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GOODNESS OF FIT TESTS UNDER RANDOM CENSORSHIP

1. INTRODUCTION

In life-testing and medical survival studies it is often

inconvenient or impossible to make complete measurements of the

life-times for all experimental units in the sample. In such situations

the observations on life-time may be right-censored. The simplest

kind of censoring is that of single censoring which occurs when all

observations are censored at the same time. There are two types of

single censoring: for Type I censoring the censoring time is prede-

termined and for Type II censoring the censoring time corresponds to

a predetermined ordered failure and is therefore random. In many

studies observations are not censored at the same time, which is

frequently referred to as the case of arbitrarily censored data.

In single censoring cases, Barr and Davidson (1973) developed

appropriate tables for the Kolmogorov-Smirnov statistic for both types

of single censoring. Lurie and Hartley (1972) have also generalized

the Hartley and Pfaffenberger (1972) criterion for the case of Type II

censoring and a simple hypothesis.

In this thesis, the problem of testing goodness of fit for

arbitrarily censored data is considered. We generalize the classical

goodness of fit test statistic for both the simple and composite

hypothesis cases and the Neyman smooth goodness of fit test statistic



for the simple hypothesis case. For studying large sample distribu-

tion properties of the generalized goodness of fit test statistics, we

assume random censorship.

For the random censorship model the random sample of failure

times Xl, , X
n

2

are censored by a corresponding random sample

of censoring times T1 , Tn. That is, if we define

Y, = rnin(X., T.) and 8. = 1(0) for Y. = X.(Y. = T.), j = 1, ... ,n,
3 3 3 .1 J J J

then only the random variables (Y1, . Y n
, Sl, , 8n) may be

observed. If we let F
0

and H denote the right-sided distribu-

tion functions for random variables X and T, respectively, and

0 T a
0

< al < < a r < ar+1
00 the partition points on the real

line, then the generalized statistic

n

r

i=1

2F(a. ) F(a.)1-1 1

F0 (a,(a, ) F
0

(a.)

D.

is shown to have a limiting chi-square distribution with degrees

of freedom, where

sD. =
a.

12 (- dF0(t)),
a. tH(t)( )

1-1 FO

F and H are product-limit estimators developed by Kaplan and

Meier (1958). In the composite hypothesis case, we show that if e
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is replaced by a minimum chi-Square estimator 0 in the statistic

given above, then it will have a. limiting chi-square distribution with

r-s degrees of freedom, where s is the number of parameters

estimated from the sample.

In Chapter 2, some basic probability relationships are given and

certain lemmas are proved for later reference. In Chapter 3, the

product-limit estimation method is illustrated and the chi-square

goodness of fit test statistics are developed. The generalized goodness

of fit tests for exponential and Weibull distributions are illustrated for

a sample of survival times for breast cancer patients. In Chapter 4,

Neyman's smooth goodness of fit test for a simple hypothesis is

generalized for the random censorship case. The limiting distribution

of the generalized statistic is also considered for a sequence of

alternative hypotheses.



PROBABILITY BACKGROUND AND NOTATION

We shall use some notation and results given by Mann and Wald

(1943) for stochastic limits. Let {an} be a sequence of

k-dimensional vectors, {Zn} a sequence of k-dimensional random

vector s ,
{q.} a sequence of positive functions of n, and define

an o(q
n) if lirn II an /gall = 0

n---00

an 0(c1n) if 11 an/gni! < M for all n, where M is

some positive constant

Zn
P

(q
n

) if Zn/qn converges to zero in probability. More

precisely, given E > 0 and 5 > 0, there exists

NE
, 5

such that for n > NE, 5'

P( II Zn /cln < 6) > E .

Zn = Op(qn) if for given E > 0, there exists M such that

for all n, P(I1Zn/cld < ME) > 1 - E .

Mann and Wald (1943) have shown that all the ordinary operation rules

regarding 0 and o are also applicable to 0 and o . For

example, if Z = 0 (n1/2) and Y = o (1), or Z = O (1)
n p n p n p

and Yn = op(n1 /2), then Z Y = o
1 /2)

n n
Some basic probability results are listed below for later

reference.



If Z is a random variable and independent of n,

then Z =0 (1).

If Zn converges in distribution, then Zn + 0
p

(1)

converges to the same distribution as Zn.

If Zn converges to Z in probability (Zn Z)

and g is a continuous function, then g(Z n)

converges to g(Z) in probability. In other words,

Zn - Z o (1) and g continuous imply that

g(Zn) g(Z) = 0 (1).

d
If Zn converges to Z in distribution (Zn Z)

and g is a continuous function, then g(Z n)

5

(2, 2)

(2.3)

converges to g(Z) in distribution. (2.4)

Relation (2. 1) is immediate, (2.2) was established by Mann and Wald

(1943), and (2.3) and (2.4) can be found in Chung (1968, p. 66) and

Burrill (1972, p. 291), respectively.

In addition, we need the following lemmas:

Lemma 2.1. If {Z } is a sequence of k-dimensional random

variables which converges in distribution to Z, then Z = 0 (1).
n p

Proof. It is sufficient to show for given E > 0, there exist

ME >0 and N such that for n > N Z < M ) > 1
E n e



Because Bn can be chosen such that P(IIZnil n
< B ) > 1 - E for

n = 1 , . . . NE , and M' = rnax(M
E 1

, B, , .. ,BN ) , it follows that

P( II Zn II < ME) > 1 - E for all n.

Let {Fn} and F be the distribution functions corresponding

to random variables Zn11} and Y = II Z II . Since the norm

6

is a continuous function, result (2.3) and the assumption of the Lemma

gives lira Fn(y) = F(y) for all y such that F(y) is continuous.
n-00

That is, for given e > 0, there exists N such that for n >N
E E

F(y) < F
n, (y) < F(Y) +2

Also for given e > 0, there exists Me such that

P(II Z II < ME) > 1 - Without loss of generality, we can choose
2

Mc to be a. continuity point of F. Using (2. 5) we than have for

n > N

P( II Zn ii < ME
Erl(ME

> F(M )
E 2

P( II Z II <M

> 1 -
E E

= 1 c .

(2. 5)

Lemma 2.2. Let {Zn
} and Z be defined as in Lemma 2. 1

and {A } be a sequence of s x s random matrices such that

An 13'. 0, then ZIA Z O.n n n
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Proof. Applying Lemma 2. 1. ,

Z 'A Z = 0 (1).o (1)0 (1) = o (1), the Lemma follows.nnn p p p p

Lemma 2.3. Let {Zn} be a sequence of k-dimensional random
d

vectors such that Zn N (0,V), where V is a positive semi-

definite symmetric constant matrix, and V- be a generalized
d

inverse of V. Then Z 'n V Z
n

(s), the chi-square distribution

with s = rank (V) degrees of freedom.

Proof. Let the random vector Z be distributed according to

Nk(0, V) (Z Nk(0, V)), and define the function f from Rk to

1
R by f(Z) = Z1VZ. Since f(Z) is a polynomial it is a continu-

d
ous function of Z, which implies, from (2.4), that f(Zn) f(Z).

2A well known result is that if Z N
k

(0, V), then Z Z X (8),
d 2

where s = rank (V). Hence, f(Zn)
n ) Z'V Zn (s).

Lemma 2.4, Let {V
n

} be a sequence of a x s random

matrices, and V be some s x s nonsingular constant matrix.

If Vn V, then for given E > 0, there exists NE such that fpr

n > N P(Vn is nonsingular) > 1 - E.

Proof. The det(V) is a polynomial in the elements of V

and is, therefore, a continuous function.

From (2. 3), we have det(V
n

) det(V). Let a = det(V) 0,



8

5 =
2

and E > 0 be arbitrarily chosen; then there exists N

such that for n > N ,

det(V) -det(Vn) I < 8) > 1 - E.

Since for n >N ,
E

det(V)-det(Vn)I < C {Vn: I det(V) I I det(Vn) I < 5}

= {Vn: I det(Vn) I> 4-}
I a= {Vnldet(Vnl> } ,

it follows that P(Idet(V
n

>La
2
i-) >1 - E, e. ,

P(V
n is nonsingular) > 1 E.

Lemma 2.5. Let {V
n}

and V be defined as in Lemma 2.4,

then V
n

V implies that Vn
-1 P

V
-1

.

Proof. Since Vn V, for any chosen E > 0 and it > 0

there exists N'
E)

such that for n > N' P(A ) > 1 - where
E, 2 '

An = firn: II V n-VII < TO. Let Bn = {V n is nonsingular}, then

from Lemma 2.4, for given E, there exists N" such that for

n > N" , we have P(Bn) > 1 --- n > max(N1 "),
2

Hence, for
E

, NE

we obtain
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P(An(-13n ) > P(An ) P(3c)

E

?" 1 -2- -2-

= 1 - E ,

where the first inequality can be easily shown by using the relation

P(An) = P(A Bn) + P(An r)I3c)
n

Since V-1 is a continuous function of V (provided the inverse

exists), for given 5 > 0 there will exist r such that

II V
n -V II < Ti implies II V

n
1 -V -1

II < 5. Hence

A B r {V: II V -1/' Ii < n and V
n is nonsingular}

C {V: II v-1-1/-111 < b and V is nonsingular} ,

which gives

1 -1 J1 1 -111P(IIV -V II < 5) > P(ii V
n -V < 5 and V

n
is nonsingular)

> P(II V n-VII < r) and Vn is nonsingular)

P(Anr,Bn)

> 1 - E.

In summary, for given E > 0 and 6 > 0 there exists NE 6 such

that for n > N PO 1 -VI V -V II < 5) > 1 - E. This completes the
E10) , n

proof.
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Lemma 2.6. Let {Gn(y)} be a sequence of monotone random

functions such that Gn(y) G(y), where G(y) is continuous over

the closed interval [0, a]. Then for E > 0 and 5 > 0 there exists

NE,
5

such that for n >NE,
8 '

P( sup I (y) -G(y) I < 5) > 1 - E .

0 < y< a

Proof. The proof will be given for the case where the sequence

{Gn(y)} is nonincreasing. The proof for the nondecreasing case is

similar.

Since the continuous function G(y) is defined on a compact set

[0, a], it is uniformly continuous. That is, for given 6 > 0 there

exists 11 such that for any two points c, d in [0, a] with

Ic -di < , I G (c) -G(d) I < If we define aby k-1 < < k,
11

and divide the interval [0, a] evenly into k subintervals with

corresponding partition points 0 = b
0

< b
1

< < bk = a, then

-10(b1-1 <
2

) G(13.)1 for = 1, ...,k.

For the assumption Gn(y) G(y), for given E > 0 and > 0

there exists N such that for n >NE,
b

,

5p(IG (b.)-G(bi)( < = 0, . , k) > 1 -
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Defining the set Bn, = {0 (y): Gn (b.)-0(bi) I <
2,

= 0, , k}, we

then obtain for Gn(y) E Bn, and b.
1-1

< y < b. ,

and

Hence,

G n(y) G(y) < G n(b. ) G(b.)-1

= G n(b. )
1

G(b. -1 ) + G(b. ) G(b.)
L-1 L-1

5 5<2 +2S

0(y) Gn(y) < G(bi_i) Gn(bi)

G(bi_ ) G(bi) + G(bi) - Gn(bi)

5 8

+ 6

sup I Gn(y)-G(y) I < 8 for i = 1, . . . , k, gives
b. < y < b.

sup I Gn(Y)-G(y) I < max sup IG(y)-G(y)I < S.
0< y< a i b. < y< b

1-1

Therefore, for given E > 0 and 5 > 0 there exists NE such

that for n > NE P( sup 1G (y)-G(y) < 5)> 1 - E.
0 < y < a n

Lemma Z.7. Let {Qn(y)} and {Gn(y)} be sequences of

monotone random functions such that {Gn(y)} are uniformly bounded,

Qn(y) Q(y) and G n(y) 0(y), where Q(y) and G(y) are

bounded and continuous. Then, for arbitrary 0 < a < b < 00,
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Qn(y)dG (Y) Q(y)dG(y)
a a

Proof. The proof will be given for the case where Qn(y) is

nondecreasing and Gn(y) is nonincreasing. For the other cases,

the proof will be similar.

Applying Lemma 2.6, for given E > 0 and 6 > 0 there

exists a
E, 6 such that for n > 6'N'

E
P(B' ) > 1 -

, n,

B' = {Qn(y): sup Qn(Y)-Q(Y) I "Lr-mn, a< y< b

E

2' where

and M is some constant such that IGn(a)-Clia(b)1 < M, Q(a) <

and Q(b) < M. Similarly, for given E > 0 and 6 > 0 there

exists N"
E

such that for n >1\I"
E

, P(B" ) > 1 - -2-- , where
, n,

513"
5

{Gn (y): sup I Gn(y)-G(y)I <
8Mn, a< y < b

Hence, for n > max(NE
51 ' NE S)' we have

P(B' and B" ) >P(B'n, n, n,

E E
> 1 -

2 2

= 1 E

- P((B" ))n,

Taking Qn(y) E Bn, and Gn(y) E Bn", we obtain
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b b
Q

n
(Y)( -dGn(Y)) Q(Y)( -dG(Y)) I

'") a a

b b

< IS (Qn(y)-(Q(Y))( -dGn(Y)) + IS Q(Y)(-d(Gn(Y)-G(Y)))1
a a

< I Qn(y)-Q(y) I ( -da (y))
a

b b
+ I-Q(Y)(0 n(y)-G(YVa +,a (Gn(y)-G(y))dQ(Y) I

sup I Qn(Y) -Q(Y) I I Gn(a) -Gn(b)
a< y< b

+ I Q(a) I I an(a)-G(a) + I Q(b) IIGn(b)-G(b) I

+ sup I Gn(y)-G(Y) I I Q(b) -Q(a) I
a< y<b

8
< + 2M -871 + 2M 1371 + -8A 4-5 2M4M

-§-+ 5 -4-A+A4 4 4 4

6.

That is, for given E > 0 and 6 > 0 there exists NE
, 8

such that

for n > NE
,

b
P( I) Qn(Y)( -dGn(Y)) bQ(y)( -dG(y))

a a

This concludes the Lemma,

< 6) > 1 - E.



Lemma 2.8. Let tY } be a sequence of k-dimensional
t'Yn

random vectors and t = (t1, , t
k

) E Rk. Suppose E(e )

tlYn
exists for all n in he neighborhood of t = 0, lim E(e

n'00
exists, ane Rn is some uniformly bounded random function which

almost surely converges to zero, then

lim E(e n
n co

R t'Y
n) lim n)

n"00

14

t'Y +R t'Y +R t'Y t'Y
Proof. Since E(e n n) = E(e n n -e n) + E(e n) , it

R
is sufficient to show lim E(e n(e n-1)) = 0.

n00

and

Applying the Cauchy-Schwarz Inequality, we have

t'Y R t'Y R
E(e n(e n-1)) < E(1e n(e n-1)1)

2t' 1/2< (E(e
Yn

)) (E(eRn-1)2)1/2

t'Y R t'Y R
E(e n(e n-1)) > -E(1e n(e n-111)

2t'Yn 1/2 Rn 2 1/2> -(E(e )) (E(e -1) )

Hence, by Dominated Convergence Theorem (Chung, 1968, p. 40),
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Ze Y
n 1/2 Rn 2 1 /2

0 lira- li (E(e2t lim (E(e -1) )

n n --6- co

tlY R
< lirn (e n(e n- 1))

n--P- co

2t 'Y 1/2 Rn 2 1 /2< lirn (E(e n)) lirn (E(e 1)
n co n

0,

t'Y R
which implies lirn E(e n(e n- 1))
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3. CHI-SQUARE GOODNESS OF FIT TESTS UNDER
RANDOM CENSORSHIP

3. 1. Distribution Structure

Let X
1

. Xn represent a random sample of n failure

times from some unknown right-sided cumulative distribution

F
0
(x) = Pr(X > x) with density f

0
(x), x > 0, where 0 is the

parameter in some s -dimensional parameter space 0, i.e.,

BEOC Rs. Note that F
0

(x) is a left continuous and nonincreasing

function of x, F0(0) = 1 and F
0

(00) = 0. We also assume that a

corresponding random sample of censoring times T1, , Tn,

which is independent of X
1

... Xn' come from some other unknown

right-sided cumulative distribution function H(t) = Pr(T > t) with

density h(t), t > 0. For the random censorship model, the actual

sample observations are Y1' Yn, 61' ..., 6n

i = 1, . . ,n, Yi = min(Xi, Ti) and

6. =
if Y. = T. (X. > T.)

1 1 1

if Yi = X. (X. < T.)
1 1

where, for

The joint distribution of Y and 6 can be derived easily as

(Y)H(Y)) (F (y)h(y))
1-5



Hence, the likelihood function for a sample size of n is

n n 6. 1-6.
L =

iTI

1. =
i

11

l.
(I

0 (y.)H(y.)) 1(F0(y.)h(y.)) .
i 1 e

=1 .

3.2. The Classical Chi-S uare Goodness of Fit Test
for Uncensored Data

We consider the problem of testing the hypothesis

H
0
:X F

0
(x) ,

where F
0

(x) belongs to some specified family of distributions

17

(3. 1)

{F
0

(X): 0 E E2} and 0 = (01' 0s) E C Rs. For the uncensored

data case, failure times of all sample units are observed, hence the

classical chi-square goodness of fit test can be applied to test the

hypothesis (3. 1),

Let 0 = a
0

< < a r+1 = 00 be the partition points on the real

line, and the random variables V. be the number of X . X
1 xi

that fall in the ith interval (ai- ai] for i = 1, ..., r+1; then

the joint density function of V1, ...,Vr+1, fo(vi,...,yr+1) will be

1
vr+1f

0
(vl' vr+1 )

(v1, , vr+1
)P1 (0). Pr+1 (0) ,

(3. 2)

where



r+1

P.(0) = 1,

i= 1

r+1

i=1

V. = n

18

and Pi (0) = Fo (ai_1) Fo(ai), i = 1, , r+1, e. , V1, . , Vr+i

are multinomially distributed. Using the asymptotic normality

property of the multinomial distribution of V1, , Vr+1' and sup-

posing the null hypothesis (3. 1) is simple (0 simplified), Karl

Pearson (1900) introduced the statistic

r+1

i=1

2V.-nP.(0))

nP.(0) (3.3)

and established that it has a limiting chi-square distribution with r

degrees of freedom. In the case when the null hypothesis (3. 1) is

composite, 0 may be replaced in (3.3) by an estimator 0, such

as a modified minimum chi-square or equivalently the maximum

likelihood estimator derived from (3.2), which is a solution of the

equations

r+1
V.-nP.(0) 013.(0)

1 1 1
=P(0) ae 0, j

r 1, / 2;V-nP.(0))
Cramer (1966, p. 426) has shown that i

1 is
n 0\P.( )

i=1
asyrnptotical chi-square with r-s degrees of freedom. However,
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in the case when 0 in (3. 3) is replaced by the maximum likelihood

estimator 0 based on the original random sample X1' .., Xn,

Chernoff and Lehmann (1954) proved that

r+1 2
(V-11P.(0)) d

2
X (r-s) + X.Z.

nP,(0-) 3 3

i= 1 j=1

where 0 < X < 1 and the sZ,' are independent and N(0, 1)
3 3

distributed for j = 1, .. , s

In the next section, a nonparametric estimator for F
0

(x) is

introduced, and in Section 3.4 the chi-square goodness of fit

statistics are generalized to random censorship. For the case of a

composite null hypothesis we only consider the minimum chi-square

parameter estimation procedure for 0.

3.3. The Product-Limit Estimator for Censored Data

The product-limit estimator F for the distribution function

F0 was derived by Kaplan and Meier (1958) and was reaffirmed by

Efron (1967) as a self-consistent estimator. If we define the

sequences of random variables Yl, Yn and S1, .. bn as in

Section 3.1, and assume, without loss of generality, that

Y1 < .. < Yn, then the product-limit estimator for the failure

distribution F
0

(s) is defined by



k-1
F(s) n-r r(nn)r=1

=0

= 1

if s E (Yk-1, Y
k

if s > Yn

if s < Y .
1

20

(3. 4)

The product-limit estimator for the censoring distribution H(s) can

be expressed in a similar form

k-1
11,(s) )1-5r

r=1

0

=1

if s E (Yk-1' Yk]

if s >Y
n

if s < Y .
1

(3. 5)

The following example is given to illustrate the product-limit

estimation procedure. For a sample size n = 10, suppose five

experimental units failed at times 0. 5, 1. 2, 3. 7, 7. 8, 11.0 months,

and the other five units were censored at 1.0, 3.8, 8.1, 9.2, 11.4

F0months. From the table below the product-limit estimates of

1 2 3 4 5 6 7 8 9

Y. 0.5 1.0 1.2 3.7 3.8 7.8 8.1 9.2 11.0

and

6.

H

1 0 1 1

at 4 and 10 months are

0 1 0 0 1

10

11.4



5 510-r
F(4) ri (10-r+1 )

r
r=1

9 1 8 0 7 1 6 1 5 0 27
10 7" "e; 40

A
F(10) =

8 10-r
(

)Sr
(4

27
6)q

4
)

1 3 0

(

2

T)
0 27

10-r+1r=1

10-H(4) n , r 9
10-r+1 ' 10r=1

0
)

8 1()
9

7 0()
8

6 0()7 5 1()6

HA (10) = n
10 1-6x. 20 4 3 2 i 10

r =1
10-r+1 (27)(V4)(5)=-F1

20
27

Kaplan and Meier (1958) have shown that F(s) is a consistent

estimator of F
0

(s); in addition Efron (1967) stated that under

random censorship n 1 /2 A(F(s)-Fe(s)), considered as a stochastic

process in s, has a limiting normal process, as n 00, with

mean vector 0 and covariance kernel

min(s, t)
1-(s, t) = F (s)F (t)

0
(.)).

0 H(z)F2(z)

The formal proof of this property for continuous

21

(3. 6)

e
and H, was

given recently by Breslow and Crowley (1974). Hence, defining

Pi= (P(ai), f-(ar)),
0

(F
0

(a
1

), F
0

(ar)) at the partition

points 0 < a
1

< < ar < 00, and assuming Fe and H are
continuous, we have



1 /2 AZn n (F-F ) > Nr (0, E)

i.e. , Zn has a limiting r-dimensional normal distribution with

22

(3. 7)

mean vector 0 and covariance matrix E = [1-(a., a
j )] This is the

1.

underlying distribution theory on which the goodness of fit test statistic

is developed in the next section.

3.4. Derivation of the Generalized Chi-Square Goodness
of Fit Test Statistic

Corresponding

we define the

and let in

to the partition

r x r matrices

1

points

C

where

0 < al <

-1
I 1 -1

Zn

1

and

< a

0

-1)

E

< (;)°

are

0 \F0 (a
1

)

E =

1
0

a )

CEZn, E* =, CEEEICI,

defined in the last section. From the result (3. 7), we have
d

Zn Nr (0, E*), where



A

1/2 F(a0) f(a ) F(a r-1 ) F(ar)
n 1 1 /2

F
0

(a
0

) F0(al) ) , ...,n (F
0

(ar 1
)

0
F (ar ))

0
1.

r
0 D

a.
L

1
2

(-dFo(z))
a. H(z)F

0
(z)

for i = 1, ..., r.

23

(3. 8)

We can assume that Z is a nonsingular matrix; from Lemma 2.3
-1 d 2we obtain Z Zn -4" x (r). Further, from the following relation

, -1 -1 -1 -1 -1 -1
Z E C CEZn n n

(CEZn)'(CEZEC) -1 (CEZn

r

i=1

we have

-1 -1Z Z'E* Zn=n n n

A
F(ai)

- )

F (a. ) F (a)
0 1-1 0 L

D.

r

i=1

f(a ) F(a.)
)i- 1 1 2(F (a. ) F (a.) d

0 1-1 0 2
> X (r)D.

(3.9)



24

If we estimate H by the product-limit estimator H defined

in (3.5) and assume H is not equal to 0 at all sample points, then

by using the consistent property of H and applying Lemma 2.7

(set Qn
1

A 2 Q =
12

, Gn = G = Fe) we have
HFe HF

0

If we let

a.c
A 2

1 (-dF
0 (z)) P

1 (-dF
0
(z)) = D.

a H(z)F0(z)i-1 a. H(z)F
0

(z)
1-1

A
Di 0

A
0 Dr

A pthen (3.10) gives E* Z.*. Therefore, by Lemma 2.5,
E', -1

Z* - 1 + 0 (1). The following relations

-it(z*-1+0 (1)).2
n n p n

-1= Z' E* Z + o (1) 0 (1)
n p p

.-2,z*-12 +0 (1),n n p

with (2.2) and (3.9) imply that

(3. 10)

(3.11)



1Z' E* Zn

r

i=1

F(a ) P(a.)
i - 1 i. 2- -)( F d

> x (r).20
(a. ) F (a.)-1 0 i.

D.
1

25

(3. 12)

Hence, for large sample sizes, we can use the statistic specified in

(3. 12) to test hypothesis (3.1) when 0 is known.

3. 5. The Composite Null Hypothesis Case

The case of a completely specified life time distribution is very

limited in application. More generally, the null hypothesis is

composite and the parameter needs to be estimated. In this section

we use the minimum chi-square method to estimate 8 and will

generalize R, A. Fisher's theory (1922, 1924), which gives a reduction

of one degree of freedom in the limiting distribution for each param-

eter estimated from the sample, to the statistic

r
f(a. ) P(a.)1-1

)
2"

F
0 1

(a. -1 ) (a. )
0

n
D.i.1

0

(3. 13)

We assume the number of parameters to be estimated in the null

hypothesis (3. 1) is less than the number of partition points, i.e.
As < r, and let 0° represent the true value of 0 and 0 the

minimum chi-square estimator for 0. We also use superscripts,
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j,k,/ to represent partial derivatives with respect to

0., 0
lc'

0V j, k, f = 1, . , s. Some further notation is now summarized

for later reference. For i = 1, ... ,r and j,k,/ = 1, ., s;

,f-F. ( a .
t

) with F(a,) defined as in (3.4)

F. = F (a )
i

F.
S. = F.

gn(e) = n

r
( 1-1 -S.)2

Di 0i=1

with D. defined in (3. 10)

6, 1.
(N/T1 gn( )' 'gn(°))

1 j
Gn(0) = [-171 gn

k(0)]

3 = I

110 , i F. F. /01-1

1 1A. = (A
o Aso )

(D.1/2) 0 ,t 0 , t
o

A' = (A'1, . , )

Kjk =
1 Aj k

0 (D.) ."10, i i'
i=1 I °

(3. 14)

(3. 15)

(3. 16)

(3. 17)

(3. 18)

(3. 19)

(3.20)

(3.21)

(3.22)

(3. 23)



K = [Kik] =

0
o

0
o

i=1

A.A. = 2A'A

1
Xn = (Xnl , , X )nr

NJ-11(S
0

-5 )

D1/2
1

Nriri(S -S )r -1 r
D1/2r

_ Nrii(Sr -1
Y n = (Yn1 , . , Ynr)

D\1
/2 e

D 0
1 /2 r%

r1
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(3.24)

(3. 25)

. (3.26)

From the definition (3. 17), we can represent the test statistic

(3. 13) by gn(0). The minimum chi-square estimator for 0, which

minimizes g n(9), will satisfy the equations

,3 (0 a
'1*n

gn(0) = 0, j = 1,
3

(3. 27)

In the theorem given below we are going to show, under certain regu-

lar conditions, Equation (3.27) possesses a solution which converges

to the true parameter 0° in probability and is asymptotic normally

distributed.

Condition R. The distribution function F
0

(y)

with density f0(y) and satisfies

1) For almost all

fejk(Y), fe (Y)

is continuous

Y., 0 (y), F.(y), Fe 0(y), and fi (y),

exist for every 0 in the closure of some

neighborhood co C S2 of 0° for j, k, f = 1, , s.
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Fj Fjk Fjkl
' i

j, k, = 1

are bounded for all 0 E w for

, s, i= 1, , r.

3) The r x s matrix A defined in (3. 22) is of rank s.

Theorem 3.1. Under the condition R Equation (3.27) has a
A

solution 0 which converges to true parameter 00 in probability.

In addition

Nrri(0-0°) -(ATA)-1A1Tc + o (1) ,
n p

where Xn is defined in (3.25) and has a limiting Nr(0, I) distribu-

tion. Hence igri(0-0o) has a limiting N r (0, (A'A) -1) distribution.

Proof. The approach used for this proof is in some ways

similar to that used by Cramer (1954, p. 500) to show that a likeli-

hood function possesses a solution. The detail of the proof is divided

into the following three steps.

Step 1. Auxiliary derivations.

F.

a)
(Si _1-S.)j 80. F.

J L-1

F.

F.

n
. F.1-1 j 1 j

-7- - FI.F. + .
F7

) .
2 1-1F.1-1

Fj. Fi, Fj Fj.1-1 ^ 1-1 ...
1 1

'=-' (- .7,. (F. . -F. ,) _)+(+(F.-F.) 7, )
1.'1_1 1-i 1-1

F.
Fi 1 i

1-1 1
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F.
o

p(1) 0(1) = o

for all E w,

Aj + o (1)
o p

0 , 1

Aj0, i + 0(1)

in (3.20).

(1),

i

if

if

-7-

and

1 , . r

0 = 00

0 E w ,

(3.28)

By ((F.-F.) 2 ot F. 0

F.
((Fi -Fi) 2)0 0(1)

F.
1

j= 1, s, we have

(S i-1 -S
i
)j

where Aj is defined
0 i

2 F. F.
b) (S. 1-Si)

jk - )

as as F F
J k i-1 .

F. Pi
ask

a 1-1
2 Fi-1 2

F.
1

Fj.)

A
.Fi-1 j k F
1- jk= (2 7--Fi_1Fi_1

F.1-1 Firl
A A

. F.
j+ (-2

F
FijFik + Fik

)

F. F.

Now, applying the same technique as for F . and F. in
1 -1

a), we can write



(S. -Si jk
0

jk
B + o(1) if 0 = 0o

B jk + 0(1) if 0 E ,0,

Fj Fk FiFk Fjk Fjk

Bjk . = 2(
F

1-1 1-1where 1-1
0,1 2 )0 ( - F.F. -1-1

for i= 1, r; j, k= 1, .. , s

cs, a3
(s. 1-Si)80 80

k
a

j

where

a
3

a
3

(S. ) - S. ,80 80 8 -1 80 as ae.
k j 1

k

30

(3.29)

A A A
F. .83 Fi k Fi ji k t J k.fS. = ( -6 F.F. F. + 2 F. F. + 2 F.F.80 ao a i 4 Iii 3 1 1 3 Iti k j F. F. F.

1. I. i.

F.
-\.'" id__,I.F,Jk iF - 12 Fji )3 i iF. F.

I I

for i = 1, r. By the same approach used in a) and b), we

have

(S 1-1 i-S )iice
0

=
jkQ

CO3
i

+ 0(1), if 0 E W

where

(3.30)



j 1 jF.F.kF. F. Fk F/
Cjki = 6(

1 t I 1-1 i-1 i-1
).

es, 1. F F.
3 3 0
.
1 i -1

+2(
2F.t-1

31

ji kJF. F .

k +F. F. +F. F F. F.k .+F F.+F.jkF.
1.-1 1-1 1-1 1-1 1-1 i-1 1 1 1

2
F.

Fjki
F jk.f

. .
I 1-1

+ ( _
) ,FI. F. 01-1

, r; j, k, = 1, . s.

"From the condition it is easy to establish that (Di)
j

, (Di)
jk and

A jki(Di) are all bounded in probability. Hence, applying (3.28), (3.29)

and (3.30), we obtain for j, k, = 1, .. , s,

r

D.

(S. -S
1 j o 1 a , I-1 i

)2

al) /7 gn(0 ) n TT; ( )
1

0
i=1

(S. -S.) (S. -S.)2
1-1=

r
2

(Si- 1 -Si )J

-1 (D.0)

6'. D.
/\2

e
0

i =1 1.

r o (1) o (1)
(2

D.) +o (1) (Aj
o

+o(1)) (0 (1)))

1 =1 e0
p 0 , i

p (D.) z +o (1)
o p

= o (1).
p



b')
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1 jk o
Lgn A 1

((S. -1 -S.)i(S.
1
-S.)k

+(S. -1 1
-S.)(S. -S

i )
jk

)-
D.i=1

r

r

1

L
- ((s. -1 -sL m1s, -1 i

-s >i(8,)k)]"2
D.

r 1
((S, -S.-L2 ---L

1)(S. -1
-S.)k(D.) j

)A2 -1
D,

1 2 jk
+ ((S -S ) (D ) )^2 i-1 i iDi

1

A3
D.

i
)2o5i i)k)i)

G°

D.

1
(S. -S.) j

(S.
1

-S.)
k)

e
o

+ 0p (1)
A - -

L

1
(Ai -Ak ) + o (1)

ID.)
0

i=1
Leo i 0, i P

Kjk + o (1) ,

Go
p

where Kik is defined in (3.23).

c') By applying the above results and condition R it is straight-

forward to show



n
,kl

n a0 n
jk(0))

=0 (1) for 0E W.

Hence, in summary, we have

n
1g j

(0
o ) = o

p
(1)

n

1

gn
jk(0o) = Kik 4- op(1)

00

n
1 j

gn
k/ (0) = 0 (1) for

p
E

33

j, k, Q = 1, . . . , s. (3.31)

Step 2. Show there exists a solution 0 for Equation (3.27)

which converges to 0° in probability.

Lemma 3. 1. For given E > 0 and 6 > 0, define the sets

U = u E Rs and 114 = 1}, B = {0 = 0°+Xu: I 0° -(0°+Xu)11 < 6}C

1 o
gn(° +")'and the sequence of functions f u)

I X I < 6. Then under the condition R,

for n > N
E, 6

where

there exists N
E 6

such that
,

aP( fn 8X.
(6, u) > 0, fn (-6, u) < 0 for all u E > 1 - E .

ax

Proof. First we need to know the limiting structure of the 1st,

2nd, 3rd derivatives of the function fn(k, u).



a a 0a f (X, u) = g (0 +Xu)8X n n ax n

1
=

agn(0°+X.u) 8(0o
+XL')

n (00+xu)
3=1

ujgn(0 °+Xu) ,

ax

34

and from (3.31) and lu.I < 1 for j = 1, , . , s, we have for

all 1,1 E U

a

8X. n
j

0, u)
n

u, gn (0 )

3=1

o ( 1 )
p

2
1 a

2
b") f fn (X, u.) = n g (0 o+X.u)

ax 8).2
n

u,u. g jk
(0

o+ku)
J k

j,k=1

= u'Gn(0°+Xu)u

(3.32)

where u . . us) and G (0) is given in (3.19). Apply-

ing the second equation in (3.31) and equation (3.24), we can

write



c")

G (00) = K + o (1)
n oo p

= ZAIA + o (1)

where K and A are defined from (3.20) through
0

(3. 24). Applying condition R 3), we have that

K = 2AIA is positive definite. Hence,

2

fn(0, u) = uIGn(0°)u
8X.

= u'(K +0 (1))u
eo

p

= u'K u +op (1) ,

0°

35

(3.33)

where u'K u >0. Let the function h from U to R1
8°

be defined by h(u) = ulK00 u. Since the set U is compact and

h(u) is continuous, the set {u'K u:u E U) is compact. In
0°

particular, we have u'K u > c > 0 for all u E U. Hence for
0

o

given E > 0, there exists N such that for n >N

a
2

P( fn
(0,u) > for all u E U) > 1 -

akZ

a3
f(X, u) =

ax-

1 jklu.0 u n gn (8
o

+XL°

(3.34)

(3.35)
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Applying the results (3.32), (3.34) and (3.35), for given E > 0

and 6 > 0 there will exist N such that for n >N the
E 6 E 0

following probability statements will hold:

a 2
a*) ,

8X.
fn(0

'
< 6 for all u E U) > 1

3
or

a
P

1 OX
P(1-2-fn (0 u)1 > 6 for some u ) < 3

2

b*) P( axz fn -2-(0,u) > for all u E U) > 1
3

or

a
2

P2 fn(°' u) < for some u) <
3

3

c*) P( ,

fn(X, u)1 < 2M
E

for all u e U and ' X I < 6) > 1

a
3

3

or P
3

,

= fn u)1 > 2M
E

for some u and 1X1 < 6) <
8X.

Hence, by defining the set S

a 2
2

---S = : fn(P < 5 fn(0, u) V =2, 3
f
n

(X u)1 < ZM
8X ax

for all u e U and lx 1

and letting Sc denote the complement of S, then we have

E E EP(Sc) < P
1

+p
2

+p
3
<

3
+

3
+

3
=E,

which implies P(S) >1 - E .



Now we expand a
X.

f
n

(X, u) at the point X = 0,
a

a
-a- 7; fn(X' u

a a
2

fn(o, to + (X-0) fn(0, u)
8X

+ -2-1
(X

2 a 3

-0)2
8X

where 0< X* < X. For y E S, 6< 2(1+M

Equation (3.36) will give, for X =
E

37

(3.36)

and all u E U the

"eT fn(6' > -52 + 6 a (0 u) + 6 2 (-2ME)
8X.

2 n ' 2

and for X = -6,

2 82= -(1+ME)6 + if
8X

0, u)

2
> - 5 + 6 8 f

n
(0, > 0 ,

2 2
3X

azf
n
(-6, u) < 62 - 6 --

n 2
(0 u) + 5

2 (2M )
ax

ax

2 a
2

= (1+M - 6
2

f
n

(0, u)
8X

2
< 2 6- 5 fn(0, < O.

ax

Hence for 6 > 0 and E > 0 there exists N6,
E

n > N6,
E

such that for
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aPc 57 ffl(6, u) > 0,
ax

fn(-6, < 0 for all u E U) > 1 - E .

This completes the proof for Lemma 3. 1.

Now we are going to find a point in the ball

B = {0 °°+": II 0C1-6111 = II "II < 6, u E U} which is a solution for

Equation (3. 27), From the assumption that gn(0) is continuous for

0 E co and BC co, it follows g (°) is continuous in B. Thisn
A AAimplies there exists 0 = 00

+ ku such that

1 ^A
n

1g
n

(0 o
n

+X u) < g
n

(Go +X u)

for all I X I < 5 and u E U. In particular

n
1

g +X u
A

) < 1

n
og(0 ±6u) = fn(±6, u) ,n (0

(3.37)

for all u E U. Applying Lemma 3.1, with probability greater than

1 - E there exists X*(u) such that

1 1; gn(0o
;7-+X*(u) u) fn(X*

n
(u), u) < fn(±6, u) = g

n
(0

o
±6u)

for every u E U. Hence, by defining the set

as* {y:- fn(6, u) > 0 f
n

(-6, u) < 0 for all u E U} ,ax

J.

and applying the relation (3.37) for y E S", we have
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AA 1g (00
+X u) < g (0o+X.*(u) u) <'n (0

o*5 u)n n n

for all u E U. This implies 6 = 0° +1;.11.i. is an interior point of B

and is a local minimum. Therefore, we have gin(6) 0 for

j 1, s, and II < 5. Thus for arbitrarily small b > 0

and e > 0 there exists N,
E

such that for n > N5,
E

AP(exist a 0 such that gi (g) = 0, j = 1, s, and

110°4)11 < 6) > 1 P

Awhich implies 0 0
o

. This establishes the first part of

Theorem 3.1.

(3.38)

Step 3. Show that NIT(A -0°) has a limiting s-dimensional

normal distribution.

From (3.38) we can write = o (1) for j = 1, , s.n p
ANow expand .-- gn(0) at the true point 0°

where

o
1 jA 1 jo 1 jk(1) = g (0) g (0 ) -0n n k gn (0)

k=1

for j = 1, , s,

00 (IE) 00
1, or in the matrix form

n(0
o =-0 (1i) (Nrii(3-0°)) + o (1) ,



where G n(0) and Gn(0) are defined respectively in (3. 18) and

(3. 19). By assuming G n(3) is nonsingular, we can rewrite the

preceding equation

,r5(!9 _00)
n

(0)-1a (So)
op

A P oThe fact that 0 implies Ti --11 0° for

< 1, and (3.31) will give

1 jk 0 1 jki.o
gn 'v' gn

I= 1

0- 00 t(4,00),

1 j.E
-01) n g n

k
(e)

1 jk o
n gn (0 ) + o (1) for j,k = 1, , 8,

where e = 0° +11(8-0°), 1111 < 1, or in matrix form

n(6 ) n
) + op (1)

(K +0 (1)) + o (1)
p

0

ZA IA + o (1)
p

where the last two equalities are given in (3.33). Now applying

Lemma 2.5, we can write

-1 1 -1On (0) = (AIA) + (1)

40

(3.39)

(3.40)
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In addition, from the following relations

o
N7--n--gno )

r
Nrri(S. -S.)1-1 1

,eC )0
D,

0 FF.

F

F, o
+0 (1)

. . p
0

r i i111(5, -$) F F.
1-1 1 ---- (--

i.

----.) + (1)1 i 1-1

D1/2 o 1/2 F. o P0 D Fi-1 0
i =1 i I

for j = 1, , s

and (3.20), (3.21), (3.22) and (3.25) we obtain

Ein(0°) = 2A' + o (1) . (3.41)
n p

Applying (3.40) and (3.41), Equation (3.39) can be rewritten as

Na(e-0°) - (A'A)
-1 +op(1)) (2AIRn+op(1)) + 0 (1)

+ op(1) .

d
It is easy to show that Xn Nr (0,1r), which implies

Hence

(A'A)
-1 A' Xn > N (0, (A'A) -1

)

N
s
(0, (A'A) -1)

Nrii(g-0°) -->Ns(0,(A'A) -1
)

This completes the proof for Theorem 3.1.

(3.42)
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Now, we are ready to determine the limiting distribution of the

statistic

r

i=1

(Si -1 -5i)

L.

2

A
where 0 is a, solution for (3.27). As defined in (3.26), we expand

. at the point 0°,

-S )i-1
Y . )

1-11.
( B1/2 6.

D
e0

+

8

j,k=1

j=1

(Si 1(s.0 a -1 -S.)

J ae.) A
Di

/2
o

2 Nril,(Si_ -Si)

(:1,10j° 41/41c-ek°) aek aei DAi. /2 )e

i

---' ( , ) +

,V7(si-si) Ali-1(s. -s.
).

NTE(s. -s ) .
i A

Al / 2
o+ [( '

J 3 A1/2 o
) A3'/Z i- 0'd D ).1)

D. 0 D O. D. 0Di
j=1 i 1

/ )0) -e
j

j,k=1

0 ((Si csdik (Si -1 -5 i)j k
)

A
D ) )"1/2 3/2 i

D 0 0

(

(Si_ -Si)
(D .) ) (

(Si -1 -Si)

D
3/2

0 D
A 2 "5 /2

DL
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( 12 )D. +o (1) 0p

0?)
) - 0 (1] + 0 (1)

j D.1/2+0 (1) 0° P P
p

,J7(S. -5 ) s Pi F3

1-1 i A 0 1 i i- 1
..- ( ) +14-F 0,-0 )(---"" ("-^"- - -"---"---)) + 0 (1)

1 /2, 1 /2 F. F. o p '
Di 0° 3 .3 7-1

1 1-1 0
j=1 i

i = 1, ...,r

where -6 = 0° + 71-(00-), I < 1. The above equation can be

written in matrix form

yn = Xn + AN1T4-0°) + o (1). (3.43)

A oReplacing Nril (0-0 ) in (3,43) by (3.42) gives

Yn = Xn + A(-(Ar.A) -1 A'Xn)+op(1)) + op (1)

(Ir-A(A'A)-IAI)Rn + op(1)

It is simple to check that (I r-A(AIA)
-1 A') is symmetric and

idempotent, hence

Y1 y = x! -A(A'An n n r IA')Xn+op(1). (3.44)

We can choose the generalized inverse of (I r -A(A'A) -1A1) equal to

itself and apply Lemma 2.3 to give



-1 d
n r -A(A'A) (r-s

where the r-s degrees of freedom is obtained by

Rank (I r-A(A1.201)-1AI) = trace (I -A(A.t.A)
-1 A')

trace(Ir) - trace((AIA

= trace(I ) trace(Is)

r-s

From (2.2) and (3.44) we finally obtain

n n

r
(S

i- 1
A

1 =1
D.

d
2

)1,>X(1--s).
0

-1 AtA)

44

(3.45)

This suggests that under the random censorship assumption, when the

null hypothesis is composite and sample size is large, the statistic

specified in (3.45) can be used to perform the goodness of fit test.

Example. In this example, the generalized chi-square goodness

of fit tests for exponential and Weibull distributions are illustrated.

The data used is extracted from a large group of breast cancer cases

which were collected by Calvin Zippin from 12 hospitals in different

parts of the United States. (These original data have been used by

Cutler and Myers (1967), Koch, Johnson and Tolley (1972), and Brunk,
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Thomas, Elashoff and Zippin (1973) in other areas of research.)

The subgroup of 175 patients we use have largest tumor size that is

less than 2 cm, no skin attachment or fixation, and no lymph node

involvement determined by physical examination. For this subgroup,

61 patients died and the remaining were censored after varying

periods of time.

For testing exponential fit H
0

F
0
(x) = exp(-x/0) and Weibull

0
fit H0: F0 02(x) = exp(-x 2 /01) the minimum chi-square esti-

1'
mates (3.45) were found to be respectively 8 = 369.91 and

= 306.47, 02 = 0.962. The corresponding values of the generalized

chi-square statistics were respectively 12.23 and 12.14 with corres-

ponding degrees of freedom 11 and 10 In Table 1 below, columns 2,

3 and 4 include respectively the product-limit estimator, fitted

exponential distribution, and fitted Weibull distribution evaluated at

the selected partition points given in column 1. In Figure 1, the

product-limit estimator and the fitted exponential and Weibull distri-

butions are plotted. It is interesting to see that both fitted distribu-

tions agree quite well with the product-limit estimator.
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Table 1. Product-limit estimator and exponential and
Weibull fits for the breast cancer data.

Months
Product-limit

Estimator Exponential Weibull

0 1. 1. 1.

12 0.9886 0,9681 0.9649

24 0.9371 0.9372 0.9328
36 0.8914 0.9073 0,9024
48 0.8627 0.8783 0.8733
60 0.8397 0.8503 0.8456
72 0.8165 0.8231 0.8188
84 0.7990 0.7969 0.7930

96 0.7873 0.7714 0.7683

108 0.7581 0.7468 0.7444

120 0.7283 0.7230 0.7213

180 0.6703 0.6147 0.6173

240 0.5171 0.5228 0.5293
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Product-limit estimator

Weibull
Exponential

72 96 120 144 168

Months
Figure 1 Product-limit estimator and the exponential and Weibull

fitted distributions for the breast cancer example.

192 216 240
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3. 6. Relationship with the Classical Chi-Sq.uare
Test Statistic

It is interesting to see that the goodness of fit test statistic (3.9)

for arbitrarily censored data will reduce to the classical chi-square

statistic (3.3) provided the sample is uncensored. In the uncensored

data case, we may set H(y) = 1 for y > 0. Hence the covariance

matrix for random vector

is

,n1/21p, ...n1/2(fr,
-r 0 1 11 r r

a.
1

2
= [F.F, (-dFe(z))]

1 JSO H(z)Fe(z)

a.
[F.F. SI

2
1 (- dF0(z))]

1 J 0 F 0(z)

1-F.
= [F.F.

1 F.

= [F.(I-F.)] ,
3 1

for a. < a., i, j = 1, , r. Let the r x r matrix C be defined
J

as in the beginning of Section 3.4, then from the fact



1 /2
= (F-F ) > N r (0, E),

we obtain

d
ZA = CZ > Nr (0, CEC N r (0, EA) ,n n

where

n(F -F ) (F -F )

49

1

0 1

A A
n(F 1-F2)

A A
n(Fr

-1
-Fr

ry
1

nPl

V2 - nP
2

- nP
r ri

0 1

n(F1 -F2)

) n(F -F )r -1 r

(3.46)

Z =
n

1

\Fri

and



EA = CECI

F
1
(1-F

1
) (1-F

1
)(F2-F1) (1-F

1
)(Fr -1 -Fr -2 ) (1-F

1
)(Fr -Fr-1)

(1-F1)(F2 -F1) (F -F2 )(1+F 2 -F
1

) IF 1-F2)(Fr -1 -Fr -2) (F1 -F
2
)(Fr -Fr _1)

(1-F1)(Fr -1-Fr -2) (F1 -F2)(Fr -1-Fr -2) (Fr-2-Fr -1)(1+Fi..-1 -Fr -2 (Fr -2-Fr -1)(Fr -Fr-1 )

:( 1-F1 )(Fr -Fr-1 ) (F
1
-F

2
)(Fr -Fr -1 ) (Fr-2 -Fr-1 r)(F -Fr-1 ) (Fr -1 -Fr )(1+Fr -Fr )

r(1-P1)PI -P
1
P2 -P1 Pr-1 -P1 Pr

-PIP2 (1-P
2

)P2 -P2 Pr-1 -P2 Pr

-P 1Pr -1 -P213r -1 . (1 -Pr -1 -P Pr-1 r-1 r-1 r
-P

1
P4

rP1

-P2Pr . - -Pr -11pr (1-P r )P Jr

(PIP . Pr -1Pr ) , (3. 47)



iV. and P., = 1, ..., r+1, defined as in Section 3.2.

Applying the inversion method given by Graybill (1969, p. 170), we

have

A -1

0

P2

0

1

Pr-1

Therefore, from (3.46), (3.47),

ZuZ -1Z
=

-1 -1
C

-1
CZn n n

= (CZ n)'(CZCI) -1
(CZn)

.61 4 -1
Z E Z n

1

Pr+1

= ( Z
n
A )I(nZ ) -1 (Nn Z n

4
)

2V. -nP.)
1 1 1

n.P.
L

nP.

r+1 2(V.-nP.)
1 1

nP.
I.

i=1

i=1

1

V.-nP.)) 2

which is the classical goodness of fit test statistic.

1\

51



52

4. SMOOTH GOODNESS OF FIT TEST FOR A SIMPLE
HYPOTHESIS UNDER RANDOM CENSORSHIP

4.1. Neyman's Smooth Goodness of Fit Test for a Simple
Hypothesis with Uncensored Data

Neyman (1937) has developed a class of goodness of fit tests for

a simple null hypothesis against a family of alternatives (4.3) which is

relatively smooth compared to the null hypothesis. Barton (1955,

1956) generalized Neyman's test for the cases of a composite null

hypothesis and grouped data. In this chapter, Neyman's goodness of

fit test for a simple hypothesis is generalized for random censorship.

First, we give a brief development of Neyman's test for

uncensored data. Let the random variable X have some continuous

distribution function F(x), with the null hypothesis to be tested

Ho": F(x) = F0(x)

where F0(x) = P
0

(X > x) is completely specified with density

function f
0

(x). The probability integral transformation

00

z f0(t)dt = F0(x)

is applied to the random sample X1, Xn,

(4.1)

(4. 2

and thus, we obtain

n independent observations Z1, ..., Zn, where Z. is uniformly
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distributed over the interval [0, 1] when H
0

is true. Therefore,

the equivalent null hypothesis in terms of transformed variable Z is

H0: q
0

(z) = 1 0 z 1,

where q
0

(z) designates the density function of Z and Q
0

(z) the

corresponding distribution function. Neyman specified a family of

distributions which allow the distributions in the alternative hypothesis

to vary smoothly from HT

E 0 TT (Z)
i=1 i

a,
: q

0
(z) = c(0)e

where e = (01, 0r)
1 r

More specifically

0 < z < 1; (4.3)

r 1, 2, ...

and c(0) is the normalizing constant.

1 .

c(0) -1 =51 eZri=1 ei"i(z) dz
0

and Tr.1 (z) = a.
10 1

+ a.
1

1
+z + a..z are transformed Legendre

orthogonal polynomials (see 4. 19) of z which satisfy

for

1 1 if i = j
Tr.(z)Tr.(z)dz

0 " 0 if i j

(4. 4)

i,j = 1, . , r. In terms of the alternative (4.3), the problem of



testing Flto against H'a will be equivalent to testing

against

H0: 0i= 0,

Ha: some 0i 0,

The likelihood function of 0 is

where

r

i= 1,..r,

n

i= 1, . , r

=L=Hq0(z.) (c(0))n exp( 0. Tr.(z.) )

i=1
i=1 j=1

1= (c(0))n exp( Nra e. ( z.) )
NIT-1

i=1 j=1

n

= (c(0))n exp

r

n

Pi = N r -n- 0i and ui =
1

Tr.(z.) .

j=1

54

(4. 5)

Neyman has shown that the critical region defined by the inequality

u. > x 2
(r)

2

-- a
i=1

will asymptotically satisfy his definition of an unbiased critical region
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X a(r) is the upper ath quantile of the chi-square

distribution with r degrees of freedom. The tests constructed by

this procedure are generally referred to as Neyman smooth goodness

of fit tests.

We now give another approach for showing that the statistic
r

u. has a limiting chi-square distribution with r degrees o
i =1

freedom. This derivation will also be used in the next section to

generalize the test statistic for randomly censored data.

From (4. 5) we may write

Applying

1 1
In L = (n In c(8) +\Fri Nrir

Tr. (z.) ). (4. 6)

a
e=oco ae) = 1 and c(0) I (z)dz = 0 (4. 7)

s

and taking the first partial derivative of (4. 6) with respect to es and

evaluating it at the point A = 0 yields

n
L 8 ln L 1 \--s

a e
s

I e =o Z, ITS Zj
J-71

for s = 1, r. (4. 8)

Hence the means of the random variables a In L
NrE a e e,o

S

s = 1, . . , r, under H0 are



a In LI 1E ( I )0=0 qn 80 0=0 NIn
5

n

i=
0

1Tr
s 3 3
(z.)dz. = 0 .

For the evaluation of covariances, we need

56

_n
21 a

zln
L 1 1 a8 a c)),c(e) 03) +n aos00 on ae sae n 2 ae 8

(311c(0) s

evaluated at 0 = 0,

az ln L 1 1 a
2

n aesaei ezo'
1 0=0 n (°+n ae 80 c(e)I )

s

=
1

Tr
s

(z)Tr (z)dz)(4

0

-1 if s = /

0 if s Y I

Thus, under H
0

we have

(4.9)

1 a ln L 1 8 ln Li 1 a ln LI a in LiCov( ae Nrri 80/ 18=0' E0=0'n ae 10=0 80 10=0'

az ln L
=-E ( I )0=0 n aes80/ 0=,0

1 if s = )2

0 if s Y 1
s, Q = 1, ... r.



Hence, for

* 1 a1nL 1 a ln Li
Wn ao e=o' ' aer 10=01i

1

1
= ( IT Zj , -N1-;1 1Tr(Zi))1 ,

N/T1
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(4. 10)

the mean vector and covariance matrix are simply E(Wn) = 0 and

Cov(Wn) = I. Therefore, by treating Or
1 3
(z.), .. TTr (Z.)),

j = 1, n, as an r -dimensional random sample of size n, the

multidimensional Central Limit Theorem (Wilks, 1963, p. 258) may

be applied to show W* has a limiting normal distribution with mean

vector 0 and covariance matrix I. Hence, from Lemma 2.3, the

statistic

Wn Cov(Wn) Wn =
a

earg"

ln L
=4.0 0)2

*' 1

i =1

i=1

Tr.(z,))2
1 3

j=1

r
d

x2(r)

i=1

(4.11)
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4.2. A Generalized Smooth Goodness of Fit Test

In the random censorship case, as in Section 3. 1, we let

X1' , Xn and T1' Tn respectively represent the random

failure and censor times with corresponding distribution functions

F (x) and H(t) and density functions fo(x) and h(t). Using the

inverse transformation of (4.2), x = F -1(z), the family of alterna-

tive densities for X corresponding to (4. 3) is

E.
1=1

0
i

Tr
i
(F

0
(x))

,g()(x) = c(e)e f (x) (4.11)

for 0 < x < co and r = 1,2, ..., with corresponding distribution

functions

G (x) = ge(t)dt

ro
qemdt

zqe(t)dt = Q e(z) .

0

For the observable variables Y. = min(X., T.) and 6. = 1(0) for

Y. = X.(Y. = T.), i = 1, . n, the likelihood function isit



where

n

L L
.j= I
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(4.1Z)

S. 1-6.
= (go(yi)H(yi)) (Ge(yi)h(yi)) .

The derivation of the goodness of fit test statistic in Section 4.1

for the uncensored case will now be generalized to the random cen-

sorship case. First we note that the log-likelihood function may be

written as

n

in L = > ln

j=1

n

8,3 1n g
0

(y.) + (1- ,) 1n G
0 (y.))+R(Y, 5) ,

j=1

where R( y, 8) is independent of 0. By defining

a in 1_, 1 a ln L
W (

n Nri-T ao
1

I o=o' NIT). aor ' 0=0'

8 ln
1 1

1 v

1 n,0,

n

1

2, w
`47

j;--1

n 8 ln.f.-.1
80r

i

'0=0
)

(4. 13)
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where

a ln a 1n .Q._1 I IP

Wj ae I e=o' aer 10=01
1

and from (4. 7) and the following relations

Q (z) I z
0=0

a a
aes Q (ez) I e=o aes

0
zq

d
0
(t)t

0=0

z
(t)dt

0

a a
aes ln

g (3) 1 e =o ( s 0c(e)+Tr (F (Y))I 0=0

(4. 14)
Tr

s
( z )

8 a
ae In

GO(Y)10=0 -67 in Q (z)10=0

=

0

a Q (z)
Q (z) 80 0 10=0

1

z s (t)dt ,

0

the components of W can be written as
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n
1 8 ln Li

0=0
1 8

NTT a0 \in j aes J aes in
s

1

a
c; (Y.))1e-oe j+lngo( yi ) (1-5.)

j=1

n z.
1

=
N/ n

(6.ir (z.)+(16,)
z

ir s(z)dz)
j=1

3 8 3 3
j 0

for s = 1,

(4. 15)

For the derivations of the mean and covariance of Wn we apply the

relations

8 ln 1.
0E0 =0( )0=0 80 0=0

8 ln 1. 8 ln /.
0=0)

821n
E0

=0(0=0 80s 0=0 ae 0=0 ( 8050ei e=o

where s, 1 = 1, ..., r; j = 1, ...,n, which are known to hold for

exponential families (Lehmann, 1959, p. 52). Hence

E (W ) = E (W)
0=0 n n 0=0 j

j=1

= E
0=0

(W
j
) = 0

and the (s,1) element of E = Cov(Wn) = Cov(W.) is



1 8 in L 1 8 ln Li
aeCov0,0(

e
I

s
e=o'NIT3.

8 in a in 12,
= Cov

0=0
( aes 10=0' 80 '0=0'

ln a in /.
= E

80
/

I

0=0 80s 10=0

82 in /.
-E0=0

80s8011Ie=o)

2

= -E (5 g (y.0=o j 80 sae/ 0 3
)1 0=0

+ 0
ao

a-6.) G (y.) 10_0)
sae/

By using (4. 7), (4. 14) and the following relations

2
a

c(0)
0 =0

s

a
2

Be
s
ae

/
(z)le=o

t (y)Tr (y)dy
$

0

-1 if s = 1

0 if s i II

8 a
Qe(z))) I

5

-z its (z)dz if s =
0

z
(z)ir (z)dz

s
if s

(4.16)
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a a 1 a

----aesae 1n go(Y)I 0 0 ---ao (7.--Co) a6 o(e) +ns(F0(Y)))
1 0,0

.e

1 /n1 a ta%4_
2

c(8)
2 80/ c") 80s c`u'' c(o) aosae/ c(e))10-T-o

{ 0 if s

-1 if s

2 2
a6755-8 ln Ge(y) I = in Q0(z)10=0e =0 aeSi Si

a

aa Q (z) Qe(4))1e.o
o

a a
(z)

Q2(z)
ao/ a() 'o'z'

2

Q (z)) IQ
0

(z) ao
s
80 0 0=0

1

ss (t)dt) 2

z
+ ( Tr (t)dt) 1 if s =

z 0 0

z

,r ,(t)dt)( Trn(odt)
0 0 0

z

+_(,rz

Tr (t)Tr (t)dt) if
0

Equation (4.16) can be rewritten as
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8 In 8 In
c °"0 =0(

)
0=0 80s 0=0' ae e.o

z.
1E ((1-8,)(
2

Trs(z)dz,ze.o j z. 0

1

z.
3

zi 2 (z)dz)+1) if s =
s

z, z, z.
1

j
1E 0=0 ((1-8

2
.)( Trs(z)dz)4 (z)dz - Tr

s
(z)Tr (z)dz))

Z. 0 0 zj 0

if s f . (4.17)

Now treating W., j = 1, as a random sample of size

from a distribution with mean vector 0 and covariance matrix E

we obtain, once again from the multi-dimensional central-limit
d

theorem, Wri Nr (0, E). Applying Lemma 2.3 and assuming

is nonsingular, we finally have

*1 -1 * d 2Wn E Wn > X (r) (4. 18)

In order to apply the smooth goodness of fit statistic given in

(4. 18), the components of Wn and the component of E should be

evaluated in a simpler form. Since up to 4th order polynomial is

generally considered sufficient (Neyman, 1937), we take r = 4

for illustration. The first four orthogonal polynomials are



Tro(z) I

N 12 (z- f )

1 1
Tr2(z) = Nr7 (6(4- )

2

Tr3(z) = NIT (20(z- 2 )3 - 3(z - ))

1n-4(z) = 210(z- -2- )
4 - 45(z- 1 )2 + 2 .

8

Accordingly, the following relations can be obtained by direct

integration:

zwi(t)dt
0

z(z -1)

z
Tr,(t)dt = \/-5- z(Zz -3z+1)

0

SzTr3(odt=q--7-z(5z 3 -10z 2+6z-1)
0

z
Tr(t)dt = 3z(14z4 -35z 3 +30z

2
-10z+1)

0 1.

j Tri2 (t)dt = z(4-z
2

-6z1-3)
0

2

2
(t)dt z(36z4-90z +80z 2 -30z+5)

0
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(4. 19)



z
3

Tr
3

(t)dt = z(400z 6 -1400z 5 +1932z4-1330z +476z
z-84z+7)

0

z 8 7 6 4Tr4(t)dt z(4900z -2,2050z +41400z -42000z +24912z
0

- 8730z3+1740z -180z+9)

z

Tri(t)Trz(t)dt = NI7.5 z(3z3-6z2+4z-1)

zTri(t)Tr3(t)dt =-

0
N/21 z(8z

4 -20z +18z 2 -7z+1)

zIr
1

(Orr
4

(t)dt N= N-N-3 z(70z
5 -210z4+240z 3 -130z 2+33z-3)

0

ir2(t)Tr3(t)dt = NITS z(20z 5 -60z4+68z 3 -36z 2+9z-1)
0

zit
2

Mir
4

(t)dt = N13 z(180z 6 -630z 5+870z 4 -600z3
+216z

2 -39z+3)
0

Tr3(t)Tr4(t)dt NrTz(525z 7 -2100z 6+3420z
5 -2910z4+1380z 3

- 360z 2+48z-3)

Hence, the first four components of the Wn

(4. 15), can be rewritten as

vector, according to

66



1 81n L
ao 1 e=o

1 8 ln L
ae

2
I 0=0NriT

I a ln L
NriT ae3 ' 0=0

(Nr3- (5.(2z.-1)+(1-5.)(z.-1))
3 3 3 3

1

j=-1

n

j=1

n

j=1

1 2
5.(NI 5 (6(z.- - -

3 J

5.(N17 (20(z.- 1) 3

3 2

Nri-T

1

Nrri.

1 2

2
) + (1-53.

)

Nr-5- (2z. -3z.+1))
3

1-3(z.- )))
3 2

+ (1-5.),\17 (5z.3 -10z.+6z.-1))
3 J

n
1 8 ln L 1

1 1 4 1 2 2
4

, - / (5 (210(z.- 2)
2

-45(z.- )
8

+ )

J J j
j=1

++(1-5.)3(14z.4 -35z.3 30z. -10z.+1)) .

3 J J 3

Let Vs/ denote the (s, .t ) element of the covariance matrix Z.

Then, from (4. 17) we have for s =

1 a ln L
I

a ln LV =Cov
(s s e=o aes e=o' 80/ 10=0)

1
= E 0=0 ((1-6)(

2
(y Tr s(t)dt)

2
-

z
Tr

2 (t)dt)) + 1
sz 0 0

= E 0=0
((1-5)A ss (z)) + 1
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(1- b)A ss (F
0

(y))1(y, 6)dy + 1

Ass (F0(y))/ (y, 0)dy + 1

As s(F0(y)) F0(y) (- dH(y))+ 1,

s = 1, 2, 3, 4, where i(y, 5) is the joint density of Y, 5 and

z
2 ly z

1
A (z) (-2 ( TT

s
(t)dt) - 2(t)dt)

z
Ass

0
z s

Using' these relations and (4. 19) for s = 1, 2, 3 and 4 gives

V11 = 1 + c(Fo(y)) 3dH(y)
0

V22 = 1 + (16(F
0

(y))
5 -30(F

0
(y))

4
+15(F

0
(y))

3
)dH(y)

0

('co 7 6 5 4
V33 = 1+ (225(F (y))

0
0

-700(F (y)) + 8 1 2 ( F (y)) -420(F (y))
0 0 0

+ 84(F
0

(y))
3

)dH(Y)
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co

V44 = 1 + J (3136(F 0(y))
9
-1323 0(F (y))

8
+22815(F

o
(y))

7
-20580(F

o (y))6

0

+ 10260(F
0
(y))

5
-2700(F

o(y))

4
+300(F

o(y))

3
)dH(Y)-

Similarly, the covariance elements

a ln alniVs/ = Coy
0=0 80s 0=0' 80 l 0=0)

where

1

/E 0 =0 2((1-8)( IT (t)dt
s

1(t)dt Tr (t)TT (t)dt))
zz 0 0 0 "

E
0=0 ((1-5)(As (z))

.0Pb

Asf (Fo(y))/(y, 0)dy
0

co

= As/ (F
0

(y))F
0

(y)(-dFI(y)) ,

0

1As/
2

(z)
2 Irs(t)dt s. Tr (t)dt z

Tr
s
(t)Tr (t)dt ,

z 0 0 "`" 0

reduce, for 1 < s < < 4, to

CC

V12 = N11 ((F0(Y))
4

-(F (y))3
)c1I-1(y)

0
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V13 Nrrt (3(F
0

(y)) 5-5(F
o
(y)) +2(F

0(y))
3

)dH(y)

cx)

4 3, ,V14 = N/3 (28(F
o
(06 -63(F0(y)) +45(F0(y)) -10(Foky)) )aH(Y)

0

V2.3 = N35 (10(F 0(y)) 6-25(F
0

(y)) 5+21(F
o

(y))
4 - 6(F 0(y))

3
)dH(y)

`"0

V24 = c%5 (96(F 0(y))
7-294(F

0
(y)) 6+333(F

0
(y))

5-165(F
0

(y))4
O

+ 30(F
0
(y))

3
)dH(y)

V34 Nr7 (3 15(F0 (y)) 8 1155(F (y)) 7+1668(F
o

(y))
6 -1188(F

o
(y))

5

+ 420(F
0

(y))
4-60(F

(y))
3 )dH(y)

From the equations above, the covariance matrix E = [Vsi]

is seen to depend on the unknown censoring distribution H(y). Hence,

H(y) must be estimated in order to estimate the covariance matrix
p

E. Let Hn(y) be any estimator for H(y) such that Hn(y) H(y);

for example, the product-limit estimator defined in Section 3.3 may

be used. Define the covariance estimator E = [<?si] where V\s/

is the same as Vsi except with H(y) replaced by the estimator

Hn(y). Applying the Lemma 2. 7, it is straightforward to show



p

icFk y)(-dHn(y)) k(Y)(-dEl(Y))

0

which implies . Hence P . Therefore, from (4.18),
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* I - 1 * * I

Wn E Wn = Wn (E+o (1))Wn

*f _1 * d 2
= Wn W + o (1) > (r) .

n p
(4.20)

1-1Thus, under H
0

and random censorship the statistic Wn Wn

has been shown to have a limiting chi-square distribution with r

degrees of freedom.

Example. For the sample described at the end of Section 3.5,

the generalized smooth tests of fit for the exponential and Weibull

distributions are evaluated. Since the null hypothesis must be com-

pletely specified in our generalization, specified values have been

assigned to the parameters of the exponential and Weibull distribu-

tions. These specified values include the minimum chi-square

estimates given in Section 3. 5:

A
= 369. 91' 01 = 306. 47 and 0

2
= O. 062.

In Table 2 below, evaluations of the generalized smooth tests



72

of fit for specified exponential distributions and a Weibull distribution

are summarized using the r = 1,2,3, and 4 order transformed

Legendre polynomials. The upper a = 0.05 quantiles of the

chi-square distributions are given in the last column in Table 2. If

the null distributions had been specified a priori, those cases where

the test statistic exceeds the corresponding chi-square value would be

rejected at the a = 0.05 significance level. As expected, the dis-

tributions fitted by minimum chi-square estimation yield relatively

small values for the test statistics.

Table 2. Smooth goodness of fit tests for specified exponential and
Weibull distributions for the breast cancer sample.

F (x) e0 0

H :F (x)= e
0 0

1 '
0

2

01 = 306.47

02
= 0.962

02

01

C h i -
square
Value
(0.05)0 4' 369..91 0 = 300 0 = 250 0 = 200

1

2

3

4

0,0973

0.3360

0.3384

1.0875

3,8435 11.9001

4.5327 13.6946

4.5567 13.8949

5.5073 14,9572

28,6240

33.9522

35.0533

35.9745

0.1089

0.1401

0.1491

1,2120

3.841

5.991

7.815

9.488



4.3. Limiting Distribution for a Se9uence of
Alternative Hypotheses

For 0 0 (null hypothesis HO) we have seen from (4. 11)

and (4. 18) that in either the uncensored or the random censorship

cases the statistic **' -1
W*n

73

has a limiting chi-square distribution

with r degrees of freedom. It is of interest to find the limiting
*' -1 *distribution of W Wn

for the sequence of alternatives

where = .

distribution of W by using the moment generating function approach

for the sequence of alternatives

Ha 0 =

But first, we determine the limiting

(4. 21)

Theorem 4. 1, Let L0
and Wn be defined as in (4. 12) and

(4. 13), and

Cov (W ) =
n

2
a In Lei

0 0=0n 00 00 I 0"

[-E0,0
a

2 ln
1

aosae 0=0

Also let M *(t, 0) represent the moment generating function of
Wh

Wn, where t = (ti, , t ) and 0 is defined in (4. 21), Assume



M ,(t 0) exists for all n in some neighborhood t = 0 and
Wn

lira M ,(t, 0) exists. If
n W00

aInL
ae le=o'

s

and

a
2 In L

80s80

83 In Le

n ao
s
ae ae m

lo

where 0 is in the closure of some neighborhood of 0 = 0,

s,/,m = 1, , r, are all uniformly bounded, then

That is,

1
tIZ,6 +

2
t'Et

lim M ,(t, 0) = e
co Wn

has a limiting multivariate normal distribution with
n
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mean vector Zzs and covariance matrix E under the sequence of

alternatives (4.21).

Proof. For 0 = the moment generating function can be

written



M *(t, 0) = E0(e
Wn

_ C

t'Wn)

t'Wn
e LO dWn

t'W+ln L -ln L
e

n 0
LO dWn..

t'Wn +1n Le-ln LO
,= E (e0=0

where Lo = L0=0 . Expanding the function ln(L0) at the point

0 = 0 gives

ln L
0

=1n L
0

+

rAs a In L A
s

A
,e

a
2 lnLe

1

Fri aes 10=0 80
s

80 10=0
s=1 ,Q=1

r r

+16
s=1 f=1 m=

r
A

s
Am a

3
In Le

n3/2 ae sae /19
8rn 10=e*

* 1ln L
0

+ A 'W
n

A'E A + o a(1)

1 1
= In L

0
+A1Wn- 2 A 'EA - 2 A I(Z -Z)A o a(1)

1= in L
0

+ A 'Wn 2
A IZA +o a(1) ,

where 0 = 0 + (0-0) for I J < 1,
a

2 ln L
1 01

n aesaei 1e=o-' '

75
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and o a (1) is a sequence of sample functions which almost surely

converge to 0 (from the strong law of large numbers we have

= oa (1) ) Hence

1 * )j,

--DIED +t'W+,6'W+o a0-)
M

2 n n
(t, 0) = E0,0(e )

Wn
1 *
2 6 'EA (t+Ar W+o (1)

= e E 0=0 (e
n a )

Applying Lemma 2.8, we find

1 *
-2" IN Z L (t-f- LI ')Wnlim M (t, ) = e lim E, 0 i 0=0 (e

nc0 W n-00n
1

(t+L)'( En
1

W.)
= e lim E (e

j= j
070n-00

n
= e lim E 0=0

( e
n-00 j=1

W.

1
AIZA

2 (t+.6)'W n
,= e lim (E (e ))0=0n-00

where W = W. with W. defined in (4. 13). Using a Taylor

series expansion of e(t+,a)'W

1

e(t+A)IW -7 ,6
2
1

.6
s (i_u) Z

d33 (t+,6)1W)du,1 + (t+)1W + ((t+)1W) +

0 du
e

yields



1
E0=0 (e(t+,6)'W) = 1 + E0=0

((t+.6)1W) + E0 =0( 2
((t+A)'w) 2)

+ E (

1

(1-11
2 3

(e
d u (t+,6)'W)du)

0=0 2 3
0 du

1= 1 + 0 + 2n
(t+,6)1E(t+Zi) + o(n

-1
) ,

which follows from

E 0=0
((t+,6)1W) =-

r

s = 1

= 0 ,

1
E0=0 (((t+,6)'W)

2
) = E0 =0(

\TT)

= En 0=0

1
a In f.

tj +A .) Nn E0 =0(
)

0=0 ae
s

o=o

r

s = 1

r

a in Q.
2

s
t +46. )( 80 1 ))s s 0=0

a ln .

t
S s ae I e=o

s=1 i=1

a in
x ---1 I (t +A ))80f 0=0 I

r a 2 ln .

(ts+,6
s

)E
0=0 ae ae e.o)(t.e+6Si

= 1

1
(t +,6 ) 'E(t+,6) ,

and
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E0 =0
(1-u) 2

d
3

3

u(t+A)1W du)e
2

du

1 (1-u2 )
2 3 u(t+A)'WE

=0
( ((t+A)IW du)

0
0

r 1 u)2
=

0
2 0=-0

= 3 /2 0(1)
n

= o(n-1) .

Accordingly,

r

s=1

1
a In f

)du
s

3u(t+A)IW
ts+A

s) NrE ae e=o

1
AIZA

lim M *(t, 0) = e lim 0 0 (e(t+A)'W ))
n

W 00n
1

LIZA
= e

2 1 1lim (1+((t+ArE(t+A)+ n
-1

)))nn 2
1 1

L'ZA (t+46)?E(t+A)
= e

1CZA+-2 tIEt
e

This concludes the proof.

A d
Based on Theorem 4.1, we can write for 0 = Wn W ,

*' -1 *where W Nr(ZA, E). It is well known that W W is non-

central chi-square distributed with r = rank (Z) degrees of freedom

and noncentrality parameter (ZA)'Z
-1

(EA) = AIZA The fact that
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*' -1 *Wn E Wn is a continuous function of

*' * d *1
Wn E Wn W E W.

Wn implies

That is, Wn
*i _1

W*n
has a limiting non-

central chi-square distribution with r degrees of freedom and

noncentrality parameter A'EA. In addition, if H(y) is replaced by

a consistent estimator Hn(y) in E, the corresponding statistic
*I _l

Wn
"

Wn will have the same limiting noncentral chi-square dis-
*1

Wn E Wn .

mainder of this section is devoted to verification of the

in the Theorem 4. 1; that is,

tribution as the statistic

The re

assumptions

and

a in I. 82 ln L-1-
aes 0.0, = 1, .

1 0

n ao sae/ 10 =0

a
3 ln L

1 0

n DOsao/ Dem

where 0 is in the closure of some neighborhood 0 = 0, are

uniformly bounded. We will use superscripts s, /, m to represent

derivatives with respect to Os' , Om and write z = F(y)

First, we derive some results for later reference. By writing

1 Zr. 0.7.(z)
A(0) = c -1 (0) = e

i =1 dz,
0

where c(0) is defined in Section 4.1, we may express
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As')

2
csf (0) =

1
As(0)A1 (0) A

sf
(0)

A3(0) A2(0)

csim(A) =
6

As(0)A1 (0)Am(0) + 2 (As(0)Alm(0)
A4(0) A3(0)

+ Asf
(0)Am(0)

+ A
sm(0)A (0))

1
A

sfrn
(0) ,

A (0)

where, for s, m = 1, , , r

1 E, 0.11- (z)
As(0) =

1=1 i
Tr (z)dz

0

1

E. 0.Tr.(z)
Asi(0) = e

L=1 I t, (z) (z)dz
0

A
sfm (0) = f̀

lo

E.
1=1

0 i
Tr (z)

e Tr
s

(z),T (z)TTm(z)da.

Application of the mean value theorem for integrals gives

a in f
a

80 0=0 80
(6 .th g

0
(y.)+0 -5. in Go (n)) 0,0

3

1 1 8

(6i( 705
s

(0)+1Ts(F(Y))))'(1-6j)Ee 7.) ae G(19)1 e,o

=6,7 (z.) + (1-6,) 1
Tr (z)dzJ$ J J z.

0
s

3



6.TT (z .) + (1-8.) z. Tr (z
*

)
3 S 3 J z. 3

3

= 6,Tr
s

(z.) + (1-6.).Tr
s
(z,) ,

J J 3 3

where 0 < z < z < 1, j = 1, . and hence are bounded.
J3

Similarly, we have for s

a
2 ln L

1 1

n aesaei 8=0 n

where

Hence,

n z.
zJ

1

0+(1-6.)(- 2
.51 Tr (z)dz J iri(z)dz

3
z. 0

z.

+

SIJ

z
Tr s(z)Tri (z)dz)

J 0

n

= (1-8 z.Tr ) z.Tr (z
2.)1 1 i

n j )(- 23s(zj 383
..3' J

z.

1 3 3
+

z ,j
z, Trs3x(z.)Tr(z,)),3

3

=
1

1-6,)(-Tr (z. )Tr (z2 )+Tr (z.3 )Tr (z3)) ,

J sJ-eJ
3

z,
1

, z2, z. represent corresponding mean value points.
J J J
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1
02 ln L

0

I

1 1 <
=n80 ae o 2

s
j=1

n

n

j = 1

M

2 3

s(zj)I j + Tr s(z j )1 171

(21Trs(z*)I i(z4)I

where Tr (z ) = sup Tr (z), Tr (z
A

) = sup Tr (z) and
o < z < s o < z <

M = 2ITrs(z*)I (Tr i(z6), In the case of s = 1,

821n L
1 0

862
10=0

s

1(1-8.)(-
2J z,
J

S 1

.
( Tr

s z(z)dz)
2+

0 J

z.
S

0
Tr s2 (z)dz) + 1

and using a similar argument as in the case s 1 , we can find

some constant M' such that

Hence in general,

1
a

2 ln L

00
I2 0=0 < 1\4'

s

1
82 in L

n 80saei

is uniformly bounded for s,./ = 1, . , r.

Finally, for 0 in the closure of some neighborhood 0 = 0,



1
a3 In L0

n 80 80 00
s m

where

1 a
3

In g (y.)
n. 5j BOSH/8 0 3

6 j=1

3

+ (1-8.) In G (y.)80ae fa e e '
s

a3
ae ae ae ge(n)

s m
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is a function of only c(0), cs(0), cs.e (0), csim(0), and is therefore

constant for given 0, say M For the second term
g

3 3

ae 80 ae
°

1n G0 j( Y ) 8 0 0 0 Q
in Q

0 (z j)s m s

3
2 Qs(z

j
)

0
(z,)Q(z.)

3 0
m

3Qe(zi)

-
1

(Q
0

(z.)Qm(z.)+Qsrn(z ,)Q1(z .)
Q

2(z.) 3 0 3 0 0

0 3

+ Q.ern(z.)Qs(z.3 ) )
0

1 Qs.fm(z
Q

0
(z. 0 j

Again, applying the mean value theorem for integrals and writing z

with superscripts corresponding to mean value points, we can write



where

Q
0

(z
j

) c(0) e
0

z. c(0) e

= z, M
3 J

M. = c(0) e

is bounded away from zero, and

Qs(z.) =

where

0

Z.t=1 8. .(z)

1
Z. 0.Tr (z )

1=1 i

1
Z. 0 Tr (z )

1.= 1 i

dz

a 0,Tr,(z) 0.Tr.(z)
c

s (0) e =1 1=1 t
+ c(0) e Tr s(z) dz

E. 0.Tr.(z
2)

Er. , 0,Tr.(z
3)

= cz.( 5(0) e
1=1 1 =1

c(0) e
Trs(z3))

z, M . for s 1 , r,
3 5, 3

3
Z. 0.Tr.(z ) Z. 0,7,(Z )

M =
s (0) e 1=1 1 1 + c(0) e 1=1 1 t

Trs(z
3)

s,

84

are bounded. By the same technique, we obtain for s, , m = 1, , r

Qs.f
=

Qaem(z.) z,M
j j j
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where M and M . are both bounded. Hence,
s/ , 3 Om,

3
3

In G (y,)I = M .M
j
M .

S
aeao

I m80 0 3 0 s, 3 1, m,(z .1\4.)
3 J

2
z. (M .M +M .M

2 3 si ,3 rri,j sm,3 1,j
(z,M.)

3 3

+M ) +
1 z, MIm,j s,3 z.M, sirn,j

3 3

1
= M .M M .

1\43 s,3
.

tri,3

(M .M .+M ,M .+M ,1v1 .)
,3 ru,3 sm,3 1,3 im,3 s, 3

1
+ m .

/M.s m, 3
3

Therefore, we can find some constant MT which is independent

of the

Finally,

z:s such that

3

aesael8 In Ge(yi) t 13 I 5 MT



a3 L
0

In 80saelaem le'

1
<

n

1
< n

j=1

n
a

3

ao 60 ae g (01 +0 0

j=1 s f m

n

m
g

+m
T

)

= M +MMg T

1

In aesaeaem

a
3

LIn
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a3 G (01 9
0 e

s m

is uniformly bounded.
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