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Abstract approved:

The perturbation method is applied to solve two numerical

problems in the earth sciences, viz., (l)the computation of deep sea

currents in the coastal region of the northeast Pacific and (2) the

interpretation of D.C. conduction data in exploration geophysics.

The perturbation method is largely equivalent to the method of suc-

cessive approximation. The variational method is also used in the

study of the dynamics of the deep sea currents.,

The deep sea currents in the coastal region of the northeast

Pacific can be calculated approximately by solving the linearized

equations for long waves in shallow basins. Both the perturbation

and the variational methods are employed to solve these equations in

the case of step shelf models approximating the shelf contours in the

region. It is concluded that the perturbation method using the

Fourier transform technique is to be preferred for the problem at
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hand. The results show that the topography of the continental shelf

and the continental slope has only a minor effect on the deep sea

currents in the abyssal plain region.

In the case of the D.C. conduction exploration method, the

perturbation method is applied both to the problem of computing

the surface potential due to a given conductivity distribution and also

to the inverse problem of interpreting given field data. The first

case involves the solving of an ordinary second order differential

equation by numerical methods followed by a numerical Uankel

transformation. The inversion procedure involves, in particular,

the numerical inversion of a Laplace transformation. The applica-

tion of these methods to two- and three-layer cases is demonstrated

by working out some examples. It is shown that the perturbation

method can be applied with good results provided certain conditions

are satisfied. The main practical difficulty is encountered in the

numerical Laplace inversion which is an improperly posed problem.
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PERTURBATION METHODS IN GEOPHYSICS AND OCEANOGRAPHY

INTRODUCTION

A General Description of the Perturbation and Variational

Methods in Mathematics

Exact solutions of the differential or integral equation of

applied mathematics can be obtained in only a relatively limited

number of cases. For example, as mentioned by Morse and

Feshbach (1953), the method of separation of variables to solve

the scalar Helmholtz equation can be used only in 11 coordinate

systems (see 5.1 of Morse and Feshbach, 1953). If the boundary

surfaces do not coincide with these coordinate surfaces, or if the

boundary conditions are not the simple Dirichiet or Neumann types,

exact solutions cannot be derived. The same applies to integral

equations. The kernel of the integral equation has to be of a certain

specific form for exact solutions to be obtainable0 Hence we are

very frequently faced with the task of developing approximate methods

to attack a given problem. Moreover, sometimes the derivation of

the exact solution of an equation can be a very complicated operation;

whereas the approximate technique is more convenient and therefore

to be preferred.

In this thesis we demonstrate the application of two approxima-

tion methods, viz., the perturbation and the variational methods, to



the solution of problems in the earth sciences. The main

emphasis is on the perturbation method which is applied (1) in the

computation of deep sea currents in coastal areas of the northeast

Pacific and (2) in the interpretation of D.C. conduction field data.

A brief review of the perturbation and variational methods follows.

Perturbation Method. (Kato, 1966)

The perturbation method is based on the idea of approximating

a given system by a simpler, ideal system which deviates only

slightly from the system under consideration. The perturbation

theory (from now on means the perturbation theory for linear

operators) was originated by Rayleigh and Schrödinger (Rayleigh,

1926; Schrdinger, 1928). These early works were of an applied

character and mathematically incomplete. It was not until Rellich

(19371, 19372, 1939, 1940, 1942) published a series of papers that

the questions of the existence and convergence of the perturbation

method were settled satisfactorily. Theorems and criteria were

provided for the applicability of the perturbation method to the

problem with discrete spectra. The basic results of Rellich may

be stated as follows: (Kato, 1966) Let T(c) be a bounded self-

adjoint operator in a Hubert space, depending on a real parameter

c and which can be expanded into a convergent power series

T() = T +T' + c2T2 + . (1)



Suppose that the unperturbed operator T = T(0) has an isolated

eigenvalue X (isolated from the rest of the spectrum) with a finite

multiplicity m. Then T(E) has for sufficiently small exactly m

eigenvalues j(E) j 1, 2, ...9m (multiple eigenvalues counted

repeatedly) in the neighborhood of X. The eigenvalues can be

expanded into convergent series

(1) +
£

(2)
X + £ + , j 1, 2, . . .,m. (2)

The associated eigenvectors q'. () of T() can also be expanded into

convergent series

+ +
2(2) + ... , j = i, 2, . . . ,m, (3)

satisfying the orthogonality conditions

(q'(c) 6ik

where the p. form an orthonormal family of eigenvectors of T for the

elgenvalue X.. The existence and analyticity of ji.. () and p. () are

ensured by appropriate assunaptions on T and c.

Friedrichs (1938, 1948, 1965) developed the perturbation

theory of continuous spectra which is very important in scattering

theory, quantum field theory, and other applications. Titchmarsh

(1949, 1950) and Kato (1951, 1966) have shown that the series (2) or

(3) approximate the p.. (c) and p.(c) in the sense of asymptotic expan-

sion even if the series are divergent. Thus the applicability of the
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perturbation method is extended. Criteria have been given for the

validity of the perturbation method in the sense of asymptotic

expansion. (Titchmarsh, 1949, 1950; Kato, 1951, 1966)

These theorems have been proven in a very general sense.

Their applications to the problems in quantum theory have been

studied very carefully. Rigorous proofs for special cases are very

difficult and beyond the scope of this presentation.

Variational Method. (Mikhlin, 1964)

In many cases the problems of integrating a differential equa-

tion can be replaced by an equivalent variational problem. For

example, under general boundary conditions it is possible to reduce

the integration of the equations of static elasticity theory to the

deriving of a minimum of the potential energy of the elastic body

(Mikhlin, 1964). The methods which allow us to reduce the problem

of integrating a differential equation to some kind of a variational

problem are usually called variational or energy methods.

One of the first variational methods in history was formulated

in the form of the so called UDirichlet principle". Based on this

principle (if only the two-dimensional problem is considered) of all

the functions with prescribed values on the boundary of some

domain D, the function which gives the least value of the Dirichlet

integral
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S5[(aU)2(aU)2]

D

is harmonic in D. Weierstrass (1895) and Hadamard later gave

examples which showed that the Dirichiet principle may not be

strictly valid under certain very special circumstances. Thus the

principle was in some doubt and was neglected for a long time.

Interest in the Dirichlet principle and the variational method in

general was aroused again through the work of Hilbert and of Ritz

(1908, 1911). The later so called 'Ritz method" which proved to

be very useful is outlined below. The reader is referred to

Courant and Hubert (1953, 1962) and Mikhlin (1952, 1964) for a

detailed treatment of the Ritz method which is a generalization of

the Rayleigh method (Rayleigh, 1926).

When the operator A Is positive definite, i.e., (Au, u) >0

for every uO, and is symmetric, solving the equation

Au f(P) (4)

can be reduced to finding the minimum of the functional (Mikhlin,

1964):

F(u) = (Au,u) - 2(u,f) . (5)

The approximate solution u is formulated as:

Let {.'p(P)}={p.(P), i 1, 2, .. . n IcD.(P) c DA (domain of A);

®sequence .p. is complete in energy; Gjfor any n, p.(P), q2(P),

are linearly independont} and



n

u = ) a.q.(P) (6)fl L.s 33
j =1

where a. are numerical coefficients. Substituting (6) into (5) and

requiring that

aF(un
0 , = 1, 2, . . . , n

a a.
1

the equation

k=1

k)ak (f, f.), i = 1, 2, .,., n

is obtained, from which the a.' s, i = 1, 2, . . ., n and consequently

u are obtained.
n

The Bubnov-Galerkin method (Galerkin, 1919), which is a

special case of the more general so called projection method is

Lormulated as follows. Let the linear operator A in (4) above be

defined for a set of functions which is dense in a separable Hubert

space. We select { q}, and construct an approximate

solution

u(P)
k

akk(P) .

The constants ak are then determined by the orthogonality conditions:

k=l

j = 1, 2, . . .,n



This method is more general than the Ritz method (Bubnov,

1913). The Bubnov-Galerkin method can be applied to both differential

and integral equations. For the extent of its applicability, the proof

of the existence and convergence of the solutions for different sets of

problems one is referred to Mikhlin (1964) and Mikhlin and Smolitskiy

(1967).

The other methods of integration such as the Fourier, Harikel

and Laplace transform methods and the numerical method of Runge

and Kutta will be described when they are applied in this thesis.



APPLICATION OF THE PERTURBATION METHOD TO THE STUDY

OF THE DYNAMICS OF DEEP SEA CURRENTS IN COASTAL

REGIONS IN THE NORTHEAST PACIFIC

Introduction to the Physical Problem and Derivation of Equations

Deep sea currents are poorly understood, complicated phe-

nomena. They are composed of various types of steady state, tran-

sient and random components. Recent field observations obtained in

the deep-sea region off the coast of California and Oregon (Isaacs et

al., 1966; Nowroozietal., 1968; Munketal., 1970; andKorgenetal.,

1970) indicate that the deep sea currents in the Northeast Pacific are

mainly oscillating currents where the tidal components predominate.

Hence in order to investigate analytic3lly deep sea currents in this

region the derivation of the tidal currents is of main interest. The

first part of this thesis is devoted to this problem. The tidal currents

in the Northeast Pacific will be computed in the long-wavelength

approximation using a boundary perturbation method. A brief deriva-

tion of the basic equations follows below. The derivation of the tidal

wave equations is presented here in a form close to the treatment by

Fofonoff (1960) and Lamb (1932). For a more detailed description

one is referred to these authors.

Consider a semi-infinite ocean in the f-plane (a plane where the

Coriolis parameter f = 2 sin 0, is assumed to be constant; angular



velocity of the earth' s daily rotation, e geographic latitude). We

will assume that g (the acceleration of gravity) is everywhere con-

stant and vertically down. For simplification two kinds of notation,

the Cartesian tensor notation and the x-y-z notation will be applied.

The position is specified by a right-handed rectangular coordinate

system (see Figure 1) with the origin at the mean free surface of the

ocean, the x1 or x-axis is directed northwards; x2 or y-axis west-

wards and or z-axis upwards, parallel to the gravitational force.

The velocity vectors will be denoted alternatively by (u1, u2, u3) or

(u, v, w).
2

Figure 1. Basic coordinate system.

Using the tensor notation the Navier-Stokes equation is

P+PUj+ZPijkJUk Q2.pg6+hi (7)

where p is the density; t the time; p the pressure; and L, the corn-

ponents of rotation at the earth's surface which are functions of x only.

The o-..'s are the components of stress due to molecular viscosity.

The symbol .. denotes the permutation tensor and .. the Kronecker
i3k 13
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delta. For a Newtonian fluid the stress tensor cr. is expressed as
13

au. au.= (+) (8)
ii ax. 8x.

3
1

where i. is the molecular viscosity. The equation of conservation of

mass is
u.)

=0 (9)at ax.
3

Substituting (8) and (9) into (7), the equation of conservation of

momentum

2a u.
1

a(pu.) 1u)
+ Zpc.. u = - pg631 +

ax
(10)

at ax. ijk j k ax. ii
3

is obtained. The equations (9) and (10) can be split into two sets of

equations; one set represents the mean flow and the other the time-

dependent flow, that is, the departure of the flow from its mean.

These two sets of equations are not independent of each other, and each

set contains terms representing interactions between the steady and

time-dependent modes of motion. The separation of the flow is

carried out by averaging equations (9) and (10) with respect to time.

Let the time average of any property q' be defined as

lim(, cdt).
T+oo -T

Moreover, we assume that

u. = U. + U.'
1 1 1
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p = P + p'

p =j5+p'

where U, P, are the steady state parts and u', p', p' the time-

dependent parts having zero averages. The assumption p'u.' << u.'u.'

can be made because the variations of density in the ocean are of the

order of 0. 1% of the mean density, whereas velocity fluctuations are

much larger and can be of the same magnitude as their mean. The

equations for the steady state flow are
au. aR.. azu- +2 , (11)PU
ax ax. ijk j k ax.

j 3 1 ii

where

a(U.)

=0 , (12)
ax.

3

R.. = -p u'u.'
13 1 3

is the Reynolds stress tensor. The equations of the time-dependent

flow are
Øu' au.' aU. aR'..

p _.!. +u' i
8x13

+ZE..ijk jat jax.
J j j

ap' a2u.'
1-p'g6 + , (13)

3i ax.ax.
i 33

au')
= 0 , (14)at ax.

3

where
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R'.. = - p(u.'u.' - u'u.'
13 1 3 1 3

In the following we will concentrate on the time-dependent equations

(13) and (14).

In order to carry out an analysis of the order of magnitude of

the various terms in equations (13) and (14), let L and H, be a

characteristic length and depth, respectively, introduced to_describe

the horizontal and vertical scales of the motion. Moreover, let T , p
0 0

Ti , u , W , w , and f be characteristic values of t,p,LJ., u., W, w,
0 0 0 0 0 1 1

and f respectively. Finally let p indicate the characteristic density

variations. The dimensionless forms of (13) and (14) can be derived
u Dr.

1 0 1.11 1 + R { U ' + u." ] +c 'uijk j kf T at' o j Dx.' 3 Dx.00 3 3

Q2L {V'2u" L 2 i
Dx.' R 1

+(ij) 2
1 e 8x3

(i = 1, 2) (15)

F oH 1
Du31' Du " DU3' u Dr3."

+u.' +u."r U L (U /L)T at' j Dx Ox.' ag.'
0 0 0 3 0 3

p uf000
+ cpg ijk j k

2
Dp" F ' u D UL2 3r o

=
0X3'

{ V'2u' + 1
(16)

e 0 Dx3'

o 1 =0 (17)
p (U /L)T Dt' Dx.'o 0 0 3



13

where the variables depending on time are denoted by double primes

and

1/p' a'

r." =R..'/p u
13 1.3 0 0

R = U If L, Rossby number
0 00

Re = pUL/i., Reynolds number

Fr' U2/(p/p)gH, the internal Froude number.

It can thus be seen that the interaction terms (the interaction between

the steady flow and the time-dependent flow) are important only when

the Rossby number of the steady flow approaches unity. This can

happen only for those comparatively concentrated currents such as

the Gulf stream and Kuroshio. And the term containing r. u will
13

become important if the Rossby number for the time-dependent flow,

Ru/U, approaches unity. Just as in the steady state equations the

terms representing molecular friction are negligible except for the

case of extremely small scales of motion (this is dominated by Ro/Re)

In equation (16) F' can approach unity for ocean currents, but (H/L)

is so small that the vertical acceleration can become appreciable only

at very high frequencies. The vertical component of Coriolis force is

also very small. Hence equation (16) can adequately be replaced by

the hydrostatic equation.

Notice that by setting U. = 0, p constant and u.'u.' = 0 in

equations (13), (14), .the general equations for the tides are obtained



(Hansen, 1960):

14

au au au
at ax &y ax

av av 8v+u--+v+fu-g -r

} (18)
at ax ay

.i+__Q_ [ (h+c)u] +--{ (h+)v] =0at ax

where is the elevation of the tide above the mean sea surface

Sx S are the corresponding frictional terms and h is the ocean depth.

The equation of continuity is obtained from the equation (14) by vertical

integration. The velocity components u, v thus are barotropic, i. e.,

constants in any vertical line parallel to z.

Based on the order of magnitude analysis above and the additional

assumption that the variation of is small compared to that of mean

depth h the following much simplified set of equations are obtained

from equations (13) and (14) or (18):

au______---fv=-aat

+ fu -

} (19)
at ay

ja(hu) 8(hv) =0at 8x ay

These are the equations for the forced tidal waves in the long wave

length approximation as described by Munketal. (1970). Moreover

the free long wave equations are obtained by setting C 0 in equations

(19):



15

au- -fv=-uat ax

av + fu = - g

}

(20)
8y

8(hv) =0at ax ay

Some theories and methods have been worked out to solve these

equations. The most important method is the finite difference

method, which reduces the problem to the solving of a set of algebraic

difference equations (Hansen, 1960; Pekeris and Accad, 1969). This

method has to be employed with care because of the uncertainties

of the numerical stability (Collatz, 1960). As mentioned by Hansen

(1960), "In any case the importance of each theory should be mea-

sured by the possibility of reproducing observed tides and currents

in oceans and seas. The final pob1em of oceanic tides may be

formulated as follows. The tides and tidal cuirents in the actual

oceans have to be computed as a whole without using any tidal obser-

vations. For this computation only the well known tidal generating

forces, the distributions of depth, and the shape of the coastal line

along which the normal component of velocity is assumed zero are

available. The efficiency of such a theory can be proved by means

of tidal observations." This problem has to be solved completely and

a tremendous amount of numerical work and analysis has to be

carried out. Pekeris and Accad (1969) have made great advances in
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this direction. In the case of the finite difference method the smaller

the grid one uses, the more numerical calculation is involved and the

more detailed knowledge of tides will be obtained. To reduce the

amount of numerical work a small local area can be chosen. The

accuracy of the calculations will then depend substantially on the

accuracy of the boundary conditions, especially in the case of free

boundaries, that is, boundaries which are not coastlines.

In the following the tidal currents in the coastal region of the

northeast Pacific will be calculated on the basis of the long wave

approximation given by equations (20). The applicability of this

approximation has been discussed by a number of authors. It is of

importance to note that for the case of California coastal waters,

Larsen (1968) has shown that the magnitude and direction of the

longshore phase velocity of M2 tides along the coast is consistent

with a simple Kelvin wave model (a type of free long wave solution of

equations (20)) involving an ocean of a constant depth. He suggests

that the amplitude of the M2 component decreases offshore as a

Kelvin wave. The abrupt change of depth profile in the shelf region

and the effects of the borderland region off the southern California

coast change the Kelvin wave amplitudes by only a few percent. Munk

etal. (1970) come to similar conclusions0 They attempt to interpret

tidal observations along the California coast in terms of a super-

position of three possible simple wave types, all of the same tidal
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frequency: (a) a free Kelvin-like edge wave (the solution of the set of

equations (20), mostly trapped by rotation, but somewhat slowed by

the shelf); (b) a free Poincare-like leaky wave (another type of the

solution of equations (20)); and (c) a forced wave where the distortion

of the sea bottom by the tide plays a significant role0 Their model can

account for the main features of the observed tidal heights. On the

other hand, tidal currents are not too accurately predicted by their

model probably because of the problem associated with the separation

of barotropic and baroclinic modes. Applying a step model (and a

uniform depth model, too) for the continental shelf and slope off

Depoe Bay, Oregon, Mooers (1970) discusses the various possibilities

of the propagation of free or mixed Poincare and Kelvin types of waves

in the region off the coast of Oregon.

Solution by Using the Boundary Perturbation Method

Introduction

As indicated above the approximate calculation of deep sea

currents in the northeast Pacific coastal waters involves solving the

basic equations for tidal currents in the linearized long wave approxi-

mation. A boundary perturbation method is employed to solve these

euations when the bottom topography and coast line irregularities

are considered. The interest centers on the computation of tidal
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currents in the abyssal plain region off the coast of northern Cali-

fornia, Oregon, and Washington, in particular, along the section

from Cape Mendocino to Cape Flattery. The shore in this region is

approximately a straight line, which simplifies the calculation.

As shown in the Figure 2 below, we consider a fluid-filled

shallow semi-infinite basin of depth h(x, y).

7

Figure 2. Cross section of the shallow semi-infinite model basin.

The coordinate axes and variables are as defined above. The

equations (20) of the linearized long wave restated are

au-fv=-gat x

av + Lu = - ga

}

(20)

a (uh)+a(vh)+a =0x

Assuming a harmonic motion, that is , u, v, exp(it) and upon

elimination of u and v this set of equations reduces to

2 w2-f2 1 L
= (21)hv---- (z VhxV) 0+

gh +hV iw h

where v
2

a + a and z denotes a unit vector in the z-direction,
2 xx yy

with
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-iwg (_L__L ---)r
1

U
2 2 ax 1w ay

(22)
-iwg

JV
2 2 ay ax

w -f
For the solution of equation (21), appropriate boundary conditions

(B. C.) have to be incorporated. Notice that since u and v are given

by equations (22) it follows that u and v also satisfy equation (21). We

will choose an appropriate straight line at sea level as the x-axis to

separate the continental shelf and continental slope from the abyssal

plain which can be assumed as an ocean of uniform depth h0 (Figure 2).

The following section is devoted to the solution of the equation

(21) with B. C. for y> 0. Before discussing details of the calculations,

a short demonstration of the procedures to be involved is given below.

We introduce the ocean models as shown in the following three

diagrams.

Id'1IIU(IIIIII,IIIIII1/,I1

uniform ocean model

1IFIIII

step shelf model

If fI(ItI/(l(IltIIf(If

L(x)-

model with a real
shelf profile

Using the boundary perturbation method to obtain approdmate solu-

tions for the real shelf proUle model consists basically of three main

steps.

(i) First the exact solutions of K, the wave number in the
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x-djrection, , u and v are obtained for a step shelf model. Approxi-.

mate solutions for this model are then derived by both

(a) the perturbation method to the first order, using

the solutions of a uniform ocean model (Kelvin wave solutions) as the

zeroth order approximations and

(b) the variational method.

Comparing the results under (a) and (b) with the exact solution, it is

concluded that the perturbation method is more suitable.

Exact solutions of K, , u and v are then obtained for the

averaged cross section step shelf model for the region from Cape

Mendocino to Cape Flattery, as shown in Figures 3, 4.

In this step equation (21) with the appropriate boundary conditions

is solved for the step shelf models.

(ii) Using the above exact solution for the averaged step shelf

model the component v at y = 0 is calculated for the real shelf profile

model on the basis of the equation of continuity at y 0. This equation

is derived by calculating the flux of matter into the columnar space

bounded by the rectangle öx6y as shown in the following diagram;
(ub SyJ

uhSy+
SXA_.A // ax

V

h

uhy

J:71L(x)
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Figure 3. Generalized bathymetry contours from Cape Mendocino to
Cape Flattery with the coordinate system used in the calcu-
lations. The dashed lines show whore the cross sectional
areas are calculated. The ocean depth over the abyssal
plain is assumed to be 3 km.
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thus we have

a(uh6y) 6x +
a(vh5x) a

ax ay
6y = ( c+ h) ôxôy}

Since , u, v and h are independent of y at y = 0, integration of the

above equation in the y-direction yields

vh + (hLu) + Lf =

where L is the total width of the continental shelf and continental

slope. Thus using the equation of continuity at y = 0 the perturbation

solution, of v at the boundary y = 0 is expressed as

(1)vbvb +vb

where IVbI << IvbU)
V is the exact solution of the averaged

step shelf model and Vb') the perturbation correction.

(iii) The boundary values of Vb at y = 0 are used to solve the

equation
2 2

2 w -f
(V2

+ gh
)vzO (23)

for y> 0 where h = h (Figure 2)'. The Fast Fourier transform

technique is used in the calculations in this step. Hence the perturba-

tion solution of v for y> 0 is
(1)vv +v'

(1) (1)where lv'
I

v v is the exact solution of the averaged step

shelf model and v', the perturbation correction.

The three steps just mentioned will be described in detail as
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follows.

Solution for the Averaged Step Shelf Model Case and Evaluation of the

Method

Before the solution of the averaged step shelf case is derived,

both the perturbation method and the variational method are used to

solve equation (21) with B.C. for the step shelf model shown in the

following diagram.

h2 =110=3 km

z

x

h =0.2 km

The M2 tidal frequency (the period of the M2 tidal component is 12.42

hour (Tomaschek, 1957)) is considered for the present case.

Although the exact solution cannot be obtained for the real shelf

profile, it does exist for the step shelf case. It will be briefly

derived as follows for the adopted model for the purpose of evaluation

of the two approximate methods mentioned above. The equation to be

solved is
2 2

2 o -f
(V2

+ gh
= o (24)

with appropriate boundary conditions. Setting

F(y)exp[i(t-Kx)] andyYL

in (24) the following equation is obtained:
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._!'+L2 W2f2
dY2

gh -K2)F=0.

The solution is simply

F1 =A exp(m1Y) + B exp(-m,Y) for 0< Y< 1

I2where m = K - L

F2 C exp(-m2Y) for 1 <Y < where m2 jK2
gh

L.

The following boundary conditions are to be satisfied:

dF
atYO

F1(1) F2(1)

h1-+wfF1)=h2(-
d

+fF2)
atYl

The dispersion relation is then

h m m fK 1 -J=0. (25)J [(1)2 )2J
) { cothm1

h2 L w

From this relation we obtain that K = 8. 3377 x 1 km' and the

corresponding solutions are consequently

F1 = cos(0.05997Y) - 0. 3048 sin(O.05997Y)

F2 0. 988278 exp(-0.01851Y),

requiring that = 1 at Y 0. Finally the solutions of interest to us

for , u, v, can be calculated as follows (refer to p. 19):
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F(y) exp[i(wt _Kx)]

-ig a f a(; r;

}
(22)

-ig (Q__L 0
2 2 &y iw -ji;w -f

(a) Solution by the perturbation method. The above problem will now

be solved by the perturbation method. Assuming that

F(y) exp[i(wt - Kx)J

we obtain from equation (21) the following equation for F(y):

2 2
d dF w-f fKdh

g
+-----K2hF=o (26)

with boundary conditions

+KfFO atyO
dy

FO asy-oo

Making the transformation y LY equation (26) becomes

2 2

h d2F
+ L2( -

- K2h)F + L F = 0 (27)
dY2

g +dYdY w dY

with boundary conditions

F = 0 as Y + 00

+ KfF = 0 at Y = 0.

For the first order solutions we let
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F=F +F'
0

K=K +K
0 (28)

h=h +H
0

H = - h' +h' ii. (Y - 1)

where 11. is the unit step function, and we assume that F' F

JK'j << I

K and H((h. Inserting (28) into (27) and neglecting the

second order terms the following equation is arrived at:

h d2F'
+ L2(_2 - K 2h )F' =.

OdyZ g 0 0

where

=L2(K 2h' +2K K'h )F - h'° dF

0 0 00 dY2
dYdY dYo

and F is a zerot order Kelvin wave solution for a uniform semi-

infinite basin of depth h. This solution is derived from equation (24):

2 2
2 () f(v2+ gi )=O

or
d2F 2 2

h ° + LZ(W__- - K 2h )F = 0
OdyZ g 000

with the boundary conditions

F = 0 as Y+
0

dF
0 +KfF =0 atYO;LdY 00

just like the equations solved in the step shelf case above. The



solutions can simply be written as follows:

K
0

F constant x exp[ LY]
jgh0 (29)

F exp[i(t - Kx)]
gK0

v0
Since for the problem at hand the operatorM

?V7=h +L2(
2 2

o -1
dY2

g 0 0

is hermitian (which can easily by shown) it is required that

(Courant and }Iilbert, 1953)

(, F)=FdY=O
We find the K' 0.13523 x J,04km' and consequently

K = 8.33084 x lO4km',
In order to obtain F' we have to derive the Green function G of

the operatorfr. This G can be found from the solutions of the equation

h+L2( 2
w K2h)G=8(Y-Y').

°dY2 g

As shown in the diagram below



the boundary conditions required are

G = 0 as Y + Q

dG
+KfG OatYOol

x

29

and that G and dG/dY are continuous at Y = Y'. The Green function is

exp(-m1Y') £m +K f exp(.-m1Y')
G1

2 m h exp(rn1Y) +
L 1

2 m h exp(-m1Y)
10 m -1(1 loLi o

exp(m1Y') m +K £ exp(-m1Y')
1 0

G11= Zm h 2m h )exp(-m1Y)
io m-Kf ioLi o

and F' is derived from R * G, the convolution of R and G. The func-.

tions of , u and v are consequently obtained (using equations (22)).

(b) Solution by a variational method.

where

We write (27) in the form represented by an operatorA, such that

A. = h + L2 ( - K2h) + + L

We choose the coordinate function to be

(30)
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where

L(2bY)
o.. (Y) T2exp(-bY)n n!

L(Y) = ni
mQ

(fl
)

(-Y)m
x-m

are the Laguerre polynomials (Morse and Feshbach, 1953; Erdélyi

etal., 1953). The coordinate function satisftes the boundary condition

asY+Qc, and

dY = 5nm

which simplifies our later calculation of the matrix elements. We

form the approximate solution to (30) as

F + c exp(-b'Y)

where a. and c are arbitrary constants to be determined. In this

calculation we assumeb = 0.01851, which is equal to the constant m2

obtained for the exact solution F2 (see p. 25). The constant b' is

-4estimated by trial and error at 7.26 x 10 by carrying out the

orthogonal expansion of the exact solution F into a series oft. The

constants a. and c are calculated by

(AF, ) = 0 for all i
1 -(3l)

(AF, exp(-b'Y)) 0

and the boundary condition

+ L f K F = 0 at Y = 0



31

requiring that 1 at Y = 0. Recognizing that this is an eigenvalue

problem, and setting the determinant obtained from equations (31)

equal to zero the approximate wave number K can be found. From

this K value the constants a,, c can then be calculated. If we let i = 6
1

the matrix formulated from equations (31) is:

(see p. 32)

For i = 3 the solution of K is approximately 9.59 x 10 Km , which

is greater than the exact value, and the constants a., c are

a -3.5265 x

a: = 1.34413x l0

a2 = -2.664 x 10

c = 1.00098.

The K value obtained for the i 2 case is less than the exact value.

This suggests that the approximate K values oscillate around the

exact value. It can be seen easily that higher values of i yield better

approximations; however, the amount of numerical work will at the

same time become very large for both the evaluation of the matrix

elements and the expansion constants.

Following a comparison of the results from both the perturbation

and the variational methods it is concluded that for the problem at

hand the perturbation method is to be preferred.

Referring to Figure 3 the cross sectional areas of the continental

shelf waters are calculated for lines perpendicular to the approximate



64.00419-900K2 256 512 768 1024 1280 .Z5x1O3-448.99K2

7 x 10 64.00419-900K2 256 512 768 1024 -2.23x103+446.97K2

-4.9 x 108 7.9 x 10 64. 00419-900K2 256 512 768 2.15x1
3444

96K2

1.9 x 1 -3.2 x 1 o6 2.3 x 10 64. 00410-900K2 256 512 -1. 86x103+442.96K2

-4.6 x 7.6 x io6 -5.5 x 1O 2.3 x 64.00361-900K2 256 1.17x103-440.97K2

6.2 x -1.0 x 10 7.7 x 10 -3.3 x 10 8.8 x 64.00273-900K2 -0. 25x103+438.98K2

32-88.3K 96-88.3K 160-88.3K 224-88.3K 288-88.3K 352-88.3K 0.01803- 22. 08K
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boundary between the continental slope and the abyssal plain. The

contours from bathymetric maps1 have been digitized for the calcu-

lation of cross sectional areas using the CDC 3300 computer at Oregon

State University. The results are plotted as shown in Figure 4, These

cross sectional areas are averaged algebraically and the lengths of the

lines perpendicular to the boundaries of the continental slope and the

abyssal plain are also averaged. From these results the averaged

step shelf model for the area of interest from Cape Mendocino to Cape

Flattery is obtained as shown in Figure 5:
7

1. 4214 kzn

Figure 5. The averaged step shelf model for the area from Cape
Mendocino to Cape Flattery.

The exact solutions for K, , u , and v of this averagedav av

step shelf model can be obtained just like those derived on p. 5.

C.&G.S. 1308-12 (1969), C.&G.S. 1308 N-17 (1968), C.&G.S. 1308
N-22 (1968) published at Washington, D.C., U.S. Department of
Commerce, National Oceanic and Atmospheric Administration,
NationalOceanSurvey; and C.&G.S. 5022 (1971), C.&G.S. 5052
(1971), C.&G.S. 6002 (1971), C.&G.S. 6102 (1973) published at
Washington, D.C., U.S. Department of Commerce, Environ-
mental Science Services Administration, Coast and Geodetic
Survey.
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Assuming a tidal height at y 0 of 1 meter the results are presented

in the following table as compared to the corresponding Kelvin wave

solutions ol a semi-infinite uniform ocean basin of a depth 3 km. The

frequency of the M2 tidal component is being used and the velocity

components u and v are calculated at y 0.
av av

Table 1. Solutions of K,
I uav I I Vav of the averaged step shelf

model compared with those of the Kelvin wave solutions.

lfiII
model________________

K (wave number) lu I at y = 0
I av1cm/sec

I v I at y = 0
I av cm/sec

averaged step 8.5901 5.717 0.3444
shelf model

Kelvin wave
uniform depth 8.1956 x 5.7155 0

model

The exact solutions for K, , u , and v for the averaged step shellav av

model have also been calculated or the frequency of the K1 tidal corn-

ponent (the period of the K1 tidal component is Z3.93 hour (Tomaschek,

1957)), which shows a K va'ue of 4. 538 x 104km and vav = -0.17994

cm/sec aty = 0.

Boundary Condition aty 0

The averaged step shelf model is shown in the diagram below.
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averaged step shelf model

h(x,y)

shelf profile

14 L(x)
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Let L(x) be the width of the continental shelf and the continental slope,

which varies along the x-axis. The continuity equation at y = 0 as

derived before (p. 23) is

vh+(hLu)+L0. (32)

To obtain a wave number value K we inert the averaged values of

(Lii) and L, which are derived from the averaged step shelf model

(refer to the diagram of p. 33), into this equation and use the exact

formulae for t, u, and v calculated for a step shelf model (refer to

p. 26) with y > 0 assuming C = 1 at y 0:

C = exp (jK2
h y ) exp [i(wt - 1(x)]

Uav 2
exp[i(wt - 1] (f+ K) exp (JK2

Vav 2
exp[i(wt - 1(x)] (w +1(f) exp( JK2

(33)

(Notice that equations (33) are just the rewritten results stated in
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p. 26). This value is the same as already obtained in the last

section by the dispersion elation (see p. 25, p. 34). The corres-

ponding result of Uav at y = 0 is thus also the same as it is stated in p.

34. The v value can be calculated in two ways, either from equation
av

(32) by inserting the known values of K and u or by using equations (33)

directly. The results are identical. The second way stated is the

same as that used in p. 33. These results are the exact solutions for

the averaged step shelf model. Taking into consideration the real

shape of the continental shelf, the continental slope and the coast line

(h and L vary in the x-y plane), the approximate values of v at the

boundary y 0 can be calculated by using equation (32) and the exact

solutions of K, and u for the averaged step shelf model, Substituting

equation (33) into the equation of continuity at y = 0, (32), letting u =

Uav the approximation for v at y = 0 is obtained

(fJK

2 2
vL{_g 2 -f

h 2 2 gh +wK){ih(x,y)L(x)K-(h(x,y)L(x)]-iwL(x)}
o o

x exp[i(wt Kx)] . (34)

These results are used in the next step for the computation of v for

y> 0. This process can be repeated and further approximations for

K, u and v can thus be obtained.

Solution

We assume that
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and at y = 0

(1)
+ t , where Iv'

(1)v=v I<< Iv

(1) , (1)
v = Vb = Vb + Vb , where

I
V' <<

I
V

and vb(1) are the exact solutions for the averaged step shelf

model, which have been obtained previously (pp. 31 -34). Moreover

Vb has been obtained in the last section (pp. 34-36). The perturbation

correction, vb is now used for the computation of v' for y>O. The

equation

+
aavt

+
z a

w -f v'O (35)
2 2 ghax 8y 0

with the boundary condition

v' = Vbt at y 0

is to be solved. Referring to the diagram below,

'cape Flattery

A

x ape Mendocil2o

x-axis

z

The cross section at AA'.

we assume that h(x, y) vary only in the region between x = -

and x = . Outside x [-, I the solution for v is v for y 0

obtained in the two previous sections. The Fourier transform of

equation (35) yields



where

d2(,y 2 2
w -f 2 ,,

a2
+ gh

s ) v (sy) = 0 (36)
0

1 C°°,v'(sy) 1)v (x,y) exp(-lsx) dx

The solution of equation (36) is 22
't 12 w -f
v = Vb exp S gh

(37)

requiring that 'a-' goes to zero as y+oo. The Vbt is the Fourier trans-

form of Vb' The inverse Fourier transform of equation (37) would

then give the solution of v'. The Fourier transform pair is carried

out here by using the programs stored in OS-3 ARAND SYSTEM at

Oregon State University, written by Ochs etal. (1970) and Ballance

etal. (1971) employing the Fast Fourier Transform technique (Cooley

and Tukey, 1965; Cooley et al., 1967). These programs for the Fourier

transform pair can be represented by the following two equations:

B(n) A(t) exp[12t}

A(t) B(n) exp{ i2nt

They are finite discrete Fourier transforms where N is the total

number of points, which has to be a number of the integer power of 2.

The functions A and B are sampled at these points which are repre-

sented by n and t. It is noticed that this Fourier transform pair is



t symmetric. The cross sectional area curve (Figure 4) is
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sampled at 64 points in equal space. The approximate values of v at

y = 0 along the x-axis are then calculated at these 64 points using the

method described in the last section. After the subtractions of vav

(at y = 0) from these values at all the specific points, the result is

vb(t), t 1, 2, . . . 64

which are complex variables. The FQuri.er transform of them is

carried out by the programs stated above:
N-i
V iZnlTt

vb () L vb (t) exp[
N

(38)

t=o

where N 64. It is to be noted that the infinite Fourier transform has

been replaced by the finite Fourier transform
d

yb(s) vb(x) exp(-isx) dx Svb(x) p(-isx) dx

Equation (38) is obtained by writing s Substituting (38) into

equation (37) and carrying out the inverse Fourier transform we get
N-i N-i

[J

22i2niit Znrr 2 w -f Znrrtv'(t,y) (v'(t) exp[-
N

exp (-j-) gh y]exp(i
N

0nO tzO
The final approximate values of v(x, y) are obtained for y > 0 on the

basis of

v(x,y) = v0(x, y) + v' (x, y)

The data has been calculated for both the semi-diurnal (M2) tidal

frequency and the diurnal (K) tidal frequency. The results are



presented in Figure 6 and Figure 7. The amplitude of the sea

surface elevation at the boundary y 0, (x, 0) has been normalized

to 1 meter.

Conclusion

40

Above we have demonstrated the application of the perturbation

method to the computation of deep sea currents in coastal regions of

the northeast Pacific. The principal reason to resort to this method

is the rather irregular shape of the coastal contours in the region,

which prevents the derivation of exact solutions. The example pre-

sented illustrates quite well the advantages of the method in this case.

The application is quite straightforward and presents no major

problems. The results furnish a detailed picture of the deep sea

currents which can be expected in the region.
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APPLICATION OF THE PERTURBATION TECHNIQUE TO THE

INTERPRETATION OF D. C, CONDUCTION DATA IN

EXPLORATION GEOPHYSICS

Introduction to the Physical Problem and Derivation of Equations

There are in general two types of methods for the interpretation

of D. C. conduction data, the direct method and the indirect method.

The indirect method involves comparing the observed apparent resis -

tivity data with a set of theoretical curves calculated for certain

specific models (Compagnie Generale de Geophysique, La., 1955;

Mooney and Wetzel, 1956). Undoubtedly, this method, though con-

venient to use, has severe limitations. The limited number of

theoretical curves makes it impossible to fully extract all the informa-

tion contained in the data. Also the problem of uniqueness is always

raised. The difficulties of the indirect approach may in many cases

be partially overcome by using the direct method of interpretation.

Langer (1933) has shown that if the conductivity of the ground is a

function of depth only then the potential around a point current elec-

trode uniquely determines this function. A direct computation of the

conductivity from the observed data is therefore in principle possible.

One of the first direct methods was proposed by Slichter (1933).

Later contributions have been made by Pekerj.s (1940), Vozoff (1956),

Koefoed (1965 and 1966), Paul (1968), Fritsch and Zschau (1969),
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Chan (1970). Generally speaking, two main steps are involved: (1)

from the apparent resistivity data a function, known as the kernal

(Slichter kernel, Slichter, 1933; Stefanesco kernel, Stefanesco and

Schiumberger, 1930), is calculated then (2) the continuous resistivity

function of the earth (or layer resistivities and thicknesses of a

stratified earth model) is determined on the basis of the resulting

kernel. In this process, an integral equation relating the true resis-

tivity and the observational data is solved by the iteration method. A

considerable amount of numerical work is involved in this process. A

completely different approach has been developed by Kunetz and Rocroi

(1970). They start from a different integral representation of the

apparent resistivity containing the modified Bessel function in place

of the Bessel function. The least square method is used in their

approach for the solution of the integral equation, and the possibility

of obtaining physically unacceptable results (e.g. negative thicknesses

and resistivities) is excluded by their technique. Lee (1972) proposed

a direct method for the interpretation of resistivity data over a more

complx two dimensional resistivity structure where the surface of

discontinuity of the resistivity is a curved surface, Apparently in all

these direct methods, the first approximation of the geological

structure and its resistivity is very important to the success of the

application of the particular method. This thesis provides an alterna-

tive approach to the indirect and direct methods in the interpretation
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of a certain class of resistivity data by using a perturbation technique.

The basic equations for the electrical conduction method are as

follows. LetH be the magnetic intensity, Jthe current density,

the source current density, E the electric field, and V the electric

scalar potential; all measured in MKS units. From the time-independent

Maxwell' s equations

and Ohm' s law

- - -
Vx H = J + J

$

VxE 0

crE,

where 0 is the electric conductivity, the following equation is obtained:

V.(-a-VVT)=O. (39)

Equation ($9) can be written as

V. (aVV) S , (40)

where S = v.J Is the source density.

Solution to the Problem in General

(j) General Solution

If S is a concentrated or point source located at the surface of the

ground, o is a function of depth z only, and I is the input current (refer

to the diagram below),



r
ground surface

equation (40) written in cylindrical coordinates (r, e z) reduces to

avlaV+_1 I 5(r)6(z)(o(z)) - (41)
a r ar o-(z) Oz az cr Zirr

8r 5

where is the electric conductivity at the surface of the grounti z = 0.

The other boundary condition is that V = 0 as z+. The Elankel trans-

form of V(r, z) is defined as

(k z) = V(r, z)J (kr)r dr , (42)
0

where J (icr) is the Bessel Function of the first Icind of order zero.
0

Applying the transform to equation (41) results in

d2V1dcr(z)dV 2=b6(z)
2 r(z) dz dz 2ira

dz s

The boundary condition now becomes Q = 0 as z. This equation can

be replaced by the following equation:

d2L.do(z) .:2: -k2V=0, (43)
2 ir(z) dz dz

dz

with the boundary conditions
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atzOandV=OaSz+0c. (44)dz Ziro-
$

The perturbation method is then applied to equations (43) and (44). Let

(0) (1)
o (z) = a- (z) + co (z) (45)

V(z) V0(z) + c V (z) 2
() + ... (46)+c V

where c is an arbitrary small real number. Substituting equations (45)

and (46) into (43) and (44) and equating coefficients of powers of c , we

obtain the series of equations

d2V(0) +_l da-° dV° k2V(0) = 0,
d2 (0) dz dz
Z a-

dZV(l) 1 da0 d1 k2V1 2o- ()a-(1) d2V(0)
dz dz = k

(0) (0) dz2dz a- a- a-

1 da-' dV°
dz dz

d2V(Z) 1 da-° dV2 k2v(Z) = k2) (') d2V(l)
(0) 22 (0) dz dz

dz a- a- a- dz

1 da-' dV
(0) dz dz

a-

The boundary conditions to be satisfied are

atz0andV Oasz-'°°,
dz Zircr

S

dV'
= 0 at z 0 and V = 0 as z +oo'

dV(2) 'a'
= 0 at z 0 and V' / 0 as z -- oo,

dz

(47)

(48)



If the equation for with boundary conditions can be solved, then

in many cases the following successive corrections in the perturbation

series of V can be obtained recursively and V can be determined. In

order to directly calculate the successive approximations, one has to

know the Green function of the operator

+
1 do ddzk2

(0) dz2
dz

Since this function is not readily obtained for a given o an alternative

perturbation approach using a simpler Green function will be used in

the following.

(ii) Rung e-Kutta Method

The solution of equation (43) or the V° equation in the set of

equations (47) will be derived by the Runge-Kutta method. For the

three layer case described later these equations are simplified and

can be solved analytically. A detailed treatment of the Runge-Kutta

method is give.n in Collatz (1960). In the following only a short

description of the method is presented and the formulas used directly

in this thesis are tabulated.

Suppose the nth order differential equation
(n) (n-i)

y = f(x, y, yH,
,
y

is to be integrated subject to initial values
(v) (v)(X

) = , 1, 2, ... , n-i
0



(v)
at the point x = x0. Approximate values for y and its derivatives y

at x1 x0 +x can be obtained by using a Taylor series expansion

(n-i)truncated at the terms y0
2 n-v-i

(v) x (v +1) (.x) (v +2) (n-i) T (1).y0 y0 2! y0 + (n-v-i)! y0

The value of the th derivative y at x1 is obtained from

(v) v! (v)
y T (1) + k V 0, 1, 2, .. ., n-i

1 V V
(ax)

where the corrections are chosen to be linear combinations

k Vp k V = 0, 1, 2, ., n-i
pi

of certain auxiliary quantitiesk1, k2, k3, ..., k. For the second

order equations these quantities and calculation procedures are given

in the following table.

Table 2. Runge-Kutta scheme for differential equations of the second
order y" f(x, y, y').

k
()2 v1

x y (x)y'v1 2
f(x,y,) Correction

k=(k1+k2+k3)

x0(Ax) y0+-v1 0+k1

x0+(Ax) y0+-v1 0+k1

xo+x y0+v10+k3

v10+k1 k2

v10+k2 k3 k'(k1+2k2+2k3+k4)

v10+2k3 k4

x1x0+Ax y1y0+v10+k v11zv10+k'.
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The approximate values of y and its derivatives at the point x1 x0+Ax

are used as starting values for the next step of calculation, i.e., for

the evaluation of y and its derivatives at x2 = x0 + 2(x). As stated by

Col].atz (1960), a rough guide for finding a reasonable value of Ax is

that it should be chosen such that k2-k3 does not exceed k1-k2 in mag-

nitude more than a few percent. In practice the step length Ax can also

be determined by trial and error. If x is shortened and the integra-

tion results don't change, the step length needs not be shortened any

more. The error in the calculation with steps of length Ax should be

roughly -jig of the difference between the results of this calculation and

those of the calculation with steps of length Z(x).

The problem at hand is to solve a second order differential

equation numerically with two boundary conditions (refer to equations

(43) and 44):

d2V 1 do(z) dv
- k2V = 0 (43)

dz dz
dz

dV I atz=0andV0asz-.00 . (44)
dz Z'rrcr

5

The second boundary condition V 0 as z _ is replaced by a fixed

boundary conditioi at z = z' and below z' (i, e., z > z') a uniform

conductivity of the ground is assumed. The numerical calculation can

thus be carried out. At z 0, the upper boundary, V' is fixed and V

is varied until the numerical integration step by step results in the

prescribed values at z = z'. The calculation procedure has been
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programmed by the author so that the Runge-Kutta method stated

above can be carried out on the computer. A case has been solved

using this method for a Gaussian conductivity profile and will be shown

later in this chapter.

(iii) Solution to the Perturbation Equation

Assuming that has been obtained by the above method the

solutions of the second, third, ... etc. equations of the set (47)

require the knowledge of the Green function of the operator

1 dcr d 2

(°) dz :; - k . (49)
dz 0

Since this function is difficult to derive an alternative technique will

be applied in the following. This involves the solving of an integral

equation, the Fredhoim equation of the second kind. Define L

2 2 2-k + (d /dz ) then the second equation of (47) can be written

D0° DV'
(1)

LV° Do DV°. (50)
(0) (0) (0)

0 0

The same applies to the higher order equations. The boundary con-

ditions associated with equation (50) are (refer to the second equation

of (48))

DVOatz=OandVOasz+. (51)

The Green function of L can easily be found (similar to that of a step

shelf model case in the problem of the dynamics of deep sea currents



52

discussed on page 29) by solving the equation

LG6(z- z')

with boundary conditions DG 0 at z 0 and G = 0 as z+ oo and the

continuity of G and DG at z z' (see the diagram below).
r

1/1/711111 II ,uPiin'i, ii,,
z

- - - - - - - -- z=z,

C2

The Green function thus obtained is

G1(z, z') = k[exp(kz) + exp(-kz)Jexp(-kz') for z
-(52)

G2(z, z') = [ep(kzt) + exp(-kzt)J exp(-kz) for z > z' . J

The solution of equation (50) can then formally be written as

G2(z, z')[ dV(z') bLV0(z') +
dV0(z') d& (53)a + dz'

0
(0) (0) (1) (0)wherea-(Do- )/o ,b-o /o ,andc=(DcrU (0)

)/cT . By

setting

A(z) G2(z z')[b L (0)(,) + c dV(1
I dz'dz'

equation (53) results in

(l) A(z) +G(z z') a(z') d(z') dz'
d&

Applying integration by parts one reaches the final form for

(z) -H(z, z') z') dzt (54)

where B(z) = A(z) G(z 0) a(0)1
0

(0) and H(z, z') = d{G(z, z' )a(z' )}/dz'.

This is a Fredhoim equation of the second kind and various methods
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can be employed to solve it (Miklilin and Smolitskiy, 1967). One of

the most common ones is the iteration method where the free term

A(z) is used as the firit approximation to V(z)

It is worthwhile to note here that the Green function of the

operator (49) can be obtained by approximating the conductivity pro-

file by a number of small segments with constant conductivity.

The Green function can thus be obtained through recursive relations.

(jv) Hankel Transform

After the calculations of z) and the following successive

corrections V(z), V(z) . . . , in the perturbation series for

V(z) the inverse Hankel transform has to be carried out

V(r, z) V(k, z)J (kr)k dk
0

so that V(r, z) and the apparent resistivity can be obtained, In using

the Wenner configuration the apparent resistivity a is

= -P 1v (55)

where d is the distance between the electrodes and AV the electrical

potential difference between the two central electrodes. The numerical

computations of Hanke]. transform and inverse Hankel transform are

here carried out on the basis of a method proposed by Longman (l96,

1957). The method is briefly described as follows. Assume that the

integral
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J(x) g(x) dx (56)
0

is to be computed numerically, where g(x) is a well-behaved continuous

function which tends to a finite constant value or zero as x tends to

infinity. Moreover, assume that the integral over each half-cycle is

smaller in absolute magnitude than (and opposite in sign to) that over

the preceding half-cycle. The method also applies in the case where

after a finite number of half-cycles the above assumption holds, Two

main steps are involved in the calculation. The first step involves

performing the integration over each of the first twenty half-cycles,

i.e., evaluating the integrals

3(x) g(x) dx I 1, 2, ..., 20 (57)
xj-1 thwhere x0 is zero and x. is the i zero of 3(x). The first twenty terms

of a slowly convergent alternating series for the integral (56) are

obtained. The second step involves applying the Euler transformation

to the alternating series just obtained in order to obtain a rapidly

convergent series for the numerical value of (56). In order to get

high accuracy for the calculation, the Gaussian quadrature formula

is used for the integrals (57) for sixteen points of subdivision of each

interval [x., x+l]. According to Gauss' method of numerical inte-

gration, an integral is approximated by a series

a1f(x1) +a2f(x2) +" +af(x) . (58)

This formula is exact when f(x) is a polynomial of a degree Zn-i.
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The x ' s and the coefficients a 's are then determined by
n n

1

x'dx k
+ a2x21

k
= a1x1 +... + a x , k 0, 1, ..., Zn-inn

(59)

The x 's are now chosen to be the n zeros of P (x), the
n n

Legendre polynomial of degree n (Mime, 1949). The coefficients

a's then can be determined by the first n equations of equations (59).

For a given value of n, Gauss' formula provides an approximation

equivalent to replacing the integrand by a polynomial of degree Zn-i.

The abscissae, the zeros of the Legendre polynomial, and the

associated coefficients are tabulated in "NBS Applied Mathematics

Series, No. 37, 1954", Davis and Rabinowitz (1956), arid Abramovitz

and Stegun (1961). The coefficients for sixteen subdivision points of

each interval are tabulated as follows:

Table 3. Gauss integration coefficients.

.02715 24594

.06225 35239

.09515 85117

.12462 89713
14959 59888

.16915 65194

.18260 34150

.18945 06105

.18945 06105

.18260 34150

.16915 65194

.14959 59888

.12462 89713

.09515 85117

.06225 35239

.02715 24594
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For any interval of integration [p, q] the formula (58) is converted to

f(x)dxP +

For the integrations of the first twenty half-cycles,

J(x) g(x) dx i 1, 2, ..,, 20 (57)

all the abscissae and the associated J(x) values are tabulated by

Longman (1957), which in turn are calculated by the formula

.±a
1. iZ 2

where x. are abscissae In the interval lip' q.] , and x are those in the

interval [-1, iii (NS Applied Mathematics Series, No. 37, 1954).

Interpolations are carried out by means of the first four terms of the

Taylor's series expansion from Harvard University tables (1947).

The results of Longman (1957) are also plotted in Figure 8.

Thus the integration (56) is approximated by a slowly convergent

alternating series of twenty terms. The Euler transformation is then

applied to this series In order to obtain a rapidly convergent series

and give a better approximation to the integral (56) (Bromwich 1926).

According to this transformation, if one has a series

H0-H1+H2-H3+H4-... (60)

where H > 0, H < H for all n, and writes
n n+1 n

H =H - H r+lH rHn n+1 n n n+l n

then
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Figure 8. Abscissae and the corresponding values of J0(x), the Bessel function of the first kind of
order zero, for the Gaussian integration formula for the first twenty half-cycles of J0(x).
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Jo (x)g (x) dx = 1J (x)g (x) dx - (1H - +

0
0 Zo 4o 8 0

This method has also been programmed by the author using FORTRAN

IV language so that the Harikel transform can be carried out fast on the

CDC 3300 computer at Oregon State University.

(v) Examples

To demonstrate the above computational technique the well

known cases of the uniform and the two-layer conductivity models

(Van Nostrand and Cook, 1966) will be treated using the Runge-Kutta

method and the Hankel transformations. Also a more complicated

case in which a- (z) is a Guassian distribution curve is also investi-

gated. The results turn out to be satisfactory when compared to the

exact analytic solutions which are available in the uniform and the

two-layer cases.

(a) The one layer case (refer to the diagram below).

r

Il/f/I/Il/f I/f//Il l///,/If/I/IIl////fII

z

a- = constant

The solution to the equation (43) with boundary conditions is

simply

(z) exp(-kz) . (62)
2-ira-k



The equation to be integrated by the Runge-Kutta method is

d2V 2-k V=O
dz2

The boundary condition at z = 0 is

dv I
dz Ziro

The value of V at z 0 is varied such that after a series o step by

step integrations using a step length of lO, (z) and dT(z)/dz

become proportional to prescribed values at a fixed depth which has

been normalized to 1. The Rung e-Kutta method turns out to be

successful, the values at and below the surface are identical to those

of the exact solutions (62). Ir this case the inverse Hankel transform

of (62) is trivial (Duff and Naylor, 1966),

IV(r,z)-
22iroJr +z

so that the numerical Hanicel transform technique is not used here.

(b) The two layer case (refer to the diagram below).

0_i I

z =z
1

0
2 II

The equation to be solved in this case is also

2"dV -k2V=o . (63)
dz
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The boundary conditions are

and

dv I- = - at z 0, V 0 as z 00
dz 21T0

dvV and o are continuous at z = z
dz

After some algebra the analytical exact solutions are

F1 12
V1 21k [(1 + exp(Zkz)-F1 )exp(-kz) +

exp(2kz1)-F112
exp(kz)]

[1 + (1 + exp(Zkz1)) exp(Zkz1) ] exp(-kz)z

F112
(64)

where (cr1 + This set of solutions is given by

Grant and West (1965), although their derivation is slightly different.

The Runge-Kutta method is used to integrate equation (63). The

boundary condition is

dV I atz0dz 21T01

and T at z = 0 is varied again such that after integrations step by

step the values of V and dV/dz at z z1 are identical to the pre-

scribed boundary conditions,

= constantx exp(-kz1) = constantx (-k)x exp(-kz1)

The numerical integration results of V and d are compared with

those from the exact solution (64) and they are identical. When z1 is

normalized to one and k = 1, after a few trials it is found that the best
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integration step length is iO_2 . However, when k is increased,

the optimum step length becomes smaller, viz, or l0. The
numerical Hankel transform technique mentioned in (iv) is then

applied to Q. The results with regard to V and the apparent resis-

tivities (refer to equation (55)) turn out to be the same as those

obtained by Roman (1941) using the image method and by Mooney and

Wetzel (1956). Their results of apparent resistivity curves are

reproduced (Figure 9).

(c) The Gaussian conductivity profile case (refer to the dia-

gram below and Figure 10).

r"__C V(r) curve

0.01 mho/m

:urve

The electric conductivity curve is assumed to be a Gaussian

type function,

a(z) 10 exp[- 100 1T(z-1)2] + 10 mho/km

It is noted that for this curve

1 00

S k(z) 10] dz = 1 mho and (z)2 2m.
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Figure 9. Apparent resistivity curves for the two-layer model using
the Wenner configuration (After Mooney and Wetzel (1956)),
where d is the distance between electrodes. p1
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Figure 10. The Gaussian conductivity profile.

64



The equation to be solved is

d2 1 4o() - k 0 , (65)
dz2

+ r(z) dz dz

and the boundary conditions, associated with it are

dv I
atzOandV0asz-'oo

dz 27ro
S

where a- is the conductivity at z = 0, the surface. This equation (65)

with the boundary conditions cannot be solved analytically. Since a-(z)

tends to 0.01 mho/m very fast as z becomes large, it is assumed that

o-(z) = 0. Olxnho/m for z 2 km. Because of this assumption, the

boundary conditions at z = 2 km are

= constant x exp(-kz) and constant x (-k) x exp(-kz)

(refer to (a) and (b) above). The Runge-Kutta method is then used to

solve the equation (65). Again the condition

dv I atz0dz Zira
5

provides one of the boundary values for the integration. Proceeding

with a variable '0' at z = 0 the integration is stopped when the values

Vand atz2kmdz

are proportional to the prescribed boundary conditions at z = 2 km.

After some trials it is fout3d, as in the one and two layer cases, that

the best step length of integration for k = 1.088 or less is 102 km.



For larger k values the required step length has to be reduced in order

to get reasonable results. When Ic = 7.236 the best integration step

length is 10 km. Upon the application of the inverse Hankel trans-

form to the results from the Runge-Kutta method it is found that the

electric potential V at r 1 km and 2 km is 2.8% lower than in the

uniform conductivity case (i, e., a- = 0. 01 mho/m uniformly). These

results are consistent with those calculated by an approximate three-

layer model, which will be described in detail below.

(vi) Direct Method for the General Case

The purpose of the direct method is to derive the conductivity

distribution on the basis of the surface measurements of the electric

potentials V or the apparent resistivities. In the case of the pertur-.

bation method applied in the present work this implies that the term

in equation (45) has to be determined by the surface obser-

vations. Only the second order equation, the second equation of

equations (47), is considered in detail here. Derivations of the

direct methods for higher order equations are similar to the deriva-

tion for the second order equation. Equation (54) rewritten is

= B(z) -.SH(z,z') V(z')dz' (54)

*here B(z) = A(z) - G(z, 0)a(0) H(z, z') = -{ G(z, z' )a(z') },

and A(z), G(z, z') and a(z) are the same as defined before, i.e.,



dV'0(z')
A(z) G(z, z') [b LV0(z') + c 1 dz'dz'

Do0 (1)
Dcr

a(z) =
(0)

b =
(0)

' =
(0)

= - [exp(kz) + exp(-kz)] exp(-kz') for z

LG2 = - [exp(kz') + exp(-kz')J exp(-kz) for z>

Assuming z = 0 in (54) we have

V'(0) = B(0) H(O, z') V(z') dz'

where B(0) is,

B(0) = A(0) - G(0, O)a(0) V' )()

67

(66)

1
( k2V0 d2V° 1 dol)dQA0)}dI0= - exp(-k.&) {- +

2 (0) dz' dz'
0 a- dz' a-

1 1 do°
k dz' atz'= 0V(o)

a- (67)

The processing of the second term on the right hand side of (66) is as

follows. At first, we will state a theorem for the asymptotic expan-

sion of the Laplace integral (Erdélyi, 1956)

'4'
(x) = exp(-xt) c(t) dt (68)

0

where x in general is a complex variable.

Definition. A function c will be said to belong to L(x) if the integral

(68) exists, in the sense that



lim T

T-oo S0
exp(-xt) c(t) dt

is ftnite for x = x
0

Definition. S is the sector O<Ixl.<oo, farg x<

Theorem. If 4(t) is N times continuously differentiable for 0 t <to

and belongs to L(x ) for some x then
0 0

x

to N terms, uniformly in arg x, as x oc in S, t > 0.

The proof of the theorem, which is based on integrations by parts,

is omitted here.

The direct method developed in this section is based on the

requirement that this theorem holds. For the simplified case of a

three-layer model discussed in the next section, this theorem is not

a necessary condition for the direct method to work. The evaluation

of the integral

5H(O z')V(z')dz'

is then as follows. Since

and

dG(O, z') + G(0, da(z')H(0, z') a(z) d& dz'

G(0, z') = - exp(-kz')

using the theorem stated above one has



da(z')

H(0, z')V(z')dz' [a) dz' z'=9 ](1)(0) + Higher order term.
0

ic 2
(69)

Substituting (67) and (69) into (66) and defining that

(1.) d2V° 1 do- dV'°
(0)

(2° +
dz'2 0) dz' dz' (70)

one has then
d dvdV' '(1)

exp(-.kz')ir(z')dz' = - k'(0) dz
(a(a , 0 dz' 11 z' =o

k2k

d2 dY'
{ (a d&1dz' z0

k3

d1 dV'

- dz1 (a dz' '=
k

(71)

The boundary condition at z = 0 is dT' /dz = 0 so that equation

(71) is ultimately transformed into the Lollowing form:

d
d2 d'

j exp (- k& ) (z' )dz' = - kV (0)
(a dz z' 0 dz'2

(a dz
t =0

k k3

(n-i) 1
d dV'

dz'
- z'zO

krl
(72)

The left hand side of equation (72) appears as the Laplace trans-

form of ir (z'). The direct method solution for iT (z') can be obtained in

the following way. In the zeroth order approximation we set the

derivatives of 1) to zero at the right hand side of equation (72).

This is equivalent to the approximation
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dnv dV° n=l, 2,3,...
n n

dz dz

Then the first order approximation of iT (z') can be found by the inverse

Laplace transformation of the right hand side of (72). The higher

order approximations of 1T(zt) can thus be attained by the iteration

method. Then by an integration of (70) we can obtain

The method for the numerical inversion of the Laplace trans-

form used in this thesis is that proposed by Piessens (1969). This

method is an extension of Bellmants method (Bellman etal., 1966)

and is equivalent to the method of Lanczos (Lanczos, 1956). For

other methods of numerical inversion of the Laplace transform one

is referred to Bellman etal. (1966) and Dubner and Abate (1968).

The method by Piessens is briefly described below and followed by

an example.

The Laplace transform
p00

\ exp(-st) f(t) dt = F(s) (73)
10

is to be inverted. Substituting

exp(-t) = u

(73) becomes
p1

u f(-ln u) d u = F(s) . (74)
0

Using the Gauss' method of numerical integr3tion (refer to p. 54)

(74) yields
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f(-lnu.) F(s)

where u. is the th zero of the Legendre polynomial of degree N and a.

is the corresponding weight. Let s assume N different values, then

this system of N linear equations can ho solved

(t.) a F (k) (75)

where

t. = -in u.
1 1

The inversion formula (75) gives only values of f(t) at nonequi-

distant points. A change of t scale by using the Lagrange interpolation

formula will give values of f(t) at equidistant points

f (t) exp(-t)] F(k)

(N) (N)
where k {x] is a polynomial of degree N-i. The formula for 'k [xl

has been derived by Piessens (1969) and some numerical values have

also been tabulated. The values of 46)[exp(-t)] for t 0. tot = 7. at

an interval of 0. 5 are used in the calculations in this thesis, both in

the example given below and examples in the next section for a three-

layer model case.

A simple example is given here showing the use of this technique

to carry out the numerical inversion of the Laplace transform. Let



(0) be constant and
(1)

m (z) = C exp(-z)

72

where C is a constant. Using equation (72) Q'(o) can be derived as

(1)
do= _A.. 1 exp(-Zkz') dz' . (76)

k (0)2
Zn(a ) 0

dzt

After the evaluation of the integral we have

IC 1
(77)

Z,T(o0))Zk 1 + 2k

Inversely, if we assume that (77) is the known data, then do/dz' can

be found by the inverse Laplace transform

C +i

da ir(o
(1) (0)2 °

expnz' l)() dn
dz' I

0

where c0 is a constant and n 2k. The results obtained analytically

and numerically using the technique described above are consistent

and can be seen in the following listing. The analytic result is simply

C exp(-zt)dz'
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do' -i do -1
z

xCdz
xCdz

(numerical resulj (analytic result)

0 1.000000000 io 1.000000000 100

.50 6.065306514x iOi 6.065306597 x 10_i

1.00 3.678794428 x 101 3.678794411 x 10_i

1.50 2.231301576 x 10_i 2.231301601 x 10_i

2.00
2.50

1.353352963 x 10 1.353352832 x i0
8.208498358 x 102 8.208499861 x 102

3.00 4.978707246 x 10 4. 978706836 x 10
3.50 3.019739687 x 102 3.019738342 x 10
4.00 1.831563562 x 10 1.831563888 x 102
4.50 1.110903173 x 103 1.110899653 x 10

5.00 6.737992167 x 103 6.737946999 x 1O3
5.50 4.086762666 x 103 4.086771438 x 1O3
6.00
6.50

2.478778362x103 2.478752176x103
1.503437757 x 104 1.503439192 x 10

7.00 9.118467569 x 10 9.118819655 x

Application of the Perturbation Method to the Three Layer Model

The parameters for the three-layer model under investigation

are shown in the following diagram

r

a-d2
d1 (0)

I

a-1

(0) (1)
-a- 4-cr

(0)
a-

where (0) and (1) are constants, At first the exact solution of the

problem is derived. The perturbation method is then used to obtain

up to second order solutions. The results from the perturbation

method are compared with those from the exact solution and conditions
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for the validity of the perturbation method are discussed. Finally

the direct method is treated.

(i.) Exact Solution

Referring to the equation (41), since and l) are constants,

the equation

:

is to be solved with appropriate boundary conditions. Applying the

Hankel transformation

V V(r, z) r J (icr) dr
0

°

equation (78) becomes

-k2V+ =0

and the boundary conditions are

dv I atzO,dz (0)
ziro-

V0
V and o- V aie continuous at z = d1 and z = d2

The solutions to equation (79) are

V1 A exp(kz) + B exp(-kz)

V11 = C exp(kz) + ID exp(-kz)

= E exp(-kz)

for region I

for region II

for region III

(78)

(79)
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When the boundary conditions (80) are incorporated and after some

algebra the constants A, B, C, D, and E are determined and the

solutions thus are

VAexp(kz)+ I

110

[exp( -2kd1 )(!+1
)2 - exp( -Zkd2)(Z-1

)2 }exp( -kz)

Xexp(
-2kXZ+1)2-exp(-2k)(X-1)2 -( - l)exp(-2k) {exp(-Zkd2) -exp(-2k)]

Zflexp(-Zkd2)
vu (+I){exp(-2kd2)-exp(-2kd1)J

exp(kz)

+ (-l)[exp( -Zkd )-exp( 2kd fl exp(-kz)

4JLEexp(-kz)
III (E2-1)[exp(-2kd)-exp(-Zkd)J

where 01

(0)

and

(.1)exp(-2kd1){exp(-2kd2)-exp(-2kd1)]

exp(-2k )(+1 )2-exp(-2k)(- 1 )2-(-l)exp(-2k ){exp(-2k)-exp(-2k)]

From one has

exp(-Zkd1 )(Z+1)2 -exp(-2kd2)(Z-1)2 + (j - l)exp(-Zkd1 ) {exp(-2kd2) -exp(-Zkd1)J

2 2
2rro-0k exp(-2kd1)(L+J) -exp(-2kd2)(Z-1) -( -J)exp(-2kd1 ){exp(-2kd) -exp(-2k1 )J

(81)
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The inverse Hankel transform of equation (81) is performed by using

the technique mentioned in the last section and V(0), the electric poten-

tials on the surface and the apparent resistivities are obtained. The

results are identical to those of Wetzel and McMurry (1937) and a

sample of their apparent resistivity curves are reproduced (Figure 11).

(ii) Perturbation Solution

Since is a constant the set of equations (47) is simplified to

dV° - k2V0= 0
dz2

d2V 2' (1) 1 do dV°kV
d2 (0) dz dz
z 0-

(82)

d2V2 k22
(1)

dcr1 dV° 1 dcr d''0

(0) 2 dz dz (0) dz dz
dz2 (o )

S

The boundary conditions to be satisfied remain the same as in

equations (48),

,' (0)dV I at z 0 and 0 as z -. co,
dz (0)

dz° atz0dV' and 1Oasz-oc,

1(83)dV2
dz

atz0and2.0asz-'oo,
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Figure 11. Apparent resistivity (Pa) curves of a three-layer model using the Wenner configuration
(after Wetzel and McMurry (1937)). J



Because interest centers on the apparent resistivities, the following

derivations are devoted to the computation of V(0), the electric

potentials on the surface, z 0. The zero order solution, V

is simply the solution of a one-layer case of uniform conductivity

as derived before in the last section, which is

and

V0(z) = exp(-kz)
(0) k

= I
2Tro0)k

The first order correction, can be derived from knowledge of

V0(z) cr1 and the Green function of the operator (d2/dz2) k2,

which can be found in (iii) of the last section. The derivation of the

qorrection is as follows (refer to equations (52) for G1 and G2).

For z in region I,

1 do1 dV° ldcr dV°V(z)
0

G1 (---5 dz! ) dz' + G2(
(0) dz' )d&

dz dz'
a- z a-

- I cr-
4,cr0k g0) {[exp(-Zkd1)-exp(-2kd2)]{exp(kz)+exp(-kz)]}.

For z in region UI

do dV° 1 dcr1 dV°(1
= G1

(0) dz' d&
)dz' +5 G2(-

(0) dz' dz' )d&
0 a

(1)I a-- 4(0) (0)
[exp(-Zkd1) - exp(-2kd2)]exp(-kz).
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Hence 1)(o) at the surface of the ground is

=

(1)
exp(-2kd1) exp(-Zkd2)1 (84)

(0)

The second order correction can again be derived from knowledge

of V'°, V, and the Green function of the operator (d2/dz2) -k2.

The result is

(1) (1) (0) (1) (1)___ do dV ldo dV dz'V(0) G1(O,z') ( jt
t (Q) dz' dz'

(0- )
0-

(1)
2

2iro0k
(;-- ) [exp(-Zkd1) - exp(-Zkd2)]

(1)
I dcr dV' dz'exp(-kz') (0) dz' dz'

0

(1)I
(0)

2 [exp(-2kd1) - exp(-Zkd2)]

(1) dV'1 ___
+-- (0)

exp(-k.d1) dz' at z'0-

dV- exp(-kd2)( dz' }

at z' =d2



(1) 2
I a-

2rya0k O)
[exp(-2kd1) - exp(-2kd2)]

(]) 2
+

(0) (o)
{exp(-2kd1)-exp(-2kd2)]{exp(-2kd1)-exp(-2.kd2)-1J

4o k a-

(1) 2
I a-

4(0) (0)
[exp(-2kd1)-exp(-2kd2)J[exp(-Zkd1)_exp(_2kd2)+1],

ka-
(85)

The apparent resistivities calculated from perturbation solutions to

the first and second order will now be compared with those calculated

from the exact solutions. It is noted that the inverse Hankel trans-

forms have to be applied to + and (0)
+

:(l) (2) again

before the apparent resistivities can be calculated. The numerical

solutions are obtained for the following models. The parameters used,

which have been nondimensionalized, are shown in the following

diagram.
d d d

,,,,0 t,FFIF>,d'Ifl'I/14!

I I
c

Z

1 a-

2

a=0)16_(1)
1H=(d
2

+d2)

a-(°)

(a) Model A (b) Model B
(0) 1, d2 = 1 (0)

= 2, d2 6

0.25 0.5

(l)[0.5 (l)[Z.d[0.5 r[5 d[3.



(c) Model C

h=

(d) Model D

h=

81

crh = 0.2, 0.05; d2 = 1
a-

°

5.Ox 103
6.0 x 10

21.OxlO' 0.5 (1) 0.2 h
a-

(1 -
2.0 x 10 1. h

r 2. 0. 2 is replaced by
1

i.Ox 10_i
4 0.05 for another set

2.Ox 10 8 of calculation.
16:

6.Ox 10

= 0.2,0.05; d2 0.5

1.OxiO
2.0x103 0.25

0.5 a- j(O.S
1 1 0. 0 x r = 2. 0.2 is replaced by 0.05

X2 0 i0
4 for another set of
8. calculation.

1.0 x 1011 16.
2.Ox 10_i
3.OxiO
4. 0 x 1 0

It is found in the numerical calculations that if the second order

term a-' is kept in the first order perturbation equation (refer to

equations (82)) i.e.,

2(1)dV
dz2

din (a-1) dV°' (86)
dz dz



the results give better approximations than those obtained when the

second order term has been neglected. The first order correction

obtained by solving (86) is

(l)
01

V (0) = - in (- )J{exp(-2kd1)-exp(-2kd2)] . (87)
ZlTcr

The corresponding correction for the second order equation can be

found similarly. In the following series of figures (Figure 12 to 16)

the first order results obtained through equation (87) for Models A, B

and C are presented. More detailed calculations than indicated by

Figure 12 to 16 have also been carried out. The figures give the

results for the potential V in terms of the apparent resistivities for a

Wenner electrode configuration. In the case of Model A and Model B,

the first order perturbation results fail to give, good approximations
(1) (1)

when (o h)/(o- H) exceeds 0.9 based on equation (87), and exceeds

0.4 based on equation (84). The second order results give little

improvement except when is small, then the second order approxi-

mation provides a clear improvement. In Model C and Model D

(h)/(cr(0)H) has been chosen to be either 0.2 or 0.05, and the

thickness of the perturbed layer (the layer with the electric conductivity
0)

+
0J1)) is variable. The first order results show that the

perturbation method fails to give good approximations when applying

cr(1)> mho/rn to equation (86) and (1)> 2 mho/m to equation (84).

The second order approximation does not give an improvement except
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Figure 12. Apparent resistivity (Pa) curves calculated for Model A
from the first order perturbation equations (dashed lines)
compared with the corresponding ones calculated from the
exact solutions (solid lines). Above: -(1) 0.1, no
difference can be seen in this plot. Below: (') 0. 5.
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Figure 13. Apparent resistivity (Pa) curves calculated for Model A
from the first order perturbation equations (dashed lines)
compared with the corresponding ones calculated from the
exact solutions (solid lines). Above: -(1) = 1.0. Below:
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Figure 14. Apparent resistivity (Pa) curves calculated for Model B
from the first order perturbation equations (dashed lines)
compared with the corresponding ones calculated from the
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from the first order perturbation equations (dashed lines)
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exact solutions (solid lines). These curves show the
changes when the thickness of the perturbed layer is
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when cris small.

It is noted from equations (84), (85) and (82), (83) that the per-

turbation series for (0) involves the powers of a ),0j0) and the

constant [exp(-2kd1) - exp(-2kd2)]. When either the ratio

or the difference d1 - d2 is such that the magnitude of the successive

terms in the perturbation series increases, the perturbation method

fails to give a reasonable approximation.

(iii) Direct Method

Only the direct method using the first order perturbation

approximation is considered in detail here. For higher order approxi-

mations the derivations are similar to this first order case. From

the first order equation (see the second equation of equations (82))

one knows that

dodV0 1 doU)dV(0)(l)()
dzT dz' )dz'

+5
G2(--- dz' dz' ) dz'

and when z = 0, on the surface of the ground,

1. dV°(l)(o) G2(-
(0) dz' dz' ) dz' (88)

a-

where G1, G are the Green furctions described in the last section.

Inserting G2 into (88) one obtains

(1)I C 1 do-

(0)ic (0) dz' exp(-2kz) dz . (89)



If the second order term is retained in the first order equation,

one obtains alternatively

I 1 .d(lna-1)
V'1'(0)=

(0 dz'
exp(-ZkzT) dz' . (90)

21T0-' 'k 0

The right hand sides of equations (89) and (90) are Laplace transforms.

Letting 2k. = ri in the equation (89) and performing the inverse

Laplace transform, one obtains

du
(0) 2 çc c jco

['
) exp(flz') nV1(n 0) dn. (91)

dz' I 2,ii

When the same procedures are applied to equation (90), one obtains

C + iQod(ln (0)

Sc
exp(nz')nV(n, 0) dn . (92)

dz' I Ziri

Inserting (0) from equation (84) into equation (89) we have

do1exp(- nz') dzt dzt
0

'[exp(-nd1) - exp(-nd2)].

Following an integration by parts we obtain

5
(l)(Zi exp(- z') dz' ){ [exp(-1d1)-exp(-nd2)]}

If we assume that (1) is a known constant, then o-(z') can be

obtained by the inverse Laplace transform analytically;

(1) (1)
a (z') = o {j (z' - d1) - j[ (z' d2)] (94)

where 11. is the unit step function. This is the character of a three-



layer conductivity model (see diagram on p. 80). Applying the

method of Piessens for the numerical inversion of the Laplace trans-

form to equation (93), we obtain results which deviate from those of

equation (94). This is attributed to the limited number of terms used

in the Gaussian quadrature integration formula and the approximations

involved in the inversion technique. Two examples given below will

show the characteristics of the method when applied to equation (93).

The first involving a two-layer case is the inversion of the equation

i
(1)

o- z' exp(-n z') dz' exp(-3.2fl).
0

The result of a(z') is shown in Figure 17 by a dashed line and the

solid line represents the correct result.

(1)
Q- (z')

(1)

I

0 1 2 3 4 5 6 7 z'

Figure 17. Approximate conductivity distribution for a two-layer
case obtained from the numerical inversion of the Laplace
transform compared with the correct result.

The second example involving a three-layer case is the inversion of

the equation

(1)
exp(- nz') dz' [exp(-) - exp(-3.5)J

0
n



The result is shown in Figure 18. The dashed and the solid lines

have the same meanings as described in the first example above.

(1)
O (z

( 1')

0 1 2 3 4 5 6 7 z'

91

Figure 18. Approximate conductivity distribution for a three-layer
case obtained from the numerical inversion of the Laplace
transform compared with the correct result.

The approximate conductivity distributions shown in Figures 17

and 18 have been obtained by numerical inversions of the Laplace

transformations. Obviously, the approximations to the conductivity

distributions are only moderately good. The difficulty here is mainly

with the numerical inversion, and better results can hardly be expected

unless a greatly increased computational effort is devoted to the

problem. In principle, the numerical inversion of Laplace trans-

formation is an improperly posed problem which requires the con-

tinuation of a function oL a complex variable from known values on the

real axis into the complex plane. Formally, the continuation would be

carried out on the basis of a Taylor series which requires that the

derivatives of the function of all orders are known. In practice, this

ideal situation cannot be realized. Moreover, all digitized data
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include errors which are amplified in the inversion procedure. In

this light, the results in Figure 17 and 18 are quite acceptable. More-

over, the integrated conductivity of the second layer in the three-layer

case has been obtained with fairly good accuracy.

In the case when d1 and d2 are known the value of can be

found from equation (84) directly;

(0)2
(1) Z1T(o ) k

0 = I exp(-2kd2) - exp(-.2kd1)

Equations (89) and (90) can also be obtained by simply letting

a = 0 in equation (72). As already mentioned in (vi) of the last section

the theorem by Erdlyi is not a necessary condition for the direct

method to work at the present situation.

Conclusion

In the second part of this thesis, the perturbation method is

applied to the interpretation of D. C. conduction field data. An

example from the three-layer case is discussed and worked out. The

derivations indicate that there are no principal difficulties in applying

the perturbation method in the D. C. conduction case provided certain

basic conditions are satisfied namely that the perturbation conduc-

tivities be small compared to the zero order conductivity. However,

the final step in computations involves the numerical inversion of a

Laplace transformation This is an improperly posed problem where
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computational and observational errors are greatly enhanced. This

inversion is the main computational difficulty in applying the pertur-

bation method to the inversion of D. C. conduction field data.
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