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GOODNESS OF FIT TESTS UNDER RANDOM CENSORSHIP
1. INTRODUCTION

In life-testing and medical survival studies it is often
inconvenient or impossible to make complete measurements of the
life-times for all experimental units in the sample. In such situations
the observations on life-time may be right-censored. The simplest
kind of censoring is that of single censoring which occurs when all
observations are censored at the same time. There are two types of
single censoring: for Type I censoring the censoring time is prede-
termined and for Type II censoring the censoring time corresponds to
a predetermined ordered failure and is therefore random. In many
studies observations are not censored at the same time, which is
frequently referred to as the case of arbitrarily censored data.

In single censoring cases, Barr and Davidson (1973) developed
appropriate tables for the Kolmogorov-Smirnov statistic for both types
of single censoring. ILurie and Hartley (1972) have also generalized
the Hartley and Pfaffenberger (1972) criterion for the case of Type II
censoring and a simple hypothesis.

In this thesis, the problem of testing goodness of fit for
arbitrarily censored data is considered. We generalize the classical
goodness of fit test statistic for both the simple and composite

hypothesis cases and the Neyman smooth goodness of fit test statistic




for the simple hypothesis case. For studying large sample distribu-
tion properties of the generalized goodness of fit test statistics, we
assume random censorship.

For the random censorship model the random sample of failure

times Xl’ . ,Xn are censored by a corresponding random sample
of censoring times Tl’ c ,Tn. That is, if we define
Y, =min(X,, T,) and &, =1(0) for Y.=X.(Y.=T.), j=1,...,n,
J J ) J J J ) J
then only the random variables (Y1 Ve e s Yn, 61, v 6n) may be

observed. If we let Fe and H denote the right-sided distribu-

tion functions for random variables X and T, respectively, and

= < < ., < < = iti i
0 aO a1 - ar ar+1 © the partition points on the real

line, then the generalized statistic

is shown to have a limiting chi-square distribution with r degrees

of freedom, where

D - Sai L (-dF (1))
— R PN ‘ 6 ’

A A
F and H are product-limit estimators developed by Kaplan and

Meier (1958). In the composite hypothesis case, we show that if 6




is replaced by a minimum chi-square estimator 8 in the statistic
given above, then it will have a limiting chi-square distribution with
r-s degrees of freedom, where s is the number of parameters
estimated from the sample.

In Chapter 2, some basic probability relationships are given and
certain lemmas are proved for later reference. In Chapter 3, the
product-limit estimation method is illustrated and the chi-square
goodness of fit test statistics are developed. The generalized goodness
of fit tests for exponential and Weibull distributions are illustrated for
a sample of survival times for breast cancer patients. In Chapter 4,
Neyman's smooth goodness of fit test for a simple hypotheésis is
generalized for the random censorship case. The limiting distribution
of the generalized statistic is also considered for a sequence of

alternative hypotheses,




2, PROBABILITY BACKGROUND AND NOTATION

We shall use some notation and results given by Mann and Wald
(1943) for stochastic limits. ILet {an} be a sequence of

k-dimensional vectors, {Zn} a sequence of k-dimensional random

vectors, {qn} a sequence of positive functions of n, and define
a =of(g) if lim | a /q || =0
n—-©0
a = O(qn) if | an/qnll <M forall n, where M is
some positive constant
Z = if zZ / i bability. More
n Op(qn) i n q, converges to zero in pro ility

precisely, given € >0 and &6 >0, there exists
N such that for n >N )
€,6 €, 6
>1 - €.
P(|| zn/qnll <8)>1 e
Z =0_(q ) if for given € >0, there exists Me such that

for all n, P(|| zn/qn|| <M)>1-e.

Mann and Wald (1943) have shown that all the ordinary operation rules

regarding O and o are also applicable to Op and op. For

1/2
n

example, if Z =0 ( ) and Y =o0 (1), or Z_=0_(l)
n p n p n p

2
and Y =o (nl/ ), then Z'Y =o (nl/Z).
n p nn p

Some basic probability results are listed below for later

reference,




If Z is a random variable and independent of n,

then Z = Op(l). (2. 1)

If Zn converges in distribution, then Zn + op(l)

converges to the same distributionas 2 . (2.2)

If Zn converges to Z in probability (Zn £ Z)
and g is a continuous function, then g(Zn)
converges to g(Z) in probability. In other words,
Zn -Z = op(l) and g continuous imply that

g(Zn) - g(Z) = Op(l). (2.3)

d
If Zn converges to Z in distribution (Zn—’ Z)

and g is a continuous function, then g(Zn)

converges to g(Z) in distribution. (2.4)

Relation (2. 1) is immediate, (2.2) was established by Mann and Wald
(1943), and (2.3) and (2.4) can be found in Chung (1968, p. 66) and
Burrill (1972, p. 291), respectively.

In addition, we need the following lemmas:

Lemma 2.1. If {Zn} is a sequence of k-dimensional random

variables which converges in distributionto Z, then Zn = Op(l)-

Proof. It is sufficient to show for given € >0, there exist

M >0 and N_. such that for n>NE,P(||Zn|| §M€)>l—e.




Because Bn can be chosen such that P(|| Zn” < Bn) >1 -¢ for
n=1,...,N, and M' =max(M ,B,,...,B__ ), it follows that
€ € € 1 Ne

P(lz_|l <M!)>1-¢ forall n.

Let {Fn} and F be the distribution functions corresponding
to random variables {Yn = | ZnH} and Y = ||Z]|. Since the norm
is a continuous function, result (2.3) and the assumption of the Lemma
gives lim Fn(y) = F(y) for all y suchthat F(y) is continuous.

n—"o
That is, for given € >0, there exists N€ such that for n >NE ,

Fy) - -;- SF (y) SF() +—;— . (2.5)

—

Also for given ¢ >0, there exists M, such that

P(H Z“ < ME) >1 - EZ- . Without loss of generality, we can choose
1\/1’E to be a continuity point of F. Using (2.5) we than have for
n > NE

Pz I <M =F (M)

€
2FM ) -3
=Pzl <M -3
€ €
>l-3-3
=1 - €.

Lemma 2.2. Let {Zn} and Z be defined as in Lemma 2.1

and {An} be a sequence of s x s random matrices such that

An—p’O, then Z'A Z 'P’O.
nn ' n




Proof. Applying Lemma 2. 1.,

Z'AZ =0 (1o (1O (1) =0 (1), the Lemma follows.
nhnn p P P p

Lemma 2.3. Let {Zn} be a sequence of k-dimensional random

vectors such that Zn — N, (0,V), where V is a positive semi-

k

definite symmetric constant matrix, and V  be a generalized

- d
inverse of V. Then ZrI1V Zn —'xz(s), the chi-square distribution

with s = rank (V) degrees of freedom.

Proof. Let the random vector Z be distributed according to
Nk(O,V) (Z ~ Nk(O,V)), and define the function f from Rk to
R1 by f(Z)=Z'V Z. Since £(Z) is a polynomial it is a continu-
ous function of Z, which implies, from (2.4), that £(Z ) < £(Z).

A well known result is that if Z ~ Nk(O, V), then Z'V Z ~ XZ(S):

. d
where s = rank (V). Hence, f(Zn) = Z;IV Zn—*xz(s)-

Lemma 2.4, Let {Vn} be a sequence of s xs random

matrices, and V be some s x s nonsingular constant matrix.
p . .
If V - V. then for given ¢ >0, there exists N such that for

n>N_, P(Vn is nonsingular) > 1 - e.

Proof. The det(V) is a polynomial in the elements of V

and ig, therefore, a continuous function.

P
From (2.3), we have det(Vn) — det(V). Let a = det(V)#0,




6 = J%L and € >0 be arbitrarily chosen; then there exists Ne

such that for n > N€ ,

P()det(V)—det(Vn)l <8)>1 - e.

Since for n >N€ ,

v : |det(V)—det(Vn)| <8 C v : |det(V)] —|det(Vn)| < 6}

= {Vn: |det(Vn)| > |al| -J—;-L}

= {V_fet(v )[> L‘;—L} ,

it follows that P(Idet(Vn)I EJ%L) >1 -€, i.e.,

P(Vn is nonsingular) > 1 - e.

Lemma 2.5. Let {Vn} and V be defined as in Lemma 2. 4,

-1 P -
then Vn 1 V  implies that an -V 1.

P
Proof. Since V_— V, for any chosen ¢ >0 and nm >0

€

there exists N' such that for n > N; where

1

>1 -
n’ P(An) 1

, 2’
A_={v ||lv -v| <n}. Let B ={V :V_is nonsingular}, then
n n n - n n n
from Lemma 2.4, for given ¢, there exists N: such that for

n>N", wehave P(B )>1 - Hence, for n >max(N' _,N"),
¢ n 2 €,M €

we obtain




n n
€«
> R
21 2 2
=1 -€,

where the first inequality can be easily shown by using the relation

P(A)=PA ~B ) +PA ~BY).
n n n n n

. -1, . . . .
Since Vn is a continuous function of Vn (provided the inverse

exists), for given 6 >0 there will exist 7 such that

||Vn—V|| < n implies ||Vr'11-v"1|| < §. Hence

A ~ B ={V:|
n

V -V]| < mand V_ is nonsingular}
n n - n

_C_ {v:]|| V;ll vl | <6 and v, is nonsingular} ,

which gives

P(|| VI;I-V*IH < 8 >P(| VI;l—V—l“ < 6 and Vn is nonsingular)

> P(|| Vn—V” < mand Vn is nonsingular)
=P(A ~B)
n n

>1 - €.

—

In summary, for given € >0 and & >0 there exists N_ & such

1 -
that for n>N_ , P(|| v, -V 1” < 8 >1 - e. This completes the

proof.
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Lemma 2.6. Let {Gn(y’)} be a sequence of monotone random

functions such that Gn(y) L G(y), where G(y) is continuous over
the closed interval [0,a]. Thenfor € >0 and & >0 there exists

N such that for n >N

€, 6 €,6"’

P( sup [G_(y)-G(y)] <8 >1-¢.
0<y<a

Proof. The proof will be given for the case where the sequence
{Gn(y)} is nonincreasing. The proof for the nondecreasing case is
similar.

Since the continuous function G(y) is defined on a compact set
[0,a], itis uniformly continuous. That is, for given & >0 there
exists M such that for any two points c¢,d in [0,a] with
[c-d| <m, [Gle)-G(d)] <3. If we define k by k-l <2<k,

and divide the interval [0, a] evenly into k subintervals with

corresponding partition points 0 = bo < bl <... < bk = a, then
|G(b )‘G(b)| <-6— for i=1,...,k.
i-1 it —2 ’ ’

For the assumption Gn(y) B G(y), for given € >0 and &6 >0

there exists N such that for n >NE

€,06 , 6

6 oo
P(lG (b)-G(b)| <5, 1=0,...,k) >1-¢.
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N — . —6- j =
Defining the set Bn, 5" {Gn(y)- }Gn(bi)-G(bi), <o 0,...,k}, we

in ‘ < <
then obtain for Gn(y) € Bn, 5 and bi-l <y —bi ,

5 & _
<558
and
Gly) - Gn(Y) < G(b _1) - Gn(bi)
= G(b _1) - G(bi) + G(bi) -G _(b,)
5 & _
_<_2 + 2 - 6Q
Hence, sup |G (y)-G(y)| <& for i=1,...,k, gives
n <
b, . <y<b,
i-1—7—"4
sup |G _(y)-Gly)| < max  sup |G(y)-G(y)| < 8.
0<y<a i b, <y<h

Therefore, for given ¢ >0 and & >0 there exists N 5 such

that for n>N ., P( sup |G (y)-Gly)| <8)>1 - «.
€, n -

0<y<a

Lemma 2.7. Let {Qn(y)} and {Gn(y)} be sequences of
monotone random functions such that {Gn(y)} are uniformly bounded,
p p
Qn(y) — Q(y) and Gn(y) — G(y), where Q(y) and Gl(y) are

bounded and continuous. Then, for arbitrary 0 < a < b < o,
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b p b
5 Qn(Y)dGn(Y) - g Q(y)dGly) -
a a

Proof. The proof will be given for the case where Qn(y) is
nondecreasing and Gn(y) is nonincreasing. For the other cases,
the proof will be similar.

Applying Lemma 2.6, for given € >0 and & >0 there

PB' [)>1- where

exists a N' such that for n >N' _,
€ €, 6 n, 6

£
6 2’

' 5
Bn, 6 = {Qn(Y): Sup IQn(Y)—Q(Y)I ir} ’

and M is some constant such that IGn(a)-Gn(b)l <M, Qfa) <M

and Q(b) < M. Similarly, for given ¢ >0 and & >0 there

exists N" such that for n >N" , P(B" )>1 - e—, where
€, 6 €, 6 n, 6 2
B!, ={G_(y): sup |G _(y)-Gly)| <2}
n, 6 n n — 8M
asy<h
Hence, for n >max(N' _,N" _), we have
€,68 €,8
[} n > ! - 1" Cc
P(Bn’ 5 and Bn’ 6) > P(Bn’ 6) P((Bn’ 6) )
€ €
>l-5-3
=] - €

: 1 n H
Taking Qn(y) € Bn, and Gn(y) € B we obtain

) n, §
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(" (”
l“a Q,(y)(-dG_(y) - | Qy)(-dG(y))]

a

b b
< |§ (Q_(y)-Q(y)(-dG_(y)] + |§ Qy)(-d(G_(y)-G(y))
a a

b
5§ R, (y)-Qy) | (-dG_(y))

a

b
b
+ G _(y)-Gy)])] +§a (G_(y)-G(y)dQ(y)]

< sup |Q (¥)-Qy)| |G _(a)-G_(b)]
af_Yib n n n

+ | Q(a)] |Gn(a)—G(a)| + |Q(b)||Gn(b)-G(b)|

+  sup |G _(y)-G(y)|[Q(b)-Q(a)]

a<y<hb
6 & 6 b
— — — = 2
E4M M+2M8M+ZM8M+8M M
_5,8,.8. 8
474 4 4
= 6.
That is, for given € >0 and & >0 there exists Ne 5 such that

>
for n Ne,6’

b ~ b
P(|§ Q,(y)(-dG (y)) - S Qly)(-dG(y))|< 8) > 1 - «.
a a

This concludes the Lemma,.
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Lemma 2.8. Let {Yn} be a sequence of k-dimensional
N t'Y,
random vectors and t = (tl, ce, tk) € R . Suppose E(e )
'Y,
exists for all n in 'he neighborhood of t =0, 1lim E(e )
n—>o

exXists, ainc Rn is some uniformly bounded random function which

almost surely converges to zero, then

t'Y +R t'y

lim E(e n n) = lim E(e n) .
n— o T p—
t'Y +R t'Yn+R t'Yn t'Yrl
Proof. Since E(e = ™) =E(e Te ) + E(e ), it
t'y R
is sufficient to show 1lim El(e n(e n—1)) =0

n—+x

Applying the Cauchy-Schwarz Inequality, we have

t'y R t'y R
E(e e 1)) <E(le e "-1)
2t'Y R
1
<_(E(e n))l/Z( ( n_l)Z) /2
and
t'y R t'y R
E(e e "-1)) > -E(le e *-1)|)
2t'Y R
> -(Ee n))l/Z(E( n_l)z)l/Z.

Hence, by Dominated Convergence Theorem (Chung, 1968, p. 40),




0

which implies

15

2t'y R
1/2 2
= - lim (E(e M) lim (E(e “-1) )1/2
n — oo n— oo
t'Y R
< lim (e (e "-1)
n—+ o
2t'Y_ 4 R
< lim (E(e n)) lim (E(e n—1)2)1/2
n—+oo n—ow
= 0,
t'Y R
lim E(e (e M-1)) = 0.

n—x
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3. CHI-SQUARE GOODNESS OF FIT TESTS UNDER
RANDOM CENSORSHIP

3.1. Distribution Structure

Let Xl’ ceoey, Xn represent a random sample of n failure

times from some unknown right-sided cumulative distribution

FG(X) = Pr(X >x) with density fe(x), x >0, where 0 isthe

parameter in some s-dimensional parameter space 2, i.e.,

e QC R®. Note that F (x) is a left continuous and nonincreasing

0

functionof x, F_(0)=1 and F _(©)=0. We also assume that a

9( 0

corresponding random sample of censoring times Tl’ cey, Tn ,

which is independent of X Xn’ come from some other unknown

LR

right-sided cumulative distribution function H(t) = Pr(T >t) with
density h(t), t >0. For the random censorship model, the actual

sample observations are Y Y b, .., 6n where, for

1," n 1,
i=1,...,n, Yi = min(Xi, Ti) and

0 if Y =T. (X.>T.)
1 1 1 1

1 if Y=

|
>
>
A
H

The joint distribution of Y and & can be derived easily as

1-
2= (£, (y)H) (F (y)hr))' ™°
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Hence, the likelihood function for a sample size of n is

n n 5_1 1—6i
L= 1:1 £, = 1} (fo(y)H(y,) (Fy(y)hly,)) .

3.2. The Classical Chi-Square Goodness of Fit Test
for Uncensored Data

We consider the problem of testing the hypothesis

where F (x) belongs to some specified family of distributions

{Fe(x):e € 2} and 6= (61, . ..,es) e QC R®. For the uncensored

data case, failure times of all sample units are observed, hence the
classical chi-square goodness of fit test can be applied to test the
hypothesis (3. 1),

Let 0= ag < ... < a 17 ©  be the partition points on the real

line, and the random variables Vi be the number of Xl’ e, Xn

that fall in the ith interval (ai-l’ai] for i=1,...,r+l; then
the joint density function of Vl’ e ’Vr+l’ fe(vl, ce ’Vr+l) will be
v v
_ n 1 r+l
fe(vl’ ”"Vr+l) - (Vl, cee,V +1)Pl (8)- 'Pr+l (),
- T (3.2)

where




18

r+l r+l
Zp.(e):l; Zv—n
i i
i=1 ‘ i=1
and Pi(9)=Fe(ai_1) —Fe(a.l), i=1,...,r+l, i.e., Vl""’Vr+l
are multinomially distributed. Using the asymptotic normality
property of the multinomial distribution of Vl’ ey Vr+1’ and sup-
posing the null hypothesis (3.1) is simple (6 simplified), Karl
Pearson (1900) introduced the statistic
+1 2
& (V,-nP (8))
Z — (3.3)
nP (8)
) i
i=1

and established that it has a limiting chi-square distribution with r
degrees of freedom. In the case when the null hypothesis (3.1) is

A
composite, © may be replaced in (3.3) by an estimator 6, such

as a modified minimum chi-square or equivalently the maximum

likelihood estimator derived from (3.2), which is a solution of the

equations
+1
*l v.-nP.(8) 8P.(0)
z L : : =0 i=1,...,8.
Pi(e) ae. 2 J . LA 3 g
i=1 J
+1, 2
< 1V,-nP (8)
Cramer (1966, p. 426) has shown that Z '-‘——:—‘ is
i-1 *F®

asymptotical chi-square with r-s degrees of freedom. However,
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in the case when 6 in (3.3) is replaced by the maximum likelihood

estimator © based on the original random sample Xl’ ce e, Xn’

Chernoff and Lehmann (1954) proved that

+ o~
rtl v P @)% 4 S

i 1 2 2
Z \ — y%(r-s) + ijzj

=1 nPi(G) i=1

where 0 < )\j <1 and the Zj's are independent and N(O, 1)
distributed for j=1,..., s.

In the next section, a nonparametric estimator for FG(X) is
introduced, and in Section 3.4 the chi-square goodness of fit
statistics are generalized to random censorship. For the case of a
composite null hypothesis we only congider the minimum chi-square

parameter estimation procedure for 6.

3.3. The Product-—Limjt Estimator for Censored Data

A
The product-limit estimator F for the distribution function

Fe was derived by Kaplan and Meier (1958) and was reaffirmed by

Efron (1967) as a self-consistent estimator. If we define the

sequences of random variables Y .Y and & . 61‘1 as in
n

1" 1

Section 3.1, and assume, without loss of generality, that

Y1 <... < Yn, then the product-limit estimator for the failure

distribution Fe(s) is defined by
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k-1 ner 6r
F(s) = -1 (n—r+1) if s ¢ (Yk—l’Yk]
=0 if s>Y (3.4)
n
=1 if s S_Yl .

The product-limit estimator for the censoring distribution H(s) can

be expressed in a similar form

N k-1 ner 1-6r
H(s) = Il (m) if s ¢ (Yk-l’Yk]
r=1
=0 if s>Y (3.5)
n
=1 if s S_Yl .

The following example is given to illustrate the product-limit
estimation procedure. For a sample size n = 10, suppose five
experimental units failed at times 0.5, 1.2, 3.7, 7.8, 11.0 months,
and the other five units were censored at 1.0, 3.8, 8.1, 9.2, 11.4

months. From the table below the product-limit estimates of Fe

il 1 2 3 4 5 6 1 8 9 10
y. {05 1.0 1.2 3.7 3.8 7.8 8.1 9.2 11.0 11.4

6 1 0 1 1 0 1 0 0 1 0

and H at 4 and 10 months are
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5 )

Copo(deer e 901807016150 27
P = 1 qooir) T = (50) (@) 5 () () = 4
Puoy- n (L= r 214030020 21

oy 10-rtl 20)(5) (3 (3) =55
5 1-%

o g 10 Y% 9 0817060051 20
o) - 1 (o %20 403124 10

- U (Tose) GTUENTNE) = 57

Kaplan and Meier (1958) have shown that f‘(s) is a consistent

estimator of Fe(s); in addition Efron (1967) stated that under

random censorship nl/z(f‘(s)—Fe(S)), considered as a stochastic

process in s, has a limiting normal process, as n — %, with

mean vector 0 and covariance kernel

min(s, t) 1
I'(s, t) = Fe(s)Fe(t) S;) — (-dFe(z)). (3.6)

H(Z)Fe(z)

The formal proof of this property for continuous Fe and H, was

given recently by Breslow and Crowley (1974). Hence, defining

£'= (Fla,) Fa)), F. = F_(a_)) atth titi
ay), ..., Fla))), 0 Fe(al),..., 03, a e partition

points 0 < a1 < ... < ar < %, and assuming Fe and H are

continuous, we have
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1/2, d
Z =n (F-F, —> N_(0,ZX) (3.7)
n 6 r
i.e., Zn has a limiting r-dimensional normal distribution with

mean vector 0 and covariance matrix X = [I‘(ai, a,)]. This is the

j
underlying distribution theory on which the goodness of fit test statistic
is developed in the next section.,

3.4. Derivation of the Generalized Chi-Square Goodness
of Fit Test Statistic

Corresponding to the partition points 0 < a, <...K< a_ < ©,

we define the r xr matrices

1 0 -1 0
Fe(al) 1 -1
E = ' v 3’ C = .
. 1 .
0 -
0 1 -1
Fola))

———

*
and let Zn=CEZn, 2 = CEZE'C', where Zn and X are

defined in the last section. From the result (3.7), we have

- d
Z — N (0, £%), where
n r
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A A~ A A
E _( 1/2( F(ao) ] F(al) | nl/z( F(a —l) F(ar)))
n Fe(ao) Fe(al) Fe(a -l) Fe(ar)
Dl. 0
S% = . , (3. 8)
0 D
r
a,
' 1
Di = S > (-dFe(Z))
a; H(Z)Fe(Z)
for i=1, , T

We can assume that X is a nonsingular matrix; from Lemma 2.3

- d 2
we obtain ZI'IZ) 1Zn — X (r). Further, from the following relation

z'zlz =zpce e s g e icez
n n n
= (CEZ )'(cEZEC) Y(CEZ )
n n
=z'zx7 17
n n
/N
§ (?(ai-l) Fla,) 2
:nz Fe(a—l) Fe(a)
D, ’
i=1
we have
PN
fa, ) F(a)
( -1 i )2
- - F.(a, ) F.a) ¢
ZIE 1Z = Z'Z* lZ :nz ‘ 6 1 l 9 1 —_ XZ(r)'
n n n n D
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el
If we estimate H by the product-limit estimator H defined
in (3.5) and assume H is not equal to 0 at all sample points, then

by using the consistent property of H and applying Lemma 2.7
1 1

(set Q ==——=, Q=—=, G =G=F,.) we have
n ﬁFg HFS n ®

A ai 1 p { ai. 1
D, =§ A 5 (-dF (z)) —> ‘g A (-dFz)) = D

' Ve AeFle ° 2, A@Fi@)  °
! (3.10)
If we let
A
Dl 0 :
Al .
Sk = , (3.11)
A
0 D
r
A P
then (3.10) gives X% — Z%. Therefore, by Lemma 2.5,
o -1 -1 . .
2% T o= Xx T+ op(l). The following relations
_l A«-,Hl-" — '—I _1 =
Z'Zx "Z =27Z'(Z*x "+o (1) Z
n n n P n
_ -l1=
=Z'Z* " Z +o0o (1) O (1)
n P
—r' _1—
= 7, 24 Z +o (l) ’
n P

with (2.2) and (3.9) imply that
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i=1 i (3.12)

Hence, for large sample sizes, we can use the statistic specified in

(3.12) to test hypothesis (3.1) when 6 is known.

3.5. The Composite Null Hypothesis Case

The case of a completely specified life time distribution is very
limited in application. More generally, the null hypothesis is
composite and the parameter needs to be estimated. In this section
we use the minimum chi-square method to estimate 6 and will
generalize R.A. Fisher's theory (1922, 1924), which gives a reduction
of one degree of freedom in the limiting distribution for each param-

eter estimated from the sample, to the statistic

(3.13)

We assume the number of parameters to be estimated in the null
hypothesis (3.1) is less than the number of partition points, i.e.,
A
s <r, andlet 6° represent the true value of © and 6 the

minimum chi-square estimator for 6. We also use superscripts,




j.k, 4 to represent partial derivatives with respect to
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ej’ 8.,6,; j,k, £ =1,...,8. Some further notation is now summarized

k>4

for later reference. For i=1,...,r and j,k, £ =1,..

™
£ = F(a,), with F(a,) defined as in (3.4)

F.1 = Fe(ai)
PN
Fi

S.1 = i:'

C (Si—l_si)2 A
gn(e) =n Z —_— with D.1 defined in (3.10)

’~
i=1 Di )
e T S| 1 s
G (0) = (7= g (8), ..., =g (0))

_rd ik
G (8) = [~ g "(0)]

FlF
Aé] :(-——_,.—...1_..-_}-)
ot i Fi-l ©
1 1
AI: 1/2 (AO ] :-ASO )
(D.1 )o 0,1 6,1
0
A'= (A, ,A')

':5;

(3.

(3.

(3.

(3.

(3.

14)

15)

16)

. 17)

18)

19)

. 20)

.21)

,22)

.23)
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| K = [x¥*]=-2 ZA.'A. = 2A'A (3.24)
‘ eO eO 1 1
i=1
_ _ NTR(S . -S.) NT(S -S )
%' = (% X )= L £l x (3.25)
n nl nr Dl/Z D1/2 o°
1 r
- — _ '\/TI(SO—SI) '\lTl(Sr_1~Sr)
Yn=(Yn1,...,an)= ""—;\—i—/—z—'——,..., ~1/2 J/\ . (3.26)
D1 r 0

From the definition (3.17), we can represent the test statistic
(3.13) by g (8). The minimum chi-square estimator for 6, which

minimizes gn(e), will satisfy the equations
gl0)=5—g (0)=0, j=1,...,s. (3.27)

In the theorem given below we are going to show, under certain regu-
lar conditions, Equation (3.27) possesses a solution which converges
to the true parameter 8° in probability and is asymptotic normally

distributed.

Condition R. The distribution function Fe(y) is continuous

with density fe(y) and satisfies

. . 1eg .
1) For almost all vy, FJG(Y)’ F’lek(y), F']ek (y), and fé(y),

jk jk 4 ) .

£y (y), £y (y) exist for every © in the closure of some

(o]

neighborhood w (2 of 06 for j,k,£=1,...,s.
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2) F'z, F‘:k, Fikl are bounded for all 6 ¢ w for
bk =1 ...,8, i=1,...,r.

3) The rxs matrix A defined in (3.22) is of rank s.

Theorem 3.1. Under the condition R Egquation (3.27) has a

A
solution 6 which converges to true parameter 0° in probability.

In addition

1

NT(0-6°) = -(A'A) "A'X +o (1),
n p

where Xn is defined in (3.25) and has a limiting Nr(O, I) distribu-

tion. Hence '\/71(9-90) has a limiting Nr(O,(A'A)-l) distribution.

Proof. The approach used for this proof is in some ways
similar to that used by Cramer (1954, p. 500) to show that a likeli-
hood function possesses a solution. The detail of the proof is divided

into the following three steps.

Step 1. Auxiliary derivations.

f A
IS B B Rl
2 55 "5, (7 0F)
j i-1 i
A A
i-1 _j Fi j
T RO TEER
F, i
i-1
ST P IO
=(-=—-(F. -F. ) —5—)+(=HF.-F.) =) .
- - 2
Fi-l i-1 i-1 FiZ-l ]:7‘.1 i 7 F-l




R F)
By ((F.-F.)=—) =o0 (1)O(l) =0 (1), and
y i ineo p p
i
.
(F.-F.)—=).=0(1) forall Bew, i=1,...,r:
i 71 FZe

j=1,...,8, we have

Al +o (1) if ©=0°
o P
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j 0 ,i
- = 3.2
(Si.175)% (3.28)
Al +0(1 if 6ew,
0,1
where AJe . is defined in (3.20).
2 F f
k 0 i-1 i
b) (S, ,-S.) ( - =)
-1 .
i i BGJBGk F -1 F.1
A
9 Fii1 fi j
= (- — F +— FY)
96, 2 gl
i-1 i
A A
F
o1 L1
= (2 ; FJi-lFli(-l .;, ilfl)
Fia Fia
7 £
b (-2 pIEt L gk
3740714 271
F, .
i i
A A
Now, applying the same technique as for Fi-l and F.1 in

a), we can write




c)
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B 1o (1) if e=¢°
i i P
(Si-l-si)e = (3.29)
BX 4o if 6ew,
0,i
. F? lFlf FIFK ik gk
where B_]k = 2( = i-1 —ii ) i -1 )
, . 2 . 2
0.1 F, FZ 0 Fl Fl-l 0
i-1 i
for i=1,...,r; jk=1,...,s.
) 3
_ jkd 2] }
(5;_.1-5) 26,00 06, oi-175)
2 "k
861891(89. i-1 86189k86j i
3 P A A
F F. F
. . SRy
where ——o——g = (-6 — PIpSE! 42— pH R | 5 iRl
00 006, 86, i 4 i 371 T 374714
27%k%%; F. ) F,
1 1 1
F i
+ 2 —tplkgpt | 1 ki,
371 271
F, F,
1 1
for i=1,...,r. By the same approach used in a) and b), we
have
N Y Y .
(S, 1-8))y = Cg i tOM), if Bew, (3.30)

where
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. F’ r Fr F!
jke i-1"i-1"i-1
Ce i o 3 B 3 )e
' F, F’
i i-1
pit Fk yrt i pik gL F k+F FJ+FJk !
i-1 -1 i-171i-1 i-17 i-1
tad 2 B 2 )e
F. F.
i-1 i
S
+
( 7 F )9,
i-1
i=1,...,r; j k=1 ...,s.

A OA
From the condition R it is easy to establish that (Di)J, (Di)Jk and
A jki _ . .

(Di) are all bounded in probability. Hence, applying (3.28), (3.29)

and (3.30), we obtain for j,k,£ =1,...,s,

r
l_{i— Z 1- )
n 00 90

|_|

1 1l j 0
a') ngn(e)

1'5
= (S, ,-S)) (s, |- )?
- Z (2 — g g )i o i (D))
b . 0
i=1 i i
r
o_(1) j o_(1) ‘
= Z(Z _L—(D,) o (1) (A o .+Op(1)) ST P— (Op(l)))
- i"'o p 6 ,i (D.)” 4o _(1)
i=1 0 190 P

H

1).
OP()
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)ik

B [

b') )

J
n

o>

r

jk, o, _ d j k

g2(67) = Z ([z ((8;_1-8,)7(8, _1-8,) +(8,_,-S,)(5;_;-S,
i=1

i

L JD K
- 7z (8, _1-8,)(8, 1-8)"(D,))]
D.
1
(23505, ,-5)6,_,-5) (D))
D,
1
1 2 & ik
-5 (S, _;-8.)7 (D))
1/52 -1 7i i
1
1 2.~ g0k
-2 3 ((s,_;-S,)"(D,)(D) )])
D.1 0°

i=1 i 0
r
, .
- Z ad AR 4o ()
(Di) eo ; 90 ;
i=1 0 ’ ’
=k +o (1),
° P

where KJIZ is defined in (3.23).
0

c') By applying the above results and condition R it is straight-

forward to show
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1 jke
l’lgn (9)

f

L8k
256, (En (0)

tl

O (1) for 0 e w.
p

Hence, in summary, we have

L j a0 -
ngn(e )—op(l)
1 ;
Lg% = k¥ 1o (1) kg =18 (3.31)
n °n o P
0
'::gikl(e):O(l) for Oew

A
Step 2. Show there exists a solution 6 for Equation (3.27)

which converges to 6° in probability.

Lemma3.1. For given ¢ >0 and & >0, define the sets

U = {utu e R® and [u| =1}, B ={8=06%nu|6°-(6%u)| <&}C w,

1
and the sequence of functions fn(x, u) = a gn(9°+)\u), where
IN] < 6. Then under the condition R, there exists Ne 5 such that
>
for n Ne, 5

5] d
LA e - > - .
P(a)\f (6,u) >0, 87\f (-6,u) < 0 for all u e U) 1l - ¢

Proof. First we need to know the limiting structure of the lst,

2nd, 3rd derivatives of the function fn(7\, u).
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9 13

1" 9 - 49 1%
a') a)\fn()\,u) N gn(e +\u)
] 0
— +
:_I_Z 9g, (611 550 )
L 5%+ ox
j=1
8
=5/, @8 a) ,
j=1
and from (3.31) and luJ,I <1 for j=1,.,.,8  we have for
all ueU

oA
j=1
=0 (1) . (3.32)
P
2 2
9 10 o
b") —=f (\,u) ==—2g (6 +\u)
a)\z n n a)\z n

]
o
Q
)

)
+
>

£
e

where u = (u -us) and Gn(e) is given in (3.19). Apply-

1

ing the second equation in (3.31) and equation (3. 24), we can

write
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Q
@
i

Ko+o (1)
0 P

H

2A'A+op(l) , (3.33)

where K o and A are defined from (3.20) through
0
(3.24). Applying condition R 3), we have that

K = 2A'A is positive definite. Hence,
0°
82 o
3 fn(O, u) = u'Gn(G Ju
AN

i

u' (K +to . (1))u
° P

u'K uto (1) ’
o P

0
' . 1
where u'K o >0. Letthe function h from U to R
0
be defined by h(u) = u'K LU Since the set U is compact and
)
h(u) is continuous, the set {u'K ICH U} is compact. In
0
particular, we have u'K oY >c >0 for all ue U. Hence for
0
given € >0, there exists Ne such that for n >Ne
82 c
P(——=f (0,u) > forall ue U)>1-¢€. (3. 34)
2 n 2
o\
3 8
9 1 jke, .0
—— = = +
8)\3 f(\,u) Z ujuku!Z g, (© Au)
jik,£=1

=0 (1). (3.35)
p
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Applying the results (3.32), (3.34) and (3.35), for given € >0
and &6 >0 there will exist Ne 5 such that for n >N€ 5 the

following probability statements will hold:

a®) P(l 37 f(Ou)|<6 for all ueU)>1—§ or

| f(Ou)|>6 for some u)<-§—.

2
b¥) P(-= £(0,u) >Z forall ueU)>1-5 or
2 3
N
82 c €
P2 = P("‘-"Z- fn(O,u) f—-E for some u) < 3
aN
83 €
c*) P(I———_;’-f (\,u)| <2M forall ue U and |\] <8)>1 -7
n € - 3
N
53
or Pg *P(|—"§'f (N, u)| > >2M_ for some u and In] <6)<“
ax
Hence, by defining the set S
2 3
|§'{fn(0,u)| < 8%, -@—Efn(o,u) |—-—-—f u)| < 2Mm,
O\ x>

forall ue U and |\| < &},

and letting S¢ denote the complement of S, then we have

C € € €
P(ST) P, +P, + P, <g+3+t7=¢

H

which implies P(S) >1 - e.
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Now we expand 2 fn()\, u) at the point \ =0,

o\
2
) _ 0 )
N fn()\,u) Py fn(O,u) + (A-0) — fn(O,u)
RN
3
2
200225 xw), (3.36)
2 3 'n
DN
c
< A% <L . -_—
where 0 <\ A. For yeS, 6<2(1+M€) and all u € U the
Equation (3.36) will give, for \ = 6
5 2 9° 1 2
oy £n(8,0) 2 =87 + 6 =—=1£ (0,u) +5 8 (-2M )
RN
2
= —(1+M€)6z +8 i-i,fn(O,u)
RN
c 82
Z—*2-6+ 6——2fn(0,u) >0,
N
and for \ = -9,
) 82 1 .2
5-)-\'fn(-6, u) <6 - 6——5fn(0,u) +-Z- 5 (ZMG)
o\
2
)
= (1+M€)62 -6 '——Efn(O,u)
o\
82
<36-8>5¢(0,u) <O0.
RN
Hence for 6§ >0 and € >0 there exists N such that for

0, €

5,€’
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8 8
—— > re— - > 1 - .
P(a)\ f (6,u) >0, p f (-6,uy) < 0 for all u € U) €

This completes the proof for I.emma 3. 1.

Now we are going to find a point in the ball
B = {6 = 6°+\u: i OO-OH = || nall < 8, ue U} which is a solution for
Equation (3.27), From the assumption that gn(e) is continuous for
0 ¢w and Bg_ @, it follows g (6) is continaous in B. This

implies there exists 6 = 0° + iﬁ\ such that
Lo (0° %) <1g (%), (3.37)
nn -nmn
for all |[A\| <& and ue U, In particular
=g (8°+X 1) f_;ll‘g(eo:i:6u) = £ (£5,0) ,

for all u € U. Applying Lemma 3.1, with probability greater than

1 - ¢ there exists A*(u) such that
2 g (0°+\*(a)u) = £ (\k(w),u) < f_(£6,u) = = g _(6%£6u)
n gn fa)u) - n “{a), u n , U n gn

for every u € U. Hence, by defining the set

Sk = {y:%fﬂ(&u) >0, %\-fn(—&u) <0 for all ue U},

and applying the relation (3.37) for vy ¢ s”, .we have
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0 /\
Au

= R

= g (0°HR%) < = g_(6°\#(u) u) <-;11- g (0°+6 )

for all u e U. This implies 6=e° +R% is an interior point of B

and is a local minimum. Therefore, we have gil(g) =0 for
j=1,...,s, and |6°-8]| < 5. Thus for arbitrarily small & >0

and € >0 there exists N6 ] such that for n >N6 ¢

P(exist a 6 such that gi(é\) =0, j=1,...,8, and

le°-e <& >1 -, (3.38)

P,

which implies § = o°. This establishes the first part of

Theorem 3. 1.

Step 3. Show that «/Tl('é-e") has a limiting s-dimensional
normal distribution.
From (3.38) we can write gi(é\) = op(l) for j=1,...,s.

1. A
Now expand Q:-ﬁgn(e) at the true point 0°

8
1 1
Op(l) ,\[—ﬁgn(e) ,\,—g (8°) + = Z (6 (e)
k=1
fOI‘ j: 1, ,S,
-~ o A o . )
where 6 =0 +£(6-6 ), |&€] <1, or inthe matrix form

- (0% —e (B 5.a°
G (67) =G (8) (Wn(6-87)) + 0p(1) ,
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where En(e) and Gn(e) are defined respectively in (3. 18) and
(3.19). By assuming Gn(g) is nonsingular, we can rewrite the

preceding equation

~1

NT(8-6%) =G (8)" G (6°) + o (1) . (3.39)
n n P

AP — P — A
The fact that 6 — 6° implies 6 — 8° for 0 =8° + £(8-6°),

[&] <1, and (3.31) will give

—:;gflk(?a') = _11; g;k(e°) + i (8,-0)) % gfnkl(é)
£=1
=%ggk(e°) +o (1) for j,k=1,...,8,
where 6 = 8° + n(6-0°), [n] <1, or in matrix form
G_(6) = G_(6°) + o (1)

n

(Keo+op(l)) + op(l)

u

2A'A + (o] (1) s
P

where the last two equalities are given in (3.33). Now applying .

Lemma 2.5, we can write

-l= _1 . .-1
Gn (6) = 2(A A) "+ op(l) . (3.40)
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In addition, from the following relations

1 j, 0 S '\}—ﬁ(slvl_sl) Fi Fg-l
—*g(e)ﬂZ( =) (= - =) _to (1)
Nn'n - D 0° Ti Fi.1e° P
l'r]. 1
= JA(S, | -S.) F F
— D ° D i “i-1 ¢° P
i=1 i i
for j =1, , 8
and (3.20), (3.21), (3.22) and (3. 25) we obtain
'c';n(e°) = zA'S"cn + op(l) : (3.41)

Applying (3.40) and (3.41), Equation (3,39) can be rewritten as

1

i

AP 1 Ay 137
NT(0-6") -('5 (A'A) +Op(1)) (2A xn+0p(l)) + Op(l)

1

1t

-(A'A)A'X 40 (1). (3. 42)
n p

- d
It is easy to show that Xn - Nr(O, Ir)’ which implies

d

(pﬂA)"lA"ffn —> N_(0, (a'a)”?

A'T_A(A'A) ) l)

= N_(0,(a'A)7) .

Hence
A 0 d -1
Nn(g-6") — NS(O,(A'A) ) -

This completes the proof for Theorem 3.1.
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Now, we are ready to determine the limiting distribution of the

statistic

g<e>—n2< ‘IA s ).
D )

A
where 6 is a solution for (3.27). As defined in (3.26), we expand

?. at the point 00,
ni
3 Vals; -5))
Yoi = N ’)8
i
NE(S, | -S.) C A o 5 NES, |-S)
NV )o+2(63"93)ae TR o
D, ) o j . ]
i j=1 i
0° p2  Nnls ;-8
Z(e -6§ )(ek k)ae T pl/z ’3
j k=1 j i
NT(S, . -S.) ° vE(s, -s)) W -s)
- (—isL ~) +>:(’6.-e‘?>[<~i il ih ) ]
SR S T
i j=1 i i
8 _q \Jk Y
' Zﬁ@ -6%)(6, 62 ) (f"” iy ) ~((Si S)(D>k>
k k Al/Z - a3 /2
o 0 D, 0
J,k—l 1 1
(s.  -s)¥ (8, ;-S) s -S.)
i-1 "1 A 3 i-1 i-1
A (D)) _+ S (— (D, >J<D)“> (D)J)}
IR - AP 83/2 5

i i i
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D. "“+0 (1) 8° £ D."“+o (1) b
P j=1 p

NE(S. .-S.) 5 U

i-1 74 A o 1 i i-1

= ( ' ) +'\f?1_2(6 0 N~ (== - )y +o (1),
Di1/2 0° - j 11/2 F. F._ | o
J—-
i=1, , T

—_— A
where 0 =6° + 17(90-6), |w| < 1. The above equation can be

written in matrix form
Y =X +ANn(6-0") +o0. (1). (3.43)
n n o)
N0 .
Replacing NH(6-0") in (3.43) by (3.42) gives

1

1t

Y

Z . IURE
n Xn A(-(A'A)

A'X )+o (1)) + o (1)
n’ p p

1

it

(Ir -A(A'A) A')‘Xn + op(l)-

-1 _ )
It is simple to check that (Ir -A(A'A) "A') is symmetric and

idempotent, hence

1

Y'Y = xX'(I - A TAN X+ 1). 3.44
YnYn Xn(Ir A(A'A) A)Xn op() ( )

We can choose the generalized inverse of (Ir-A(A'A)-lA') equal to

itself and apply Lemma 2.3 to give
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X1 _-aa'a) 1A 4 2(r-s)
n'r n X Ar=sh,

where the r-s degrees of freedom is obtained by

Rank (Ir—A(A'A)_lA') = trace(Ir-A(A'A)-IA')

1l

trace(Ir) - trace((A'A)” 1A'A)

trace(I ) - trace(l )
r s

r-s .

From (2.2) and (3. 44) we finally obtain

2
_ (Si-l'si) a ,
Yr'l n=nz (—x— ), X (r-s). (3.45)
D, 5]

i=1 i

This suggests that under the random censorship assumption, when the
null hypothesis is composite and sample size is large, the statistic

specified in (3.45) can be used to perform the goodness of fit test.

Example. In this example, the generalized chi-square goodness
of fit tests for exponential and Weibull distributions are illustrated.
The data used is extracted from a large group of breast cancer cases
which were collected by Calvin Zippin from 12 hospitals in different
parts of the United States. (These original data have been used by

Cutler and Myers (1967), Koch, Johnson and Tolley (1972), and Brunk,
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Thomas, Elashoff and Zippin (1973) in other areas of research.)
The subgroup of 175 patients we use have largest tumor size that is
less than 2 cm, no skin attachment or fixation, and no lymph node
involvement determined by physical examination. For this subgroup,
61 patients died and the remaining were censored after varying
periods of time.

For testing exponential fit HO: FO(X) = exp(-x/8) and Weibull

)

fit H'F (x) = exp(-x 2 /6.) the minimum chi-square esti-
0 61, 62 1

mates (3.45) were found to be respectively 6 =369.91 and

A ~ :

61 = 306.47, 62 = 0.962. The corresponding values of the generalized
chi-square statistics were respectively 12. 23 and 12.14 with corres-
ponding degrees of freedom 11 and 10. In Table 1 below, columns 2,
3 and. 4 include respec;tively the product-limit estimator, fitted
exponential distribution, and fitted Weibull distribution evaluated at
the selected partition points given in column 1. In Figure 1, the
product-limit estimator and the fitted exponential and Weibull distri-

butions are plotted. It is interesting to see that both fitted distribu-

tions agree quite well with the product-limit estimator.
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Table 1. Product-limit estimator and exponential and
Weibull fits for the breast cancer data.

Product-limit

Months Estimator Exponential Weibull
0 1. 1. 1.
12 0.9886 0.9681 0.9649
24 0.9371 0.9372 0.9328
36 0.8914 0.9073 0.9024
48 0.8627 0.8783 0.8733
60 0.8397 0.8503 0.8456
72 0.8165 0.8231 0.8188
84 0.7990 0.7969 0.7930
926 0.7873 0.7714 0.7683
108 0.7581 0.7468 0. 7444
120 0.7283 0.7230 0.7213
180 0.6703 0.6147 0.6173
240 0.5171 0.5228 0.5293
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Figure 1. Product-limit estimator and the exponential and Weibull

fitted distributions for the breast cancer example.
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3.6. Relationship with the Classical Chi-Square
Test Statistic

It is interesting to see that the goodness of fit test statistic (3.9)
for arbitrarily censored data will reduce to the classical chi-square
statistic (3.3) provided the sample is uncensored. In the uncensored
data case, we may set H(y) =1 for y >0. Hence the covariance

matrix for random vector

z_=n'PEF )= 0! FE ), at

A '
. (F_-F))

r

is

1t

1
[F,F,‘S? —L (-dF _(z))
Yy H(z)F;(z) 0

1l
]
!
i
(./‘%
—
—
n
[V
o
N
=

for a.1<aj, i,j=1,...,r. Letthe r xr matrix C be defined

as in the beginning of Section 3.4, then from the fact
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d
Z =n1/2(F-F )—> N (0, Z),
n 5] r

we obtain

A d , A

Z2"=CZ — N (0,CczC")=N (0,Z7),

n n r r

where

Zﬁ=:}—" n(F)-F,) - n(F,-F,)
n
A N
kn(Fr—lpFr) B n(Fr-l-Fr)
fVl - nle
- «/"'1‘?1‘ V, - nP, (3.46)

and




=" = czc'
- - - . . - - - - \
( F,(1-F)) (1-F )(F,-F)) . (1-F ) (F__,-F__,) (1-F NF_-F_ )
(1-F )(F,-F) (El-Fz)(1+F2—F1) (F-F)F__-F_5) (Fl'FZ)(Fr'Fr-l)
UE D, 7 Fe ) FyFE, o Fp p) e (FL o F P, oFL ) (FL o F DESF )
((1-F )(F_-F__,) (F|-F,)(F_-F__|) (F__,-F, _JF_-F__) (Fr_l-Fr)(“Fr-Fr_l)
r(l_pl)p1 -PIPZ -PIPr_1 -PIPr ™
PP (1-Pp)Py - PP, PP,
-Plpr~1 -PZPr-l (I_Pr-l)Pr-l -Pr—lpr
\ -P1P4 -PZPr —Pr—lpr (I_Pr)Pr)
(P, } (P, )
O
P, P,
= - : (P,P,..-P__,P ), (3.47)
0O Fra . Pra
\ )
P \ Py )

0¢s
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with V,1 and Pi’ i=1,...,r+1, defined as in Section 3.2.

Applying the inversion method given by Graybill (1969, p. 170}, we

have
(EL ) (1 c 1Y
1 0
L ; .
P ' .
s0°1_ 2. , ‘ '
o 1 P_‘_1
1Drvl ’
0 )
1;}* kl 1
\ r)

Therefore, from (3.46), (3.47),

z'z2 'z =z¢cec iz lc ez
n n n n
= (cz )'(czcy Yez )
n n
1
:ZA ZA"IZA
n n

(NE zﬁ)'(nz’“)'l(«/?rzﬁ)

I (v, -0P)° R ,
- nP TP ( 2, (V;-nP}))

i=1 i R

+

rtl (V.—nP.)z
- 1 1

Z nP, ’

i=1 t

which is the classical goodness of fit test statistic.
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4. SMOOTH GOODNESS OF FIT TEST FOR A SIMPLE
HYPOTHESIS UNDER RANDOM CENSORSHIP

4.1. Neyman's Smooth Goodness of Fit Test for a Simple
Hypothesis with Uncensored Data

Neyman (1937) has developed a class of goodness of fit tests for
a simple null hypothesis against a family of alternatives (4.3) which is
relatively smooth compared to the null hypothesis. Barton (1955,
1956) generalized Neyman's test for the cases of a composite null
hypothesis and grouped data. In this chapter, Neyman's goodness of
fit test for a simple hypothesis is generalized for random censorship.

First, we give a brief development of Neyman's test for
uncensored data. Let the random variable X have some continuous

distribution function F(x), with the null hypothesis to be tested

H": F(x) = F (x), (4.1)

0 0

where Fo(x) = PO(X >x) is completely specified with density -

function fo(x). The probability integral transformation

is applied to the random sample X < Xn’ and thus, we obtain

P

n independent observations Z "Zn’ where Zi is uniformly

I
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distributed over the interval [0,1] when H is true. Therefore,

0

the equivalent null hypothesis in terms of transformed variable Z is

H)t qq(2) = 1 0<z<]l,

where qo(z) designates the density function of Z and QO(Z) the
corresponding distribution function. Neyman specified a family of
distributions which allow the distributions in the alternative hypothesis

to vary smoothly from H

0
Ziy 02
H):q4(2) = c(B)e , 0<z<l; (4.3)
r=12,..
where ©=(0,,...,0 )¢ R and c(0) is the normalizing constant.

More specifically

r
1 2, 6.m(z)
-1 g o i=l i dz | (4. 4)

c(8) =
0

1 .
+ a2 + ...+ a.iiz1 are transformed Legendre

and TTi(Z) = 1

2i0

orthogonal polynomials (see 4.19) of z which satisfy

for i,j=1,...,r. Interms of the alternative (4.3), the problem of
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testing H(') against H; will be equivalent to testing
HO: 91:0’ i=1, , T,
against
H someei#O, i=1, , T .

The likelihood function of 06 is

r n
n b D
_ _ n
L = izlqe(zi) = (c(8))™ exp! Z 0, Zni(zj) )
i=1  j=1
r n
- n N L
= (c(8)) expl( Z’\l’ﬁ 9.1 (r\fﬁ Eﬂi(zj) )
i=1 j=1
r
= (c(e)™ exp( Zﬁiui) , (4.5)
i=1
where

Neyman has shown that the critical region defined by the inequality
r
Z 2 5 2
a2 X (r

i=1

will asymptotically satisfy his definition of an unbiased critical region
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2 . . .
of type C, where xa(r) is the upper ath quantile of the chi-square
distribution with r degrees of freedom. The tests constructed by
this procedure are generally referred to as Neyman smooth goodness
of fit tests.

We now give another approach for showing that the statistic
r

N 2 . .

Z u, has a limiting chi-square distribution with r degrees of
i=1

freedom. This derivation will also be used in the next section to

generalize the test statistic for randomly censored data.

From (4.5) we may write

r n
1 1
—— pan i . . 4.
'\l'r'fln L '\l_n"(n In c(8) + Z e,1 Z Tri(zj) ) (4.6)
i1 =1
Applying
5 1
c(0) =1 and aes c(6)|e=0 "’SL) Trs(z)dz =0 (4.7)

and taking the first partial derivative of (4.6) with respect to 6_ and

evaluating it at the point 6 = 0 yields

n

1 8ln L 1

Lalnl - L =1,...,r. (4.8

VT 06 _ l6=0 r\/'n“zws(zj) for s r (&8)
j=1

18lnL

Hence the means of the random variables N aes |G=O )

s=1,...,r, under Hgy are
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1 _ 1 4 B
Ee:o(,\/n aes Ie:O) - Nn Z go TI'S(Zj)de =0.

2 2
10 InL 1 1 0 0 1 0
—— =~ («n — ¢(0) c(0)+tn—— c(9)),
n 898891 n C(G)Z 8GS 861 c(0) 898891
evaluated at 6 = 0,
2 2
10 1InL 1 1 9
— - o +p —————
n 20 86 lg=0 =5 (0*p c(8) 86 86 c(0)] - )
s f s {
] 1
='r'1'(-n§ ns(z)wl(z)dz)
0
-1 if s=14
= . (40 9)
0 if s#u4
Thus, under HO we have
l 91lnL l. 9ln L 198 1InL 0ln L
Covlm 80 lo=o" 75 26, lo=0) * Eg=0'n 86_ lg=0 80, lo=0)
2
1 1
=-F (—ML_ )

6=0'n 96 96 |9=0
s 4
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Hence, for

W:k:(_]_._alnkLl . ___1_81nL| )
n N1 391 6=0’ A 89r 6=0
n n
=("'1_ZTI'(Z) "-I'*Zﬂ(z))' (4.10)
Nn 1’73777 Nn rojt o
j=1 j=1

the mean vector and covariance matrix are simply E(W:) =0 and
Cov(W:) = I. Therefore, by treating (Tl'l(ZJ.), cens Trr(zj)),

j=1,...,n, asanr-dimensional random sample of size n, the
multidimensional Central Limit Theorem (Wilks, 1963, p. 258) may
be applied to show W: has a limiting normal distribution with mean
vector 0 and covariance matrix I. Hence, from Lemma 2.3, the

statistic

Z

r
W covewy twt = ) (£ 2in Ly
n ZOViVW, B 'Jﬁ aa 0=0

r n
=Z(\r""1§ Zﬂ(z))
i=1 j=1

r
d
- zguf-—> W(r) . (4.11)
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4.2. A Generalized Smooth Goodness of Fit Test

In the random censorship case, as in Section 3.1, we let
Xl’ ce Xn and Tl’ v e Trl respectively represent the random
failure and censor times with corresponding distribution functions

Fe(x) and H(t) and density functions fe(x) and h(t). Using the

inverse transformation of (4.2), x = Fél(z), the family of alterna-

tive densities for X corresponding to (4.3) is

z_, 0, (Fy(x)
g.(x) = c(0)e f (%), (4.11)
0 0
for 0<x<®© and r=1,2,..., with corresponding distribution
functions
o0
Gglx) = g ge(t)dt
X
0
= -S qe(t)dt
zZ

E]

Z
SO qe(t)dt = Qe(Z) .

For the observable variables Yi = min(Xi, Ti) and 61 = 1(0) for

Y. =X(Y.=T,), i=1,.,.,n, the likelihood function is
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n
L=L_ =114 (4.12)
éj l—éj
where .= (g, (y.)H(y.)) " (G, (y.)h(y.)) .
i = (8 lyHy;)) = (Gyly,)hly,

The derivation of the goodness of fit test statistic in Section 4.1

for the uncensored case will now be generalized to the random cen-

sorship case. First we note that the log-likelihood function may be

written as

iIn L

n
) gl
f)

o]
~
Cd o

[
"
-

1"
Vs

(5J, In ge(yj)+(l—5j) In Ge(yj))+R(y, 8) ,
j=1

where R(y, §) is independent of 6. By defining

W*"( 1 81nL| _];_alnLI ),
n  NT 86 0=0""""'NT 9o 8=0
| - @lnt, . 2 51nt.
=(-—~Z———ll_,. , Z——ll_)'
N1 88, '0=0 N1 86 '0=0
j=1 j=1
n
="'LZW. (4.13)
N1 j

.
H
—t




where
9 1ln ¢, 91ln ¢
w, = (——L| ..., —1| .
j 96, '0=0 80 00

and from (4. 7) and the following relations

[+
<D
O
<D
N
<D
fl
o
1
(e}
<D
L/»
N
£
<D
-
o,
o
[e>]
j]

1
Lq
N
b= |
n
=
[o N
ot

el 1 9
pe_ 8o g0 = (T35 76, c(@)+r_(F, (y))]

5}

6=0
= ()
: 2
5. 1 Go(P 520 7o, In Qq(z)|4_g
S S
"3 56 Q=0
0 ]
Z
=—i’ S‘ m (t)dt ,
0 S

e
the components of Wn can be written as

))
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(4. 14)
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n
l1 91lnL _ 1 o0
s =1

n Zj

- L Z (6, m (z Y+(1=68 ) — S‘ w (z)dz) (4.15)

Nn 0 ]

=1 k
for s=1,...,r,

*
For the derivations of the mean and covariance of Wn we apply the

relations
91ln £,
Eg=0 26 _ lg=0) = 0
2
é)lnxiL Blnli 9 In £,
Eg=0 26_ l6=0 26, lo=0) =Eg=o! 56 _06, l =0 -
where s,f£=1,...,r; j=1,...,n, which are known to hold for

exponential families (Lehmann, 1959, p. 52). Hence

n
sk _ l 'O
Eo-0Wy) =3 ZE9=0(WJ)
j=1
= Eg_(W)) = 0

and the (s,f) element of X = COV(WZ) = Cov(WJ,) is
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c (__1_ 81nL| .__l_alnL| )
°Vo=0'Nm 86_ '6=0'Nm 080, '0=0
0 1ln £ 0ln £,
= Covoool 5 le=0' 3o e=0’
8 £
91ln ¢, 0 1ln 4,
= E _ (--;—-———-——-J-' - —-—-—-——-—-—ll _ )
0=0' 96 8=0 980 '0=0
s Ji
82 In £,
=-E__ (——1%__)
6=0' 80 86 '6=0
s [/
a2
" Eo-0(8 35 55, 2 8e7) | g-g
s £
52
_5 ) —2— . 4.16
+(1-8) 556, 1n Ge(yj)|e:0) ( )

By using (4.7), (4.14) and the following relations

82 1
W C(e) l 0=0 = o= S “S(Y)“I(Y)dy
s £ 0
{—1 if s=14
0 if s#14
2
9 8 .9
90 90 Qe(z)le=0 = (350 (30 Qe(z)))la=o
s [/ £ s

Z 2
—z+§ 7 (z)dz if s =14
= 0 s

z
fo ws(z)vl(z)dz if s#1
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% 9 1
aesael In ga(”)'e:o N 26, (Z® 26_ C(e)J”’s(Fo“’)))lea:o

2
1 9 9 1 9
o 9) = c(8)+ ——

2 < 90
c(6) 20, 86 _ c(0) 86_80,

{—1 if s =1¢4

0 if s 712

2

In G_(y)| o>
87 lg=0 86 50

= (- C(e))|9=0

50 90 In Qe(z”e:o
s '

9 1 9

= (
98, " Q (z) 96 _

Q)] 5.0

H

1 9 8
(- o Q,(2) 77 Q,(2)
2
Q2 (=) 36, 96_ 0

1 32

+
Qe(z) 898891

Q2N 4.0

zZ Z
(e wan® L Pman 1w e -
8 Z 8
z 0 0

- ,-—-(S T (t)dt)(§ m (t)dt)
z2 0 ® , 0 !

\ 1 (2 .
+ = ) (t)nl(t)dt) if s#1,
z J, s

Equation (4. 16) can be rewritten as




64

9 1ln £, 9 1ln £,
Covo_ol T35 lo=0r T35 l6=0’
s i
zZ, Z
1 J 2 1092 ‘
E, _((1-8)(—( w (z)dz) - — w (z)dz)+1) if s =14
6=0 it 2 s z, s
zZ, 0 0
zZ, z, Z,
5§ Cman § L( a
Eezo((l-Gj)( > w (z)dz)( m,(z)dz) - = m (z)7,(z)dz))
2, "0 0 jvo
if s#74 . (4.17)
Now treating Wj’ j=1,...,n as a random sample of size n

from a distribution with mean vector 0 and covariance matrix. Z
we obtain, once again from the multi-dimensional central-limit

£ d .
theorem, Wn - Nr(O, Z). Applying Lemma 2.3 and assuming X
is nonsingular, we finally have

M ! -] ,r‘(d 2
wh s lwt — o . (4.18)
n n

In order to apply the smooth goodness of fit statistic given in
(4.18), the components of W;: and the component of Z should be
evaluated in a simpler form. Since up to 4th order polynomial is

generally considered sufficient (Neyman, 1937), we take r = 4

for illustration. The first four orthogonal polynomials are
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2 1
n,(2) =NF (b(z- 5 ) - 5)
ny(2) = NT (20(z- ) - 3(z-3))
m,(2z) = 210(z- % - 45(2- -;; 2 +%‘ (4.19)

Accordingly, the following relations can be obtained by direct

integration:

Z
S‘ w (t)dt = N3 z(z-1)
0

z 2
S ‘n'z(t)dt =N5 z(2z -3z+1)

0
N Z 3 z
g 11'3(t)dt =N7 z(5z -10z +6z-1)
0
c? 4 3 2
5 174(t)dt = 3z(l14z -35z +30z -10z+1)
0

z(4z2-6z+3)

N
9
— N
=
Q.
o
"

z(3 6z4-90z3+80z2-3 0z+5)

L/»
N
=
oo
-
[«
o
H




! z
‘ S vg(t)dt - 2(4002°-14002°+19322%-13302°+4762° -842+7)
0
% 2 8 7 6 5 4
S m(£)dt = 2(49002°-220502 +41400z°-42000z +249122
0

- 87302 +17402°-1802+9)

N5 z(3z3 —6z2+4z- 1)

1

z
fo nl(t)nz(t)dt

“ 4 __ 3 2
S vl(t)w3(t)dt = N21 z(8z -20z +18z -Tz+1)
0

z 5 4 3 2
S Trl(t)w4(t)dt = N3 z(70z7-210z +240z  -130z +33z-3)
0

z
S ™, (t)1r3(t)dt = N 35 z(2025—6024+68z3 —36z2+9z—1)
0

z 6 5 4 3 2
g ™, (), (D = N5 2(1802°-6302 +8702" -6002" +2162°-392+3)
0

z 7 6 5 4 3
§ 'rr3(t)'rr4(t)dt =NT 2z(525z -2100z +3420z" -2910z +1380z
0

2
- 360z +48z-3) .

e

Hence, the first four components of the W[; vector, according to

(4. 15), can be rewritten as
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n

LS
I
p—

__]-_ 9 ln L l -
n 86, '6=0 N j
=1
__1_ o ln L. ‘
Nn 893 06=0

+ (1-6.)\/’7(5z3,-10z‘.2+6z,-1))
J J J J

1 3lnL

n
= | :’—1—'2(6(210(z-l)-45(z-1)+
Nn 98 8=0 W~NT@ j i 2 j 2 8

4 i=1

4 2.9

)

2
+ (l-6.)'3'(l4z£,}—35z,3+30z. -10z.+1)) .
J J J J J

Let Vsl denote the (s,4£)

Then, from (4.17) we have for

1 9 ln L

I
=
=

1
(=4]
>
N

+

—

_2 0 In L
Vs T Covgogl 86_ l9:0’ 90 |e=o

element of the covariance matrix

s = {

y)

67

z.
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1

il o0
= Z S (1—§)ASS(,FO(y))£(y, d)dy +1
=0 ©

= S A_(Foly)) Foly) [-dH(y)*+ 1,

s=1,23,4, where £(y,8) is the joint density of Y,6 and

Z : Z
1
A (z) = (—12- ( c ws(t)dt)z - § Trz(’c)d’c)

88 z" ¥ 0

Usihg'these relations and (4.19) for s = 1,2,3 and 4 gives

(03]
3

v =1+ § (F,(y) dH(y)

0
v :1+§00(16(F( ® 30(F F15(F (y))° )dH(
22 . 0 y)) -30( O(y)) ( OY)) ) y)
V.. = 1+ §cc 225 " 700 nOi812(F 5 _420(F 4
337 1% ) (22508 - T00(F ()" +812(F () -420(F ()

+ 84(F0(y))3)dH(y)
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9 6

o0
{ 8 7
V=1t S (3136(F (y)) " -13230(F (y))" +22815(F (y)) -20580(F (y))

0

¥ 10260(F0(y))5-2700(F0(y))4+300(F0(y))3)dH(y).

Similarly, the covariance elements

_ 9In g 5 1n £
Var = CoVggl 86_ |e=o’ 80, Ie=o

)

z

1 €2 Z 15‘
Ee=0((1'6)(—2S nl(t)dtS n's(t)dt - ws(t)nl(t)dt))
z 0 0 0

i

=Eg_o(1-8)(a_,(2))

o0
= 50 Asﬁ(FO(Y))“Y’O)dY

o0
- 50 A_, (F ((yDF(y) (-aH(y)) ,

where

1 2 z ] z
Asf(z) = ""Z"Y -n's(t)dt g ™ (t)dt - Z g ﬂs(t)ﬂl (t)dt ,
z 0 0 0

reduce, for 1 <s < {f <4, to

o0
V12 = S N15 ((F

(y*-(F,(y))°)daH(y)
0

0
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0]
. ‘ 3
Vg = go NZT (3(F () -5(F(y)) +2(F (y)) )dH(y)
o 6 5 4 3
v, §O N (2807 (y))° -63(F () P +45(F (3 - 1007 (7)) )arly)
% 6 5 4 3
Vs = go N35 (10(Fy(y)) -25(F0(y)) +21(F0(y)) - 6(F0(y)) ) dH(y)
(‘°° 7 6 5 4
Vo, = 3 NS (96(F ) (y)) -294(F ((y) +333(F(y)"-165(F(v))
3
+ 30(F(y)) )dH(y)
(‘°° 8 7 6 5
Vi, = 3, W(315(F0(y)) .-1155(F0(y)) +1668(F0(y)) -1188(F0(y))
4 3
+ 420(F ,(y) " -60(F (y)) )dH(y)-

]

From the equations above, the covariance matrix = = [st

is seen to depend on the unknown censoring distribution H(y). Hence,
H(y) must be estimated in order to estimate the covariance matrix
p
2. Let Hn(y) be any estimator for H(y) such that Hn(y) — Hl(y);
for example, the product-limit estimator defined in Section 3.3 may
/N A las
be used. Define the covariance estimator X = [Vsl] where V

s{

is the same as Vle except with H(y) replaced by the estimator

Hn(y)~ Applying the Lemma 2.7, it is straightforward to show
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A A -1
which implies X B s, Hence ﬁ ! B 5 . Therefore, from (4.18),
“'A-]1 % )l 4 3
w W =W (Z+o (1))W
n n n
L B d 2
=W Z W +o (1) x (r) . (4.20)
n n )
N
Thus, under H0 and random censorship the statistic Wn f) Wn

has been shown to have a limiting chi-square distribution with r

degrees of freedom.

Example. For the sample described at the end of Section 3.5,
the generalized smooth tests of fit for the exponential and Weibull
distributions are evaluated. Since the null hypothesis must be com-
pletely specified in our generalization, specified values have been
assigned to the parameters of the exponential and Weibull distribu-
tions. These specified values include the minimum chi-square

estimates given in Section 3.5:

A ‘ A IN
0 =369.91, 61=306.47 and 62=0.062.

In Table 2 below, evaluations of the generalized smooth tests
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of fit for specified exponential distributions and a Weibull distribution
are summarized using the r = 1,2,3, and 4 order transformed
Legendre polynomials. The upper a = 0.05 quantiles of the
chi-square distributions are given in the last column in Table 2. If
the null distributions had been specified a priori, those cases where
the test statistic exceeds the corresponding chi-square value would be
rejected at the a = 0.05 significance level. As expected, the dis-
tributions fitted by minimum chi-square estimation yield relatively
small values for the test statistics.

Table 2. Smooth goodness of fit tests for specified exponential and
Weibull distributions for the breast cancer sample.

92
P .
X 91
.. ) Hy'Fg g (x)=e Chi-
HO'FG(X) e 172 square
‘ 91 = 306. 47 Value
r 0=369.91 6=300 6 =250 0=200 92 = 0.962 (0.05)
1 0,0973 3.8435 '11.9001 28,6240 0.1089 3,841
2 0.3360 4.5327 13.6946 33,9522 0.1401 5.991
3 0.3384 4.5567 13.8949 35.0533 0.1491 7.815
4

1.0875 5.5073 14,9572 35.9745 1,2120 9.488
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4.3, Limiting Distribution for a Sequence of
Alternative Hypotheses

For © =0 (null hypothesis HO) we have seen from (4.11)

and (4.18) that in either the uncensored or the random censgorship

L
!

C L -1 % C s . . . .
cases the statistic Wn = Wr1 has a limiting chi-square distribution
with r degrees of freedom. It is of interest to find the limiting

1

. . . *_ -1 ¥ .
distribution of Wn 2 ‘Wn for the sequence of alternatives

H :0 = — (4.21)

where 4 = (A

TRERE Ar)' . But first, we determine the limiting

distribution of Wn by using the moment generating function approach

for the sequence of alternatives {\7’%} :

Theprem 4.1, et L, and W; be defined as in (4. 12) and

5]
(4.13), and
, s« ] 82 1n Le
5 = Com) = [Epup( & 25350l

82 in £,

96 96 Ie—o)] )
s { -

Also let MW*(t, 0) represent the moment generating function of
n

*
Wn, where t = (t .,tr) and © is defined in (4.21), Assume

|




4

M ,(t,9) exists for all n in some neighborhood t =0 and
n

Iim M ,(t,0) exists. If

n—<x Wn

9 1n ¢, 8 In L
‘ =1 ., n ‘l 9‘
90  le=0’ 4 ™ 4 39 8o lp=0"
s s {
and
3
1 0 lnLel
n 96 96 96 8’
s 4 m

where © is in the closure of some neighborhood of 6 = 0,

s, £, m=1,...,r, are all uniformly bounded, then

t'za + %t'Zt
lim M >{<(t5 9) = e
n—~o Wn

sk

That is, W; has a limiting multivariate normal distribution with
mean vector XA and covariance matrix Z under the sequence of

alternatives (4. 21).

A . .
Proof. For 6 = = the moment generating function can be

written
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t'Wn
M _(t,0) = Eg(e )
n
t'W; .
= S' e Lede
¢'W +ln L -1n L 3
= e n © 0 L dW>'
< 0 n
o _
e ( th+1n Le 1n LO)
where LO = L6=O . Expanding the function 1n(Le) at the point

O =0 gives

r
1L—1L+—\‘f§.alnLel +_1_ZZ s 4 el
e B NT 86 16=0" 2 n_ 06 80 l6=0

)

s=1 s=14=1 s

r r r
6 Z 3/2 96 aezaem 0=0
s=10=1 m=1 = S
% 1 ]
=lnL _+A'"W -=A'ZS A +o0 (1)
0 n 2

i

A2 -2)A +0 (1)
a

NII—'

* 1
AW - =4 -
11‘1LO A n ZAZA

1
= + ! = ! +
1n LO A Wn > b A oa(l) ,

P ES 6
where 6 =0+£(0-0) for |&] <1, " = [+ =]
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and oa(l) is a sequence of sample functions which almost surely

converge to 0. (from the strong law of large numbers we have
s -3 = oa(l) ).  Hence
- -;:A 'TA +t'W;:+A 'W;+oa(1)
M _(t,0) = Eezo(e )
W
n 1 Sk
->A'ZA (t+ta)' W +o (1)
- 2 F (e n a )
© 6=0 ’
Applying Lemma 2.8, we find
1 1 1 *
MR (t+a )Wn
lim M (t,0) = e 1im E9=O(e )
n—~ow W’ n— 0
n
1 1 _n
- +a)'( = W,
_ ZAZAI. e ((tA)("\fﬁZj:l J))
e im Eg_,(e
n—w
1 W,
- = A'ZA n  (t+a)' =2
2 , N1
= e lim E, (1T e )
6=0",
n— o j=1
_ = Al
2 A=A (t+A)'W. . n
= e lim (E, .(e )
0=0
n—>o

where W = '\l—% Wj with Wj defined in (4. 13). Using a Taylor

, : (t+a)'W
series expansion of e ,

2 3 ’

. 123 ,
AW Lt (era)' W + 3 ((e4a) W) +§ () d_ o (W4,
0 du

yields




7

E (e ' )= 1+E ((t+ta)'W) + E

a2
0=0 ((t+2)'W) ")

o=

920(

1 2 3
(1-u) d u (t+a)'W
+E O(g > u“"3 (e )du)

1 -1
1 +0+— (t+ta)'=(t+a) + o(n ),

H

2n
which follows from
r . 9 1n 4 a
1 — —
Eg_ol(tta)'w) = z (t+a.) = Eg_o( 35 |e o
s=1
=0 ,
> . r 9 1n { )
! - —— +
By_o((tta)W)) = B (= ) 8 )5 lo=o)
s=1
1 i« rr—‘ 9ln/
:HEe:o(Z Z (tg+a ) 55 lg=0
s=1 0=1 8
91n £,
X 5 lgag(tyta,))
2 In £,
= ——-————-l +
z Zt“’ Eg-o(- 26 6 =)ty +8 )
s=1 f=1
1 1
= = (t+A)'(t+a) ,
n

and
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& (l—u)2 d3 u(t+a)'wW
EG:O( — T3¢ du)
0 du

i

~l 2
(1-u)” a3 u(tta)'w
Ee:o(g 5 ((Era)'W)7e du)

:S‘ (1- u) ( (¢ + 1 alnﬁjl )3eu(t+A)'W)d
Eg-0 » 2)7® a8 le=0
0 s
_ 1
= 37z o)
n
= o(n-l)
Accordingly,
-l-A'ZA
-3 Y
lim M (t,0) =e lim (E e(t 2) W))n
2 0= 0
n—~—o W n—~o
n
-lAEA
2 1 1 -
= e lim (l+—(-2-(t+A)'Z(t+A)+°(n l)))n
n—o n
l 'Z l + IZ t+
-3 A'ZTA > (ttA)'Z(tt+A)
= e e
1 l 1
t ZA+E't 2t
= e

This concludes the proof.

% d %
—_

Based on Theorem 4.1, we can write for ©6 = , W w,

d
n

a1l

% L *
where W ~NI‘(Z)A,Z))- It is wellknown that W X lW is non-

central chi-square distributed with r = rank (X) degrees of freedom

and noncentrality parameter (ZA)'Z-I(ZA) = A'ZA. The fact that
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ale
b

ORI U . O
W Z W is a continuous function of Wn implies

n n
*' L1 % d k' 1 % S )
Wn 2 Wn - W X W . Thatis, Wn P Wn has a limiting non-

central chi-square distribution with r degrees of freedom and
noncentrality parameter A'ZA. In addition, if H(y) is replaced by
a consistent estimator Hn(y) in X2, the corresponding statistic

R N B . .
Wn g Wn will have the same limiting noncentral chi-square dis-

1 sk
w .
n

'L
tribution as the statistic Wn 2
The remainder of this section is devoted to verification of the

assumptions in the Theorem 4.1; that is,

9 1In £, 1 82 1n Le
ae ‘9:0, J: 1,..-,1’1, ';1- 89 ae ‘9:0:
s s 4
and
3
_L 0 lnLe

n 00 06 06 ‘9’
s {4 m

where © is in the closure of some neighborhood © =0, are
uniformly bounded. We will use superscripts s, {, m to represent
derivatives with respect to es, el, em and write z = F(y).

First, we derive some results for later reference. By writing

r

-1 S’ b2y &myl=)

e dz,

where c(0) is defined in Section 4.1, we may express




80

c*(0) = - 5— a%(0)
‘ A (9)
*(0) = 5— a2’ (e) - 5— a% (o)
A”(0) A%(0)
™) = - -—--——2 a%0)a (0)a™(0) + —=— (a%(0)a"™(0)
A (8) A™(6)
+ 2% (0)a™(0) + 4 (04 (0)) - 5— 4% ™0),
A“(0)
where, for s, f,m=1,...,r
s 1 = =1 Giwi(z)
A (8) = S e T (z)dz

6.w.(z)
i

ws(z)wl(z)wm(z)da-

Application of the mean value theorem for integrals gives

91ln 2,

i A -
6. lo=0 20 (8;1n g4 (y)¥(1-8) In Ge(yjnlezo

1

(6. (

1 8
] c(8) G(%))l

s ,
(O (-5 g

6=0
6

J
=6m (z.) +(1-8) L S T (z)dz
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where 0 <z, <z,<1, j=1,,..,n andhence are bounded.
j =

Similarly, we have for s 7 {

1 _1 ) L 4
n 06 90 |6=0 nZ 0+(1 63)( ZS‘ ws(z)dz S\ vl(z) z
£ T z. 0 0

j=1 j
z,
J
+;— ws(z)wl(z)dz)
j o
n
-iz (1-5)(- = z,7_(z1) 2,7 _(2)
= " - j - ZZ ZJ'ITs Z “ s N
j=1 j
1 3 3
+ z. z, Ws(zj )WZ(ZJ))
J
n
=2 ) (1-5 J+r (20, (z))
" 4 (1- ')(-Trs(z )”1(23 LCIOL i)
j=1

1 2 3 . .
where 1z, zj , zj represent corresponding mean value points.

Hence,
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j=1
n
1\ A
< =
= ) @2l (z )] |7, (z7)]
j=1
=M,
3k A
where @ (z )= sup T (z), nl(z ) = sup w (z) and
s 0<z<1l ° 0<z<1
M = Z|1rs(z )| Inl(zA)|- In the case of s = [,
2 :
1 9 InLg N o » 1 €2
- ‘ P (1-6.)(“(§ m (z)dz) +—§ w (z)dz) +1
n 2 6=0 n j 2 s Z, s
00 - z, 0 i~ o
8 j=1 j
and using a similar argument as in the case s #{, we can find
some constant M' such that
82 ln L
27 lg=ol =M
00
s

Hence in general,

_1_8 1nLel

is uniformly bounded for s,f£ =1,...,r.

Finally, for 6 inthe closure of some neighborhood 6 = 0,
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. 5> In L, . -
n 96 06,00 ae :Z Z % 36 06 86 aelae In gq(y,)
j=1
a3
+ —_— 1 R
(1-6,) 80_26,86 nGe(yj) g
where
2 )
96 96 96 8g'Y;
s I m
is a function of only c(6), cS(G), CSI(G), Cslm(e), and is therefore
constant for given 6, say Mg. For the second term
3
——a——-———lnG( )=—i——"1nQ (z,)
906 06,00 ~0'Y5' " 56 96 06 6%
s £ m s £ m
2 1 ¥
= Q. (z.) Q. (= QT (z,)
Q3( ) 6 )7 6 ) 6
6'%;
1 sf m sm {
- +
> (Qe (Zj)Qe( j) Qe ( j)Qe(zj)
Q (z.)
6 )
+ QP ™2.00%(2.)
o ‘Zi™e
1 sim
+ Q (z.) .
Qe(zj) 8 )

Again, applying the mean value theorem for integrals and writing =z

with superscripts corresponding to mean value points, we can write
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ZJ Ele 6.7 (z)
Q(Z):S‘ c(0) e dz
6]
0
Z:‘: Oiwl(zl)
=z, c(B) e
=z, M, ,
J )
where
1
Z).r_ 6.7 (z)
i= ii
Mj = c(0) e

ZJ Z)le QlTrl(z) Zr:I 611r (z)
Q%(z,) = C <c®(0) e +c(0) e TI’S(Z) dz
Y0
2 3
s 2f=1 om(z) zr:1 i";(z) 3
= z.(c (6) e ' + c(0) e T (z ))
j 8
=z, M . for s=1,...,r,
J 8]
where
2 3
o iy (@) Ziop Oz 3
M .= c (8)e ! + c(8) e s.ow (z2)
8,) 8
are bounded. By the same technique, we obtain for 8,4, m=1,...,r
sf
Q ' (z,) =zM ,
j JosL, ]
Q¥ ) = 2,




where M ., and M ., are both bounded. Hence,
sf,]j sfm,
3
9 2 3
————— InG_(y)| ., =—— (z,)M_ . .
a H ﬂ’ : H
aes eﬂaem 6 'j 6 (sz )3 j S, j j m,]
1 zZ(
- 3 . ,- , 1,-
(z.M )2 j sl,j m,j sm,]j j
J )
1
+ + _
Mfm,st,J) szj j  sfdm,j
1
Y M 'Mf .Mm.
M 8,) ) »)
J
1
- —= + M .t M
MZ (Msﬂ,ern,j Msm,j £,j Mlm,J S,_])
j
1
+ = .
Mj Mslm,j

Therefore, we can find some constant M

T which is independent

of the zj's such that

3

9
| 55 5655 10 Gyl <My -
s £ m

Finally,
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1 0 lnLe ||
n 9o 90,86 6
n
<x) (|—————83 tn 8,051 | + Isptse 1n Gyt
>n 96 860 00 67j' e 30 96,00 EREUN
=1 s £ m s £ m

is uniformly bounded.
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