
Some Improved Encoding and Decoding
Schemes for Balanced Codes *

Jong-Hoon Youn and Bella Bose

Dept. of Computer Science

Oregon State University

Corvallis, OR 97331

{jhyun, bose}©cs.orst.edu

Tel. 541-737-5573

FAX. 541 737-3014

August 13, 2001

Abstract

A binary code of length n is called a balanced code if each codeword contains
exactly Ln/2] (or [n/21) ones and [n/2] (or n/2j) zeros. In this paper, we
give two improved methods for encoding and decoding the balanced codes. The
first one, called improved single map, improves the computation complexity of
the complementation methods, first proposed by Knuth. This method, instead
of complementing one bit at a time as done in Knuth's method, complements
several appropriate bits at a time. Some simulation results show the improvement
of this scheme over the previously known methods. The second one is a parallel
implementation of this method.

*This work is supported by the U.S. National Science Foundation grant underMIP97O5738.

1 Introduction

The binary code B is a balanced code with r check bits and k information bits if and
only if,

. B is a block code of length n = k + r,

. Each word X E B has [n/2j (or [n/21) ones and [m/21 (or [n/2j) zeros,

. B has 2k codewords.

Balanced codes have the property that no codeword is contained in another; that is
the positions of the ones in one codeword will never be a subset of the positions of the
ones in a different codeword. This property makes balanced codes attractive for certain
applications.

Balanced codes are

capable of detecting all unidirectional errors. In the case of unidirectional errors,
both 1 0 and 0 - 1 errors are possible; however, in any particular received
word all the errors are of the same type. These types of errors are predominant in
VLSI circuits and memories [7, 9].

used in achieving the data integrity of write-once memories such as laser disks,
where a 0 can be changed to 1, but a written 1 cannot be changed to 0 [5, 6].

used in state assignments in fault-tolerant and fail-safe sequential circuit design
[12].

used in fiber optics and magnetic and optical storage media [4, 8].

useful to achieve delay insensitive communication [13].

useful to accomplish noise reduction in VLSI chips [10].

Balanced codes with serial encoding schemes and parallel and serial decoding schemes

are given by Knuth in [5]. Using r check bits, the parallel decoding scheme can have
up to k = r 1 information bits; the serial decoding scheme can have up to
k 2r information bits. In both methods, for each given information word, some
appropriate number of bits, starting from the first bits, are complemented; then a check

2

symbol of r-bits is assigned to this modified information word to make the entire word
balanced. In the sequential decoding scheme the check represents the weight of the
original information word whereas in the parallel decoding scheme the check directly
indicates the number of information bits complemented. Al-Bassam and Bose in [1]
improved the parallel decoding scheme by presenting a construction with k (r

mod 2) information bits using r-check bits. They showed this construction is optimal
when Knuth's complementation method mentioned above is used. The serial balanced
coding scheme has been extended to k = 2'+1 r 2 information bits by Bose in [3]
and further extended to k = [081 2 information bits by Al-Bassam and
Bose in [2] again using r-check bits. The latter result was also shown to be optimal
when Knuth's complementation method is used. In [11], Tallini, Capocelli and Bose
have designed new methods to construct efficient balanced codes based on the concept
of tail-map. A tail-map is an injective function from the set of unbalanced words to the
set of the balanced words. Three different tail-map constructions were presented. These
three methods, using r check bits, can encode up to k information bits as follows.

1. Method 1: k = 2T+1 2,

2. Method 2: k = 3 x 2 8,

3. Method 3: k = 5 x 2 lOr + C(r), where C(r) = {-15, 10, 5,0, +5}.

In this paper, we propose two implementation methods for balanced codes which
improve the computational complexity of the complementation method given in [1, 2, 3,
5, 11].

The following notations are used in this paper.

k number of information bits
r number of check bits
m = k + r length of the codeword

{0, 1}

the binary string of length k

x Z2,2 x ... x Z2,k

X complement of X
w(X) weight or the number of l's in X
S {XEZ:w(X)=w}

the binary string of length k and weight w.

3

The remainder of the paper is organized as follow. Section 2 reviews the complemen-
tation method for encoding and decoding of the balanced codes, and Section 3 describes

the new coding schemes for the balanced codes. Finally, conclusion are drawn in Section
4.

2 Knuth's complementation method

Since most of the balanced code design methods are based on Knuth's complementation
method [5], we briefly describe the method here. In the construction, the encoding
and decoding require only a complementation of some appropriate number of bits in
the information word (starting from the beginning). If X = x1 x2 ... Xk is a binary
information word, the balanced codeword encoding of X consists of X with the first i
bits complemented, and an appropriate check symbol of length r appended, as depicted
in the following: x1x2 . . . xk -* X C1C2 . . . Cr.

In serial decoding, the check symbol specifies the original weight of the information
word, so the decoder complements one bit at a time until it recovers the original infor-
mation word. On the other hand, in parallel decoding the check symbol specifies the
number of bits complemented, so the decoder simultaneously complements that many
bits to recover the original information word.

In order to elaborate Knuth's serial complementation method, some notation is
needed. Given X = x1x2. . . Xk e Z, let be X with the first j bits complemented,
i.e. = . .XJ,. Further, let a3 (X) = w(X()) = w(f. . .JXj1 ..
where w(X) is the weight of X.

For example, if X = 1001. 0000 then X5 = 0110 1000 and a5(X) = 3. As a function
of j, a(X) satisfies the following properties:

ao(X) =

ak(X) = k w(X), where k is the length of X.

a(X) = a_i(X) + 1 for j = 1,2,. . . ,

a(X)(ji)<a(X)<a(X)-i-(ji) foranyiandj,where0ijk.
As a function of j, a(X) goes from ao(X) = w(X) to ak(X) = k w(X) by unit

steps. Thus, it is possible to obtain a word of any weight between w(X) and k w(X)

by complementing the first j bits of X, for some j where 0 j k.

In particular, there always exists a j such that a(X) [1 (or [j). In this sense,

a(X) represents a 'random walk' from w(X) to kw(X). For example, if X = 0101 0000

then w(X) = 2 and k w(X) = 8 2 = 6 and so we can obtain words of weight 2,3,4,5,
and 6 by complementing the first 0,1,6,7 and 8 bits respectively. There may be several
j's which give the same weight. However, all methods use the smallest such j.

Knuth's method with serial encoding and decoding scheme relies on the properties
of a(X). A check symbol is an element of Z. The general strategy of the encoding
scheme is that first partitions the set of information words into 2 sets, one for each
check symbol, say {Sc}cEz; then using the 2 one-to-one functions

cp:
S -* S, where S is a set of binary strings of length k and weight v,

maps the words of Sc to the words of weight v = [j w(C).

In order to encode the generic information word X, the encoder performs the follow-
ing steps:

1. Compute w(X) and decide which set of the partition X belongs to, say
x E Sc.

2. Compute v = [kT!:j w(C).

3. Complement X one bit at a time until the weight v is obtained. Let this
word be Y.

4. Append the check symbol C to Y to obtain the encoded word: YC =
ço(X)C.

In setp 3, we should complement one bit, change the current weight and compare it
to v. At the worst, we perform these operations k times. Thus, step 3 takes e(k).

Since v is chosen so that v = w(C), we have w(YC) = w(Y) + w(C) =
v+w(C) = [j w(C)+w(C) = [j.

Decoding is straightforward. If YC is received, the decoder, reading the check sym-
bol C, knows that the information word lies in the set S. So it computes X =
and complements Y until the proper weight is obtained.

Example 1: A balanced code with r=3 check bits and k=8 information bits can

5

be encoded as follows. Assume the information word X = 1101 1111 e S needs to be
encoded, and the check symbol for S is 110. The encoder performs the following steps.

1. Compute w(X) = 7. Since X e S, the check symbol for X is 110.

2. Compute v = [j w(110) = 5 2 = 3.

3. Complement X one bit until weight 3 is obtained. Since the smallest j such that
w(X(i)) = 3 is 6, the computed word Y is
Y = x(6) = 0010 0011.

4. Append the check symbol C to Y to obtain the encoded word: YC = 0010 0011 110.

Now w(YC) = 5 and so, the codeword is balanced.

On receiving YC = 0010 0011 110, the decoder, reading the check symbol C = 110,

knows that the original information word came from the set S. So it complements
Y one bit at a time until the weight 7 is reached. Since weight 7 is first reached by
complementing the first 6 bits, it decodes Y as X = Y6 = 1101 1111.

3 The Proposed Schemes

In this section, we proposed two improved methods for encoding and decoding the bal-
anced codes; Improved Single Map and Parallel Single Map. The first method improves
the computation complexity of the complementation method by complementing sev-
eral appropriate bits at a time. The second one is a parallel implementation of the
complementation method. Although we compare our schemes to Knuth's methods, the
proposed methods can be applied to all the complementation methods given in [1, 2, 3,
5, 11].

3.1 Improved Single Map

Knuth's single map relies on the properties of (X). Let v = w(X) and
= w(X). Since a(X) = a_1(X) ± 1, a(X) a(X) + v'.

Since v' is the absolute value of the difference between the desired weight(v) and the
current weight (a(X)), it is impossible to reach weight v by complementing less than
v' bits. Thus, we can complement v' bits simultaneously. Our new serial coding scheme

is based on this idea. In order to encode the generic information word X, the encoder
performs the following steps:

1. Compute w = w(X) and decide which set of the partition X belongs to,
say X E Sc.

2. Compute v = [j w(C) and initialize j = 0.

3. Compute v' = w vI.

4. If v' = 0, go to step 8.

5. Complement X) from the (j + 1)th bit to the (j + v')th bit.

6. Update the weight w and compute j = j + v'.

7. Go to step 3.

8. Append the check symbol C.

Decoding is straightforward. In order to decode the generic codeword YC, the de-
coder performs the following steps:

1. Read the check symbol C and decide the weight of X.

2. Compute w = w(Y) = [] w(C) and initialize j = 0.

3. Compute v' = w(X) wl.

4. If v' = 0, end.

5. Complement y(i) from the (j + 1)th bit to the (j + v')th bit.

6. Update the weight w and compute j = j + v'.

7. Go to step 3.

Example 2. A balanced code with r=3 check bits and k=8 information bits can
be encoded as follows. Assume the information word X = 1101 1111 E S needs to be
encoded, and the check symbol for S is 110. The encoder performs the following steps.

7

1. Compute w = w(X) = 7. Since X e S, the check symbol for X is 110.

2. Compute v = [] w(110) = 5 2 = 3 and initialize j to 0.

3. Compute v' = Iv wI = 13 71 = 4.

4. Complement the first 4 bits of X. The computed word is
x(4) = 0010 1111.

5.Updatewandj:w=5andj=0+4=4

6. Compute v' = 3 51 = 2.

7. Complement the 5th and 6th bits of X4. The computed word is
X6 = 0010 0011.

8.Updatewandj:w=3andj=4+2=6.

9. Compute v' = 3 3(= 0. Since v' = 0, the word Y is equal to
Y = 0010 0011.

10. Append the check symbol C = 110 to obtain the encoded word of X:
YC = 0010 0011 110.
Now w(YC) = 5 and so, the word is balanced.

On receiving YC = 0010 0011 110, the decoder, reading the check symbol C = 110,
knows that the original information word came from S, i.e. w(X) = 7. It performs the
following steps.

1. Compute w = w(Y) = 3 and initialize j to 0.

2. Compute v' = Iw(X) wI = 17- 31 = 4.

3. Complement the first 4 bits of Y. The computed word is
Y4 1101 0011.

4. Update w and j: w = 5 and j = 0 + 4.

5. Compute v' = 7 wI = 17 SI = 2.

6. Complement the 5th and 6th bits of Y4. The computed word is
y(6) = 1101 1111.

7. Updatewandj: W=7andj=4+2=6.

8. Compute v' = 7 7 = 0. Since v' = 0, it decodes Y as X = 1101 1111

In order to compare the efficiency of the proposed method to that of Knuth's method,
we have simulated both Knuth's single map (KSM) and improved single map (ISM) for
k=8, 16 and 32. In this simulation, we generate all the possiblebinary strings (2k binary

strings) and encode them using both KSM and ISM methods. The simulation results
are shown in Table 1, Table 2 and Table 3. These results show that ISM outperforms
KSM for all simulated cases. It is noteworthy that the ratio between KSM's execution
time and ISM's execution time increases as k increases. This is because, as k increases,

v' also increases, and so ISM complements a large number of bits at a time. For large k

(k > 32), we expect ISM to perform much better than KSM.

Average # of bit complement ation

Weight Check KSM ISM Weight Check KSM ISM

0 001 4.00 1.00 5 000 0.00 0.00

1 011 2.50 1.25 6 010 3.29 1.61

2 111 0.00 0.00 7 110 5.00 1.50

3 101 0.00 0.00 8 001 4.00 1.00

4 100 0.00 0.00 Overall 0.62 0.27

Table 1: Comparison on the average number of bit complementations for k = 8, r = 3
and v = 5.

3.2 New parallel coding scheme

By extending the results given by Knuth in [5], many improved coding techniques have
been designed [1, 2, 3, 11, 14]. These methods usually require serial encoding and
decoding. However, in some applications (for example, noise reduction in VLSI Systems)

it is desirable to have parallel encoding and parallel decoding schemes for balanced codes.

In this section, a fast parallel implementation of these serial encoding and decoding
schemes is presented.

In the complementation method, if the next bit to be complemented is a '1', then
the resultant weight of the word will decrease by 1 after complementation, whereas it
will increase by 1 if it is a '0'. Thus, if the accumulated variations of weight from the
first bit to the kth bit are calculated in parallel, then the proper number of bits, j, to
be complemented can be found in one step. The proposed method is based on this idea.

Average # of bit complementation

Weight Check KSM ISM Weight Check KSM ISM

0 0011 8.00 1.0 9 0001 0.00 0.00

1 0101 7.88 1.44 10 0000 0.00 0.00

2 0110 7.70 1.73 11 0010 4.30 2.01

3 0111 5.96 1.83 12 0100 5.30 1.97

4 1011 5.30 1.97 13 1000 5.96 1.83

5 1101 4.30 2.01 14 1010 7.70 1.73

6 1111 0.00 0.00 15 1100 1.44

7 1110 0.00 0.00 16 0011 8.00 1.00

8 1001 0.00 0.00 Overall 1.00 0.42

Table 2: Comparison on the average number of bit complementations for k = 16, r = 4
and v = 10.

In order to elaborate the new coding method, we introduce a new notation. Let

'bj (X) be the variation of weight of X with the first j bits complemented;

= a(X) w(X).

For example, if X = 1101 1111, then b2(X) = a2(X) w(X) = w(0001 1111)

w(1101 1111) = 5 7 = -2, 5(X) = a5(X) w(X) = w(0010 0111) w(1101 1111) =

4- 7 = -3, and '7(X) = a7(X) w(X) w(0010 0001) w(1101 1111) = 2 7 = -5.

The encoder performs the following steps using (k) adders to encode the given
information word X = x1 x2 ... Xk.

10

Average # of bit complementation

Weight Check KSM ISM Weight Check KSM ISM

0 00111 15.00 1.0 17 00011 0.00 0.00

1 01011 14.88 1.44 18 00000 0.00 0.00

2 01101 14.73 1.71 19 00010 7.32 3.01

3 01110 14.56 1.92 20 00100 9.29 3.24

4 10011 14.36 2.12 21 01000 10.67 3.27

5 10101 14.12 2.32 22 10000 11.68 3.19

6 10110 13.82 2.51 23 00101 14.50 3.25

7 11001 13.46 2.70 24 01100 14.87 3.03

8 11010 13.01 2.88 25 01001 15.14 2.82

9 01111 10.36 2.83 26 01010 15.36 2.60

10 10111 9.34 2.89 27 01100 15.53 2.39

11 11011 8.00 2.86 28 10001 15.66 2.18

12 11101 6.19 2.65 29 10010 15.77 1.97

13 11111 0.00 0.00 30 10100 15.86 1.75

14 11110 0.00 0.00 31 11000 15.94 1.47

15 11100 0.00 0.00 32 00111 17.00 1.00

16 00011 0.00 0.00 Overall 2.54 0.89

Table 3: Comparison on the average number of bit complementations for k = 32, r = 5
and v = 18.

1. Compute w(X) and decide which set of the partition X belongs to, say
X E Sc.

2. Compute v' = [] w(C) w(X).

3. Find X' = (X), where q5(x) = -1 if x = 1, and (x) = 1 if x = 0 for
1<i<Ic.

4. Using parallel prefix additions for X', compute b(X) for 1 j k.

5. Find the smallest j such that (X) = v', and complement the first j

bits of X.

6. Append the check symbol C.

11

Note that the parallel prefix computation in Step 4 can be computed in e(log k)

steps. An example of parallel prefix addition is shown in Figure 1.

Decoding is straightforward. In order to decode the given codeword YC, the decoder
performs the following steps using (k) adders:

1. Read the check symbol C and decide the weight of X.

2. Compute v' = w(X) w(Y).

3. Find Y' = (Y), where (yj) = 1 if y = 1, and (y) = 1 if y = 0 for
1 <i < k.

4. Using parallel prefix additions for Y', compute b(Y) for 1 j k.

5. Find the smallest j such that (Y) = v', and complement the first j
bits of Y.

Example 3: A balanced code with r=3 check bits and k=8 information bits can
be encoded as follows. Assume the information word X = 1101 1111 E S needs to be
encoded, and the check symbol for S is 110. The encoder performs the following steps.

1. Since w(X) = 7, the check symbol for X is 110.

2. Compute v' = [j w(C) w(X) = 4.

3. X'=(11011111)=-1-1 1-1-1-1-1-1.

4. Compute i'(X) for 1 <j k (see Fig. 1).

5. Since the smallest j such that psi(X) = 4 is 6, complement the first 6 bits of
x.

6. Append the check symbol C = 110 to get the codeword 0010 0011 110.

On receiving YC = 0010 0011 110, the decoder, reading the check symbol C = 110,
knows that the original information word came from S. Then, it performs the following.

1. Compute v' = w(X) w(Y) = 7 3 = 4.

12

i o i i

0> 1

1

1 2 1 0 1 2 1-2 Parallel

efix

Additions

Figure 1: Parallel computation of (X) where 1 < j 8, in a given word X=l101
1111.

2. Y'=(OO1OOO11)=1 1-1 1 1 1-1-1.
3. Compute O(Y) (see Fig. 2).

4. Since the smallest j such that (Y) = 4 is 6, complement the first 6 bits of Y.

Computing b(X) can be done in e(logk) using (k) adders, and all other steps can
be done in e(1). Thus, the overall time complexity of the proposed encoding scheme is
e(log k). With regard to the decoding complexity, a similar argument can be applied.
So, the time complexity of decoding scheme is also e(log k).

4 Conclusions

In this paper, by extending the results given by Knuth, we describe two improved cod-
ing schemes for designing balanced codes. Our coding scheme does not save any bit,
but they perform Knuth's serial encoding and decoding scheme more efficiently. The
first method, called improved single map, improves the computation complexity of the
complementation methods by complementing several appropriate bits at a time instead

13

O O l O O O 11
I i>i
V 0> 1

l l1 l l i-i-iJ

1 2 1 0 1 2 1 2 Parallel

\k1 Prefix

Additions

l 2 1 2 3 4 3 2

Figure 2: Parallel computation ofb(X) where 1 <j 8, in a given word X=0010 0011.

of complementing one bit at a time as done in Knuth's method. The simulation results
given in Section 3 show the superiority of the proposed serial coding scheme over Knuth's

scheme. It can be seen that, as the information length, k, increases, the ratio between
KSM's execution time and the proposed coding scheme's execution time increases. The
second method, called parallel single map, is a parallel implementation of the comple-
mentation method. In general, the time complexity of Knuth's serial encoding scheme
is e(k). Our parallel encoding scheme performs the same operations in e(log k). Thus,
our encoding scheme is computationally faster than Knuth's.

References

[1] S. Al-Bassam and B. Bose, On balanced codes, IEEE Trans. Inform. Theory, vol.
36, pp. 406-408, Mar. 1990.

[2] S. Al-Bassam and B. Bose, Design of efficient balanced codes, IEEE Trans. Corn-
put., vol. 43, no. 3, pp. 362-365, Mar. 1994.

[3] B. Bose, On unordered codes, IEEE Trans. Comput., vol. 40, no. 2, pp. 125-131,
Feb. 1991.

14

[4] R. Karabed and P.H. Siegel, Matched spectral-null codes for partial-response chan-

nels, IEEE Trans. Inform. Theory, vol. 37, pp. 818-855, May 1991.

[5] D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory, vol. JT-32,
pp. 51-53, Jan. 1986.

[6] E. L. Leiss, Data integrity in digital optical disks, IEEE Trans. Comput., vol. c-33,
pp. 818-827, Sept. 1984.

[7] D.K. Pradhan and J.J. Stuffier, Error correcting codes and self-checking circuits in
fault-tolerant computers, IEEE Comput. Mag., vol. 13, pp. 27-37, Mar. 1980.

[8] R. M. Roth, P. H. Siegel and A. Vardy, High-order spectral-null codes-constructions

and bounds, IEEE Trans. Inform. Theory, vol. 40, pp. 1826-1840, Nov. 1994.

[9] S. J. Piestrak, Design of self-testing checkers for unidirectional error detecting codes,

Scientific papers of the institute of technical cybernetics of the technical university
of wroclaw, No. 92, monograph No. 24, 1995.

[10] J. Tabor, Noise reduction using low weight and constant weight coding techniques
Technical report AI-TR 1232, MIT Artificial Intelligence Laboratory, Jun. 1990.

[11] L. G. Tallini, R. M. Capocelli, and B. Bose, Design of some new efficient balanced
codes, IEEE Trans. Inform. Theory, vol. 42, pp. 790-802, May 1996.

[12] Y. Tohma, R. Sakai and R. Ohyama, Realization of fail-safe sequential machines by
using k-out-of-n code, IEEE Trans. Comput., vol. c-20, pp. 1270-1275, Nov. 1971.

[13] T. Verhoeff, Delay-insensitive codes-an overview, Distributed Computing, vol. 3,
pp. 1-8, 1988.

[14] J. Youn and B. Bose, Some improved encoding and decoding schemes for balanced
codes, Proceedings Pacific Rim International Sym. on Dependable Comput., pp.
103 109, Dec. 2000.

15

