
AN ABSTRACT OF THE THESIS OF

Clifford John Warner for the degree of Doctor of Philosophy

Electrical and
in Computer Engineering presented on July 27, 1979

Title: ANALYSIS OF NEW PROTOCOLS FOR COMPUTER

COMMUNICATION NETWORKS

Abstract approved: Redacted for privacy
75-7" `f Joiinr6(rieggins

An advanced forward 'area tactical radar network, now under

conceptual development by the Air Force Electronic Systems Divi-

sion, can be viewed as a novel form of computer network but with

other unique problems resulting from the specialized nature of the

application. The proposed network will link together a number of

short-range radars, each with associated data processing equipment,

so that each radar site has a complete file of tracks for all targets

seen by any radar in the network. In addition, the communication

network is expected to be used for transmission of a variety of other

types of command and control messages.

A new class of adaptive routing protocols for computer

communication networks have been developed in this thesis, using the

radar network as a basis, but applicable to any computer comrnunica-

tion network. These new routing protocols utilize new techniques for

searching out and using both reciprocal paths (paths over which

messages can travel in either direction) and non-reciprocal paths

(paths over which messages can travel in only one direction) for

directed message routing. The computations required by the new

routing protocols are carried out in a distributed manner at each net-

work node. The only information on network structure which a node

needs to store in order to carry out any of the routing computations is

the identity of its neighbors.

A GPSS simulation model of a 13 node radar network was used

to determine the steady state characteristics of the new routing proto-

cols in an undamaged network, from which a performance model was

developed, and to determine the transient characteristics of the new

routing protocols while adapting to various cases of network damage.

The transient tests indicate that each of the new routing algorithms

possess varying degrees of adaptability to network damage. Some of

the new routing algorithms were shown to possess the capability to

adapt to extreme cases of network damage. Further transient tests

indicated that when some of the new routing algorithms are combined

with acknowledgement techniques, complete protocols which reliably

deliver all messages to their destinations, even following severe net-

work damage, are formed.

The new protocols developed in this thesis are suitable for use

in conventional computer communication networks. Overhead com-

parisons with an ARPA type routing protocol indicate that the new

routing protocols developed in this thesis generally require less over-

head for large networks with low connectivity.

Analysis of New Protocols for Computer
Communication Networks

by

Clifford John Warner

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed July 1979

Commencement June 1980

APPROVED:

Redacted for privacy
ociate ProfessolOf El r cal and Computer

Engineering
in charge of major

Redacted for privacy
Head of Department of Electrical and Computer
Engineering

Redacted for privacy

Dean of raduate School

Date thesis is presented July 27, 1979

Typed by Clover Redfern for Clifford John Warner

To my wife, Marlys

ACKNOWLEDGEMENTS

I wish to thank my major professor, Dr. John Spragins, for his

guidance throughout this thesis preparation. I also wish to thank

Mr. Otto Wech for his many suggestions which helped improve the

presentation of this thesis.

Most of all, I thank my wife, Marlys, without whose constant

support, encouragement, and assistance this work would never have

been completed.

This research was supported by the Air Force Office of

Scientific Research under grant AFOSR-78-3619.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Characteristics of Computer Communication Networks 2

Characteristics of the Radar Network 4
Function 5

Host Computers 7
Communication Processors 9
Topological Layout 9

Communication Equipment and Transmission Media 9
Switching Technique 10

II. ROUTING PROTOCOLS FOR COMPUTER
COMMUNICATION NETWORKS 12
Distributed and Adaptive Routing Protocols 14

Flooding 14
Random Routing 15
Shortest Path Routing 15
Minimum Spanning Tree 19
Backwards Learning 20
ARPA Routing Protocol 23

Summary 25

III. ANALYSIS TECHNIQUES FOR ROUTING PROTOCOLS 29
A GPSS Simulation Model of the Radar Network 29
Summary 37

IV. A NEW CLASS OF ROUTING PROTOCOLS 38
Non-Directed Message Routing Algorithm 38
New Directed Message Routing Algorithms 40
Simple Backwards Learning Algorithm 42

Non-Directed Message Handling 43
Directed Message Handling 48
Steady State Tests and Performance Model 48
Adaptability Tests 63
Three Links Destroyed 66
Three Links Jammed 72
Six Links Jammed 75

Reciprocal Path Search Algorithm 75
Non-Directed Message Handling 81
Directed Message Handling 85
Three Links Destroyed 88

Chapter Page

Three Links Jammed 92
Six Links Jammed 96

Rapid Reciprocal Path Search Algorithm 100
Non-Directed Message Handling 103
Directed Message Handling 108
Three Links Destroyed 112
Three Links Jammed 112
Six Links Jammed 118

Reciprocal Path Search Algorithm with Delay Vectors 123
Delay Vector Creation 128
Delay Vector Table Update Routine 133
Non-Directed Message Handling 138
Directed Message Handling 138
Three Links Destroyed 146
Three Links Jammed 150
Six Links Jammed 159

Rapid Reciprocal Path Search Algorithm with Delay
Vectors 167

Non-Directed Message Handling 168
Directed Message Handling 168
Three Links Destroyed 177
Three Links Jammed 180
Six Links Jammed 184

Overhead Considerations 189
Summary 191

V. ANALYSIS OF COMBINED ROUTING AND
ACKNOWLEDGEMENT PROTOCOLS 197
Reciprocal Path Search Algorithm with Delay Vectors

and Acknowledgements 201
Transient Simulation Tests 201

Rapid Reciprocal Path Search Algorithm with
Acknowledgements 225

Transient Simulation Tests 225
Summary 233

VI. CONVENTIONAL NETWORK APPLICATIONS
Summary

234
240

Chapter page

VII. AREAS FOR FURTHER RESEARCH 242

BIBLIOGRAPHY 246

APPENDIX A: Supplementary Simulation Results 252

LIST OF FIGURES

Possible form of a radar network.

Page

6

Thirteen node structure of the GPSS model of a radar
network. 30

4.1. Simple Backwards Learning algorithm routing table. 43

4. 2. Conceptual block diagram of the Simple Backwards
Learning algorithm's non-directed message handling
procedure.

4. 3. Detailed block diagram of the Simple Backwards
Learning algorithm's non-directed message handling
procedure.

4.4. Conceptual block diagram of the Simple Backwards
Learning algorithm's directed message handling
procedure.

4. 5. Detailed block diagram of the Simple Backwards
Learning algorithm's directed message handling
procedure.

4. 6. Steady state message delays for the Simple Backwards
Learning algorithm as a function of the offered traffic
rate.

44

45

49

50

53

4. 7. Typical communication channel utilizations for the
Simple Backwards Learning algorithm as a function of
the offered traffic rate. 62

4. 8. Structure of the GPSS model of a radar network with
three communication links destroyed. 64

4. 9. Structure of the GPSS model of a radar network with
three communication links jammed. 64

4. 10.. Structure of the GPSS model of a radar network with
six communication links jammed. 65

Figure Page

4.11. Directed messages delivered and lost for the Simple
Backwards Learning algorithm as a function of the
time elapsed following the destruction of three links.

4.12. Directed messages looping for the Simple Backwards
Learning algorithm as a function of the time elapsed
following the destruction of three links.

4.13. Message delays for the Simple Backwards Learning
algorithm as a function of the time elapsed following
the destruction of three links.

4.14. Directed messages delivered and lost for the Simple
Backwards Learning algorithm as a function of the time
elapsed following the jamming of three links.

4.15. Directed messages looping for the Simple Backwards
Learning algorithm as a function of the time elapsed
following the jamming of three links.

4.16. Message delays for the Simple Backwards Learning
algorithm as a function of the time elapsed following
the jamming of three links.

4.17. Directed messages delivered and lost for the Simple
Backwards Learning algorithm as a function of the time
elapsed following the jamming of six links.

4.18. Directed messages looping for the Simple Backwards
Learning algorithm as a function of the time elapsed
following the jamming of six links.

67

69

71

73

74

76

77

78

4.19. Message delays for the Simple Backwards Learning
algorithm as a function of the time elapsed following
the jamming of six links. 79

4.20. Conceptual block diagram of the Reciprocal Path Search
algorithm's non-directed message handling procedure. 82

4.21. Detailed block diagram of the Reciprocal Path Search
algorithm's non-directed message handling procedure. 83

Figure Page

4.22. Conceptual block diagram of the Reciprocal Path Search
algorithm's directed message handling procedure. 86

4.23. Detailed block diagram of the Reciprocal Path Search
algorithm's directed message handling procedure. 87

4.24. Directed messages delivered and lost for the Reciprocal
Path Search algorithm as a function of the time elapsed
following the destruction of three links.

4.25. Directed messages looping for the Reciprocal Path
Search algorithm as a function of the time elapsed
following the destruction of three links.

4.26. Message delays for the Reciprocal Path Search algorithm
as a function of the time elapsed following the destruction
of three links.

4.27. Directed messages delivered and lost for the Reciprocal
Path Search algorithm as a function of the time elapsed
following the jamming of three links.

4.28. Directed messages looping for the Reciprocal Path
Search algorithm as a function of the time elapsed
following the jamming of three links.

4.29. Message delays for the Reciprocal Path Search algorithm
as a function of the time elapsed following the jamming
of three links.

4.30. Directed messages delivered and lost for the Reciprocal
Path Search algorithm as a function of the time elapsed
following the jamming of six links.

4.31. Directed messages looping for the Reciprocal Path
Search algorithm as a function of the time elapsed
following the jamming of six links.

4.32. Message delays for the Reciprocal Path Search algorithm
as a function of the time elapsed following the jamming
of six links.

89

90

91

93

94

95

97

98

99

Figure Page

4.33. Rapid Reciprocal Path Search algorithm routing
table s. 102

4. 34. Conceptual block diagram of the Rapid Reciprocal Path
Search algorithm's non-directed message handling
procedure. 104

4. 35. Detailed block diagram of the Rapid Reciprocal Path
Search algorithm's non-directed message handling
procedure. 105

4. 36. Conceptual block diagram of the Rapid Reciprocal Path
Search algorithm's directed message handling procedure. 109

4.37. Detailed block diagram of the Rapid Reciprocal Path
Search algorithm's directed message handling procedure. 110

4.38. Directed messages delivered and lost for the Rapid
Reciprocal Path Search algorithm as a function of the
time elapsed following the destruction of three links.

4. 39. Message delays for the Rapid Reciprocal Path Search
algorithm as a function of the time elapsed following
the destruction of three links.

4. 40. Directed messages delivered and lost for the Rapid
Reciprocal Path Search algorithm as a function of the
time elapsed following the jamming of three links.

4. 41. Directed messages looping for the Rapid Reciprocal
Path Search algorithm as a function of the time elapsed
following the jamming of three links.

4. 42. Message delays for the Rapid Reciprocal Path Search
algorithm as a function of the time elapsed following
the jamming of three links.

4. 43. Directed messages delivered and lost for the Rapid
Reciprocal Path Search algorithm as a function of the
time elapsed following the jamming of six links.

113

114

115

116

117

119

Figure Page

4.44. Directed messages looping for the Rapid Reciprocal
Path Search algorithm as a function of the time
elapsed following the jamming of six links.

4.45. Message delays for the Rapid Reciprocal Path Search
algorithm as a function of the time elapsed following
the jamming of six links.

120

121

4. 46. Delay Vector Table. 125

4. 47. Non- reciprocal link. 125

4. 48. Conceptual block diagram of the delay vector creation
procedure for the Reciprocal Path Search Algorithm
with Delay Vectors.

4. 49. Detailed block diagram of the delay vector creation
procedure for the Reciprocal Path Search Algorithm
with Delay Vectors.

4.50. Conceptual block diagram of the Delay Vector Table
update routine for the Reciprocal Path Search
Algorithm with Delay Vectors.

4. 51. Detailed block diagram of the Delay Vector Table
update routine for the Reciprocal Path Search
Algorithm with Delay Vectors.

4.52. Conceptual block diagram of the non-directed message
handling procedure for the Reciprocal Path Search
Algorithm with Delay Vectors.

4.53. Detailed block diagram of the non-directed message
handling procedure for the Reciprocal Path Search
Algorithm with Delay Vectors.

4.54. Conceptual block diagram of the directed message
handling procedure for the Reciprocal Path Search
Algorithm with Delay Vectors.

4.55. Detailed block diagram of the directed message
handling procedure for the Reciprocal Path Search
Algorithm with Delay Vectors.

130

131

134

135

139

140

142

143

Figure Page

4.56. Directed messages delivered and lost for the Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the destruction of three
links. 147

4.57. Directed messages looping for the Reciprocal Path
Search Algorithm with Delay Vectors as a function of
the time elapsed following the destruction of three links. 148

4.58. Message delays for the Reciprocal Path Search
Algorithm with Delay Vectors as a function of the time
elapsed following the destruction of three links.

4. 59. Directed messages delivered and lost for the Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the jamming of three links

(TDV

4. 60. Directed messages looping for the Reciprocal Path
Search Algorithm with Delay Vectors as a function of
the time elapsed following the jamming of three links
(T

DV
= 41-).

ND

4. 61. Message delays for the Reciprocal Path Search
Algorithm with Delay Vectors as a function of the
time elapsed following the jamming of three links
(T

DV
= 4t ND).

ND

4. 62. Directed messages delivered and lost for the Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the jamming of three links
(T

DV
= 2F

ND
).

4. 63. Directed messages looping for the Reciprocal Path
Search Algorithm with Delay Vectors as a function of
the time elapsed following the jamming of three links
(T

DV
= 21-ND).

4. 64. Message delays for the Reciprocal Path Search
Algorithm with Delay Vectors as a function of the
time elapsed following the jamming of three links
(T

DV
= 2TN D).

149

151

152

153

156

157

158

Figure Page

4.65. Directed messages delivered and lost for the Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the jamming of six links
(T

DV
= 4tND)..

4. 66. Directed messages looping for the Reciprocal Path
Search Algorithm with Delay Vectors as a function of
time elapsed following the jamming of six links
(T

DV
= 4tND).

4. 67. Message delays for the Reciprocal Path Search
Algorithm with Delay Vectors as a function of the
time elapsed following the jamming of six links
(T

DV
= 4tND).

4. 68. Directed messages delivered and lost for the Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the jamming of six links
(TDV =) .

DV ND

4. 69. Directed messages looping for the Reciprocal Path
Search Algorithm with Delay Vectors as a function of
the time elapsed following the jamming of six links
(T

DV
=).

ND

4.70. Message delays for the Reciprocal Path Search
Algorithm with Delay Vectors as a function of the time
elapsed following the jamming of six links
(T

DV
=).

ND

4.71. Conceptual block diagram of the non-directed message
handling procedure for the Rapid Reciprocal Path
Search Algorithm with Delay Vectors.

4.72. Detailed block diagram of the non-directed message
handling procedure for the Rapid Reciprocal Path Search
Algorithm with Delay Vectors.

4.73. Conceptual block diagram of the directed message
handling procedure for the Rapid Reciprocal Path
Search Algorithm with Delay Vectors.

160

161

162

164

165

166

169

170

172

Figure Page

4.74. Detailed block diagram of the directed message
handling procedure for the Rapid Reciprocal Path
Search Algorithm with Delay Vectors.

4.75. Directed messages delivered and lost for the Rapid
Reciprocal Path Search Algorithm with Delay Vectors
as a function of the time elapsed following the
destruction of three links.

4.76. Message delays for the Rapid Reciprocal Path Search
Algorithm with Delay Vectors as a function of the time
elapsed following the destruction of three links.

4.77. Directed messages delivered and lost for the Rapid
Reciprocal Path Search Algorithm with Delay Vectors
as a function of the time elapsed following the jamming
of three links.

173

178

179

18 1

4.78. Directed messages looping for the Rapid Reciprocal
Path Search algorithm with Delay Vectors as a function
of the time elapsed following the jamming of three links. 182

4.79. Message delays for the Rapid Reciprocal Path Search
Algorithm with Delay Vectors as a function of the time
elapsed following the jamming of three links.

4.80. Directed messages delivered and lost for the Rapid
Reciprocal Path Search Algorithm with Delay Vectors
as a function of the time elapsed following the jamming
of six links.

183

185

4.81. Directed messages looping for the Rapid Reciprocal
Path Search Algorithm with Delay Vectors as a function
of the time elapsed following the jamming of six links. 18 6

4.82. Message delays for the Rapid Reciprocal Path Search
Algorithm with Delay Vectors as a function of the time
elapsed following the jamming of six links.

5.1. Directed messages delivered for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TpA = 500,
original GPSS model).

187

204

Figure Page

5. 2. Directed message retransmissions for the RPSDV
algorithm with acknowledgements as a function of the
time elapsed following the jamming of six links
(TPA = 500, original GPSS model).

5. 3. Directed messages looping for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, original
GPSS model).

5. 4. Directed message delay for the RPSDV algorithm with
acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, original
GPSS model).

5.5. Non-directed message delay for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, original
GPSS model).

5. 6. Directed messages delivered for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, improved
GPSS model).

5.7. Directed message retransmissions for the RPSDV
algorithm with acknowledgements as a function of the
time elapsed following the jamming of six links
(TPA = 500, improved GPSS model).

5.8. Directed messages looping for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, improved
GPSS model).

5. 9. Directed message delay for the RPSDV algorithm with
acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500, improved
GPSS model).

205

206

207

208

211

212

213

214

Figure Page

5.10. Non-directed message delay for the RPSDV algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links (TpA = 500,
improved GPSS model).

5.11. Directed messages delivered for the RPSDV algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links (TPA = 1000,
improved GPSS model).

5.12. Directed message retransmissions for the RPSDV
algorithm with acknowledgements as a function of the
time elapsed following the jamming of six links
(TPA = 1000, improved GPSS model).

5.13. Directed messages looping for the RPSDV algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links (TpA = 1000,
improved GPSS model.

5. 14. Directed message delay for the RPSDV algorithm with
acknowledgements as a function of the time elapsed
following the jamming of six links (TpA = 1000,
improved GPSS model).

5. 15. Non-directed message delay for the RPSDV algorithm
with acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 1000,
improved GPSS model).

5.16. Directed messages delivered for the RRPS algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links (TPA = 500,
improved GPSS model).

5.17. Directed message retransmissions for the RRPS
algorithm with acknowledgements as a function of the
time elapsed following the jamming of six links
(TPA = 500, improved GPSS model).

215

220

221

222

223

224

227

228

Figure page.

5.18. Directed messages looping for the RRPS algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links (TPA = 500,
improved GPSS model).

5. 19. Directed message delay for the RRPS algorithm with
acknowledgements as a function of the time elapsed
following the jamming of six links (TPA = 500,
improved GPSS model).

5.20. Non-directed message delay for the RRPS algorithm
with acknowledgements as a function of the time
elapsed following the jamming of six links
(TPA = 500, improved GPSS model).

Appendix

A.1. Directed messages delivered and lost for the RRPSDV
algorithm, with the source node restriction removed,
as a function of the time elapsed following the jamming
of three links.

229

230

231

253

A. 2. Directed messages looping for the RRPSDV algorithm,
with the source node restriction removed, as a function
of the time elapsed following the jamming of three links. 254

A. 3. Message delays for the RRPSDV algorithm, with the
source node restriction removed, as a function of the
time elapsed following the jamming of three links.

A. 4. Directed messages delivered and lost for the RRPSDV
algorithm, with the source node and ping-pong restric-
tions removed, as a function of the time elapsed
following the jamming of three links.

A. 5. Directed messages looping for the RRPSDV algorithm,
with the source node and ping -pong restrictions
removed, as a function of the time elapsed following the
jamming of three links.

255

256

257

Figure Page

A. 6. Message delays for the RRPSDV algorithm, with the
source node and ping -gong restrictions removed, as a
function of the time elapsed following the jamming of
three links.

A. 7. Directed messages delivered and lost for the RRPSDV
algorithm, with the source node and ping -pong restric-
tions removed and the limiting constant increased to
ten, as a function of the time elapsed following the
jamming of three links.

A. 8. Directed messages looping for the RRPSDV algorithm,
with the source node and ping-pong restrictions
removed and the limiting constant increased to ten,
as a function of the time elapsed following the jamming
of three links.

258

259

260

A. 9. Message delays for the RRPSDV algorithm, with the
source node and ping -pong restrictions removed and
the limiting constant increased to ten, as a function of
the time elapsed following the jamming of three links. 261

LIST OF TABLES

Table Page

4. 1. Values of parameters used in the steady state tests of
the Simple Backwards Learning algorithm. 51

4. 2. Comparison of the actual values of steady state directed
message delay and the values computed from Equations
(4. 5) and (4. 6). 55

4. 3. Comparison of W and WK. 59

4. 4. Comparison of 177 and (1/3. 52)WK. 59

4. 5. Comparison of the actual values of steady state directed
message delay and the values computed from Equation
(4. 11). 60

4. 6. Values of the parameters used to fit the curves in
Figure 4.7.

4. 7. Values of parameters used in the transient simulation
tests of the new routing protocols.

61

66

4.8. Values of delay vector parameters used in the transient
simulation tests of the new routing protocols. 128

4. 9. Total message transmissions for the three links
jammed case. 192

4.10. Total message transmissions for the six links
jammed case. 193

5.1. Values of parameters used in the transient simulation
tests of the combined routing and acknowledgement
protocols. 201

6. 1. A comparison of OHA and OHSBL for m = 2. 238

6.2. A comparison of OHA and OHSBL for m = 3. 239

LIST OF SYMBOLS

a. Curve fitting parameter.

a.. The A routing table delay estimate to node j via port i.

b. Curve fitting parameter.

b.. The B routing table entry.

C Communication channel capacity.

c.. The C routing table delay estimate to node j via port i.

DB Delay estimate to node B.

D
DM

Steady state directed message delay.

DMSG Delay experienced by a message in travelling from its
source node.

DNDM Steady state non-directed message delay.

d Delay Vector Table delay estimate to node j via the non-
13 reciprocal link connecting the intermediate and creation

nodes.

Delay Vector Table intermediate node entry.d2 Delay

d . Delay Vector Table creation node entry.

d
SD

Path length from node S to node D.

e.. Delay estimate to node j via node i, determined by a..,ij ijb.., and c...
13 13

HN Handover number, an indicator of the path length from a
message's source node.

kl Learning constant.

k
2

Forgetting constant.

k3 Limiting constant.

iA Packet size used by acknowledgements.

fM

N(S)

NS(P)

n

OHA

OHSB L

Packet size used by regular directed and non-directed
messages.

Average number of ports at each node in a network.

Collection of node S's neighbor nodes.

Collection of all nodes whose shortest path from node S
is out of port P.

Number of nodes in a network.

Total overhead required per update by an ARPA type
routing algorithm.

Maximum total overhead required per update by the
Simple Backwards Learning algorithm.

Average path length traversed by all directed messages
in travelling from their source node to their destination
node.

R Parameter used to equate W and WK.

T(S) The distance along the shortest path from node S to the
message's destination node.

T
DV

Elapsed time between delay vector transmissions at a
node.

Maximum elapsed time allowed between non-directedNDmax message transmissions at any node.

TNR

TPA

Update time limit for considering the Delay Vector Table
entries alive.

Time out period allowed for acknowledgement reception
before a directed message retransmission.

TR Update time limit for considering the A, B, or C routing
table entries alive.

Tx(S, P) Estimated delay to node S from node X via port P.

t(S, Y) Transit time from node S to its neighbor Y.

tD Inter-generation time for directed messages at each node.

t
ND Inter-generation time for non-directed messages at each

node.

Queue waiting time averaged over all queues, computed
directly from simulation data.

Wi Waiting time in queue i.

WK Queue waiting time averaged over all queues, computed
from equations based on Kleinrock's independence
assumption.

WSD Average queue waiting time in the path from node S to
node D.

Per node offered traffic rate for directed and non-
directed messages.

Utilization of communication channel i.
Pi

GLOSSARY OF TERMS

ACK A positive acknowledgement.

ARPANET The Defense Department's Advanced Research
Projects Agency experimental computer network.
This term is abbreviated to ARPA when its
meaning is made clear by context.

GPSS The General Purpose System Simulation language.

learning process Updating the routing table delay estimates to
bring them closer to the current message's
value of DMSG

forgetting process Causing the routing table delay estimates to
increase.

NAK A negative acknowledgement.

RPS The Reciprocal Path Search routing algorithm.

RPSDV

RRPS

RRPSDV

The Reciprocal Path Search Algorithm with
Delay Vectors.

The Rapid Reciprocal Path. Search routing
algorithm.

The Rapid Reciprocal Path Search Algorithm
with Delay Vectors.

SBL The Simple Backwards Learning routing
algorithm.

ANALYSIS OF NEW PROTOCOLS FOR COMPUTER
COMMUNICATION NETWORKS

I. INTRODUCTION

This thesis is primarily concerned with the development and

analysis of a new class of protocols for computer communication net-

works. The protocols are developed to meet the requirements of a

new type of computer communication network, a radar network, which

is now under conceptual development by the Air Force Electronic

Systems Division. Although the radar network has served as the

basis for the protocols' development, the usefulness of the protocols

for other networks is also investigated.

This chapter introduces the precise form currently visualized

for the radar network motivating this study. Chapter II of this thesis

surveys the major existing routing protocols for computer communi-

cation networks, and discusses their suitability for use in a radar

network. Chapter III discusses the techniques available for analyzing

routing protocols, and describes a GPSS simulation model of the

radar network which was created to analyze the new routing protocols

developed in this thesis. In Chapter IV, the new routing protocols

will be presented, along with their performance characteristics,

which are derived from the GPSS simulation data. Chapter V dis-

cusses acknowledgement protocols which are suitable for use in the

2

radar network. The performance characteristics which result when

the new routing protocols are combined with acknowledgement proto-

cols are presented. Finally, Chapter VI discusses the suitability of

the new protocols developed in this thesis for use in conventional

computer communication networks.

Characteristics of Computer Communication Networks

A common definition of a computer communication network is

that it is a collection of nodes, at which reside computing resources,

and a set of communication channels which the nodes use to communi-

cate with one another (1, 2, 3). Sharing of resources is accomplished

by the transmission and reception of messages. The nodes consist of

host computer and terminal resources. These form the "user-

resource" subnetwork. More than one host computer may reside at

each node. Terminals may be either local to a host computer, or

they may be remote, or a terminal need not be permanently associ-

ated with any host computer at all. The computing resources which

reside at each node are normally connected into the network through

special purpose communication processors (2, 3). The communica-

tion processors along with the communication links form the "com-

munication" subnetwork. The communication subnetwork may also

contain some nodes whose only function is message handling. The

user-resource subnetwork together with the communication

3

subnetwork comprise the entire computer communication network.

The computer communication network is generally defined by

the following features: its host computers and terminals, communi-

cation processors, topological layout, communication equipment and

transmission media, switching technique, and protocol design (1, 4).

These features are chosen to accomplish the particular function of

the computer communication network subject to specified performance

requirements. The performance measures most commonly quoted

include message delay, message throughput, reliability, cost, and

security (3, 4, 5).

Message delay can be defined as the elapsed time between

transmission of the first bit of the message at its source node, and

the successful reception of its final bit at its destination node (thus the

delay includes the message transmission time). Throughput can be

defined as the average number of information bits successfully

delivered at the destination node per unit time. A computer communi-

cation network can be considered reliable if it possesses certain

qualities, such as the capability to adapt to changes in network struc-

ture and the ability to deliver messages over noisy communication

channels. Providing a multiplicity of paths between nodes is often

used to maintain the network's viability in the event of link or node

failures. Quantitative reliability measures exist which depend

strongly upon the topological layout of the communication links in

4

addition to the reliability and availability of the individual computer

systems and communication facilities (6). The cost of a network is

determined by the requirements for network resources such as proc-

essing speed and communication channel bandwidth, and by the man-

ner in which these requirements are satisfied (technologies used, etc).

Security relates to the availability of the network resources to unau-

thorized users and to the susceptibility of the network to disruption

by hostile forces. Techniques for maintaining network security

include using confidential user identification codes, encrypting the

network messages, and, depending upon the type of communication

links used, the use of various schemes for preventing interference

with message transmissions such as spread spectrum or code-division

multiple access (CDMA) techniques or narrow beam antennas (7).

Characteristics of the Radar Network

Several initial studies have already been completed on the radar

network (8, 9, 10). This thesis will use the results of these earlier

studies to define the radar network's function, host computers, com-

munication processors, topology, communication equipment and

transmission media, and switching technique. These results are pre-

sented in this introductory chapter. The presentation of the protocols

is reserved for later chapters.

5

Function

The radar network consists of a grid of short-range radars

which communicate with each other to share information about target

tracks. A possible configuration of the grid is pictured in Figure 1.1.

A primary purpose of the network is to allow the radar sites (network

nodes) to share track reports so that each radar site will be able to

maintain a complete file of all target tracks generated any where

within the network.

In addition to the radar sites, the network will contain command

and control and other specialized nodes. These network nodes will

transmit and receive specialized messages, using the radar network

as their communication medium, even though their messages may not

be directly related to the primary network function of allowing the

radar sites to maintain complete files of target tracks.

The function of the communications portion of the radar net-

work, then, is to facilitate the transmission and reception of track

reports, as well as other specialized directed messages carrying

command and control and other information. This must be accom-

plished reliably, both when the network undergoes planned changes in

structure, which will probably be infrequent, as well as when damage

of the network nodes and communication facilities results from hostile

actions. Jamming, which often results in the prevention of

6

R

R

R
NC

R - RADAR NODE

* - DISABLED RADAR

J - JTIDS DISTRIBUTION STATION

NC - NETWORK CONTROL CENTER

R

CC

z R

CP - COMMAND POST

CC - COMMAND/CONTROL CENTER

E-3A - AIRBORNE COMMAND CENTMI

CP

Figure 1. 1. Possible form of network with additional types of nodes.

7

transmission of information in a single direction over a communica-

tion link, should be expected. Despite such network changes, mes-

sages should be delivered to their destinations with a minimum of

delay. This is especially true of the track report messages, since

these reports will likely be used for real time tracking.

Host Computers

Each radar site will contain host computers which will, upon

sighting a target, employ sophisiticated data processing techniques to

generate a target track. Each radar site will be capable of utilizing

the tracks it generates from its own sightings, together with the

target track reports it receives through the communication network,

to update its own track file and to generate new track reports.

Tracking algorithms which utilize information from all radars

in an optimum manner probably will not be feasible in a radar net-

work of this type. Rather than sending complete information on all

target detections to a central location which will combine the reports

to generate target tracks, tracking will be done at each radar location

using the information available there. The information used will be

track information received from other radar sites, plus any informa-

tion generated at the particular location itself. This distributed form

of tracking is necessary to ensure reliability of the network. It is

expected that the radar network will at times by subjected to

8

intentional damage, and the destruction of a centralized tracking site

would bring the tracking function to an abrupt halt. This distributed

form of tracking, however, would allow the tracking function to con-

tinue even with widespread destruction of radar sites.

In order to ensure that each tracking radar is able to utilize

information from other radars to generate more accurate tracks than

would be possible without shared information, a rather formal data

sharing procedure has been proposed. The suggested procedure gives

a compromise between the tremendous communications and data

processing requirements which would be necessary with complete

sharing of all relevant information from every single radar seeing a

target, and the poorer quality tracks which would be obtained without

sharing. The current concept involves a subset of the radars seeing

any given target to form a local group which is in charge of tracking

that particular target. Members of the local group share complete

information on their detections of their particular target. When any

member of the local group determines that it has information indicat-

ing a new track report is needed, it generates one and disseminates

it throughout the network by means of some of the communications

algorithms discussed in this thesis.

9

Communication Processors

A communication processor will be required at each node to

interface between the host tracking processors and the communication

subnetwork. The communication processor will perform tasks such

as attaching addressing and control information to each message

packet, attaching check sum bits for error detection, storing unac-

knowledged messages, and applying routing and other message

handling algorithms.

Topological Layout

Reliability and survivability considerations dictate that the

communication network assume the form of a distributed grid whereby

each node has multiple paths to the other network nodes. The nominal

grid could be basically rectangular, diamond, or hexagonal. It is

likely, however, that a largely random configuration similar to that

in Figure 1. 1 will actually exist in a tactical situation.

Communication Equipment and Transmission Media

The types of communication links which will be used between

nodes could be any of the following: microwave, troposcatter, fiber

optics, or satellite communication links. A likely choice will be

microwave radio links using narrow-beam antennas since this type of

10

link seems to be feasible and to have definite electronic countermeas -

ure (ECM) advantages. Each communication link would have separate

transmitting and receiving antennas. This would provide for

bi-directional simplex transmission of messages between nodes (a

detailed explanation of simplex transmission is contained in reference

11).

This approach implies that the two directions of transmission

will be treated independently, since it is entirely possible only one

direction will be operational.

Switching Technique

The basic switching technique used will be a form of packet

switching. Target tracks will be transmitted over the bi-directional

simplex communication channels in fixed size data blocks, probably

approximately 300 bits in length (59). Other miscellaneous types of

specialized transmissions may use varying sizes of data blocks,

although there is some possibility of fitting most, if not all, of these

into the same size packets. The track reports transmitted by the

local group members, which are sent to all other members of the net-

work, are by far the most common members of a class of transmis-

sions which will be called non-directed transmissions, since they are

not really directed toward any particular node, and are expected to

disseminate the same information to all nodes. Some of the track

11

reports sent out by the members of each local group, as well as the

majority of the other messages besides track reports, will probably

be directed messages sent from one particular node to another. It

may be extremely important to ensure the correct reception of some

of these directed messages with a minimum of delay.

When messages are sent in the form of packets, there is a

fundamental tradeoff between low delay and high throughput (5). Low

delay calls for a small packet size to cut transmission time, and

short queues to keep queueing delay to a minimum. In contrast, high

throughput calls for large packets to decrease overhead, and long

queues to provide sufficient buffering and full circuit utilization. Low

delay for some types of messages is extremely important in the radar

network, so queues should be kept small and the packets reasonably

short. However, the protocols must ensure that the messages are

delivered. Lost messages will decrease throughput, and in this

respect throughput is very important.

12

II. ROUTING PROTOCOLS FOR COMPUTER
COMMUNICATION NETWORKS

In a packet switching computer communication network, there

must be some protocol which determines at each node on which link

or links an incoming packet or message should be forwarded, if it has

a destination other than the node which has just received the message.

The choice of the routing protocol which should be used depends on

the network geography, and the nature of the communications proc-

esses for which it is designed. How well the routing protocol oper-

ates will affect the message delay, throughput, and other feactors

such as network congestion (12).

Routing protocols can be divided into two categories, determin-

istic and adaptive (13). A deterministic protocol is time invariant,

and does not adjust to varying network conditions. The routes in a

deterministic protocol are fixed. An adaptive protocol, on the other

hand, is time varying and can adjust to variations in network charac-

teristics such as uneven congestion of the network communication

links or changes in the network connectivity.

Besides being either deterministic or adaptive, routing proto-

cols can be classified according to whether the routing protocol

requires global or local knowledge of the network structure; whether

the routing computation is performed at a single node (centralized),

or at each individual node (distributed); and whether the objective of

13

the routing protocol is to minimize the total average delay (system

optimizing), or to minimize the individual source-destination delays

(user optimizing) (13).

The needs of the radar network motivating this research require

that the routing protocol be adaptive since it is expected that the net-

work will be subject to both voluntary and involuntary changes in net-

work structure. The voluntary changes will arise as a result of

mobile network nodes wishing to enter, leave, or reposition them-

selves within the network grid. The involuntary network changes can

be a result of hostile actions of a foe, resulting in the jamming of

communication links, and the destruction of nodes. Involuntary loss

of communication links can also result from equipment failure.

The routing protocol needs to be distributed also because of the

potential loss of nodes by enemy actions. If the routing computations

were carried out at a single centralized node, the destruction of this

node could bring the routing of messages to a halt, or at least the

routes would thereafter remain fixed. However, if the routing com-

putations are carried out at each individual node, adaptive routing

would continue even with widespread destruction.

Distributed and Adaptive Routing Protocols

Flooding

14

Flooding can be used to route either non-directed or directed

messages. With flooding, a packet is sent by each node to all of its

neighbors, except possibly the one from which it was received. It is

easy to verify that with this algorithm, a packet will be delivered to

all network nodes. Flooding ensures that a message will arrive at

each node over the quickest route which is available under the mes-

sage loading conditions imposed with this algorithm. This speed,

however, is achieved at the cost of generating extra traffic.

In a comparative study on adaptive routing algorithms for

directed messages (14), Boehm and Mobley suggest that flooding

generates so many extra copies of a message that it is extremely

wasteful of network resources and therefore a poor choice for

directed message routing. They do point out, however, that it has

excellent adaptability. By the nature of the algorithm, flooding adapts

instantly to any changes in network structure, which is important for

a radar network.

Barber and Davies suggest that flooding be used as a path find-

ing method (12). They suggest that when a route is to be established

from node S to node D, that a short "path finder" packet be sent

from S by flooding, and each packet generated in the "flood" record

15

the route it takes. Then the first packet to reach destination D has

a record of the optimum route. They suggest that D return this

route information to S, and S can then use this information to

route later messages to D.

Random Routing

Random routing is primarily useful for directed message rout-

ing. Each node that receives the message sends it out of a randomly

selected port. The message makes a "drunkards walk" around the

network until it eventually arrives at its destination. While simple to

implement, this algorithm allows the message to take longer than

necessary to reach its destination. Allowing unnecessary delays also

puts an unnecessary burden on the network resources by increasing

congestion. Since low message delay is very important in the radar

network, random routing does not seem to be a viable candidate for

use in it.

Shortest Path Routing

This protocol is useful for routing both directed and non-

directed messages. With this protocol, each node stores a complete

"map" of the entire network which it uses to determine the shortest

path to each other node in the network. Two of the drawbacks of this

type of protocol are that for large networks, such as a radar network,

16

much memory may be needed to store the map, and, probably more

important, the processing time required to compute the shortest path

to each node can be very long. This is an important drawback in an

environment where changes in network structure will be frequent, as

in a radar network, since the long computation times which may be

required to compute all the new shortest paths will degrade the

algorithm' s adaptability.

Boehm and Mobley include the shortest path routing protocol in

their study. They proposed a dynamic programming algorithm be

used to compute the shortest paths. The dynamic programming prin-

ciple which they used is based on the fact that the optimal path from

node S to node D has the property that, for any node Y along

the path, the remaining path is optimal from Y to D. They define

N(S) as the set of neighbors of S, and

where

T(S) = min (t(S,Y)+T(Y)) (2. 1)
Y E N(S)

T(S) = the distance along the shortest path from node S

to the destination node.

t(S, Y) = the transit time from node S to its neighbor Y.

Equation (2.1) presents an iterative scheme for computing T(S) for

all S, from the starting condition T(D) = 0.

17

Whenever any change in network structure occurs, this protocol

assumes that these network changes can be sensed by neighboring

nodes. The neighboring nodes can communicate the changes to all the

other nodes. Each node can then update its network map, and com-

pute new routes for messages. Boehm and Mobley suggest that this

technique would work well for small networks, but they admit that the

algorithm would probably not work well in a large network. This is a

serious drawback in a radar network, which will probably contain on

the order of 50 nodes or more. The problem arises from the long

computation time which would be required to compute all the new

paths. To alleviate this computation time problem, they suggest that

a technique devised by Butrimenko (15) would be helpful. The

Butrimenko technique is a pertubative technique which relies on the

condition that small numbers of changes in the network will not

greatly change the ideal routing tables. This technique is rather com-

plex, and is described in detail in reference 14. Boehm and Mobley

claim that this works well, although they present no supporting data.

They do point out, however, that for the link addition process, the

Butrimenko technique requires a good deal of transmission of modifi-

cations and produces some temporarily misleading information. They

point out that these difficulties are not serious if link addition is a

relatively rare event. This is a poor assumption, however, in a

radar network since it likely will contain mobile nodes.

18

Sussman, et al. (7), propose a technique by which the shortest

path algorithm can be used to route non-directed messages. They

suggest that a non-directed message be routed as a concatenation of

directed messages. Suppose that node S originates a non-directed

message. Node S first computes the shortest path to all other

nodes individually, and determines which output port corresponds to

each of these routes. It then groups the destination nodes according

to which port should be used to reach them. Let Ns(P) be the col-

lection of all nodes whose shortest path from S is out of port P.

Then for each port, P, node S sends a single message out of

P appended with the addresses of each member of N (P). When

node Sr s neighbor, Y, receives the concatenated message, it

performs a similar procedure to further route the message. The

neighbor, however, considers only the appended addresses for mem-

bership in each N (P). This algorithm should have essentially the

same advantages and disadvantages as the shortest path algorithm.

There is nothing about the Sussman technique which restricts

it to use with a shortest path algorithm. Any directed message rout-

ing protocol which determines a single port for routing directed mes-

sages could be used.

19

Minimum Spanning Tree

Sussman, et al., suggest that a minimum spanning tree

algorithm could be used to route non-directed messages. Whereas

the shortest path algorithm computed the shortest path to each net-

work node, the minimum spanning tree minimizes the sum of the paths

required to reach all other nodes. This algorithm has the desirable

feature that it keeps the number of retransmissions of each non-

directed message to a minimum. The algorithm which Sussman,

et al., propose for computing the minimum spanning tree is as fol-

lows:

1. Connect any isolated node to its nearest neighbor.

2. Repeat the procedure connecting the partial network to the

nearest isolated node.

3. Continue the procedure until all nodes of the network have

been connected.

The final minimum spanning tree is independent of the sequence

of connecting nodes (7). This requirement is essential if the algo-

rithm is to be computed in a distributed manner at individual nodes.

When routing a non-directed message with the minimum span-

ning tree technique, each node sends the message out of all links

which belong to the minimum spanning tree, except the one on which

it was received.

20

This algorithm should have some of the same disadvantages as

those which have been listed for the shortest path algorithm. For

large networks, much memory is needed to store a complete map of

the entire network. Also, mechanisms for sensing changes in net-

work structure and for disseminating this information throughout the

network so that each node can update its map need to be established

and tested. This could be a very difficult problem in a dynamic

environment where changes in network structure occur rapidly. This

algorithm has not been tested, and therefore no performance data is

available-

Backwards Learning

Backwards learning was first proposed by Baran in 1964 as a

technique for routing directed messages (16). Boehm and Mobley

tested it extensively in their study, which was previously mentioned

in the section on flooding, and Pickholtz and McCoy studied it in a

paper published in 1976 (17).

Backwards learning is one member of a class of routing proto-

cols in which routing is accomplished by storing at each node a table

of the current estimates of the times required to reach each possible

destination when leaving via each output port. The table is consulted

for each message arriving at the node to determine which output port

is the best to route the message to its destination. The message is

21

then sent out of this port. Baran termed this "hot potato" routing.

This routing protocol is only as good as the information contained in

the routing table, and therefore how the routing table is updated at

each node is critically important. The usual technique is to use

information contained in incoming directed messages to update the

routing tables. Any routing protocol which updates the routing tables

with information contained in incoming messages is called a stochastic

routing algorithm (14, 17). Backwards learning is the earliest of

stochastic routing protocols.

With the version of backwards learning tested in the study by

Boehm and Mobley and the study by Pickholtz and McCoy, each incom-

ing message, in addition to the message content, contains the destina-

tion node address, D, the source node address, S, and a hand-

over number (HN). The handover number is a tag which is set to

zero upon initial transmission of the directed message at the source

node. Every time the directed message is passed on at a node, the

handover number is incremented. The handover number, then, is an

indicator of the path length from the source node.

The value of HN in a message received in port P estimates

the time currently required to travel from the source S to the cur-

rent node, X, via port P. The backwards learning concept

assumes that HN is, therefore, a good estimate of the delay

required to reach node S from node X, when the message is sent

22

out of port P (hence the name backwards learning). Therefore,

with the version of backwards learning tested in the aforementioned

studies by Bohem and Mobley and by Pickholtz and McCoy, whenever

a message arrives from node S, the routing table entry, Tx(S, P),

is updated using a weighted average:

where

T
X

(S' P)' = Tx(S, P) + k
1
(HN-T

X '
(S P)) (2. 2)

Tx(S, P) = the estimated delay to node S from node X

by way of port P.

k
1

= the learning constant.

Thus, the new delay estimate, Tx(S, is a certain fraction k
1

(0 < k
1

< 1) of the way between the old estimate and the current

message's HN. (Values of k
I

outside of the range 0 to 1

result in Tx(S, P)' falling outside of the range between the old esti-

mate and the current message's HN.)

The studies mentioned found that backwards learning, as well as

other similar forms of stochastic routing, adapted poorly to changes

in the network structure. This is a direct result of using the routings

of directed messages to update the routing tables. These routings

tend to be fixed unless some extra algorithms to force at least a frac-

tion of the messages to explore alternate routes are introduced.

23

Another problem with the backwards learning algorithm is that

it assumes reciprocity of the communication paths. That is, it

assumes that if travel is possible in one direction over a communica-

tion path, it is possible in the opposite direction as well (in fact, the

algorithm even assumes that the congestion in the two directions is

similar). The radar network will, however, exist in an environment

where jamming, disabling a communication link in only one direction,

will be common. Any routing algorithm under consideration for use

in the radar network needs to be thoroughly tested to determine its

adaptability to this kind of network damage.

ARPA Routing Protocol

This protocol is used to route directed messages. It was

included in the comparative study by Pickholtz and McCoy.

The ARPA network routing algorithm also uses a routing table

which is stored at each node. However, instead of updating the rout-

ing table with information contained in the incoming messages, the

ARPA routing algorithm uses an exchange of "delay vectors" among

the nodes to provide information for updating the tables. At set inter-

vals, each node sends to all of its neighbors a list which contains its

estimates of the shortest delays from it to all the other nodes. This

list, a delay vector, thus contains a number of entries which is one

less than the number of nodes in the network. Upon receiving the

24

delay vector from one of its neighbors, a node adds to each delay

estimate a measure of the current delay in traveling from itself to

the neighbor from which the delay vector was received, thus forming

a new list. This new list then provides that node with an estimate of

the minimum delay required to reach all destinations if the message

is sent out of the port connecting to the neighbor. The routing table

for the node is then constructed by combining the delay estimates

derived from the delay vectors received from all of its neighbors.

The best port for sending a message to node D is the port whose

routing table entry for node D is minimum.

The original ARPA routing protocol was designed in 1969.

Since then it has undergone various improvements. There is an

excellent discussion of the development of this routing protocol in

reference 18.

The study by Pickholtz and McCoy indicated that the ARPA

routing algorithm does a good job of adapting to the loss of communi-

cation links when such loss prevents transmission of messages over

the link in either direction. The case of allowing transmission in one

direction, but not the other, was not tested. How well it adapts to the

latter case of link damage needs to be answered if the ARPA routing

protocol is seriously considered for use in the radar network.

25

Summary

The major routing protocols which seem to be likely candidates

for use in the radar network have been discussed. These are flood-

ing, random routing, shortest path routing, minimum spanning tree

routing, backwards learning, and the ARPA routing protocol.

Flooding can be used to route either non-directed or directed

messages. It has excellent adaptability. However, flooding gener-

ates so many extra copies of a message that it would be extremely

wasteful of network resources if used for directed message routing.

Random routing is primarily useful for directed message rout-

ing. While simple to implement, this algorithm allows the message

to take longer than necessary to reach its destination. Since low mes-

sage delay is very important in the radar network, random routing

does not seem to be a viable candidate for use in it.

Shortest path routing can be used for routing both directed and

non-directed messages. With this protocol, each node stores a com-

plete map of the entire network which it uses to determine the shortest

path to each other node in the network. Two of the drawbacks of this

type of protocol are that for large networks, such as a radar network

(which will probably contain 50 or more nodes), much memory may be

needed to store the map, and the processing time required to compute

the shortest path to each node can be very long. The long computation

26

time which may be required to compute all the new shortest paths

degrades the algorithm's adaptability. Thus, the shortest path algo-

rithm may work well for a small network, but the algorithm would

probably not work well in a large network such as a radar network.

The minimum spanning tree algorithm could be used to route

non-directed messages. Whereas the shortest path algorithm com-

putes the shortest path to each network node, the minimum spanning

tree minimizes the sum of the paths required to reach all other nodes.

With this algorithm, each node also needs to store a complete map of

the entire network, which it uses to determine the minimum spanning

tree. This algorithm has the desirable feature that it keeps the num-

ber of retransmissions of each non-directed message to a minimum.

However, for large networks, much memory is needed to store the

complete map of the network and mechanisms for sensing changes in

network structure and for disseminating this information throughout a

network which exists in a dynamic environment need to be established

and tested.

The backwards learning algorithm is a technique for routing

directed messages. Backwards learning is one member of a class of

routing protocols in which routing is accomplished by storing at each

node a table of the current estimates of the times required to reach

each possible destination when leaving via each output port. The table

is consulted for each message arriving at the node to determine which

27

output port is the best to route the message to its destination. A

study by Boehm and Mobley and a study by Pickholtz and McCoy (14,

17) tested a version of backwards learning which used information

attached to the directed messages to update the routing tables. These

studies found that backwards learning adapted poorly to changes in

network structure. This is a direct result of using the routings of

directed messages to update the routing tables. These routings tend

to be fixed unless some extra algorithms to force at least a fraction of

the messages to explore alternate routes are introduced.

The ARPA routing protocol is used to route directed messages.

This routing algorithm also uses a routing table which is stored at

each node. However, instead of updating the routing table with infor-

mation attached to the incoming messages, the ARPA routing algo-

rithm uses an exchange of "delay vectors" among the nodes to provide

information for updating the tables. The study by Pickholtz and

McCoy indicated that this algorithm does a good job of adapting to the

loss of communication links when such loss prevents transmission of

messages over the link in either direction. The case of allowing

transmission in one direction, but not the other, was not tested.

In Chapter IV of this thesis, new routing protocols which have

been developed with the radar network as a basis will be presented.

Performance data on these new protocols will be presented, with

emphasis on the adaptability of the protocols to cases of link damage.

28

Unlike previous studies on routing protocol adaptability, the case of

allowing transmission of packets in one direction over a link, but not

in the other, will be studied in depth.

Prior to presenting the new routing protocols, however, Chapter

III will present the major tools which are available for analyzing the

performance of routing protocols. Chapter III will explain why simu-

lation was chosen to analyze the new routing protocols, and describe

the GPSS model of the radar network which was created for this pur-

pose.

29

III. ANALYSIS TECHNIQUES FOR ROUTING PROTOCOLS

There are well known analytical techniques for analyzing and

modeling packet switched computer communication networks. These

techniques minimize the packet delay, within some cost constraint,

by manipulating the channel capacities, the network topology, and the

message routing procedure (3, 19, 20, 21). However, all of these

references assume a fixed routing procedure, which makes them

unsuitable for analyzing adaptive routing algorithms. At the present

state of the art, the only reasonably accurate technique for evaluating

the performance of adaptive routing algorithms is computer simula-

tion (3, 13, 22).

A GPSS Simulation Model of the Radar Network

A GPSS simulation model of the radar network has been written

in order to evaluate the adaptive routing and acknowledgement proto-

cols developed in this thesis. The program models a 13 node network,

as shown in Figure 3.1. This particular configuration was chosen

because it is hexagonal in nature (the nominal configuration currently

favored by Air Force personnel working on initial network studies), it

contains several alternate paths between nodes (thus providing suffi-

cient capacity for allowing the changes in routes necessary to adapt to

Network node

Bi-directional link

Figure 3. 1. Thirteen node GPSS network.

31

varying network conditions), and it is small enough to permit reason-

able computing costs.

Each node in Figure 3. 1 has been assigned an identifying num-

ber. Also, each direction of each bi-directional link has been

assigned a unique identifying number. These node and link identifiers

will be referred to in some of the discussions in Chapter IV.

Each node in the network generates both directed and non-

directed messages. The inter-generation times for these two types of

messages are exponentially distributed, with per node means of t

and t
ND

respectively. Both the directed and non-directed mes-
D

sages are generated with their source nodes uniformly distributed

throughout the network. The destinations for the directed messages

are also uniformly distributed throughout the network (i.e., a uniform

traffic matrix has been assumed).

Each node receives from each of its neighbors over the com-

munication lines messages which are processed along with the mes-

sages which the node generates itself. These messages are handled

in the order in which they arrive, have the appropriate routing algo-

rithm applied to them, and are queued for transmission over the

appropriate communication channel. The queued messages are served

by the communication channels in an order dictated by message

priority, with a first come first served ordering within each priority

class. All messages except for acknowledgements were assumed to

32

be in the same priority class in the simulations discussed in this

thesis. The acknowledgements were given a higher priority.

The communication channels are all assumed to have the same

capacity, C. The channel capacity is the number of bits which can

be transmitted over the channel per unit of time. The time required

to transmit a single message over a single channel is thus equal to its

length divided by the channel capacity. It is assumed that all the track

report messages and the specialized command and control messages

can fit into the same size packet. The length of this packet, /m, is

approximately 300 bits. Acknowledgements are assumed to fit into a

smaller size packet. The length of this packet, IA' is assumed to

be one-tenth of 1
M' or approximately 30 bits. Therefore, the time

required to transmit the track reports and specialized command and

control messages over a communication channel is 1 /C, and the

time required to transmit acknowledgements across the communication

channels is /A/C' which is one-tenth / /C.

Initially, the simulation program is used to evaluate the routing

algorithms alone. These results are presented, along with descrip-

tions of the routing algorithms considered, in Chapter IV. The per-

formance characteristics which result when acknowledgements are

used in conjunction with some of the better routing algorithms are pre-

sented in Chapter V.

33

In order to evaluate the routing and acknowledgement protocols,

the simulation program gathers various statistics. The primary

statistics of value are:

1. Communication channel utilization.

2. Average queue length.

3. Average directed message delay.

4. Average non-directed message delay.

5. The number of successful directed message receptions at a

destination node.

6. The number of directed messages lost enroute to their

destinations.

7. The number of directed messages which have looped.

8. The number of retransmissions of a directed message at a

source node as a result of not receiving an acknowledgement.

The communication channel utilization and queue length are

measures of the network congestion. High utilization of the communi-

cation channels can produce long queues, which in turn cause long

delays.

Steady state equations relating channel utilization and queue

length for packet switched computer communication networks have

been developed by Kleinrock (3, 19). Data on the steady state values

of these statistics can be used to determine if the techniques developed

by Kleinrock apply to the radar network simulation results. These

34

steady state statistics can also help create a performance model of

the network.

The average directed message delay is computed by averaging

the elapsed time between when the directed message is originally

transmitted at its source node and when it is successfully received at

its destination node. This is an average over all directed message

transmissions. Steady state values of this statistic can be used to

assist in creating the performance model for the network, and transi-

ent values of this statistic can be used to evaluate the adaptability of

the routing and acknowledgement protocols to various cases of network

damage.

A weakness of the average directed message delay statistic

computed in this manner is the fact that only the messages which

reach their destinations are averaged in. Lost messages are not

included in the average. The simulation results have shown that fol-

lowing network damage this average is weighted in favor of those

source-destination pairs which are close together, resulting in a mis-

leadingly small value for the average delay. In order to compensate for

this, a penalty for each lost message can be included in the average.

The size of the penalty (in cases where it has been included) was

chosen to be 24(im/C), which is twice what the delay would be if

message, after departing the source node, visited the other 11 nodes

before it finally reached its destination. This new quantity, the

35

adjusted directed message delay, is often a better indicator of the

delay performance of the routing algorithms. Lost messages do not

cause the same type of problem, however, when acknowledgements

are-used with retransmissions of messages when no acknowledgement

is received. After one or several transmissions, each directed mes-

sage will eventually reach its destination (assuming routing is pos-

sible and the routing algorithm does adapt, as will be the case in the

situations where acknowledgements are used in this thesis), and be

included in the average.

The average non-directed message delay is computed by aver-

aging the elapsed times between the instant when the original trans-

mission of the non-directed message at its source node occurs and

the instants when it is first received at each of the other nodes. Thus,

for the 13 node network, each non-directed message is received at

each of 12 nodes, and hence provides 12 entries into the average.

Lost messages are not a problem with this statistic since, as will be

shown in Chapter IV, the non-directed message routing algorithm

used in this thesis adapts perfectly to changes in network structure

and never allows messages to be lost (if the network remains con-

nected so that communication between any two nodes is possible).

Transient values of the statistic on directed messages

delivered are an important tool for evaluating how fast and how com-

pletely the routing algorithms adapt to changes in network structure.

36

Transient statistics on the number of directed messages lost and

looping are also valuable for this purpose.

When the acknowledgement protocols are evaluated, statistics

on source node retransmissions of directed messages will replace

statistics on lost messages. When acknowledgements are included in

the model, messages are never really lost out of the network, since

copies of all messages are stored at their source nodes. Assuming

that sufficient time is allowed for acknowledgements to be returned to

the source node, the retransmission of a directed message is an indi-

cator of the routing protocol's inability to deliver messages.

The statistic on directed message retransmissions can be used

to evaluate how much time should be allowed for the return of the

acknowledgement. If this time period is too short, retransmission

will occur even when all messages are being delivered. Use of an

overly short time out period can thus severely congest the network.

An overly long time out period will cause unnecessary directed mes-

sage delays.

The statistics on directed messages delivered, lost, looping,

and retransmitted have been normalized for presentation in Chapters

IV and V by dividing them by the total number of directed message

transmissions. Thus, an optimal value of the normalized statistic on

messages delivered is one and an optimal value of the normalized

statistic on lost messages is zero.

37

Summary

A GPSS simulation model of the radar network has been written

in order to evaluate the adaptive routing and acknowledgement proto-

cols developed in this thesis. The program models a hexagonal grid

of 13 nodes connected by bi-directional simplex communication links.

Each node in the network generates both directed and non-

directed messages. Both the directed and non-directed messages are

generated with their source nodes uniformly distributed throughout

the network. The destinations for the directed messages are also

uniformly distributed throughout the network.

The communication channels are all assumed to have the same

capacity, C. It is assumed that all the track report messages and

the specialized command and control messages can fit into a packet of

length im, which is about 300 bits. The acknowledgements are

assumed to fit into a packet of length /A' which is assumed to be

one-tenth of 1 M' or about 30 bits.

In order to evaluate the routing and acknowledgement protocols,

the simulation program gathers statistics on the communication chan-

nel utilizations, the average queue lengths, the average directed and

non-directed message delays, and the number of directed messages

delivered, lost, looping, and retransmitted. Steady state values of

some of these statistics will be used to develop a performance model

of the network. Transient values of some of these statistics will be

used to evaluate the adaptability of the routing and acknowledgement

protocols developed in this thesis.

38

IV. A NEW CLASS OF ROUTING PROTOCOLS

Two types of routing algorithms are presented and analyzed in

this chapter. The first is for routing non-directed messages, and

the second for routing directed messages. Directed message routing

algorithms are the primary focus of this thesis. This chapter will

evaluate how well these routing algorithms perform for the radar net-

work. Extensions of the directed message routing algorithms for use

in conventional computer communication networks will be given in

Chapter VI.

Non-Directed Message Routing Algorithm

The favored routing algorithm for non-directed messages is a

form of flooding whereby each node which received a non-directed

message relays the transmission on to all neighboring nodes except

the one from which the message came. It is easy to verify that this

algorithm will quickly disseminate such messages to all nodes to

which communication paths exist.

By the nature of the algorithm, flooding adapts instantly to

network damage, communication link jamming, node additions and

deletions, and other changes in network structure. Flooding requires

no knowledge of the network structure and requires essentially no

proces sing.

39

The only drawback of flooding is that it generates more traffic

than the other candidates, which are primarily the shortest path algo-

rithm and the minimum spanning tree algorithm. For a network with

n nodes, the minimum spanning tree algorithm requires n-1

transmissions of each non-directed message in order to reach all the

nodes. The number of transmissions which the flooding algorithm

generates not only depends upon the number of nodes but also upon the

number of neighbors to which each node is connected. Suppose that

each of the n nodes is, on the average, connected to m neigh-

bors. Then with flooding, each node will send the message out of at

most m-1 ports, except for the source node, which will sent it out

of all m ports. (If a node receives the same message essentially

simultaneously in two or more ports, it can send it out of fewer than

m-1 ports.) The total number of transmissions which the flooding

algorithm generates is thus at most n(m-1) + 1. For very large net-

works, the nominally hexagonal grid which is used in the radar net-

work has an average value of m which approaches three. There-

fore, for the radar network as it is currently envisioned, flooding

requires at most 2n+1 transmissions of each non-directed message,

or about twice as much as with the minimum spanning tree algorithm.

Some initial studies by Air Force personnel (23) indicate that the

cases with simultaneous reception of messages on two or more po'rts

occur often enough to significantly reduce this extra traffic penalty.

40

The other performance considerations, however, favor flooding.

The minimum spanning tree and shortest path algorithm do not adapt

nearly as well to network damage and require extensive knowledge of

the network structure. The shortest path algorithm requires consid-

erable processing at each node. Flooding, on the other hand, adapts

instantly to network damage, requires essentially no processing, and

requires absolutely no knowledge of the network structure beyond

knowledge of a node's nearest neighbors. Therefore, for non-

directed messages at least, the increase in traffic which flooding pro-

duces is acceptable (for this type of network) when weighted against

the tremendous benefits it produces in adaptability and ease of imple-

mentation. In addition, flooding non-directed messages can provide

knowledge of the network connectivity which can be used to reliably

route the directed messages.

New Directed Message Routing Algorithms

A new class of directed message routing algorithms have been

developed to meet the requirements of the radar network. These

routing algorithms are members of the class of stochastic directory

routing algorithms, similar to the backwards leaning algorithm pro-

posed by Baran (see Chapter II).

These new algorithms route messages by storing at each node a

table of the current estimate of the time required to reach each

41

possible destination when leaving via each output port. The table is

consulted for each message arriving at the node to determine which

output port is the best to route the message to its destination. The

message is then sent out of this port. With these new routing algo-

rithms, the routing tables are updated with information contained in

the incoming non-directed messages. Since the non-directed mes-

sages are routed using flooding, which has excellent adaptability, it

is expected that this adaptability can be reflected in the routing tables,

making a very reliable algorithm. This is accomplished with very

little extra overhead since most nodes in the radar network flood out

messages independently of the need for them to construct the routing

tables. Some specialized command and control nodes may not ordi-

narily send out non-directed messages, and this routing algorithm

would thus require them to occasionally send out short "Here I Am"

(HIA) messages. These HIA messages would constitute extra over-

head.

For conventional network applications, nodes would also not

normally need to flood out non-directed messages. They would also

need to flood out the short HIA messages. Even though many trans-

missions of these HIA messages are produced with flooding, they can

be very short, thus keeping the overhead within reasonable limits.

An analysis of the overhead requirement for conventional networks is

given in Chapter VI.

42

Several versions of the new routing algorithms have been

developed, each with its own performance characteristics. These

will be presented individually in the following sections. The first,

"Simple Backwards Learning" (SBL), will be evaluated to determine

its steady state characteristics in an undamaged network. Then,

Simple Backwards Learning will, as will all of the new routing algo-

rithms, be evaluated to determine its transient performance charac-

teristics while adapting (or attempting to adapt) to each of three cases

of network damage.

Simple Backwards Learning Algorithm

With Simple Backwards Learning, each node stores a routing

table, as shown in Figure 4.1. Each routing table entry, a.., is

roughly proportional to the estimated delay when sending a directed

message to node j by way of port i. Thus, each column in the

routing table corresponds to one of the network nodes and each row

corresponds to one of the outgoing ports. For the simulation model

of the network, each node thus stores a routing table with 13 columns

and two or three rows. (See Figure 3. 1 for the network simulated.)

The routing table entries are updated using information con-

tained in the flooded messages. For this purpose, each flooded mes-

sage contains, in addition to the message content, the source node

address, S, and an estimate, D
MSG'

reaching the current node from node S.

Each row
corresponds
to one of the
node's ports.

of the time expired in

Each column corresponds to one node.

a.. = a rough estimate of the delay required
to reach node j when the message is
sent out of port i.

Figure 4. 1. SBL routing table.

Non-Directed Message Handling

43

The details of how the flooded messages are handled and how the

information they contain is used to update the routing tables are con-

tained in Figures 4. 2 and 4. 3. Figure 4. 2 is a conceptual block dia-

gram which provides a general outline of how the non-directed mes-

sages are handled. Figure 4.3 provides a very detailed explanation of

how the non-directed messages are handled. This latter diagram fol-

lows very closely the programming steps which were used in the

simulation program. Used together, these two block diagrams pro-

vide a clear yet complete explanation of the non-directed message

handling procedure. This convention of providing both a conceptual

and a detailed block diagram will be followed for all of the algorithms

presented in this thesis.

44

Simple 8accwards Learning
Non-Directed Message Handling

CNon-directed message arrives
from node S by way of port P.

Update aPS and cause all
other routing table entries
for node S to forget
(increase) their values.

Flood to neighbor.)
(Throw away.)

Figure 4. 2. Conceptual block diagram.

45

Simple Backwards Learning
Non-Directed Message Handling

Non-directed message arrives
from node S by way of port P.

yes 1st no

V

Update table

dPS'aPS+kt (DMSG-aPS)
E(I+k2)ai5, k3alps] Vi$ P

where
ki = learning coast.
k2= forgetting coast.
k3= limiting coast.
DmsG: delay incurred by message

traveling between nodes

CFlood to neighbors.)

Update table

°PS= °PS (DMSG-cIPS)

Figure 4. 3. Detailed block diagram.

46

Suppose that a flooded message with source node S arrives at

node X by way of port P. Node X first checks to see if the

received copy is the first copy of the message. If it is, the node

updates its routing table entry for port P as follows:

where

aPS' = aPS + k
1

(D
MSG -aPS) (4. 1)

PS = the new estimated delay to node S by way of port P.

aPS = the old estimated delay to node S by way of port P.

k
1

= the learning constant (0 < k
1

< 1).

D
MSG

= the delay experienced by the message in travelling

from node S to node X.

Thus, the new delay estimate, alPS' is a fraction k
1

of the way

between the old estimate, aPS' and the current estimate, DMSG .

Immediately after updating the entry for port P, the entries for the

other ports are increased as follows:

where

= min(l+k2)ais, k3ap' s) i P

aiS = the new estimated delay to node S by way of port i.

a.
3.5

= the old estimated delay to node S by way of port i.

k2 = the forgetting constant (0 < k2).

(4. 2)

47

k
3 = the limiting constant (1 < k3).

aP5 = the just computed new estimated delay to node S by

way of port P.

Equation (4. 2) represents a forgetting process. This is an essential

step to ensure that old routing table entries which are no longer valid

because of changes in network structure or conditions are forgotten

by causing the entries to increase. This forgetting process is caused

by the first copy of the non-directed message, which may be the only

copy received. The routing table entries are allowed to increase only

up to a limit which is determined by k3. This prevents the routing

table entries from becoming excessively large, thus allowing them to

be decreased through the learning process in a reasonable amount of

time if a change in network structure necessitates it.

After the node has updated its routing tables, it sends this first

copy of the non-directed message on to each of its neighbors, except

the one from which it was received, completing the flooding process

for that message at node X.

If a second copy of the non-directed message arrives, the node

updates the entry for the port the copy arrived in, using Equation

(4. 1). This second copy does not, however, cause the other routing

table entries to forget their values since the forgetting process was

already accomplished by the first copy of the message. After updating

48

the routing table, the message is then discarded, since the neighbors

have already been sent a copy of it.

Directed Message Handling

The details of how directed messages are handled and routed

are contained in the conceptual block diagram of Figure 4. 4 and the

detailed block diagram of Figure 4. 5.

Suppose that a directed message arrives at node X, and is

directed for node D. Node X first checks to see if a copy of the

directed message has ever visited the node previously. If it has, the

message is discarded and a global counter of looping messages is

incremented. If it is the first copy of the message, the routing tables

are consulted to determine the best port(s) to send the message out of

to reach node D. A message is sent out of port M if

(((a
MD

< a
ilD

) or (link out of port i is down)) 'yti)

and (link out of port M is up) (4. 3)

Steady State Tests and Performance Model

The Simple Backwards Learning algorithm was first tested to

determine its steady state characteristics in the undamaged 13 node

network in Figure 3. 1. This network has 13 nodes and 30 communica-

tion channels.

Simple Backwards Learning
Directed Message Handling

Directed message arrives
directed for node D.

V

Search routing table for
the best output port (S)
and send message out of
it (them).

(Throw away.)

Figure 4. 4. Conceptual block diagram.

49

50

Simple Backwards Learning
Directed Message Handling

Directed message arrives
directed for node D.

V

Search for all M's such that
1-j(cm05.aiD) or (link out of port i is down)] tti}
and (link out of port M is up)

(.-For every M, send
message out of port M.

(Throw away.)

Figure 4. 5. Detailed block diagram.

51

The values of the learning, forgetting, and limiting constants

which were used in the steady state tests, as well as the value of

/C, the time required to send a single message over a communi-

cation link, are given in Table 4.1. These parameters will remain

unchanged for all the steady state tests.

Table 4.1. Values of parameters used in the steady
state tests of the Simple Backwards
Learning algorithm.

Parameter Value

k1 0.25
ka 0.25

k
3

10.0

10.0

The steady state tests were conducted to determine the directed

and non-directed message delays, communication channel utilization,

and queue sizes, for various values of tD and t
ND,

the per node

values of the mean inter-generation times. Each network node is

assumed to generate equal amounts of directed and non-directed traf-

fic. Thus, the per node offered traffic rate for directed messages

(the rate at which directed messages enter the network at each node)

is equal to the per node offered traffic rate for non-directed messages

(the rate at which non-directed messages enter the network at each

52

node). Thus, y, the per node offered traffic rate for directed

messages and non-directed messages, is equal to both 1/tD and

1/tND.

The results of simulation tests relating the steady state

directed message delay, D
DM, and the steady state non-directed

message delay, DNDM, to variations in y are given in Figure

4. 6. (The plots and tables in this section will use the per node values

of y described above. The total directed and non-directed traffic

entering the 13 node GPSS model of the radar network is 26y.)

For the purpose of creating a performance model, the following

statistics were gathered: the average path length, p, experienced

by all directed messages in travelling from their source nodes to

their destination nodes, the average waiting time for messages in

each queue, W., and the utilizations for each communication chan-
1

nel, It It is the object of the performance model to use these

statistics to determine a sound theoretical relationship between

DDM and y.

The delay which a directed message experiences in travelling

from its source node S to its destination node D is

M
p

SD
d + p

SD C SDWSD
(4. 4)

50

40

DDM 30

and

DNDM

20

I0

OM.

D
DM

DNDM

0
o

1 I I

1 2 3 4 5 6 7

y, Arrivals Per Thousand Time Units

Figure 4. 6. Steady state delays.

where

pSD = the path length from node S to node D.

W
SD

= the average queue waiting time in the path from node

S to node D.

Equation (4. 4) suggests that a reasonable equation for D
DM

is

where

and

p
M

DDM
+ p w

DM C

m

i=1

P.
W.

P.
J

j=1

54

(4. 5)

(4. 6)

m = the total number of communication links in the network.

These equations relate the directed message delay to the sum of

two quantities, the path delay and the queueing delay. The path delay

is the average path length travelled by each directed message multi-

plied by the time it takes one message to traverse a single communi-

cation link. The queueing delay is the path length (i. e., the average

number of queues each message travels through) multiplied by the

average of the queue waiting times, with each queue waiting time in

55

the average weighted by the fraction of the total traffic using that

queue.

The values of average directed message delay resulting from

Equations (4. 5) and (4. 6) are compared with the actual values of

DDM
in Table 4.2.

Table 4.2. Comparison of the actual values of steady
state directed message delay and the
values computed from Equations (4. 5)
and (4.6).

DDM
From Equations
(4. 5) and (4. 6)

Actual
Value

1.67 x 10 -3 28.0 28.4

3.33 x 10 3
30. 5 30.7

4.44 x 10 3 32.1 32.9

6.67 x 10 3
44. 8 43.5

The next step in the performance model is to determine a rela-

tionship between the channel utilization, p., and the queue waiting

time, W..
1

However, there is a problem with arriving at a relationship

between p. and W.. The problem arises as a result of the

existence of a dependence among the interarrival and service times

for messages arriving at a queue imbedded within a communication

network. The interarrival time between two successive messages on

56

a communication channel in a network can be no less than the service

time for the first of these two messages. Since the service time for a

message on its next channel is directly related to its service time on

the preceding channel (they are equal in our model of the radar net-

work since all messages are assumed to fit in the same size packet

and all the communication channels are assumed to have the same

capacity), the arrival process of messages to a node due to the inter-

nal traffic in the network (i.e., messages arriving from neighboring

nodes) is not independent of the service time these messages received

at that node. This dependence between interarrival and service times

is especially important when messages arriving on a given channel

all depart over the same channel. In this instance, the messages

will all arrive spaced far enough apart that they will never have to

wait before being served by the outgoing channel, regardless of its

utilization. The dependence between interarrival and service time is

not as important, however, if messages arriving over the same chan-

nel all depart over different channels, or if messages departing on a

given channel all arrived at the node over different channels. This is

called mixing. If there is sufficient mixing at a node, then Kleinrock

has shown (3),

M
p.

W. = C(1- .) (4. 7)

Equation (4. 7) is only an approximation. It has been shown to be

reasonably accurate when each communication channel at a node

receives messages from as few as two or three incoming channels

(21).

To test the validity of Equation (4. 7) for the radar network,

Table 4. 3 compares the following two quantities

and

=

m
P.

W.
/11 1

= 1
P.

P. f MP
WK

))
j=1

P.

57

(4. 6)

(4. 8)

Clearly, the comparison between WK and W is not good.

There are several possible reasons for this. First, Kleinrockts

equation assumes that the message lengths are exponentially distrib-

uted, whereas the simulation results for the radar network assume

fixed message lengths. This means that Kleinrock assumes that the

time required to transmit a message across a communication channel

is exponentially distributed, whereas in our model of the radar net-

work this time is fixed. The Pollaczek-Khinchin mean value formula

(3) predicts that this difference in transmission time distributions will

58

cause a reduction of one-half in the waiting times for our simulation

results versus the waiting times given by Equation (4. 8). (Since the

effect of greater regularity in interarrival times is similar to that of

greater regularity in service times, more regular than Poisson

arrivals at a node could also reduce delays. This factor could not be

studied from the simulation data, however, since only mean inter-

arrival times were available.) Second, as previously stated,

Kleinrock's equation has been shown to be reasonably accurate when

each communication channel at a node received messages from as few

as two or three incoming channels. This is true for the nodes in the

interior of our GPSS model of the radar network (see Figure 3. 1),

however, the nodes at the exterior of the network contain channels

which receive messages from only one incoming channel (in addition

to the directed and non-directed messages which the node generates).

Third, Kleinrock's equation has been verified primarily by simulations

of networks which contain predominantly directed messages. It is

possible that the large amount of flooded non-directed messages used

in simulations on the radar network could also degrade the accuracy

of Equation (4. 8) by contributing to a regularity in the arrivals of

messages at each outgoing channel, thus decreasing the queue

lengths.

59

Table 4. 3. Comparison of WK and W.

WK

1. 67 x 103
3. 33 x 103
4.44 x 10-3

6.67 x 10-3

1.95

5. 03

7.95

23. 0

0. 463

1. 37

1. 94

6. 65

To remedy the discrepancy between WK and W, the rela-

tionship

W = (1 /R)1NK (4. 9)

was tested. Minimum square error analysis indicated that a suitable

value of R is 3.52. The relationship between W and

(1/3. 52)INK is shown in Table 4.4. The relationship appears rea-

sonably good.

Table 4. 4. Comparison of W and (1/3. 52)WK.

(1 /3. 52)WK

1.67 x 10-3

3. 33 x 10-3

4. 44 x 10-3

6.67 x 10-3

0.554

1.43

2.25

6.53

0. 463

1. 37

1. 94

6.65

The above results indicate that

Tn.

1
P. 1

NI 1
p.

TT 1

3.52 L, m (C(1 -p.
1

)
)

i=1 v--
Pi

j=1

Substituting Equation (4. 10) into Equation (4. 5) yields

p
D

DM C 3. 52

m

i =1

j=

pi
2

M 1
(C (1-P-)

1

pj

60

(4. 10)

(4. 11)

Equation (4. 11) is compared to the actual directed message delay in

Table 4.5. The results are very good.

Table 4. 5. Comparison of the actual values of steady
state directed message delay and the
values computed from Equation (4.11).

DDM
From Equation

(4. 11)
Actual
Value

1.67 x 10 -3

3.33 x 10 3

4.44 x 10 -3

6.67 x10 3

28. 3

30. 6

33.0

44. 6

28. 4

30. 7

32. 9

43.5

61

The final step in relating Dpm to y is to show a relation-

ship between y and the p.'s. Figure 4.7 shows a plot of three

pi'sp.' (see Figure 3. 1 for the location of the channels).

It appears reasonable to fit the curves in Figure 4.7 using the rela-

tionship

p. = a. y2 + b. (4. 12)

andvalues of a, an b. for the curves in Figure 4.7 are given in

Table 4. 6.

Table 4.6. Values of the parameters used to fit the
curves in Figure 4.7.

P. a. b.

1
7.25 x 103

P 10
4. 41 x 103

P 30 5.86 x 10 3

69.1

60.0

33.2

Communication channels 1, 10, and 30 span nearly the entire

range of communication channel utilizations. Communication channel

1 is representative of the channels with high utilization (p1 z p2 z p3),

communication channel 30 is representative of the channels with the

lowest utilizations
(P30 P28 z P21 P19 P18 P16)'

munication channel 10 is representative of the channels with medium

and com-

1.0-

.8

.4

PI

30

I I I I I

2 3 4 5 6 7

Arrivals Per Thousand Time Units

Figure 4.7. Steady state channel utilizations.

63

utilization (p10
p5 p8). The values of a. and b. for channels

1, 10, and 30 are reasonable for many other channels with high,

medium, and low utilizations, respectively.

Equations (4. 11) and (4. 12) together provide a way of computing

D
DM directly from y, thus completing the performance model.

Adaptability Tests

For the transient simulation tests of the routing algorithm's

adaptability, three cases of network damage are considered. The

first case has three of the communication links destroyed so that

transmission is inhibited in both directions over them. This is a

form of reciprocal damage, since the damage is the same in both

directions over the links. This case is shown in Figure 4.8. The

destroyed links are omitted from the diagram. Figure 4.9 shows the

second case of network damage. Here the same three links are

jammed instead of destroyed. Jamming is a form of non-reciprocal

damage whereby transmission is permitted in one direction over a

communication link but not the other. The direction in which trans-

mission is permitted corresponds to the direction of the arrowheads

in the diagram. The final case, six links jammed, is shown in Figure

4.10. This is a very severe case of jamming, and many of the node

pairs have no reciprocal paths between them.

64

Figure 4.8. Three links destroyed.

Figure 4. 9. Three links jammed.

65

Figure 4. 10. Six links jammed.

In order to test the routing protocol's adaptability to network

damage, the simulator brings the undamaged network up to steady

state, disables the appropriate communication links, and compiles

the transient statistics thereafter. The statistics used here are:

1. The number of directed messages delivered and lost per

directed message sent.

2. The number of looping messages per directed message sent.

3. The adjusted directed and non-directed message delays.

These statistics are averaged over a "-window" (interval of time) of

width 4t
ND

for statistics 1 and 2 above, and of width 8t
ND

for 3.

Thus, any point on the curves of these statistics provides an indica-

tion of the near term performance of the routing protocols.

66

The values of the various simulation and routing algorithm

parameters which were used in the transient simulation tests are

given in Table 4. 7. These parameter values will remain fixed, unless

otherwise specifically stated, throughout the transient simulation

tests of all the routing algorithms.

Table 4.7. Values of parameters used in the transient
simulation tests of the new routing proto-
cols.

Parameter Value

k
1

0. 25

k
2

0.25

k
3

10. 0

tD 300.0

tND 300.0

m 10.0

Three Links Destroyed

Figure 4. 11 is a plot of the directed messages delivered and

lost per directed message sent, for the Simple Backwards Learning

algorithm. This plot shows that immediately following the instant of

network damage, a temporary condition exists when messages are

lost. This condition lasts for a period of approximately 8tND.

During this period, the routing tables have not yet learned the new

The Number of Directed
Messages Delivered and
Lost Per Directed o o Delivered Messages
Message Sent, Averaged .6 Lost Messages
Over I-41N0 to t

1.2

I.0

--t
/I \

/ \/ \
0 a 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.11. SBL algorithm, three linkds destroyed.

routes by which the flooded messages are now arriving at the nodes.

How fast these new routes are completely learned is determined by

the learning constant, kl, the forgetting constant, k2, and the

limiting constant, k
3. Following the learning period, the simula-

68

tion results show that the algorithm has completely adapted to the new

network configuration, and no more messages are lost.

Figure 4. 12 is a plot of looping messages following the instant

of network damage. A message is considered to have looped if it or

a copy of it ever returns to a node. Looping messages are another

indicator of bad routing table entries. As can be seen, the looping is

temporary, lasting only as long as messages are being lost.

It should be explained why, after no more messages are being

lost, the delivered message curve fluctuates about the 1. 0 mark.

This is caused by fluctuations in the number of messages in progress

to their destinations. During each averaging period of 4t
ND,

mes-

sages may be delivered which were sent during a previous averaging

period, and messages sent during the present averaging period may

remain in progress to their destinations. If the number of messages

sent during the previous period which arrive during the present aver-

aging period exceeds the number of messages sent during the present

period which remain in progress, then the delivered message curve

rises above 1.0. The opposite situation causes the curve to dip below

1. 0.

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 t
to t

.2

0
0 8 16 24 32 40

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.12. SBL algorithm, three links destroyed.
rn

70

Figure 4.13 is a plot of the adjusted directed message delay and

non-directed message delay, following the instant of network damage.

Also included is a line showing the optimum delay. The optimum

delay is computed by determining the average minimum path length

between all node pairs, and multiplying this average by the time

required for a message to traverse a single link. The result is a

steady state value of the optimum delay. A consistent increase in the

directed and non-directed message delays above this optimum delay

is due to network congestion and to the inability of the routing algo-

rithms to route the messages by the shortest paths.

The non-directed messages always take the shortest path

between nodes. Any difference between the non-directed message

delay and the optimum delay is due to network congestion causing

queueing delays. Initially, the non-directed message delay takes a

jump from its pre-damage value and then settles out. The non-

directed message delay remains larger than the optimum delay, indi-

cating the existence of a certain amount of network congestion.

Any significant difference between the adjusted directed message

delay and the non-directed message delay is due to either the penalty

of 24(i /C) (which is 240 for the values given in Table 4. 6) imposed

on the adjusted directed message delay for each lost message, or due

to messages reaching their destinations by longer than necessary

routes. As can be seen, the adjusted directed message delay initially

100

BO

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t 8T

ND
tO t

40

20

-- Directed Message Delay
o---o Non-Directed Message Delay

Optimum Delay

/
/

Optimum Delay Before Damage

0
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.13. SBL algorithm, three links destroyed.

72

is much larger than the non-directed message delay. This, of course,

is due primarily to the lost messages. However, once the routing

algorithm has completely adapted and messages are no longer being

lost, the directed message delay and non-directed message delay

appear to be essentially equal, indicating that the routing tables are

routing the directed messages by shortest paths.

The simulation results have shown that for the case of three

links destroyed, the Simple Backwards Learning routing algorithm

adapts very well. This is primarily due to the excellent adaptability

of the flooding algorithm being reflected in the routing tables as the

flooded messages bring in information on new paths.

Three Links Jammed

Figures 4.14 and 4.15 show that for the three links jammed

case, messages are both lost and looping continuously following the

network damage. This is a direct result of the inherent assumption

by the Simple Backwards Learning algorithm of reciprocity of the

communication links. That is, the algorithm assumes that if trans-

mission is possible in one direction over a link, that it is possible in

the opposite direction also. Therefore, whenever a shortest path

between two nodes contains a jammed link, messages will be directed

toward that link, resulting in ping-ponging (a loOp of length two), and

lost messages. The Simple Backwards Learning algorithm does not

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6

Over I-41-
NO

to t

1.2

1.0

o---o Delivered Messages
-- Lost Messages

a
V / N.

s
,..4k,

N 0"*/ \
N. lr..../ \ /

/

--*
/ ''. \

V
/

O
/ ___1

O 8 16 24 32 40 48
I, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 14. SBL algorithm, three links jammed.

.5

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over 1 4 IND
to t

0 I 1 1 I 1 1 t i 4 I i I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of TND

Figure 4. 15. SBL algorithm, three links jammed.

75

have the ability to adapt to non-reciprocal forms of damage, which is

a serious drawback.

Figure 4.16 shows the adjusted directed message delay and non-

directed message delay. As can be seen, the adjusted directed mes-

sage delay is very large, which is a result of the large number of

messages being lost.

Six Links Jammed

Figures 4.17, 4. 18, and 4.19 show the simulation results for

the case of six links jammed. Again, large numbers of messages

are lost and looping as a result of the non-reciprocal nature of the

damage. Many more messages are lost and looping than with the

three links jammed case, which is expected since the damage to the

network is much more severe. The directed message delay remains

very large due to the large numbers of messages which are being lost

throughout the test.

Reciprocal Path Search Algorithm

The results for the Simple Backwards Learning algorithm show

a need to create an algorithm which adapts to non-reciprocal forms of

network damage, such as link jamming, in addition to adapting to the

reciprocal forms such as total link destruction. The Reciprocal Path

Search (RPS) algorithm is a first attempt at this.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t 8T

ND
to t

40

20

Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay.--I %. rr/ r .. r. . . .
N.

Nile

.. /' Ne

0

Optimum Delay Before Damage

0
o

lilt t 11111
8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of t
ND

Figure 4. 16. SBL algorithm, three links jammed.

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over I-41ND to t

AIL ...
114..../°*ii b ..s

N... -"'"
A 0 - '

/
/ V o 0 Delivered Messages

4(- Lost Messages

I
I

o 8
1 1 I I 1 I

16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of 1ND

Figure 4. 17. SBL algorithm, six links jammed.

1.2

1.0

.8

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

o'
o 8

I 1

t, The Time Elapsed Following Network Damage in Multiples of 1ND

16 24 32 40 48

Figure 4. 18. SBL algorithm, six links jammed.

200

160

Adjusted Directed
Message Delay and
Non-Directed Message 120

Delay, Averaged Over
t 8T

ND
tO

80

40

"*.tr

//
/

/
/

4) Ao Directed Message Delay
o Non-Directed Message Delay

Optimum Delay

0 0 0

Optimum Delay Before Damage

00 1 1 1 1 1 I

8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 19. SBL algorithm, six links jammed.

80

Since the basic problem with the Simple Backwards Learning

algorithm is that it assumes reciprocity of the message paths, infor-

mation concerning non-reciprocal paths must be sent to all nodes in

the network, and the nodes must use this information to construct

better routing tables. The problem, then, is twofold. First, perti-

nent jamming information must be communicated to the network nodes.

Second, adaptation techniques using this information must be devel-

oped.

The first problem is solved by attaching to each non-directed

message a "Non-Reciprocal Path Indicator" (NRPI) bit. This bit is

initially set to zero when the message originates at its source node.

Then, whenever the non-directed message traverses a link which is

non-reciprocal, i. e. , being jammed, the NRPI is set to one. (A node

should be easily able to determine when one of its incoming links is

being jammed. Further, if jamming is only one directional, it can

readily inform the other end of the link of this fact.) The nodes use

the information contained in the NRPI to flood out extra non-directed

messages to search out the reciprocal paths, which can then be

learned by the routing tables. The details of how this is accomplished

are explained below.

81

Non-Directed Message Handling

How the non-directed messages are routed and used to update

the routing tables is indicated by Figures 4.20 and 4.21.

When a non-directed message arrives at a node, it is checked to

see if it is the first copy of that message received at that node. If it

is, it is next checked to see if it has arrived over a reciprocal path,

by checking the NRPI. If the NRPI equals zero, indicating that it did

arrive over a reciprocal path, the routing tables are updated and the

message is flooded to the node's neighbors. If the NRPI equals one,

indicating that the message arrived over a non-reciprocal path, the

tables are not updated, since this would teach the tables to incorrectly

route the directed messages into the jammed links. Even though the

message came in over a non-reciprocal path, it is still flooded on to

the node's neighbors to ensure that they receive the information con-

tained in the message with a minimum of delay.

Now suppose that the received copy is not the first received at

the node. The copy is still checked to see if it came in over a

reciprocal path. If it has, the node further checks to see if it is the

first to have come in over a reciprocal path (all previous copies came

in over non-reciprocal paths). If it is the first, the node uses it to

update aps, causes the other entries for node S to forget their

values, and then floods the message on to its neighbors so that they

yes

Reciprocal Path Search Algorithm
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes no

no

82

Throw away)
Update aps and
cause all other
routing table
entries for node
S to forget.
Flood to neigh-
bors.

(Flood to neighbors)

If the message is the
first copy with NRPI =
update aps and cause all
other routing table en-
tries for node S to forget.
Flood to neighbors.

Otherwise, update aps
only. Throw away.

Figure 4.20. Conceptual block diagram.

Although not the first copy received at the node, all previous copies
had NRPI = 1.

Reciprocal Path Search Algorithm
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes

yes

no

Update table

= + k (D -a
PS PS I MSG PS

min[(1+k2)ais,
k3cips]',:ii P

no

(Flood to neighbors)

Figure 4. 21. Detailed block diagram.

83

Reciprocal Path Search Algorithm
Non-Directed Message Handling (cont.)

84

(Flood to neighbors)

Figure 4.21. Continued.

85

too will have information on this reciprocal path. If, on the other

hand, a previous copy of the message had arrived over a reciprocal

path, the current copy is allowed only to update aPS' and is then

discarded since the neighbors have previously been sent a copy.

Finally, if the message is not the first copy received at the node and

if it has arrived over a non-reciprocal path, it is merely discarded.

The essential feature of this algorithm is that not only is the

first copy of a message flooded to a node's neighbors, but the first

copy to come in over a reciprocal path, whether it be the first, sec-

ond, or third copy received, is also flooded on to the neighbors so

that they will receive information about a reciprocal path. This algo-

rithm, as the simulation results verify, is able to search out a

reciprocal path between nodes whenever such a path exists. Only the

flooded messages which arrive over reciprocal paths are used to

update the tables so that the tables will only learn the reciprocal

routes.

Directed Message Handling

The details of how the directed messages are handled and

routed are contained in Figures 4. 22 and 4.23. The procedure is

exactly the same as in Simple Backwards Learning. This algorithm

relies on the improved routing table updating technique to produce

better performance characteristics.

86
Reciprocal Path Search Algorithm

Directed Message Handling

V

)Directed message arrives
directed for node D.

Search routing table for
the best output port (S)
and send message out of
it (them).

(Throw away.)

Figure 4. 22. Conceptual block diagram.

87

Reciprocal Path Search Algorithm
Directed Message Handling

Directed message arrives
directed for node D.

Search for ail M's such that

<C(°M05°10) or (link out of port i is down)] tti}
and (link out of port M is up)

For every M, send
message out of port M.

EThrow away)

Figure 4. 23. Detailed block diagram.

88

Since this algorithm differs from the Simple Backwards Learn-

ing algorithm only in the way it adapts to network damage, the steady

state performance characteristics in an undamaged network will not

change. Thus, the Reciprocal Path Search algorithm, and all the

succeeding algorithms, will only be tested to determine how well they

adapt to the three cases of network damage.

Three Links Destroyed

The results for the three links destroyed case are shown in

Figures 4.24, 4.25, and 4.26. As should be expected, these results

are essentially the same as obtained with the Simple Backwards

Learning algorithm. This is because the damage is reciprocal and

the Reciprocal Path Search algorithm adapts differently only to non-

reciprocal damage. Briefly, these results show a temporary period

during which messages are lost and looping. After this period, the

algorithm completely adapts, and no further messages are lost. The

adjusted directed message delay again has an initial period when it is

much larger than the non-directed message delay as a result of the

penalty imposed for lost messages. Once the algorithm has adapted,

the directed message delay is essentially the same as the non-

directed message delay, indicating that the directed messages are

being routed over shortest paths.

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6

Over t- 4T
NO

to I

1.2

1.0

0 8 16

o o Delivered Messages
Lost Messages

-4 6 6 4-6
32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.24. RPS algorithm, three links destroyed.

.5

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 tND
to t

of 1 i 1 4 1 1 i 4 1
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.25. RPS algorithm, three links destroyed.

100

80

Adjusted Directed
Message Delay and /
Non-Directed Message 60 /

/Delay, Averaged Over
t o t

/

/
40 L-----i

20

0
0

A
\

Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

Optimum Delay Before Damage

1111
8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.26. RPS algorithm, three links destroyed.

92

Three Links Jammed

The results for the three links jammed case are shown in

Figures 4.27, 4.28, and 4. 29. These results differ dramatically

from the results obtained with the Simple Backwards Learning algo-

rithm.

Figure 4. 27 indicates that following an initial learning period,

the Reciprocal Path Search algorithm is able to adapt to the link

jamming, and no further messages are lost. This is a result of the

algorithm's ability to use the flooded messages to search out the

reciprocal paths and provide information to the nodes so that they can

update their tables to learn the new reciprocal paths.

The adjusted directed message delay shows an initial period

when delay is very large due to the lost messages. However, even

after messages are no longer being lost, the directed message delay

remains larger than the non-directed message delay, indicating that

the algorithm is unable to route all of the directed messages over the

shortest paths. This is a result of the Reciprocal Path Search algo-

rithm's built-in function of routing the directed messages completely

around jammed links. This prevents lost messages, but it also pre-

vents the directed messages from using a jammed link in its good

direction, causing some of them to take longer than necessary paths.

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed o o Delivered Messages
Message Sent, Averaged .6 Lost Messages
Over t-4IND to t

..../ '/// \
0 ----------4----4-1----4--I.-4 1 -4 1
0 8 16 24 32 40 48

I, The Time Elapsed Following Network Damage in Multiples of tND

Figure 4. 27. RPS algorithm, three links jammed.

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 41ND
to t

.2

01 1 1141e1 *--1
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of 'ND

Figure 4. 28. RPS algorithm, three links jammed.

Adjusted Directed
Message Delay and
Non-Directed Message 60 / \\
Delay, Averaged Over // N.
t -8T

ND
to t / \....,

/

--- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

Optimum Delay Before Damage

I i I 1 I i I i I
0 8 16 24 32 40 48

I The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 29. RPS algorithm, three links jammed.

96

Six Links Jammed

The results for the six links jammed case are shown in Figures

4. 30, 4.31, and 4.32. Unlike the three links jammed case where all

node pairs have at least one reciprocal path between them, the six

links jammed case has several node pairs with only non-reciprocal

paths between them. Since the Reciprocal Path Search algorithm

depends upon the existence of a reciprocal path between nodes, it is

unable to adapt to this case of damage. The lack of a reciprocal path

means there is nothing new for the routing tables to learn, and also

inhibits the forgetting process. This results in the nodes attempting

to route the messages by old, no longer good, paths. This problem is

evidenced by the results given in Figures 4.30 and 4. 31. Lost and

looping messages occur continuously after the network damage. There

is very little change in the amount of lost and looping messages over

the duration of the test, indicating that there is little or no change in

the routes over which the messages are being sent.

Figure 4. 32 gives the adjusted directed and non-directed mes-

sage delays. As expected, the adjusted directed message delay

remains large due to the large fraction of lost messages.

.6

.5

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4IND
to t

.2

0
o

1111111 ii
8 16 24 32 40 48

1, The Time Elapsed Following Network Damage in Multiples of 1ND

Figure 4. 31. RPS algorithm, six links jammed.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t -81-ND to t

40

20

7..
-- Directed Message Delay
0 0 Non-Directed Message Delay

/ Optimum Delay

/

Optimum Delay Before Damage

0
o

II Is ItI i I

8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of iND

Figure 4. 32. RPS algorithm, six links jammed.

100

Rapid Reciprocal Path Search Algorithm

The Rapid Reciprocal Path Search (RRPS) algorithm is designed

to adapt to cases of jamming more quickly and completely than does

the Reciprocal Path Search algorithm, as its name indicates. A reex-

amination of the results for the Reciprocal Path Search algorithm

reveals that it adapted to the case of three links jammed no faster

than it did to the case of three links destroyed. The Rapid Reciprocal

Path Search algorithm was developed in an attempt to find an algo-

rithm which adapts to jammed links more quickly than it does to

destroyed links. (Intuitively, link jamming would appear to be less

serious damage than link destruction.) It accomplishes this by using

the NRPI bit attached to the non-directed messages to determine when

a link has suddenly become non-reciprocal, and allow the algorithm to

utilize alternative routing techniques to temporarily circumvent the

normal process of learning and forgetting the routing table entries.

This results in an algorithm which adapts very quickly.

This algorithm is also designed to sense when no reciprocal

path exists between nodes, and thus it is able to take appropriate

measures to ensure that the message is delivered to its destination

even in extreme cases of network damage, as with the six links

jammed case.

101

The Rapid Reciprocal Path Search algorithm uses three routing

tables, as shown in Figure 4. 33. The Primary Routing Table (A

table), the Selection Table (B table), and the Secondary Routing Table

(C table). The Primary Routing Table is used mostly when no net-

work damage exists, or the damage is only reciprocal in nature. It

is updated by the first copy of a message, even when that copy comes

in over a non-reciprocal path. The Selection Table is updated using

the NRPI bits. A Selection Table entry of b.. = 0 indicates that the
13

a,. entry was last updated by a message which had an NRPI = 0
13

(i. e., the message came in over a reciprocal path), and is thus use-

ful for routing directed messages. A value of b.. = 1 indicates that
13

the a.. entry was last updated by a message which arrived with an

NRPI = 1, and thus signals immediately (circumventing the forget-

ting process) that the a.. is no longer useful for routing directed

messages. When b.. = 1, the algorithm uses the Secondary Routing

Table entry, c.., for routing directed messages. The Secondary

Routing Table entries are updated only by the extra flooded messages

which are generated to search out the reciprocal paths. For any

destination node, the algorithm is designed so that the Secondary

Routing Table entries are all equal to each other as well as to the

Primary Routing Table entries which correspond to previously unused

ports, at the time of network damage. This allows the initial updates

of the table entries by extra flooded messages which search out

102

Primary Routing Table (A table)

When in use

a.. = a rough estimate of the delay required
13 to reach node j when port i is used.

Selection Table (B table)

If b.. = 0, use a.. for delay estimates.
13

If b.. > 0, use c.. for delay estimates.
13

Secondary Routing Table (C table)

When in use

c.. = a very rough estimate of the delay
13 required to reach node j when port i is

used. All entries updated only by
messages using reciprocal paths.

Figure 4. 33. RRPS algorithm routing tables.

103

reciprocal paths to quickly indicate which port to take to use this

reciprocal path. If no reciprocal path exists, the fact that all the

routing table entries chosen by the Selection Table are equal indicates

to the algorithm that no reciprocal path exists, allowing the node to

take appropriate action to ensure the message delivery. In this case,

the algorithm will flood the directed messages out.

Non-Directed Message Handling_

Figures 4.34 and 4.35 explain the non-directed message han-

dling procedure. Suppose a non-directed message with source node S

arrives at node X by way of port P. Node X first checks to

see if it is the first copy of the message which has been received. If

it is, the node then checks the NRPI bit to see if it arrived over a

reciprocal path. If the NRPI = 0, indicating the message did arrive

over a reciprocal path, a
PS

is updated and the other a s. are

made to forget their values, the B table is updated by setting bps = 0,

and the C table entries for node S are also all made to forget their

values. The message is then flooded to the node's neighbors. Setting

b 0 tells the directed message routing algorithm to use the aPS PS

entry as a valid estimate of the delay to node S by way of port P.

As long as the first copy of the message comes in over a reciprocal

path, such as when the network is undamaged or the damage is recip-

rocal in nature, the above updating procedures causes this algorithm

yes

Rapid Reciprocal Path Search Algorithm
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes no

no yes NRPI = no

104

Update aps and
b Ps and cause
all other A and C
table entries for
node S to forget.
Flood to neigh-
bors.

Update aps and
b PS only. Flood
to neighbors.

V

Throw away)

If the message is the
first copy with NRPI =
Orupdate cps and bps,
and cause all other C and
A table entries for node S
to forget. Flood to neigh-
bors.

Otherwise, update aps
and b

PS
only.

Throw away.

Figure 4. 34. Conceptual block diagram.

J.

All previous copies had NRPI 1.

105

Rapid Reciprocal Path Search Algorithm
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

Update tables

= a k (D -a)PS PS 1 MSG PS

aI.
S

= min [(I+k
2 I

)a.
S '

k 3 PS j'ti#P
bPS = 0

ciS = min [(1-1-k)c. k 3 P01
S
]t`i

Update tables

°Ps= °Ps+ ki(DmSG-cIPS)
bsps = 1

V

(Flood to neighbors)

Figure 4. 35. Detailed block diagram.

106

Rapid Reciprocal Path Search Algorithm
Non-Directed Message Handling (cont.)

no yes

yes

(Throw away-)
Update tables

PS= CPS + kl(DMSG- CPS)

tis = minC(i+k2)cis, P

CI
PS

= 2

= min [(I+ k)aPS 2 IS' PS

(Flood to neighbors)

Figure 4. 35. Continued.

107

to perform essentially the same as did the Simple Backwards Learn-

ing and Reciprocal Path Serach algorithms.

If the first copy of the message came in over a non-reciprocal

path, i.e., the NRPI = 1, the A table entry aps is still updated,

but no A or C table entries are caused to forget their values, and

bPS is set to 1. The message is then flooded to the node's neighbors

so that they will have the information contained in the message, and

with a minimum of delay. Setting bps = 1 tells the routing algo-

rithm to use the PS entry (which will be updated when and if a

later copy of the message arrives over a reciprocal path) as the delay

estimate to node S when a message is sent out of port P. The

aPS entry is updated, even though it is not used, so that if the

jamming does cease at some future point of time, resulting in the

resumption of the use of aPS for routing purposes, it will be kept

current.

Now suppose that the message is not the first copy to arrive. If

the NRPI = 1, again aps is updated, b PS is set to one, and the

message is discarded. The other A and C table entries are not

caused to forget their values.

If, however, this new copy has a NRPI = 0, the node then

checks to see if a previous copy also had a NRPI = 0. If that is the

case, aPS and bPS are updated, but again the other A and C

table entries are not caused to forget their values since the previous

108

copy of the message already completed the forgetting function. The

message is discarded since the neighbors have already been sent a

copy with NRPI = 0. If, however, no previous copy with a NRPI= 0

has arrived, then the current copy is possibly one of the extra copies

generated to search out a reciprocal path. Therefore, the node

updates cps, sets bPS = 2 to indicate that cPS should be used

for routing purposes (1 could have been used, but 2 was used in the

program in order to assist in verifying the correct operation of the

algorithm), and the other C and A table entries for node S are

caused to forget their values. This copy of the message is then

flooded on to the neighbors so that they can receive information on the

reciprocal path.

Directed Message Handling

The procedure for handling directed messages is described in

Figure 4. 36 and 4. 37.

The routing algorithm for directed messages is very similar to

the one used in the Simple Backwards Learning and the Reciprocal

Path Search algorithms. There are two major differences. First,

the Rapid Reciprocal Path Search algorithm draws its delay estimates

from either of two routing tables, whereas only one routing table was

used previously. If a message arrives directed for node D, the delay

Rapid Reciprocal Path Search Algorithm
Directed Message Handling

Directed message arrives
directed for node D.

V

Search routing table for
the best output port (S)
and send message out of
it (them).

(Throw away.)

Figure 4. 36. Conceptual block diagram.

109

110

Rapid Reciprocal Path Search Algorithm
Directed Message Handling

Directed message arrives
directed for node D.

V

Search for all M's such that
[(ern ..SeiD)'tij and (link out of port M is up)
where

famD if blIDC)
els.4D2 tcmo if bh4D>0

fait) if bMC12°
eiD Laic) if bmp>0

E. -..\For every M, send
message out of port M.)

(Throw away.)

Figure 4. 37. Detailed block diagram.

estimate used is now e. , where

e.
1.D

if biD = 0

ciD
if biD > 0

111

(4. 13)

The other major difference is that, previously, port M was

considered better than port N if either the delay estimate for port

M is less than the delay estimate for port N, or the link out of

port N is down (i.e. , not able to carry messages). This latter

step, checking to see if port N is down, is no longer done since the

Rapid Reciprocal Path Search algorithm depends upon the b..'s to

reflect this information in the routing algorithm. This works fine for

jammed links, but the b..' s do not contain any information on
3.j

destroyed links. The looping which occurred before was primarily

due to messages sent to a node which was previously, but is no longer,

connected to the destination node. The disconnected node could no

longer deliver the message to its destination, so it sent it back to the

nodes to which it was still connected, resulting in ping-ponging (a

form of looping), and occasionally allowing the message to proceed on

to its destination. With the Rapid Reciprocal Path Search algorithm,

the disconnected node merely recognizes that it is no longer connected

to the destination node, and simply does not send out the message.

This prohibits looping, decreases network congestion, and also

112

results in a very slight increase in messages lost for the case of

destroyed links. However, as will be seen below, this algorithm pro-

vides a dramatic improvement in the message delivery for the jammed

links cases.

Three Links Destroyed

The results for the three links destroyed case are contained in

Figures 4. 38 and 4.39. As explained above, looping does not occur,

so that plot is omitted. The results are nearly identical to the results

obtained by the previous algorithms for this case of network damage.

This is expected since the primary difference between this and previ-

ous routing algorithms is in how it adapts to non-reciprocal forms of

damage, such as jamming.

Three Links Jammed

The results for the three links jammed case are contained in

Figures 4. 40, 4. 41, and 4. 42. The Rapid Reciprocal Path Search

algorithm is able to dramatically reduce the number of lost and loop-

ing messages, when compared to the previous algorithms. Messages

are lost for only a period of duration 4t
ND

. In addition, only about

one-third as many messages were lost as with the Reciprocal Path

Search algorithm.

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged 6
Over 1-4-IND to

1.2

I.0

))
/ '
/ Ni

/
/ \\
/ \

0
/

I \4-----4 4 1 4 At * 41

0 8 16 24 32 40 48
I, The Time Elapsed Following Network Damage in Multiples of tND

Delivered Messages
-- Lost Messages

Figure 4. 38. RRPS algorithm, three links destroyed.

Adjusted Directed
Message Delay and
Non-Directed Message
Delay, Averaged Over
t 8T

ND
to t

100

80 /
/

/

60

40

20

/

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

..
co',01

.0"

Optimum Delay Before Damage

I I

0 8 16 24 32 40
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 39. RRPS algorithm, three links destroyed.

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over t-4T

ND
to

16\\,
0 / -4 4L---------4--
o a 16 24 32 40 48

I, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 40. RRPS algorithm, three links jammed.

o 0 Delivered Messages
Lost Messages

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.4

04-.7.1 4
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.41. RRPS algorithm, three links jammed.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t Ert- tO t

40

20

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

oft

Dialimum De/ay Before Damage

0 1 I t 1 I I

O 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of iND

Figure 4. 42. RRPS algorithm, three links jammed.

118

The adjusted directed message delay shows a gradual rise from

its pre-damage value. Unlike the Reciprocal Path Search algorithm,

no large initial jump occurs since so few messages are lost. After

the routing tables have adapted, and messages are no longer being

lost, the directed message delay remains larger than the non-directed

message delay. This indicates that some of the directed messages

are being routed over suboptimal paths. As was the case with the

Reciprocal Path Search algorithm, the Rapid Reciprocal Path Search

algorithm completely avoids using the jammed links (except in cases

where mesages are flooded), resulting in some messages taking

longer than necessary routes.

Six Links Jammed

The results for the six links jammed case are contained in

Figures 4.43, 4.44, and 4. 45. In contrast to the Simple Backwards

Learning and Reciprocal Path Search algorithms, the Rapid Recipro-

cal Path Search algorithm adapted quickly and completely to this

severe case of jamming. Messages were lost for only a period of

8t
ND. The algorithm was able to quickly locate the new reciprocal

routes, and to determine when no reciprocal path exists between

nodes. When no reciprocal path is found, the algorithm simply sends

the message out of all the node's ports, i. e., it floods the message

out. This flooding is the direct result of the three delay estimates

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed o o Delivered Messages
Message Sent, Averaged .6 -- Lost Messages
Over t-4T

ND
to t

A.,../ -.
0 ____,4 4 4 4 4____,..4___L-4--i
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of 1ND

Figure 4. 43. RRPS algorithm, six links jammed.

1.2

1.0

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 tND
to t

0' I

O 8 16 24 32 40
I, The Time Elapsed Following Network Damage in Multiples of 1ND

Figure 4. 44. RRPS algorithm, six links jammed.

0

Adjusted Directed
Message Delay and
Non-Directed Message
Delay, Averaged Over
I-8T

ND
to t

100

80

60

40

20

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

Optimum Delay Before Damage

0 it
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 45. RRPS algorithm, six links jammed.

122

selected by the B table all being equal. The flooding is different from

the non-directed message flooding in that the message is sent out of

all the node's ports, including the one in which it came. One side

effect of this flooding is that a large amount of looping occurs. In

fact, unless the directed message is at its source node, sending it out

of all three ports results in one copy being returned to the node from

which it had just arrived, immediately resulting in ping-ponging, a

form of looping. This could be eliminated by adding additional com-

plexity to the routing algorithm and not allowing a directed message to

be sent out of its incoming port.

The extra traffic caused by the directed message flooding does

not seriously contribute to the network congestion since the misdi-

rected copies very quickly ping-pong, and hence are quickly dis-

carded. Once a copy of the message reaches a node which does have

a reciprocal path to the destination, it is no longer flooded, but is

routed out of a single port. Thus, the directed message flooding

tends to be local in nature.

The adjusted message delay again shows a gradual increase

from its pre-damage value. No large jump is seen since there are so

few lost messages. Once the messages are no longer being lost, the

directed message delay compares very favorably with the non-

directed message delay. This is because the flooding of the directed

messages tends to route them over the shortest paths, and,

123

significantly, with this severe case of jamming, there are not a lot of

alternate routes, so the possibility of their taking a suboptimal path

is low.

Reciprocal Path Search Algorithm with Delay Vectors

Each of the previous algorithms was designed to search out and

use reciprocal paths, i. e., paths over which messages can travel in

both directions. The Reciprocal Path Search Algorithm with Delay

Vectors (RPSDV) is designed not only to search out and use the recip-

rocal paths, but also to search out non-reciprocal paths and use them

for routing directed messages. This involves locating non-reciprocal

(i.e. , jammed) links which can be used for routing directed messages,

and disseminating information on these links to all the network nodes

so that they can decide if the links are useful to them for routing pur-

poses. In this way, each node will have information on a unique path

to a destination node whenever such a path exists, reciprocal or non-

reciprocal.

For the purpose of storing information on both the reciprocal

and non-reciprocal paths, each node will maintain two tables, the A

table and the Delay Vector Table. The A table is the same routing

table as that used previously by the Reciprocal Path Search algorithm

and stores information on reciprocal paths. It is updated by flooded

messages arriving over reciprocal paths. The Delay Vector Table is

124

a new table and stores information on non-reciprocal paths. It is

updated by special non-directed messages called "delay vectors. "

These delay vectors disseminate throughout the network information

on particular non-reciprocal links, providing estimates of the delay

required to reach destination nodes via the non-reciprocal link, as

well as information defining the particular non-reciprocal link in

question.

A typical Delay Vector Table is shown in Figure 4. 46. It has a

column for each destination node, and three rows. The first row's

entry, dln' contains the delay estimate to node n via the non-

reciprocal link defined by the d
2n

and din entries. To under-

stand the second and third row entries, consider Figure 4.47 which

shows a non-reciprocal link connecting nodes A and B. For reasons

which shall become evident later, node B is called the intermediate

node and node A is called the creation node. The non-reciprocal

link is defined as the link connecting nodes A and B, with the

direction of transmission in the direction from the intermediate node,

B, toward the creation node, A. Delay Vector Table entry d2n

is used to store the identity of the intermediate node, and entry d 3n

is used to store the identity of the creation node.

dln = The delay estimate to node n when the directed
message is routed via the link connecting the
intermediate and creation nodes.

d2n = The intermediate node.

din = The creation node.

Figure 4. 46. Delay Vector Table.

Figure 4. 47. Non-reciprocal link.

125

Note that the Delay Vector Table only stores a delay estimate to

a destination node over a particular non-reciprocal link, along with

the identity of the nodes which the link connects. In order to use this

information, the node must be able to determine how to reach node B,

from whence a message can be sent across the link to node A and

on to its destination. The only table which the node can use to route

messages to node B is the A table. (This implies that the node

must have a reciprocal path to node B. Algorithms could be created

eliminating this requirement by creating a third table which would

keep track of any non-reciprocal links needed to reach B, along

with information on how to use these links to actually reach B.

126

However, using the third table to keep track of the non-reciprocal

links needed to reach B provides for the entry into the algorithm of

many choices for route selection, creating the possibility of increas-

ing looping and thus actually degrading the algorithm's performance.)

In order to use the Delay Vector Table entries, a node must use the

A table to route the message to node B, and from there over the

link and ultimately to its destination.

The fact that the A table has an entry for node B, however,

does not mean that this entry corresponds to a current valid recipro-

cal path to B. This was clearly established in the simulation tests

of the six links jammed case for the Reciprocal Path Search algo-

rithm. It was observed there that if changes in network structure

which eliminate all reciprocal paths between node X and node B

occur, node X's A table will still have an entry for node B, but

this entry will cease to be updated from then on. This results in the A

table entries routing the messages over the old, no longer good, paths.

Node X can reasonably evaluate if the A table entries are good

only by keeping track of whether or not they are still being updated.

For this purpose, node X will keep track of the elapsed time since

the A table entry for node B was last updated. If the elapsed time

exceeds some set time limit, TR, then node X will assume that

the A table is not currently being updated and therefore no reciprocal

path exists to node B. In this event, the A table entries will be

127

considered "dead. " If, on the other hand, the elapsed time since the

last update is less than TR, then node X concludes that it does

indeed have a reciprocal path to node B, and the corresponding A

table entries are considered "alive. " To be properly able to deter-

mine if the A table entries are truly alive or dead, each node in the

network must be required to keep the maximum time elapsed between

non-directed message transmissions, TNDmax,

TR.

within the limit

It is also of interest for a node to be able to determine if the

Delay Vector Table entry is valid. The fact that the Delay Vector

Table contains a delay estimate does not mean that the estimate is

valid. If the Delay Vector Table entries have not recently been

updated, it is possible that the network structure has changed such

that the destination node is no longer reachable via the non-reciprocal

link specified by the intermediate and creation node entries. Thus,

node X will also keep track of the time elapsed since the last Delay

Vector Table update for each destination (column). If this elapsed

time exceeds some set time limit, TNR' the node X will conclude

that the Delay Vector Table entries for that destination are no longer

valid and that a non-reciprocal path no longer exists to it. In this

situation, the Delay Vector Table entries for the particular destination

shall be considered dead. If on the other hand, the elapsed time is

128

less than TNR, then node X will assume that the non-reciprocal

path does exist to the destination and the Delay Vector Table entries

shall be considered alive.

Node X can properly determine if the Delay Vector Table

entries are alive or dead if the delay vectors are sent out on a regular

basis. For this reason, the delay vectors were all sent out at regular

intervals of duration T
DV,

where T
DV

is less than TNR, dur-

ing simulations of this algorithm.

The values of TND, TR and TNR which were used inmax

the simulation tests are given in Table 4.8. The value of T
DV

was

varied and will be specified for each individual test as it is discussed.

Table 4.8. Values of delay vector parameters used in
the transient simulation tests of the new
routing protocols.

Parameter Value

TND 4 t
NDmax

TR 1.5TNDmax

TNR 1.5T
DV

Delay Vector Creation

As was previously stated, the Delay Vector Tables are updated

using special non-directed messages called "delay vectors" which

129

are disseminated throughout the network. These delay vectors are

created by one of the nodes connected by the non-reciprocal link.

Consider again the situation depicted in Figure 4. 47. Nodes A

and B are joined by a non-reciprocal link. Node B should

easily be able to detect that it is being jammed, and then inform A

of this fact by transmitting a special message directly over the link in

its good direction. (The special message could be transmitted over

some other longer route if this is required for any reason.) Node A,

upon receiving this information from node B, will begin creating

and transmitting delay vectors. The purpose of the delay vectors is

to inform the entire network of the existence of this non-reciprocal

link and to provide estimates of the delays which would result when

the messages are routed to destination nodes via the non-reciprocal

link. Node A must create the delay vector since it is the only node

of the two which has knowledge of which nodes are reachable once the

link has been traversed, and thus is the only choice for determining

and attaching delay estimates.

The algorithm which node A uses to attach the delay estimates

to the delay vector is explained in Figures 4. 48 and 4.49.

Node A attempts to attach a delay estimate for each node in

the network except for the intermediate node B. Suppose that node

A is attempting to determine a delay estimate for node n. It first

checks to see if either its A table or Delay Vector Table entries for

130

Reciprocal Path Search Algorithm with Delay Vectors
Delay Vector Creation

Delay vector generated at
node A with intermediate node B.

For each node reachable from node A
(except for node B), determine the delay
estimate to that node from node A.

Add 1m/C(channel service time) to each
delay estimate and attach the sum to the
delay vector. For each node not reach-
able from node A, attach an entry of 0
to the delay vector.

Flood to neighbors.)

Figure 4. 48. Conceptual block diagram.

131

Reciprocal Path Search Algorithm with Delay Vectors
Delay Vector Creation

Delay vector generated at node
A with intermediate node B.

N=B
or

routing table
entries
dead.

yes

Determine best delay
estimate to node n, On,
using all routing tables.

yes

(Flood to neighbor.)

Figure 4. 49. Detailed block diagram.

132

node n are alive. If they are not alive, node A concludes that it

has no path to node n, and merely enters a zero into the delay vec-

tor to indicate this. (If the delay vector has a predefined location for

each delay estimate, then something must be entered into that location

to signal that no estimate is available. Using predefined locations

will allow for a shorter delay vector than would be required if each

delay estimate needs to be accompanied with the identity of the node

which the delay estimate is for.) If, on the other hand, either or both

of the A table and Delay Vector Table entries are alive, node A will

use these tables to determine the best delay estimate to node n, add

/C to it, and attach the updated estimate to the delay vector.

Adding /C to the delay estimate determined at node A pro-

duces an estimate of the delay to the destination node from node B.

The fact that node A can draw its delay estimates from its

Delay Vector Table means that the non-reciprocal link connecting B

with A can be used in estimating delays over paths including other

non-reciprocal links. This enables any destination node to be reached

without flooding even if the only path to it contains several non-

reciprocal links. After node A has either attached a delay esti-

mate or a zero for each destination node, it also attaches its own

address and the address of the intermediate node B, and floods the

delay vector to all of its neighbors. This delay vector will continue

133

to be flooded by each node receiving it, thus disseminating its

information throughout the network.

Delay Vector Table Update Routine

The nodes retransmit delay vectors just as they do any other

non-directed message, but they also use them to update their Delay

Vector Tables.

Figures 4.50 and 4.51 describe how the nodes update their Delay

Vector Tables. Suppose a delay vector with creation node A and

intermediate node B arrives at node X. Node X first checks to

see if there is a reciprocal path from node X to node B. If the

reciprocal path does not exist, i. e. , the A table entries for node B

are all dead, then node X does not update the Delay Vector Table

and merely returns the delay vector to the node's non-directed mes-

sage handling routine for further flooding. However, if a reciprocal

path does exist to node B, node X then consults its A table to

determine DB, the delay estimate from node X to node B.

Knowing that a path exists to node B and knowing the delay to node

B, node X can use the delay vector to update its Delay Vector

Table.

For column n in the Delay Vector Table, node X checks to

see if d
2n

B and din = A. If so, the Delay Vector Table entry

for destination node n was last updated by the delay vector for the

134

Reciprocal Path Search Algorithm with Delay Vectors
Delay Vector Table Update Routine

CDelay vector, with creation node A and
intermediate node El, arrives from node
X's non-directed message handling
routine.

yes

Is
there a

reciprocal
path to node B

from node
X?

no

(-Return to non-
directed message
handling routine.

V

If certain conditions
are met, update the
delay vector tables.

(Return to non-
directed message
handling routine.)

Figure 4. 50. Conceptual block diagram.

135

Reciprocal Path Search Algorithm with Delay Vectors
Delay Vector Table Update Routine

Delay vector, with creation node A and
intermediate node 8, arrives from node
X's non-directed message handling
routine.

Search for M
such that
ame<aietti#M

C.
Return to non-directed
message handling routine.'

Figure 4. 51. Detailed block diagram.

136

Reciprocal Path Search Algorithm with Delay Vectors
Delay Vector Table Update Routine (cont.)

Update table
dnr-08+0V,

(.-Return to non-directed
message handling routine.

Figure 4. 51. Continued.

same non-reciprocal link, and thus it is again updated using the

formula

where

in = DB + DV
n

dln = the new Delay Vector Table estimate to node n.

DB = the delay estimate to node B from node X.

DVn = the delay vector entry for node n.

137

(4. 14)

The entries for d2n and din are of course left unchanged. If

d2n B or din A, meaning the Delay Vector Table entry was

last updated by a delay vector for a different non-reciprocal link, node

X checks further to determine if the din's are dead or if

(DVn+DB) is less than. dln . If either of these conditions are met,

the new delay vector entries are an improvement over the existing

entries, and the Delay Vector Table is updated using Equation (4. 14)

and

d2n = A

din = B

(4. 15)

(4. 16)

After node X has completed this procedure for each Delay

Vector Table column, the delay vector is returned, in its original

form, to the node's regular non-directed message handling routine

138

for further flooding to other nodes. (An alternate approach would be

to immediately upon reception flood the delay vector to other nodes,

using a copy of it to update the Delay Vector Table.)

Non-Directed Message Handling

The non-directed message handling procedure is described in

Figures 4.52 and 4.53. This procedure is exactly the same as in the

Reciprocal Path Search algorithm except the routine now checks to

see if the non-directed message is a delay vector, and if so, sends it

to the Delay Vector Table update routine. Note that these figures

assume that the delay vectors are also used to update the A table just

as is done with any other non-directed message. This involves only

the requirement that the delay vector contain information allowing an

estimate of the delay elapsed since it left its source node to be com-

puted.

Directed Message Handling_

The directed message handling procedure explained in Figures

4.54 and 4.55, is very different from the procedures used by the

previous routing algorithms. Suppose a message arrives at node X

directed for node D. Node X first checks to see if it is the first

copy received. If it is the first copy, node X then checks to see if

either the A table or Delay Vector Table entries are alive. If neither

139

Reciprocal Path Search Algorithm with Delay Vectors
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes no

yes Delay no Yes NRPI = no

V

Send to delay vector
table update routine.

yes no

Update aps and
cause all other
routing table
entries for node
S to forget.
Flood to neigh-
bors.

V

(Throw away)

If the message is the
first copy with NRPI =
0);(update aps, cause all
other routing table entries
for node S to forget.
Flood to neighbors.

Otherwise, update aps
only. Throw away.

(Flood to neighbors)

Figure 4.52. Conceptual block diagram.

J.

All previous copies had NRPI = 1.

140

Reciprocal Path Search Algorithm with Delay Vectors
Non-Directed Message Handling

I-Non-directed message orrives from
re:ode S by way of port P.

yes sr no

yes ve,ay no

yes no

Update table

alPS CPS+ kl(DMSG-CIPS

C1is = min [(I+k2)ais,
k3alps]}1'i A P

(Flood to neighbors)

Figure 4. 53. Detailed block diagram.

141
Reciprocal Path Search Algorithms with Delay Vectors

Non-Directed Message Handling (cont.)

Update table

= a + k (D
M

-a)PS I SG PS

(Flood to neighbors)

Figure 4. 53. Continued.

Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling

no

CDirected message arrives at
node X directed for node D.

yes no

(Throw away.

142

no

Determine the best delay estimate
(amD) to node D using the
A table.

yes
(Throw away.)

yes no

yes

Use A table to route to intermediate
node. If already there, send to the
creation node.

CSend out o-f-,
port M.,i

Figure 4. 54. Conceptual block diagram.

143

Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling

rDirected message arrives at
node X directed far node D.

yes no

yes

no Search for M such that
m0<aiO'l*M

yes

no

yes

end out of port M)

Figure 4. 55. Detailed block diagram.

144

Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling (cont.)

Send to neighboring node
specified by d3D.

Figure 4. 55. Continued.

145

table has live entried for node D, node X decides that it does

not have a path to node D and discards the message. This is a

valid conclusion since in steady state the lack of either live Delay

Vector Table or live A table entries for a particular destination does

in fact mean that there is no path to that destination, reciprocal or

non-reciprocal. Thus the use of delay vectors allows a node to

sense when a path does not exist to a destination, and avoid congest-

ing the network with transmissions of directed messages which have

no hope of being delivered. However, shortly following network

damage, a node may occasionally conclude (due to dead table entries)

that no path exists to a destination when in fact one does exist, but the

information on that path has not yet propagated throughout the network.

This will result in that message not being sent out so it will be a lost

message.

If there are live entries for node D in either or both the A

table and Delay Vector Table, node X then uses these tables to

route the message toward its destination.

The first step in routing the message is to check the A table to

see if it has a live entry for node D. If it does, node X determines

the best delay estimate to node D contained in the A table. If this

estimate, a
MD' is less than d ID' or d

1D
is dead, the mes-

sage is sent out of port M, along a reciprocal path to node D. If,

146

however, d
ID is alive and less than a

MD,
then node X uses

the A table to send the message to the non-reciprocal link defined by

d2n and d3n, since the route via this composite path represents a

shorter delay path to the destination. Node X uses the A table to

route the message to the intermediate node specified by d2n. When

the message reaches node d2n (which could be node X) then this

node routes the message across the non-reciprocal link directly to

the creation node, d3n (assuming no further changes in routing

tables occur before the message reaches d
2n). This portion of the

algorithm assumes that each node knows the identity of its immediate

neighbors. This is the only knowledge of the network structure that

the algorithm requires.

If the A table entries are dead and the Delay Vector Table

entries are alive, node X turns immediately to the Delay Vector

Table and uses it to route the message as described above.

Three Links Destroyed

The results for the three links destroyed case are shown in

Figures 4.56, 4.57, and 4.58. Again as expected, these results are

essentially the same as those obtained with the Simple Backwards

Learning and Reciprocal Path Search algorithms. This algorithm

only differs from these two algorithms when jamming occurs. For

the three links destroyed case, delay vectors were not even sent out

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6

Over t-41-110 10 t

1.2

1.0

s.

/
/

0/)i 1_ 4.

0

o 0 Delivered Messages
Lost Messages

8 16 24 32 40 48
The Time Elapsed Following Network Damage in Multiples of 1ND

Figure 4. 56. RPSDV algorithm, three links destroyed.

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

0
0 8 16 24 32 40

t, The Time Elapsed Following Network Damage in Multiples of tND

Figure 4.57. RPSDV algorithm, three links destroyed. 00

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 6

Delay, Averaged Over
t T

ND
to I

40 /

20

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay/
/

/ St

Optimum Delay Before Damage

0
0 8 16 24 32 40 48

I, The Time Elapsed Following Network Damage in Multiples of TN()

Figure 4. 58. RPSDV algorithm, three links destroyed.

150

since they are only used when there are non-reciprocal links present

in the network.

The results show a temporary period during which messages are

lost and looping. After this period, the algorithm completely adapts,

and no further messages are lost. The adjusted directed message

delay again has an initial period when delays are large due to the

penalty imposed for lost messages. Once the algorithm has adapted

and messages are no longer being lost, the directed message delay

is essentially the same as the non-directed message delay, indicating

that the directed messages are being routed over shortest paths.

Three Links Jammed

This case of network damage was tested for values of

T
DV

4tND and T
DV

= 2t
ND.

The results for the T
DV 4tND case are given in Figures

4.59, 4. 60, and 4. 6 1 . These results again show a temporary period

when messages are lost and looping. This period lasts for about

12t
ND. When compared to the Reciprocal Path Search algorithm

(without delay vectors), it is clear that the use of delay vectors

results in an increase in lost and looping messages. This is pri-

marily the result of early bad Delay Vector Table entries. When the

network is initially damaged, the delay vectors are constructed using

the entries in the A table. These early A table entries are incorrect,

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6

Over t-4T
ND

to t

1.2

1.0

IN
/ Nt

/
/

._/
/

\\
0 / --41---1-.-6----1-41------1--4--1
0 8 16 24 32 40 48

1, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 59. RPSDV algorithm with Tav -= 4ti\TD, three links jammed.

oo Delivered Messages
--- Lost Messages

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.4

I 1 1 l i 4 1 / I
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of 'ND

Figure 4. 60. RPSDV algorithm with T = 4T three links jammed.
DV ND'

100 A- Directed Message Delay

80 / \ o 0 Non-Directed Message Delay\\
\ Optimum Delay

Adjusted Directed / \,/Message Delay and /
Non-Directed Message 60 / \
Delay, Averaged Over /

/t -8T
ND

to t /
/ ,-

40

20 Optimum Delay Before Damage

0 It I i I I I 11
0 8 16 24 32 40 18

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 61. RPSDV algorithm with T
DV

= 4t
ND' three links jammed.

154

thus causing incorrect entries to work their way into the Delay Vector

Tables. Since the Delay Vector Tables are also used for routing

directed messages, these incorrect entries result in an increase in

lost and looping messages. Once the A tables adapt, the new correct

entries are able to work their way into the Delay Vector Tables since

the delay vectors are sent out on a regular basis, and thus are able to

correct the earlier bad entries. There is a lag, however, between

the time when the A tables adapt and when the delay vectors are able

to completely correct the Delay Vector Table entries.

The results for the directed message delay again show the

initial large value due to the lost messages. Following this initial

period, however, the directed message delay compares favorably

with the non-directed message delay. This indicates that the directed

messages are being routed over shortest paths. This is an improve-

ment over the corresponding results with the Reciprocal Path Search

algorithm. The Reciprocal Path Search algorithm did not use delay

vectors and routed messages only over reciprocal paths, resulting

in some messages taking longer than necessary routes. The use of

the delay vectors enables the directed messages to be routed over

non-reciprocal links and thus take the shortest routes to the destina-

tion nodes. Thus, although the use of the delay vectors causes an

early increase in the number of lost messages, they also allow the

155

messages to take improved routes and thus decrease the steady state

delay.

The results for the case with T
DV

2t
ND

are given in Fig-

ures 4. 62, 4. 63, and 4. 64. Again there is the initial period of lost

and looping messages after which the algorithm completely adapts.

However, the period of lost messages decreases to 8t
ND

and fewer

messages are lost than when the delay vectors were sent out every

4tND. This improvement can be attributed to the increased rate of

delay vector transmissions more quickly purging the Delay Vector

Tables of their early bad entries. There are still, however, more

lost and looping messages than without the use of delay vectors.

Following the usual initial large delays due to the penalty

imposed for lost messages, the directed message delay again com-

pares favorably with the non-directed message delay indicating the

directed messages are taking the shortest routes to their destinations.

There is a slight increase in these delays when compared to the

case since the increased rate of delay vector transmis-T
DV

= 4tND

sion adds some extra congestion in the network. This increase in

delay is very slight.

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged -6

Over t -4T
ND

to t

J\
I \

1 .
1

.
/ .iiik

1

0' 1 Jr-4*i 4 1 1 -4 1
0 8 16 24 32 40 48

I, The Time Elapsed Following Network Damage in Multiples of tND

Figure 4. 62. RPSDV algorithm with TDV = 2-t-ND' three links jammed.

oo Delivered Messages
-- Lost Messages

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
tot

.4

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 63. RPSDV algorithm with T
DV

2t
ND' three links jammed.

80
IN

Adjusted Directed /
Message Delay and /

/Non-Directed Message 6 / \
Delay, Averaged Over /

/1- 81ND to t /
\\

/
40

20

Directed Message Delay
o 0 Non-Directed Message Delay

Optimum Delay

Opli/num De/ay Before Damage

Oo I ill 111111
16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 64. RPSDV algorithm with T
DV

= 2tNp, three links jammed.

Six Links Jammed

Again, this case of network damage was tested for values of

T
DV

= 4tND and T
DV

2t
ND.

The results for the T
DV = 4tND case are given in Figures

159

4. 65, 4. 66, and 4.67. These results are a dramatic improvement

over the Reciprocal Path Search algorithm, which does not use delay

vectors. Without the use of delay vectors to locate the non-reciprocal

links, the previous algorithm was unable to adapt to the six links

jammed case and message were lost and looping continuously after

the damage occurred. However, the Reciprocal Path Search Algo-

rithm with Delay Vectors is able to completely adapt to this case of

network damage. It is interesting to note that messages were lost for

a period of 16t and they looped for only a period ofND 8t
ND.

The

messages are lost for a greater period because it takes several

iterations of the delay vector transmissions for information on paths

which contain several non-reciprocal links to completely propagate

throughout the network. In general, if a source node-destination

node pair has three links between them which suddenly become non-

reciprocal at closely spaced instants in time (as is done in our simu-

lations), it takes three iterations of the delay vector transmissions

before complete information on the path is communicated to the

source node. In the mean time, if this path with three non-reciprocal

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over t -4TND to t

1.2

I.0

?---.1k
1

/ \
/
/
/ \

6.-

0 1 --1---------4--1--4-1--4 1 4-4
0 8 16 24 32 40 48

The Time Elapsed Following Network Damage in Multiples of 1ND

o ---o Delivered Messages
Lost Messages

Figure 4. 65. RPSDV algorithm with Tay = 4tND, six links jammed.
rn0

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t-4-IND
to t

.4

0
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of tND

Figure 4.66. RPSDV algorithm with T
DV

= 4t
ND' six links jammed.

too A
I
/ k
/ %

/ -- Directed Message Delay
80 / k 0 o Non-Directed Message Delay

/
Ad justed Directed /

Optimum Delay

Message Delay and I \
Non-Directed Message 60 0

/
/
/ \

WRNS Weft

//Delay, Averaged Over
I 8 i

ND
to t I

NO..0.

i
40 i-

20 Optimum Delay Before Damage

0 I t I 1 i 1 I 1 I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of iND

Figure 4. 67. RPSDV algorithm with T
DV

= 4t
ND' six links jammed.

163

links is the only path between the source and destination nodes, the

source node may conclude that there is no path to the destination

node, and discard any messages to be sent to it. This process is

speeded up if the delay vectors are sent out more frequently.

Following an initial period of large delay due to lost messages,

the directed message delay becomes essentially equal to the non-

directed message delay. This indicates that the Reciprocal Path

Search Algorithm with Delay Vectors is able to route the messages

over the shortest paths.

Figures 4.68, 4. 69, and 4.70 give the results when

T
DV

= Zt
ND. These results show that the algorithm adapts more

quickly than with T
DV

= 4t
ND. The algorithm adapts in about

8t
ND versus the 16t

Ni) with the less frequent delay vector trans-

missions. This is a result of the more frequent transmissions purg-

ing the Delay Vector Tables of bad entries more quickly, and also

speeding up the process of disseminating throughout the network

complete information on all paths.

The adjusted directed message delay again shows the initial

large value due to the lost messages. Once the algorithm has

adapted, however, the directed message delay is essentially the same

as the non-directed message delay, again indicating that the algorithm

is routing the messages over the shortest paths. The increased con-

gestion causes by the more frequent delay vector transmissions

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over I-4T

NO
to t

1.2

1.0

ilk/\
/ `),

/ \
/ \
/ \

00
a

/ 1 I \Y--1 1
16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.68. RPSDV algorithm with T = 2t , six links jammed.
DV ND c7

4=..

-

o o Delivered Messages
Lost Messages

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t- 4 tND
to t

.4

I 1 4 1 4 4 a 1 a i
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 69. RPSDV algorithm with T = 2t six links jammed.
DV ND'

100

80 /
Adjusted Directed

/

Message Delay and
Non-Directed Message 60
Delay, Averaged Over
1- CIND to t

40

20

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

OWN. eMINO
MM..* AIMMINID 411111.1. OM.. IMMO OMNI

Optimum Delay Before Damage

0
o 8

i III
t, The Time Elapsed Following Network Damage in Multiples of 'ND

16 24 32 40 48

Figure 4. 70. RPSDV algorithm with T
DV

= 2t
ND' six links jammed.

167

results in a slight increase in directed and non-directed message

delays when compared to the Tay = 4t
ND

case.

In summary, it is evident that for severe cases of network

damage, the Reciprocal Path Search Algorithm with Delay Vectors is

a large improvement over the Reciprocal Path Search algorithm,

which does not use delay vectors. Since the use of delay vectors is

necessary for the Reciprocal Path Search algorithm to completely

adapt to severe cases of network jamming, they are an essential

addition to the algorithm.

Rapid Reciprocal Path Search Algorithm with Delay Vectors

This algorithm combines the Rapid Reciprocal Path Search

algorithm with the use of delay vectors to create an algorithm which

adapts very quickly to network damage, yet has the capability to use

non-reciprocal links for routing directed messages.

The Rapid Reciprocal Path Search Algorithm with Delay Vectors

(RRPSDV) stores routing information in four tables. The A, B, and

C tables contain information on reciprocal paths while the Delay

Vector Table stores information on non-reciprocal paths. The tech-

niques for creating delay vectors and using them to update the Delay

Vector Tables are exactly the same as in the Reciprocal Path Search

Algorithm with Delay Vectors, and will not be repeated here.

168

Non-Directed Message Handling

The non-directed message handling procedure is described in

Figures 4.71 and 4.72. This procedure is exactly the same as in the

Rapid Reciprocal Path Search algorithm, except that the algorithm

now checks to see if the non-directed message is a delay vector, and

if so, sends it to the Delay Vector Table update routine.

Directed Message Handling

The directed message handling procedure is described in Fig-

ures 4.73 and 4.74. This procedure is very similar to the procedure

used in the Reciprocal Path Search Algorithm with Delay Vectors.

There are, however, some important differences in how the messages

are routed. First, the delay estimates for the reciprocal path are

now drawn from either the A or C table, depending upon the value of

the B table entry. The delay estimate to node j by way of port i

is thus e.., where

e..
13

(4. 17)

Another difference is that the algorithm is written so that for

cases of link destruction messages do not loop. This is the same

effect discussed previously in the Rapid Reciprocal Path Search

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes no

yes no

V

yes

V

no

Update aps and
b PS ' and cause
all other A and C
table entries for
node S to forget.
Flood to neigh-
bors.

If the message is the
first copy with NRPI =
OTupdate cps and bps,
and cause all other C and
A table entries for node S
to forget. Flood to neigh-
bors.

Otherwise, update aps
and cps only.
Throw away .

Update aps and
bps only. Flood
to neighbors.

Figure 4. 71. Conceptual block diagram.

ori

All previous copies had NRPI = 1.

169

170

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Non-Directed Message Handling

Non-directed message arrives from
node S by way of port P.

yes

yes no

Send to delay vector
table update routine.

yes NRPT= no

Update tables

a = kPS PS
(0 MSG `PS

PS

(Flood to neighbors)

Figure 4. 72. Detailed block diagram.

171

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Non-Directed Message Handling (cont.)

(Flood to neighbors)

Figure 4. 72. Continued.

172

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling

)Directed message arrives at
node X directed for node D.

yes no

no yes
(Throw away)

Determine the best delay estimate
(e m0) to node D using the A,B,
and C tables.

yes

yes

Use A,B, and C tables to route to inter-
mediate node, as long as this does not
result in ping-ponging. If ping-ponging
would result, send out of port M.

If at intermediate node, send to creation
node.

Send out of
port M.

Figure 4. 73. Conceptual block diagram.

173

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling

(Directed message arrives at
node X directed for node D.

(Send out of port M.

Figure 4. 74. Detailed block diagram.

174

Rapid Reciprocal Path Search Algorithm with Delay Vectors
Directed Message Handling (cont.)

Send to neighboring node
specified by d30.

(Throw away)

y
(Send out of port N)

(Send out of port M)

Figure 4. 74. Continued.

175

algorithm. The looping which occurs is primarily due to messages

sent to a node which was previously, but is no longer, connected to

the destination. For the case of link jamming, the b..'s select

delay estimates which tell the disconnected node to send the message

back to the nodes to which it is still connected, resulting in ping-

ponging, and occasionally allowing the message to proceed on to its

destination. Howeve r, the b..' s are updated only when jammingij

occurs. Thus, for the case of link destruction, the b..'s selectii

delay estimates which direct the disconnected node to transmit the

message over the destroyed link, resulting in the message not being

sent out at all and preventing ping-ponging (a form of looping). Even

though the messages do not loop, they are still lost, resulting in very

little change in performance.

The above modifications to the routing algorithm used previously

by the Reciprocal Path Search Algorithm with Delay Vectors are

rather minor, and are reflective of the use of the A, B, and C tables

for routing over reciprocal links instead of just using the A table.

The next two modifications, however, are major alterations. Pre-

liminary simulation runs indicated that unless some restrictions are

placed upon the use of the Delay Vector Table entries for routing pur-

poses, an excessive amount of looping occurs, eliminating the quick

adaptability which is a prime goal of this algorithm. The looping

problem necessitated that the nodes be allowed to use the Delay

176

Vector Table entries for routing purposes only when using them

provides a clear benefit. Therefore, nodes are prevented from using

the Delay Vector Table entries, even though they indicate a shorter

path exists over a non-reciprocal link, when using them results in

sending the message out of the same port in which it arrived. In this

case, the node falls back on the use of the A, B, and C tables. This

restriction makes clear sense, since allowing a message to be trans-

mitted out of the port in which it came will result in ping-ponging, and

the loss of the message. The preliminary simulation runs also indi-

cated that a second modification of preventing a source node for a

directed message from using its Delay Vector Table for routing

directed messages further reduced ping-ponging.

There appear to be some basic factors in the Rapid Reciprocal

Path Search algorithm which make it difficult to combine with the use

of delay vectors. The delay vectors draw many of their delay esti-

mates from the A and C tables. Following network damage, estimates

derived from the A and C tables are, for any one node, excellent indi-

cators of which port should be taken to reach the destination node.

However, whereas the delay estimates for each output port may show

the correct rankings of these ports, their absolute magnitudes may

vary significantly from node to node. Therefore, from node to node,

.e isthe relative magnitudes of the may not compare well.
IJ

177

However, the delay vectors draw their delay estimates from the e..'s

at node X and store them in node Y's Delay Vector Table, where

they are compared with Y's e..'s. This leads to incorrect routing

decisions, and thus appears to be the underlying reason why the

restrictions had to be placed on the use of the Delay Vector Tables.

Besides the ping-pong and source node restrictions, it was found that

reducing the size of the limiting constant, k3, to three also

improved the algorithm's performance apparently by reducing the dis-

crepancy in the relative e.. magnitudes from node to node.

Three Links Destroyed

The results for this case of network damage are given in Fig-

ures 4.75 and 4.76. The results are essentially the same as for the

Rapid Reciprocal Path Search algorithm. This algorithm differs

significantly from the Rapid Reciprocal Path Search algorithm only

when jamming occurs. For the three links destroyed case, delay

vectors are not even sent out since the network contains no non-

reciprocal links.

The results show the usual period when messages are tempo-

rarily lost, after which the algorithm completely adapts. The

adjusted directed message delay again has an initial period during

which it is large because of the lost messages. Once the algorithm

has adapted, the directed message delay is essentially the same as

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged -6
Over t-4T

ND
to t

1.2

I.0

Iti\-/ \
/ %)
/ \
/ \
/ \

0 1 4--4-4 1---4---1--4----4
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4.75. RRPSDV algorithm, three links destroyed.

o 0 Delivered Messages
Lost Messages

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t -8-t-

ND
tO t

40

20

--0 Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

1101 11=11 ONO.

Optimum Delay Before Damage

.

0
o

11111[1 t

8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 76. RRPSDV algorithm, three links destroyed.

180

the non-directed message delay, indicating that the directed messages

are being routed over shortest paths.

Three Links Jammed

This algorithm was tested only for the case T
DV

= 4t
ND.

The

results for the three links jammed case are given in Figures 4.77,

4.78, and 4. 79. Immediately following network damage, the algo-

rithm initially appears to adapt very quickly. However, it had some

difficulty completely adapting, which is evidenced by the additional

messages being lost at t = 32t
ND

and 44t
ND.

Even with this

trouble in completely adapting, the algorithm performed much better

for this case of damage than did the Reciprocal Path Search Algorithm.

with Delay Vectors, although it did lose a few more messages than

did the Rapid Reciprocal Path Search algorithm.

The adjusted directed message delay shows a gradual rise from

its pre-damage value. Again, there is no large initial jump since so

few messages were lost. The adjusted directed message delay then

settles out to a value which is generally larger than the non-directed

message delay, indicating that the Delay Vector Table restrictions are

preventing some of the directed messages from taking shortest routes

to their destinations. Although messages are still being lost after the

initial adjustment period, so few are lost that the effect on the

1.2

I.0

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over t-4T

ND
to t

)1N/ N.

0
/ N. jo_-÷--.. 1..---"t"- ---4

0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of iND

o o Delivered Messages
Lost Messages

Figure 4. 77. RRPSDV algorithm, three links jammed.

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t-4IND
to t

.2

0
o 8 16 24 32 40 48

1, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 78. RRPSDV algorithm, three links jammed.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t -8T

ND
to t

40

20

1

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

.
00'

0

Optimum Delay Before Damage

0 111111i t

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 79. RRPSDV algorithm, three links jammed.

184

adjusted directed message delay of the penalty imposed for lost

messages is not noticeable.

Appendix A contains plots of the simulation results when the

restrictions on the use of the Delay Vector Tables are removed.

Figures A. 1, A. 2, and A. 3 show the results when the source node

restriction is removed. Figures A. 4, A. 5, and A. 6 show the per-

formance when the ping-pong and source node restrictions are both

removed. Figures A. 7, A. 8, and A. 9 show the results when the

source node and ping -pong restrictions are removed, and the limiting

constant, k3, is increased from three to ten. It is evident that a

progressive degredation in performance results as the restrictions

are removed and k
3

is increased. It is important that this algo-

rithm lose as few messages as possible since this is the only advan-

tage which it has over the Reciprocal Path Search Algorithm with

Delay Vectors. Without quick adaptability, this algorithm offers no

improvement while being much more complex.

Six Links Jammed

This algorithm was again tested only for T = 4T . The
DV ND

results for the six links jammed case are given in Figures 4.80,

4.81, and 4.82. These results again show an initial period when

messages are lost and looping. A few messages are lost even after

the looping has ceased, and even while messages are looping many

more are being lost. This is a direct result of the algorithm prevent-

ing directed messages from being flooded out. Since this algorithm

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed o o Delivered Messages
Message Sent, Averaged .6 Lost Messages
Over 1-4-IND to t

lo,

oii I 1 lt- `-.4 1 -4 4 4 4 4 4
o 8 16 24 32 40 48

Damage in Multiples of 'NDI, The Time Elapsed Following Network

Figure 4. 80. RRPSDV algorithm, six links jammed.

.4

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.2

o i 4 1 o 1 * 1 4 1 4 1
0 8 16 24 32 40 48

t The Time Elapsed Following Network Damage in Multiples of IND

Figure 4. 81. RRPSDV algorithm, six links jammed.
Crs

Adjusted Directed
Message Delay and
Non-Directed Message
Delay, Averaged Over
-81NotO t

120

_
A
I

100 I
I
/
/
/

-- Directed Message Delay
80 I 0 0 Non-Directed Message Delay

/ Optimum Delay
/
/ I, A

6 \ /I
/

..
/ 00000 411alw

i
i

40 r
I

20 Optimum Delay Before Oomoge

0 11111
O 8 16 24 32 40 48

I, The Time Elapsed Following Network Damage in Multiples of iND

Figure 4. 82. RRPSDV algorithm, six links jammed.

188

has the capability to route messages over both reciprocal and non-

reciprocal paths, the node assumes that if information on a path

is not available then no path exists. As was explained in detail pre-

viously, this is a valid conclusion in steady state and provides the

nodes with the capability to detect when they have become discon-

nected from other network nodes. This prevents directed messages

which have no hope of reaching their destination from being trans-

mitted and thus needlessly congesting the network. It is conceivable

that, in some situations, this capability can prevent the network from

being saturated with directed messages which should never have been

transmitted, and thus allow the network to continue functioning when

it otherwise would not. This feature also slows down the algorithm's

adaptation since it takes time for complete information on the non-

reciprocal paths to reach all nodes.

The adjusted directed message delay shows an initial period

when delay is much larger than the non-directed message delay due

to the lost messages. After the algorithm adjusts, the directed mes-

sage delay is essentially equal to the non-directed delay indicating

that directed messages are being routed over shortest paths. How-

ever, a comparison to message delays for the Rapid Reciprocal Path

Search algorithm, which does not use delay vectors, shows that the

use of the delay vectors actually increased the message delays.

Evidently, congestion caused by flooding out the delay vectors

189

produced much more network congestion than was caused by the Rapid

Reciprocal Path Search algorithm flooding out the directed messages

themselves.

These results indicate that for the case of six links jammed,

the use of delay vectors with the Rapid Reciprocal Path Search algo-

rithm actually degrades the algorithm's performance. This does not

mean, however, that the Rapid Reciprocal Path Search Algorithm with

Delay Vectors would not produce improved performance for other

cases of network damage. Its ability to determine when no path,

reciprocal or non-reciprocal, exists to a node may prove to be very

important when damage such that many node pairs are disconnected

from each other occurs. Also, the Rapid Reciprocal Path Search

Algorithm with Delay Vectors does have the ability to adapt quickly to

some cases of network damage, such as the three links jammed case.

Thus, it is a viable algorithm which adapts to all forms of network

damage. Further research on refining the efficiency of the algorithm

could reduce the extra traffic required enough to make its efficiency

more comparable to that of the simpler Rapid Reciprocal Path Search

algorithm.

Overhead Considerations

The only routing algorithm presented in this chapter which

involves the use of essentially no overhead not otherwise necessary

190

for transmission of data is the Simple Backwards Learning algorithm.

This algorithm uses information contained in the non-directed mes-

sages to construct routing tables for directed message routing. These

non-directed messages were generated and routed independently of

the need for them to provide information for routing tables.

The Reciprocal Path Search algorithm forced extra non-directed

messages to be generated in order to search out reciprocal paths

when non-reciprocal forms of network damage occur. These extra

non-directed message transmissions constitute overhead.

The Rapid Reciprocal Path Search algorithm not only forced

extra non-directed messages to be generated in order to search out

reciprocal paths, but it also flooded out directed messages when no

reciprocal paths were found. Both the extra directed message trans-

missions caused by flooding and the extra non-directed message

transmissions constitute overhead.

Delay vectors were used in conjunction with the Reciprocal Path

Search algorithm and the Rapid Reciprocal Path Search algorithm in

order to search out and use non-reciprocal paths for directed mes-

sage routing. These delay vectors are special non-directed mes-

sages, and constitute more overhead.

The desired effect of the overhead is to increase the number of

message deliveries and decrease message delay. These performance

measures are of real importance. The overhead is important only in

191

how it influences these performance measures. Thus, the algorithms

presented in this chapter should be evaluated primarily in terms of

their ultimate ability to deliver messages and to deliver them with a

minimum of delay.

The above reservations notwithstanding, the total number of

directed and non-directed message transmissions observed during

equivalent simultation runs for each of the algorithms are listed in

Tables 4. 9 and 4. 10. In general, an increase in message transmis-

sions over those needed with the Simple Backwards Learning algo-

rithm constitutes overhead. The Rapid Reciprocal Path Search algo-

rithm also produces overhead by flooding directed messages,

resulting in an increase in the directed message transmissions.

Summary

This chapter has presented and analyzed a new class of directed

message routing algorithms for computer communication networks.

These algorithms utilize new techniques for searching out and using

both reciprocal and non-reciprocal paths for routing directed mes-

sages. The particular routing algorithms studied were the Simple

Backwards Learning algorithm, the Reciprocal Path Search algorithm,

the Rapid Reciprocal Path Search algorithm, the Reciprocal Path

Search Algorithm with Delay Vectors, and the Rapid Reciprocal Path

Search Algorithm with Delay Vectors.

Table 4. 9. Total message transmissions for three links jammed case.

Total Non-Directed Total Directed Total
Algorithm Message Transmissions Message Transmissions Transmissions

SBL 11,546 2,710 14,256

RPS 13, 237 2, 958 16, 195

RRPS 13, 228 3, 006 16, 234

RPSDV
T

DV
= 4t

ND
13, 839 2, 619 16, 458

T
DV

= 2t
ND

14, 379 2, 612 16, 991

RRPSDV 13, 707 2, 601 16, 308

SBL = Simple Backwards Learning algorithm.
.RPS = Reciprocal Path Search algorithm.
RRPS = Rapid Reciprocal Path Search algorithm.
RPSDV = Reciprocal Path Search Algorithm with Delay Vectors.
RRPSDV = Rapid Reciprocal Path Search Algorithm with Delay Vectors.

Table 4. 10. Total message transmissions for the six links jammed case.

Total Non-Directed Total Directed Total
Algorithm Message Transmissions Message Transmissions Transmissions

SBL 11, 633 2, 340 13, 973

RPS 11, 614 2, 503 14, 117

RRPS 11, 593 3, 919 15, 512

RPSDV
T

DV
= 4t

ND
12, 942 2, 989 15, 931

T = 2t 14, 097 3, 063 17, 160
DV ND

RRPSDV 13, 701 2, 670 16, 371

194

The Simple Backwards Learning algorithm was first tested to

determine its steady state characteristics in an undamaged 13 node

network, which were used to develop a performance model. (Since

the other routing algorithms differ from Simple Backwards Learning

only in how they adapt to network damage, their steady state per-

formance characteristics in the undamaged 13 node network are

identical to the performance characteristic of the Simple Backwards

Learning algorithm. Thus, only a single performance model is

needed to describe the steady state performance of all the routing

algorithms in the undamaged 13 node GPSS model of the radar net-

work.) The Simple Backwards Learning algorithm was then tested to

determine its adaptability to various cases of network damage. It was

determined from these tests that the Simple Backwards Learning

algorithm adapts well to reciprocal forms of damage such as total

communication link destruction, but it adapts very poorly to non-

reciprocal forms of damage such as link jamming.

The Reciprocal Path Search algorithm was designed to adapt to

non-reciprocal as well as reciprocal forms of damage. This algo-

rithm searches out reciprocal paths which can be used to route

directed messages around the non-reciprocal (jammed) links. The

major disadvantage of this algorithm is that it requires the existence

of reciprocal paths between nodes, and whenever such paths do not

exist, the algorithm fails to adapt.

195

The Rapid Reciprocal Path Search algorithm is designed to

adapt more quickly and more completely than does the Reciprocal Path

Search algorithm. This algorithm also searches out reciprocal paths

which can be used to route directed messages around the non-

reciprocal links, and it accomplishes this much more quickly than

does the Reciprocal Path Search algorithm. In addition, this algo-

rithm is able to quickly detect the absence of a reciprocal path

between nodes and is thus able to deliver directed messages in this

situation by flooding them.

The Reciprocal Path Search Algorithm with Delay Vectors is

designed to search out and use both reciprocal and non-reciprocal

paths which can be used for directed message routing. Whenever any

path exists between two nodes, reciprocal or non-reciprocal, this

algorithm is able to locate and use such a path for directed message

routing, and is thus able to avoid the directed message flooding which

the Rapid Reciprocal Path Search algorithm uses. Also, this algo-

rithm is able to detect when no path exists to a destination node, and

thus is able to avoid congesting the network with directed messages

which have no hope of being delivered.

The Rapid Reciprocal Path Search Algorithm with Delay Vectors

also has the capability to locate and use both reciprocal and non-

reciprocal paths for directed message routing, and to detect the

absence of any path between nodes. However, it accomplishes these

196

tasks generally more quickly than does the Reciprocal Path Search

Algorithm with Delay Vectors.

The results of the adaptability tests show that for the cases of

network damage considered in this chapter, the Rapid Reciprocal

Path Search algorithm clearly performed the best. However, these

cases of network damage are necessarily limited in scope, and were

chosen only to provide a wide range of conditions under which to test

the algorithms. The routing algorithms presented each possess dif-

fering capabilities, and any conclusions regarding which algorithm

is best for a particular application depends primarily upon what the

performance requirements are for that application. Further refine-

ment of the algorithms presented could also alter some of the com-

parisons presented.

197

V. ANALYSIS OF COMBINED ROUTING AND
ACKNOWLEDGEMENT PROTOCOLS

Retransmission of messages lost because of incorrect routing

or because of errors induced by noisy communication channels is a

basic ingredient of computer communication networks (24). The

retransmission of a message by the sender may result from the

reception of a negative acknowledgement (NAK), or because a positive

acknowledgement (ACK) has not been received within a time out per-

iod. Positive acknowledgement with retransmission, using a time out

at the sender, is a very common acknowledgement scheme (24). The

primary benefit of using negative acknowledgements is to reduce

redundant retransmissions. However, even when negative acknowl-

edgements are used, positive acknowledgement retransmission, with

an appropriately large time out at the sender, will still be required

to ensure reliability in the event the negative acknowledgements or

retransmissions are lost (25).

The acknowledgements may be sent on a link-by-link or on an

end-to-end basis, or both. The end-to-end technique involves the

transmission of acknowledgements from a message's destination node

to its source node. The link-by-link technique involves the transmis -

sion of acknowledgements between the nodes at opposite ends of each

communication link.

198

Only end-to-end acknowledgements will ensure that the lack of

reception of a message at its destination due to incorrect routing will

be recognized at the source node. Thus, end-to-end acknowledge-

ments are required in any alternate routed packet switched computer

communication network which guarantees delivery (this is not true for

networks which use fixed routing). Link-by-link acknowledgements

are not needed to guarantee directed message delivery, therefore

their use needs to be justified on the basis of any performance

improvements which they provide (26).

For acknowledgement protocols which use only positive acknowl-

edgements with a time out at the sender, the length of the time out

period has a profound effect on both message delay and message

throughput (27). A small time out period minimizes average message

delay since lost packets are retransmitted prompty. A large retrans-

mission time out period tends to increase message throughput since

no communication channel capacity is wasted on unnecessary retrans-

missions. Sunshine (27) has shown that for various distributions of

message delay, an optimum value of time out period can be deter-

mined. This optimum value corresponds to a knee on a plot of

throughput versus delay for varying time out periods. Larger time

out periods than this optimal value will rapidly increase delay with

little improvement in throughput. Smaller time out periods will

rapidly decrease throughput, with little improvement in delay.

199

The primary acknowledgement scheme tested in this chapter is

the use of positive end-to-end acknowledgements with retransmission

if no acknowledgement is received within a specific time out period.

Only the directed messages are assumed to need retransmission. The

non-directed track reports are updated at frequent intervals, and the

occasional loss of a track report is not critical. (The need for

retransmission of some types of non-directed messages could possibly

be required. However, retransmission does not appear to be neces-

sary for track reports, so the problem of acknowledging and retrans-

mitting non-directed messages will not be treated in this thesis.)

Also, the flooding algorithm used to route non-directed messages is

very reliable and non-directed messages are never lost because of

routing failure (although some non-directed message copies may

occasionally be lost as a result of transmission errors). Virtually

all of the directed message routing algorithms, however, allowed

some lost messages, and thus retransmission of the directed mes-

sages is the only way to ensure delivery, even in an error free trans-

mission environment.

Link-by-link acknowledgements will not be used here since the

one directional jamming of the communication links may block the

reception of the acknowledgements. The end-to-end acknowledgements

which will be used can take paths which avoid jamming.

200

Developing otpimum error control techniques is not the purpose

of the performance tests of the combined routing and acknowledge-

ment algorithms, but rather the tests are designed to show that the

combined use of acknowledgements and the new routing algorithms

produce a complete protocol which will reliably deliver all messages

to their destinations.

Two of the new routing algorithms have been selected to be

tested with the acknowledgements. These are the Rapid Reciprocal

Path Search algorithm, and the Reciprocal Path Search Algorithm with

Delay Vectors. Both of these routing algorithms completely adapted

to all cases of network damage. The six links jammed case will be

used to test the combined algorithms since this case of network

damage will provide the most extreme tests of the protocols.

Reciprocal Path Search Algorithm with Delay
Vectors and Acknowledgements

End-to-end acknowledgements with retransmission of directed

messages after a time out period of TPA was added to the Recipro-

cal Path Search Algorithm with Delay Vectors. The acknowledgements

are assumed to fit into a packet of length IA which is one-tenth of

.Q the packet length for regular non-directed and directed mes-

sages. The acknowledgements are given priority over all other mes-

sage types so that they can quickly reach the directed message source

201

nodes, and thus prevent excessive congestion caused by unnecessary

retransmissions.

The model of the radar network is the same as was used pre-

viously in the tests of the routing algorithms. The channel capacities,

message lengths, and various routing algorithm parameters used in

the simulation tests are given in Table 5.1.

Table 5.1. Values of parameters used in the transient
simulation tests of the combined routing
and acknowledgement protocols.

Parameter V clue

k1 0.25
k

2 0.25
k

3
10.0

tD 300.0

t
ND 300.0

C/ 10.0

/A /C 1.0

Transient Simulation Tests

Transient simulation tests were conducted on the combined

acknowledgement and routing protocol to determine its adaptability to

the case of six links jammed. The statistics used to evaluate the

protocol's performance are as follows:

4TND

202

1. The number of directed messages delivered per directed

message original sent.

2. The number of directed message copies (i.e. , retransmis-

sions) sent per directed message original sent.

3. The number of directed messages looping per directed mes-

sage original sent.

4. The directed message and non-directed message delays.

Statistics 1, 2, and 3 are averaged over a window of width

and statistic 4 is averaged over a window of width 8t
ND.

Thus any point on the curves of these statistics provides an indication

of the near term performance of the protocol.

The message delivery and looping message statistics are the

same as were used previously on the tests of the routing algorithms

alone. However, the statistic on directed message copies is unique

to the tests of the combined routing and acknowledgement protocol.

The statistic on the number of copies sent out is intended to replace

the statistic on lost messages used in Chapter IV. When acknowledge-

ments are included in the model, messages are not really lost in a

strict sense since copies of all messages are stored at their source

nodes. Assuming that sufficient time is allowed for acknowledgements

to be returned to the source node, retransmissions of directed mes-

sages in excess of the number required as a result of transmission

203

errors are an indication of the routing algorithm's inability to deliver

messages.

The statistic on directed and non-directed message delay is

essentially the same as in Chapter IV, except for one change. Pre-

viously, a penalty was included for each lost message. This penalty

is no longer needed since undelivered messages are always retrans-

mitted after the time out period, and after one or several retrans-

missions, the message will eventually reach its destination and be

included in the average.

Figures 5. 1, 5. 2, 5. 3, 5. 4, and 5. 5 give the simulation

results for the six links jammed case with TPA = 500. These runs

are for a case with 100 percent effective jamming and no transmis-

sion errors otherwise, just as in Chapter IV.

These results show a period immediately following the network

damage when message delivery is low and messages loop. This per-

iod lasts for about l2tND. Once the routing algorithm has adapted

to the damage, there is a period of very large message delivery rate.

This large delivery rate is a result of large numbers of retransmitted

messages finally reaching their destinations. This is a "catch up"

period during which the protocol is reducing the backlog of undelivered

messages which accumulated during the preceding period of looping

and poor message delivery. Once the catch up period is completed,

the delivery rate levels out, and message retransmissions cease,

2.0

1.6

The Number of Directed
Messages Delivered
Per Directed Message 1-2

Original Sent, Averaged
Over t -4TNDtOt

.4

0 1 I 1 1 1 I I I i 1 1 I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of TND

Figure 5.1. RPSDV algorithm with ACK' s, TPA = 500.

4.0

3.6

3.2

The Number of Di 2.8
rected Message Copies
Sent Per Directed 2.4
Message Original Sent,
Averaged Over t-4TND2.0
to t

1.6

1.2

.8

.4

0 I I 1 1 1 1 a 1
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5.2. RPSDV algorithm with ACK's, TPA = 500.

The Number of Directed
Messages Looping Per
Directed Message
Original Sent, Averaged
Over t-4I

ND
to t

I 4 1, 1 4 1 4 1
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 3. RPSDV algorithm with ACK' s, TPA = 500.

Directed
Message Delay,
Averaged Over
IBIND to t

1000-

-

800-

600

400

200

I I

0 8 16 24 32 40
I I

48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 4. RPSDV algorithm with ACK' s, TpA = 500.

Non-Directed
Message Delay,
Averaged Over

t 81ND to t

400

300

200

100

oo 1 1

16
1 i

24

Optimum Delay
1 1 1

32 40 48

t, The Time Elapsed Following Network Damage in Multiples of TN

Figure 5. 5. RPSDV algorithm with ACK's, TPA = 500.

209

indicating that all the original message transmissions are reaching

their destinations.

The directed message delay shows an initial low value while the

routing algorithm is still adapting. Once the directed message copies

(retransmissions) start arriving, however, the directed message

delay takes a large jump which is reflective of the time out period

during which these copies had to wait before they were transmitted.

The non-directed message delay also shows an increase during this

catch up period. The increase in non-directed message delay is

reflective of the network congestion resulting from the large number

of directed message copies which were transmitted and still on their

way to their destinations. Once the copies are completely delivered,

the congestion eases, and both the directed and non-directed message

delays decrease.

Preliminary simulation tests indicated that without giving the

acknowledgements priority, the large amount of congestion which

exists during the catch up period can seriously delay their delivery.

This impairment in acknowledgement delivery can result in unneces-

sary directed message retransmissions, further congesting the net-

work, and possibly leading to an unstable condition and saturation of

the network with directed message copies.

For the next tests, the GPSS simulation model of the network

was improved by adding noise to the communication links and by more

210

accurately modeling the jammed links. Noise was added to the

communication links by decreasing the probability of a successful

transmission over a good communication link from 100 percent to 95

percent. Improvement in modeling the jammed links was accom-

plished by allowing 50 percent of the messages transmitted across

them to be successfully received. It is expected that even when a

link is being jammed, a significant fraction of the messages will be

successfully transmitted across it, with the 50 percent fraction used

here chosen to severely test the algorithm.

The combined routing and acknowledgement protocols were next

tested in the improved model for the case of six links jammed, again

with TPA = 500. Figures 5.6, 5.7, 5.8, 5.9, and 5. 10 give the

results for this test.

These results show some similarity to the previous tests on the

original model which used 100 percent effective jamming and no

transmission errors otherwise. There is an initial period of looping

messages and resultant low delivery, followed by a catch up period.

The statistics on the directed message retransmissions show a build

up of retransmissions during the period of low message delivery, and

then a tapering off as the backlog of undelivered messages is reduced.

It appears that more time is required to substantially reduce the back-

log than in the tests on the original model of the radar network due to

2.0

1.6

The Number of Directed
Messages Delivered
Per Directed Message 1.2

Original Sent, Averaged
Over I-41ND to t

.4

0 1 I t I 1 I i 1 1 1 i I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 6. RPSDV algorithm with ACK's, TpA = 500, improved model.

4.0

3.6

3.2

The Number of Di 2.8
rected Message Copies
Sent Per Directed 2.4
Message Original Sent,
Averaged Over t-4TND2.0
to t

1.6

1.2

.8

0 !III II
O 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 7. RPSDV algorithm with ACK' s, TPA = 500, improved model.

The Number of Directed
Messages Looping Per
Directed Message
Original Sent, Averaged
Over t 4 t NDt0 t

0
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of tN

Figure 5.8. RPSDV algorithm with ACK' s, TpA = 500, improved model.

Directed

Message Delay,
Averaged Over

t BIND to t

1000

800

600

400

200

0 1 1 I 1 I i I 1 I0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of tND

Figure 5.9. RPSDV algorithm with ACK's, TPA = 500, improved model. NJ

A

100

80
Non-Directed
Message Delay,
Averoged Over
t-8TND to t 60

Optimum
Delay

40

20

0 I i I I I I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of

'ND
Figure 5.10. RPSDV algorithm with ACK's, TPA = 500, improved model.

216

the additional loss of directed messages caused by the communication

channel noise.

The directed message retransmissions never cease even after

the initial large backlog of undelivered messages is substantially

reduced. This is a result of two factors. First, directed messages

are continuously being lost due to the communication channel noise.

Second, the channel noise also prevents some of the nodes from

receiving a few of the delay vectors, thus preventing some of the

Delay Vector Table entries from being updated before they become

dead. Since the six links jammed case, which is being modeled here,

has several node pairs which have only non-reciprocal paths between

them, the dead Delay Vector Table entries result in some nodes con-

cluding that no path exists to some destinations, and thus discarding

messages directed to these nodes. These Delay Vector Table entries

do not remain dead, however. Delay vectors are transmitted on a

regular basis, and with each round of delay vector transmissions,

most of the dead Delay Vector Table entries are updated, allowing

many messages to be retransmitted and delivered to their destinations.

However, with each round of delay vector transmissions some delay

vectors are lost, causing some previously alive entries to become

dead in addition to the opposite effect of previously dead entries

becoming alive. The result of the Delay Vector Table entries ran-

domly becoming dead and alive is that throughout the simulation run

217

messages are discarded and then later retransmitted. The simulation

runs do indicate that the algorithm does reliably ensure that all

directed messages eventually reach their destination.

With the rather small network modeled by the GPSS program,

the loss of delay vectors due to noisy communication links can be

expected on a regular basis. This might not be a problem in a larger

network which has many more paths, since the loss of a few copies

over noisy communication channels may be compensated for by the

many copies which will be produced over multiple paths.

The two factors mentioned above, the directed messages being

lost due to both noise and dead Delay Vector Table entries, cause

large flucutations in the number of directed messages delivered and

retransmitted throughout the run. This is especially evident late in

the run when a large number of Delay Vector Table entries suddenly

became dead and the delivered message rate took a large dip. The

following round of delay vector transmissions was able to correct this

situation and again reduce the backlog of undelivered directed mes-

sages through a large number of retransmissions.

Turning to the directed message delay, the results show that

this statistic again has an initially low value during the period of

looping messages and resultant low delivery. Once the routing algo-

rithm adapts, and large numbers of directed message copies (retrans-

missions) start arriving at their destinations, the directed message

218

delay again takes a large jump which reflects the time out period

which the copies had to wait before their transmissions. The non-

directed message delay also increases during this catch-up period

due to the congestion caused by the large influx of directed message

retransmissions. However, it did not increase as much as it did in

the original model. Evidently, the continuous loss of directed mes-

sages caused by the noisy communication channels and dead Delay

Vector Table entries helped keep down the network congestion and

thus improved the non-directed message delay. It is also interesting

to note that following the initial catch-up period, the non-directed

message delay decreases and then fluctuates about the optimum delay

line. The optimum delay line represents a steady state value, and

the non-directed message delay obtained from the simulation results

is transient in nature. Therefore, for uncongested networks, the non-

directed message delay can be expected to fluctuate above and below

this steady state optimum.

The directed message delay started to increase again near the

end of the simulation run as a result of a large number of retrans-

missions which were eliminating the backlog of undelivered messages

caused by the unusually large loss of the delay vectors.

One final simulation run was conducted on the improved model

with the Reciprocal Path Search Algorithm with Delay Vectors and

acknowledgements. For this test, the time out period TpA, was

219

increased from 500 to 1000. The results for this case are given in

Figures 5. 11, 5. 12, 5. 13, 5. 14, and 5. 15.

These results indicate that, as should be expected, the increase

in time out period resulted in an increase in directed message delay

while reducing network congestion.

The results again show a period of message looping and

resultant poor delivery rate. The statistics on directed message

retransmissions show a build up while directed messages are being

lost, and then a tapering off as the backlog of undelivered messages

is reduced. Again, there are fluctuations in the statistics on mes-

sages delivered and retransmitted which are caused by the fluctuations

in lost messages as a result of the communication channel noise and

the dead Delay Vector Table entries.

The effect of the increased time out period is especially evident

in the statistics on message delays. The directed message delay was

initially low during the period of looping messages and poor delivery.

During the catch up period, the directed message delay again took a

jump as a result of the time out period which the directed message

copies had to wait before being transmitted. This jump in delay was

much larger than was previously observed, due to the increased

TPA. After the original backlog of undelivered messages was

reduced, the average directed message delay decreased, but it was

2.0

1.6

The Number of Directed
Messages Delivered
Per Directed Message 1.2

Original Sent, Averaged
Over I-4T

NDtO
t

.4

0 1 I 1 I i I 1 I 1 I 1 I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 11. RPSDV algorithm with ACK's, TPA = 1000, improved model. NJ
C>

4.0

3.6

3.2

The Number of Di 2.8
rected Message Copies
Sent Per Directed 2.4
Message Original Sent,
Averaged Over t-4TND2.0
to t

1.6

1.2

.8

.4

o 1
I I I I 1 I 1 I i I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 12. RPSDV algorithm with ACK's, TPA = 1000, improved model.

The Number of Directed
Messages Looping Per
Directed Message
Original Sent, Averaged
Over t-4tND to t

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 13. RPSDV algorithm with ACK's, TPA = 1000, improved model.

Directed
Message Delay,
Averaged Over
t BIND to t

Figure

1000

800

600

400

200

0 I I 1 I 1 1 t I 1 I 1 I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

5. 14. RPSDV algorithm with ACK's, TPA = 1000, improved model.

Non-Directed
Message Delay,
Averaged Over
t-f3i

ND
to t

100

80

60

40

20

Optimum
Delay

0 t 1 t 1 t I I I

0 8 16 24 32 40 48
1, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5.15. RPSDV algorithm with ACK' s, TPA = 1000, improved model.

225

still much greater than that in the previous run with the smaller time

out period.

The non-directed message delay was generally lower than in

the run with TPA = 500. The increased time out period resulted in

a decrease in network congestion and corresponding decrease in non-

directed message delay.

Rapid Reciprocal Path Search Algorithm
with Acknowledgements

End-to-end acknowledgements with retransmission of directed

messages after a time out period of TPA were also added to the

Rapid Reciprocal Path Search algorithm. The acknowledgements

were again assumed to fit into a packet of length of /A which is one

tenth of im. The acknowledgements were again given priority over

all other message types. The various simulation and protocol param-

eters remain the same as given in Table 5.1.

Transient Simulation Tests

The protocol was tested using the GPSS model of the radar

network which was improved by adding noise to the communication

links and by more accurately modeling the jammed links. Noise was

added to the communication links by decreasing the probability of a

successful transmission over a good communication link from 100

226

percent to 95 percent, and jammed links are modeled by allowing 50

percent of the messages transmitted across them to be successfully

received. The results of the tests on the Rapid Reciprocal Path

Search algorithm with acknowledgements are given in Figures 5. 16,

5.17, 5.18, 5.19, and 5.20.

These results show a dramatic improvement in performance

when compared to the test results for the Reciprocal Path Search

Algorithm with Delay Vectors and acknowledgements. The Rapid

Reciprocal Path Search routing algorithm adapts to the network

damage so quickly that the acknowledgement portion of the protocol

is hardly tested at all. This is why emphasis was placed on the

results of testing the acknowledgements with the Reciprocal Path

Search Algorithm with Delay Vectors discussed above.

The statistic on message delivery showed no significant drop

following the network damage. Similarly, the statistics on directed

message retransmissions showed no large peak while the few mes-

sages which were originally lost while the routing tables were adapt-

ing, were retransmitted. In fact, the directed message retransmis-

sions remained extremely low during the entire simulation run.

Once the routing tables had adapted, very few messages were lost.

The Rapid Reciprocal Path Search algorithm does not use delay vec-

tors, so it does not have the problems with dead routing table entries

which the previous algorithm had.

2.0

1.6

The Number of Directed
Messages Delivered
Per Directed Message 1.2

Original Sent, Averaged
Over t-4INOtot

.8

0 I I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of TND

Figure 5.16. RRPS algorithm with ACK's, TPA = 500, improved model.

.6

.5

The Number of Di .4

rected Message Copies
Sent Per Directed
Message Original Sent,
Averaged Over 1-4t140
to t

.2

0
o

1
1 1 1 1 I t I 1 I I I

8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of TND

Figure 5.17. RRPS algorithm with ACK' s, TPA = 500, improved model.

The Number of Directed
Messoges Looping Per
Directed Message
Original Sent, Averaged
Over law to I

00
8
1 I 1

16
I I i 1

24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure 5. 18. RRPS algorithm with ACK's, TPA = 500, improved model.

Directed
Message Delay ,

Averaged Over

t 8TND t°

160

120

80

40

oo I t I

8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of iND

Figure 5. 19. RRPS algorithm with ACK's, TPA = 500, improved model.

Non-Directed
Message Delay,
Averaged Over

"IND to

100

80

60

40

20

Optimum
Delay

0 lilt I t

0 8 16 24 32

t, The Time Elapsed Following Network Damage in Multiples of iND

Figure 5.20. RRPS algorithm with ACK's, TPA = 500, improved model.

1

40 18

232

The statistic on looping messages shows a large increase

following the network damage. However, this is characteristic of

the Rapid Reciprocal Path Search routing algorithm, and is a result

of the flooding of directed messages. The reasons for the directed

message flooding are explained in the previous chapter on routing

algorithms.

The directed message delay results are somewhat surprising.

Following the instant of network damage, the directed message delay

remains temporarily steady and then drops and levels out at a value

which is actually below its pre-damage value. Apparently, the

directed message flooding which occurs after the damage reduces the

number of directed messages which are lost due to communication

link noise, and thus reduces the directed message delay since fewer

messages are included in the average which experienced the time out

period delay of 500. It should be remembered, however, that no

attempt has been made to select an optimum time out period. Also,

these simulation tests have been made using a relatively uncongested

network. Thus, the results here should not be considered a conclu-

sive case in favor of directed message flooding.

The non-directed message delay remained low during the entire

test. The lack of a significant increase in non-directed message

delay indicates that no significant network congestion resulted from

the directed message retransmissions.

233

Summary

Two routing algorithms, the Rapid Reciprocal Path Search

algorithm and the Reciprocal Path Search Algorithm with Delay

Vectors, have been tested in conjunction with an acknowledgement

scheme for the case of six links jammed. The test results indicate

that both routing algorithms, when combined with acknowledgement

schemes, form complete protocols which reliably deliver messages

even with severe network jamming. Thus, the algorithms developed

in this thesis constitute a significant new class of protocols for com-

puter communication networks.

The Rapid Reciprocal Path Search algorithm with acknowledge-

ments performed extremely well, indicating that this protocol is an

attractive candidate for radar network applications. However, for

computer communication networks where jamming and other forms of

non-reciprocal network damage are not expected to be a significant

problem, some of the other routing algorithms presented in the pre-

vious chapter could, when combined with acknowledgements, provide

completely adequate protocols with simpler implementation.

234

VI. CONVENTIONAL NETWORK APPLICATIONS

The most likely candidates for use in conventional computer

communication networks among the new routing algorithms are the

Simple Backwards Learning algorithm and the Reciprocal Path Search

algorithm. The Simple Backwards Learning algorithm adapts to all

reciprocal forms of network damage, such as communication link

failures in which transmission is prohibited in both directions over

the link. This is the most probable form of network damage which

can be expected in conventional network applications. For any appli-

cations where non-reciprocal forms of damage, such as jamming, can

occur significantly often, an algorithm such as the Reciprocal Path

Search algorithm or Rapid Reciprocal Path Search algorithm, either

without or with the use of delay vectors, needs to be considered.

For the radar network application, the Simple Backwards

Learning algorithm requires essentially no overhead since the routing

tables are constructed using information contained in the flooded non-

directed track report messages, which are generated independently

of the need for them to provide information for the routing algorithm.

However, in conventional networks, the non-directed track report

messages will not exist. Thus, unless some other class of non-

directed messages is prevalent, the nodes in a conventional network

will need to flood out short "Here I Am" (HIA) messages in order to

235

provide information for the construction of the directed message

routing tables. These short HIA messages need only contain the

address of the source node and information allowing an estimate of

the elapsed delay since the HIA message left its source node to be

computed.

In order to put in perspective how much overhead is required by

the Simple Backwards Learning algorithm, a comparison between its

overhead and the overhead requirements of an ARPA type routing

algorithm will be made.

The ARPA routing algorithm was described previously in

Chapter II. This algorithm also uses routing tables which are stored

at each node. The ARPA routing algorithm uses an exchange of delay

estimates to provide information for updating the tables. At set

intervals, each node sends to all of its neighbors a list which contains

estimates of the shortest delay from it to all the other nodes. This

list thus contains a number of entries which is one less than the num-

ber of nodes in the network. Upon receiving the list from one of its

neighbors, a node adds to each delay estimate a measure of the cur-

rent delay required to travel from itself to the neighbor from which

the list was received, thus forming a new list. This new list then

provides that node with an estimate of the minimum delay required to

reach all destinations if the message is sent out of the port connect-

ing to the neighbor. The routing table for the node is then constructed

236

by combining the delay estimates derived from the lists received

from all of its neighbors.

Consider a computer communication network with n nodes

and m ports at each node. For each routing table update, the use

of an ARPA type routing algorithm requires each node to transmit m

lists, one to each neighbor. Each list will contain n-1 delay esti-

mates. If each delay estimate contains b bits, then the overhead

per node required by the ARPA type routing algorithm for each update

is

m(n- 1)b

Thus, the total overhead for each update is

OHA = nrn(n -1)b

= mb(n.
2

-n) (6. 1)

Now consider the Simple Backwards Learning algorithm. With

this algorithm each routing table update requires each node to flood

out a short HIA message. Each node, upon reception of the first copy

of an HIA message sends it out of every port except the one in which

it was received. Thus, each node sends every HIA message out of at

most m-1 ports, except for the source node which sends it out of

all m ports. Thus, the maximum number of HIA messages

237

generated per node for every Simple Backwards Learning algorithm

update is

n(m-1) + 1

Hence, the total message transmissions per update is no more than

2n (m-1) + n

Each of the HIA messages need to contain the address of the source

node and a delay estimate. The message address requires log2n

bits and the delay estimate requires b bits. Thus an upper bound

on the total overhead for each update of the Simple Backwards Learn-

ing algorithm is

OHSBL = (log 2n+b)(n (m-1)+n) (6. 2)

Equations (6. 1) and (6.2) thus give the overhead requirements

for the ARPA and Simple Backwards Learning algorithms, respec-

tively. A cursory examination of the two equations reveals that both

overhead requirements increase quadratically as the size of the net-

work increases, and linearly as the number of ports or the number

of bits per delay estimate increase. A more detailed comparison of

the two overhead requirements is contained in Tables 6.1 and 6.2.

Each table compares the two overhead requirements for fixed m,

but for varying b and n.

Table 6. 1. A comparison of OHA and OH
SBL

for m = 2.

n
b= 4 b = 6 b= 8 b = 10

OH
A OHSBL OHA OHSBL OH

A OHSBL OH
A OHSBL

4 96 120 144 160 192 200 240 240

8 448 504 672 648 896 792 1120 936

16 1920 2176 2880 2720 3840 3264 4800 3808

32 7936 9504 11904 11616 15872 13728 19840 158 40

64 32256 41600 48384 49920 64512 58240 80640 66560

128 130048 18 1632 195072 214656 260096 247680 325120 28 0704

Table 6. 2. A comparison of OHA and OHSBL for m = 3.

n
b = 4 b= 6 b= 8 b = 10

OHA OHSBL OH
A

OHSBL OH
A

OHSBL OH
A

OHSBL

4 144 216 216 288 288 360 360 432

8 672 952 1008 1224 1344 1496 1680 1768

16 2880 4224 4320 5280 5760 6336 7200 7392

32 11904 18720 17856 22880 23808 27040 29760 31200

64 48 384 8 2560 72576 99072 96768 115584 120960 132096

128 195072 3618 56 292608 427648 390144 493440 487680 559232

240

Table 6.1 reveals that for m = 2, the Simple Backwards

Learning algorithm has less overhead for networks which contain

eight or more nodes, and which use six or more bits for delay esti-

mates. However, Table 6.2 reveals that for m = 3, the ARPA type

routing algorithm always uses less overhead. However, the advantage

which the Simple Backwards Learning algorithm possesses for m = 2,

and the advantage which the ARPA type routing algorithm possesses

for m = 3 is not always very large. Often the overhead require-

ments of both algorithms are very similar, whether m = 3 or

m = 2, thus emphasizing the importance of other design parameters

such as ease of implementation and performance characteristics.

Summary

This chapter has discussed the appropriateness of the routing

algorithms developed in this thesis for use in conventional networks.

The Simple Backwards Learning algorithm is the most likely candi-

date for use in conventional networks since it adapts to all forms of

reciprocal network damage, the type of damage most conventional net-

works should expect, and it is relatively simple to implement. For

non-reciprocal forms of damage, one of the other routing algorithms,

such as the Reciprocal Path Search algorithm or the Rapid Reciprocal

Path Search algorithm would most likely be adequate.

241

The overhead comparisons with an ARPA type routing algorithm

indicate that the Simple Backwards Learning algorithm requires less

overhead generally for large networks with low connectivity, espe-

cially for large values of b, the number of bits required for each

delay estimate. Even for some small networks and for some net-

works with high connectivity, the overhead for the Simple Backwards

Learning algorithm remains competitive, particularly for those

networks which use many bits in their delay estimates.

242

VII. AREAS FOR FURTHER RESEARCH

This thesis has developed a new class of directed message

routing protocols for computer communication networks. These

routing protocols utilize new techniques for searching out and using

both reciprocal and non-reciprocal paths for routing directed mes-

sages.

Performance tests were conducted in Chapters IV and V on each

of five new routing algorithms. These tests were necessarily limited

and were designed primarily to assist in developing the new routing

algorithms and to analyze their qualitative performance characteris-

tics while adapting to a wide range of network damage. Among the

performance characteristics of most interest were whether or not the

routing algorithms are able to adapt, their speed of adaptation if they

do adapt, and which of the new routing algorithms are able to route

messages over optimal paths. The quantitative results obtained from

the transient performance tests are not very meaningful, primarily

for two reasons. First, the quality of the input data is not good. It

is not accurately known what the characteristics of the input traffic

will be in an actual radar network. Second, each of the algorithms

was tested with only a single simulation run. Thus, a large amount of

confidence should not be placed in the exact numerical quantities

obtained in the transient tests.

243

Since the performance tests contained in Chapters IV and V are

limited in scope, much further research needs to be done on the new

routing algorithms. Areas for further research include investigating

what effects the size and topology of a network have on the perform-

ance of the routing algorithms; what effects varying the values of kl'

k2' and k
3 has upon the rate of adaptability; and how the protocols

adapt to a greater variety of cases of network damage. It is con-

ceivable that varying these factors may change some of the compari-

sons made in this thesis.

The algorithms have been tested in a 13 node network since this

network contains several alternate paths between nodes (thus provid-

ing sufficient capacity for allowing the changes in routes necessary to

adapt to changes in network structure), and it is small enough to

permit reasonable computing costs. Performance tests should also

be conducted using a larger network (a network of 50 or more nodes

is the expected size of an actual radar network). In a larger network,

it is expected that each routing algorithm will possess the same

qualitative characteristics revealed here. However, the size of the

network should affect the speed with which each routing algorithm

adapts to network damage. A large network will contain both longer

paths and more alternate paths than a small network, increasing the

amount of time required to disseminate information on reciprocal and

non-reciprocal paths throughout the network, thus slowing the

244

the routing algorithms' adaptability.

The routing algorithms should also be tested using varying

values of Icy k2, and k3. The values of these parameters, which

remained mostly fixed throughout the performance tests, have a

large effect upon the rate of adaptation of the new routing algorithms

to network damage. Increasing values of k
1

and k
2

and decreas-

ing values of k3 should speed up the routing algorithms' adaptabil-

ity.

The transient tests on the new routing algorithms were also

conducted with fixed tD (the mean inter-generation time for

directed messages at each node) and t
ND

(the mean inter -

generation time for non-directed messages at each node). Further

tests should be conducted on the new routing algorithms varying these

parameters to determine their performance under different levels of

network congestion and varying ratios of directed and non-directed

messages.

Tests also need to be conducted on the new routing protocols

using a wide variety of cases of network damage. The cases of net-

work damage used in this thesis (three links destroyed, three links

jammed, and six links jammed), were selected to provide a wide

range of conditions under which to test the routing algorithms. The

adaptability of the new routing algorithms needs to be evaluated using

cases of network damage which include destroyed nodes, both

245

destroyed and jammed links together, and which include source-

destination node pairs which are completely disconnected from each

other.

Finally, many refinements can be made to the routing algo-

rithms. An obvious improvement would be to add complexity to the

routing algorithms by prohibiting directed messages from leaving a

node out of the port in which it arrived (using the routing tables to

select a second best port or ports), thus eliminating ping -ponging.

This and other refinements could greatly improve the performance of

these new routing algorithms, particularly the routing algorithms

which include delay vectors.

246

BIBLIOGRAPHY

1. Wushow Chou, "Computer Communications Networks- -The Parts
Make up the Whole, " National Computer Conference, pp. 119-
128, May 1978.

2. David J. Farber, "Networks: An Introduction, " Datamation,
pp. 36-39, April 1972.

3. Leonard Kleinrock, Queueing Systems Volume II: Computer
Applications, John Wiley & Sons, Inc. , New York, 1976.

4. John M. McQuillan and Vinton G. Cerf, Tutorial: A Practical
View of Computer Communications Protocols, IEEE Computer
Society, IEEE Catalog No. EHO 137-0, 1978.

5. W. R. Crowther, et al. , "Issues in Packet Switching Network
Design, " National Computer Conference, pp. 161-175, May
1975.

6. Robert S. Wilkov, "Analysis and Design of Reliable Computer
Networks, IEEE Transactions on Communications, Vol. COM-
M, No. 3, pp. 660-678, June 1972.

7. S. M. Sussman, et al., "A Survivable Network of Ground Relays
for Tactical Data Communication, Report No. WP- 21511, The
Mitre Corporation, Bedford, Massachusetts, November 1977.

8. L. Cartledge and R. M. O'Donnell, "Description and Performance
Evaluation of the Moving Target Detector, " Report No. FAA -
RD-76- 190, Lincoln Laboratory, Lexington, Massachusetts,
8 March 1977.

9. Electronic Systems Division, USAF, "Statement of Work for Data
Systems Requirements Study Related to Future USAF Tactical
Air Surveillance and Control Improvements, " 1977.

10. G. De ley, et al. , "Final Report on Data Systems Requirements
Study for Future USAF Advanced Forward Area Tactical Radar
Network, " General Research Corporation, Santa Barbara,
California, October 1978.

11. James P. Gray, "Line Control Procedures, " Proceedings of the
IEEE, Vol. 60, pp. 1301-1312, November 1972.

247

12. D. W. Davies and D. L. A. Barber, Communication Networks for
Computers, John Wiley & Sons, 1973.

13. Mario Gerla, "Deterministic and Adaptive Routing Policies in
Packet-Switched Computer Networks, " Third IEEE Data Com-
munications Symposium, pp. 23-28, November 13-15, 1973.

14. B. W. Boehm and R. L. Mobley, "Adaptive Routing Techniques for
Distributed Communication Systems, " IEEE Trans. Commun.,
pp. 135 -144, December 1964.

15. A.V. Butrim.enko, "On Searching for the Shortest Paths Along a
Graph During Variations in It, " Tech. Cybernetics (USSR),
Vol. 6, 1964.

16. Paul Baran, "On Distributed Communication Networks, " IEEE
Trans. Commun., pp. 1-9, March 1964.

17. Raymond L. Pickholtz and Caldwell McCoy, Jr. , "Effects of a
Priority Discipline in Routing for Packet-Switched Networks, "
IEEE Trans. Commun., Vol. COM-24, No. 5, pp. 506-516,
May 1976.

18. John M. McQuillan, Gilbert Falk, and Ira Richer, "A Review of
the Development and Performance of the ARPANET Routing Algo-
rithm, " IEEE Trans. Commun. , Vol. COM-26, No. 12,
December 1978.

19. Leonard Kleinrock, "Analytic and Simulation Methods in Com-
puter Network Design, " Spring Joint Computer Conference,
pp. 569-579, 1970.

20. Hiroshi 'nose and Tadao Saito, "Theoretical Aspects in the Analy-
sis and Synthesis of Packet Communication Networks, " Proceed-
ings of the IEEE, Vol. 66, No. 11, pp. 1409-1422, November
1978.

21. Fouad A. Tobagi, et al., "Modeling and Measurement Techniques
in Packet Communication Networks, " Proceedings of the IEEE,
Vol. 66, No. 11, pp. 1423-1447, November 1978.

22. Mischa Schwartz, Computer Communication Network Design and
Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1977.

248

23. O. Wech, private communication.

24. S. W. Edge and A. J. Hinchley, "A Survey of End-To-End Retrans-
mission Techniques, 'I Computer Communication Review, Vol. 8,
No. 4, pp. 1-18, October 1978.

25. L. Pouzin, "Flow Control in Data Networks- -Methods and Tools,"
ICCC Proceedings, Toronto, p. 467, 1976.

26. Israel Gitrnan, "Comparison of Hop-By-Hop and End-To-End
Acknowledgment Schemes in Computer Communication Networks,"
IEEE Trans. Comrnun., pp. 1258-1262, November 1976.

27. Carl A. Sunshine, "Factors in Interprocess Communication
Protocol Efficiency for Computer Networks, " National Computer
Conference, pp. 571-576, 1976.

28. Carson E. Agnew, "On Quadratic Adaptive Routing Algorithms, "
Communications of the ACM, Vol. 19, No. 1, pp. 18-22,
January 1976.

29. R. J. Benice and A. H. Frey, Jr., "An Analysis of Retransmis-
sion Systems, " IEEE Trans. Commun. , pp. 135-145, December
1964.

30. R. J. Benice and A. H. Frey, Jr., "Comparisons of Error Con-
trol Techniques, " IEEE Trans. Com.mun.., December 1964.

31. Kenneth Boulding, "A Simulated Data Communication Network, "
Computer Communication Review, Vol. 8, No. 4, pp. 19-29,
October 1978.

32. S. Carr, S. Crocker, and V. Cerf, "Host to Host Communication
Protocol in the ARPA Network, " Spring Joint Computer Confer-
ence, 1970.

33. V. Cerf and R. Kahn, "A Protocol for Packet Network Intercom-
munications, " IEEE Trans. Comm.un., Vol. COM-22, No. 5,
pp. 637-648, May 1974.

34. Vinton G. Cerf and Peter T. Kirstein, "Issues in Packet-
Network Interconnection, " Proceedings of the IEEE, Vol. 66,
No. 11, November 1978.

249

35. W. Chou and H. Frank, "Routing Strategies for Computer
Network Design, " Symposium on Computer Communication Net-
works and Teletraffic, Polytechnique Institute of Brooklyn,
April 4-6, 1972.

36. Stephen D. Crocker, et al., "Function-Oriented Protocols for
the ARPA Computer Network, " Spring Joint Computer Confer-
ence, pp. 271-278, 1972.

37. Guy Fayolle,
Evaluation of
IEEE Trans.
March 1978.

Erol Gelenbe, and Guy Pujolle, "An Analytic
the Performance of the 'Send and Wait' Protocol, "
Commun., Vol. COM-26, No. 3, pp. 313-318,

38. Gerard J. Foschini and Jack Salz, "A Basic Dynamic Routing
Problem and Diffusion, " IEEE Trans. Commun., Vol. COM-26,
No. 3, pp. 320-327, March 1978.

39. Howard Frank, Israel Gitman, and Richard Van Slyke, "Packet
Radio Systems- -Network Considerations, " National Computer
Conference, pp. 217-231, May 1975.

40. H. Frank, R. E. Kahn, and L. Kleinrock, "Computer Communi-
cation Network Design--Experience with Theory and Practice, "
AFIPS Conference Proceedings, 40:255-270, SJCC, Atlantic
City, New Jersey, 1972.

41. Ivan T. Frisch and Howard Frank, "Computer Communications- -
How We Got Where We Are, " National Computer Conference,
pp. 109-117, May 1975.

42. G. L. Fultz and L. Kleinrock, "Adaptive Routing Techniques for
Store and Forward Computer-Communication Networks, " Proc.
Int. Conf. Commun., 39-1 to 39-8, 1971.

43. I. Gitman, R. M. Van Slyke, and H. Frank, "Routing in Packet-
Switching Broadcast Radio Networks, " IEEE Trans. Comrnun.,
pp. 926-927, August 1976.

44. Robert G. Gal lager, "A Minimum Delay Routing Algorithm Using
Distributed Computation, " IEEE Trans. Commun., Vol. COM-
25, No. 1, pp. 73-85, January 1977.

250

45. A. Gaspar and P. Lamm, "A Simulated Data Communication
Network, " Computer Communication Review, Vol. 8, No. 4,
pp. 19-29, October 1978.

46. F. E. Heart, et al., "The Interface Message Processor of the
ARPA Network, " Spring Joint Computer Conference, 1970.

47. C.E. Houstis, W.J. Kelly, Jr., and B. J. Leon, "Distributed
Control for a Variable Length Message Store and Forward Sys-
tem, " IEEE Trans. Commun., Vol. COM-26, No. 4, April
1978.

48. Robert E. Kahn, "The Organization of Computer Resources into
a Packet Radio Network, " IEEE Trans. Commun., Vol. COM-
25, No. 1, pp. 169-178, January 1977.

49. L. Kleinrock, Communication Nets: Stochastic Message Flow
and Delay, McGraw-Hill, New York, 1964.

50. L. Kleinrock, "Models for Computer Networks, " Proceedings of
the International Communications Conference, pp. 21-9 to 21-16,
University of Colorado, Boulder, June 1969.

51. J. M. McQuillan, "Design Considerations for Routing Algorithms
in Computer Networks, " Proc. Seventh Hawaii Int. Conf. Sys.
Sci., pp. 22-24, January 8-10, 1974.

52. Robert M. Metcalfe and David R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks, " Communica-
tions of the ACM, Vol. 19, No. 7, pp. 395-404, July 1976.

53. David L. Mills, "An Overview of the Distributed Computer Net-
work, " National Computer Conference, pp. 523-531, 1976.

54. H. Miyhara, T. Hasegawa, and Y. Teshigawara, "A Compara-
tive Evaluation of Switching Methods in Computer Communication
Networks, " Proc. Int. Conf. Commun., June 1975.

55. Louis Pouzin and Hubert Zimmermann, "A Tutorial on Protocols,"
Proceedings of the IEEE, Vol. 66, No. 11, November 1978.

56. A. Rybczynski, et al., "A New Communication Protocol for
Accessing Data NetworksThe International Packet-Mode Inter-
face, " National Computer Conference, pp. 477-482, 1976.

251

57. Frits C. Schoute and John M. McQuillan, "A Comparison of
Information Policies for Minimum Delay Routing Algorithms, "
IEEE Trans. Commun., Vol. COM-26, No. 8, pp. 1266-1270,
August 1978.

58. Adrian Segall, "The Modeling of Adaptive Routing in Data-
Communication Networks, " IEEE Trans. Commun., Vol. COM-
25, No. 1, pp. 169-178, January 1977.

59. J. D. Spragins, "Advanced Forward Area Tactical Radar Net-
work, " Interim Report under AFOSR Grant 77-3339, 15 Decem-
ber 1977.

60. J. D. Spragins, "Potential Technology Breakthroughs in Next
Generation Radars, " Participant's Final Report for 1976 USAF-
ASEE Summer Faculty Research Program, 27 August 1976.

61. Thomas E. Stern, "A Class of Decentralized Routing Algorithms
Using Relaxation, " IEEE Trans. Commun. , Vol. COM-25,
No. 10, pp. 1092-1102, October 1977.

62. William D. Tajibnapis, "A Correctness Proof of a Topology
Information Maintenance Protocol for a Distributed Computer
Network, " Communications of the ACM, Vol. 20, No. 7,
pp. 477-485, July 1977.

63. Fouad A. Tobagi, Stanley E. Lieberson, and Leonard Kleinrock,
"On Measurement Facilities in Packet Radio Systems, " National
Computer Conference, pp. 589-596, 1976.

252

APPENDIX A

Supplementary Simulation Results

1.2

1.0

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6

Over 1-4TN0 to t

o--- -o Delivered Messages
Lost Messages

ilk// *-,.... ..,...

0/ I I ,-=,--+ ---#- ' ±- - . 4 i o 1
0 8 16 24 32 40 18

1, The Time Elapsed Following Network Damage in Multiples of IND

Figure A. 1. RRPSDV algorithm without source node restriction, three links jammed.

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.4

2

01 1 1

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure A. 2. RRPSDV algorithm without source node restriction, three links jammed.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t-8TND tO t

40 /
/

20

Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

.0*%.0 .e

Optimum Delay Before Damage

I 1 I t I i I i I

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of iND

Figure A. 3. RRPSDV algorithm without source node restriction, three links jammed.

The Number of Directed
Messages Delivered and
Lost Per Directed o o Delivered Messages
Message Sent, Averaged -6 -- Lost Messages
Over t-41-

NO
to t

1.2

1.0

.0- ----/ ,/ .'ik
/ I N. N.4.... '''' 1 I -IN's -.4 1 40

0 8 16 24 32 40 46
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure A. 4. RRPSDV algorithm without source node or ping-pong restrictions,
three links jammed.

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.2

00 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of t ND

Figure A. 5. RRPSDV algorithm without source node or ping-pong restrictions, three links
jammed.

Adjusted Directed
Message Delay and
Non-Directed Message
Delay, Averaged Over

t 8%01°

100

80

6

40

20

-- Directed Message Delay
o o Non-Directed Message Delay

Optimum Delay

/ s% -,.
/ N.

/
/ N.

s.

Optimum Oe /oy Before Damage

0 I 1 I i I I. L I I]
0 8 16 24 32 40 48

t, The Time Elapsed Following Network Damage in Multiples of 'ND

Figure A. 6. RRPSDV algorithm without source node or ping-pong restrictions,
three links jammed.

The Number of Directed
Messages Delivered and
Lost Per Directed
Message Sent, Averaged .6
Over t-4-1

ND
to t

1.2

I.0

o o Delivered Messages
-- Lost Messages

0 8 16 24 32 40
4/ I

48
t, The Time Elapsed Following Network Damage in Multiples of 1ND

Figure A. 7. RRPSDV algorithm without source node or ping-pong restrictions and
k = 10, three links jammed.

The Number of Directed
Messages Looping Per
Directed Message Sent,
Averaged Over t 4 IND
to t

.5

.4

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of IND

Figure A. 8. RRPSDV algorithm without source node or ping-pong restrictions and k3 = 10, three
links jammed.

100

80

Adjusted Directed
Message Delay and
Non-Directed Message 60
Delay, Averaged Over
t -8 IN

D
to t

40

20

MIMI* OM.

Directed Message Delay
o Non-Directed Message Delay

Optimum Delay

\V/

Optimum Delay Before Damage

0 t I I t

0 8 16 24 32 40 48
t, The Time Elapsed Following Network Damage in Multiples of tN0

Figure A. 9. RRPSDV algorithm without source node or ping-pong restrictions and k3 = 10,
three links jammed.

