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Computation of the Stresses on a Rigid Body in
Exterior Stokes and Oseen Flows

1 Introduction

Design and construction of objects that are supposed to move in viscous fluids require

information of what effect the motion has on the object. Therefore, one needs to know

the stress distribution that the fluid exerts on the surface of the body. In this paper,
we give a method to compute these surface forces in the case of incompressible fluids,
i.e. for fluids with constant density. The bodies which we look at are assumed to
have a smooth surface and move with constant velocity.

In this section we introduce the notation, assumptions and the equations that we

will use. In section 2 the integral equations are derived, and in section 3 we investigate

the properties of the corresponding integral operators. Section 4 is devoted to the
discretization of the integral equations. One obtains a linear system, and section 5 is
about the computation of the matrix of this system. Each entry has to be computed
by numerical integration. The integration formula and corresponding functions are
explained in section 6. An application is given in section 7 for a sphere. In this case,
the creation of a triangulation is easy and we have analytical solutions available to
compare with our numerical results. However, the program works for other bodies as

well, as long as we are given an appropriate triangulation.

The computational part has been worked out in the mathematical programming
language MATLAB 1 and can be obtained by an email to markus . schuster@orst . edu.

1MATLAB is a product of Mathworks, Inc.
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1.1 Notation

R is the set of real numbers. Points in R3 will be denoted by x, e etc., and their
coordinates by xi,i etc. For a subset U C R3 we write U and au for the closure in
R3 and the boundary of U, respectively. An open set D C R3 is called a domain, if
OD = a(R3 \ D), i.e. if all boundary points are accessible from the outside.

I I is the Euclidean Norm, i.e. kr = xixi, if x E Rn. Throughout the
whole paper we use the Einstein summation convention, that means, we don't
write summations over indices that occur twice in a product. For instance, we write
IxI2 = xix,.

For x, y E R3 we introduce

d = dxy = x y

r = rxy = IdI.

Derivatives with respect to y are written with the comma-notation fi =
Some examples are r i = di/r, r it i = 1 or dij = Ai, where (5i.9 is the Kronecker
delta. One can express the gradient, divergence and Laplace operators respectively
by Vf = Li, = gi,i and Af =V.V f=

We often need spheres or balls around some points. Therefore, we introduce for
x E R3 and A > 0

SA(x) = {y E R3 : rxy = A}

BA(x) = {y E R3 : rXy < A}

For a subset D E R3 we write C(D) for the space of continuous, real-valued
functions on D. If D is open and k > 0 is an integer, Ck(D) is the space of functions
possessing continuous derivatives up to and including order k on D; C°° is defined
as the intersection of all the spaces Ck(D). Ck(D) is the space of elements of Ck(D)
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that extend continuously to the closure D. If, furthermore, 0 < x < 1, then Ck,X is
the space of k-times Holder continuously differentiable functions.

We say a function g(x) is of order 0 ( f (x)) as x -+ a, if there is a constant c and

an E > 0, such that for all x E BE (a) one has Ig(x)1 < c If (x) 1. If a is infinite, the
estimate should hold for every x with norm bigger than a certain R. A function g(x)

is said to be of order o(f (x)) as x ---* a, if g(x)/f (x) -+ 0 as x -+ a. o( f (x))-functions

are also 0(f (x))-functions.

1.2 Derivation of the Stokes and Oseen Equations

Suppose we have a fixed body given in an inertial system, surrounded by an incom-

pressible fluid. We take the xl-axis in the direction of the flow. G is the set of
coordinates of the body, ac its boundary, and G := G \ aG the interior of the body,
which is assumed to be a domain. The exterior domain, which is filled by the fluid,
is denoted by ft

The density p and viscosity u of the fluid are constant. The velocity u and the

pressure p are stationary, i.e. they don't depend on time. On aG we require u = 0
(no-slip-condition), and at infinity we assume to have u = (U, 0, 0)T. In fl, the
fluid is exhibited to volume forces, and on DG, the body exerts surface forces on the
fluid. We denote the density of the volume forces by f and the density of the surface

forces by g. f is assumed to be a potential force, for instance a gravitational force. g
consists of normal stresses (pressures) and tangential stresses, which are due to the
deformation of the viscous fluid. For small velocities the following approximation has

turned out to agree very well with reality:

g = -pn + p(Vu + vuT)n

where n is the unit normal on aG that points inside the body and thus outside the
exterior domain a From the principle of conservation of momentum, one can then
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derive (see Oseen [26]) the equations that govern the motion of the fluid. They are
called the Incompressible Steady Navier-Stokes-Equations:

p,Au V'p = pf + p(Vu)u
Vu = O.

Notice that these equations are linear in p. We replace p by p + p* and decompose:

VP* = pf
pAti vp = p(Vu)u

Vu = 0

Under the above assumption on f, the solution p* of the first eqation is just the
potential of pf. All of the following investigations will concentrate on the second and
third equation. The boundary condition for the pressure at infinity is then p = 0.

It is customary to put the equations in a dimensionless form. Therefore, we set
y = x/L, where L is at the moment an arbitrary length and y is dimensionless. Then

we define w(y) := u(x)/U and q(y) := Lp(x)hiU . We thus get the equations

pUL (Vw)wAw V'q =

= 0,

where now the derivatives are taken with respect to y. If L is chosen as a characteristic
length of the body, e.g. its diameter, then the number R. = pUL/A is called the
Reynolds Number.

In order to have zero boundary conditions at infinity, we set v(y) = w(y)(1 0 0)T
and get

Boundary conditions are

Av Vq = Rays v + R.(Vv)v
vv =0.

v(y) = (-1 0 0)T for y E aG

(1)
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v(y) + 0 as IYI oo

q(y) 0 as IYI > oo.

The Stokes Equations are obtained from (1) by neglecting the right side of the
equations:

Av Vq =0
Vv =0

If we neglect only the nonlinear term, we end up with the Oseen Equations

Vayi q =0
Vv = 0.

One can express the stress g in terms of v and q:

g = (p +p*)n + ii(Vu + VxuT)n
+ (q + Vyw + VywT)n

+ ( qn + (Vv + VvT)n)

= -p
= -p

t

(2)

(3)

The expression in brackets, which we denote by t, is the one we solve for in the
following. We define the stress tensor in index notation

Ti; (v, q) (Y) = q(y)(523 + vi,3(y) + v3,i (y) (4)

and can then write t in index notation conveniently as

ti = Ti; (v, q)ni (5)

Remark. The above simplifications of the steady Navier-Stokes equations change

the solutions (v, q) considerably. Near the body one can justify them only for small

Reynolds numbers R. At infinity the Stokes solutions have nothing to do with the

steady Navier-Stokes solutions, since it can be shown that

Ig-cv + (Vv)vi
= 0(1311) as IYI >
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However, the assumption that leads to the Oseen equations is reasonable:

I(Vv)vi
0(1Y1-1/2)Av I

as 13,1 00

We refer to the next section for the proof of these results.

1.3 Admissible Bodies

For the derivation of the integral equations, we have to make an assumption on our
body. We require that its surface aG is bounded and everywhere smooth, in the
sense that we can everywhere parametrize it locally with continuously differentiable

functions. Therefore, we introduce a technical definition:

Definition 1.1 Let k E No and X E [0,1]. G has Nka-property, if for all x E aG
there exists a neighborhood U of x, an orthogonal coordinate-transformation A : TR3
R3, constants a, 6 > 0 and a mapping a : R2 R with the following properties,
where we denote the new coordinates (given by A) by y = (Y1, Y2, Y3) and W(a) :=

{(Yi, Yz) I lyzl < a for i = 1,2}.
We demand:

a E Ck (W (a))

U n aG = {y E R3 l(Y17 Y2) E W(a) and y3 = a(yi, y2)

U n G = {y E 1113 1(y1, Y2) E W (a) and a(Yi, Y2) < Y3 < a(Yi, Y2) + 01

UnGc = {yER3 Ryi, Y2) E W(a) and a(Y Y2) < Y3 < a(M., Y2) }

In this paper, we assume all over the place that G has N1' °-property. This is
equivalent to saying that G has C"-property. Necessary conditions for that are
that G has segment property and uniform cone property. We refer to Wloka
[34] for definitions and the proof of these statements.
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By n we mean the unit normal on aG, which points into direction of G and thus

away from the exterior domain a In the paper we use the following two properties
of bounded C1,°-surfaces:

faGdSy < oo

n(x) n(y) = 0(r)
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2 Derivation of the Integral Equations

This section is devoted to a derivation of the integral equations for the boundary
stresses t. We start with a generalized version of Green's Formula, compute fun-
damental solutions for the Stokes and Oseen equations and obtain then Fredholm
integral equations of the first kind, which we use afterwards to solve the problem
numerically.

2.1 Green's Formula and three Lemmas

Proposition 2.1 (Green's Formula) Let D be a bounded C'- domain and b E R3
a fixed vector. Assume (u,p) E C2 (D)3 x C' (D) solves the problem

}ui ji + bjuij p,i = 0

ui,i = 0

and (v,q) E C2(D)3 x C(D) solves the problem

Then we have

b3vi,3 = 0

vii = 0

in D

in D

viTii(u, p)n uiTii(v,, q)nj + bjuivinidSy = 0.
faD

Proof: We use the Gauss divergence theorem:

viTii(u, p)ni uiTij(v , q)ni + bjuivinidSyaD
(viTii(u, p)) j (uiTii(v , q)) j + (bjuivi) jdy

= Jvi,j(-60 + ui,i + ui,i) ui,j(-80 + vi,i + vi,i)
D

+vi(-13,i+ ui ,ii + ui,ij +bjui,j) ui(q,i+ vi ji + vi,ii bivij)dy

= 0

(6)



Lemma 2.1 For any R > 0 and any x E R3 we have
d dk dS = 47r

o k
SRsR(x) R4 Y 3 2

Proof: Introduce spherical coordinates centered at x:

yi = x1 + R sin 0 cos yo

Y2 = X2 + R sin 0 sin yo

Y3 X3 + R cos 0

dSy = R2 sin 0d0thio

and integrate over 0 < cp < 27r and 0 < 0 < 7r.

9

Lemma 2.2 Let xo E aG. For any E > 0 there exists an h > 0 such that for all
x E Bh(xo) we have

1
idSz < EfG1113h(x0) Zi

Proof: Let U, A, a and a be like in definition 1.1. We take b > 0 so small that
Bb(x0) E U and define

Mb := {(Yi, Y2) e W(a) I (Yi, Y2, a(Yi, Y2)) E A-1(Bb(xo) n aG) }

Since a is continuous, it is clear that

{A(yi, Y2, a(Yi, Y2)) I (Yi, y2) E Mb} C U

Thus, we can take the maximum L := max(y1,y2)E7 I Va(yl, Y2)1 I.

h < min(b,e/47rV1 + L2) and estimate for x E Bh(xo):
1

JA_1(aGnBh(x0))
1idS =
Ay)facnsh(x0) ix zl

1
dSyfA-1(aGnBh(x0)) Y I

fMh

Now we choose

1+17aDa
(el )2 + (6 y2)2 + (6 a(Yi, Y2))2

d(yi, Y2)

fic2h(0 \(6 Yi)2 + (e2 Y2)2
< N71. + L /2

1
d(Y11 Y2)

E
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Here = A-lx, and K2h() C R2 is the disk around with radius 2h. We also used

Mh C K2h()

Lemma 2.3 Assume co E C(1113 \ {0}), co(x) = 0(1/1x1) as x + 0 and TI) E c(aG).

Then

f(x) := f co(x y)0(y)dSy
8G

is continuous in R3.

Proof: Let e > 0, xo E R3 and R be so large that G C BR(xo). For h < R we
define Dh := BR(xo) \ Bh(xo). Since v(xo y) as a function of y is continuous
on Dh and Dh is compact, it's also uniformly continuous, i.e. for all E > 0 there
exists a little 6 = 6(h) > 0 such that for all yi, Y2 E Dh with lyi y21 < 6 one has
Ice(xo yi) (p(xo y2)1 < E. Let furthermore M be an upper bound for '1/) on 8G.

For xo v aG, we define d := dist( {xo }, 8G). Using the above statement for h := d/2,

we obtain a 6 > 0 such that for all x E B5(xo) one has

If (x) f (x0)1 C f Iv(x0 y) (P(x y)1 10(y)IdSyf
_< Mf dSye

ac

Now assume xo E 8G. Due to Lemma 2.2, we can find a d > 0 such that

1dSy < E for all x E Bd(x0)
facnBd(x0) rXY

We additionally require d to be so small that the order estimates for yo can be used.

Using the uniform continuity from above for h := d /2, we can find a (5 < h such that

fac\Bd(x0)

Then we get for all x E B8(xo)

140(xo Y.) Se(x Y)1 10(Y)1dSy < E for all x E B5(xo).

11(x) f (x0)1 f
G

Iso(xo y) (p(x 3)1 114)IdSy
8
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faG\Bd(xo)
Icp(xo y) cp(x y)I AI dSy

MdSy + uoy
facnsd(x0) rxy facnBd(X0) rX0Y

< 3ME

2.2 Stokes Equations

In this section, we derive a Fredholm integral equation of the first kind for the un-

known function t2 = 7723(v , q)ni on the boundary. We require that the functions
v(y) = (v2(Y))2=1,2,3 and q(y) are in (C2(S2))3 and C'(S2), respectively, and that they

build a solution to the Stokes Equations

V q = 0

v = 0
in S2, (7)

vloG E coo given. (8)

Furthermore, the following decay-conditions are assumed to hold:

v = 0 (IY1-1)

Vv = O(1Y1-2)

q = 0(1y1-2)

as I oo. (9)

Remark. There exists a unique solution to the above problem, as Galdi [9] and
Ladyzhenskaya [22] show.

2.2.1 Fundamental Solutions

For fixed x E R3 there are three linearly independent pairs of functions in

(C'(1R3 \ {x}))3 x C°°(R3 \ {x}) which solve the problem

AE 0

V.E = 0
in R3 \ {x} (10)
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and have the lowest possible degree of singularity at x. They are called the Funda-

mental Solutions of the Stokes Equations, denoted by (Ek, ek), k = 1,2,3, and
we seek them in the form (see Oseen [26])

Eik = 8ik4 211 ,ik

ek = ,Ilk

where (I) = (I)(r) is a function in C°°(R3 \ {x}), and all derivatives are taken with
respect to y. If we require (1),//33 = 0, then (10) is already satisfied. Therefore, we

choose Cr) := r/87r, and get

Eik

ek =

Eikj

Ti; (Ek , ek) :=

=

T23 0 ( E k 7 ek) =

the following results:
1 (5ik didk)

(11)

(12)

(13)

(14)

(15)

87r rxy r 3 )xy

(

1 dk

471- r3xy
1 (3dididk Oikdi Siidk

87r r 5 r 3xy xy
(Sijek + Eik,j + Ejk,i

3dididk
47rr,5cy

0

With these results, one can see that the fundamental solutions satisfy the following
decay conditions:

Eth(x,y) = 0(r.3,-1)
Eik,;(x,y) = 0(rxy-2)} as rxy co and as rxy > 0. (16)

ek (x, y) = 0(7.3,-2)

However, the fundamental solutions have a singularity at the point x, which we
now investigate:

Lemma 2.4 Let v be a function that is continuous in a neighborhood of x and let n
be the inward normal to SE(x), i.e. the normal that points from the sphere towards
its midpoint. Then

lirnf vi (y)Tii (Ek, ek)(x,y)ni(y)dSy = vk(x). (17)
EEO s(x)



Proof:

SE (X)
Vi Tij (Ek ek)njdSy

Se(X) vi(Y)-3dididk
di

dS
47r5 Y

3
v

did
i (y)

ic
dS

Y47r fs,(x) 47r 4
3 didk 3

e(x)
vi (x) 47r dSy f d

zdk(vi vi dSyfs 471" 5,E (,) 4774
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We note that the integrand of the second integral is of order o(1/6.2) as E 0. Thus,

the second integral vanishes in the limit. Lemma 2.1 concludes the proof.

2.2.2 Integral Equations

To derive the integral equation for the stress, we assume x E SZ and define D(R, E) :=

BR(x) U BE(x)), where E is at least so small that B2, C 52 and R so big that

G C BR(x). It is then clear that lime,o,R,c, D(R, E) = a By applying Greens
Formula (6) on D(R, 6) and with (u,p) = (Ek, ek), we get

0
f f )viTzi(Ek,ek)n3 EikTi3(v , q)nidSy (18)

aG JS (X) 'R (X)

Definition 2.2 For k = 1, 2, 3 we introduce the Single and Double Layer Poten-
tials

/ dcl) (v , q) (x) :=

WT) (v) (x) :=

E ik (XI y)Tz3(v,q)(y)ni(y)dSy
faG

v2(Y)Ti,(Ek, ek)(x, Y)7/3 (Y)dS3r
faG

where n is the normal that points away from the exterior domain.

(19)

(20)

Now we can establish two interesting results. The second one is particularly
important for the numerical computation in the latter sections.



Theorem 2.1 For x E S2 we have

HT) (v, q) (x) = v k (x) + W j(,2) (v) (x)

14

(21)

Proof: We notice by looking at the decay-conditions (9) and (16) that the integral
over SR(x) in (18) vanishs as R oo. Since Ezk = 0(1/r) as r 0 and Tun., is
continuous, we get

liM f EzkTzi (v, 0704 = 0.
E-+O s,(x)

By a short look at (17), we now get the assertion.

Theorem 2.2 For x E aG we have

MT) (v, q) (x) = -2v k (x) + T T) (v) (x)

If v is constant on the boundary, then

W i(c1) (v , q)(x) = v k .

(22)

(23)

Proof: Let (xn) C C2 be a sequence approaching x. Since v is continuous, we get
from (21)

lim 147P (v, q) (xn) = vk(x) + lim vve)(v)(xn)
-).3C --).3C

It is a result from Odqvist [25] that the double layer potentials We) (v) are discon-

tinuous across the boundary. In particular we have:

lim (2)
Wk. (V) (Xn)

n9xn,-4xEaG

(lim Wk.
2) (V)(Xn)

Gx,,-rxE8G

1= 2 vk (x) + We) (v) (x)

1=
2

vk (x) + We) (v) (x).

(24)

(25)

For the single layer potentials we notice that Ezk = 0(1/r) as r 0. Since Tijn3 is

continuous on ac, we can apply lemma 2.3 to see the continuity of 147;,1)(v, q):

lira q) (xn) = W i(c1) (v, q) (x)
xn-4x



15

For the second assertion we refer again to Odqvist [25], who showed that for any v

that is constant on the boundary aG

wi(c2)(v)(x) =

holds. This result is actually used to prove the above jump conditions.

2.3 Oseen Equations

(26)

Now we require that the functions v(y) = (vt(Y))z=1,2,3 and q(y) are in (C2(n))3 and

C1(52), respectively, and that they build a solution to the Oseen Equations

2ak)v Vq = 0
V.v = 0

vlaG E coo given.

}
in fl, (27)

(28)

where a > 0 is a constant. Furthermore, the following decay-conditions are assumed

to hold:

v = 0(1y1-1)

Vv = 0(IY1-312)

q = 0(13r1-2)

as 131 -> (29)

Remark. There exists a unique solution to the above problem, as Galdi [9] and
Ladyzhenskaya [22] show.

2.3.1 Fundamental Solutions

For fixed x E R3 there are three linearly independent pairs of functions in

(Ce°(R3 \ {x}))3 x C°°(R3 \ {x}) which solve the problem

(A + 2a-k)E Ve = 0 }
in R3 \ {x}

V.E = 0
(30)
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and have the lowest possible degree of singularity at x. They are called the Fun-

damental Solutions of the Oseen Equations, denoted by (Er, qs), k =1,2,3,
and we seek them in the form (see Oseen [26])

Egcs -= Sik4),11 (I) ,ik

2a(1),ike?s = ),Ilk

where (I) = 1(d) is a function in Ce°(1R3 \ {x}) and all derivatives are taken with
respect to y. If we require (I),/i3i + 2a 1,111 = 0, then (30) is already satisfied. We refer

to Oseen [26] for getting

where s := r

1 as 1 e'd7-,
(31)

87ra Jo

> 0. We can then compute the following auxiliary results, where

the orders have to be understood as r 0:

d
s,i

i
+ oiir

did.;
r r3

s,ij

S ,ijk
8iidk + bikdi + Sikdi 3didjdk

r 3 r 5

asv
as

v :=
s

= + 0(r) (32)
87ras 7r

a2 asc" 1 +
(1) = (33)as2 87ras 2

a3 _a2s2e-as 2ase" + 2 2e'
as3

=
87ras3

=

4,ijk = S ,ijkV (S ,ijS ,k S ,ficS S ,ki8 ,j)(1) 8 ,i' ,jS AV"

Now we can compute the fundamental solutions and their derivatives (The orders are

again as r 0):

(aik didk+ ) +r r3

(2(5ik bizOik + 2

(51zdk + (511,61, 26,kd1 didk )
(34)



eos
k

E0

Tij (Ks, ek)

1;3 (Eli! ek)

= +

ek
1Eikj O(r)

8ijek Egs + Eflsj
1Tii(Ek, ek) +0()

2aEZ

The behavior at infinity is not as obvious as in the Stokes case:

Lemma 2.5 The fundamental solutions satisfy the following decay conditions:

Ef)ks (x, y) = 0(r-1)

Egj(x,y) = 0(r-312)
ek(x,y) = 0(r-2)

as r -+ co.

17

(35)

(36)

(37)

(38)

(39)

(40)

Proof: We look at (34). Since (I)' is bounded in R3, we show the first assertion only

for the second term. It's easy to check that (I)" is of order 0(s') as r oo. We can

also see the following estimate (k = 2,3):

d2k < 4 + 4 = r2 4 = (r di)(r + di) = s(r + di) < 2sr

Let's denote the second bracket in (34) by Fik. For k = 2,3 we write

IFII =

IFkk 1 =

1F23 1

IFikI =

d2
1 5-21-il

di dk s d212 2 --2-I =12- 5_ 41-Ir r r r2 r

d2d3
21.1

dk dk dk S
I

s
I 2 I = I Tr

Thus, Fik is of order O(s /r), and we have shown the first assertion. The second
assertion can be shown by a similar reasoning, we refer to Galdi [9]. The third

assertion is quite obvious.
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Even better estimates can be obtained, if we restrict ourselves on a region outside

a wake behind the motion of the sphere:

Lemma 2.6 For 0 < A < 1 we define the Wake Wi`z(x) := {y E SR(x) : d1 > rA}.

It's area is given by

dS = 27R2(1 A), (41)
WR (x)

and outside this wake we have

Egs(x,Y) = 0(r2
1

)02) as r 00- (42)

Proof: The wake is the intersection of a sphere with radius R around x and a cone
with vertex x, axis in direction of the negative 1-axis and angle co, where cos cp = A.

It's then only a matter of computing a surface integral to check that (41) is true.

Outside the wake we have d1 < rA, which is equivalent to s > r(1 A). Since the
numerators in (32) and (33) are bounded for s > 0, we get

c' c'
r(1 A) < r(1 A)2

VI I <
r 2 ( 1 A)2'

Cl/

where c' and c" are constants that depend only on a. By looking at (34), we can now
verify the assertion easily.

Remark. The fundamental solution EVs as a function of y exhibits obviously a
"wake" region in direction opposite to what one would expect for a flow past a body

in direction of the positive xraxis. This is because Egs as a function of y satisfies

the adjoint system (30) of the Oseen equations. We refer to Galdi [9].

However, the fundamental solutions have a singularity at the point x, which we
now investigate:
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Lemma 2.7 Let v be a function that is continuous in a neighborhood of x and let n
be the inward normal to S£ (x), i.e. the normal that points from the sphere towards
its midpoint. Then

Proof:

Sc(x)

liliraf vi(y)T,j(Eosk ,ek)(x,y)nj(y)dSy = vk(x).
e--4)

viTii (EIZs, ek)nidSy

viTij(Ek, ek)nidSy + f vi(Tii(e2s,ek) Tii(Ek,ek))nidSy
5 (x)

(43)

We notice that the integrand of the second integral is of order 0(1/6) as E -+ 0. Thus,

the second integral vanishes in the limit. Lemma 2.4 concludes the proof.

2.3.2 Integral Equations

To derive the integral equation for the surface stress, we assume x E S2 and define

D(R, E) like in section 2.2.2. By applying Greens Formula (6) on D(R, e) and with

(u,p) = (E°s, ek), we get

0 =-- I J + J + f viTii(E°s , ek)nj EgsTii(v, q)nj + 2aEgsvin1dSy (44)
ac (x) (X)

Definition 2.3 For k = 1, 2, 3 we introduce the Single and Double Layer Poten-
tials

1 , 0 S
(x) :=

wi(2,0s)

wP'as)(v)(x)

1:9G.E3s (x, y)Tii(v , q)(y)ni(y)dSy (45)

vi (y)Tii (E('s, ek)(x,y)ni(y)dSy (46)

2avi(y)ns (x, y)ni (y)dSy, (47)
faG

where n is the normal that points away from the exterior domain.
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We can now establish two results similar to the Stokes case. We use the second

one in the next section for the computation of the stress.

Theorem 2.3 For x E S2 we have

Wk 1,0s) (v, wi(c2,0s) wi(c3,0s)

Proof: We notice by looking at the decay-conditions (9) and (40) that

(48)

lim v2T,3(E's, ek)nj nsTij(v,onidsy.0
R oo

f
SR (X)

The third term in (44) makes a little bit more trouble at infinity. We assume R big

enough to use the order-estimates and look at Lemma 2.6 to get

2ansvinidSy 2alEgsvi n I dSy
(f511 (x)\ (x ) fWii(x)

C k k

SR (XAVVIVX) R3(1 A)2 dsy fw,(x) R2
dS

Y

47rc'k
+ 271-4(1 A)

R(1 A)2

with positive constants cik and 4. Thus, we have for every 0 < A < 1

lim 2agksvinidSy < 274(1 A)
R oo fsii(x)

It's then clear that the integral has to vanish at infinity.
Since Egs = 0(1/r) as r ---> 0 and Tiinj is continuous, we get

limf
(x)

EgsTii(v , On.; + 2aviEj°ks nidSy = 0.
e+3 S,

By a short look at (43), we now get the assertion.

Theorem 2.4 For x E aG we have

vvi(c1,08) 21 we,0s) W1(3,0.0

If v is constant on the boundary, then

(49)

1,1711'"(v, q)(x) = vk. (50)
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Proof: Let (xn) c S2 be a sequence approaching x. Since v is continuous, we get
from (48)

vvi(c1,0s) (x) (2,0s)lim Wk (V) (Xn)
xn >x x--+x

lim wi(c3 ,OS)

Let us look at the double layer potentials:

wi(c2,0s)
kW(2) (V) (Xn) f (Ti (K ek) ek)) njdSy.

G

We note that by looking at (38) that the integrand of the second integral is of order

0(1/E) as e --+ 0, and Lemma 2.3 tells us that this integral is continuous. Using the

jump conditions in the Stokes case (24) and (25) we get the same jump conditions in

the Oseen case:

(2 Os)lim Wk (V)(Xn) =

(2 Os)lira Wk (V)(Xn) =
GDxn--+xE3G

1

2
vk (x) + We'°s)(v)(x) (51)

1

2
vk (x) + We'c)s)(v) (x). (52)

For the single layer potentials, we notice that ET = E) as e 0. Since Tijnj is

continuous on aG, we again apply Lemma 2.3 to see the continuity of W '° s) (v , q)

and We'Os)(v):

(1 Os)lim Wk (v, q)(xn)
xn).x

(3 Os)
11111 Wk (V) (Xn)

Xn

= 1471,0s)

we,0s)

To show the second assertion, we use the corresponding result of the Stokes
namely (26):

wi(c2,03)(v)(x) we,0s)(v)(x)

case,

= Wk(2) (v)(x) + f vi (Tij(E7 ek) ek)) nj + 2avins(x, y)nic/Sy
G

= --vk +f vi (Tij(Ec)s, ek) ek)) ni + 2avins(x, y)nidSy
2 aG

It remains to show that the integral is zero:

Jac
vi

((riOs L-10.9( \-Lijki:/ ek) (±:j ek ) ) nj + kx, Y )niuoy
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(faG\Bi(x) n.5),(x) fGnSi(x) oGnI3A(x)
dSy

= vi (T29,3(EZs , ek) + 2ansi(X, y)) V2T2j,7(Ek, ek)dy
fG\BA(x)

... dSy + ... dSY
fGnSA(x) fOGnBA(x)

= ... dSy + ... dSY
fGnS),(x) foGnI3A(x)

In the last equation we used (15) and (39). This holds for every A > 0, so let's take

A -+ 0. Since the orders of the integrands are 0(1/r) as r 0, the first integral
vanishs obviously, and the second with the help of Lemma 2.2.
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3 Investigation of the Integral Equations

In this section, we investigate the integral equations (23) and (50). If we denote the

components of the stress by ti(y) := Tip (v, q)ni(y), we can write them like

foGEik (x, y)ti(y)dSy = vk
facEgs(x, Y)0(Y)dSy = vk

where vk is the constant boundary velocity.

for x E 8G. (53)

As we have seen in the last section, these integral equations arise, if we want to

solve the exterior Stokes and Oseen problems, where the boundary velocity is given by

a constant vector and the decay at infinity is appropriate. They also arise, if we want

to solve the corresponding interior problems, which is easier to see, since we don't

have to worry about decay at infinity. All of these problems are uniquely solvable, as

long as one prescribes the value of the pressure at one point. We refer to Galdi [9]

and Ladyzhenskaya [22] for these statements.

Equations (53) are Fredholm integral equations of the first kind. Their kernels are

both weakly singular and symmetric, i.e. the integral equations are self-adjoint. Both

of them are singular, as it turns out, and their one-dimensional kernels are spanned

by the normal n on the boundary aG:

Theorem 3.1 The continuous solutions of the homogenous integral equations

faGEik(x, y)coi(y)dSy = 0

faGns(x, y)co?s(y)dSy = 0
for x E aG (54)

are multiples of the function n, i.e. the normal on the boundary 5G.

Proof: The fact that Eik and Egs are both divergence free allows us to write for

x E

faGEik(x, y)ni(y)dSy = f Eik,i(x,y)dy 0,
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and the same in the Oseen case. The continuity of the single layer potentials (lemma

2.3) shows that n is in fact a solution to the integral equations. We now show that
each solution has to be a multiple of n.

Let us at first consider the Stokes case. Suppose we have a continuous solution

(pi to the first equation in (54). By looking at the Stokes equations, one can easily

see, that the solution to the exterior problem has to look like (0, cext) , where text is

a constant. On the other hand, potential theory tells us how to recover the solution

using coz. Thus, we have for x E

zvct (x) f E,k(x,y)(p,(y)dSy = 0
c

gext ( := text f texte,(x,y)(p,(y)dSy
ac

Notice that the integral that occurs in the pressure qext is a constant, which has to
be zero, since it is obviously zero at infinity. Similarly, we get the solution of the
interior problem (x E G):

vkint (x) := f Eik(X,y)co,(y)dSy = 0
G

ghat (x) := c+ f (x, Y)(Pi(y)dSy tint
ac

where now c and tint have to be distinguished, according to the constant value of the

integral. We summarize these results by defining on G U

(v, q) := (vint qint)
( vext qext) in S2

in G .

Next, we define on G U St the stress tensor in the usual way:

a a
Tkj (v, q) (x) := q (x) k +

axe vk (x) + 5-x7cv (x)

Plugging in our above results, we get

eXt
SkiTki(v , q) =

c k(S f aGTk j(Ei, ei)(pidSy kj,,ext6 in

thkj f ei)coidSy = c kj in Gint (5aGTki (Ei)
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Now fix x E OG and let (x,i) C S2 be a sequence approaching x. In the following
equations we use the symmetry in all three indices of the Stokes stress tensor (14),

jump condition (24), lemma 2.3 and the fact that (for our surfaces) the functions
nj(x) ni(y) are of order 0(r).

0 = lirn f Tki(Ei, ei)(x, y)(pi(y)nj(x)dSy
Xn4X a G

lim We)(40)(xn) +
lnm

f Tki(Ei, ei) (xn, Y)Soi(Y) (713(x) n3 (y)) dSyf

= 2 c0 k (X) + Wi(c2) (c0) (X) + f T k3 (Ei, ez)(x, y)coz(y) (rt.; (x) n3 (y)) dSy
a G

If the sequence (xn) C G approaches x from the interior, we use jump condition (25)

and get

(c cult )nk (x)

2
cpk (x) + We)(co)(x) + f (E, , ei) (x, y)(p, (y) (n3 (x) n3 (y)) dSyf

Subtracting the two equations yields

(cint onk (x) = cok (x),

which proves our theorem in the Stokes case.

The Oseen case can be treated by the same idea. The only essential difference
occurs at the point where we use the symmetry property of the Stokes stress tensor.
However, using (38) leads also to the desired result.

Remark. This implies that the integral equations are not uniquely solvable. We
note that in the paper of Young and Acrivos [35] it is stated that the first integral

equation is uniquely solvable. However, the proof contains a mistake, and the above

theorem shows that in fact the opposite is true.

The next question is: Are the integral equations solvable, and, if so, what do the

solutions look like? The answer is given in the next theorem:
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Theorem 3.2 The integral equations (53) have continuous solutions, and they look
like

ti = t7' c ni.

If we require tP to be orthogonal to n, it is uniquely determined in both cases.

Proof: Both cases can be treated simultaneously. The selfadjoint integral operators

map C(DG) into itself. Existence of solutions for the equations (53) is by virtue of

the Fredholm alternative equivalent to the orthogonality of v to the kernels of the
integral operators. This is easy to verify, if we regard v as a constant vector on G:

vini (y)dSy = f vi idy = 0
ZG G

The uniqueness of tP is immediate.
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4 Discretization of the Integral Equations

Our goal is to solve the integral equations (23) and (50). If we denote the components

of the stress by ti(y) := T,i(v, q)ni(y), we can write them like

vk = f Eik(x,y)t,(y)dSy for all x E aG
aG

where E is the tensor of either the Stokes or the Oseen fundamental solutions; the

latter one for a = R12, the half of the Reynolds-Number. Remember that the
boundary condition on v was

v = (-1 0 0)T on aG

We make now the following assumptions:

The body G is replaced by an approximating polyhedron P, and the surface of

P consists of triangles P1, P2, ..., PN . The corners of the triangles should lie on

the boundary G.

The stress t we want to solve for is constant on each triangle P1, i.e. ti =
2_,3=17-2/coi, where yoi is the characteristic function of the triangle Pi.

To compute the 3N unknowns Til, we require the integral equation not to hold
for every x E aG anymore, but only for the centroids x(1) of the triangles.

It's then clear that instead of the above integral equation we have the 3N equations

(51k = Ertl f Eik(X(n),y)dSy (k = 1,2,3, n = 1, N)
t=i PI

We define for 1 < n, 1 < N the 3 x 3-matrices

P1 (f Eik(X() 3r)dSy)
ik
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and set

M = (F 1),a

t = ( 71 1 7 T217 73 1 T127 722 7 732 7 713 ' T3N
)T

w = (1 0 0 1 0 0 1 0 0 ... 1 0 0)T.

Then we obtain the matrix equation

w = Mt. (55)

The 3N x 3N-matrix M depends on wether we plug in Stokes or Oseen fundamental

solutions, and in the latter case additionally on the Reynolds number.

Remark. This kind of discretization is called Collocation Method. Other ap-
proaches are the Galerkin Method with finite elements as trial functions (see Hsiao

and Wendland [18]) or the Galerkin Collocation Method (see Hsiao, Kopp and
Wendland [19, 20]).

4.1 Triangulation

The first part of our discretization requires a uniform triangulation of our body. For
latter purposes we also need to compute the inner normals. It is a nontrivial task to

do that for arbitrary bodies, and we won't go into details at this point. If the surface
of the body is given implicitly, i.e. aG = {x E : H(x) = 0 }, where H is a certain
function, we refer to the work of Widmann [32, 33].

For simple bodies like a sphere it's rather easy to obtain a triangulation and all

its connected data. We explain the developed functions in the following. Except for

triangulation .m and trinormal.m, all functions can be used for arbitrary bodies

as well, as long as we are given the triangles and the inner normals.

The triangulation of the sphere is produced by the function creategrid.m.
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function creategrid(r,delta);

% input

r

% delta

...radius of sphere

...maximal edge-size of triangulation

% output on file tril.mat

% al,a2,a3,b1,b2,b3,c1,c2,c3

...see function triangulation

% nl,n2,n3 ...see function trinormal

% ml,m2,m3 ...see function trimidpoints

% vol ...see function trivolumes

% r,delta ...see input

% output on file tri2.mat

% simil,rep ...see function tricongruent

% simor ...see function tricongruent2

% pl,p2,q1,q2,r1,r2

...see function trimap

% sll,s12,s13,s21,s22,s23,s31,s32,s33

...see function trimap

% r,delta ...see input

The data stored in tril.mat are the corners, inner normals, midpoints and volumes

of the triangles. tri2.mat contains rather data that is needed for the computation
of the diagonal blocks of the matrix M.

4.1.1 Geometric Data

triangulation.m Computes the corners of our triangulation

function [al,a2,a3,b1,b2,b3,c1,c2,c3,or,oc]=triangluation(delta, r);

creates triangulation for a sphere with center in the origin.

% input

% delta ...maximal length of edges

% r ...radius of sphere

% output

% al ...x-coordinate of A (m-vector if we have m triangles)

% a2,a3 ...y,z-coordinate of A

% bl,b2,b3 ...see al,a2,a3

7, cl,c2,c3 ...see al,a2,a3

or ...orientation of triangle, when looking from the inside of the
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sphere

orientation 1: orientation -1:

/ \ / \

'I. A B B A

oc ...octant in which triangle is.

here means 1: x+ y+ z+

2: x+ y+ z-

% 3: x+ y- z+

4: x+ y- z-

% 5: x- y+ z+

6: x- y+ z-

% 7: x- y- z+

8: x- y- z-

The function starts out with the hexagon (+r, 0, 0), (0, ±r, 0), (0, 0, ±r). If the edges

are longer than delta, each triangle is replaced by four other triangles, the corners

of which are either corners or projections of edge-midpoints of the original triangle

onto the sphere. After some iterations of this process all edges are smaller than delta.

trinormal.m The function computes via crossproduct the normals that point inside
the body, i.e. outside the exterior domain.

function [n1,n2,n3]=trinormal(a1,a2,a3,b1,b2,b3,c1,c2,c3,or);

% creates inner normals of a triangulation

Y.

% input

% see function triangulation

% (but can use this program also for other triangulations!)
% output

'h n1 ...x-coordinate of normal, which points outside the interior domain.
% n2,n3...y,z-coordinates

trirename.m

function [al,a2,a3,b1,b2,b3,c1,c2,c3]=trirename(a1,a2,a3,b1,b2,b3,c1,c2,c3);

% Renames triangulation such that for every triangle the longest side is AB
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% and the orientation is preserved

% input, output

% see function triangulation.m

trimidpoints.m

function [ ul,m2,m3]=trimidpoints(al,a2,a3,b1,b2,b3,c1,c2,c3);

% computes centroids of elements

% input

% see function triangulation

% output

% m1 ...1. coordinate of midpoints

% m2,m3 ...2./3. coordinate of midpoints

trivolumes.m

function [vol]= trivolumes(a1,a2,a3,b1,b2,b3,c1,c2,c3);

% computes volumes of elements

% input

see function triangulation

% output

% vol ...volumes of triangles

4.1.2 Transformation Data

tricongruent.m This function checks which triangles are congruent. The set of
triangles is split up into congruency classes. From each class we pick arbitrarily
one representant.

function [sim,rep]=tricongruent(a1,a2,a3,b1,b2,b3,c1,c2,c3);

% Checks triangulation for congruent triangles

% input

see function triangulation
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% output

% sim ...gives congruency relation.

sim[k]=m --> triangle k is congruent to triangle m
rep ...gives a representant of each congruency class

trimap.m For any triangle ABC we define its Local Coordinate-System by the
following properties:

The origin lies in the centroid M of the triangle;

The xl-axis is parallel to AB and A lies in the positive xl-region;

The x2-axis lies in the triangle, and C lies in the negative x2-region;

All axes are orthogonal to each other, and the system is positively oriented.

Suppose we have given A, B, C and M both in local coordinates xl, x2, x3 and in

global coordinates yi, y2, y3. Let P be the affine transformation between them, i.e.
P(x) := Sx t = y. It's easy to check that we have to have t = ym. We introduce

ei = P(YA YB)

e2 = A(YA Yc ((YA Yc) ei)ei),
e3 = el x e2,

where p, A > 0 are chosen such that led = led = 1. Then one can show that we have
to have Sig := eii. Notice that S is a rotation matrix. Altogether we have

P(x) = Sx+ym (56)

det(OP(x)) = det(S) = 1 (57)ax

function [pl,p2,q1,q2,r1,r2,s11,s12,s13,s21,s22,s23,s31,s32,s33]=...

trimap(al,a2,a3,b1,b2,b3,c1,c2,c3,m1,m2,m3);

'I. Given the global coordinates for the triangle-corners and -centroids,

% the function computes the corresponding local coordinates and the
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% matrix S of the affine transformation from local to global coordinates.

'I. input:

% a., b., c. ...see function triangulation

m. ...see function trimidpoints

% output:

% p1,p2 ...x-coordinates of A (x3-coordinate =0 due to construction)

ql,q2 ...x-coordinates of B (x3-coordinate =0 due to construction)

r1,r2 ...x-coordinates of C (x3-coordinate =0 due to construction)

s.. ...entries of the orthogonal matrix S

tricongruent2.m It is possible that congruent triangles have different local coor-
dinates, namely reflected at the x2-axis. In tricongruent .m we have chosen for each
congruency class one represenant. We have to check now for each class, which of its
members have the same local coordinates and which of them have reflected ones:

function [simor]= tricongruent2(sim,rep,pl,p2);

% checks, which congruent triangles have the same local coordinates and

% which have reflected ones, compared with the representant of

% the congruency class

% input

see functions tricongruent, trimap

% output

% simor: simor(k)= +1 if equal

= -1 if reflected



34

5 Computation of the Matrices

In this section, we describe the computation of the matrix M in (55). We first give

the formulas for the nondiagonal blocks of M. The diagonal parts, however, require

a closer look. We do that in the Stokes case by using some analytical help. These

results can also be used in the Oseen case.

5.1 Nondiagonal Blocks

For the nondiagonal blocks of M, the singularity of the integrands does not lie in the

corresponding triangles we integrate over.

5.1.1 Stokes

We have to compute for each triangle and each centroid the integral of the Stokes

fundamental solutions (11) which looked like

i = k : Eii(x, y) = 817 + c743)

1 didk
i k : Eik(x,Y ) = 87r r3

If the centroid lies in the triangle, we refer to 5.2.1. For the other cases we use the
functions fun_rgd3.m and fun_rgnd3.m, which contain the diagonal and nondiagonal

parts of E, respectively.

5.1.2 Oseen

Now we have to determine the integrals of the Oseen fundamental solutions for each

triangle and centroid. If the triangle contains the centroid, we refer to 5.2.2, else we



use the functions (34)

where

i k 01 :

i k = 1 :

=

Eos =

Egs =

di) (1
r r3)

(1 cq (2
r 3

)
)

Egs = + =(di didi)
r3

(I)
,

r r2

es = d
2

d3
431

d2d3
23 r3 r2

1 e- 1 ÷0 (as)i
87ras 87r z=o

(i + 1)!

=
i87r( + 1)! +

z=o

\--ase' 1+ e-as a ,c° i + 1
87ras2 87r (i + 2)!

z=o
n . + 1

_=
a

( a8)2 + R"n-Fi-
87r i=0 (z + 2)!

( as)i
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The diagonal part is implemented in oseenfun_rgd3.m, the nondiagonal part in
oseenfun_rgnd3.m. If as is close to zero, we use Taylor approximations for (13.' and

(I)". To justify this, we assume as < 1 and estimate the above remainders:
1 oa (as)i +",+1 (as)n +i

87r i1E, (i + n + 2)! 87r(n + 2)! i=0 (i + n + 2)!

(as)n+1(n + 3)
8ir(n + 2)(n + 2)!

87r (i + n + 3)! s)i+n-{-1 *Sri (n + 2)!00 i
IR" 71+11

a z + n + 2
vt 87(n + 2)! (i + n + 2)!

z=o
a(as)n +1(n + 3)

8ir(n + 2)(n + 2)!

(n + 2)!

Suppose we want to compute the integrals with a tolerance E, and the longest

edge of all triangles is smaller than (5. If we take the first order Taylor approximation

for as < E/10a0 (i.e. n = 1), we can estimate the introduced error by
f 2 a2S 4 r 2s

IR'21 + 511e2IdSy < + 5asdSy
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< .

100

The Taylor approximations for n = 1 look like

(IY

ti

1 as
87r 167r
a a2S

167r 247'

and with the above reasoning we can neglect the introduced error.

5.2 Diagonal Blocks

5.2.1 Stokes

To avoid numerical integration over weak singularities, we at first compute the in-

tegrals analytically for one special triangle PQ R, which has nice properties ("basic

integrals"). Then we take from each congruency class of triangles one representant,

map it into the plane of APQR and compute the integrals over these images ("rep-

resentant integrals"). We transfer the obtained values to the other members of the
congruency classes ("standard integrals"). Finally, we transform the integrals back,

such that they're taken over the actual triangles ("actual integrals").

Basic Integrals Let us consider the triangle in the plane x3 = 0 with the vertices

P = (r0, r), Q = (7-0, r), R = (0, 2r), where r is at the moment an arbitrary
number. APQR is equilateral with centroid in (0, 0). We define the functions

f (x) =

hll (x) =

hi2(x) = h2i(x) =

h22 (x) =

1

Sir /xi

87 Vx? +
2X2

87 +



One can then compute that

fAPQR
= LpQRh22(X)dSx = f f (X)dSx ± 3r In (id + 2)

APQR 87r

Since f =

hu (x)dS.

h11 + h22 and h12 is symmetric to the x-axis, we get

f (x)dS = gam In (N/ + 2)fAPQR 87r

hii (x)dS 3r
ln (N/+ 2)fAPQR 87r

h22(x)dSx =
3r ln(Vd+ 2)fAPQR 871

fAPQR hi2(x)dSx = 0
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For latter purposes we choose r so big that LPQR contains the image under P-1
of the representant of every congruency class (see section 4.1.2). Such a value is
computed in the function trimaxdist .m.

function [ou1,ou2,ov1,ov2,owl,ow2,Bf,Bh11,Bh22,Bh12]= intbasic(r);

% Gives exact integral values over the particular triangle PQR

% input

% r ...see function trimaxdist

% output

% oul,ou2,ovl,ov2,ow1,ow2
...corners of triangle PQR

% Bf,Bh11,Bh22,Bh12

% ...basic values for big triangle

Representant Integrals For each congruency class we take now one representant

triangle ABC and compute the integrals of f, h11, h12 and h22 over the local coordi-

nates of that particular representant. For that purpose, we write

f (x)dS = f f (x)dSx
IIABC APQR

+ f +f +f +.1 + )(fAPCB APQC AQAC AQRA ARRA fABRP f (x)dS.,
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and the same for the functions h11, h12 and h22. This decomposition of PQR has the
advantage that we don't have to integrate numerically over the weak singularity, which
would lead to a huge amount of subdivisions in our adaptive integration function.
Instead, we only have to integrate over six triangles, where the integrands are smooth.
The set-up of the triangulation guarantees that this kind of decomposition is well
defined. However, if the triangles become very small, the six triangles come closer
and closer to the singularity.

function [Rf,Rh11,Rh22,Rh12]=

intsimclass(rep,p1,p2,q1,q2,r1,r2, oul, ou2, ovl,ov2,ow1,ow2,

Bf,Bh11,Bh22,Bh12,tol,dep,Wf,Kf,Wg,iKg,maxmatsize,tab);

7.

7.

5/.

7.

7.

7.

'/.

7.

Computes integral values for representants of similarity classes

input

rep ...see function trisimilar.m

pl,p2,q1,q2,r1,r2...corners of trianglesof similarity classes

ou1,ou2,ov1,

ov2,owl,ow2 ...corners of big triangle, see function intbasic.m

Bf,Bh11,Bh22,Bh12...see function intbasic.m

tol,dep

Wf,Kf,Wg,iKg

maxmatsize

tab ...helpstring for nicer output

output

Rf,Rh11,Rh22,Rh12

...basic values for each similarity class

Standard Integrals Suppose now we want to compute the integrals of f, h11, h12

and h22 over the local coordinates of any other triangle UVW in that class. Due to

the construction the local coordinates of the two triangles might either be the same,

or they are reflected at the x2-axis. The function tricongruent2 (see section 4.1)
gives us that information. However, there is not a big problem with this. It's easy to

check that

f(x)&5 =
Luvw

hll (x)dSx =
Luvw

f(x)dS;
/ABC

hii(x)dS
LABc
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h22(x)dSx = h22(x)dSxLuvw fAABC

hi2(X)dSx = + hi2(X)dSx,
LUVW LABC

where + holds, if the coordinates are the same, and , if they are reflected. For this
part of the computation we have got the function intstandard.m.

Actual Integrals Having all this, we can now compute the integrals that we actu-

ally need. Let AUVW be one of our triangles, M its centroid, and the integration

takes place over the global (y-) coordinates of that triangle. P is the affine mapping
(56), and we have seen that its functional determinant is 1.if 1

dS
87r Luvw IYM Y1 Y 87r LUVW IYM P(x)I

--'
r= 1 1 dS

1 f 1= dS
87r. Luvw I sx1

= i f i
CIO

LUVW IXI

= f(x)dS
1

87r huvw
(YM Y)i(Ym Y)k

IYM Y13 Y

fAUVW

1 f (Y m P(x))i(Y m P(x))k
87r huvw IYM P(x)13

3
Xi Xm_1

/,m=1 Luvw vx?+ 4
2E

LUVW1,m=1
him(x)dS

This little computation is implemented in the function intsingular .m:

function [f,h11,h22,h33,h12,h13,h23]=

intsingular(s11,s12,s13,s21,s22,s23,s31,s32,s33, .

Sf,Sh11,Sh22,Sh12);

% Computes integrals over the functions

-1

fun_f(y) -

8 Pi Im -yl



7.

Y.

% Sf,Sh11,Sh22,Sh12 .

% output

% f

% h11,h22,h33

'h h12,h13,h23

-1

fun_h(y) = (m-y) *

8 Pi

where m are the midpoints

1 3 3x3

grad( ) : R --> R

Im -yl

of the triangles

input

sll,s12,s13,s21,s22,s23,s31,s32,s33

...see function trimap

..see function intstandard

5.2.2 Oseen

...integral of fun_f

...diagonal components of integral of f

...nondiagonal components of integral o

un_h

f fun_h
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We remove the singularity by subtracting the integral over the Stokes fundamental

solution, which we have already treated. The integrand of that difference remains
bounded, and in particular we get:

i = k 1:

i k = 1 :

where

Ell Ell = 1+ c/9 + (1
r2

dr: + 4 (2_
1-/ii jjh-,os E (1

Egs -Eii = Li'

didl (Di --Lyt didl
r r

Egs E23 = d r2 d +r2 3 r 1 d 2r 3 )
71"

1 (as)i 1 ,

i= 1
87rr (i + 1)! Trt 71+1

n 1

= as (as)i 1+ ft!
i=o

n+187rr (i + 2)! r
and 1" is like in section 5.1.2. The diagonal part is implemented in oseenfun_sgd3.m,

the nondiagonal part in oseenfun_sod3.m. If as is close to zero, we use Taylor
approximations. To justify this, we assume as <1 and get:

1
R'72+1 I

(asr+ 1 (n + 3)
87rr(n + 2)(n + 2)!



41

a(as)n (n + 3)
471-(n + 2)(n 2)!

Suppose we want to compute the integrals with a tolerance E and the longest edge

of all triangles is smaller than 8. Like in the nonsingular case (see 5.1.2) we take the

first order Taylor approximation for as < E/10a82, and can estimate the introduced

error by

L2
+ 51RII2IdSy 5_

87a23. -431
--r-2s + 5asdSy

100

The Taylor approximation for n = 1 looks like

(1)/ r as
r 167r

Thus, we can neglect the influence of the introduced error.
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6 Integration over Triangles

In the last section, we have seen that for each entry of the matrix M in (55) we have

to compute some integrals over triangles. This section gives an idea how we do this.

Our previous work allows us to assume that all integrands are continuous on their
integration domains.

The general idea is that we compute two approximations of different orders, and if

they differ by less than a given tolerance, the higher order approximation is considered

to be the value of the integral. The integration formula that we use is explained in

6.1. If the two approximations are not as close together as desired, we subdivide the

triangle and do then the same procedure for each of the smaller triangles. One can

think of it as a recursion, although it's certainly not a good idea to implement it
recursively. See 6.2 for details.

Unfortunately, we don't give an error estimate for the whole method. Furthermore,

there are several other methods for integration over triangles, we refer to [24].

6.1 Integration Formula

To integrate a function f over a triangle ABC, we use the formula

f (x) dSx
fLABc

area(LABC) E if (-TixA +
n xB + n xc),

where wi3 are the weights. The formula is exact for polynomials up to order n and

needs (n + 1) (n + 2)/2 knots. We denote them and their weights by n-knots and

n-weights, respectively, and the approximation by n-approximation.

We require n to be even. It's easy to see that every n/2-knot is also a n-knot.
That means, after having computed an n-approximation, we can compute an n /2-

approximation without needing any additional function evaluations. We take advan-
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tage of that to check, if an approximation is accurate or not.

The computation of the weights leads to solving a linear system. We should
mention that the matrix of this system is badly scaled if one takes n too big, for
instance n > 14.

function [Wf,Kf,Wg,iKg]= wABC(n);

% computes weights for integration over triangle.

formula has order n+1, i.e. for polynomials up to order n it's exact.

'h input

n ...high order (has to be even)

% output

% Wf ...weights for order n

% Kf ...knots for order n

% Wg ...weights for order n/2

% iKg ...Kf(iKg) are the knots for order n/2

6.2 Adaptive Scheme

Suppose we have N triangles A3 (j = 1, . . . , N) , a scalar function f : R3 -+ R and
a vector function g : R3 -+ R3. We write D := U7

1 A3 for the union of the N
triangles, which we assume to be mutually disjoint, except for some sets of measure

zero. Our goal is to compute the integrals

JD
f (x)dS

fpg(x)dS.

g(x)dSx for j = 1, N

as fast and as accurately as possible. We can increase the accuracy by taking low

tolerances. In addition, we have to increase the order for our integration formula and

the number of allowed subdivisions. The more accuracy we want, the more time is

needed. On the other hand, the computation time is essentially influenced by the
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efficiency of our code. A recursion would be the worst method. Therefore, we tried

to minimize the amount of loops, to treat many triangles simultaneously and to make

use of the vector computing facilities that MATLAB has to offer.

For each of the above cases we have an own function, which takes advantage of the
particular situation. They all use the same idea, have most of the code in common,
and their inputs and outputs look like the following:

% input:

fname .matlab-filename of integrand

% a1,a2,a3 .N 1./2./3. coordinates triangle-corners A

b1,b2,b3 .N 1 . /2 . /3 . coordinates triangle-corners B

% c1,c2,c3 .N 1./2./3. coordinates triangle-corners C

% tol .desired accuracy of integrals

% addpar .additional parameters for integrand (constants)

% dep .maximal depth of subdivisions

% Wf .higher order weights

Kf .higher order knots

Wg .lower order weights

% iKg .lower order knots (as indices of Kf)

% maxmatrixsize .maximal allowed size of occuring matrices.

% output

hardware-dependent. choose as high as possible

% int ...computed value of integral

err ...flag (=0 if accuracy achieved else =1)

% echterr ...max(0,echttol-tol)

% echttol ...real accuracy

% subdiv ...number of occured subdivisions

The input argument fname and the output arguments int, echterr and echttol

have slightly different meanings, and we explain them for each function seperately.

All the other arguments have the same meaning. In al we store the first coordinates

of the triangle-corners A. a2, , c3 have to be understood similarly, and the values

have to be in the same order than al. tol is the tolerance for the difference of the

two approximations (see above). In addpar we can hand over additional arguments

for the function, which are constant during the integration. If we don't need any, we

hand over an empty vector. dep is the number of allowed subdivisions. For the next

four arguments, we refer to 6.1. Since we treat as many triangles at once as possible,

the number of function evaluation might get very big. The last input argument,
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maxmatrixsize, allows us to keep that number under a desired bound. If we don't
need to worry about other users on the workstation, we take this value as high as
possible. The output argument err is zero, if all integrals could be computed with the

desired accuracy, else one. In subdiv we count the number of occurred subdivions.

6.2.1 intABC.m

This function is supposed for the first of the above three cases. Therefore, the input
parameter fname has to be the name of the scalar function we want to integrate. This
function has to look like the following:

function f=anyname(y1,y2,y3,addpar);

% input

'h yl,y2,y3 ...1./2./3. coordinates

% addpar ...constant parameters (might be empty)

% output

% f ...computed function values

The function has to be evaluable at several points at once, and the result f should

have the same size as the received arguments y1, y2 , y3. It has to expect an addi-
tional vector addpar, where parameters can be received that are constant during the
integration.

The triangle data is stored in a list named REG, and the elements of that list look
like

[al a2 a3 bl b2 b3 ci c2 c3 tritol vol dep].

At the beginning each row of REG corresponds to one of the given triangles. tritol is

the desired accuracy for the integration over that particular triangle, vol its area, and

dep is a number that keeps track of the occured subdivisions. If dep=0, the triangle

wouldn't be subdivided anymore, although we might not have achieved the desired

accuracy yet.
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We have a loop, which in every step takes several triangles from the top of our

list, computes the approximated integral values, and if they seem to be good enough

or if no more subdivision is allowed, the values are added to a variable int that in

the end contains the approximated integral value over the whole integration domain.

If for some triangles the approximation is not good enough, they are subdivided and

put to the end of the REG-list. The loop stops, if the list is empty.

To decide, if the approximation is good enough, we actually compute two approx-

ations, one of them with weigths Wf and knots Kf, and one with weights Wg and knots

Kg. The f-approximation is the better one, because it's based on more knots; as a
matter of fact, every g-knot is also an f-knot. Therefore, we have the g-knots given

via Kg=Kf [ikg], where ikg is just an index vector. We can thus save function evalua-

tions. If the two approximations differ by less than tritol, then the f-Approximation

is considered to be the value of the particular integral.

If a subdivision is necessary for a triangle, it is divided up in four similar but
smaller triangles that are put at the end of the REG-list, each of them provided with

one fourth of tolerance and volume, and with dep reduced by one.

There is a serious bookkeeping of the tolerances. If a value was accepted, because

the two approximations differed by let's say d < tritol, then tritol d > 0 is added

to a variable tolguthaben. If a value had to be accepted, although it was't good
enough, because dep was zero, then d tritol > 0 is added to a variable echterr.
At the end of each loop-cylce, we subtract echterr from tolguthaben, and if there
is something left on tolguthaben, we distribute that onto the subdivided triangles
and thus allow them to have bigger tolerances.

In the very end, we return the computed integral value int, a variable echttol (=

tol + echterr tolguthaben), and echterr (= max(0,echterr-tolguthaben)).
If echterr=0, we have computed the integral value successfully with the desired ac-

curacy.
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Special emphasis is put on saving computing time; therefore, everything is vector-

ized, and in each loop-cylce several hundred triangles can be treated simultaneously.

Since the REG-list can blow up at the beginning, we can control via maxmatrixsize,

how big we allow the function evaluation matrix to be, the size of which is given by

the number of triangle times the number of knots of the f-approximation.

6.2.2 intABC3.m

The function works like intABC.m, but now for 3-dimensional integrands. Therefore,
the integrand specified by fname has to have the form

function [fl,f2,f3]= fun_rgd3(y1,y2,y3,addpar);

We now have 3-vectors of f- and g-approximations, and we thus take the maximum-

norm instead of the absolute value of their difference to decide wether the approxi-
mation is good enough or not.

6.2.3 intABC3sep.m

The input of this function is exactly the same as in intABC3.m. We get for each

triangle an own integral value, not like in the previous case, where we got only the
sum of them. Thus, the output arguments int, echterr and echttol are not scalars
anymore but vectors.

The structure of the code had to be changed slightly. The difference is that
we cannot check anymore after each loop-cycle, if we have wasted anything of the

tolerances and distribute that on the remaining triangles. This is a disadvantage,
if we have to do a lot of subdivisions. However, if most of the triangles don't need

subdivisions, we can treat the few exceptions afterwards with intABC3.
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7 Application on a Sphere

In this section we apply the theory and the program developed to the simple case
of a sphere, where we have an analytical solution available. We first investigate the

matrices themselves. Since the matrices approximate singular integral operators, we

expect them to be ill-conditioned. However, the linear systems which arise should be

uniquely solvable in the hyperspace that is orthogonal to the normal direction.

One way of solving a system in that sense is to seek the solution as a linear
combination of basis vectors that span this particular hyperspace. However, the

computation of such a basis is too expensive unless there exists a clever way of doing

it. We do not investigate this further. Instead, we seek a solution in the whole space

and afterwards project it onto the hyperspace.

Although the right hand sides of the linear systems are known exactly, we have

to take into account an error in the matrix-computation. In order to get stability of
the solution against little changes in the matrix, we can't solve directly via Gauss

elimination. Instead, we have to make use of regularization techniques like trun-
cated singular value decomposition or Tychonov regularization. These and other
methods are described in Groetsch [11]. Since we have to deal with big matrices, we

can't afford to compute a singular value decomposition, thus, we concentrate on the
methods of Tychonov, i.e. instead of the system Mt = w, we solve the minimization

problem

M wIt = or
aI 0

(M*M A2I)t = M*w,

where I is the identity matrix of the same size as M, M* is the adjoint of M and

A E R is a parameter we can adjust. If ) = 0, we get the exact solution, which is
unstable, and for large A we get almost the zero vector. Thus, A has to be choosen

small, and has then an effect of stabilizing the solution by pulling it to zero. An
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optimal choice of A is yet unknown. We tried the values le-10, le-6 and le-2, and
noticed that in most cases the second value delivered reasonable results, in the sense

that we ended up near the hyperspace.

One eigenvalue of the matrix is almost zero. Therefore, one has to expect that

the solution picks up a large amount in direction of the corresponding eigenvector.

Numerically, it turns out that the above stabilization has the effect of removing that

undesired contribution. It also turns out that this eigenvector is almost parallel with

the discretized kernel of the integral equation, given by the normal vector. Therefore,

we always projected in direction of the discretized normal.

Our investigation will focus on 80 different matrices. We have triangulations with

8, 32, 128 and 512 elements, Stokes matrices (we refer to them by a = 0) and Oseen

matrices for a = 5e 05, 0.005, 0.5 and 50. Each of them is computed with different

tolerances of the integration routine, namely le 3, le 5, le 7 and le 9. A few

other matrices are available for comparisons.

In the Stokes case and the Oseen case for small a, we compare the computed
stresses with the available Stokes solution for a sphere (see Batchelor [1])

t = (-1.5, 0, 0)T.

As a check for the net force on the body we take the formulas of Oseen [26], which

are exact for a = 0 (i.e. in the Stokes case) and are themselves approximations in the

Oseen case:

3arF = (-671-rL(1 +
4L

), 0, 0)T

where r is the radius and L a characteristic length of the body, which we have both
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Table 1: Accuracy of matrices

Comparison of matrices that have been computed with different integration tolerances
and the corresponding matrices of tolerance le-13. The values are the infinity norms
of the matrix differences.

#A a le-03 le-05 le-07 le-09 1e-11 le-13
8 0 3.1448e-04 4.0984e-05 8.0956e-05 1.6936e-09 3.9920e-16 0
32 0 1.5702e-03 2.8982e-05 5.7244e-05 1.1975e-09 6.1729e-15 0
128 0 1.2867e-03 8.5657e-05 3.3052e-05 6.9581e-10 7.1125e-14 0

chosen to be 1 unit of length. Thus, we expect in the first component the values

18.8496 for a = 0
18.8503 for a = 5e-5

18.9202 for a = 5e-3
25.9181 for a = 5e-1

725.7079 for a = 5e+1

7.1 Accuracy and properties of the computed matrices

Since presently an error estimate for the integration routine is not available, we
demonstrate in table 1, how accurate the computed matrices actually are. There-

fore, we compare each matrix with the most accurately computed matrix of the same

type, i.e. same number of elements and same a.

The Oseen equations contain the parameter a, and if a = 0, we have actually
the Stokes equations. Although we had to do a lot more analytical work for the
Oseen equations, we expect the arising matrices for small a to be almost equal to the

corresponding Stokes matrices. This is shown in table 2.

In table 3 we give the condition numbers of the matrices. They are computed

in the 2norm, and thus give the ratio of the biggest and smallest singular value.
Table 4 gives the 2norms, and table 5 the smallest singular value of each matrix.
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Table 2: Comparison of Stokes and Oseen matrices

The values are the infinity norms of the differences between some Oseen and their
corresponding Stokes matrices.

#A tol 5e-05 5e-03 5e -01 5e+1
8 le-05 4.1524e-05 3.0048e-03 2.1544e -01 6.3777e -01

le-09 3.0194e-05 3.0083e-03 2.1544e-01 6.3773e -01
32 le-05 7.6739e-05 5.4161e-03 3.3209e-01 7.9265e -01

le-09 5.4312e-05 5.3999e-03 3.3209e-01 7.9264e-01
128 le-05 9.1623e-05 6.4037e-03 3.7716e -01 8.5568e-01

le-09 6.4416e-05 6.4001e-03 3.7717e -01
512 le-05 9.6000e-05 6.6962e-03 3.9007e -01 8.7771e -01

le-09 6.7459e-05 6.6924e-03 3.9007e-01

For big matrices these computations are very expensive, actually more expensive than

solving the systems. One can see that the condition numbers increase and the smallest

singular values decrease with decreasing tolerance of integration. The norms, i.e. the

biggest singular values are not affected by that.

7.2 Investigation of the solutions

7.2.1 Stokes

Since we have seen in table 3 that we have to deal with big condition numbers, we

expect our solutions to be unstable, i.e. that small errors in the matrix computations

lead us to wrong results. We investigate the solutions in table 6, which measures the

difference of two solutions in the infinity norm. Column 4 and 5 show the resulting

net force. Values less than le-08 have been replaced by zero.

It seems that both the direct solutions (DI) and the Tychonov-regularized solu-

tions (TREG) agree well with the analytical solution (ANA). However, as one can

see in the first column, the more accurately we compute our matrices, the more the
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Table 3: Condition numbers

a tol 8 32 128 512
0 le-3 4.8106e+04 2.7034e+04 2.5986e+04 4.3679e+04

le-5 2.2141e+04 1.7138e+05 5.1147e+06 3.0243e+05
le-7 2.6505e+11 1.9278e+11 6.7055e+09 3.3726e+08
le-9 2.3391e+14 2.5826e+14 2.0139e+12 1.0961e+13

5e-5 le-3 7.0971e+04 3.4628e+04 3.3619e+04 7.1362e+04
le-5 2.5996e+04 4.4093e+05 1.1194e+05 8.2042e+04
le-7 2.3071e+05 1.2341e+05 1.1444e+05 1.1262e+05
le-9 2.9976e+11 1.1191e+09 6.6305e+07 1.0503e+07

5e-3 le-3 2.2747e+03 1.2780e+03 1.1825e+03 1.1411e+03
le-5 2.2074e+04 1.6284e+05 4.2555e+05 1.5999e+05
le-7 1.3087e+11 1.2998e+09 1.0139e+09 3.2310e+08
le-9 5.1427e+12 5.8541e+12 1.3101e+12 5.0479e+11

5e-1 le-3 3.0549e+04 1.0567e+04 1.3946e+04 3.0019e+04
le-5 1.7689e+04 1.2887e+05 1.2593e+05 2.2215e+05
le-7 2.5709e+10 2.8696e+09 8.4757e+07 2.5410e+08
le-9 3.4887e+12 5.2289e+11 1.8351e+12 1.0737e+13

5e+1 le-3 2.1884e+02 5.7532e+02 5.8022e+02 1.2585e+03
le-5 8.9994e+02 5.1318e+03 2.8183e+04 8.5471e+04
le-7 1.4133e+08 6.3699e+06 2.4832e+08 1.2448e+07
le-9 6.0831e+11 3.4361e+09

Table 4: Matrix norms

a tol 8 32 128 512
0 le-7 5.4441e-01 6.3769e-01 6.7121e-01 6.8019e-01
5e-5 le-7 5.4438e-01 6.3764e-01 6.7117e-01 6.8014e-01
5e-3 le-7 5.4299e-01 6.3558e-01 6.6878e-01 6.7766e-01
5e-1 le-7 4.3473e-01 4.8141e-01 4.9534e-01 4.9864e-01
5e+1 le-7 2.7599e-02 3.4363e-02 3.7535e-02 3.8665e-02
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Table 5: Smallest singular values

a tol 8 32 128 512
0 le-3 1.1317e-05 2.3591e-05 2.5830e-05 1.5572e-05

le-5 2.4586e-05 3.7208e-06 1.3123e-07 2.2491e-06
le-7 2.0540e-12 3.3079e-12 1.0010e-10 2.0168e-09
le-9 2.3274e-15 2.4692e-15 3.3329e-13 6.2054e-14

5e-5 le-3 7.6705e-06 1.8417e-05 1.9964e-05 9.5308e-06
le-5 2.0940e-05 1.4461e-06 5.9958e-06 8.2902e-06
le-7 2.3596e-06 5.1669e-06 5.8647e-06 6.0391e-06
le-9 1.8161e-12 5.6979e-10 1.0123e-08 6.4757e-08

5e-3 le-3 2.3837e-04 4.9631e-04 5.6421e-04 5.9238e-04
le-5 2.4599e-05 3.9031e-06 1.5716e-06 4.2354e-06
le-7 4.1489e-12 4.8898e-10 6.5964e-10 2.0974e-09
le-9 1.0559e-13 1.0857e-13 5.1048e-13 1.3425e-12

5e-1 le-3 1.4232e-05 4.5569e-05 3.5518e-05 1.6611e-05
le-5 2.4577e-05 3.7356e-06 3.9333e-06 2.2446e-06
le-7 1.6909e-11 1.6776e-10 5.8443e-09 1.9624e-09
le-9 1.2462e-13 9.2069e-13 2.6992e-13 4.6441e-14

5e+1 le-3 1.2598e-04 5.9673e-05 6.4964e-05 3.0824e-05
le-5 3.0637e-05 6.6958e-06 1.3318e-06 4.5228e-07
le-7 1.9528e-10 5.3946e-09 1.5115e-10 3.1060e-09
le-9 4.5400e-14 1.0001e-11
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Table 6: Stokes solutions

DI: Solution by Gauss elimination, TREG: Solution by Tychonov regularization (A =
le-6), ANA: Analytical Stokes solution for a sphere, Force DI: Force by integrating DI,
Force TREG: Force by integrating TREG. Values of first three columns are infinity
norms of vector differences. Values less than le-08 have been replaced by zero.

#,L tol DI-TREG DI-ANA TREG-ANA Force DI Force TREG
8 le-3 0 3.3077e-01 3.3077e-01 -1.2684e+01 -1.2684e+01

le-5 0 3.3101e-01 3.3101e-01 -1.2686e+01 -1.2686e+01
le-7 4.7968e-06 3.3103e-01 3.3103e-01 -1.2686e+01 -1.2686e+01
le-9 5.0308e-03 3.3594e-01 3.3091e-01 -1.2685e+01 -1.2685e+01

le-11 1.4567e-01 4.7658e-01 3.3091e-01 -1.2685e+01 -1.2685e+01
32 le-3 0 2.1773e-01 2.1773e-01 -1.6607e+01 -1.6607e+01

le-5 0 2.1940e-01 2.1940e-01 -1.6607e+01 -1.6607e+01
le-7 1.6745e-06 2.1937e-01 2.1937e-01 -1.6607e+01 -1.6607e+01
le-9 2.3343e-03 2.2196e-01 2.1963e-01 -1.6607e+01 -1.6607e+01

le-11 9.9732e-03 2.2960e-01 2.1963e-01 -1.6607e+01 -1.6607e+01
128 le-3 0 1.5523e-01 1.5523e-01 -1.8212e+01 -1.8212e+01

le-5 0 1.5358e-01 1.5358e-01 -1.8211e+01 -1.8211e+01
le-7 1.5583e-07 1.5387e-01 1.5387e-01 -1.8211e+01 -1.8211e+01
le-9 7.8022e-05 1.5395e-01 1.5387e-01 -1.8211e+01 -1.8211e+01

le-11 7.3702e-02 2.2613e-01 1.5387e-01 -1.8211e+01 -1.8211e+01
512 le-3 0 6.9694e-02 6.9694e-02 -1.8683e+01 -1.8683e+01

le-5 0 6.9486e-02 6.9486e-02 -1.8682e+01 -1.8682e+01
le-7 0 6.9193e-02 6.9193e-02 -1.8682e+01 -1.8682e+01
le-9 2.8330e-05 6.9207e-02 6.9193e-02 -1.8682e+01 -1.8682e+01
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regularized and the direct solutions differ. We can expect this behavior, since we have

seen earlier, that the condition numbers grow. Apparently, the difference between the

two solutions is of order 0(1e-17 cond(M)).

The forces turn out not to be affected by the way we solve the equation or the
accuracy of our matrices, and for fine triangulations, they seem to approach the value

67 18.8496, as expected.

7.2.2 Oseen for small a

In the Oseen case we lose the stability of our solutions, as shown in table 7. For

a =le-5 and a = 0.005 we still compare the solutions with the analytical solution of

the Stokes case, since for small a we don't expect a big change of the stress. We have

replaced values less than 0.1 by zero.

The distances between the regularized and the direct solutions get very big, al-

though the regularized solutions remain near the analytical ones. If the value in the

first column is very small, then either both the regularized and the direct solution

are good, or they are bad. In the last case, a bigger parameter for the Tychonov
regularization would lead to the same result as already mentioned.

However, the forces don't exhibit any instability, and they seem to approach the

expected values 18.8503 and 18.9202. This behavior seems to show that whatever the

solution picks up by the instability, it doesn't contribute to the net force.

7.3 Investigation of the projected solutions

Now we project all the solutions of the last subsection in direction of the discretized

normal on the body.
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Table 7: Oseen solutions for small a

DI: Solution by Gauss elimination, TREG: Solution by Tychonov regularizaation Pt =
le-6), ANA: Analytical Stokes solution for a sphere, Force DI: Force by integrating DI,
Force TREG: Force by integrating TREG. Values of first three columns are infinity
norms of vector differences. Values less than 0.1 have been replaced by zero.

#,L a tol DI-TREG DI-ANA TREG-ANA Force DI Force TREG
8 5e-5 le-3 0 7.0923e-01 7.0290e-01 -1.2684e+01 -1.2684e+01

le-5 0 4.6964e-01 4.6933e-01 -1.2686e+01 -1.2686e+01
le-7 0 8.5516e-01 7.7538e-01 -1.2686e+01 -1.2686e+01
le-9 2.6464e+04 2.6464e+04 3.3100e-01 -1.2685e+01 -1.2685e+01

5e-3 le-3 0 1.3071e+00 1.3071e+00 -1.2730e+01 -1.2730e+01
le-5 0 5.2110e -01 5.2078e-01 -1.2718e+01 -1.2718e+01
le-7 1.1797e+06 1.1797e+06 3.4051e-01 -1.2698e+01 -1.2718e+01
le-9 4.6431e+07 4.6431e+07 3.4040e-01 -1.2717e+01 -1.2717e+01

32 5e-5 le-3 0 5.4955e -01 5.4857e-01 -1.6608e+01 -1.6608e+01
le-5 1.3599e+00 4.4233e+00 3.0635e+00 -1.6608e+01 -1.6608e+01
le-7 0 1.3962e+00 1.3537e+00 -1.6608e+01 -1.6608e+01
le-9 5.7683e+00 5.9879e+00 2.1978e-01 -1.6608e+01 -1.6608e+01

5e-3 le-3 0 1.4878e+00 1.4878e+00 -1.6687e+01 -1.6687e+01
le-5 0 2.9447e-01 2.8960e-01 -1.6662e+01 -1.6662e+01
le-7 1.6328e+03 1.6330e+03 2.3495e-01 -1.6662e+01 -1.6662e+01
le-9 7.3558e+06 7.3558e+06 2.3482e-01 -1.6658e+01 -1.6662e+01

128 5e-5 le-3 0 5.2690e-01 5.2597e-01 -1.8213e+01 -1.8213e+01
le-5 0 1.3916e+00 1.3581e+00 -1.8212e+01 -1.8212e+01
le-7 0 1.4197e+00 1.3839e+00 -1.8212e+01 -1.8212e+01
le-9 2.3934e+00 2.5009e+00 1.5427e-01 -1.8212e+01 -1.8212e+01

5e-3 le-3 0 1.5117e+00 1.5117e+00 -1.8308e+01 -1.8308e+01
le-5 1.0561e+05 1.0561e+05 1.6973e-01 -1.8277e+01 -1.8277e+01
le-7 4.2481e-01 1.6138e+00 1.1975e+00 -1.8277e+01 -1.8277e+01
le-9 8.8513e+01 8.8604e+01 1.6969e-01 -1.8277e+01 -1.8277e+01

512 5e-5 le-3 0 8.8623e-01 8.7709e-01 -1.8684e+01 -1.8684e+01
le-5 1.0093e+00 -1.8683e+01
le-7 0 1.3680e+00 1.3328e+00 -1.8683e+01 -1.8683e+01
le-9 1.3978e+00 1.4488e+00 0 -1.8683e+01 -1.8683e+01

5e-3 le-3 0 1.4392e+00 1.4392e+00 -1.8784e+01 -1.8784e+01
le-5 1.0963e-01 2.1343e+00 2.0249e+00 -1.8752e+01 -1.8752e+01
le-7 1.0370e+00 1.0879e+00 0 -1.8752e+01 -1.8752e+01
le-9 3.8644e+03 3.8644e+03 0 -1.8752e+01 -1.8752e+01
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Table 8: Projected Stokes solutions

DI: Projected solution by Gauss elimination, TREG: Projected solution by Tychonov
regularization Pt = le-6), ANA: Analytical Stokes solution for a sphere, Normal
Force: Force by integrating a norm-l-vector of the discretized kernel of the integral
equation. Values of first three columns are infinity norms of vector differences.

#A tol DI-TREG DI-ANA TREG-ANA Normal Force
8 le-3 8.3531e-11 3.3077e -01 3.3077e -01 -2.2204e-16

le-5 8.3166e-11 3.3101e -01 3.3101e -01
le-7 8.2987e-11 3.3103e -01 3.3103e-01
le-9 8.3078e-11 3.3091e-01 3.3091e -01

le-11 8.3080e-11 3.3091e -01 3.3091e -01
32 le-3 1.7380e-10 2.1773e -01 2.1773e -01 0

le-5 1.7201e-10 2.1940e-01 2.1940e-01
le-7 1.7205e-10 2.1937e-01 2.1937e-01
le-9 1.7206e-10 2.1963e-01 2.1963e-01

le-11 1.7206e-10 2.1963e-01 2.1963e-01
128 le-3 3.5733e-10 1.5523e-01 1.5523e-01 -2.2204e-16

le-5 3.5910e-10 1.5358e-01 1.5358e-01
le-7 3.5910e-10 1.5387e-01 1.5387e-01
le-9 3.5909e-10 1.5387e-01 1.5387e-01

le-11 3.5910e-10 1.5387e-01 1.5387e-01
512 le-3 1.5474e-09 6.9694e-02 6.9694e-02 8.8818e-16

le-5 1.5433e-09 6.9486e-02 6.9486e-02
le-7 1.5377e-09 6.9193e-02 6.9193e-02
le-9 1.5377e-09 6.9193e-02 6.9193e-02

7.3.1 Stokes

As one can see in table 8, the projections of the direct and regularized solutions agree

very well and are stable, i.e. they don't depend significantly on the tolerance of the

matrix computation. Already with tolerance le-5 we seem to get right answers. This

shows once more, that apparently the effect of the instability is to pick up a vector

of arbitrary length in direction of the discretized kernel.
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7.3.2 Oseen

Basically, the same statements than in the Stokes case are still true. However, the

values of the first column in table 9 do not look as nice as in table 8. It is not quite

clear, if this is caused only by numerical peculiarities or if there is any kind of rule

behind that, which we haven't discovered yet.
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Table 9: Projected Oseen solutions for small a

DI: Projected solution by Gauss elimination, TREG: Projected solution by Tychonov
regularization (A = le-6), ANA: Analytical Stokes solution for a sphere. Values are
infinity norms of vector differences.

#0 a tol DI-TREG DI-ANA TREG-ANA
8 5e-5 le-3 5.6040e-08 3.3093e -01 3.3093e -01

le-5 2.8005e-09 3.3117e-01 3.3117e-01
le-7 9.5545e-07 3.3116e-01 3.3116e-01
le-9 5.2124e-04 3.3123e-01 3.3100e -01

5e-3 le-3 3.1116e-08 3.4546e-01 3.4546e-01
le-5 1.7787e-09 3.4053e -01 3.4053e -01
le-7 1.6582e-02 3.4801e -01 3.4053e -01
le-9 1.3423e-04 3.4039e -01 3.4040e -01

32 5e-5 le-3 6.6860e-06 2.1923e -01 2.1923e -01
le-5 2.9335e-04 2.1958e-01 2.1951e-01
le-7 1.2302e-06 2.1963e-01 2.1963e-01
le-9 4.5009e-07 2.1978e -01 2.1978e-01

5e-3 le-3 3.7012e-08 2.4937e -01 2.4937e -01
le-5 1.3914e-06 2.3473e-01 2.3473e-01
le-7 1.0541e-03 2.3421e-01 2.3456e -01
le-9 3.6112e-02 1.9870e -01 2.3482e-01

128 5e-5 le-3 2.9790e-06 1.5572e -01 1.5572e -01
le-5 4.9701e-06 1.5373e -01 1.5373e-01
le-7 1.5554e-06 1.5413e-01 1.5413e-01
le-9 1.3643e-06 1.5403e-01 1.5403e-01

5e-3 le-3 1.7126e-08 1.8053e -01 1.8053e -01
le-5 1.0861e-03 1.6921e -01 1.6973e -01
le-7 1.1981e-04 1.6893e -01 1.6903e -01
le-9 1.2879e-04 1.6969e -01 1.6973e-01

512 5e-5 le-3 1.3642e-05 7.0496e-02 7.0489e-02
le-5 6.9721e-02
le-7 2.4774e-06 6.9354e-02 6.9355e-02
le-9 4.8160e-06 6.9301e-02 6.9300e-02

5e-3 le-3 2.5961e-08 9.0883e-02 9.0883e-02
le-5 1.3706e-04 8.3984e-02 8.3976e-02
le-7 3.6366e-06 8.3513e-02 8.3514e-02
le-9 2.6034e-04 8.3287e-02 8.3515e-02
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