theorem 5.3.0.3. If x ∈ [0, k], then 0 ≤ ϕ(t, x) ≤ k. Otherwise,

x > k, and f(x) < 0 for all t > t0, so ϕ(t, x) ≤ x. Then ϕ(t, x) ≤ max({ϕ(t0, x), k}). Then

ϕ(t, x) is bounded.

To proceed, we require k and r to be realizations of random variables. To do so with gen-

erality,we construct sequences of i.i.d. random variables K = {Kn}n∈N0 and R = {Rn}n∈N0 ,

where these random variables are defined as

Kn : ΩK → R+, rn : Ωr → R+, n ∈ N0 (5.3)

where rKn and rRn are the associated probability density functions for Kn and Rn respec-

tively. As K and R are i.i.d., we abuse notation and write

rR(r) = rRn(r), rR(r) = rKn(r),∀n ∈ N0 (5.4)

For brevity, we construct the sequence of random vectors Θn as

Θn : ΩK × Ωr → R2
+ rΘ(K, r) =

rK(k)

rr(r)

 , θ ∼ Θn (5.5)

Now we return to our flows. Define the space of all flows through an initial condition (x0, t0)

as

ςt0x0 =

{
ϕ(t, x) ∈ C(R+) :

dϕ(t, x0)

dt
= f(x0), ϕ(t0, x0) = x0

}
(5.6)

where f(x) is defined in definition 5.3.0.1. This is the space of all continuous solution flows

that intersect the space-time coordinate (x0, t0). By theorem 5.3.0.3, every solution flow is

bounded. As this is a subspace, it inherits the subspace metric and subspace topology from

C(T ) (see definition 2.1.3.1). This is in fact a metric space under the supremum norm,

where dς : ςtx × ςtx → R+, for any %, ψ ∈ ςtx, d(%, ψ) = supt∈T |ϕ(t, x)− ψ(t, x)|.

Remark 5.3.0.5. Biologically, ςt0x0 is the space of all possible flows that arrive at the state

x0 at time t0, and every possible ‘route’ forwards from the state x0 at t0.
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Lemma 5.3.0.6 (Uniqueness and existence of flows on parameters). If k and r specified,

then there exists a unique ϕ ∈ ςt0x0 whose parameters are k and r respectively.

Proof. This follows from the existence/uniqueness criterion for solutions of differential equa-

tions, as by specifying r and k, we reduce ẋ = f(x) to a specific differential equation which

has a unique solution.

Corollary 5.3.0.7. For every t0 ∈ T and x0 ∈ R+, there exists a map M(t0,x0) : R2
+ → ςt0x0,

M(t0,x0) : Θn 7→ ϕ(t, x|t0,Θn).

Proof. The proof of this corollary immediately follows from lemma 5.3.0.6.

To summarize, we have constructed the random variable Θn : Ω0 → R2
+ and M(t0,x0) :

R2
+ → ςt0x0 . For fixed (x0, t0), we can compose these to obtain Mt0,x0(Θ(ω)), which is a

function. We can generalize this to obtain the random function

F t0x0 : Ω→ ςt0x0 (5.7)

for t0 ∈ T and x0 ∈ R+. We can further generalize by constructing the set of all possible

flows. Let

ς̄ =
⋃

x0∈R+,t0∈T

(
ςt0x0
)

(5.8)

Remark 5.3.0.8. The set ς̄ is still a metric space with the subspace metric inherited from

C(R+).

Then we can define the F that contains flows globally as

F : Ω× Tt0 × R+ → ς̄ , (ω, tn, x) 7→ ϕ(·, x, |Θ(ω), tn) (5.9)

While we state that ϕ is conditioned on Θ(ω) this is in reference to the flow function being

conditioned on Θ(ω), rather than the image of (ω, tn, x) being conditioned on Θ(ω). This

F is sufficient to generate ϕ.

Proposition 5.3.0.9. The map F : Ω×Tt0 ×R+ → ς̄ defines a random dynamical system.
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The proof of this proposition follows from the definition of a random dynamical system.

The cocycle properties of ϕ(·, ω, ·) : T×R+ → R+ follow from the prior fact that ϕ(·, ·|Θ) :

T× R+ → R+ is a already dynamical system.

Next, we utilize the exponential random variable T with parameter τ . Formally,

T : ΩT → R+, rT (t|t0, τ) = τ−1e−(t−t0)τ−1
, t ∈ Tt0 (5.10)

One may notice that from ςt0x0 , we may randomly select a flow and some time step ∆t1 =

t1 − t0 to arrive at ςt1ϕ(t1,x0|t0). This observation leads to our next theorem.

Theorem 5.3.0.10. The generalized 1-step transition map Φ(ω, t0, x0) : ΩT ×ςt0x0 → R+ de-

fines all possible transitions (x0, t0) 7→ (ϕ(t1, x0|t0), t1) for the stochastic process {Xt}t∈T. If

this mapping exists, then there also exists an analogous transition operator for the stochastic

kernel κ : R+ × 2(R+) → [0, 1]. For the logistic differential equation, the probability kernel κ

is defined as

κ(x,C) =

∫∫∫
ΥC

fY (xn, r, t)d(xn+1)dxdrdt (5.11)

where

ΥC = {(x, r, t) ∈ R+ × R+ × T : x ∈ C, r ∈ R+, t > tn ∈ T } (5.12)

and fY is the joint density of the transformed variables if xn > 0.

The following proof of this theorem is in some ways not rigorous as we use intuitive facts

where possible. While we attempt to implement a broad technique for existence, we do rely

on several properties demonstrated within the proof of theorem 5.3.0.3. We motivate the

proof with the following observation.

Let Im(f) denote the image of the map f within it’s codomain. The event xn+1 ∈ C

occurs when both of the following occur:

1. the random value T (ω) satisfies xn+1 = ϕ(tn + T (ω), xn|tn)

2. there exists ϕ ∈ ςt0x0 such that xn+1 = ϕ(tn + T (ω), xn|tn) ∈ Im(ϕ),
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Proof. Let x ∈ R+ = Z, and let C be some event such that C ⊂ 2(R+) = σ(X). κ can be

loosely thought of as measuring the probability of transitioning from state x to state y ∈ C.

Formally,

κ(x,C) = P(Xn+1 = xt(n+1)
∈ C|xtn = Xn)

To proceed, we require the parameterized functional forms of all solutions and the density

function of the random vector Θn.

P(Xn+1 = xt(n+1)
∈ C|xtn = Xn) = P

(
(ϕ(t(n+1), xn|tn,Θn)) ∈ C|xn

)
Then the transition kernel can be constructed from the density functions. Our goal to

construct a multivariate distribution conditioned on xn. As a consequence of the existence

of the map Φ Define Y1 = ϕ(t1, r,K|x0, t0) as a new random variable. Let |Θn| = k. We

then expand to form an k + 1 system of variables to transform with. Let

y1 = h(t(n+1), r, k|xn) =
kxert(n+1)

(k − x)ertn + xert(n+1)

where y1 = h(t(n+1), r, k|xn) exists for every (tn, xn+1). We can remove the explicit de-

pendence on tn by substituting ∆t = tn+1 − tn and simplifying. We write this function as

g1.

y1 = g1(∆t, r, k|xn) =
kxne

r∆t

k + xn (er∆t − 1)
(5.13)

Now the new position y1 = xn+1 ∼ Y1 can be entirely described as a function of random

variables, conditioned on a single position value. To perform a change of variables to

obtain the distribution of Y1, we extend the system by constructing the transformed random

variables: y2 ∼ Y2 = R (r ∼ R), y3 ∼ Y3 = T (∆t ∼ T ) (note that Yn : n ≥ 2 are formed by

identity transformations). This new system is invertible. As T,R,K are independent, let

fX(x1, x2, x3) = rK(x1)rR(x2)rT (x3) (5.14)

Let gi denote the transform between K,R, T and Y1, Y2, and Y3 respectively. As g2 and g3
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are identity transforms, the inverses g−1
2 and g−1

3 exist and are well defined. We select g1

to map between K and Y1 as the inverse g−1
1 is well defined for K. Then

g−1
1 (y1, y2, y3) =

xne
y2tn − xney2y3

ey2tn − xny−1
1 ey2y3

(5.15a)

g−1
2 (y1, y2, y3) =y2 = r (5.15b)

g−1
3 (y1, y2, y3) =y3 = t (5.15c)

where y−1
1 = 1

y1
. We can then construct the Jacobian matrix for the transformation

J(y1, y2, y3) as

J(y1, y2, y3) =

∣∣∣∣∣∣∣∣∣∣
ey2y3 (−1+ey2y3 )x2n

(y1−ey2y3xn)2
ey2y3xn(xn−y1)y1y3

(y1−ey2y3xn)2
ey2y3xn(xn−y1)y1y2

(y1−ey2y3xn)2

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
(5.16)

J(y1, y2, y3) =

∣∣∣∣ey2y3 (ey2y3 − 1)x2
n

(y1 − ey2y3xn) 2

∣∣∣∣ (5.17)

From this, it is not clear that the denominator is always nonzero. To demonstrate that J

is well defined, we back-substitute a substituted definition for y1 to obtain

J(y1, y2, y3) =

∣∣∣∣∣e−t(n+1)y2
(
xne

t(n+1)y2 + etny2 (y3 − xn)
)

2

x2
n

(
et(n+1)y2 − etny2

) ∣∣∣∣∣ (5.18)

From this, it is clear that the J is well defined if and only if xn 6= 0. The denominator

is strictly positive if t(n+1) > tn and xn > 0. Both of these requirements are fulfilled as

∆tn = t(n+1)− tn > 0 and the assumption that xn > 0. Upon inspection of J , it should also

clear that the numerator is also strictly as it can be expressed as the product of a square

and an exponential, when xn > 0.

Let fY denote the joint probability with respect to the transformed (Yi) variables. Then

fY (y1, y2, y3) = fX(g−1
1 (y1, y2, y3), g−1

2 (y1, y2, y3), g−1
3 (y1, y2, y3))J(y1, y2, y3) (5.19)
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Then by equation (5.14) and equations (5.15a), we obtain

fY (y1, y2, y3) = rK

(
xne

y2tn − xney2y3

ey2tn − xny−1
1 ey2y3

)
rR(y2)rT (y3)

·
e−t(n+1)y2

(
xne

t(n+1)y2 + etny2 (y3 − xn)
)

2

x2
n

(
et(n+1)y2 − etny2

)
This longer form is preferred as it has no explicit dependency on y1. As y2 and y3 are

invariant under this transformation, rT is defined in equation (5.10), as xn+1 = y1,

fY (xn+1, r1, t(n+1)|xn, tn) =rK

(
xne

r1tn − xner1t(n+1)

er1tn − xnx−1
n+1e

r1t(n+1)

)
(5.20)

· rR(r1)τeτ(t(n+1)−tn)

·
e−t(n+1)r1

(
xne

t(n+1)r1 + etnr1
(
t(n+1) − xn

))
2

x2
n

(
et(n+1)r1 − etnr1

)
where τ > 0, t(n+1) > tn, rK and rR are probability density functions. We can the define a

region of integration ΥC as

ΥC = {(x, r, t) ∈ R+ × R+ × T : x ∈ C, r ∈ R+, t > tn ∈ T } (5.21)

The subscript C attached to ΥC denotes the explicit dependence of the set on C, Note that

this requires rR to be defined over all positive real values. If this is not the case, extend R

by setting rR(t) = 0 for t /∈ support(R). Then

κ(xn, C) =

∫∫∫
Υ

fY (xn, r, t)d(xn+1)dxdrdt (5.22)

where r, t are dummy variables.

5.4 Main Results

We require an additional definition that was implicitly used in the prior section.

Definition 5.4.0.1 (Invertible SP-system). An SP-system (R+, f, {Θk}, ς̄ , τ, x0) is said to
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be invertible if for every flow ϕ, there exists some set of indices i ∈ I such that that the

system ~yI = ϕ(t,Θn(ω)|t0) , and yj is the jth element of Θn for all j /∈ I, 0 < j ≤ m + 1,

where m is the length of the random vector of parameters Θn, the system ~y is a continuous

invertible system of equations.

Remark 5.4.0.2. While we have defined the time step random variable T as an exponential

distribution, the following theorem does not depend on the type of random variable chosen

for T .

Theorem 5.4.0.3 (Relation between SP-system and random dynamical system). Let

(X, f, {Θk}k∈N0 , {ϕ}, τ, x0) be a SP-system. Then there exists a corresponding random

dynamical system (Ω,F , P, (θ(t))t∈T), where each map is obtained by

F : Ω× Tt0 × R+ → ς̄ (5.23)

which is analogous to a dynamical system if and only if all of the following

1. there exists a bijection between T, Tt0, and N,

2. Ω = ΩT × ΩΘ,

The argument presented in the prior section can be generalized into the following theo-

rem.

Theorem 5.4.0.4. Let (X, f, {Θk}k∈N0 , {ϕ}, τ, x0) be an invertible SP-system that satisfies

the following conditions

1. X ⊂ Rn+ be a connected set such that X ⊃ Im(f) over Rn+, upon which f : X → X is

well defined and uniformly continuous,

2. The set ς̄ ⊂ C(X), that is every solution flow of f is continuous with respect to the

time index T and is bounded over all t ∈ T ,

then there exists a probability kernel κ : X × 2X → [0, 1] for all xn ∈ X.

Remark 5.4.0.5. Several generalizations of this theorem can easily be obtained by further

relaxing structural requirements. The most significant relaxation is the removal of the i.i.d.
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requirement on Θ. As observed biological processes are often highly autocorrelated, the

construction of a Markov chain of order n > 1 may be fruitful. The general strategy for

the existence of such object does not change, however the associated algebraic manipulations

and solutions may be significantly complicated to hinder the direct computational strategy

used.

6 Discussion

This thesis has outlined two different approaches towards investigating and modeling bi-

ological systems through the usage of an SP-system. The SP-system is a newly defined

mathematical object within the context of biological modeling, but we have shown that

these define a class of random dynamical systems. The approach to the extinction predic-

tion problem allows for the usage of the rich and well developed theory of Markov chains

and random dynamical systems theory. Secondly, incorporating stochasticity at the param-

eter level provides a new technique to overcome a primary technical challenge in stochastic

dynamics: the construction of the Markov (transition) kernel. In doing so, we reduce the

problem to one of integration, rather than construction. This presents new challenges in

developing integration strategies for these broad classes of integrands. However we have

meaningfully shifted the problem into a different domain, which allows for different and

new approaches. It also has opened the problem to advances in numerical analysis and

numerical simulation.

We have also investigated the analysis of SP-systems to generate sequences of transition

probabilities. The example presented proceeds with generality where possible. We have

examined numerical simulations using uniform random variables, however this approach can

easily be generalized by any disjoint distributions. This example can be further generalized

by allowing the random variable that describes the larger parameter (a) to be drawn from

any distribution with strictly positive values. This distribution can be linearly shifted such

that it satisfies the bounds. However these describe fundamentally real systems, suggesting

that there are practical upper and lower bounds on allowed parameter values from the

physical system. Most biological parameters are strictly positive (see [30, 29, 4] for a brief
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overview).

This approach can be generalized to larger systems of significantly higher algebraic

complexity. This presents additional challenges in determining the region of attraction.

While we have not explored strictly numerical techniques for this problem in detail, this

thesis outlines a road map that can be followed to construct a numerical implementation

that can be applied to an arbitrary system of equations.

6.1 General Applications

This techniques developed in this thesis demonstrate the utility of the SP-system for bio-

logical and ecological systems analysis. We have demonstrated that the SP-system charac-

terization can lead to insightful statistical questions which posit direct ecological questions.

We have also demonstrated that a Markov chain can be extracted from an SP-system. A

direct application of this Markov chain is the hitting time problem for an epsilon bound

around the origin. A slew of general techniques are well established for this problem at

both the undergraduate and graduate level and are omitted here for brevity. While we have

constructed parameters as stationary stochastic processes, we could apply a parameter evo-

lution to them to determine the behavior of the system under rapid parameter evolution.

Additionally, seasonal behavior can be modeled into the parameters by applying a peri-

odic shift to the distribution parameters. The shape and/or mean parameters of many

distributions are optimal candidates for this modification.

6.2 Important parameter identification

Identifying biologically significant parameters is sufficiently important to warrant further

discussion. We first proceed by example, examining the results of example 1, then discuss

further approaches and computational experiments.

First, notice that the growth parameter r1 does not appear in the algebraic description

of any region of attraction. Thus when r1 > 0, any r1 is allowed. This suggests that the

parameter r1 is not an essential parameter for determining end behavior. Additionally, note
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that the parameter that defines the unstable equilibrium is a result of the inequality a < b.

If we reversed the inequality, it follows from equation (3.5) that b would be the unstable

equilibrium. Further, if a and b are not known to obey a strict ordering, then min(a, b)

defines the unstable equilibrium, and max(a, b) defines the stable equilibrium. In this case,

both a and b are biologically significant. The major complication of this case is an expansion

in the algebraic representations with the addition of several min and max operations at most

steps, the strategy executed does not change. However, both parameters are now significant,

as modifications of the ecological system that impact the lesser of these two parameters also

impacts the biological system. Impacts on the ecological system that decrease the larger

parameter value do not alter the overall stability of the ecological system until the support

of the random variable describing the upper parameter intersects the support of the random

variable describing the lower random variable. A similar argument can be constructed from

the previous approach but by increasing the support for the distribution that describes the

lower parameter value as well.

While this approach may appear similar to bifurcation theory, is different than bifur-

cation theory as it constructed around the support of the random variables and does not

require equilibrium to change stability. The latter is an essential component of bifurcation

theory.

The above analysis relies on being able to perform a stability analysis. This is not

always readily available. Multiple routes for numerical experimentation are available. A

first approach is a modification on the classic parameter sweep. Hold all variables constant

except for one and consider that parameter as a random variable. The approach can be

used with multiple parameters as random variables additionally. Decreasing the number

of parameters that are represented as random variables decreases the number of random

number draws necessary per iterative step, decreasing the time to compute each step. This

can be performed when the random variable has a support over R+ or a closed and bounded

subset of R+. Weibull, Gamma, beta, log-normal, and uniform distributions are all potential

candidates for this distribution depending on what properties the parameter is proposed

to have. Simulations allow for the detection of additional behavior not predicted by the

deterministic model and allow for the study of the impacts of single-parameter variations. If
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a parameter must remain within a small interval for the model to be stable, then by sampling

that parameter from a distribution wider than the small interval, the probability of drawing

many (an overwhelming majority) of the parameter values from inside the small interval

is very small. Then it is most likely that the parameter values obtained will be outside

of the interval. This reduces the number of cases that need to be checked significantly.

Classically, a parameter sweep requires potentially considering hundreds, thousands, or

tens of thousands of parameter values, depending on an a priori estimate of the size of such

interval.

6.3 Future directions

Throughout this work we have mentioned where there still exist gaps in computation, un-

derstanding, and proof. We have described immediate next steps that are beyond the scope

of this work. Any of these steps may provide additional insight into biological systems. A

general computational implementation of this technique is essential for its application to-

ward higher (> 2) dimensional systems. There are additional challenges for this, primarily

the complexity of computing regions of attraction in the presence of saddle equilibria which

are characterized by stable and unstable manifolds. Often these manifolds partition regions

of stability, but an explicit computation of these manifolds is generally unreachable. In

2-dimensional systems, there are binary search algorithms available to identify a point on

the manifold which can be used as the basis for a numerical approximation of the manifold.

Unfortunately, sampling 3-dimensional or higher dimensional space using a search algorithm

is not guaranteed to obtain a point on the manifold. A more sophisticated technique to

find this manifold and compute the stability bound is one potential route forward. Alterna-

tively, we may decide that testing each point in the population space by forward numerical

simulation to identify which region of attraction a point it is in is a sufficient approximation

of the true regions of attraction. Then when we want to determine where a position is,

we require a classification algorithm to accurately classify which region of attraction the

specified point is in.

Many more results are likely accessible by the application of ergodic theorems to under-
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standing the behavior of these systems. The applicability of ergodic theory to these systems

remains under-explored. Additionally, under what additional conditions and assumptions

do the dominated convergence theorem hold (or a new analog of this theorem) or Fatou’s

lemma? Additionally, the transition operator between random flows of a random dynamical

system is a levy process on the space of random flows [9]. The biological and theoretical

implications of this remark are not yet explored or characterized.
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