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A TUTORIAL INTERFACE FOR A
PROBLEM-SOLVING PRODUCTION SYSTEM

CHAPTER 1

INTRODUCTION

1.1. Overview of the System

The goal of this project is to develop a computer system that possesses some of
the capabilities of a tutor. A tutor should be able to understand a solution

proposed by a student, rather than imposing the tutor's own solution scheme on
the student A tutor should always be available to lend assistance when it is

necessary, but should allow the student to learn by doing whenever possible. The

tutorial system, to be described here, possesses these capabilities.

The system is implemented as an interface between a student, and a production
system (PS) that solves some class of problems. The interface acts as a tutor
whose area of expertise is defined by the problem-solving PS. The expert PS that
is currently used with the interface solves elementary algebra problems. As the
student attempts to solve a problem, the interface controls the firing of productions
in the problem-solving PS in such a way as to parallel the solution proposed by the
student Thus the state of the problem-solving PS serves as the representation of
the system's model of the student's problem-solving behavior. In the algebra
problem domain the productions of the expert PS perform the operations required
for solution of elementary algebra problems. A sequence of algebraic operations
performed by a student can be modelled by a sequence of production firings in the
expert PS.

The interface is designed to be easily matched with an arbitrary problem-solving
production system. The Tutorial interface and the production system monitor are
implemented in LISP. It is possible to link an arbitrary problem-solving PS with the
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interface simply by loading them both into the same LISP system, though this does
not yield the best results. The performance may be improved, however, by a
certain amount of tailoring, as is described in section 5.3. Since the problem
domain is determined by the associated problem-solving PS, rather than the

interface itself, the tutorial interface can be adapted to tutor in any problem-solving
domain for which a problem solving PS can be produced.

The system operates in a cycle where the student is asked to specify the next
step in a problem solution, and the interface tries to find an applicable step in the
problem-solving PS that parallels the student's step. If such a step is found it is

performed, and the results are presented to the student If no such step is found.
or the student asks for help, the system uses the history of the problem solution
and the power of the problem solver to provide assistance. The following text
refers to the sample protocol in figure 1-1 to illustrate the operation of the
interface.

The most interesting feature of the interface is its ability to form a model of a
student's problem-solving behavior, and then to use this model for providing advice
to the student The modelling technique used allows the interface to compare the
past behavior of the student to that of an expert computer system that solves
problems in the domain of interest The interface can also query its expert system
to determine what problem-solving step it would apply in a situation where the
student has not yet made a decision as to what to do next. This is obviously of
great use for giving advice to the student.

In the sample protocol of figure 1-1, the system starts out by asking the student
for information about the problem to be solved. The previously described cycle
wherein the student directs the interface to perform some operation followed by
the interface performing that operation, if possible, can be seen from viewing the
figure. The exception to the rule occurs when, as in paragraph 7, the student

indicates that he needs help. Here, the interface has noticed that something was
done and then undone again, and so it backtracks to rectify the situation.

The incorrect operation in paragraph 6 effectively undid the operation of
paragraph 5. This mistake occurred because the production in the expert PS that

isolates the goal variable always assumes that there is only one occurrence of the

goal variable on the left-hand side of the equation. This assumption is always true

when the expert PS is running under its own control. This problem serves to
illustrate the need for developing an expert PS that is specifically designed for

operation with the tutorial interface.
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The ability of a student to undo previous operations is demonstrated in paragraph
12. The step is repeated in paragraph 13 to show that the backtracking was
successful.

Paragraph 14 illustrates the ability of the interface to give some additional
information when it rejects a problem-solving operation as being inapplicable in the
current problem step. Unfortunately, in this example the inappropriateness of the
operation is a function of the expert problem solver that is being used, rather than
any mathematical reason. The production in the expert PS that corresponds to a
division operation is constrained to only function on a goal term on the left-hand
side of an equation.

The student asks the system to provide information concerning what operations
would be appropriate, first in paragraph 15, and again in 16. Notice that the first
time that, he asks, he is given only a hint. On the second time, the system gives the
operation away by performing it for the student. After the intervening operation
has been executed, the original directive can be honored.

Another odd behavior that stems from the use of an expert PS whose
development was independent of the tutorial interface is illustrated in paragraph 18.
The algebra problem solver uses a means-ends strategy to solve a set of equations
f or the value of the goal variable. For each non-goal variable in the equation the
expert PS will generate a subproblem whose goal is to find a value f or that non-
goal variable. Paragraph 18 is the commentary from the expert PS while it is

generating the subproblem whose goal is to find the value for the variable x.

The use of a directive that indicates more than one operation is shown in

paragraph 21. This directive instructs the interface to first substitute the value 1

for the variable 'x' in the equation It then causes the resulting constants to be
added together, which yields the final answer for the problem. The comment about
the need to simplify the problem was generated by the expert PS when it

determined that all of its outstanding subproblems had been completed. When the

algebra problem solver was developed as a stand alone system, the comment was
meant to provide a trace of the problem solver's operation.
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Figure 1-1: Sample protocol

1. *(tutor algebra)

Type in the variables for your problem: x y

2. Ok, which variable must we solve for?

3. So Y is our goal variable.

Please input new information about Y

Type in an equation containing the goal: 8y-3x=14-x+y+5

4. Ok! We have new information about Y.

The equation is not simplified in terms

of the goal, so you need to simplify it.

What do you want to do? eat chocolate chip cookies

The system is at a loss as to how to proceed.

Please reword your command, or request help if you are stuck.

5. What do you want to do? move the y term to the left hand side

Moving the goal term to the left side

produces the equation 8Y-3X-Y=14-X+5

6. What do you want to do? isolate the goal term

Isolating the goal variable on the left side

produces the equation 8Y=14-X+5+3X+Y

7. What do you want to do? help

It looks like we need to back up a bit.

Lets go back to just after

Moving the goal term to the left side

produces the equation 8Y-3X-Y=14-X+5

Try doing something involving Y

8. What do you want to do? add 3x to each side

Combining terms from opposite sides involving X

produces the equation 8Y-Y=2X+14+5

9. What do you want to do? isolate the goal

Isolating the goal variable on the left side

produces the equation 8Y=2X+14+54-y

10. What do you want to do? combine the goal terms

Combining terms from opposite sides involving Y

produces the equation 0=-7Y+2X+14+5
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Fig. 1-1, continued

11. What do you want to do? add the constants

Combining constant terms on the right side

produces the equation 0=19-7Y+2X

12. What do you want to do? undo 1 step

Backtracking over 1 step.

13. What do you want to do? add the constants

Combining constant terms on the right side

produces the equation 0=19-7Y+2X

14. What do you want to do? divide everything by 7

You need to do something else before you can do that.

15. What do you want to do? what should i do

Try doing something involving Y

16. What do you want to do? help

I'll do the next step for you.

Moving the goal term to the left side

produces the equation 7Y=19+2X

17. What do you want to do? divide everything by 7

Making the coefficient of the goal term equal to one

produces the equation Y=19/7+2/7X

18. We notice that the variable X appears

in the equation Y=19/7+2/7X

So we will consider X to be our new goal.

We must solve for it in order to solve for Y.

We will remember that goal and go back to it later.

19. Please input new information about X

Type in an equation containing the goal: x = 1

20. Ok! We have new information about X.

We see we have determined a result.

X is equal to 1

So we return to the parent goal variable, which is Y
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Fig. 1-1, continued

21. What do you want to do? substitute for x and add the

constants on the right

We can substitute 1 for X

The equation is now Y=19/7+2/7

The equation is not simplified in terms

of the goal, so you need to simplify it.

Combining constant terms on the right side

produces the equation Y=3

22. We see we have determined a result.

Y is equal to 3

Our final result is Y equals 3

Note: Keyboard input has been underlined for this example.

1.2. Impetus

1.2.1. Computer Aided Instruction

Computer Aided Instruction (CAI), as the name implies, is concerned with using
computers as educational aids. The purpose of educational tools is to aid in the

creation of a good learning environment. Factors involved in a good learning
situation include a motivated student, instruction tailored to the needs of the

individual, and frequent feedback (Smith, 1974, Mitzel, 1970). Some CAI systems

provide simple drill and practice functions. These give frequent feedback, but little
individualized help. Many follow the idea of programmed texts, providing alternate
information and problems dependent upon previous success or failure to correctly
respond to questioning. Programmed text type systems provide frequent feedback,

and also allow alternate p'aths through the curriculum, dependent upon individual

needs.

An educational opportunity unique to CAI is that provided by computerized

simulations (Hof f er, Barnett, Farquhar, and Prather, 1975, Smith, 1974, Seltzer,

1971). A student can learn from his mistakes while studying such things as highly

reactive chemical systems, without suffering the disastrous consequences.
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Simulation is used heavily in such forms as nuclear reactor simulators, flight
simulators, and medical patient simulations.

The introduction of Artificial Intelligence (AI) methods in CAI research has led to
the expanded area of Intelligent CAI (ICAI). ICAI systems bring many new features
to CAL Expert systems allow ICAI systems to include expert knowledge about a
domain. The decisions made by a student may be compared to those of an expert
system in order to evaluate the correctness of a student's judgment. Al techniques

can be used to maintain models of a student's knowledge or strategies. Models of
student knowledge are useful for focusing instruction on the areas where it is most
needed. Strategy models allow an ICAI system to follow a student's strategy rather
than imposing a fixed strategy on the student. ICA! systems can be constructed in
which knowledge concerning tutoring strategies is kept separate from the expert
knowledge of the problem domain. This allows for a great deal of effort to be put
into optimizing the tutorial expertise, knowing that it will be applicable over a range
of problem domains (Clancey, 1979a). Al also brings methods of knowledge
representation to ICAI. ICAI systems may include, for example, factual knowledge
represented in semantic networks, or procedural knowledge represented in finite

state machines (Brown, Burton, and Zdybel, 1973). ICAI systems may also

communicate with the user in quasinatural or natural language.

As mentioned above, Al provides ICAI system designers with tools for gathering,
manipulation, and representation of the data that allows for the modelling of a
student's knowledge (Clancey, 1979a, Clancey, 1979b, Brown and Burton, 1978,

Sleeman, 1977, Sleeman and Smith, 1981, Sieeman, 1982). A good model of a
student allows the system to determine what the student does know, what he does
not know, ano what incorrect knowledge he may believe. The system is then able
to concentrate on the correction of the student's misconceptions, and the

presentation of knowledge the student does not already possess. The student is
not bored by repetition of things that he already knows. Diagnosis of a student's
misconceptions leads to early correction, and a great savings of time and effort for
the student as well as the instructor (Mitzei, 1970).

To be acceptable to users, communication with an ICAI system must be simple,

fast, and accurate. Keyword systems are accurate, but not generally easy for new

users. Many natural language systems are not accurate, and loss of accuracy often

makes usage laborious. Systems that require the designers to second guess all
possible responses and errors are generally unacceptable. When using a second
guess type of system the designer must either heavily restrict user responses or
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accept the consequent loss of accuracy associated with unrestricted response to
such a system (Charp, 1970). Such second guess designs are also expensive to
produce lessons for, thus rendering them impractical (Seltzer, 1971).

Gains in efficiency and capability may be obtained by separation of the Tutorial
model from the problem domain (Clancey, 1979a, Clancey, 1979b). In this way the
effort put into a tutoring model need not be repeated when a new problem domain
is introduced. Changes to the tutorial model may also be made without close
attention to each problem-solving domain. A primary advantage of this technique is
that this allows the designer much more freedom to experiment with various tutorial
strategies. Much time and effort may be put into developing a good tutorial model,
with the knowledge that it can be used for many problem domains.

Many ICAI systems for problem solving are only capable of judging the

correctness of the final result of a problem-solving procedure. Others are able to
monitor the individual steps of the problem solution, but only when the student is

constrained to a single solution strategy. A more flexible system will allow the
student to pursue his own problem-solving strategy rather than constraining him to
a single solution scheme. It should be able to assist a student who is learning to
make his own judgments and decisions rather than simply learning a fixed procedure
by rote. The system should understand the student's problem-solving behavior and

be able to lend assistance to the student based on his partial or erroneous solution.

Such needs have been long recognized by researchers in ICAI (Koffman and Blount,
1977, McKeachie, 1974).

1.2.2. Instructional Capabilities

The student of problem solving must learn two things. He must learn the

operators necessary to solve the problem and he must learn to select the particular
operator, in a given state, that will further the solution. The student will inevitably
make mistakes. Carry, Lewis, and Bernard (1980) have divided the possible mistakes
into three categories.

The first of these three categories are called operator errors. Operator errors
consist of those errors resulting from the application of invalid operators. The

subject may be trying to apply an operator that was given to him by an instructor,
but which he misunderstood. Another source of invalid operators is the tendency
of students to alter operators to conform to their previous experience (Chapman
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and Chapman, 1959, Mayer, 1977). For example, if a student notices that a new
operator has many of the properties of another operator that he already knows
then he may attribute some of the additional properties of the more familiar
operator to the new operator.

It is possible for an operator to be invalid, yet yield correct results for many

cases. If the special cases for which an operator does not work are few, it may
be very difficult to determine that the student is using an operator that is invalid.

The second class of errors are applicability errors. These errors happen when
the subject chooses a valid operator, but the operator does not further the solution
of the problem. This is the case in which the student knows how to execute the
required operators, but has problems deciding when a given operator is appropriate
for solving a problem.

The third class of errors are the execution errors. These are simply those errors
that occur when the correct operator is chosen at the correct time, but some error
is made while performing the operation. An example of this would be an addition
error while adding a term to both sides of an equation.

The implementation of the tutorial interface described in this thesis assumes that
the student already has knowledge of a complete set of operators for solving the
class of problems in the repertoire of the problemsolving PS. The operators
possessed by the student need not all be valid, however. The student may have
gained knowledge of the operators through conventional classroom study, or

possibly through a more comprehensive CAI system into which the tutorial interface
has been integrated.

The utility of the tutorial interface is in the learning of the selection of operators
in multistep problemsolving situations. The student can enter an interactive

session with little or no knowledge of this facet of the solution of the given class
of problems. Through a combination of the assistance rendered by the interface,
and the student's own successful application of the operators as the session

continues, the student can learn to select applicable operators in many situations. It

bears repeating here, that the interface allows the student a large degree of
freedom in his selection of operators, and follows whatever solution sequence is
proposed by the student The system can always determine whether the student's

solution is progressing toward the goal. The flexibility of the interface allows the
student to learn operator selection in a much more general environment than would
be available if he were limited to a particular solution strategy.
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The implemented system is intended to explore the detection and correction of
the second type of error, the applicability errors. What of the first and third
types? The third type, execution errors, will not be seen since the system
performs the operations. The first type, the operator errors, can exhibit themselves
in either of two ways. If the student's incorrect understanding of the operator
leads him to think that it is applicable, when it is actually not, then this will show up
as an applicability error. Otherwise, the case is that in which the student's invalid
operator happens to be applicable at the same point as the valid operator known by
the same description. If the student were to perform this invalid operation himself,
it would lead to an error. Since the system performs the operation, the student
sees only a correct application of the operator. The inability to detect some
operator errors and all execution errors is a direct result of the decision to have
the system perform the problem-solving operations.

If the student is required to supply the system with the results of his problem-
solving steps, rather than simply directing the solution, then the system would have
the ability to handle the full set of student errors. This change may be advisable
for more practical versions of the tutorial interface. However, the current
implementation is fully capable of demonstrating the use of the tutor's modelling
technique.

1.3. Implementation Considerations

1.3.1. The Problem Domain

The problem-solving PS currently in use with the interface solves problems in

algebra Many algebra problems require several steps in their solution, and are thus
good sample problems for this system. Algebra problems can be solved using a
well-defined set of operators. Thus the set of operators that the prospective
student is assumed to know when entering a tutorial session can easily be defined.
Another advantage of choosing algebra problems is that constructing a problem-
solving production system for algebra probiems is fairly straight forward. Well-
defined strategies exist for solving many classes of algebra problems (Bundy and
Welham, 1981). The analysis of the algebra domain that was used in the

development of the problem-solving PS used here (Bregar and Farley, 1978) has

yielded a method that is similar to that proposed by Bundy.



11

The heart of Bundy's strategy is called the Basic Method. He defines three basic
operators; collection, attraction. and isolation. Collection is the operator that

combines two terms into a single term. Attraction repositions terms in the equation
to where the collection operator can be applied to them. Isolation operates to
produce an equation with the goal variable cn one side of the equation, and
everything else on the other side. The basic method is illustrated algorithmically in
Figure 1-2. In the method of Bregar and Farley, the collection operators are
designed in such a way that Bundy's explicit attraction is not necessary.

Figure 1-2: Bundy's Basic Method

While there is more than one occurrence of the unknown
If collection is possible Then

col lect
Else

attract
Isolate the single unknown

In Bregar and Farley ' s algebra problemsolving system, control of processing is by
a meansends process. The implicit goal of the problem solver is to isolate some
unknown variable which is the goal variable, and to determine its value with respect
to the other terms in the equation. Once a single unknown has been isolated, the
remainder of the equation is checked for additional unknown variables. If any is
found, then a subgoai is generated whose purpose is to find a value for the
unknown variable. The solution for a subgoai proceeds in the same manner as the
isolation of the original goal variable. If additional information is required in order
to satisfy a subgoal then a request for the necessary information is made to the
terminal.

1.3.2. Production Systems

The Tutorial interface and the problem solver are both implemented as production

systems. Production systems offer significant advantages for a system such as this.

These advantages will be described in detail. Before that, however, will be a brief
summary of production systems in general (Davis and King, 1975, McDermott and

Forgey, 1978), and of the specifics of the particular production system that is used

in the implemented system.
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Production systems have three major parts, an interpreter, a database, and a set
of production rules, or productions. A production is a rule of the form "If
<condition list> then do <action list>." The LISP -based PS used by the interface is
called PSMON (Rood and Bregar, 1980). In it, a production is written as

"(if (condition) then (action))." A production system works by selecting production
rules whose condition parts are satisfied by the current state of the system, and
executing their action parts. The productions that are selected and whose actions
are executed are said to have fired.

The production system interpreter, or monitor, of a production system works in a
three-stage cycle. First it evaluates the condition parts of each production. The

set of productions whose condition parts are satisfied by the current state of the
database is called the conflict set. The second step is called conflict-resolution, and
consists of choosing a subset of the productions in the conflict set that will be
fired. For most conflict-resolution schemes, this subset has exactly one member.

The final step is the firing, or the execution of the action parts, of the chosen
productions.

One of the most common means of conflict-resolution treats the set of
productions as an ordered list Conflicts are resolved by choosing the production
that is nearest to the top of the list This is equivalent to looking down the list,

checking condition parts, until finding the first production whose condition is

satisfied. This is the default method of conflict-resolution used by PSMON.

The database for a production system may take many forms. The database serves
the role of recording the current state of the system. One of the advantages of
production systems is their state sensitivity. Given a complete production system,
the next step will always be a function of the state information recorded in the
database. A change in the state of the system is easily detected by way of the
change in the conflict set, the set of productions which will be satisfied by the new
state.

PSMON is a production system monitor intended for psychological modelling. The

psychological modelling nature of PSMON is exhibited mainly in the structure and
conventions of the database that is used. The database is structured to have four
memories; short-term memory (STM), intermediate-term memory (ITM), long-term
memory (LTM), and environmental memory (ENV).

The STM may be considered as an ordered list of separate pieces of information.
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The length of STM is limited, usually to about seven items. Data that has been
recently accessed may be found at the beginning of the STM. As new data is

accessed the older data is pushed towards the end of the STM. If an item in STM
is not accessed and pulled to the front of the list, it will eventually be pushed to
the end of the STM. When it reaches the end, it is removed from STM and
inserted into the ITM. This design helps reduce the memory that must be searched
for information that is currently in use. The existence and length of STM in humans

is supported by psychological evidence (for example, Miller (1956).)

The ITM is not limited like the STM. It will continue to grow as long as new
information is added. The LTM contains information that remains constant throughout
a given run of the system. In the tutorial interface, that information will be the
knowledge necessary for problem solving, in the form of production rules. The

ENV is an external buffer which holds data that is entering the system from the
outside.

In PSMON, the condition part of a production not only matches data in the

database, but it also binds, or associates, the matched data to specified labels. The

bound data may be referred to at any point after it has been bound. This includes

being able to refer to it in subsequent portions of the condition part as well as
during execution of the action part. The scope of a binding is limited to the
production in which is was bound.

Another interesting feature of PSMON is that it can be called recursively. That is,

a production may specify in its action that a call is to be made to PSMON with an
entirely separate database and/or set of productions. The use of this feature by the
tutorial system is explained in section 2.1.2.

1.3.3. Modelling

In order to provide a system that can follow the student's problemsolving
strategy it is necessary to build a model of the student's solution. There are

various ways to go about doing this. One possible way would be to make a graph

structure which is a complete network of all possible action sequences involving a
given set of operators (Brown and Burton, 1978, Sleeman, 1982). Then the

student's solution could be placed as an overlay on the net. Overlaying the

student's solution would be done by simply marking off the nodes in the net that
corresponded to the student's solution path (Clancey, 1979a). It can readily be
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determined that this net could become quite large, even when limited to only valid
solutions.

One way to limit the size of such a net would be to only include those nodes
that are involved in a particular solution (Sleeman, 1977, Koffman and Blount, 1977).

This would constrain the student to using the problem-solving strategy embodied in
that net

The use of production systems allows an alternative representation. Instead of
building a net ahead of time, one or more productions in the problem-solving PS
will be fired for each step in the student's problem solution. Each production
firing is equivalent to the application of an operator to the current state of the
problem solution. The sequence of production firings and the resulting state of the
database is called a trace, and provides a model of the student's problem solving.
This sequence of production firings can be viewed as the single path through the
net that corresponds to the student's solution.

In a production system, the actions of the productions correspond to the primitive
operations used in the solution scheme. Changing the level of detail of the actions
in the productions can alter the granularity of the PS (Bregar and Farley. 1978,

Davis and King, 1975). Experimenting with the granularity of the system is one way
to match it to the needs of the intended students.

The set of productions chosen for modelling the student's solution is precisely

that required for the PS to solve the problem on its own. Thus the problem-
solving PS will act as an expert system in the domain of the problems it is

designed to solve. An embedded expert system is, in fact, considered to be one
of the central features of many ICAI systems (Clancey, 1979b). It seems intuitive

that an intelligent system should be able to perform a task itself if it is to be used
to instruct others in the performance of that task.

1.3.4. Remarks

This section has presented an overview of production systems and has tried to
justify some of the design decisions made in implementing the tutorial interface.

The implemented system utilizes a production system whose productions embody an

expert system in the domain of algebra problem solving. The productions provide a

means to model a student's problem solutions at any predetermined granularity.
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The second chapter of this paper talks about the overall structure of the

interface, while chapters three and four go into the details. Chapter five includes

information about how to tailor a problemsolving PS so as to make the interface
run as smoothly as possible. The final chapter discusses the inadequacies of, and
possible improvements to, the system.
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CHAPTER 2

STRUCTURE OF THE INTERFACE

2.1. The Static System

The tutor system consists of three components. The first of these is a problem-
solving PS for the domain of interest The second is the tutorial interface. The

interface logically occupies the position between the problem-solving PS and the
student The third component is the production system monitor itself, PSMON.

2.11. The Tutorial Interface

The tutorial interface is implemented as a PSMON production system. Running

both the tutorial interface and the problem-solving PS on the same monitor allows
the interface to make full use of the specialized features of PSMON. The PS
implementation of the interface also allows greater flexibility for experimentation
with the tutorial model.

The interface can be considered as two functional parts, the modeller and the
model user. The modeller is responsible for monitoring the student's solution and
maintaining a model of that solution. The model user has the job of providing
information to the student The model user uses the model created by the modeller
to help the student determine what the next step should be.

2.1.2. The Production System Monitor

The PSMON production system monitor provides several special features. One

such feature is the ability to push and pop PSs. A push is equivalent to the current

database and set of productions being pushed onto a stack, followed by a recursive

call being made to the monitor with an arbitrary new database and set of
productions. Conversely, a pop consists of an exit from a called PS and the
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restoration of the original database and productions. The result of the push is
deposited in the ENV of the database of the restored PS so that the state of the
calling production system will be changed. The value returned by the push contains
an ordered list of the productions fired during the push, and a copy of the
database representing the final state of the pushed PS before it was popped.

Every invocation of the monitor, including those following a push to a new PS,
also includes the specification of a flag indicating the mode in which the monitor is
to interpret the specified PS. The normal calling mode causes the monitor to enter
its primary loop where it generates a conflict set, resolves conflicts, and fires a

production. This looping continues until the PS is explicitly deactivated, or a state is
reached in which the generation of a conflict set yields an empty set. When called
in normal mode, the monitor uses the default conflict-resolution scheme that

considers the set of productions as an ordered list and choses the first
encountered production whose condition part is satisfied.

Another mode in which the monitor may be called is CS-generation mode (Conflict
Set generation model. In CS-generation mode, the monitor does not enter its

primary loop. Instead, a conflict set is generated and then returned, with all of its
bindings, as the value of the call. Access to the conflict set provides the
opportunity for the user to introduce his own conflict-resolution schemes into the
system. The user determines which production, or set of productions, from the
returned set that he would like to have fired. The specified production can then be
fired by yet another push to the monitor. This call is made in single firing mode.
The modified database is returned as the value of this push.

The interface makes use of these special features of PSMON to enable it to
control the problem solver. The tutor can push to the problem solver to obtain
conflict sets or to fire problem-solving productions. The problem-solving PS may,
itself, include pushes to other subordinate PSs. When this occurs, the interface
simply pushes to another copy of the interface with hooks to the subordinate PS to
which the problem-solving PS was trying to push. In this way the interface

maintains control of the problem solver, even when it involves pushes to other PSs

during its execution.
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2.1.3. The Problem-Solving PS

The productions of the problem-solving PS are divided into two categories,
foreground and background. In a pure PS, each production is a representation of
domain knowledge only. The behavior of the system is determined by the state of
the domain at any particular time (Davis and King, 1975). Most working production
systems fall short of this lofty goal, however, and resort to the introduction of
productions that explicitly affect the flow of control in the system. Foreground

productions are those that actually manipulate the problem components in order to
move closer to a solution. These correspond to the steps of the problem solution
which a student may be expected to specify in his directives to the system.
Background productions are those concerned with maintaining the flow of control
within the PS.

A simple method of maintaining the flow of control in a PS is to have

productions place tags on the information that they place in the database.

McDermott and Forgey (1978) note other methods of controlling flow within

production systems that take advantage of inherent characteristics of the

productions and data to construct more elegant control mechanisms. Tags are
intended to be recognized only by a select group of productions in the PS. By this

means a reliable, but inflexible, sequencing of production firings can be brought
about Similarly, a tag may be entered into the database with no other information
attached to it Such a tag may serve as a flag to other prod.uctions, either enabling
or inhibiting them from firing.

Some of these flow of control actions may be associated with productions that
also manipulate the problem state with solution operators. Others may be
performed by productions whose only purpose is to set a flag when a particular
condition becomes true. These flow of control operators are peculiar to the PS
implementation of the problem solver. The foreground productions are used to
model a student's solution. The flow of control (ie. background) productions are

not problem-solving operators, and so are not used to model the student's solution.

Background productions could be used to model a student's flow of control, or
problem-solving strategy. It is not necessary, however, for this tutorial system to
place a name on the strategy used by the student It needs only to be able to
follow the problem-solving steps that a student takes. Further detail concerning the

identification of a student's strategy can be found in Burton and Brown (1979).
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For each directive from the student, the tutor performs the foreground problem-
solving steps that are indicated, along with any background steps that are

necessitated by the nature of the problem-solving PS. A detailed explanation of
how this is done is given in the following section.

2.2. Flow of Control in the Interface

When the interface causes a conflict set to be generated from the problem-
solving PS, that conflict set may contain any number of foreground and/or
background productions. For purposes of modelling the student's solution scheme
it is necessary to fire those foreground productions that correspond to the steps
indicated by the directive from the student Although the foreground productions
are the focus of interest, the problem of when to fire the background productions
must also be considered. The Interface implementation must address these two
problems. It must provide for the firing of appropriate foreground productions, as

indicated by the student's directive, while maintaining an appropriate mix of
foreground and background production firings. The flow of control in the interface
is illustrated algorithmically in figure 2-1.

Figure 2-1: The Major Cycle

Repeat
Generate conflict set from problem-solving PS

If All productions are background Then
Choose one

Fire it

Else {et there is some foreground production in the CS
If No text is held in the tutors DB Then

Read the student's text

Weigh the foreground productions in the CS

If One can be chosen for firing Then
Fire the selected foreground production

Else it% no foreground production is indicated by the text *}
If The directive has been executed previously Then

Purge the old directive from the tutors DB

Else {)'c A new directive has just been read *3
Indicate failure to interpret the directive

Until The problem is solved

*}

Once a conflict set has been generated, the algorithm of figure 2-1 has two major
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branches. When the conflict set does not contain any foreground production, then
one of the background productions in the conflict set is chosen and fired. The

more interesting case is that in which there are foreground productions present in
the conflict set

The presence of foreground productions in the conflict set indicates that some

problem-solving operations are applicable in the current state of the problem
solution. The task is then to determine which possible operation the student wants

to have performed, and to fire the foreground production that performs the same
action as that directed by the student. If the student has not already entered a
directive at the terminal then he is requested to do so at this time. The directive is
used to assign a weight to each foreground production in the conflict set. If the
most highly weighted foreground production in the conflict set receives a weight
that is above the threshold required for selection, then that production is fired. The

weighing functions are implemented so that no production is fired more than once
by a given directive.

If no production can be selected for firing then there are two possible actions.
If the directive used for weighing the productions has been used on previous cycles
to weigh other conflict sets, then the directive is simply discarded. Since no
production has been fired, the conflict set on the next cycle will be the same as
that generated for the present cycle. The absence of a directive in the interface's
memory will cause a new directive to be requested from the student. If the

directive used in the unsuccessful weighing of the productions was read into the
interface on the present cycle, then a failure to find an interpretation of the
directive is reported. The directive is discarded, and another will be requested in
the following cycle of the interface algorithm.

2.2.1. Foreground/Background Mix

Background productions provide for the flow of control within the problem-
solving PS. Without the firing of the background productions, tags and flags that
enable foreground productions would not appear in the database. Causing only

foreground productions to be fired in the problem-solving PS may eventually starve

the PS through a lack of the tags and flags normally made available by background

production firing.

The problem of when to fire background productions must be considered
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seriously. There are several straightforward and easily implementable approaches to
this problem.

One approach is to fire foreground productions whenever it is possible to do so.
This is the same as saying that background productions are to be fired only when
no foreground productions can be fired. Such a condition occurs when the conflict
set contains only background productions. This approach can produce the problems
of starvation mentioned above. Foreground productions that would be applicable
save for the absence of the result of some background production may not be
enabled when they are needed for modelling the student's solution.

This solution may still be acceptable since many production systems handle their
control problems by making explicit use of such starvation. They fire foreground
productions whenever possible, and, when it is not possible, they fire a background
production that enables the next phase of the processing. Such production systems
are generally organized so that an uninterrupted series of foreground productions
will fire during each phase. The PS will be suitable for student solution modelling
when the processing phases correspond to necessary divisions within the problem
solution.

A second approach is to fire background productions whenever it is possible to
do so. This would have just the opposite of the starvation effect of the first
proposed solution. The introduction of tags and flags into the database by the
firing of the background productions would cause the enabling of as many
foreground productions as possible. A greater number of enabled foreground
productions helps to ensure that the conflict set will contain the foreground
productions that are needed to model the student's solution. Unfortunately, this
scheme fails for many cases, including the case illustrated in the example of the last
paragraph. The example in the last paragraph describes a system that uses

background productions to cycle to the next phase of the processing when there is
no more foreground work to be done in the present phase. If background

productions are always fired first, then the system may end up cycling through all
phases of the control structure without ever having done any processing. Thus, this

second solution would be acceptable only in a system where the firing of
background productions is dependent on the contents of the database.

A third approach is to fire a mix of foreground and background productions in
the same way that the problem-solving PS would do if left to its own resources.
This stands as a middle ground between the first and second solutions, without the
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dangerous fault of the second. When using a problem-solving PS that uses
starvation as a control mechanism, the behavior of this scheme will be similar to
that of the first proposed solution. However, the first solution will run up against
the noted problems when used with production systems that are controlled by
means other than starvation, while this third solution can not be any worse in that
respect, and should perform better in many cases.

However, there is a major difficulty associated with the third approach. The

problem-solving PS may be organized to move on to the next phase of processing
while the student wants to remain in the current phase. That is, the student wants
to perform actions that would be paralleled by foreground productions in the

current phase while the problem-solving PS has already disabled those productions
and enabled those of the next processing phase. Such a situation would occur if
the system removes a flag that results in the disabling of some foreground
production that would otherwise be applicable. Another possibility is that the
system may have been solving a subproblem by having pushed to a specific set of
productions. Some production then causes it to pop back to the calling PS while
there are still foreground productions in the specific set that are applicable to the
current state of the problem solution.

The algebra problem7solving PS that is being used with the interface conforms to
the control flow by starvation model noted in the discussion of the first solution.
The processing proceeds in phases that focus on a subproblem that must be solved
before the next part of the problem may be attacked. This focusing is achieved by
enabling only those foreground productions that are applicable to the current

subproblem. Foreground productions are responsible for the actual problem

solution. Foreground productions continue to be fired until there are no remaining
applicable foreground productions. When this occurs, background productions that
enable the processing of the next subproblem are allowed to fire.

It can be seen that the first method for selecting the time for firing of

background productions closely matches the control flow of the algebra problem-
solving PS (described above). In the first selection method, when a conflict set
containing foreground productions is generated, all background productions in the
conflict set are ignored But if the conflict set contains only background

productions, then one is chosen and fired. Conflict-resolution for background
productions uses the default method of PSMON, i.e., the list of productions is

treated as an ordered list and the conflict-set production which is closest to the
beginning of the list is chosen for firing.
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2.2.2. Foreground Conflict-Resolution

The heart of the modelling scheme comes into play when the interface has
finished firing background productions. At this point the system will have generated
a conflict set that includes foreground productions from the problem-solving PS.
The next step in the modelling is to determine what the student's next solution step
will be. The interface must then determine which production in the conflict set will
correctly model the student's indicated solution step.

It was decided to monitor the student's solution by observing the natural language
directives that the student types to the interface. The student does not perform the
problem-solving operations himself. Instead, he types directives that indicate what
operations he wants the interface to perform. The system performs the actions
and returns the results to the student. The justification for the use of this method
is discussed in section 3.1.

Choosing a production from the conflict set whose firing will model the student's
solution step amounts to the same thing as conflict-resolution. In this case,

conflicts are resolved in favor of those productions that best model the solution
steps indicated by the student's directive. This method of conflict-resolution using
natural language text is discussed in more detail in section 3.2.

Ultimately, a foreground production is selected from the conflict set and fired. A

single directive from a student may trigger several problem-solving steps. For

example, the student may direct the system to "Move the goal term to the left
hand side of the equation and divide through by 4'. Here, the directive indicates
that first the goal term is to be moved to the left-hand side of the equation and,
second, that each term in the equation is to be divided by four. Because a single
directive may indicate several actions, a directive is retained by the interface until it

has been determined that all indicated problem-solving steps have been executed.
The pseudo-code in Figure 2-1 is helpful in visualizing the interface control
structures that implement this. After the initial foreground production is fired, the
interface may determine that it is time for the firing of more background
productions. Alternatively, there may be other enabled foreground productions that

are indicated for firing by the student's directive. A directive is not discarded until
a conflict set containing foreground productions is generated, and the directive does

not indicate any of the foregrcund productions in the conflict set.
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CHAPTER 3

MODELLING THE STUDENTS SOLUTION

3.1. Monitoring the Student

This chapter discusses the creation and maintenance of an incremental model of a

student's problem solution. There are two basic problems involved. The first is to
decide upon a method of monitoring a student's solution steps so that the tutor
can follow along. The second is to create and maintain a representation of that
solution for use by the portion of the tutorial interface that lends assistance to a

student

The decision of how to monitor a student's solution steps is very important It

will determine the nature of the information that a student must provide to the
interface. This will have a great effect on the way that the interface appears to a

student The main constraint is that of needing to know what operators a student
has applied to arrive at the current problemsolution state. The interface should be
easy for a student to use, and should not interfere with the student's performance
on a problemsolving task.

One possible method of gaining knowledge about a student's solution does not
directly monitor the solution steps. Instead, the steps of a student's solution are
inferred from the starting and ending states. In this method, the student enters the
state of the problem solution each time he wants the tutor to give him help. The

interface would then have to infer the problemsolving steps that were needed to
arrive in the current state. This is similar to the method used in BUGGY (Brown and
Burton, 1978) for diagnosing problems in childrens' arithmetic. An advantage of
this method is that it is not likely to inhibit or alter a student's performance in any
way. Unfortunately, when this method is used with complex problems, it can

require more computation time than is reasonable for interactive tutoring. Another

limitation is the possibility for error in inferring a set of operators. Even if the
system succeeds in inferring the correct set of operators, it may only be able to
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infer a partial ordering over them. A partial ordering would occur when a problem
state is attained through an order independent series of operator applications.

Some of the problems in this method may be overcome by having the student
enter the state of the problem after each step that he performs. In the domain of
algebra problem solving this would amount to retyping an equation anytime that it

has been altered during a problemsolving operation. The system would then be
required to infer only one problemsolving step at a time, provided that the student
never skips any steps. But it is inevitable that steps will be inadvertently skipped.
and results of the combined steps will be provided to the interface. Continually

asking a student to go back and enter intermediate steps would tend to interfere
with his problemsolving behavior. Students would also tend to resist having to
both solve the problem and report each step to the system.

The problem of combined steps could be handled by doing a limited amount of
multistep inferencing. Seeing that the interface will do multistep inferencing, a
student may be tempted into performing more steps between entries to the system.
He will still eventually come up against a cut off point and have to reenter an
equation that combines fewer operations.

Another method is to have the student explicitly state which operations he is

applying, and to what data he is applying them. This method has successfully been
used for other student modelling tasks (Clancey, 1979b), and has the advantage that
it is much simpler than the previously mentioned inferencing techniques. A system
using this method may be configured so that the student's entries to the system
are treated as directives which are applied in the current problem state, and whose
results are then displayed to the student This may help to combat the student's
feeling that providing the system with such detailed information about his problem
solving steps it is a waste of his time. The typed information serves the dual
purpose of directing the system to perform a set of operations, and informing the
tutor of the student's choice of operations.

The use of directives for student monitoring is most simply implemented by having

the student enter keywords that specify the problem steps that are to be

performed. The simplicity of a keyword system also makes it very fast, which is
an advantage for an interactive system such as this. While the keyword scheme

simplifies the implementation, it does so at the cost of increasing the burden on the

student. The student must iearn the set of keywords for the domain, and may have
to learn a new set when the problem domain changes. The time spent learning
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keywords could become a significant fraction of the total time spent learning in the
domain.

An alternative to a keyword system is to allow the student to specify directives in

natural language. Given that the natural language system performs well, it would be
very easy for the student to use. A natural language understanding system is more
complex than a keyword system, and so computation time must be considered as a
factor.

The tutor discussed here has been implemented with a natural language style
interface that uses both keywords and explicit data references to determine what
actions are indicated by the natural language text This task is made easier by the
fact that the expert PS can supply a list of applicable actions from which to
choose. Choosing an action from among the foreground productions supplied by
the expert PS is equivalent to production conflict-resolution. The following section
describes how the text is used to resolve conflicts among the foreground
productions. Correct-resolution allows accurate modelling of the states of a

student's problem solution.

3.2. Conflict-Resolution Using Natural Language Text

Conflict-resolution is the process of selecting from the conflict set a subset of
productions that are to be fired. This section concerns itself only with conflict sets
that contain foreground productions. The interface immediately removes any
background productions from a conflict set that contains foreground productions.
Before conflict-resolution commences, the interface. asks the student to enter a
directive at the terminal, thus, obtaining the line of text to be used in the conflict-
resolution.

The production selection is done by assigning each production a weight and
selecting the production with the highest weight. Certain restrictions which apply to
the selection of the weighted productions will be described later in this section.
The weights are assigned by two distinct checks. The first check is called the
common reference check. The common reference check in the current

implementation is totally independent of the particular problem-solving PS that is

being used, and thus needs no special attention from the supplier of the problem
solver. This independence from the particular domain has the advantage of reducing

the work required to integrate a new domain into the system.
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The common reference weighting method consists of comparing the variable

bindings for the productions with the text of the directive, and looking to find
common references. This system works tolerably well without the second weighing
system. However, it is dependent on the student including direct references to the
items being manipulated by the operation specified in the directive he typed.
Substituting a more liberal matcher for the direct pattern matcher that is currently in

use would further add to the usefulness of this method. The weight assigned to a
production by this check is simply a sum of the number of common references
between the production and the text

The second check is a keyword check. The keyword check uses information,
supplied by the domain designer, that is specific to the particular problemsolving
domain. The information supplied is structured around a list of keywords.
Associated with each keyword is a list containing production names and numbers. If
a particular keyword occurs in the directive, then each production named in the

associated list has its associated number added to its weight A production may be
associated with more than one keyword, and may have a different associated
number for each keyword (see Appendix B). Neither of these two simple weighting
methods alone would be adequate for the natural language task that has been
defined. When both weighting methods are used together, however, the results are
acceptable.

Given that the interface has a conflict set with foreground productions, and a

directive entered by the student, there are three possible actions.

1. If the directive leads to the selection of a production, the production
is fired, the text is retained in STM, and another conflict set is
generated. This allows for the possibility of several actions being
indicated in a single directive.

2. If no production in the current conflict set is indicated by the directive
for firing, and this is the first conflict set to be checked against the
directive, then help is solicited from the student This is the case in
which the student's text makes no sense to the system in the current
state (details further on).

3. If no productions in the current conflict set are indicated for firing,
but the directive has indicated productions to be fired from previous
conflict sets, then all actions indicated by the directive have been
executed. Some sort of reply may be made to the student, the
student's text is discarded, and a new cycle begins. The reply may
inform the student of the current state of the problem solution, etc.

The restrictions concerning production selection (above) are in the form of two
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minimums, or thresholds, that a production must equal or exceed in weight in order
to be selected for firing. These thresholds are given default values in the system.
and may be altered when mating the tutor with various problem-solving PSs. The

first, or new, threshold applies when productions are being compared to a newly
entered directive. The second, or old, threshold applies when a directive has
already been used to select productions from a previous conflict set (see section
5.31. Setting the new threshold lower than the old will allow the system to
grasp at straws when trying to interpret a newly entered directive, while maintaining
a certain hesitation to commit itself to an additional meaning.

In the case that a newly entered directive indicates no production in the conflict
set, several measures may be taken. If the directive may indicate a production of
the problem solver, but that production is not in the current conflict set, then the
interface can allow the problem solver to run under its own control for several
cycles to see if the student is indicating future steps of the solution. If so, the
interface can tell the student that there are several intervening steps, and either
perform them for the student, or ask the student to indicate them to the system.
The latter is useful for teaching situations, and helps verify that the interface has
accurately inferred the student's intentions. If the indicated production is not fired
after the problem solver has advanced several steps, then the help processor can
be called.

If absolutely no productions are indicated by the directive, it is appropriate to
inform the student that the system is at a loss as to how to interpret the student's
input Provisions for assisting the student are detailed in the following chapter.
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CHAPTER 4

PROVIDING ASSISTANCE TO THE STUDENT

4.1. The Benefits of Student Models in Tutoring Systems

Maintaining a model of a student provides a valuable knowledge source for use in
providing tutorial aid. One of the simplest forms of a student model is the

protocol of the student's performance on a task, or set of tasks. A student
protocol allows a tutor to determine the current context in which a student is

working, and what previous states he has visited. A more sophisticated student
model can provide information concerning both what a student does and does not
know, and what erroneous knowledge the student may hold. A very good student
model can even tell something about the strategies that a student is using to
perform the tasks given to him.

Given a model of the student that can supply these types of information, how can
that information then be applied in a tutoring system? The protocol of a student's
problem solving can be used for giving hints to students, wherein the past history
of the student's work is taken into account. The protocol can also be used by a
system to backtrack to previous states and investigate alternative approaches. A

model that can represent what a student already knows can be used to avoid
unnecessary instruction in those areas. A model that points out gaps in a student's
knowledge will help a tutor to concentrate instructional resources where they are
most needed. Incorrectly held knowledge that is identified by a student model will
aid in correcting a student's misconceptions.

It would seem, then, that the presence of a student model would greatly aid
efforts to tutor students. In order to decide what form of student model will meet

the needs of a specific task, it is necessary to find which types of models provide

the various types of information that are useful for tutoring. It will then be
possible to determine how much effort will be required to obtain the types of
information that are needed for the specified task.
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Recording a protocol from an interactive session with a student is a relatively
easy task. The issue that arises with protocols is that of representing the protocol
in such a way that it is easily interpreted by the tutoring system. The desired
representation varies with the nature of the tutoring system under consideration.

A central component of many student models is some method of marking off on
a check list those rules, or bits of information, that a student is thought to know.
This type of modelling is commonly called an Overlay model. The GUIDON system

(Clancey, 1979b) represents knowledge in the form of production rules, and

represents a student's knowledge of some operation by marking the production rule

that the system uses to represent that same operation. The Leeds Modelling System

(LMS) (Sleeman and Smith, 1981) takes a somewhat different approach. It creates a

student model in the form of a production system whose action is intended to be
similar to that of the student whom it models. Thus, the production rules present in

the rule set represent the domain knowledge possessed by the student.

In the LMS, a model is created one rule at a time using what Sleeman and Smith
call the Selective Algorithm. Each skill is individually tested by giving the student a

task that requires that skill, and does not require any other untested skill. As each

skill is tested, a production rule is selected that operates in a manner similar to the

behavior demonstrated by the student The modeller has a choice among many
possible erroneous and correct productions as it tries to match the demonstrated
behavior of the student If the student demonstrates an incorrect knowledge of the
tested skill, then a production is selected that also performs that particular operation

incorrectly. By choosing a production that shows the same incorrect behavior as
the student, the model correctly represents the student's actual performance. Skills

are tested in a predetermined sequence in order to simplify the task of building the
production rule set

The productions are inserted into the LMS student model PS in such a way that
they will be selected for firing under the same conditions as those in which the
student has demonstrated that he would perform the operation represented by the

production. In this way, the LMS not only represents the domain knowledge

possessed by a student, but also represents his ability to apply that knowledge in

different situations. This model also represents the gaps in a student's knowledge,

and the student's incorrectly held knowledge. Thus, it would seem that the LMS

provides a very powerful modelling capability. Its major disadvantage is that it

requires a highly constrained interaction with a student in order to construct the
student model PS.
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The GUIDON system forms a differential model through the use of a domain
expert system. In GUIDON, a differentia( model is constructed by comparing the
behavior of a student with the behavior of a computer system that is an expert in
some domain. When a student makes a choice that is the same as the choice of
the expert system, that is taken as evidence that the student possesses the
knowledge which the expert system deems necessary for making that decision. If a
student makes a choice that differs from that of the expert system, that is taken as

evidence that the student does not possess the knowledge which the expert system

deems necessary for making that decision, or that the student possesses some

knowledge that incorrectly leads him to another conclusion. Differential models have
appeared explicitly in several recent ICAI projects (Burton and Brown, 1979,
Goldstein, 1980). The number of systems using some sort of embedded expert
system for comparison with a student's results is too large to mention. A

differential model can be constructed from any student protocol produced on a
given tutorial system, rather than requiring the constrained environment of LMS, and
thus has a great advantage over the LMS.

The discussion here has introduced differential modelling techniques through the
example of the GUIDON system, although they are necessary for the Leeds

Modelling System as well. To permit the LMS student model PS and the expert PS
to be compared, an expert system in the form of a PS must be available. This

comparison will yield the desired information about the abilities of the student.
Without some standard to compare the student model against, the LMS can not
detect a student's incorrect operations, nor can it determine whether the student
lacks knowledge of some operation.

It would seem, in fact, that differential modelling techniques are essential for
obtaining information about a student's incorrect or missing knowledge. To be able
to determine that it is unlikely that a particular skill is possessed by a student, the
interface has to be able to determine that the student did not use the skill in a

particular instance where that skill would have been appropriate. Some sort of
expert knowledge is required in order to determine this. A differential modeller
would compare the behavior of a domain expert to that of a student to determine
this information. After collecting several instances that indicate that a certain skill is

not possessed by a student, the likelihood that the student does not possesses that

skill can be computed with greater certainty. By similar reasoning, expert knowledge

is also required to determine whether a student possesses incorrect knowledge.

One explanation for the failure of a student to use an appropriate operator is that
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the student may be using a different solution strategy than the expert system.
Knowing the strategy that a student is using would allow a modelling system to be

more certain in attributing a student's failure to use a specific operator to lack of
knowledge about that operator. Burton and Brown (1979) have constructed a
system that is able to determine what strategy a student may be using. This is done

by having a domain expert, or experts, that can solve the same problems using a
variety of strategies. To determine the strategy that a student is using, the system
has only to determine which expert strategy best matches the performance of the
student The system still has to allow for missing or erroneous skills on the part
of the student This could be done in the LMS by providing a collection of expert
PSs for comparison, choosing that which best matches the student model PS.

In summary, it has been stated that producing student protocols is a fairly

straightforward task. Knowledge of the history of a tutoring session should be
reasonably easy to obtain. Information about what a student knows can be obtained

by creating a simple overlay model from the student's demonstrated skills. This

type of model can be constructed by straightforward analysis of a student

protocol. Obtaining most information about the operations that a student does or
does not know requires the use of a differential modeller. A differential modeller
requires a domain expert with which to compare a student's behavior. Constructing

such an expert in a computer system is a formidable task for realistic domains. The

construction of expert systems that has been going on in various Al labs provides a
ready starting point for producing differential modellers for ICAI systems 1. The

determination of a student's strategy requires a great deal of effort. Not only
must there be a domain expert, but the expert must be able to use a wide selection
of strategies. For this reason, it is an even harder problem than differential

modelling.

4.2. Tutoring Strategies

It has been shown that there can be many types of information available to an
ICAI system. Obtaining these different types of information may require differing
amounts of effort in the building of student models. Now that some information
about the sources for these types of information has been presented, it is time to

consider what can be done with this information.

'For instance. Clancey's use of the MYCIN medical expert system in GUIDON.
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The tutorial interface that has been constructed is similar to several coaching
systems (Burton and Brown, 1979, Goldstein, 1980). A coaching system is a

teaching system that occasionally offers hints to a student while the student is

performing some task. However, the tutorial interface is not simply a coaching
system. This interface is intended to be included as a part of a more general
tutoring system, rather than to be used by itself. A computer coach spends most
of its time observing a student's actions. The coaches are designed to occasionally

interrupt a student with suggestions on how to improve his performance. In their
paper on computer coaching, Burton and Brown present a detailed argument

concerning the issue of just when to offer advice to a student

The tutorial interface that has been constructed differs from other systems that
have been termed coaches in several respects. The most obvious is that the other
systems have been designed for game playing environments. They try to help a
student improve his own ability to play some game by offering suggestions about
weaknesses in the student's play. One of the less obvious differences is that a
game is usually forward moving, while backtracking is often useful when solving
algebra problems. The coaching systems spontaneously offer advice when they
deem it proper to do so, while the tutorial interface is currently programmed to
wait for the student to request its help before it will intervene. The tutorial
system's use of student directives to guide the operation of the expert problem
solver differs from the coaching systems which have separate components for the
gaming expert and the game itself. A further difference comes from the
assumption that a student will already know the set of required operations, while the

game coaching systems are specifically designed to teach the required game playing

operations.

While the tutorial interface differs from the coaching systems in many ways, it

also exhibits features that are similar to those of the coaching systems. The

interface follows the student's progress as he solves some problem. If the student
directs the expert to perform an operation that is not possible at the current stage
of problem solving, the interface informs the student of the presence of intervening

operations that must be executed first. When a student requests help from the
tutor, that help may be given at two different levels. .The first level is a hint that
points out some object in the problem that is to be manipulated by the operation
that the expert feels is most appropriate. If the student is still stuck, the interface
will execute the next step for him. It would be possible for the interface to
suggest the operation to the student and have him request the expert to execute
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that operation, but the more direct approach was chosen instead. The interface may
also determine that the student has been working away from the goal, rather than
toward it. In this case, it will backtrack to a previous state that is closer to the
goal, and proceed from that point. The next paragraph will begin the discussion of
how the tutorial interface implements these features.

Using the algebra problem solving PS, it is easy to detect when an operation is
not appropriate in the current state of the problem solving. If the indicated

operation corresponds to a production that is not currently enabled in the expert
PS, then that operation is not appropriate. This method is useful for determining
whether a student's directed operation would be appropriate after some number of
intervening steps. To determine whether intervening steps will enable the indicated
operator, the interface allows the expert to move forward a specified number of
foreground

Background

counted as

operations.

section 5.3.

steps and checks whether the indicated operation was executed.

steps are also executed during this lookahead, but they are not

forward steps because they do not correspond to problemsolving
Specification of the number of steps to look ahead is described in

When a student asks the system for help, the first hint is generated by looking at
the data that is bound by the next production that the expert problem solver would
fire in the current state. One of the referents from this bound data is given to the
student as a hint about what parts of the problem he should be looking at. For the
second level of help, when the system executes the next step for the student, the
interface simply directs the expert to fire the production that it has chosen as most
appropriate.

For the system to be able to do backtracking, it is necessary to define some
measure of how close a given problem state is to the goal state. The definition

used by the tutorial interface is that a problem state's distance from the goal is

equal to the number of foreground productions that the expert PS must fire in

order to achieve the goal from that state. If the student is making progress, then
each of his problem states should be one step closer to the goal state. This is an

approximation, of course, as there is no guarantee that the expert problemsolver
always solves a problem with the smallest possible number of operations.

As a heuristic, the distance of the current state to the goal state can be
computed and compared to the distances of successive previous states to the goal.
If it is found that the successive previous states are not further from the goal than
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the most recent states, then it can be assumed that the current solution path is not
progressing toward the goal. When this is the case, the interface can backtrack
along the solution path until reaching a point where further backtracking will increase
the distance from the goal. If this is not the case, then the solution is progressing
toward the goal and no backtracking is necessary. When backtracking is done, the

interface always goes back to the last step that was seen to be progressing toward
the goal, and then one more. Undoing the last progressive step allows the interface
to then execute that step again, and the result of executing that step will tell the
student how far the interface has backtracked.

Burton and Brown have proposed twelve principles for coaching (figure 4-1),
some of which are applicable to the environment of the tutorial interface. They are

included here to allow a comparison with the tutorial techniques used by the
interface. While the current implementation of the tutorial interface does exploit the
unique potentials of its experimental modelling technique, it has ignored other useful
techniques that have been used elsewhere. This comparison will indicate some of
the useful techniques that may be used to augment the ability of the interface to
help students in a more complete implementation.

Burton and Brown's principle 2 can be adapted to the environment of the -tutorial
interface in the form of a rule that states:.

Only undo a student's work by backtracking if the state to which we
backtrack is a dramatic improvement over the current state.

Principle 9 suggests a corollary:

When backtracking is done, always backtrack to the optimal point.
The interface always backtracks to as near an optimal point as its heuristics will

allow. The interface does not obey the first of these two rules, however.

Backtracking is done regardless of the degree of improvement The methods that

are currently being used would be able to handle this improvement, and it may be
included later.

Principles 3 and 8 suggest that the tutorial interface should have a provision for
allowing a student to undo operations that he has previously performed. This

feature is easily implemented in the interface, since a backtracking feature is already

included. In some sense, this feature is also related to principle 6. It allows a

student to correct his mistakes himself, rather than having the tutor do all the

correction.

Principles 1, 5, and 6 are concerned with the offering of spontaneous advice.



36

Figure 4-1: Burton and Brown's twelve principles*

1. Before giving advice, be sure the Issue used is one in which the
student is weak.

2. When illustrating an Issue, only use an Example (an alternative move) in
which the result or outcome of that move is dramatically superior to
the move made by the student

3. After giving the student advice, permit him to incorporate the Issue
immediately by allowing him to repeat his turn.

4. If a student is about to lose interrupt and tutor him only with moves
that will keep him from losing.

5. Do not tutor on two consecutive moves, no matter what

6. Do not tutor before the student has a chance to discover the game
for himself.

7. Do not provide only criticism when the Tutor breaks in! If the student
makes an exceptional move, identify why it is good and congratulate
him.

8. After giving advice to the student, offer him a chance to retake his
turn, but do not force him to.

9. Always have the Computer Expert play an optimal game.

10. If the student asks for help, provide several levels of hints.

11. If the student is losing consistently, adjust the level of play.

12. If the student makes a potentially careless error, be forgiving. But
provide explicit commentary in case it was not just careless.

* Burton and Brown, 1979

These issues are sidestepped in the current implementation by providing assistance

only when it is requested by the student

It would be possible to congratulate a student's achievements, a la principle 7, by

adding an overlay model to the system. It is currently assumed that the student

already knows the operations required for the problem solutions, and the interface

doesn't model the student's knowledge of operations. Introducing an overlay

model to record which operator applications seem to be causing problems for a
student allows the tutor to congratulate the student when the student seems to have

overcome those problems.
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The tutorial interface does provide multiple levels of hints, as suggested in

principle 10. An expansion to more than two levels would improve the tutor's
abilities. Principle 12 is concerned with providing sufficient explanation of
corrections to errors that a student has made. The only situation in which the
tutorial interface can detect that an operation has been specified when it should not
have been is when it detects a step that is valid, but only after some intervening
step has been performed. All other cases of invalid operators are eliminated by the
assumptions made about the student's prior knowledge. Augmentation of the
interface's differential modeller would allow it to support this principle more
completely.

Principle 11, concerning the difficulty of the student's task, cannot be addressed
directly within the interface. Rather, it would have to be included in a more general
tutoring system that included the tutorial interface. When a student has too much
trouble with the problems he is trying to solve, the general tutor could use an
inductive strategy to find a sequence of problems of increasing difficulty that begins
with a problem that the student can solve and ends with a problem of the sort with
which the student is having difficulties.

Of Burton and Brown's twelve principles, only principles 3, 8, 9 and 10 are
currently supported. The student model used in the tutorial interface can easily
support principle 2 without changing or augmenting the model itself. Support for
principle 11 would come from a larger tutorial system in which the interface would
be embedded. So, without changing or augmenting the student model, the current
interface can support principles 2, 3, 8, 9, 10, and 11, or six out of twelve.
Principles 1, 5, and 6, are sidestepped by providing assistance only when it is

requested by the student.

Principle 7 can also be supported without a great deal of additional effort An

overlay model, as has been noted in the last section, requires few resources to
build and maintain. The expert system included in the interface allows for the
augmentation of the current differential modeller so that it can provide additional

information about what a student does and does not know. The models that
support principle 7 would also be of use in supporting principle 12. However,

supporting principle 12 would require the addition of explanatory textual material
corresponding to the many situations in which each operation may be appropriate.

Principle 4, the last remaining principle, is unique to the gameplaying environment,
and has no parallel in the tutorial interface.
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CHAPTER 5

THE PROBLEM-SOLVING PS

5.1. Features of the PSMON production system monitor

One of the design goals for the Tutorial Interface is that it be easily mated with
any problem-solving PS. The practical constraint is that the problem-solving PS
must be implemented for the same production system monitor as the interface. To

permit the reader to better understand the details of the problem-solving PS that is
used here as an example, this chapter will begin with a discussion of the practical
aspects of the PSMON production system monitor. A more complete description of
PSMON is given in a paper by Rood and Bregar (1980).

Section 1.3.2 included a discussion of the nature of production systems in general.

A complete system consists of an interpreter, a database, and a set of production
rules. The interpreter, or monitor, is controlled in a three-step loop. First, it

identifies that set of productions whose condition parts are satisfied by the current
state of the database. Then the interpreter must chose one or several productions
from the conflict set that are to be fired before iterating the loop. Finally, the

chosen production rules are fired.

In section 2.1.2, some of the special features of PSMON were introduced. The

push and pop mechanism allows the system to make recursive calls to itself. These

recursive calls may involve production rules and/or database memories that differ
from those in use by the calling PS. Also mentioned were the special calling modes
of PSMON. These allow access to the facilities of the interpreter without having to
enter the interpreter loop. Thus the interpreter can generate a conflict set and
return it to the caller, rather than continuing with the interpreter's normal

processing. After choosing one of the conflict-set productions for firing, the

interpreter can be called in a different mode in which it will fire the chosen

production in its correct context
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PSMON is implemented in LISP. Both the production rules and the system
database are represented as LISP structures. Each production has the form outlined
in figure 5-11a). A set of these productions are represented as a list The four
memories of the database, STM, ITM, CV, and ENV, are also represented as lists.
A sample value of STM is shown in figure 5-1(3). The datum at the head of the
STM is a flag which will enable the productions that initialize a new run of the
system. This value is actually used as the initial value of STM for the algebra
problem-solving domain. The NILs serve to pad out the STM to its constant length
of six.

Figure 5-1: PSMON representations

(a) Form of a Product ion (b) Sample STM

(<production name>
IF <list of conditions>
THEN <list of actions> )

((NEW START) NIL NIL NIL NIL NIL)

(c) Sample Production Rule

(GET- VAR -LIST
IF ((A NEW START))
THEN ((SAY (MSG "Type in the variables for your problem: "))

(LISTEN)
(SAY (MSG T) ) ) )

5.1.1. Matching Production Conditions

A production system monitor includes a matcher with which it compares parts of
production rule conditions to the various database memories. The matcher used by
PSMON treats the list of conditions in a production rule as a conjunctive set. Every

condition in the list must be satisfied or the match will fail.

The matcher needs to know which of the memories in the database should be
matched against a given condition. In PSMON, this is handled by each condition
having an explicit flag that identifies the memory that is to be used for matching.
Figure 5-1(c) shows a production rule from the algebra problem solver. The rule

GET-VAR-LiST is one of those which match the value of STM that is shown in 5-



40

1(b). The condition list has only a single condition. The letter 'A' as the first atom
of that condition indicates that the condition is to be matched against STM. The

letter 'A' stands for Active memory. The other two allowable flags are 'I' for
Intermediate-term memory, or ITM, and 'E' for Environmental memory, ENV. No

explicit provision was made for matches against LTM because it is assumed to be
constant throughout the duration of PS execution.

A production condition, excluding the flag that specifies the memory to be
matched, is simply a temp /ate that is to be matched by a memory element. Ignoring

the memory flag of the condition in the GET-VAR-LIST production, what remains is
the template (NEW START). Matching this to the first element of the STM shown in
part B is a relatively simple task. Any atom in a template, except the atom '?', will
be used for a literal match against atoms in the elements of the indicated memory.
The atom '?' acts as a wild card by matching any single atom in a memory
element

Lists that appear in the template are given special treatment. One of the special
uses of lists is for the binding of matched values to labels, and for the retrieval of
those bound values. The binding and retrieval operators are always used in the
form (<operator> <label >). There are two binding operators in PSMON, '>' and
'n>'. The operator '>' is like the wild card '?', except that it causes the matched
arbitrary value to be bound to the specified label. The operator 'n>' is slightly

different, in that it causes the list of all remaining data in the memory element to be
bound to the variable. Figure 5-2(a,b) illustrates the use of PSMON's binding
facility. The binding operators are complemented by the two retrieval operators 1<'
and /*<'. One use of the retrieval operators is shown in figure 5-2(c,d). Notice

that '44.<' causes the bound list to be spliced into the surrounding form, rather than
substituted as a list As was mentioned in section 1.3.2. the retrieval of bound
values may take place anywhere in the production after the point at which the value
is bound.

There are still two remaining interpretations of list forms that appear in templates.
If the list form is a call to a LISP function, then that function will be evaluated. If

the function returns the value NIL, then the match will fail. The matching process

will continue if a non-NIL value is returned. The value of a function call will be
treated as a boolean value which is used to determine whether the condition is

satisfied or not The matcher will otherwise ignore the function call. It will not be
used to match items from the database. if the list form is not a PSMON binding or
retrieval operator, and it is not a function call, then PSMON will try to literally match

it against forms in the database.
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Figure 5-2: Value Binding and Retrieval

(a) Binding Using the '>' Operator

The Condition Template: (GOAL (> GOAL-VARIABLE))

Will Match the Memory Element: (GOAL A)

And Cause the Binding: GOAL-VARIABLE has the value 'A'

(b) Binding Using the '' >' Operator

The Condition Template: (VARIABLES (*> VARIABLE-LIST))

Will Match the Memory Element: (VARIABLES A B C)

And Cause the Binding: VARIABLE-LIST has the value (A B C)

(c) Retrieval Using the '<' Operator

With the Binding: GOAL-VARIABLE has the value 'A'

The Condition Template: (GOAL (< GOAL-VARIABLE))

Will Match the Memory Element: (GOAL A)

(d) Retrieval Using the '*<' Operator

With the Binding: VARIABLE-LIST has the value (A B C)

The Condition Template: (VARIABLES (*< VARIABLE-LIST))

Will Match the Memory Element: (VARIABLES A B C)

When the condition part of a production rule is found to be satisfied, the memory
elements used in matching it are brought to the front of the STM. As was
mentioned in section 1.3.2, this feature insures that STM contains those memory
elements that have been most recently accessed. It is assumed that for a given
memory accesses, recently accessed memory elements are more likely to be

accessed than memory elements that have not been accessed recently. Keeping the

most recently accessed memory elements in STM allows for a short search of only
the STM, rather than a longer search of all of memory, when the memory elements

are needed again.

The example shown in figure 5-3 shows a complete production rule that uses a
somewhat tricky binding and retrieval. If the operator ' * <' had been used to splice
the list of variables in the call to ISVARLIST, then ISVARLIST would have had to

have been written to accept a variable number of arguments. Instead, the operator
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'</ allowed the list of variables to be directiy substituted into the call. The

retrieval operators may be nested to any level in any part of the condition or action
lists.

Figure 5-3: The Production GET-GOAL-VARIABLE

(GET-GOAL-VARIABLE

I F ( (A HEAR (*>, VARS) (ISVARLIST (< VARS) ) )
(A NEW START))

THEN

((SAY (MSG "Ok , which variable must we solve for?
(REPLACE (A NEW START) (OLD START))
(REPLACE (A HEAR (*< VARS)) (VARS (*< VARS)))
(ITMSAVE (VARS (*< VARS)))
(L I STEN)

(SAY (MSG )

The Condition Template:

Will Match the Memory Element:

And Cause the Binding:

With the Binding:

The Condition Template:

Will cause evaluation of:

The Condition Template:

Would cause evaluation of:

(A HEAR (*> VARS))
(HEAR A B C)
VARS has the value (A B

VARS has the value (A B
(A HEAR (*> VARS) (I SVARL 1ST

(ISVARLIST (A B C))

(A HEAR (*> VARS) (ISVARLIST
(I SVARL 1ST A 9 C)

U)

(< VARS)) )

(*< VARS) ) )

5.1.2. Evaluating Production Actions

The elements of the action list of a production have the form of LISP function
calls. The actions are processed as a sequential list, the first action in the list being

the first action to be processed. Although the form of the elements are like those

of function calls, they need not actually refer to any extant LISP functions. Of the

actions in the production GET-GOAL-VARIABLE in figure 5-3, only ITMSAVE and

LISTEN are calls to LISP functions. REPLACE and SAY are utilities provided by

PSMON. The difference between utilities and functions will be explained shortly.

There are three ways in which PSMON may process an action. The action may be
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a utility, a function call, or a literal. The first step in processing any of the three
types of actions is to splice or substitute any indicated bindings into the action.
The binding operators, ' >' and ' * >', have no meaning in the action part of a
production, since no matching is taking place. Values may still be bound in actions
by using the monitor utility named BIND.

Utilities may be considered as virtual functions that have rapid access to the
internal data structures of the monitor. To the designer of a set of productions,
the only difference between a utility and a function is that a utility can not be used
other than as a production action. The processing for functions and utilities

consists of making the indicated substitutions and then executing the function, or
virtual function. If the first atom of an action does not correspond to any known
function or utility, then the action is taken as a literal which is simply inserted at the
head of the STM. A summary of the PSMON utilities appears in figure 5-4.

5.2. The Algebra Problem Domain

The algebra problem solving PS is divided into three parts. These parts are named

PROS- SOLVER, SIMPLIFY, and COMBINE. The names actually refer to the atoms on
whose values are stored the lists of production rules (See Appendix C.) The PROB-

SOLVER production set is the entry point for the algebra system. The production

sets SIMPLIFY and COMBINE are invoked by the PSMON push facility from within
PROB-SOLVER. The production set SIMPLIFY manipulates an equation so that the
goal variable is alone on the left hand side of the equation, and has a coefficient of
one. The COMBINE rule set takes two equations which have shared variables and
tries to eliminate one of the unknown variables by combining the two equations.
The whole system is controlled by the productions of the PROS-SOLVER rule set.

Most all of the productions in SIMPLIFY and COMBINE perform algebraic

operations on the problem state. This makes most of the rules in these sets
foreground rules. PROB-SOLVER, on the other hand, contains mostly background

productions. This rule set is responsible for obtaining equations and goals from the

user, and creating subgoals for the other two rule sets.

The remainder of this discussion of the algebra problem solving domain will
include references to specific production names. The casual reader may wish simply

to refer to figure 5-5 to determine whether a production is classified as

foreground or background. The references to production names will be most useful

to those who wish to read the production rule sets shown in appendix C.
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Figure 5-4: PSMON Utilities

(BIND <variable> <value form> ...)
If the value form is a function call, that function will be
evaluated and the resultant value bound to the variable. Any
subsequent value forms will be ignored. If the value form is
not a function call, then the list of all of the value forms will
be taken as a literal and bound to the variable.

(DELETE <literal>)

(MARK <literal>)

(NOTICE <condition

(RECEIVE)

If the literal appears in the STM then the value of STM will be
changed so that it no longer contains that literal.

The form derived by CONSing the atom MARKED to the literal
is made to be the first element of STM.

list>)
The condition list is processed by the matcher. Memory
elements that are matched are subsequently brought into the
STM, or Noticed.

The terminal is queried, and the result is made a part of the
ENV memory.

(REPLACE <condition element> <literal>)
The condition element is processed by the matcher. If a match
is found, the matched memory element will be replaced by the
literal, and placed in STM. Bound variables are substituted into
the literal before processing.

(SAY <value form >)

(SEND <literal> ...)

(SHOVE <literal>)

The value form is taken as a literal, and printed to the user
terminal. This utility has been hacked for this system, so that
it will evaluate the functions MSG and MAPC if they appear in
the value form.

A list will be made of the literals, and that list will be made an
element of ENV.

The literal is made to be an element of STM.

In its usual operation, the production system first gathers data about the problem,
via the rules GET-GOAL-VARIABLE, GET-VAR-LIST, and REQUEST-INFO-ABOUT-A-

GOAL. From this point, the nature of the problem determines what will be done
next If the problem is not simplified in terms of the goal then the BEGIN-
SIMPLIFICATION rule invokes the SIMPLIFY rule set to achieve that condition. If a
simplified equation contains unknown variables on the right hand side, then one of

the unknown variables is chosen as a subgoal. The productions NOTE-VAR and
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Figure 5-5: Production Names from Algebra Rule Sets

PROB-SOLVER

GET-GOAL-VARIABLE background
GET-VAR-LIST background
NOTE-MAIN-GOAL background

BEGIN-SIMPLIFICATION background - invokes SIMPLIFY
IS-SIMPLE background

NOTE-RESULT background
RETURN-TO-SUPERGOAL background

REPORT-RESULT background

SUBSTITUTE FOREGROUND

TWO-EQUATIONS-CAN-BE-COMBINED background invokes COMBINE
RECALL-RESULT background

MAKE-VAR-GOAL background

NOTE-VAR background

NO-NEW-INFORMATION background

GET-NEW-INFORMATION background

REQUEST-INFO-ABOUT-A-GOAL background

SIMPLIFY

COMBINE-TERMS-FROM-OPPOSITE-SIDES FOREGROUND

COMBINE-TERMS-ON-LEFT-SIDE FOREGROUND

COMBINE-TERMS-ON-RIGHT-SIDE FOREGROUND

MOVE-GOAL-TO-LEFT-SIDE FOREGROUND

ISO-GOAL-ON-LHS FOREGROUND

REDUCE-GOAL-TERM FOREGROUND

RETURN-TO-SOLVE background

COMBINE

ALIGN-EQUATIONS FOREGROUND

FIND-VARIABLE-TO-ELIMINATE FOREGROUND

MAKE-COMPLEMENTARY-EQUATIONS FOREGROUND

RULE-TO-SUBTRACT-EQUATIONS FOREGROUND

EQUATIONS-THE-SAME background

ELIMINATE-TERMS-WITH-ZERO-COEFFICIENT FOREGROUND

MAKE-VAR-GOAL are responsible for the creation of new subgoals. If no

information is available about the subgoal then REQUEST-INFO-ABOUT-A-GOAL

requests that an equation containing the subgoal be given to the system.

Information from a satisfied subgoal may be used either by substituting the value of
the subgoal variable into the parent equation, via SUBSTITUTE, or by TWO-
EQUATIONS-CAN-BE-COMBINED invoking the COMBINE rule set to combine two
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equations with the same variables into a new equation with one less unknown
variable.

The PROB-SOLVER PS performs a means-ends decomposition of problems into
subproblems (Bregar, Farley, and Lantz, 1982). Although the productions of PROB-
SOLVER are specific to the algebra domain, the strategy that they embody is

independent of the domain. The background rules of the PROB-SOLVER PS include

a set of problem-solving meta rules that execute a means-ends strategy. Since the

tutor needs to model a student's solution steps, but and not his strategy, only the
foreground productions are used for student modeling. If identifying a student's
strategy was required, then it would be necessary to make use of the background
meta rules as well.

The nature of the action of the SIMPLIFY production system is suggested by the
names of the productions that are included in it (see figure 5-5). When the default
conflict-resolution of PSMON is used, the productions are treated as an ordered
list. The production that is fired is the first production from the list whose
condition part is satisfied. In the SIMPLIFY production set, terms are combined
within the equation whenever it is possible to do so. The first three productions in
the rule set identify themselves as the productions responsible for this behavior.
When no more combining can done, the goal term is brought to the left-hand side
of the equation, all other terms are removed from the left side, and the coefficients
are adjusted so that the goal term is left with a coefficient of one. When this
state has been reached, control is returned to the invoking PS via the pop
mechanism.

The action of the COMBINE rule set is also reflected in the names of its

constituent productions. As is indicated by the first production name, the first step
of the COMBINE rule set is to align the terms of the equations. In this step, the
equations are rewritten so that each equation has all of its terms on the left hand
side. The terms are sorted by the names of the variables in them so that the
equations are easier to compare to each other. The next step is to find a variable
to eliminate. The variable must be common to both equations, and must not be a
goal variable. The equations are then modified so that the terms containing the
variable to be eliminated each have the same coefficient. This is done so that the
subsequent subtraction of one equation from the other will produce a result that
does not contain the selected variable. Following the subtraction of the two
equations, terms with coefficients of zero are removed from the result, and control
is returned to the invoking PS.
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The algebra problem solver uses a tagged data formalism. Each element in the
database has a first atom which acts as a tag. Tags are recognized only by the
specific productions that are designed to deal with the information in the tagged
element Referring to the productions in the appendix, the reader will notice that
many of the production conditions specify an explicit match for such tags as
SIMPLE, GOAL, INFO, and RESULT.

Input to the system is done with the LISP function LINEREAD, which reads a
series of atoms terminated by an ASCII NEW-LINE character. Equations are

interpreted by a recursive descent parser and converted to an internal format, as in
figure 5-6.

Figure 5-6: Algebra Equation Representation

The equation

4/3x+8y-3=2z-y

is internally represented as the LISP expression

(((+ (4 / 3) x) (+ (8 / 1) Y) (- (3 / 1) ) )

( (+ (2 / 1) Z) (- (1 / 1) Y) ) )

5.3. Mating an Expert PS with the Tutorial Interface

When mating an expert PS with the tutorial interface, the PS designer is required
to provide values for two variables; SPECIAL and FOREGROUND. The value for each
of these variables will be a list of production names. The variable SPECIAL has a
list of the names of those productions that use the PSMON push or pop facilities,
or do input from terminal or file. These are all actions that require special

treatment when the tutor is looking ahead to possible future states of the problem
solution. If the tutor, while looking ahead, were to fire a production that queried
the terminal, the student would then receive a request for information that had
nothing to do with the current state of his problem solving.

The variable FOREGROUND has a list of the names of those productions that
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correspond to operations that the student is expected to specify in his directives.
This list is used by the tutor to differentiate between foreground and background
productions. Examples of the values for SPECIAL and FOREGROUND for the algebra
PS are shown in figure 5-7.

Figure 5-7: Required Variables With Sample Values

Variable SPECIAL

Explanation Production Name

pop RETURN-TO-SOLVE

input GET-GOAL-VARIABLE

input GET-VAR-LIST

push BEGIN-SIMPLIFICATION

pop REPORT-RESULT

input REQUEST-INFO-ABOUT-A-GOAL

push TWO-EQUATIONS-CAN-BE-COMBINED

input NO-NEW-INFORMATION

pop EQUATIONS-THE-SAME

pop ELIMINATE-TERMS-WITH-ZERO-COEFFICIENT

Variable FOREGROUND

Production Name

COMBINE-TERMS-FROM-OPPOSITE-SIDES

COMBINE-TERMS-ON-LEFT-SIDE

COMBINE-TERMS-ON-RIGHT-SIDE

MOVE-GOAL-TO-LEFT-SIDE

ISO-GOAL-ON-LHS

REDUCE-GOAL-TERM

ALIGN-EQUATIONS

FIND-VARIABLE-TO-ELIMINATE

MAKE-COMPLEMENTARY-EQUATIONS

RULE-TO-SUBTRACT-EQUATIONS

ELIMINATE-TERMS-WITH-ZERO-COEFFICIENT

SUBSTITUTE

Other than these two required variables, all system variables have default values.

The tutor is able to perform correctly, and somewhat usefully, with the defaults
alone. As described in section 3.2, running in this simple mode causes interpretation
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of directives to be done only through the recognition of common references
between directives entered by the student and bindings made by the problem-
solving PS. The performance will be greatly enhanced, however, when a keyword
list is provided with which the remainder of the directive interpretation facility may

be driven. The name of the variable whose property list is the keyword list is

FUNCT:KEYWORDS-PROP-LIST. The form of the keyword list is illustrated in figure
5-8. Including background productions in a keyword list will not have any meaning

since only foreground productions are considered for selection by directives. The

keyword list used with the algebra PS is included in appendix B. The default
keyword list is NIL.

Figure 5-8: Form for Keyword List

( <keyword> ((production name> <numeric weight>)

)

<keyword> ( (product i on name> <numeric weight>)

)

To simplify the use of the keyword system, the student's directive is

preprocessed before the keyword search is performed. During preprocessing, all

space characters in the directive are preserved and new spaces may be introduced.

The added spaces are used to separate mathematical symbols from other text For

example, APPLES+ORANGES would become APPLES + ORANGES after the

preprocessing. This separation of mathematical symbols from object names

simplifies later matching stages.

The second stage of the preprocessing is meant to reduce the number of
keywords that need be defined. It works by converting various operator references

into a common form. The symbol ' +' and any atom beginning with the letters
'ADD' will be converted to the atom PLUS. Thus, the words ADD, ADDITION,
ADDED, and PLUS are all detectable by the single keyword PLUS. Similarly, and

atoms beginning with ' SUBTRACT' become DIFF; and atoms beginning with
'MULTIPL' become TIMES; and 'I' and atoms beginning with 'DIVI' become

QUOTIENT.



50

Another, much simpler, list of keywords is the list of those words that will cause
the tutor to give aid to the student. This list is kept as the value of the variable
FUNCT:ASSISTANCE-KEYWORDS, and has the default value (HELP WHAT WHY).

The two remaining system variables are used to determine the minimum total
weights that must be assigned by the directive interpretation mechanism in order for

productions to be selected for firing. Each of the values is simply a number
corresponding to a minimum required weight The difference between the use of
the two minimum weights is that one is used when selecting a first production for
firing from a directive, and the second is used when selecting a production for
firing when the directive has already caused at least one previous production firing.
The purpose of the two minimum weights is to allow the system to extract one
operation from a directive fairly easily, but to be more hesitant about finding
indications of more than one operator in a directive.

The first, and always smaller, weight is the number kept on the atom FUNCT:MIN-

SCORE-TO- CHOOSE -ONE. The default value for the first minimum weight is one.
The second minimum weight is kept as the value of the atom FUNCT:MIN-SCORE-
TO-CHOOSE-MORE, and has the default value three. When assigning these minimum

weights, the interaction between the minimum weights and the weights assigned by
the keyword list must be taken into account' If the keyword list assigns weights on
the order of ten, the default minimum weights of one and three will become useless
since any weight assigned by a keyword will immediately satisfy both minimum
weights.

A final consideration for producing an expert PS for use with the tutor is the
granularity of the PS. Ideally, the PS should be written such that each production
performs an operation with complexity similar to that which the student is expected

to specify in his directives. For example, a production that performs an addition
operation might be appropriate for many mathematical experts. For some systems,

however, the designer may wish for the student to enter directives with complexity
on the order of "Now simplify for X." The algebra PS used in the examples for
this thesis illustrates the use of different levels of granularity in the different parts
of the PS. The subsystem COMBINE is written at a high level. For instance, RULE-

TO-SUBTRACT-EQUATIONS performs the operations required to subtract two
equations, all in one step. On the other hand, the SIMPLIFY subsystem is written at

a relatively low level. The production COMBINE-TERMS-ON-LEFT-SIDE performs

only a simple addition or subtraction when it is fired. This great variety is included

in the sample PS for illustrative purposes. An ICAI system intended for classroom
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use might also make use of systems of productions with various granularities. Fine

grain productions could be used for skills that students are just learning while a
courser grain would be appropriate for skills that have already been ascertained.

This chapter has presented an introduction to the PSMON production system
monitor, an overview of the algebra problemsolving domain, and instructions for
mating new domains with the tutorial interface. The PSMON features used by the
algebra system were explained here so that the reader could understand the

operation of the algebra PS. For further information about the features of PSMON,
the reader is referred to Rood and Bregar (1980). This information should be
sufficient for someone experienced in LISP programming to create a new domain
and test it in conjunction with the tutor. Those who are not familiar with the
writing of production systems are advised to first read and understand the operation
of the algebra PS included in the appendix.
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CHAPTER 6

CONCLUSIONS

6.1. Inadequacies and Extensions of the Current System

The tutorial interface has been implemented in order to demonstrate the unique
abilities of its modelling system for tutoring applications. As has been discussed in
section 4.1, there are many types of student models, and each provides its own
peculiar set of information for use in tutoring. While the current implementation of
the interface only demonstrates those features that are unique to its particular

student modelling system, it can easily be extended to include other useful features
as well.

A simple addition to the current interface is suggested by looking at the

comparison, in section 4.2, of the current tutorial interface with Burton and Brown's
twelve coaching principles. By changing the stopping condition for the backtracking
facility it is possible to change the backtracker to undo a student's work only if it

will lead to a significant improvement in the solution. This is as easy as changing
the value of the constant that the backtracker uses when determining whether the
distances of two states to the goal differ by enough to go on with the

backtracking. One can imagine more sophisticated modifications to the backtracking

function that would allow it to look beyond its current stopping point in order to
get a more global picture of the progress of the solution. Even this more
sophisticated modification would be little trouble to implement.

Although the interface does use an expert system for comparison with a

student's solutions, it does not generate all of the data that a differential modeller
is capable of. Augmentation of the modelling system to provide data about the
strengths and weaknesses in a student's skills would eliminate the need for the
assumption that the student already possesses all of the skills required to solve the

problems in the problemsolving domain. It would then be possible to respond to
Burton and Brown's principles 7 and 12, both of which need this additional data.
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Principle 7 is concerned with using information about a student's weaknesses to
allow the offering of congratulations when the student overcomes his problems.
Principle 12, concerning the proper way to discuss a student's errors, suggests that
the system might be able to use information about a student's strengths and
weaknesses to determine when he has made a careless error. Information about a
student's strengths and weaknesses may be used locally, within the interface, or
passed on to a larger tutorial system in which the interface is included.

An improvement that might be made to the system is to have it spontaneously

offer advice, rather than requiring a student to ask for it Spontaneous advice

might be appropriate when the interface has detected that the student is not making
progress toward achieving the problem goal. An augmented differential model
would allow the interface to determine when the student had a problem with some
operation. The interface could then offer advice if a student seemed to be having
trouble at a point in the problem solution where the problematic operation was
required. Providing spontaneous advice would, of course, open the set of problems

concerning when to offer advice. Burton and Brown's principles 1, 5, and 6 are
related to this topic.

The simple natural language style interface that is used by the interface is one
candidate for improvement. It was designed to be easy to implement, and to use
few system resources. One way to improve it would be to completely replace it
with a sophisticated natural language subsystem. Short of this, there is still room
f or improvement A more sophisticated matcher can be used for finding common
references between student directives and data bound by applicable foreground
productions. This match is currently done by the LISP function EQUAL, which tests

whether two LISP structures look exactly alike. A matcher that knows about the
internal data representations used by the expert PS could improve the performance

of the system. This was not included in the original implementation because the

author was trying to remain as independent of the problem-solving domain as
possible. The experience of the author in implementing the system has shown that
there are many trade offs between independence from the problem domain and the

quality of the performance of the system.

A problem that crops up from trying to use an expert problem solver that was
not specifically written to run with the tutorial interface is that it is possible for the

nature of the expert PS to limit the strategies that a student is able to use to
achieve the goal. An example of this problem is shown in the protocol in figure 1-

1, paragraphs 14 through 17. The preconditions for the REDUCE-GOAL-TERM
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production of the SIMPLIFY production set require that the goal term be on the left
side of the equation. Looking at the REDUCE-GOAL-TERM production in appendix

C, it can be seen that the expression (ISTERM LEFT (< GOAL-VAR) (< EON)) in the
condition part is responsible for this behavior. Only after this condition is satisfied
can the coefficient of the goal term be reduced to one. This type of problem can
only be solved by ensuring that expert problem solvers are written in such a way
that they avoid this kind of restriction.

In order to achieve the best results, the design of the problem-solving PS should
take into account the nature of the tutorial interface. Many of the above mentioned

problems concerning the use of the expert PS may be alleviated by proper concern
for the design of the domain expert. Care must be taken in order to avoid
constraining the student to the same solution strategy as that used by the expert PS.

The expert PS must be designed so that the correct production will be enabled for
firing at a particular stage of the problem solution. The design should also allow

that all other productions that are applicable in the same problem state are also
enabled for firing. When the expert PS is running without dependence on the
interface, the conflict-resolution scheme will be responsible for determining the
single correct production for firing. When the expert PS is being controlled by the
interface, the enabling of all productions associated with applicable operators will

allow the interface to chose the correct interpretation of a student's directive.

When constructing a problem-solving PS, it may be possible to solve problems in
a particular domain without the use of certain common operators. The absence of

these operators will limit the possible strategies open to students, however. It is

advisable to include a large set of operators in the problem-solving PS so as not to
limit the possible solutions open to the student. Any included operators not
required by the problem-solving PS should be included in such a way that they are

enabled in the appropriate situations, but are not chosen during conflict-resolution
when the expert PS is running independently.

It is also important that the production rules that embody the domain operations
should be able to apply the operators at a granularity appropriate to the level of
prospective students. To provide a range of production granularity one can include

several subsets of productions that all accomplish the same task, but at different

levels of granularity. As above, conflict-resolution for the independently running

expert PS will always choose one particular subset of these productions, but all
appropriate productions will be enabled at each problem step. By this means many

levels of granularity, and student ability, may be accommodated simultaneously.
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One can see how it would be possible to include productions that embody
erroneous operations, similar to the Leeds Modelling System or the BUGGY program,

to model deficits in a student's repertoire. In order to detect subtle differences
between correct and incorrect operator applications, it would probably be necessary

to replace the current natural language style interface with a more exacting method.
A possible replacement would be an interface that required the student to enter his
results after each operation.

6.2. Summary and Conclusions

6.2.1. What was done

The implementation of the tutorial interface has served as a useful experiment.
The interface includes three parts; a natural language style interface, a problem-
solving PS, and an advising package. The expert PS serves both as a model of the
student's solution and as a source of expert problem-solving knowledge for
advising. The natural language interface is used to convey information from the
student for use in maintaining a model of the student's solution. Information from
the expert PS is used by the advising system to provide help to the student.

The natural language interface was designed to be fast, and is not always accurate.

A student's directive is used to decide which applicable production from the
problem-solving PS is to be fired on the next step. Using the conflict set to
determine the intent of the directive, supplies an expectation of the student's intent
for use by the natural language interface. The use of common references between
a student's directives and the data bound by productions in the expert PS is

another interesting feature of this part of the system.

The tutorial strategies employed by the advising component are intended to

demonstrate the unusual capabilities afforded by the tutor's modelling scheme. The

use of an expert system that can operate in the same context as the student allows
the system to look ahead of the student's current problem-solving step. This is

used in advising the student concerning his next operator application. It is also used

to detect when a directive indicates an operation that is not currently applicable due

to the absence of some intervening step, or steps. Generating hints using data that

has been bound by the productions of the problem-solving PS is also demonstrated.

The algebra problem-solving PS fills the position of the computer expert system
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in the interface. The system requires a problemsolving expert that is implemented
as a production system. The tutorial interface derives its name from its role as a
tutor that functions as an interface between a student and an expert PS.

6.2.2. What was learned

The tutorial interface has been successful in providing a source of information for
advising students during the solution of multistep problems. The single problem
solving PS serves both as the model of a student's solution, and as a source of
expert problemsolving knowledge for tutoring. This configuration allows the expert
PS to operate in the same context as a student who is solving a problem.

It is necessary to tailor an expert PS to avoid limiting the possible solution
strategies open to a student. Care must be taken to include all operations that a
prospective student may require to implement his solution strategy. The operations

should be made available at several levels of granularity in order to accommodate a
wide range of students.

The use of common references as a source of information for interpreting

student directives seems to be a viable approach. When a foreground production in

the expert problem solver refers to some part of the problem that is also referred
to by the directive from the student, then the production and the directive have a
reference in common. It is more likely that a directive indicates the operation of a
production with which it shares a common reference than of one with which it

does not have any references in common. This method is far from able to stand
alone as an interpreter of student directives, but its use as one of several

information sources seems to be warranted.

The experimental version of the tutorial interface is inadequate for classroom use,
but there should be few problems encountered in augmenting the interface to make
use of additional information sources. Most noteworthy is the ease with which
additional differential modelling techniques may be applied. The interface already

includes an expert knowledge source for use in a differential modeller. The

representation of a student's strengths and weaknesses in a differential model,
along with the present capabilities of the tutorial interface, would be most helpful in

creating a useful tutoring system. These information sources would provide a solid

base on which to implement a collection of tutoring and coaching. strategies. it is

recommended that an augmented version of the tutorial interface be included as a
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component of a more complete educational computer system for purposes of
testing its viability for classroom use.
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APPENDIX A
TUTORIAL INTERFACE PRODUCTION SYSTEM

(DEFY LTM

(TUTOR:KEEPING-BOOKS

IF ((A BACK-GROUND (*> CONFLICT-SET))

(FAIL A PROD (*> PROD-TO-FIRE)))

THEN

((SELECT-ONE (*< CONFLICT-SET))

(DELETE (A BACK-GROUND (*< CONFLICT-SET)))))

(TUTOR:READ-USERS-TEXT

IF ((A FORE-GROUND (*> CONFLICT-SET))

(FAIL A TEXT (*> TEXT)))

THEN

((READ-USERS-TEXT)

(SHOVE (NEW-TEXT-FLAG))

(CLEAR-UNIQUE-FIRING)))

(TUTOR:WEIGHT-PRODS

IF ((A FORE-GROUND (*> CONFLICT-SET))

(A TEXT (*> TEXT))

(FAIL A DONE-WITH-TEXT))

THEN

((WEIGHT-PRODS (*< CONFLICT-SET) (*< TEXT))

(FREE-RUN--DECREMENT)

(DELETE (A FORE-GROUND (*< CONFLICT-SET)))))

CIUTOR:RESOLVE-CONFLICTS1

IF ((A PRODS (*> PRODS))

(A NEW-TEXT-FLAG))

THEN

((RESOLVE-CONFLICTS (*< PRODS) T)

(DELETE (A PRODS (*< PRODS)))))
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(TUTOR:RESOLVE-CONFLICTS+

IF ((A PRODS (*> PRODS)))

THEN

((RESOLVE-CONFLICTS (*< PRODS) NIL)

(DELETE (A PRODS (*< PRODS)))))

(TUTOR:STACK-MEMORIES

IF ((E A (*> MEMS)))

THEN

((SETQ MEM-STACK (CONS (CONS 'A '(< MEMS)) MEM-STACK))

(DELETE (E A (*< MEMS)))))

CTUTOR:ERROR

IF ((A DONE-WITH-TEXT)

(A NEW-TEXT-FLAG)

(A TEXT (*> TEXT)))

THEN

((DELETE (A NEW-TEXT-FLAG))

(DELETE (A TEXT (*< TEXT)))

(DELETE (A DONE-WITH-TEXT))

(USER-ERROR (*< TEXT))))

CTUTOR:PUSH-AND-FIRE

IF ((A PROD (*> PROD-TO-FIRE)))

THEN

((DELETE (A PROD (*< PROD-TO-FIRE)))

(DELETE (A NEW-TEXT-FLAG))

(PUSH- AND -FIRE (*< PROD-TO-FIRE))

(COND [ FUNCT:POPPING

(SETQ FUNCT:MASTER-STM STM)

(SETQ FUNCT:MASTER-ITM ITM)

(SETQ FUNCT:MASTER-ENV ENV)

(SETQ STM (FUNCT:GET-STM))

(SETQ ITM (FUNCT:GET-ITM))

(SETQ ENV (FUNCT:GET-ENV))

(SETQ PSMON:PSTRACE FUNCT:POPPING)

(SETQ FUNCT:POPPING NIL)

(DEACT)])))

(TUTOR:CLEANUP-AND-REPLY

IF ((A DONE-WITH-TEXT)

(A TEXT (*> TEXT))

(FAIL A NEW-TEXT-FLAG))

THEN

((DELETE (A TEXT (*< TEXT)))

(DELETE (A DONE-WITH-TEXT))))
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CTUTOR:GEN-CONFLICT-SET

IF ((FAIL A (> FLAG) (NOT (EQUAL '(< FLAG) 'TEXT)) (*> DUMMY)))

THEN

((GEN-CONFLICT-SET)))

))



63

APPENDIX B
KEYWORDS PROPERTY LIST

(RPLACPLIST 'FUNCT:KEYWORDS-PROP-LIST

'(COMBINE ((COMBINE-TERMS-FROM-OPPOSITE-SIDES 1)

(COMBINE-TERMS-ON-LEFT-SIDE 1)

(COMBINE-TERMS-ON-RIGHT-SIDE 1))

OPPOSITE

((COMBINE-TERMS-FROM-OPPOSITE-SIDES 2))
MOVE

((MOVE-GOAL-TO-LEFT-SIDE 2))

ISOLATE

((ISO-GOAL-ON-LHS 2))

REDUCE

((REDUCE-GOAL-TERM 2))

LEFT

RIGHT

PLUS

DI FF

TIMES

((COMBINE TERMS -ON- LEFT -SIDE 1)

(MOVE GOAL -TO- LEFT -SIDE 1))

((COMBINE-TERMS-ON-RIGHT-SIDE 2))

((ISO-GOAL-ON-LHS 1)

(COMBINE-TERMS-FROM-OPPOSITE-SIDES 1)

(COMBINE-TERMS-ON-LEFT-SIDE 1)

(COMBINE-TERMS-ON-RIGHT-SIDE 1)

(MOVE-GOAL-TO-LEFT-SIDE 1))

((ISO-GOAL-ON-LHS 1)

(COMBINE-TERMS-FROM-OPPOSITE-SIDES 1)

(COMBINE-TERMS-ON-LEFT-SIDE 1)

(COMBINE-TERMS-ON-RIGHT-SIDE 1)

(MOVE-GOAL-TO-LEFT-SIDE 1))

((REDUCE-GOAL-TERM 2))

QUOTIENT

((REDUCE-GOAL-TERM 2))

SUBSTITUTE

((SUBSTITUTE 2))



REPLACE

( (SUBST I TUTE 2) ) ) )
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APPENDIX C
PROBLEM SOLVING PRODUCTION SYSTEM

(DEFY PROB-SOLVER (

(GET-GOAL-VARIABLE

IF ((A HEAR (*> VARS) (ISVARLIST (< VARS)))

(A NEW START))

THEN

((SAY (MSG "Ok , which variable must we solve for? "))

(REPLACE (A NEW START) (OLD START))

(REPLACE (A HEAR (*< VARS)) (VARS (*< VARS)))

(ITMSAVE (VARS (*< VARS)))

(LISTEN)

(SAY (MSG T))))

(GET-VAR-LIST

IF ((A NEW START))

THEN

((SAY (MSG "Type in the variables for your problem: "))

(LISTEN)

(SAY (MSG T))) )

(NOTE-MAIN-GOAL

IF ((A OLD START)

(A VARS (*> VARS))

(A HEAR (> VAR) (ISIN (< VAR) (< VARS))))

THEN

((SAY (MSG "So " '(< VAR) " is our goal variable." T) )

(REPLACE (A HEAR (< VAR)) (GOAL (< VAR) (NIL)))))
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(BEGIN-SIMPLIFICATION

IF ((A SIMPLE (> EQN) (> ALIST))

(A GOAL (> VAR) (> GALIST) (NOTSIMPLE (< EQN) (< VAR))))

THEN

((SAY (MSG "The equation is not simplified in terms" T))

(SAY (MSG "of the goal , so you need to simplify it."))

(PS-PUSH SIMPLIFY TRACEFLAG (LIST 'A STM 'I ITM 'E ENV))

(LIFT-MEMS)

(SAY (MSG T))))

(IS-SIMPLE

IF ((A SIMPLE (> EQN) (> ALIST)))

THEN

((REPLACE (A SIMPLE (< EQN) (< AL1ST))

(INFO (< EQN) (< ALIST)))))

(NOTE-RESULT

IF ((A GOAL (> VAR) (> GALIST))

(A INFO

(> EQN)

(> AL 1ST)

(ISABOUT (< VAR) (< ALIST) )

(ISRESULT (< VAR) (< EQN))))

THEN

((BIND RESULT (RS (< EQN)))

(REPLACE (A INFO (< EQN) (< ALIST))

(RESULT (< RESULT) (< ALIST)))

(SAY (MSG "We see we have determined a result." T))

(SAY (MSG '(< VAR) " is equal to ") )

(SAY (MAPC 'PRINC (VALUEIN (< EQN))))

(ITMSAVE (INFO (< EQN) (< ALIST)))

(SAY (MSG T))))

(RETURN-TO-SUPERGOAL
IF ((A GOAL (> VAR1) (>.GALIST1) (HASPARENT (< GALIST1)))

(A RESULT (> EQN) (> ALIST) OSABOUT (< VAR1) (< ALIST)))

(I GOAL (> VAR2) (> GALIST2) (ISPARENT (< VAR1) (< GAL1ST2)))

VARS (*> VARS)))

THEN

((REPLACE (A GOAL (< VAR1) (< GALIST1)) (OLD (< VAR1)) )

(SAY (MSG "So we return to the parent goal variable, which is "

1(< VAR2)))

(SAY (MSG T))))
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(REPORT-RESULT

IF ((A GOAL (> VAR) (> GALIST))

(A RESULT (> SIDE) (> ALIST) (ISABOUT (< VAR) (< ALIST))))

THEN

((SAY (MSG "Our final result is " 1(< VAR) " equals ") )

(SAY (MAPC 'PRINC (VALUEIN (< SIDE))))

(PS-POP)

(SAY (MSG T))))

(SUBSTITUTE

IF ((A GOAL (> VAR) (> GALIST))

(A INFO (> EQN1) (> ALIST1) (ISABOUT (< VAR) (< ALIST1)))

(A RESULT

(> EXP)

(> ALIST2)

(ISABOUTVARIN (< ALIST2) (< EQN1) Ti)))

THEN

((SAY (MSG "We can substitute ") )

(SAY (MAPC 'PRINC (VALUEIN (< EXP))))

(SAY (MSG " for " (ABOUT (< ALIST2)) T))

(BIND NEWEQN (SUBSTITUTE (< T1) (< EXP) (< EQN1)))

(SAY (MSG "The equation is now ") )

(SAY (MAPC 'PRINC (EQIN (< NEWEQN))))

(REPLACE (A INFO (< EQN1) (< ALIST1))

(SIMPLE (< NEWEQN) (< ALIST1)))

(SAY (MSG T))))

(TWO-EQUATIONS-CAN-BE-COMBINED

IF ((A GOAL (> VAR1) (> GALIST1) (HASPARENT (< GALIST1)))

(A OLD (> VAR2) (> GALIST2) (ISPARENT (< VAR1) (< GALIST2)))

(A INFO (> EQN1) (> ALIST1))

(A INFO

(> EQN2)

(> ALIST2)

(OR [NOT (EQUAL '(< EQN1) '(< EQN2))

[NOT (EQUAL '(< ALIST1) 1(< ALIST2))])

(SAMEVARS (< EQN1) (< EQN2))))

THEN

((SAY (MSG "We remember that we have another equation "))

(SAY (MAPC 'PRINC (EQIN (< EQN2))))

(SAY (MSG T "that has the same variables." T))

SAY

(MSG

"If we combine them we can eliminate one of the non goal terms."

T)

(REPLACE (A GOAL (< VAR1) (< GALISTI))
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(OLD (< VAR1) (< GAL I ST1) ) )

(REPLACE (A OLD (< VAR2) (< GAL I ST2) )

(GOAL (< VAR2) (< GAL I ST2) ) )

(REPLACE (A INFO (< EQN2) (< AL I ST2) )

(COMB1 (< EQN2) (< AL I ST2) ) )

(PS-PUSH COMBINE TRACEFLAG (LIST 'A STM 1 I TM 'E ENV) )

(L I FT-MEMS)

(SAY (MSG T) ) ))]

(RECALL-RESULT

I F ( (A GOAL (> VAR) (> GAL I ST) )

(A INFO (> EQN1) (> AL I ST1) (I SABOUT (< VAR) (< AL I ST1) ) )

(I RESULT

(> EQN2)

(> AL I ST2)

( I SABOUTVAR 1 N (< AL I ST2) (< EQN1) T1) ) )

THEN

( (SAY (MSG "We remember that " (ABOUT (< AL I ST2) ) " is equal to ") )

(SAY (MAPC 'PR I NC (VALUE IN (< EQN2) ) ) ) ) )

(MAKE-VAR-GOAL

I F ( (A GOAL (> GVAR) (> GAL I ST) )

(A INFO (> EQN) (> AL I ST1) (1 SABOUT (< GVAR) (< AL I ST1) ) )

(A NEWVAR (> VAR) (> AL I ST2) ) )

THEN

( ( I TMSAVE (GOAL (< GVAR) (< GAL I ST) ) )

(REPLACE (A GOAL (< GVAR) (< GAL I ST) )

(OLD (< GVAR) (< GAL I ST) ) )

(REPLACE (A NEWVAR (< VAR) (< AL I ST2) )

(GOAL (< VAR) (< AL 1 ST2) ) )

(SAY (MSG "So we will cons i der " (< VAR) " to be our new goa 1 ."

T) )

(SAY (MSG "We must solve for it in order to solve for " (< GVAR)

"." T))

(SAY (MSG "We will remember that goal and go back to it 1 ater ." T) )

(SAY (MSG T) ) ) )
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(NOTE-VAR

IF ((A GOAL (> VAR) (> GALIST))

(A INFO

(> EQN)

(> ALIST)

(ISABOUT (< VAR) (< ALIST))

(NOTENEWVAR (< VAR) (< EQN) V1)) )

THEN

((SHOVE (NEWVAR (< V1) ((PARENT (< VAR)))))

(BIND NEWGALIST (CONS 1(PARENTOF (< V1)) '(< GALIST)))

(REPLACE (A GOAL (< VAR) (< GALIST))

(GOAL (< VAR) (< NEWGALIST)))

(SAY (MSG "We notice that the variable " '(< V1) " appears" T))

(SAY (MSG "in the equation "))

(SAY (MAPC 'PRINC (EQIN EQN))))

(SAY (MSG T))))

(NO-NEW-INFORMATION

IF ((A GOAL (> VAR1) (> GALIST1) (HASPARENT (< GALIST1)))

(A HEAR (> EQN1) (ISSAME (< EQN1) NONE))

(I GOAL (> VAR2) (> GALIST2) (ISPARENT (< VAR1) (< GALIST2)))

(A INFO (> EQN2) (> ALIST2) (ISABOUT (< VAR2) (< ALIST2))))

THEN

((REPLACE (A GOAL (< VAR1) GALIST1))

(OLD (< VAR1) GALIST1)))

(REPLACE (A HEAR (< EQN1)) (OLD (< EQN1)))

(REPLACE (A INFO (< EQN2) (< ALIST2))

(OLD (< EQN2) ALIST2)))

(SAY (MSG "Please type in a new equation about " (< VAR2) T))

(SAY (MSG "that does not contain the variable " '(< VAR1) ": "))

(BIND STUFF (LIST 'HEAR (READEQU)))

(SHOVE (< STUFF))))

(GET-NEW-INFORMATION

IF ((A GOAL (> VAR) (> GALIST))

VARS (*> VARS))

(A HEAR (> EQN) (ISEQUATION EQN)) (HASVAR (< VAR) (< EQN))))

THEN

((SAY (MSG "Ok! We have new information about " '(< VAR) "." T))

(REPLACE (A HEAR (< EQN)) (SIMPLE EQN) ((ABOUT (< VAR)))))))
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(REQUEST-INFO-ABOUT-A-GOAL
IF ((A GOAL (> VAR) (> GALIST)))

THEN

((SAY (MSG "Please input new information about " '(< VAR)))

(SAY (MSG "Type in an equation containing the goal: "))

(BIND STUFF (LIST 'HEAR (EQN-INCLUDING-GOAL (< VAR))))

(SHOVE (< STUFF))

(SAY (MSG T))) )

))

(DEFY SIMPLIFY

(COMBINE-TERMS-FROM-OPPOSITE-SIDES

IF ((A SIMPLE

(> EQN)

(> ALIST)

(SAMEVAR OPPOSITE TERM1 TERM2 (< EQN))))

THEN

((BIND VAR (VARIN (< TERM)))

(BIND MESSAGE

(COND E'(< VAR)

'(MSG "Combining terms from opposite sides involving "

' (< VAR)

T)

ET

'(MSG "Combining constant terms from opposite sides"

T)]))

(SAY (< MESSAGE))

(BIND MOD-EQN (MTERM (< TERM1) LEFT (< EQN)))

(BIND TERM (NEGATE (< TERM1)))

(BIND MOD-EQN

(CTERMS (< TERM2) (< TERM1) RIGHT (< MOD-EQN)))

(REPLACE (A SIMPLE (< EQN) (< ALIST))

(SIMPLE (< MOD-EQN) (< ALIST)))

(BIND EQN-OUT (EQIN (< MOD-EQN)))

(SAY (MSG "produces the equation "))

(SAY (MAPC 'PRINC '(< EQN-OUT)))

(SAY (MSG T))))]
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(COMB I NE-TERMS-ON-LEFT-S I DE

IF ((A SIMPLE

(> EQN)

(> ALIST)

(SAMEVAR LEFT TERM1 TERM2 (< EQN) ) ) )

THEN

( (B I ND VAR (VARIN (< TERM1) ) )

(BIND MESSAGE

(COND (< VAR)

'(MSG "Combining terms on the left s i de involving "

(< VAR)

T)

[T '(MSG "Combining constant terms on the right s i de"

T)]))

(SAY (< MESSAGE) )

(BIND MOD-EQN

(CTERMS (< TERM1) (< TERM2) LEFT (< EQN) ) )

(REPLACE (A S I MPLE (< EQN) (< ALIST) )

(SIMPLE (< MOD-EQN) (< AL I ST) ) )

(BIND EQN-OUT (EQI N (< MOD-EQN) ) )

(SAY (MSG "produces the equation ") )

(SAY (MARC 'PR I NC (< EQN-OUT) ) )

(SAY (MSG ) ) )3

(COMB I NE-TERMS-ON-R I GHT-S I DE

IF ((A SIMPLE

(> EQN)

(> ALIST)

(SAMEVAR RIGHT TERM TERM2 (< EQN) ) ) )

THEN

( (B IND VAR (VARIN (< TERM1) ) )

(BIND MESSAGE

(COND E' (< VAR)

'(MSG "Combining terms on the right s i de involving "

' (< VAR)

T)

ET '(MSG "Combining constant terms on the right s i de"

Tn) )
(SAY (< MESSAGE) )

(BIND MOD-EQN

(CTERMS (< TERM1) (< TERM2) RIGHT (< EQN) ) )

(REPLACE (A S I MPLE (< EQN) (< ALIST) )

(S I MPLE (< MOD-EQN) (< AL 1ST) ) )

(8I ND EQN-OUT (EQI N (< MOD-EQN) ) )

(SAY (MSG "produces the equation ") )

(SAY (MAPC 'PRI NC ' (< EQN-OUT) ) )
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(SAY (MSG T)))) ]

(MOVE-GOAL-TO-LEFT-SIDE

IF ((A GOAL (> GOAL-VAR) (> GALIST))

(A SIMPLE

(> EQN)

(> ALIST)

(BIND TERM (ISTERM RIGHT (< GOAL-VAR) (< EQN)))))

THEN

((SAY (MSG "Moving the goal term to the left side" T))

(BIND MOD-EQN (MTERM (< TERM1) RIGHT (< EQN)))

(REPLACE (A SIMPLE (< EQN) (< ALIST))

(SIMPLE (< MOD-EQN) (< ALIST)))

(BIND EQN-OUT (EQIN (< MOD-EQN)))

(SAY (MSG "produces the equation "))

(SAY (MAPC 'PRINC '(< EQN-OUT)))

(SAY (MSG T))))

(ISO-GOAL-ON-LHS

IF ((A GOAL (> GOAL-VAR) (> GALIST))

(A SIMPLE

(> EQN)

(> ALIST)

(BIND TERM1 (ISTERM LEFT (< GOAL-VAR) (< EQN)))

(NOTALONE LEFT (< EQN))))

THEN

((SAY (MSG "Isolation the goal variable on the left side" T))

(BIND MOD-EQN (ISOTERM (< TERM) LEFT (< EQN)))

(REPLACE (A SIMPLE (< EQN) (< ALIST))

(SIMPLE (< MOD-EQN) (< ALIST)))

(BIND PRINT-EQN (EQIN (< MOD-EQN)))

(SAY (MSG "produces the equation "))

(SAY (MAPC 'PRINC 1(< PRINT-EQN)))

(SAY (MSG T))))
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(REDUCE-GOAL-TERM

IF ((A GOAL (> GOAL-VAR) (> GALIST))

(A SIMPLE

(> EQN)

(> ALIST)

(BIND TERM1 (ISTERM LEFT (< GOAL-VAR) (< EQN)))

(NOTRED (< TERM1))))

THEN

((SAY (MSG "Making the coefficient of the goal term equal to one"

T))

(BIND MOD-EQN (REDUCE (< TERM1) (< EQN)))

(REPLACE (A SIMPLE (< EQN) (< ALIST))

(SIMPLE (< MOD-EQN) (< ALIST)))

(BIND EQN-OUT (EQIN (< MOD-EQN)))

(SAY (MSG "produces the equation "))

(SAY (MAPC 'PRINC 1(< EQN-OUT)))

(SAY (MSG T))))

(RETURN-TO-SOLVE

IF ((A SIMPLE (> EQN) (> ALIST)))

THEN ((PS-POP)))

))

(DEFY COMBINE (

(ALIGN-EQUATIONS

IF ((A INFO (> EQN1) (> ALISTI))

.(A COMB1 (> EQN2) (> ALIST2))

(A GOAL (> VAR) (> GALIST)))

THEN

((DOALIGNEQS (< EQN1) (< EQN2) (< ALIST2) (< VAR))))

(FIND-VARIABLE-TO-ELIMINATE

IF ((A ORDERED (> EQN1) (> ALIST1))

(A COMB2 (> EQN2) (> ALIST2))

(FAIL A ELTERM1 (> TERM))

(FAIL A ELTERM2 (> TERM2)))

THEN

((FNDVAREL (< EQN1) (< EQN2))))
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(MAKE-COMPLEMENTARY-EQUATIONS

IF ((A ORDERED (> EQN1) (> ALIST1))

(A COMB2 (> EQN2) (> ALIST2))

(A ELTERM1 (> TERM1) )

(A ELTERM2 (> TERM2)))

THEN

((DOCCOMPT (< EQN1)

(< ALIST1)

(< EQN2)

(< ALIST2)

(< TERM)

(< TERM2))

(SAY (MSG "We make two complementary equations by multiplying both"

T)

(SAY

(MSG "equations by the coefficients of the term to be eliminated"

T))

(SAY (MSG "in the other equation." T))

(SAY (MSG T))) )

(RULE-TO-SUBTRACT-EQUATIONS

IF ((A READY (> EQN1) (> ALIST1))

(A READY

EQN2)

(> ALIST2)

(NULL (AND [EQUAL '(< EQN1) 1(< EQN2)

[EQUAL 1(< ALIST1) '(< ALIST2)]))))

THEN

((SAY (MSG "We now subtract all of the terms in "))

(SAY (MAPC 'PRINC (EQIN (< EQN1))))

(SAY (MSG T "from all the terms in "))

(SAY (MAPC 'PRINC (EQIN (< EQN2))))

(SAY (MSG T))

(SUBEQS (< EQN1) (< ALIST1) (< EQN2) (< ALIST2))

(SAY (MSG T)))) ]

(EQUATIONS-THE-SAME

IF ((A REDUCED (> EQN) (> ALIST) (TERMSZERO (< EQN))))

THEN

((SAY (MSG "Since all of the terms were zero then they were equal"

T))

(SAY (MSG "and it was not new information." T))

(REPLACE (A REDUCED (< EQN) (< ALIST))

(OLD (< EQN) (< ALIST)))

(PS-POP)))
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(EL I MI NATE-TERMS-W I TH-ZERO-COEF FICI ENT

I F ( (A REDUCED (> EQN) (> AL 1ST) ) )

THEN

( (SAY (MSG "Our result after subtracting the two equations is ") )

(SAY (MAPC 'PRINC (EQIN (< EQN) ) ) )

(SAY

(MSG

T

"in which the term to be el iminated has a coefficient of zero."

T) )

(BIND NEWEQN (ELZERTS (< EQN) ) )

(SAY (MSG "So we eliminate the term to obtain the equation ") )

(SAY (MAPC 'PRINC (EQIN (< NEWEQN) ) ) )

(SAY (MSG T T) )

(REPLACE (A REDUCED (< EQN) (< AL I ST) )

(SIMPLE (< NEWEQN) (< AL I ST) ) )

(PS-POP) ) )

) )


