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Abstract

We review nonparametric estimation of efficiency and productivity,
bywhichwemainlymean activity analysis, or data envelopment anal-
ysis (DEA). The review covers topics that we hope will be of special
interest to those doing research in the realm of agriculture.We also in-
clude a brief appendix addressing nonparametric estimation from an
econometric perspective.
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1. INTRODUCTION

The concept of nonparametric estimation is used in at least two different areas. One is non-
parametric econometrics, and another is activity analysis, or data envelopment analysis (DEA).
Here we discuss the latter but include an appendix by Carlos Martins-Filho that provides a brief
summary of nonparametric density and nonparametric regression from an econometrician’s point
of view.

Themost obvious advantage of our nonparametric approach relative to traditional parametric
approaches is obvious from the name—no specification of a specific parametric functional form is
required, nor is specification of error structures, thus avoiding possible specification error. An-
other advantage is the ability to estimate frontier functions consistent with economic theory such
as minimum cost and maximum profit, among others. Although stochastic (parametric) frontier
approaches also clearly allow for frontier estimation, they require specification of functional form,
as well as assumptions concerning error structure, both of which may again introduce specifica-
tion error. Another advantage of DEA-type approaches is the ease with which technologies with
multiple outputs and inputs, which are typical in agriculture, can be estimated. Furthermore, these
technologies can be estimated even in the absence of prices or costs, which as we see below proves
useful when we wish to model joint production with undesirable outputs and useful for analysis in
environmental and natural resource applications.

Our approach is to review the main models and ideas employed in nonparametric estimation,
using linear programming methods rather than comprehensively reviewing specific papers or
applications. We do, however, provide examples from agricultural economics of how the various
models have been applied. Again, rather than including an exhaustive inventory of this applied
literature, we include only representative examples.

After introducing what we refer to as the basic reference technology, we discuss the different
optimization models associated with activity analysis, or DEA, as our nonparametric estimators,
with examples from agricultural economics. Some topics, such as risk, uncertainty, and shadow
pricing, are better suited to parametric formulations or econometric nonparametric estimation
as, for example, in Kumbhakar & Tsionas (2009, 2010) and are not included here.

Our first variation on the basic model is the area of capacity and capacity utilization as for-
mulated by Johansen (1968). As our agricultural example shows, this model can be used to es-
timate the von Liebig law of the minimum.

Productivity, especially the nonparametricMalmquist productivity index, is the topicof Section5.
We show how it is defined and estimated by using nonparametric tools. A contribution by Tauer &
Lordkipanidze (2000) provides an example of how productivity may be applied in agriculture.

Our next topic is the joint production of good and bad outputs. We show how to modify our
basic technology to accommodate both good and bad outputs in an activity analysis setup.

Our final topic is networkDEA. This is a family of models that allow us to go inside the black box
andexamine the interactions among subtechnologieswhile preserving thenonparametric character of
the DEA technology. These subtechnologies may reflect the connections among firms in an industry,
processes within a firm, or connections over time, which can be used to form a dynamic network.

To take full advantage of our review, some knowledge of linear programming is useful. For
those who seek guidance concerning software to implement the linear programming problems
presented here, we refer the reader to Barr (2004), who reviews some options.

2. BASIC TECHNOLOGY AND ITS REPRESENTATION

In this section we introduce the basic activity analysis formulation of technology, which is per-
haps best known under the name data envelopment analysis (DEA). (This name was coined by
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Charnes et al. 1978.) We begin with some basics: We assume that there are k ¼ 1, . . . , K
observations or decision-making units (DMUs), which can be farms, firms, etc. Each DMU uses
x ¼ ðx1, . . . , xNÞ 2ℜN

þ inputs to produce y ¼ ðy1, . . . , yMÞ 2ℜM
þ outputs. We follow Kemeny

et al. (1956) and impose the following conditions on our data:

ðiÞ
XM
m¼1

ykm > 0, k ¼ 1, . . . ,K, ðiiÞ
XK

k¼1
ykm > 0,m ¼ 1, . . . ,M,

ðiiiÞ
XN
n¼1

xkn > 0,k ¼ 1, . . . ,K, ðivÞ
XK

k¼1
xkn > 0,n ¼ 1, . . . ,N.

ð1Þ

The first two conditions state that each DMU produces at least one type of output and that
each output is produced by at least one DMU. Similarly, the last two conditions require that
each DMU use at least one input and that each input be employed by at least one DMU. These
conditions relax those originally required by von Neumann (1945) and Charnes et al. (1978) that
the data have no zeros. These conditions are easy to verify from simple inspection of the data.

To continue with formulation of our basic activity analysis technology, we introduce what are
known as intensity variables,

zk S 0, k ¼ 1, . . . ,K, ð2Þ

i.e., one for each DMU. Using the above assumptions and our data matrix, we can specify our
activity analysis technology set as

T ¼
n
ðx, yÞ :

XK

k¼1
zkxkn & xn, n ¼ 1, . . . ,N,XK

k¼1
zkykm S ym, m ¼ 1, . . . ,M,

zk S 0, k ¼ 1, . . . ,Kg.
ð3Þ

Alternatively, we can equivalently specify the technology as

PðxÞ ¼ fðyÞ : ðx, yÞ 2Tg the output set ð4Þ

or

LðyÞ ¼ fðxÞ : ðx, yÞ 2Tg the input set, ð5Þ

where clearly

x2LðyÞ5ðx, yÞ 2T5y2PðxÞ. ð6Þ

Given the conditions specified in Kemeny et al. (1956), one can prove that the activity analysis
technology satisfies the following conditions (see Shephard 1970 for a proof):

I. P(0) ¼ {0}, implying inactivity;
II. P(x) is bounded for each x2ℜN

þ , implying scarcity;
III. T is a closed set, and thus P(x) and L(y) are closed;
IV. if y2 P(x) and y0& y, then y0 2 P(x), implying strong disposability of outputs;
V. x2L(y), x0 S x imply x0 2L(y), resulting in strong or free disposability of inputs;
VI. T ¼ lT, l> 0, implying constant returns to scale.

Note that Conditions II and III together imply that P(x) [but not T or L(y)] is a compact set.
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If we change the M inequalities on our outputs in our activity analysis technology above to
strict equalities, the technology satisfies weak disposability of outputs, i.e.,

y2PðxÞ and 0 & u & 1, then uy2PðxÞ. ð7Þ

In the same way, if the N input inequalities in our activity analysis technology are changed
to equalities, the technology satisfies weak disposability of inputs, i.e.,

x2LðyÞ and l S 1, then lx2LðyÞ. ð8Þ

This implies that we are allowing for backward-bending isoquants. Strong disposability implies
weak disposability, but the converse is not true.

We can also vary the returns-to-scale property in our activity analysis technology by adding
constraints to the intensity variables, i.e., the z’s: If zkS 0, k ¼ 1, . . . , K, and zk&1, then the
technology exhibits nonincreasing returns to scale (NIRS), and if zkS 0, k¼ 1, . . . ,K, and zk¼ 1,
then it exhibits variable returns to scale (VRS). See Färe & Grosskopf (2009) for more details
regarding returns to scale and disposability of outputs and inputs.

3. OBJECTIVE FUNCTIONS

The nonparametric literature often seeks to identify a best result; i.e., we seek to optimize some
objective or objective function. These are generally of two types: value functions and distance
functions. Such functions are often dual to each other; the distance functions are associated with
the primal or quantity-based specification, and the value functions are associated with dual or
price-based specifications. The value functions are more common in the economics branch of this
literature, whereas the distance-type functions are typical in the operations research branch.

As mentioned in Section 2, the frontier or boundary of our activity analysis technology is
piecewise linear, which implies that the isoquant (approximately the boundary of the set) may not
be the same as the efficient subset, i.e., the part of the boundarywhose elements are nondominated.
Particularly in the operations research literature, considerable effort has been expended to adjust
the distance-type functions to attain the efficient subset. A typical example of a technology in
which the efficient subset and isoquant do not coincide is the Leontief type:

LðyÞ ¼ fðx1, x2Þ : y&minfx1, x2gg. ð9Þ

If the goal is tomeasure technical efficiency relative to the efficient subset, i.e.,wherex1¼ x2, rather
than the isoquant that includes the vertical and horizontal extensions of the points where x1¼ x2,
the typical distance function must be modified to remove slack, which we address presently.

But we begin with what are generally considered to be the first nonparametric efficiency
measures that are due to Farrell (1957). To introduce them, consider the following now-classic
figure based on Farrell’s paper (Figure 1).

InFigure 1, the input setL(y) is bounded below by its isoquant, here labeled yy. The objective in
this case is to identify the cost-minimizing input bundle for observation A, given the input prices
represented by the slope of the isocostww. The optimal bundle isx�, with associatedminimumcost
wx�; i.e., this is a typical value function optimization. Farrell (1957) defines overall cost-efficiency
as the ratio of minimal cost to observed cost, which for DMU A is equivalent to

0C=0A.
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Farrell (1957) decomposes this (value-type) efficiency score into technical efficiency (0B/0A),
which is the distance function or primal objective, and a residual allocative or price-related
component (0C/0B), which altogether can be stated as

0C=0A ¼ 0B=0A × 0C=0B.

That is, overall cost-efficiency is the product of technical and allocative efficiency.
To formalize the Farrell measure and its decomposition, first define the cost function

Cðy,wÞ ¼ minfwx : x2LðyÞg, ð10Þ

where w2ℜN
þ is a vector of input prices. This cost function can be estimated relative to our

activity analysis technology as a linear programming problem, i.e.,

C
�
yk

0
,w
� ¼ min

x, z
wx

subject to
XK

k¼1
zkxkn & xn, n ¼ 1, . . . ,N,XK

k¼1
zkykm S yk0m, m ¼ 1, . . . ,M,

zk S 0, k ¼ 1, . . . ,K.

ð11Þ

This problem may be solved for each observation in the data set k0 ¼ 1, . . . , K and yields the
minimum cost for each observation as well as the cost-minimizing input bundle. The dual to this
cost function is Shephard’s (1953) input distance function, which is defined as

Diðy, xÞ ¼ maxfl: x=l2LðyÞg ð12Þ

and may be estimated as the solution to the following linear programming problem:

0 x1

x2

w

w

y

y

A

B

C

L(y)

Figure 1

Farrell (1957) decomposition of cost-efficiency.
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�
Di
�
yk

0
, xk

0���1
¼ minb

subject to
XK

k¼1
zkxkn & bxk0n, n ¼ 1, . . . ,N,XK

k¼1
zkykm S yk0m, m ¼ 1, . . . ,M,

zk S 0, k ¼ 1, . . . ,K.

ð13Þ

The (dual) relation between the two functions can be captured by the following, which is
based on the Mahler (1939) inequality, namely

Cðy,wÞ
wx

&
1

Diðy, xÞ. ð14Þ

This inequality is derived as follows, first using the definition of the cost function as minimal cost,

Cðy,wÞ&wx for all x2LðyÞ, ð15Þ

and because x/Di(y, x) 2 L(y), we have

Cðy,wÞ&wðx=Diðy, xÞÞ, ð16Þ

yielding our Mahler inequality from Equation 14 above. The Farrell decomposition may be de-
rived from this inequality by introducing Farrell’s allocative efficiency component, AEi, and thus

Cðy,wÞ
wx

¼ 1
Diðy, xÞ ×AEi, ð17Þ

where 1/Di(y, x) is the Farrell measure of technical efficiency.
Farrell suggests that a similar decomposition can be obtained by taking an output-increasing

orientation rather than an input-decreasing orientation. The associated value function in this
case is the revenue function, for which we need to introduce output prices p2ℜM

þ and define

Rðx, pÞ ¼ maxfpy : y2PðxÞg, ð18Þ

which has an associated dual distance function

Doðx, yÞ ¼ minfu : y=u2PðxÞg. ð19Þ

From these functions, we can follow the derivation above to obtain a Farrell output-oriented
decomposition as

Rðx, pÞ
py

¼ 1
Doðx, yÞ ×AEo, ð20Þ

where 1/Do(x, y) is the output-oriented technical efficiency component and AEo the allocative
efficiency component.

In addition to cost and revenue efficiency, we can also define profit or Nerlovian efficiency
(introduced by Chambers et al. 1998), which is based on the profit function defined as

Pðp,wÞ ¼ maxfpy�wx : ðx, yÞ 2Tg. ð21Þ

Here, T is our basic activity analysis technology. From basic economics, we know that under
constant returns to scale, P(p, w) ¼ 0 in equilibrium. To allow for nonzero profits, we need to

98 Färe et al.

A
nn

u.
 R

ev
. R

es
ou

r.
 E

co
n.

 2
01

3.
5:

93
-1

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 O

re
go

n 
St

at
e 

U
ni

ve
rs

ity
 o

n 
03

/1
9/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



impose eitherNIRS or VRS. If NIRS are imposed, i.e., we add the restriction that
PK

k¼1zk&1, then
P(p, w) & 0. If VRS are imposed, i.e., we add the restriction that

PK
k¼1zk ¼ 1, then P(p, w) 2

(�1, þ1), which allows for losses as well as for nonnegative profits.
Dual to the profit function is the directional technology distance function, introduced by

Luenberger (1995) as the shortage function and defined as

D
!

T

�
x, y; gx, gy

�
¼ sup

n
b :
�
x� bgx, yþ bgy

�
2T
o
. ð22Þ

Here (gx, gy) are the directional vectors, which give the direction in which (x, y) is projected
onto the boundary of the technology set T.

From the definition of the profit function, we know that

Pðp,wÞ S py�wx for all ðx, yÞ 2T,

and if we take into account the fact that

�
x� D

!
T
�
x, y; gx, gy

�
gx, yþ D

!
T
�
x, y; gx, gy

�
gy
�2T, then

Pðp,wÞ � ðpy�wxÞ
pgy þwgx

SD
!

T

�
x, y; gx, gy

�
. ð23Þ

This inequality tells us that the normalized difference between maximum profit and observed
profit (whichwe term theNerlovian efficiency indicator1) is greater than or equal to the associated
technical efficiency. Aswith our other value inequalities, we can arrive at a decomposition of profit
efficiency by including a residual allocative component, i.e.,

NI ¼ Pðp,wÞ � ðpy�wxÞ
pgy þwgx

¼ D
!

T

�
x, y; gx, gy

�
þ AE
�!

T . ð24Þ

The directional distance function is in fact a generalization of the Shephard distance functions
introduced in conjunction with the Farrell measures of technical efficiency. By the appropriate
choice of the directional vectors, we can show these relationships. Thus, if gx ¼ 0, gy ¼ y, we have

D
!

Tðx, y; 0, yÞ ¼ ð1=Doðx, yÞÞ � 1, ð25Þ

and when gx ¼ x, gy ¼ 0, we have

D
!

Tðx, y; x, 0Þ ¼ 1� ð1=Diðy, xÞÞ. ð26Þ

Thus, the appropriate choice of directions allows us to move from indicators to indexes.
We now return to our Leontief technology,

LðyÞ ¼ fðx1, x2Þ : minfx1, x2g S yg,

which has L-shaped isoquants. The Farrell input technical efficiency measure equals one
(i.e., signals technical efficiency) if and only if

1We followDiewert (1998) and term additive measures indicators and refer to multiplicative measures like the Farrell measures
as indexes.
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minfx1, x2g ¼ y,

which can happen when an observation is on the horizontal or vertical extensions of the
isoquant, rather than at the kink that is the efficient subset of this technology. The gap between
the A and B in Figure 2 represents what is known as the slack or, in this case, excess of input
x1 relative to the input usage at B. Clearly B uses fewer inputs yet produces the same output as
observation A, so A is therefore not technically efficient—only observation B is efficient in
Figure 2.

We can define both a multiplicative technical efficiency measure and an additive technical
efficiencymeasure thatwill have the indication property that its value is one and zero, respectively,
if and only if the observation is efficient. In Figure 2, efficiency occurs if the observation is at B.

The multiplicative index that identifies whether an observation is a member of the efficient
subset of the technology (as at B) is introduced by Färe & Lovell (1978) as the Russell measure,
which may be defined for Figure 2 as

Rðy, xÞ ¼ min
�
l1 þ l2

2
: ðl1x1, l2x2Þ 2LðyÞ

�
. ð27Þ

The additive measure or indicator is a slack-based directional distance function introduced by
Färe & Grosskopf (2010) and defined as

maxfb1 þ b2: ðx1 � b1 × 1,x2 � b2 × 1Þ 2LðyÞg. ð28Þ

Both of these may be estimated as linear programming problems by using our basic activity
analysis technology from Section 2.

Agricultural applications of these concepts are too numerous to itemize here, but as an example
we note that Weersink et al. (1990) employ the output-oriented Farrell measures using four
variations on the basic technology to study the performance ofOntario dairy farms. They estimate
the Farrell measure of technical efficiency under constant returns to scale and then decompose it
into scale efficiency, congestion (due to weak disposability), and pure technical efficiency. This

0 x1

x2

B
A

L(y)

Figure 2

Slacks and efficiency.
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analysis entails estimating efficiency relative to the VRS technology and technology that imposed
weak input disposability. The decomposition reveals that the major source of inefficiency was
due to deviation from the optimal scale.

4. CAPACITY AND THE LAW OF THE MINIMUM

The definitionwe employ for plant capacity is from Johansen (1968, p. 362): “. . .[C]apacity is the
maximum amount that can be produced per unit of time with the existing plant and equipment,
provided that the availability of variable factors of production is not restricted.” When does this
maximum exist? For a production unit to have this property, Färe (1984) shows that the fixed
factormust satisfy so-called limitationality. This finding in turn leads us to the lawof theminimum,
which is associated with the name von Liebig. This law states that maximum production is
controlled by the limiting factors, which intuitively are factors that are essential to production.
Wang et al. (2006) provide an empirical example of how the capacity concept of Johansen can be
used to study the role of micronutrients as potential limiting factors of production in a non-
parametric framework.

To see how to identify limiting factors in the activity analysis framework, we first assume that
output prices, p2ℜM

þ , are known. (Other objective functions, such as output maximization, may
also be used.) Then revenue maximization relative to our basic activity analysis technology may
be estimated for DMU k0 as

max
z, y

XM

m¼1
pmym

subject to
XK

k¼1
zkxkn & bxk0n, n ¼ 1, . . . ,N,XK

k¼1
zkykm S ym, m ¼ 1, . . . ,M,

zk S 0, k ¼ 1, . . . ,K.

ð29Þ

Now assume that x1 is the unrestricted variable factor. Then we may compute maximum
revenue as

max
z, y

XM

m¼1
pmym

subject to
XK

k¼1
zkxkn & bxk0n, n ¼ 2, . . . ,N,XK

k¼1
zkxk1 ¼ x1,XK

k¼1
zkykm S ym, m ¼ 1, . . . ,M,

zk S 0, k ¼ 1, . . . ,K.

ð30Þ

These revenue maximization problems differ in two ways:

n x1 is free to vary in the secondproblemand is therefore anunrestricted variable input as
in the Johansen (1968) definition, whereas it is restricted in the first problem.

n An equality rather than an inequality is used for the x1 constraint in the second
problem, which allows us to identify the optimal value of that input to be compared
with the observed value. Thus,we can determinewhether there is toomuch or too little
of x1 in terms of identifying capacity output.

As mentioned above, Wang et al. (2006) apply the Johansen (1968) capacity concept to
measure the revenue efficiency of pear trees. They compute the optimal level of macronutrients,
such as NO3, as well as the optimal level of micronutrients such as zinc and iron.
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5. PRODUCTIVITY

In this section we discuss productivity, in particular theMalmquist productivity index introduced
byCaves et al. (1982). (Formore detailed discussions of this topic, please refer to Färe et al. 2008.)
In contrast to the more familiar Fisher (1922) and Törnqvist (1936) productivity indexes, this
index does not require data on prices or shares to facilitate aggregation. The Malmquist index
can be estimated by using our basic activity analysis model with optimization. The optimization
provides the means of aggregation without additional price/value data.

To begin, we define the level of productivity very simply if we limit ourselves to the case of
a single input and a single output; i.e., it is equivalent to the average product:

y=x. ð31Þ

If wewish to look at productivity change or growth between two periods, say t¼ 0, t¼ 1, we have

y1=x1

y0=x0
. ð32Þ

Obviously the single-input, single-output case is unrealistic. Instead of aggregating by using prices or
shares to get indexes ofmultiple inputs andoutputs typical of theFisher (1922) andTörnqvist (1936)
approaches, we formulate productivity growth by using distance functions. We employ constant
returns to scale to ensure consistency with our simple definition above. That assumption implies

PðlxÞ ¼ lPðxÞ, l > 05Doðlx, yÞ ¼ 1=lDoðy, xÞ. ð33Þ

That is, under constant returns to scale, the output distance function is homogeneous of degree�1
in inputs. It is by definition homogeneous of degree þ1 in outputs. Thus, we may now express
ratios of productivity levels (average productivity) in terms of distance functions:

y1=x1

y0=x0
¼ y1=x1Doð1, 1Þ

y0=x0Doð1, 1Þ ¼
Do
�
x1, y1

�
Doðx0, y0Þ. ð34Þ

Caves et al. (1982) define the t ¼ 0, 1 Malmquist productivity change indexes as

D0
o

�
x1, y1

�
D0

oðx0, y0Þ
and

D1
o

�
x1, y1

�
D1

oðx0, y0Þ
, ð35Þ

respectively. Here the superscript onD tells us the period of the reference technology, whereas the
superscripts on x and y tell us from which period the data under evaluation are selected. One can
show that the two indexes coincide if and only if the technology is Hicks neutral, i.e.,

Dt
o

�
xt, yt

� ¼ AðtÞDo
�
xt, yt

�
. ð36Þ

This is a rather strong assumption, and hence onemay followFisher (1922) and take the geometric
mean of the two indexes. That is, here we define the Malmquist output productivity index as

M1
0 ¼

 
D0

o

�
x1, y1

�
D0

oðx0, y0Þ
D1

o

�
x1, y1

�
D1

oðx0, y0Þ

!1=2

. ð37Þ

This productivity index can bemultiplicatively decomposed into a catching-up component and
a technical change component. The catching-up component tells us whether a DMU is getting
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closer or farther from the best practice frontier over time, and it is also known as the efficiency
change component:

EFFCH1
0 ¼ D1

o

�
x1, y1

�
D0

oðx0, y0Þ
. ð38Þ

The technical change component tells uswhether and how far the frontier has shifted over time.
It is estimated as

TECH1
0 ¼

 
D0

o

�
x1, y1

�
D1

oðx1, y1Þ
D0

o

�
x0, y0

�
D1

oðx0, y0Þ

!1=2

. ð39Þ

In comparison, the classic Solow (1957) residual is equivalent to our technical change component
because it does not explicitly allow for technical inefficiency.

The product of the two components forms the productivity index.2 That is,

M1
0 ¼ EFFCH1

0 ×TECH
1
0. ð40Þ

The Malmquist index and its components may be estimated by using our basic model. Note
that we also have mixed-period distance functions

D0
o

�
x1, y1

�
and D1

o

�
x0, y0

�
. ð41Þ

Tauer&Lordkipanidze (2000, p. 24) apply theMalmquist productivity index defined above to
determinewhether“. . .productivity of a farmermay increasewith age, reach somemaximum level,
and thendecreasewith further age.”They find that productivity of farmers does follow this pattern
(see p. 31). They also find that technical change is the most important component of productivity
change for their sample.

Galanopoulos et al. (2004) apply the Malmquist index to evaluate productivity growth in the
European Union during the 1990s. Their results indicate that productivity growth is attributed
mainly to technical change over this period.

6. ENVIRONMENTAL DATA ENVELOPMENT ANALYSIS: GOOD AND BAD
OUTPUTS

To create an environmental technology with good and bad outputs, our basic model must be
extended. First we introduce a so-called bad output vector b2ℜJ

þ. Here by bad we mean that
consumers are better off when less is produced or that (some other) firms are better off when less is
produced. In contrast, so-called good outputs are those for which more is better. Second, we also
need to knowwhyandwhenbadoutputs are produced.Herewe see themas joint productswith (or
by-products of) the good outputs. As Baumgärtner et al. (2001, p. 365) state, “. . .the production of
wanted goods gives rise to additional unwanted outputs . . . ×” They base this conclusion on
observations from thermodynamics. Our third consideration accounts for the fact that it may not
be possible to dispose of bad outputs costlessly, whereas the traditional model does make that
assumption for good outputs.

2Further decompositions are possible; see Färe & Grosskopf (1996).
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More formally, we can now add axioms to our basic set to account for these three adjustments.
Beginning with the fact that bad outputs are by-products of good production, we employ the
axiom of null joint production, following Shephard & Färe (1974), which is defined as

VII. if ðy, bÞ 2PðxÞ and b ¼ 0, then y ¼ 0,

where the output set is modified to read

PðxÞ ¼ fðy, bÞ : x can produce ðy, bÞg. ð42Þ

In words, if no bad output is produced, then no good output can be produced. Thus, the
production of good output generates bads, just as there is no fire without smoke.

If we turn to disposability properties, the standard approach is to assume strong or free dis-
posability of outputs. Thus, if we have good and bad outputs, this assumption would require that

VIII. if ðy, bÞ 2PðxÞ and ðy0, b0Þ & ðy, bÞ, then ðy0, b0Þ 2PðxÞ.

As Førsund (2009, p. 10) points out, this yields the “. . .nonsensical results that zero bads can be
achieved at no costs. . . .”

Here we assume that only the good outputs are strongly disposable; i.e.,

IX. ðy, bÞ 2PðxÞ and y0& y imply ðy0, bÞ 2PðxÞ.

We assume that the undesirable outputs—together with the good outputs—are jointly weakly
disposable;3 i.e.,

X. if ðy, bÞ 2PðxÞ and 0 & u & 1, then ðuy, ubÞ 2PðxÞ.

This condition states that at the margin it is costly to dispose of bad outputs, given inputs, and
that reduction in bads at the margin requires either diversion of some of the given inputs to
abatement or reduction of overall production. In either case the effect is to also reduce good
outputs, given inputs.

To generalize our basic model to allow for the above environmental aspects, we require that

XI.
XJ

j¼1
bkj > 0, k ¼ 1, . . . ,K and

XK

k¼1
bkj > 0, j ¼ 1, . . . , J.

Condition XI states that each bad output must be produced by at least one DMU and that each
DMUmust produce at least some bad. This condition imposes null jointness, which can be verified
by inspection of the data.We are nowable towrite our environmental nonparametric specification
of technology as

PðxÞ ¼
n�

y, b
�
:
XK

k¼1
zkykm S ym, m ¼ 1, . . . ,M,XK

k¼1
zkbkj ¼ bj, j ¼ 1, . . . , J,XK

k¼1
zkxkn & xn, n ¼ 1, . . . ,N,

zkS 0, k ¼ 1, . . . ,Kg.
ð43Þ

3Shephard (1970) introduces this property on the technology.
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The j¼ 1, . . . , J constraints for the bad outputs are strict equalities, whereas those for the good
outputs are inequalities. This scenario reflects the joint assumption of weak disposability of goods
and bads and strong disposability of the goods.4

Ball et al. (2001) (see also Ball et al. 2004) apply thismodel in estimating productivity growth in
the US agricultural sector. They apply their methods to state-level data recently made available by
ERS, which include variables that proxy effects of pesticides and nitrates (found in fertilizers) on
ground water and surface water. They employ a directional distance function as their objective
with the technology constraints specified above. See Section 3 for a discussion of directional
distance functions.

7. NETWORK MODELS

In the above sections we view the production process as essentially a black box, in which inputs
enter the process and outputs emerge. In this section we focus on what may happen in the black
box, especially in terms of interactions among possible subtechnologies that make up the process
contained in the black box. These types of models do require more extensive data than our black-
boxmodels (for details, see Färe & Grosskopf 1996) but allow for greater flexibility—they allow
us to explicitly include abatement technologies in our environmental case and allow for dynamic
interactions over time, among many other applications.

We illustrate a network model in Figure 3. Our simple network technology consists of two
subtechnologies, P1 and P2. This network has a source, which allocates the system exogenous
input vector x to the subtechnologies in the box. There is also a sink, which collects the final
outputs that exit the box.Our first subtechnology produces intermediate outputs y1i aswell as final
outputs y1f, which sum to

y1f, y2f

P1

y1f

P2

x1

x2

y1i

y2f

x1 + x2 = x

Figure 3

A network model.

4Førsund (2009), Rødseth (2011), and Murty et al. (2012) challenge this model.
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y1 ¼
�
y1i þ y1f

�
2P1

�
x1
�
. ð44Þ

The second subtechnology, P2, has inputs from two sources: the system exogenous allocation
x2 and the intermediate inputs from subtechnology P1, namely y1i. Subtechnology P2 produces

y2 2P2
�
x2, y1i

�
. ð45Þ

The two subtechnologies compete for the system exogenous inputs x such that x ¼ x1 þ x2.
Thus, the network output set may be written as

P
�
x
� ¼ 	�y1f , y2f � : �y1i þ y1f

�2P1
�
x1
�
,

y2f 2P2
�
x2, y1i

�
,

x S x1 þ x2


,

ð46Þ

with the interaction between the two technologies consisting of competing for system exogenous
inputs and P1 delivering intermediate inputs to P2.

Suppose we wish to maximize revenue over the network model described above, i.e.,

max p1y1f þ p2y2f :
�
y1i þ y1f

�2P1
�
x1
�
,

y2f 2P2
�
x2, y1i

�
,

x S x1 þ x2.

ð47Þ

Then the solution yields, in addition to optimal final outputs ðy1f � , y2f � Þ,
1. optimal intermediate outputs y1i

�
and

2. optimal allocation of system exogenous inputs ðx1� , x2� Þ.
This network model allows us to study both the efficiency of the overall network as well as the

efficiency of the subtechnologies. Of course, this model may be generalized to many subtechnologies.
To estimate our optimization over our network model, we can specify it as the following linear

programming problem:

max p1y1f þ p2y2f

subject to

ðsubtechnology 1ÞXK

k¼1
z1ky

1
km S y1im þ y1fm ,m ¼ 1, . . . ,M,XK

k¼1
z1kx

1
kn &x1n, n ¼ 1, . . . ,N,

z1k S 0; k ¼ 1, . . . ,K,

ðsubtechnology 2ÞXK

k¼1
z2ky

2f
km S y2fm ,m ¼ 1, . . . ,M,XK

k¼1
z2ky

1i
km & y1im,m ¼ 1, . . . ,M,XK

k¼1
z2kx

2
kn & x2n, n ¼ 1, . . . ,N,

z2k S 0, k ¼ 1, . . . ,K.

ð48Þ
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Source:

x1n þ x2n & xn, n ¼ 1, . . . ,N.

Above, the objective is in the first line, the constraints for subtechnology P1 are in the top three
inequalities, the constraints for subtechnology P2 are the next four constraints, and the overall
allocation of system exogenous inputs is shown as the last constraint. Each subtechnology has its
own intensity variables ðz1k, z2kÞ, and y1i is an input to subtechnology P2. Finally,M,N, andK need
not be the same for all technologies; i.e., they may have different numbers of outputs, inputs, and
observations.

Jaenicke (2000) uses a variation of this model to study crop production that accounts for crop
rotation. Specifically, his paper employs the networkmodel as a dynamicDEAmodel. For another
example of such a model, see Färe & Grosskopf (1996).

8. CONCLUSIONS

Our brief review of activity analysis, or DEA, as nonparametric estimators with connections to
agricultural economics necessarily skims over or ignores several important aspects, including

1. the axiomatic underpinnings of the efficiency measures,
2. software available for the actual estimation of these measures, and
3. statistical underpinnings and hypothesis testing.

For the axiomatic underpinnings, we refer the reader to Russell, with a summary review in Russell
& Schworm (2011). Regarding the last two points, we note that both freeware and commercial
products are available, including the FEAR package for R developed by Wilson (2008). Simar &
Wilson (2008) is also a good reference for statistical underpinnings and hypothesis testing.

9. APPENDIX: PARAMETRIC AND NONPARAMETRIC MODELS FROM AN
ECONOMETRICIAN’S PERSPECTIVE, BY CARLOS MARTINS-FILHO

9.1. Density Estimation

Let XðvÞ:V→ℜ be a random variable defined on a probability space (V, F , P) and F(x) ¼
P({v:X(v)�x}) forx2ℜbe its distribution function.F(x)2F , whereF is a class of functionswith
well-known properties (Jacod & Protter 2000). It is, of course, possible to restrict this class of
functions toF u⊂F , whereF u is a collection of distribution functions that is identified by a finite-
dimensional parameter u2Q ⊂ ℜK. If one assumes that P({v:X(v)� x})¼ Fu(x), thenwe speak of
a parametric model. In these models, the estimation of Fu(x) is equivalent to the estimation of the
finite-dimensional parameter u. Themain advantage of parametric models is that, given a random
sample fXigni¼1 of size n and the assumption that Fu is absolutely continuouswith density fu(x), one
can construct a log-likelihood function

LðuÞ ¼
Xn
i¼1

logfuðXiÞ

and obtain a maximum likelihood estimator um ¼ argmaxuL(u) for u. Under fairly general con-
ditions, the asymptotic properties of um as an estimator for u are well developed (Cramér 1946,
LeCam 1972). The most important such property is that

ffiffiffi
n

p ðum � uÞ→d Nð0, vÞ, where v is the
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smallest variance attained in a class of estimators that converge uniformly in distribution to
a normally distributed random variable at the

ffiffiffi
n

p
speed. This efficiency result, in essence,

establishes that v attains the well-known Cramér-Rao lower bound. In summary, there is a well-
established theory of estimation for parametric models.

The restriction that F 2 F u can often be incorrect. In addition, incorrect specification of the
parametric class to which F belongs generally leads to estimators that are not

ffiffiffi
n

p
asymptotically

normal and whose variances do not satisfy the Cramér-Rao lower bound. Hence, it is necessary to
construct estimators for F when F 2 F , where F is a class of functions that cannot be described by
a finite-dimensional parameter. The elements of F are normally restricted in other ways—e.g., they
maybe required to be absolutely continuous or smooth—but no assumption ismade that theymay be
indexedbya finite-dimensionalparameteru.These typesofmodels are termednonparametricmodels.
Under the assumption that F 2 F are absolutely continuous, the estimation of their associated
densities f, based on a random sample fXigni¼1, normally proceeds in one of two ways. The first
assumes that f belongs to a classwhose elements can be described by a collection of basis functions.
These basis functions are then used to provide an estimator for f. Some of the estimators that result
from these methods are spline, sieve, and series estimators (Efromovich 1999). The second way of
estimating f involves local weighted approximations of f by polynomials of various orders. This
type of estimators is termed kernel estimators (Tsybakov 2009).

The main advantage of nonparametric estimators is that they are by construction robust to
the potential misspecification that F 2 F u. Robustness to parametric misspecification comes, in
general, at a cost. Mainly, nonparametric estimators of F or f do not converge in distribution at
parametric rates, i.e.,

ffiffiffi
n

p
. Most importantly, the rate of convergence diminishes exponentially

with the dimensionality of the estimation. That is, ifXðvÞ:V→ℜK,K> 1, the rate of convergence
of nonparametric estimators diminishes exponentially with K.

9.2. Regression Estimation

In economics, there is great interest in the estimation of regression, i.e., E(YjX ¼ x), where Y is
a random variable and X is a K-dimensional random vector defined in a common probability
space. If the conditional distribution of Y givenX¼ x, denoted by FYjX¼x(y), is an element of F u,
then the regressionEðYjX ¼ xÞ ¼

R
ydFYjX¼xðyÞdepends on u, andwewriteE(YjX¼ x) :¼m(x; u)

2Mu, a parametrically indexed collection of measurable functions. This is a parametric model of
regression, and estimation ofm is equivalent to estimationof u.WheneverE(YjX¼x) :¼m(x)2M,
a class of functions that cannot be parametrically indexed by a finite-dimensional parameter u, we
speak of a nonparametric model of regression. The main advantages and disadvantages of esti-
mating nonparametric models of regression mirror those described above in the case of density
estimation. In particular, the exponentially decreasing rate of convergence withK alluded to above
persists in the regression case. Further restrictions on the classM, such as additivity ofm, lead to
nonparametric regression estimators that converge in distribution at nearly parametric (n2/5) rates
(Wang & Yang 2007). This type of restriction is especially relevant for empirical economics, in
which large K are common.
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